WorldWideScience

Sample records for dynamic 3d cell

  1. 3D Protein Dynamics in the Cell Nucleus.

    Science.gov (United States)

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    Science.gov (United States)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  3. Dynamic 3D culture promotes spontaneous embryonic stem cell differentiation in vitro.

    Science.gov (United States)

    Gerlach, Jörg C; Hout, Mariah; Edsbagge, Josefina; Björquist, Petter; Lübberstedt, Marc; Miki, Toshio; Stachelscheid, Harald; Schmelzer, Eva; Schatten, Gerald; Zeilinger, Katrin

    2010-02-01

    Spontaneous in vitro differentiation of mouse embryonic stem cells (mESC) is promoted by a dynamic, three-dimensional (3D), tissue-density perfusion technique with continuous medium perfusion and exchange in a novel four-compartment, interwoven capillary bioreactor. We compared ectodermal, endodermal, and mesodermal immunoreactive tissue structures formed by mESC at culture day 10 with mouse fetal tissue development at gestational day E9.5. The results show that the bioreactor cultures more closely resemble mouse fetal tissue development at gestational day E9.5 than control mESC cultured in Petri dishes.

  4. A parallel 3D particle-in-cell code with dynamic load balancing

    International Nuclear Information System (INIS)

    Wolfheimer, Felix; Gjonaj, Erion; Weiland, Thomas

    2006-01-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated

  5. A parallel 3D particle-in-cell code with dynamic load balancing

    Energy Technology Data Exchange (ETDEWEB)

    Wolfheimer, Felix [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)]. E-mail: wolfheimer@temf.de; Gjonaj, Erion [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany); Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)

    2006-03-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated.

  6. 3D/4D multiscale imaging in acute lymphoblastic leukemia cells: visualizing dynamics of cell death

    Science.gov (United States)

    Sarangapani, Sreelatha; Mohan, Rosmin Elsa; Patil, Ajeetkumar; Lang, Matthew J.; Asundi, Anand

    2017-06-01

    Quantitative phase detection is a new methodology that provides quantitative information on cellular morphology to monitor the cell status, drug response and toxicity. In this paper the morphological changes in acute leukemia cells treated with chitosan were detected using d'Bioimager a robust imaging system. Quantitative phase image of the cells was obtained with numerical analysis. Results show that the average area and optical volume of the chitosan treated cells is significantly reduced when compared with the control cells, which reveals the effect of chitosan on the cancer cells. From the results it can be attributed that d'Bioimager can be used as a non-invasive imaging alternative to measure the morphological changes of the living cells in real time.

  7. Dynamic 3D cell rearrangements guided by a fibronectin matrix underlie somitogenesis.

    Directory of Open Access Journals (Sweden)

    Gabriel G Martins

    Full Text Available Somites are transient segments formed in a rostro-caudal progression during vertebrate development. In chick embryos, segmentation of a new pair of somites occurs every 90 minutes and involves a mesenchyme-to-epithelium transition of cells from the presomitic mesoderm. Little is known about the cellular rearrangements involved, and, although it is known that the fibronectin extracellular matrix is required, its actual role remains elusive. Using 3D and 4D imaging of somite formation we discovered that somitogenesis consists of a complex choreography of individual cell movements. Epithelialization starts medially with the formation of a transient epithelium of cuboidal cells, followed by cell elongation and reorganization into a pseudostratified epithelium of spindle-shaped epitheloid cells. Mesenchymal cells are then recruited to this medial epithelium through accretion, a phenomenon that spreads to all sides, except the lateral side of the forming somite, which epithelializes by cell elongation and intercalation. Surprisingly, an important contribution to the somite epithelium also comes from the continuous egression of mesenchymal cells from the core into the epithelium via its apical side. Inhibition of fibronectin matrix assembly first slows down the rate, and then halts somite formation, without affecting pseudopodial activity or cell body movements. Rather, cell elongation, centripetal alignment, N-cadherin polarization and egression are impaired, showing that the fibronectin matrix plays a role in polarizing and guiding the exploratory behavior of somitic cells. To our knowledge, this is the first 4D in vivo recording of a full mesenchyme-to-epithelium transition. This approach brought new insights into this event and highlighted the importance of the extracellular matrix as a guiding cue during morphogenesis.

  8. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Bünger, Cody; Baatrup, Anette

    2009-01-01

    Ex vivo engineering of autologous bone tissue as an alternative to bone grafting is a major clinical need. In the present study, we evaluated the effect of 3-D dynamic spinner flask culture on the proliferation, distribution, and differentiation of human mesenchymal stem cells (MSCs). Immortalized...... human MSCs were cultured on porous 75:25 PLGA scaffolds for up to 3 weeks. Dynamically cultured cell/scaffold constructs demonstrated a 20% increase in DNA content (21 days), enhanced ALP specific activity (7 days and 21 days), a more than tenfold higher Ca2+ content (21 days), and significantly...

  9. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    Science.gov (United States)

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-07-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells.

  10. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  11. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion.

    Directory of Open Access Journals (Sweden)

    Vivi Andasari

    Full Text Available In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008 where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and β-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.

  12. Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model

    Directory of Open Access Journals (Sweden)

    Kupecki Jakub

    2017-03-01

    Full Text Available The article presents a numerical analysis of an innovative method for starting systems based on high temperature fuel cells. The possibility of preheating the fuel cell stacks from the cold state to the nominal working conditions encounters several limitations related to heat transfer and stability of materials. The lack of rapid and safe start-up methods limits the proliferation of MCFCs and SOFCs. For that reason, an innovative method was developed and verified using the numerical analysis presented in the paper. A dynamic 3D model was developed that enables thermo-fluidic investigations and determination of measures for shortening the preheating time of the high temperature fuel cell stacks. The model was implemented in ANSYS Fluent computational fluid dynamic (CFD software and was used for verification of the proposed start-up method. The SOFC was chosen as a reference fuel cell technology for the study. Results obtained from the study are presented and discussed.

  13. Preparation of high bioactivity multilayered bone-marrow mesenchymal stem cell sheets for myocardial infarction using a 3D-dynamic system.

    Science.gov (United States)

    Wang, Yingwei; Zhang, Jianhua; Qin, Zixi; Fan, Zepei; Lu, Cheng; Chen, Baoxin; Zhao, Jupeng; Li, Xiaojuan; Xiao, Fei; Lin, Xi; Wu, Zheng

    2018-05-01

    Cell sheet techniques offer a promising future for myocardial infarction (MI) therapy; however, insufficient nutrition supply remains the major limitation in maintaining stem cell bioactivity in vitro. In order to enhance cell sheet mechanical strength and bioactivity, a decellularized porcine pericardium (DPP) scaffold was prepared by the phospholipase A2 method, and aspartic acid was used as a spacer arm to improve the vascular endothelial growth factor crosslink efficiency on the DPP scaffold. Based on this scaffold, multilayered bone marrow mesenchymal stem cell sheets were rapidly constructed, using RAD16-I peptide hydrogel as a temporary 3D scaffold, and cell sheets were cultured in either the 3D-dynamic system (DCcs) or the traditional static condition (SCcs). The multilayered structure, stem cell bioactivity, and ultrastructure of DCcs and SCcs were assessed. The DCcs exhibited lower apoptosis, lower differentiation, and an improved paracrine effect after a 48 h culture in vitro compared to the SCcs. Four groups were set to evaluate the cell sheet effect in rat MI model: sham group, MI control group, DCcs group, and SCcs group. The DCcs group improved cardiac function and decreased the infarcted area compared to the MI control group, while no significant improvements were observed in the SCcs group. Improved cell survival, angiogenesis, and Sca-1 + cell and c-kit + cell amounts were observed in the DCcs group. In conclusion, the DCcs maintained higher stem cell bioactivity by using the 3D-dynamic system to provide sufficient nutrition, and transplanting DCcs significantly improved the cardiac function and angiogenesis. This study provides an efficient method to prepare vascular endothelial growth factor covalent decellularized pericardium scaffold with aspartic acid, and a multilayered bone marrow mesenchymal stem cell (BMSC) sheet is constructed on it using a 3D-dynamic system. The dynamic nutrition supply showed a significant benefit on BMSC bioactivity

  14. Dynamic stall and 3D effects

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Thor, S.E. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    The JOULE II project `Dynamic stall and 3D effects` started in January 1994 and was completed in September 1995. The objective of the project has been to increase the understanding of the three-dimensional and unsteady aerodynamics of stall controlled HAWT`s. The objectives have also been to develop `engineering models` suitable for inclusion into aero-elastic codes. The project included the participation of 13 parties within Europe. This paper describes an overview of the work carried out within the project and key results. 3 refs, 4 figs

  15. Advances in 3D neuronal cell culture

    NARCIS (Netherlands)

    Frimat, Jean Philippe; Xie, Sijia; Bastiaens, Alex; Schurink, Bart; Wolbers, Floor; Den Toonder, Jaap; Luttge, Regina

    2015-01-01

    In this contribution, the authors present our advances in three-dimensional (3D) neuronal cell culture platform technology contributing to controlled environments for microtissue engineering and analysis of cellular physiological and pathological responses. First, a micromachined silicon sieving

  16. Dynamic 3D MR-defecography

    Energy Technology Data Exchange (ETDEWEB)

    Ratz, V.; Wech, T.; Schindele, A.; Dierks, A.; Sauer, A.; Reibetanz, J.; Borzi, A.; Bley, T.; Koestler, H.

    2016-09-15

    Epidemiological studies have estimated the incidence of chronic constipation to be up to 27% of the general population. The gold standard to evaluate affected patients is the dynamic entero-colpo-cysto-defecography. In the clinical routine 2 D MR-defecography is also performed, but only one to three 2 D slices at a temporal footprint of about one second are acquired. To improve the detection of lateral localized pathologies, we developed and implemented dynamic 3 D MR-defecography. Each 3 D block consisted of seven slices with an in-plane spatial resolution of 1.3 x 1.3 mm{sup 2} to 2.3 x 2.3 mm{sup 2} and an image update rate between 0.8 s and 1.3 s. We used a fast bSSFP sequence with a modified stack-of-stars sampling scheme for data acquisition and a modified FISTA compressed sensing algorithm to reconstruct the undersampled datasets. We performed a study including 6 patients to optimize the acquisition parameters with respect to image quality.

  17. Dynamic 3D MR-defecography

    International Nuclear Information System (INIS)

    Ratz, V.; Wech, T.; Schindele, A.; Dierks, A.; Sauer, A.; Reibetanz, J.; Borzi, A.; Bley, T.; Koestler, H.

    2016-01-01

    Epidemiological studies have estimated the incidence of chronic constipation to be up to 27% of the general population. The gold standard to evaluate affected patients is the dynamic entero-colpo-cysto-defecography. In the clinical routine 2 D MR-defecography is also performed, but only one to three 2 D slices at a temporal footprint of about one second are acquired. To improve the detection of lateral localized pathologies, we developed and implemented dynamic 3 D MR-defecography. Each 3 D block consisted of seven slices with an in-plane spatial resolution of 1.3 x 1.3 mm 2 to 2.3 x 2.3 mm 2 and an image update rate between 0.8 s and 1.3 s. We used a fast bSSFP sequence with a modified stack-of-stars sampling scheme for data acquisition and a modified FISTA compressed sensing algorithm to reconstruct the undersampled datasets. We performed a study including 6 patients to optimize the acquisition parameters with respect to image quality.

  18. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  19. Simulating coronal condensation dynamics in 3D

    Science.gov (United States)

    Moschou, S. P.; Keppens, R.; Xia, C.; Fang, X.

    2015-12-01

    We present numerical simulations in 3D settings where coronal rain phenomena take place in a magnetic configuration of a quadrupolar arcade system. Our simulation is a magnetohydrodynamic simulation including anisotropic thermal conduction, optically thin radiative losses, and parametrised heating as main thermodynamical features to construct a realistic arcade configuration from chromospheric to coronal heights. The plasma evaporation from chromospheric and transition region heights eventually causes localised runaway condensation events and we witness the formation of plasma blobs due to thermal instability, that evolve dynamically in the heated arcade part and move gradually downwards due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case there is no large scale prominence formation observed, but a continuous coronal rain develops which shows clear indications of Rayleigh-Taylor or interchange instability, that causes the denser plasma located above the transition region to fall down, as the system moves towards a more stable state. Linear stability analysis is used in the non-linear regime for gaining insight and giving a prediction of the system's evolution. After the plasma blobs descend through interchange, they follow the magnetic field topology more closely in the lower coronal regions, where they are guided by the magnetic dips.

  20. Menaquinone-4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in 2D and 3D dynamic culture systems.

    Science.gov (United States)

    Mandatori, Domitilla; Penolazzi, Letizia; Pipino, Caterina; Di Tomo, Pamela; Di Silvestre, Sara; Di Pietro, Natalia; Trevisani, Sara; Angelozzi, Marco; Ucci, Mariangela; Piva, Roberta; Pandolfi, Assunta

    2018-02-01

    Menaquinones, also known as Vitamin K2 family, regulate calcium homeostasis in a 'bone-vascular cross-talk' and recently received particular attention for their positive effect on bone formation. Given that the correlation between menaquinones and bone metabolism to date is still unclear, the objective of our study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of the menaquinones family, in the modulation of osteogenesis. For this reason, we used a model of human amniotic fluid mesenchymal stem cells (hAFMSCs) cultured both in two-dimensional (2D) and three-dimensional (3D; RCCS™bioreactor) in vitro culture systems. Furthermore, to mimic the 'bone remodelling unit' in vitro, hAFMSCs were co-cultured in the 3D system with human monocyte cells (hMCs) as osteoclast precursors. The results showed that in a conventional 2D culture system, hAFMSCs were responsive to the MK-4, which significantly improved the osteogenic process through γ-glutamyl carboxylase-dependent pathway. The same results were obtained in the 3D dynamic system where MK-4 treatment supported the osteoblast-like formation promoting the extracellular bone matrix deposition and the expression of the osteogenic-related proteins (alkaline phosphatase, osteopontin, collagen type-1 and osteocalcin). Notably, when the hAFMSCs were co-cultured in a 3D dynamic system with the hMCs, the presence of MK-4 supported the cellular aggregate formation as well as the osteogenic function of hAFMSCs, but negatively affected the osteoclastogenic process. Taken together, our results demonstrate that MK-4 supported the aggregate formation of hAFMSCs and increased the osteogenic functions. Specifically, our data could help to optimize bone regenerative medicine combining cell-based approaches with MK-4 treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Laser printing of cells into 3D scaffolds

    International Nuclear Information System (INIS)

    Ovsianikov, A; Gruene, M; Koch, L; Maiorana, F; Chichkov, B; Pflaum, M; Wilhelmi, M; Haverich, A

    2010-01-01

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  2. Development of a 3D cell-centered Lagrangian scheme for the numerical modeling of the gas dynamics and hyper-elasticity systems

    International Nuclear Information System (INIS)

    Georges, Gabriel

    2016-01-01

    High Energy Density Physics (HEDP) flows are multi-material flows characterized by strong shock waves and large changes in the domain shape due to rare faction waves. Numerical schemes based on the Lagrangian formalism are good candidates to model this kind of flows since the computational grid follows the fluid motion. This provides accurate results around the shocks as well as a natural tracking of multi-material interfaces and free-surfaces. In particular, cell-centered Finite Volume Lagrangian schemes such as GLACE (Godunov-type Lagrangian scheme Conservative for total Energy) and EUCCLHYD (Explicit Unstructured Cell-Centered Lagrangian Hydrodynamics) provide good results on both the modeling of gas dynamics and elastic-plastic equations. The work produced during this PhD thesis is in continuity with the work of Maire and Nkonga [JCP, 2009] for the hydrodynamic part and the work of Kluth and Despres [JCP, 2010] for the hyper elasticity part. More precisely, the aim of this thesis is to develop robust and accurate methods for the 3D extension of the EUCCLHYD scheme with a second-order extension based on MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) and GRP (Generalized Riemann Problem) procedures. A particular care is taken on the preservation of symmetries and the monotonicity of the solutions. The scheme robustness and accuracy are assessed on numerous Lagrangian test cases for which the 3D extensions are very challenging. (author) [fr

  3. Jamming and liquidity in 3D cancer cell aggregates

    Science.gov (United States)

    Oswald, Linda; Grosser, Steffen; Lippoldt, Jürgen; Pawlizak, Steve; Fritsch, Anatol; KäS, Josef A.

    Traditionally, tissues are treated as simple liquids, which holds for example for embryonic tissue. However, recent experiments have shown that this picture is insufficient for other tissue types, suggesting possible transitions to solid-like behavior induced by cellular jamming. The coarse-grained self-propelled Voronoi (SPV) model predicts such a transition depending on cell shape which is thought to arise from an interplay of cell-cell adhesion and cortical tension. We observe non-liquid behavior in 3D breast cancer spheroids of varying metastatic potential and correlate single cell shapes, single cell dynamics and collective dynamic behavior of fusion and segregation experiments via the SPV model.

  4. NASA-VOF3D, 3-D Transient, Free Surface, Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1992-01-01

    1 - Description of program or function: NASA-VOF3D is a three- dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slip, wall, continuative, periodic, and specified pressure outflow boundary. 2 - Method of solution: NASA-VOF3D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The free surfaces are treated by introducing a function defined to be unity at any point occupied by the fluid and zero elsewhere. The complete Navier- Stokes equations for an incompressible fluid are solved by finite differences with surface tension effects included. Wall adhesion may be included or neglected as a user option. The pressures (and velocities) are advanced in time throughout the computing mesh by either a conjugate residual method or the successive over-relaxation (SOR) method. The conjugate residual method is vectorized for the Cray and uses a scaled coefficient matrix. 3 - Restrictions on the complexity of the problem: NASA-VOF3D is restricted to cylindrical coordinate representation of the geometry. A three-dimensional wall-adhesion procedure is available only for straight-walled containers

  5. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    International Nuclear Information System (INIS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  6. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    International Nuclear Information System (INIS)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-01-01

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF 6 .

  7. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    Science.gov (United States)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-09-01

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.

  8. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Rambo, P. K.; Atherton, B. W. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2011-09-15

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF{sub 6}.

  9. Novel method to dynamically load cells in 3D-gel culture for primary blast injury studies

    Science.gov (United States)

    Sory, David; Cepa-Areias, Anabela; Overby, Darryl; Proud, William; Institute of Shock Physics, Department of Bioengineering; Royal British Legion CentreBlast I Collaboration

    2015-06-01

    For at least a century explosive devices have been reported as one of the most important causes of injuries on battlefield in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injury at the organ or tissue level, few studies have investigated the mechanism of blast injury at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses similar to those observed in blast waves. The experimental phase involved high strain rate axial compression of biological cylindrical specimens within a hermetically sealed sample holder made of a biocompatible polymer. Numerical simulations were performed in order to characterize the loading path within the sample and assess the loading conditions. A proof of concept is presented so as to establish a new window to address fundamental questions regarding primary blast injury at the cellular level. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  10. Time- and cell-resolved dynamics of redox-sensitive Nrf2, HIF and NF-κB activities in 3D spheroids enriched for cancer stem cells

    Directory of Open Access Journals (Sweden)

    Anna P. Kipp

    2017-08-01

    Full Text Available Cancer cells have an altered redox status, with changes in intracellular signaling pathways. The knowledge of how such processes are regulated in 3D spheroids, being well-established tumor models, is limited. To approach this question we stably transfected HCT116 cells with a pTRAF reporter that enabled time- and cell-resolved activity monitoring of three redox-regulated transcription factors Nrf2, HIF and NF-κB in spheroids enriched for cancer stem cells. At the first day of spheroid formation, these transcription factors were activated and thereafter became repressed. After about a week, both HIF and Nrf2 were reactivated within the spheroid cores. Further amplifying HIF activation in spheroids by treatment with DMOG resulted in a dominant quiescent stem-cell-like phenotype, with high resistance to stress-inducing treatments. Auranofin, triggering oxidative stress and Nrf2 activation, had opposite effects with increased differentiation and proliferation. These novel high-resolution insights into spatiotemporal activation patterns demonstrate a striking coordination of redox regulated transcription factors within spheroids not occurring in conventional cell culture models. Keywords: Redox regulation, Cancer stem cells, Spheroids, Nrf2, HIF, NF-κB

  11. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tajbakhsh, Jian, E-mail: tajbakhshj@cshs.org [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Stefanovski, Darko [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19348 (United States); Tang, George [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Wawrowsky, Kolja [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Liu, Naiyou; Fair, Jeffrey H. [Department of Surgery and UF Health Comprehensive Transplant Center, University of Florida College of Medicine, Gainesville, FL 32608 (United States)

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  12. 3D Display of Spacecraft Dynamics Using Real Telemetry

    Directory of Open Access Journals (Sweden)

    Sanguk Lee

    2002-12-01

    Full Text Available 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

  13. STREAM PROCESSING ALGORITHMS FOR DYNAMIC 3D SCENE ANALYSIS

    Science.gov (United States)

    2018-02-15

    PROCESSING ALGORITHMS FOR DYNAMIC 3D SCENE ANALYSIS 5a. CONTRACT NUMBER FA8750-14-2-0072 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62788F 6...of Figures 1 The 3D processing pipeline flowchart showing key modules. . . . . . . . . . . . . . . . . 12 2 Overall view (data flow) of the proposed...pipeline flowchart showing key modules. from motion and bundle adjustment algorithm. By fusion of depth masks of the scene obtained from 3D

  14. Dynamic 3D echocardiography in virtual reality

    Directory of Open Access Journals (Sweden)

    Simoons Maarten L

    2005-12-01

    Full Text Available Abstract Background This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. Methods Three-dimensional echocardiographic data sets from 2 normal subjects and from 4 patients with a mitral valve pathological condition were included in the study. The three-dimensional data sets were acquired with the Philips Sonos 7500 echo-system and transferred to the BARCO (Barco N.V., Kortrijk, Belgium I-space. Ten independent observers assessed the 6 three-dimensional data sets with and without mitral valve pathology. After 10 minutes' instruction in the I-Space, all of the observers could use the virtual pointer that is necessary to create cut planes in the hologram. Results The 10 independent observers correctly assessed the normal and pathological mitral valve in the holograms (analysis time approximately 10 minutes. Conclusion this report shows that dynamic holographic imaging of three-dimensional echocardiographic data is feasible. However, the applicability and use-fullness of this technology in clinical practice is still limited.

  15. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cytotoxicity of TSP in 3D Agarose Gel Cultured Cell.

    Directory of Open Access Journals (Sweden)

    Song-I Chun

    Full Text Available A reference reagent, 3-(trimethylsilyl propionic-2, 2, 3, 3-d4 acid sodium (TSP, has been used frequently in nuclear magnetic resonance (NMR and magnetic resonance spectroscopy (MRS as an internal reference to identify cell and tissue metabolites, and determine chemical and protein structures. This reference material has been exploited for the quantitative and dynamic analyses of metabolite spectra acquired from cells. The aim of this study was to evaluate the cytotoxicity of TSP on three-dimensionally, agarose gel, cultured cells.A human osteosarcoma cell line (MG-63 was selected, and cells were three dimensionally cultured for two weeks in an agarose gel. The culture system contained a mixture of conventional culture medium and various concentrations (0, 1, 3, 5, 7, 10, 20 30 mM of TSP. A DNA quantification assay was conducted to assess cell proliferation using Quant-iT PicoGreen dsDNA reagent and kit, and cell viability was determined using a LIVE/DEAD Viability/Cytotoxicity kit. Both examinations were performed simultaneously at 1, 3, 7 and 14 days from cell seeding.In this study, the cytotoxicity of TSP in the 3D culture of MG-63 cells was evaluated by quantifying DNA (cell proliferation and cell viability. High concentrations of TSP (from 10 to 30 mM reduced both cell proliferation and viability (to 30% of the control after one week of exposure, but no such effects were found using low concentrations of TSP (0-10 mM.This study shows that low concentrations of TSP in 3D cell culture medium can be used for quantitative NMR or MRS examinations for up to two weeks post exposure.

  17. Annular dynamics of memo3D annuloplasty ring evaluated by 3D transesophageal echocardiography.

    Science.gov (United States)

    Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Yoshioka, Daisuke; Sawa, Yoshiki

    2018-04-01

    We assessed the mitral annular motion after mitral valve repair with the Sorin Memo 3D® (Sorin Group Italia S.r.L., Saluggia, Italy), which is a unique complete semirigid annuloplasty ring intended to restore the systolic profile of the mitral annulus while adapting to the physiologic dynamism of the annulus, using transesophageal real-time three-dimensional echocardiography. 17 patients (12 male; mean age 60.4 ± 14.9 years) who underwent mitral annuloplasty using the Memo 3D ring were investigated. Mitral annular motion was assessed using QLAB®version8 allowing for a full evaluation of the mitral annulus dynamics. The mitral annular dimensions were measured throughout the cardiac cycle using 4D MV assessment2® while saddle shape was assessed through sequential measurements by RealView®. Saddle shape configuration of the mitral annulus and posterior and anterior leaflet motion could be observed during systole and diastole. The mitral annular area changed during the cardiac cycle by 5.7 ± 1.8%.The circumference length and diameter also changed throughout the cardiac cycle. The annular height was significantly higher in mid-systole than in mid-diastole (p 3D ring maintained a physiological saddle-shape configuration throughout the cardiac cycle. Real-time three-dimensional echocardiography analysis confirmed the motion and flexibility of the Memo 3D ring upon implantation.

  18. Dynamic Frames Based Generation of 3D Scenes and Applications

    Directory of Open Access Journals (Sweden)

    Danijel Radošević

    2015-05-01

    Full Text Available Modern graphic/programming tools like Unity enables the possibility of creating 3D scenes as well as making 3D scene based program applications, including full physical model, motion, sounds, lightning effects etc. This paper deals with the usage of dynamic frames based generator in the automatic generation of 3D scene and related source code. The suggested model enables the possibility to specify features of the 3D scene in a form of textual specification, as well as exporting such features from a 3D tool. This approach enables higher level of code generation flexibility and the reusability of the main code and scene artifacts in a form of textual templates. An example of the generated application is presented and discussed.

  19. Critical bifurcation surfaces of 3D discrete dynamics

    Directory of Open Access Journals (Sweden)

    Michael Sonis

    2000-01-01

    Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.

  20. Overview of fast algorithm in 3D dynamic holographic display

    Science.gov (United States)

    Liu, Juan; Jia, Jia; Pan, Yijie; Wang, Yongtian

    2013-08-01

    3D dynamic holographic display is one of the most attractive techniques for achieving real 3D vision with full depth cue without any extra devices. However, huge 3D information and data should be preceded and be computed in real time for generating the hologram in 3D dynamic holographic display, and it is a challenge even for the most advanced computer. Many fast algorithms are proposed for speeding the calculation and reducing the memory usage, such as:look-up table (LUT), compressed look-up table (C-LUT), split look-up table (S-LUT), and novel look-up table (N-LUT) based on the point-based method, and full analytical polygon-based methods, one-step polygon-based method based on the polygon-based method. In this presentation, we overview various fast algorithms based on the point-based method and the polygon-based method, and focus on the fast algorithm with low memory usage, the C-LUT, and one-step polygon-based method by the 2D Fourier analysis of the 3D affine transformation. The numerical simulations and the optical experiments are presented, and several other algorithms are compared. The results show that the C-LUT algorithm and the one-step polygon-based method are efficient methods for saving calculation time. It is believed that those methods could be used in the real-time 3D holographic display in future.

  1. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    Science.gov (United States)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  2. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-04-21

    Tissue engineering is receiving tremendous attention due to the necessity to overcome the limitations related to injured or diseased tissues or organs. It is the perfect combination of cells and biomimetic-engineered materials. With the appropriate biochemical factors, it is possible to develop new effective bio-devices that are capable to improve or replace biological functions. Latest developments in microfabrication methods, employing mostly synthetic biomaterials, allow the production of three-dimensional (3D) scaffolds that are able to direct cell-to-cell interactions and specific cellular functions in order to drive tissue regeneration or cell transplantation. The presented work offers a rapid and efficient method of 3D scaffolds fabrication by using optical lithography and micro-molding techniques. Bioresorbable polymer poly-ε-caprolactone (PCL) was the material used thanks to its high biocompatibility and ability to naturally degrade in tissues. 3D PCL substrates show a particular combination in the designed length scale: cylindrical shaped pillars with 10μm diameter, 10μm height, arranged in a hexagonal lattice with spacing of 20μm were obtained. The sidewalls of the pillars were nanostructured by attributing a 3D architecture to the scaffold. The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro- and nano-patterns on the surface of the supports. In addition, after seeding of cells, SEM and immunofluorescence characterization of the fabricated systems were performed to check adhesion, growth and proliferation. It was observed that cells grow and develop healthy on the bio-polymeric devices by giving rise to well-interconnected networks. 3D PCL nano-patterned pillared scaffold therefore may have considerable potential as effective tool for

  3. Multizone Paper Platform for 3D Cell Cultures

    Science.gov (United States)

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  4. Unit cell geometry of 3-D braided structures

    Science.gov (United States)

    Du, Guang-Wu; Ko, Frank K.

    1993-01-01

    The traditional approach used in modeling of composites reinforced by three-dimensional (3-D) braids is to assume a simple unit cell geometry of a 3-D braided structure with known fiber volume fraction and orientation. In this article, we first examine 3-D braiding methods in the light of braid structures, followed by the development of geometric models for 3-D braids using a unit cell approach. The unit cell geometry of 3-D braids is identified and the relationship of structural parameters such as yarn orientation angle and fiber volume fraction with the key processing parameters established. The limiting geometry has been computed by establishing the point at which yarns jam against each other. Using this factor makes it possible to identify the complete range of allowable geometric arrangements for 3-D braided preforms. This identified unit cell geometry can be translated to mechanical models which relate the geometrical properties of fabric preforms to the mechanical responses of composite systems.

  5. Multitasking the code ARC3D. [for computational fluid dynamics

    Science.gov (United States)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  6. Toward single cell traction microscopy within 3D collagen matrices

    International Nuclear Information System (INIS)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels

  7. Toward single cell traction microscopy within 3D collagen matrices

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  8. 3D+time acquisitions of 3D cell culture by means of lens-free tomographic microscopy

    Science.gov (United States)

    Berdeu, Anthony; Laperrousaz, Bastien; Bordy, Thomas; Morales, S.; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric

    2018-02-01

    We propose a three-dimensional (3D) imaging platform based on lens-free microscopy to perform multi-angle acquisitions on 3D cell cultures embedded in extracellular matrix (ECM). We developed algorithms based on the Fourier diffraction theorem to perform fully 3D reconstructions of biological samples and we adapted the lens-free microscope to incubator conditions. Here we demonstrate for the first time, 3D+time lens-free acquisitions of 3D cell culture over 8 days directly into the incubator. The 3D reconstructed volume is as large as 5 mm3 and provides a unique way to observe in the same 3D cell culture experiment multiple cell migration strategies. Namely, in a 3D cell culture of prostate epithelial cells embedded within a Matrigel® matrix, we are able to distinguish single cell 'leaders', migration of cell clusters, migration of large aggregates of cells, and also close-gap and large-scale branching. In addition, we observe long-scale 3D deformations of the ECM that modify the geometry of the 3D cell culture. Interestingly, we also observed the opposite, i.e. we found that large aggregates of cells may deform the ECM by generating traction forces over very long distances. In sum we put forward a novel 3D lens-free microscopy tomographic technique to study the single and collective cell migrations, the cell-to-cell interactions and the cell-to-matrix interactions.

  9. Automation of 3D cell culture using chemically defined hydrogels.

    Science.gov (United States)

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  10. 3D tomography of cells in micro-channels

    Science.gov (United States)

    Quint, S.; Christ, A. F.; Guckenberger, A.; Himbert, S.; Kaestner, L.; Gekle, S.; Wagner, C.

    2017-09-01

    We combine confocal imaging, microfluidics, and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimens, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded, which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparison with theoretical and numerical predictions unfeasible with, e.g., 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: "croissants" and "slippers." Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals.

  11. Dynamical localization in the 3-D kicked Rydberg atom

    International Nuclear Information System (INIS)

    Persson, E.; Yoshida, S.; Tong, X.-M.; Reinhold, C.; Burgdoerfer, J.

    2001-01-01

    Full text: The dynamical localization for the 3D periodically kicked Rydberg atom is analyzed. For the 1D kicked atom, earlier work shows dynamical localization as the quantum suppression of classically fast ionization associated with unbounded chaotic trajectories. The corresponding wave functions localize around unstable periodic orbits. For the experimental observation, the crucial question is the dependence of the dynamical localization on the dimension. As the first step, we simulate the full 3D evolution of an extreme parabolic initial state elongated in the direction of the unidirectional kicks. We compare this simulation with the 1D model and find signatures of localization also in 3D. We further examine the dependence of quantum localization on the parabolic quantum number of the initial state. In the limit of high kick frequencies, the origin of the localization can be understood in terms of Stark states in the average field. We discuss conditions for where an experimental observation of the localization is most likely. (author)

  12. Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells

    Science.gov (United States)

    Sun, Xiuzhi S.; Nguyen, Thu A.

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204

  13. Self-expressive Dictionary Learning for Dynamic 3D Reconstruction.

    Science.gov (United States)

    Zheng, Enliang; Ji, Dinghuang; Dunn, Enrique; Frahm, Jan-Michael

    2017-08-22

    We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where the dictionary is defined as an aggregation of the temporally varying 3D structures. Given the smooth motion of dynamic objects, we observe any element in the dictionary can be well approximated by a sparse linear combination of other elements in the same dictionary (i.e. self-expression). Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. We further analyze the reconstructability of our approach under different capture scenarios, and its comparison and relation to existing methods. Experimental results on large amounts of synthetic data as well as real imagery demonstrate the effectiveness of our approach.

  14. 3D NAND Flash Based on Planar Cells

    Directory of Open Access Journals (Sweden)

    Andrea Silvagni

    2017-10-01

    Full Text Available In this article, the transition from 2D NAND to 3D NAND is first addressed, and the various 3D NAND architectures are compared. The article carries out a comparison of 3D NAND architectures that are based on a “punch-and-plug” process—with gate-all-around (GAA cell devices—against architectures that are based on planar cell devices. The differences and similarities between the two classes of architectures are highlighted. The differences between architectures using floating-gate (FG and charge-trap (CT devices are also considered. Although the current production of 3D NAND is based on GAA cell devices, it is suggested that architectures with planar cell devices could also be viable for mass production.

  15. The ER in 3D: a multifunctional dynamic membrane network.

    Science.gov (United States)

    Friedman, Jonathan R; Voeltz, Gia K

    2011-12-01

    The endoplasmic reticulum (ER) is a large, singular, membrane-bound organelle that has an elaborate 3D structure with a diversity of structural domains. It contains regions that are flat and cisternal, ones that are highly curved and tubular, and others adapted to form contacts with nearly every other organelle and with the plasma membrane. The 3D structure of the ER is determined by both integral ER membrane proteins and by interactions with the cytoskeleton. In this review, we describe some of the factors that are known to regulate ER structure and discuss how this structural organization and the dynamic nature of the ER membrane network allow it to perform its many different functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Classifying and Analyzing 3d Cell Motion in Jammed Microgels

    Science.gov (United States)

    Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas

    Soft granular polyelectrolyte microgels swell in liquid cell growth media to form a continuous elastic solid that can easily transition between solid to fluid state under a low shear stress. Such Liquid-like solids (LLS) have recently been used to create 3D cellular constructs as well as to support, culture and harvest cells in 3D. Current understanding of cell migration mechanics in 3D was established from experiments performed in natural and synthetic polymer networks. Spatial variation in network structure and the transience of degradable gels limit their usefulness in quantitative cell mechanics studies. By contrast, LLS growth media approximates a homogeneous continuum, enabling tractable cell mechanics measurements to be performed in 3D. Here, we introduce a process to understand and classify cytotoxic T cell motion in 3D by studying cellular motility in LLS media. General classification of T cell motion can be achieved with a very traditional statistical approach: the cell's mean squared displacement (MSD) as a function of delay time. We will also use Langevin approaches combined with the constitutive equations of the LLS medium to predict the statistics of T cell motion. National Science Foundation under Grant No. DMR-1352043.

  17. Stereolithographic hydrogel printing of 3D microfluidic cell culture chips

    DEFF Research Database (Denmark)

    Zhang, Rujing

    that support the required freedom in design, detail and chemistry for fabricating truly 3D constructs have remained limited. Here, we report a stereolithographic high-resolution 3D printing technique utilizing poly(ethylene glycol) diacrylate (PEGDA, MW 700) to manufacture diffusion-open and mechanically...... and material flexibility by embedding a highly compliant cell-laden gelatin hydrogel within the confines of a 3D printed resilient PEGDA hydrogel chip of intermediate compliance. Overall, our proposed strategy represents an automated, cost-effective and high resolution technique to manufacture complex 3D...... epoxy component as structural supports interfacing the external world as well as compliant PEGDA component as microfluidic channels have been manufactured and perfused. Although still in the preliminary stage, this dual-material printing approach shows the potential for constructing complex 3D...

  18. Axial tomography in 3D live cell microscopy

    Science.gov (United States)

    Richter, Verena; Bruns, Sarah; Bruns, Thomas; Piper, Mathis; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert

    2017-07-01

    A miniaturized setup for sample rotation on a microscope stage has been developed, combined with light sheet, confocal or structured illumination microscopy and applied to living cells as well as to small organisms. This setup permits axial tomography with improved visualization of single cells or small cell clusters as well as an enhanced effective 3D resolution upon sample rotation.

  19. AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.

    Science.gov (United States)

    Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J

    2015-04-01

    A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.

  20. Untangling Slab Dynamics Using 3-D Numerical and Analytical Models

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.

    2016-12-01

    Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.

  1. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  2. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels.

    Science.gov (United States)

    Soman, Pranav; Chung, Peter H; Zhang, A Ping; Chen, Shaochen

    2013-11-01

    Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. © 2013 Wiley Periodicals, Inc.

  3. Contributions of 3D Cell Cultures for Cancer Research.

    Science.gov (United States)

    Ravi, Maddaly; Ramesh, Aarthi; Pattabhi, Aishwarya

    2017-10-01

    Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. 3D-Printed external light traps for solar cells

    NARCIS (Netherlands)

    van Dijk, L.; Paetzold, U.W.; Blab, Gerhard; Marcus, E.A.P.; Oostra, A.J.; van de Groep, J.; Polman, A.; Schropp, R.E.I.; Di Vece, M.

    2015-01-01

    We demonstrate a universally applicable 3D-printed external light trap for solar cells. We placed a macroscopic external light trap made of smoothened, silver coated plastic at the sun-facing surface of different types of solar cells. The trap consists of a reflective parabolic concentrator on top

  5. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    Science.gov (United States)

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture.

    Directory of Open Access Journals (Sweden)

    Ju Han

    2010-02-01

    Full Text Available Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype. Next, associations with molecular features were realized through (i differential analysis within each morphological cluster, and (ii regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPARgamma has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPARgamma has been validated through two supporting biological assays.

  7. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  8. Bioimpedance monitoring of 3D cell culturing-Complementary electrode configurations for enhanced spatial sensitivity

    DEFF Research Database (Denmark)

    Canali, Chiara; Heiskanen, Arto; Muhammad, Haseena Bashir

    2015-01-01

    A bioimpedance platform is presented as a promising tool for non-invasive real-time monitoring of the entire process of three-dimensional (3D) cell culturing in a hydrogel scaffold. In this study, the dynamics involved in the whole process of 3D cell culturing, starting from polymerisation...... spectroscopic (EIS) characterisation were used to determine the configurations' sensitivity field localisation. The 2T setup gives insight into the interfacial phenomena at both electrode surfaces and covers the central part of the 3D cell culture volume, while the four 3T modes provide focus on the dynamics...... the tested biomimetic environment, paving the way to further developments in bioimpedance tracking of 3D cell cultures and tissue engineering....

  9. Modeling tree crown dynamics with 3D partial differential equations.

    Science.gov (United States)

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  10. FLOWPLOT2, 2-D, 3-D Fluid Dynamic Plots

    International Nuclear Information System (INIS)

    Cobb, C.K.; Tunstall, J.N.

    1989-01-01

    1 - Description of program or function: FLOWPLOT2 is a plotting program used with numerical or analytical fluid dynamics codes to create velocity vector plots, contour plots of up to three fluid parameters (e.g. pressure, density, and temperature), two-dimensional profile plots, three-dimensional curve plots, and/or three-dimensional surface plots for either the u or v velocity components. If the fluid dynamics code computes a transient or simulated time related solution, FLOWPLOT2 can also be used to generate these plots for any specified time interval. Multiple cases generating different plots for different time intervals may be run in one execution of the program. In addition, plots can be created for selected two- dimensional planes of three-dimensional steady-state problems. The user has the option of producing plots on CalComp or Versatec plotters or microfiche and of creating a compressed dataset before plotting. 2 - Method of solution: FLOWPLOT2 reads a dataset written by the fluid dynamics code. This dataset must be written in a specified format and must contain parametric data at the nodal points of a uniform or non-uniform rectangular grid formed by the intersection of the grid lines of the model. 3 - Restrictions on the complexity of the problem - Maxima of: 2500 nodes, 40 y-values for 2-D profile plots and 3-D curve plots, 20 contour values, 3 fluid parameters

  11. 3D morphometry of red blood cells by digital holography.

    Science.gov (United States)

    Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Gennari, Oriella; Netti, Paolo Antonio; Ferraro, Pietro

    2014-12-01

    Three dimensional (3D) morphometric analysis of flowing and not-adherent cells is an important aspect for diagnostic purposes. However, diagnostics tools need to be quantitative, label-free and, as much as possible, accurate. Recently, a simple holographic approach, based on shape from silhouette algorithm, has been demonstrated for accurate calculation of cells biovolume and displaying their 3D shapes. Such approach has been adopted in combination with holographic optical tweezers and successfully applied to cells with convex shape. Nevertheless, unfortunately, the method fails in case of specimen with concave surfaces. Here, we propose an effective approach to achieve correct 3D shape measurement that can be extended in case of cells having concave surfaces, thus overcoming the limit of the previous technique. We prove the new procedure for healthy red blood cells (RBCs) (i.e., discocytes) having a concave surface in their central region. Comparative analysis of experimental results with a theoretical 3D geometrical model of RBC is discussed in order to evaluate accuracy of the proposed approach. Finally, we show that the method can be also useful to classify, in terms of morphology, different varieties of RBCs. © 2014 International Society for Advancement of Cytometry.

  12. Development of a microfluidic perfusion 3D cell culture system

    Science.gov (United States)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  13. Agarose hydrogel induced MCF-7 and BMG-1 cell line progressive 3D and 3D revert cultures.

    Science.gov (United States)

    Subramaniyan, Aishwarya; Ravi, Maddaly

    2018-04-01

    3D culture systems have enhanced the utility of cancer cell lines as they are considered closer to the in vivo systems. A variety of changes are induced in cells cultured in 3D systems; an apparent and striking feature being the spontaneous acquisition of distinct morphological entities. 3D reverts (3DRs) can be obtained by introducing 3D aggregates in scaffold/matrix-free culture units. It could be seen that the two cell lines used in this study exhibited differences in 3DR structures, though both were cultured on agarose hydrogels. Also, differences in 3DR formation, growth and survival were different. While 3D aggregates of several cell lines have been reported for a variety of studies, there are no studies that describe or utilize 3DRs. 3DRs can provide insights into complex events that can occur in cancer cells; especially as material to study metastasis, migration, and invasion. © 2017 Wiley Periodicals, Inc.

  14. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Tong Luo

    Full Text Available The 3D geometry of individual vascular smooth muscle cells (VSMCs, which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation.A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell's initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9 μm, 4.6±0.6 μm and 6.2±1.8 μm (mean±SD. In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle was found to be 8±7.6° with median as 5.7°.A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function.

  15. Biophysical force regulation in 3D tumor cell invasion

    Science.gov (United States)

    Wu, Mingming

    When embedded within 3D extracellular matrices (ECM), animal cells constantly probe and adapt to the ECM locally (at cell length scale) and exert forces and communicate with other cells globally (up to 10 times of cell length). It is now well accepted that mechanical crosstalk between animal cells and their microenvironment critically regulate cell function such as migration, proliferation and differentiation. Disruption of the cell-ECM crosstalk is implicated in a number of pathologic processes including tumor progression and fibrosis. Central to the problem of cell-ECM crosstalk is the physical force that cells generate. By measuring single cell generated force within 3D collagen matrices, we revealed a mechanical crosstalk mechanism between the tumor cells and the ECM. Cells generate sufficient force to stiffen collagen fiber network, and stiffer matrix, in return promotes larger cell force generation. Our work highlights the importance of fibrous nonlinear elasticity in regulating tumor cell-ECM interaction, and results may have implications in the rapid tissue stiffening commonly found in tumor progression and fibrosis. This work is partially supported by NIH Grants R21RR025801 and R21GM103388.

  16. A parallel algorithm for 3D dislocation dynamics

    International Nuclear Information System (INIS)

    Wang Zhiqiang; Ghoniem, Nasr; Swaminarayan, Sriram; LeSar, Richard

    2006-01-01

    Dislocation dynamics (DD), a discrete dynamic simulation method in which dislocations are the fundamental entities, is a powerful tool for investigation of plasticity, deformation and fracture of materials at the micron length scale. However, severe computational difficulties arising from complex, long-range interactions between these curvilinear line defects limit the application of DD in the study of large-scale plastic deformation. We present here the development of a parallel algorithm for accelerated computer simulations of DD. By representing dislocations as a 3D set of dislocation particles, we show here that the problem of an interacting ensemble of dislocations can be converted to a problem of a particle ensemble, interacting with a long-range force field. A grid using binary space partitioning is constructed to keep track of node connectivity across domains. We demonstrate the computational efficiency of the parallel micro-plasticity code and discuss how O(N) methods map naturally onto the parallel data structure. Finally, we present results from applications of the parallel code to deformation in single crystal fcc metals

  17. 3D mapping of individual cells using a proton microbeam

    International Nuclear Information System (INIS)

    Michelet, C.; Moretto, Ph.

    1999-01-01

    Various imaging techniques carried out with a nuclear microprobe make it possible to reveal by 2D mapping, the internal structure of isolated cells. An improvement of those techniques allows today 3D mapping of cells. STIM- and PIXE-Tomography have been recently implemented on the CENBG microbeam line. The performance offered by these methods, which are capable of resolving objects having diameters less then 100 μm, has been validated on reference specimens and on human cells from cultures. In addition to the fineness of the resolution, these techniques offer the advantage of performing volume analyses without prior cutting of the samples. The ultimate aim of this program of research is to perform 3D elemental chemical analysis of individual cells in the field of biomedicine

  18. A support-operator method for 3-D rupture dynamics

    Science.gov (United States)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2009-06-01

    We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.

  19. A 3-D model of tumor progression based on complex automata driven by particle dynamics.

    Science.gov (United States)

    Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z

    2009-12-01

    The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.

  20. Mesoderm Lineage 3D Tissue Constructs Are Produced at Large-Scale in a 3D Stem Cell Bioprocess.

    Science.gov (United States)

    Cha, Jae Min; Mantalaris, Athanasios; Jung, Sunyoung; Ji, Yurim; Bang, Oh Young; Bae, Hojae

    2017-09-01

    Various studies have presented different approaches to direct pluripotent stem cell differentiation such as applying defined sets of exogenous biochemical signals and genetic/epigenetic modifications. Although differentiation to target lineages can be successfully regulated, such conventional methods are often complicated, laborious, and not cost-effective to be employed to the large-scale production of 3D stem cell-based tissue constructs. A 3D-culture platform that could realize the large-scale production of mesoderm lineage tissue constructs from embryonic stem cells (ESCs) is developed. ESCs are cultured using our previously established 3D-bioprocess platform which is amenable to mass-production of 3D ESC-based tissue constructs. Hepatocarcinoma cell line conditioned medium is introduced to the large-scale 3D culture to provide a specific biomolecular microenvironment to mimic in vivo mesoderm formation process. After 5 days of spontaneous differentiation period, the resulting 3D tissue constructs are composed of multipotent mesodermal progenitor cells verified by gene and molecular expression profiles. Subsequently the optimal time points to trigger terminal differentiation towards cardiomyogenesis or osteogenesis from the mesodermal tissue constructs is found. A simple and affordable 3D ESC-bioprocess that can reach the scalable production of mesoderm origin tissues with significantly improved correspondent tissue properties is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 3D cancer cell migration in a confined matrix

    Science.gov (United States)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.

  2. The ER in 3-D: a multifunctional dynamic membrane network

    OpenAIRE

    Friedman, Jonathan R.; Voeltz, Gia K.

    2011-01-01

    The endoplasmic reticulum (ER) is a large, singular, membrane-bound organelle that has an elaborate 3-D structure with a diversity of structural domains. It contains regions that are flat and cisternal, ones that are highly curved and tubular, and others adapted to form contact with nearly every other organelle and with the plasma membrane. ER 3-D structure is determined by both integral ER membrane proteins and by interactions with the cytoskeleton. Here, we describe some of the factors that...

  3. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    Science.gov (United States)

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  4. Coupling of the computational fluid dynamics code ANSYS CFX with the 3D neutron kinetic core model DYN3D

    International Nuclear Information System (INIS)

    Kliem, S.; Grahn, A.; Rohde, U.; Schuetze, J.; Frank, Th.

    2010-01-01

    The computational fluid dynamics code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactors coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for two small-size test problems confirm the correctness of the implementation of the prototype coupling. The first test problem was a mini-core consisting of nine real-size fuel assemblies with quadratic cross section. Comparison was performed with the DYN3D stand-alone code. In the steady state, the effective multiplication factor obtained by the DYN3D/ANSYS CFX codes hows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power in the same mini-core. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. The same calculations were carried for a mini-core with seven real-size fuel assemblies with hexagonal cross section in

  5. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  6. Cell migration through connective tissue in 3-D

    Science.gov (United States)

    Fabry, Ben

    2008-03-01

    A prerequisite for metastasis formation is the ability of tumor cells to invade and migrate through connective tissue. Four key components endow tumor cells with this ability: secretion of matrix-degrading enzymes, firm but temporary adhesion onto connective tissue fibers, contractile force generation, and rapid remodeling of cytoskeletal structures. Cell adhesion, contraction, and cytoskeletal remodeling are biomechanical parameter that can be measured on single cells using a panel of biophysical methods. We use 2-D and 3-D traction microscopy to measure contractile forces; magnetic tweezer microrheology to estimate adhesion strengths, cytoskeletal stiffness and molecular turn-over rates; and nanoscale particle tracking to measure cytoskeletal remodeling. On a wide range of tumor cell lines we could show that cell invasiveness correlates with increased expression of integrin adhesion receptors, increased contractile force generation, and increased speed of cytoskeletal reorganization. Each of those biomechanical parameters, however, varied considerably between cell lines of similar invasivity, suggesting that tumor cells employ multiple invasion strategies that cannot be unambiguously characterized using a single assay.

  7. Face recognition based on matching of local features on 3D dynamic range sequences

    Science.gov (United States)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  8. 3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.

    Science.gov (United States)

    Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    Fluorescent imaging of fixed cells grown in two-dimensional (2D) cultures is one of the most widely used techniques for observing protein localization and distribution within cells. Although this technique can also be applied to polarized epithelial cells that form three-dimensional (3D) cysts when grown in a Matrigel matrix suspension, there are still significant limitations in imaging cells fixed at a particular point in time. Here, we describe the use of 3D time-lapse imaging of live cells to observe the dynamics of apical membrane initiation site (AMIS) formation and lumen expansion in polarized epithelial cells.

  9. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-01-01

    . The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro

  10. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    International Nuclear Information System (INIS)

    Gartia, Manas Ranjan; Hsiao, Austin; Logan Liu, G; Sivaguru, Mayandi; Chen Yi

    2011-01-01

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  11. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gartia, Manas Ranjan [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Hsiao, Austin; Logan Liu, G [Department of Bioengineering, University of Illinois, Urbana, IL 61801 (United States); Sivaguru, Mayandi [Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 (United States); Chen Yi, E-mail: loganliu@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-09-07

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  12. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  13. Flux ropes and 3D dynamics in the relaxation scaling experiment

    International Nuclear Information System (INIS)

    Intrator, T P; Feng, Y; Weber, T E; Swan, H O; Sun, X; Dorf, L; Sears, J A

    2013-01-01

    Flux ropes form basic building blocks for magnetic dynamics in many plasmas, are macroscopic analogues of magnetic field lines, and are irreducibly three dimensional (3D). We have used the relaxation scaling experiment (RSX) to study flux ropes, and have found many new features involving 3D dynamics, kink instability driven reconnection, nonlinearly stable but kinking flux ropes, and large flows. (paper)

  14. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A. [and others

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEU codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.

  15. Progression of 3D Protein Structure and Dynamics Measurements

    Science.gov (United States)

    Sato-Tomita, Ayana; Sekiguchi, Hiroshi; Sasaki, Yuji C.

    2018-06-01

    New measurement methodologies have begun to be proposed with the recent progress in the life sciences. Here, we introduce two new methodologies, X-ray fluorescence holography for protein structural analysis and diffracted X-ray tracking (DXT), to observe the dynamic behaviors of individual single molecules.

  16. File list: Pol.ALL.10.Polr3d.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.10.Polr3d.AllCell mm9 RNA polymerase Polr3d All cell types SRX373040,SRX301...04147 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.ALL.10.Polr3d.AllCell.bed ...

  17. File list: Pol.ALL.05.Polr3d.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.05.Polr3d.AllCell mm9 RNA polymerase Polr3d All cell types SRX373040,SRX373...04148 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.ALL.05.Polr3d.AllCell.bed ...

  18. Uncovering cancer cell behavioral phenotype in 3-D in vitro metastatic landscapes

    Science.gov (United States)

    Liu, Liyu; Sun, Bo; Duclos, Guillaume; Kam, Yoonseok; Gatenby, Robert; Stone, Howard; Austin, Robert

    2012-02-01

    One well-known fact is that cancer cell genetics determines cell metastatic potentials. However, from a physics point of view, genetics as cell properties cannot directly act on metastasis. An agent is needed to unscramble the genetics first before generating dynamics for metastasis. Exactly this agent is cell behavioral phenotype, which is rarely studied due to the difficulties of real-time cell tracking in in vivo tissue. Here we have successfully constructed a micro in vitro environment with collagen based Extracellular Matrix (ECM) structures for cell 3-D metastasis. With stable nutrition (glucose) gradient inside, breast cancer cell MDA-MB-231 is able to invade inside the collagen from the nutrition poor site towards the nutrition rich site. Continuous confocal microscopy captures images of the cells every 12 hours and tracks their positions in 3-D space. The micro fluorescent beads pre-mixed inside the ECM demonstrate that invasive cells have altered the structures through mechanics. With the observation and the analysis of cell collective behaviors, we argue that game theory may exist between the pioneering cells and their followers in the metastatic cell group. The cell collaboration may explain the high efficiency of metastasis.

  19. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.

    Science.gov (United States)

    Chen, Yu-Chih; Yoon, Euisik

    2017-01-01

    Three-dimensional (3D) cell culture is critical in studying cancer pathology and drug response. Though 3D cancer sphere culture can be performed in low-adherent dishes or well plates, the unregulated cell aggregation may skew the results. On contrary, microfluidic 3D culture can allow precise control of cell microenvironments, and provide higher throughput by orders of magnitude. In this chapter, we will look into engineering innovations in a microfluidic platform for high-throughput cancer cell sphere formation and review the implementation methods in detail.

  20. Nonlinear 3-D dynamic time history analysis in the reracking modifications for a nuclear power plant

    International Nuclear Information System (INIS)

    Zhao, Y.; Stevenson, J.D.

    1996-01-01

    An independent seismic response evaluation of spent fuel storage racks was performed on the reracking modifications for a typical operating pressurized water reactor type nuclear power plant using nonlinear dynamic time history analysis methods per the U. S. nuclear regulatory commission (USNRC) criteria. The submerged free standing rack system and surrounding water are coupled due to fluid-structure-interaction effects using potential theory. Three dimensional (3-D) single rack and whole pool multiple rack finite element models were developed with features that allow the consideration of geometrically and materially nonlinearities including (1) the impact of a fuel bundle to a rack cell, a rack to adjacent racks or pool walls, and rack support legs to a pool floor; (2) the hydrodynamic coupling of a fuel assembly with a rack and of a rack with adjacent racks or pool walls; and (3) the tilting and frictional sliding of the rack supports. The methodologies and typical results using a 3-D single rack model as well as a 3-D whole pool multiple rack model developed herein are presented. (orig.)

  1. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems.

    Science.gov (United States)

    Ghaffarizadeh, Ahmadreza; Heiland, Randy; Friedman, Samuel H; Mumenthaler, Shannon M; Macklin, Paul

    2018-02-01

    Many multicellular systems problems can only be understood by studying how cells move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of many interacting cells as they respond to and influence their microenvironment. The ideal "virtual laboratory" for such multicellular systems simulates both the biochemical microenvironment (the "stage") and many mechanically and biochemically interacting cells (the "players" upon the stage). PhysiCell-physics-based multicellular simulator-is an open source agent-based simulator that provides both the stage and the players for studying many interacting cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport solver to link cell phenotype to multiple diffusing substrates and signaling factors. It includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility "out of the box." The C++ code has minimal dependencies, making it simple to maintain and deploy across platforms. PhysiCell has been parallelized with OpenMP, and its performance scales linearly with the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations; larger simulations are attainable on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical and contact-based interaction of multiple cell types, and the extensibility of PhysiCell with examples in synthetic multicellular systems (a "cellular cargo delivery" system, with application to anti-cancer treatments), cancer heterogeneity, and cancer immunology. PhysiCell is a powerful multicellular systems simulator that will be continually improved with new capabilities and performance improvements. It also represents a significant

  2. Low Complexity Connectivity Driven Dynamic Geometry Compression for 3D Tele-Immersion

    NARCIS (Netherlands)

    R.N. Mekuria (Rufael); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago)

    2014-01-01

    htmlabstractGeometry based 3D Tele-Immersion is a novel emerging media application that involves on the fly reconstructed 3D mesh geometry. To enable real-time communication of such live reconstructed mesh geometry over a bandwidth limited link, fast dynamic geometry compression is needed. However,

  3. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems

    Science.gov (United States)

    Ghaffarizadeh, Ahmadreza; Mumenthaler, Shannon M.

    2018-01-01

    Many multicellular systems problems can only be understood by studying how cells move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of many interacting cells as they respond to and influence their microenvironment. The ideal “virtual laboratory” for such multicellular systems simulates both the biochemical microenvironment (the “stage”) and many mechanically and biochemically interacting cells (the “players” upon the stage). PhysiCell—physics-based multicellular simulator—is an open source agent-based simulator that provides both the stage and the players for studying many interacting cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport solver to link cell phenotype to multiple diffusing substrates and signaling factors. It includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility “out of the box.” The C++ code has minimal dependencies, making it simple to maintain and deploy across platforms. PhysiCell has been parallelized with OpenMP, and its performance scales linearly with the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations; larger simulations are attainable on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical and contact-based interaction of multiple cell types, and the extensibility of PhysiCell with examples in synthetic multicellular systems (a “cellular cargo delivery” system, with application to anti-cancer treatments), cancer heterogeneity, and cancer immunology. PhysiCell is a powerful multicellular systems simulator that will be continually improved with new capabilities and performance improvements. It also

  4. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.

    Science.gov (United States)

    Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei

    2017-09-29

    The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.

  5. 3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Deepti Singh

    2016-01-01

    Full Text Available Injury or damage to tissue and organs is a major health problem, resulting in about half of the world’s annual healthcare expenditure every year. Advances in the fields of stem cells (SCs and biomaterials processing have provided a tremendous leap for researchers to manipulate the dynamics between these two, and obtain a skin substitute that can completely heal the wounded areas. Although wound healing needs a coordinated interplay between cells, extracellular proteins and growth factors, the most important players in this process are the endogenous SCs, which activate the repair cascade by recruiting cells from different sites. Extra cellular matrix (ECM proteins are activated by these SCs, which in turn aid in cellular migrations and finally secretion of growth factors that can seal and heal the wounds. The interaction between ECM proteins and SCs helps the skin to sustain the rigors of everyday activity, and in an attempt to attain this level of functionality in artificial three-dimensional (3D constructs, tissue engineered biomaterials are fabricated using more advanced techniques such as bioprinting and laser assisted printing of the organs. This review provides a concise summary of the most recent advances that have been made in the area of polymer bio-fabrication using 3D bio printing used for encapsulating stem cells for skin regeneration. The focus of this review is to describe, in detail, the role of 3D architecture and arrangement of cells within this system that can heal wounds and aid in skin regeneration.

  6. Development of a version of the reactor dynamics code DYN3D applicable for High Temperature Reactors; Entwicklung einer Version des Reaktordynamikcodes DYN3D fuer Hochtemperaturreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Ulrich; Apanasevich, Pavel; Baier, Silvio; Duerigen, Susan; Fridman, Emil; Grahn, Alexander; Kliem, Soeren; Merk, Bruno

    2012-07-15

    Based on the reactor dynamics code DYN3D for the simulation of transient processes in Light Water Reactors, a code version DYN3D-HTR for application to graphitemoderated, gas-cooled block-type high temperature reactors has been developed. This development comprises: - the methodical improvement of the 3D steady-state neutron flux calculation for the hexagonal geometry of the HTR fuel element blocks - the development of methods for the generation of homogenised cross section data taking into account the double heterogeneity of the fuel element block structure - the implementation of a 3D model for heat conduction and heat transport in the graphite matrix. The nodal method for neutron flux calculation based on SP3 transport approximation was extended to hexagonal fuel element geometry, where the hexagons are subdivided into triangles, thus the method had finally to be derived for triangular geometry. In triangular geometry, a subsequent subdivision of the hexagonal elements can be considered, and therefore, the effect of systematic mesh refinement can be studied. The algorithm was verified by comparison with Monte Carlo reference solutions, on the node-wise level, as well as also on the pin-wise level. New procedures were developed for the homogenization of the double-heterogeneous fuel element structures. One the one hand, the so-called Reactivity equivalent Physical Transformation (RPT), the two-step homogenization method based on 2D deterministic lattice calculations, was extended to cells with different temperatures of the materials. On the other hand, the progress in development of Monte Carlo methods for spectral calculations, in particular the development of the code SERPENT, opened a new, fully consistent 3D approach, where all details of the structures on fuel particle, fuel compact and fuel block level can be taken into account within one step. Moreover, a 3D heat conduction and heat transport model was integrated into DYN3D to be able to simulate radial

  7. 3D Spatially Resolved Models of the Intracellular Dynamics of the Hepatitis C Genome Replication Cycle

    KAUST Repository

    Knodel, Markus

    2017-10-02

    Mathematical models of virus dynamics have not previously acknowledged spatial resolution at the intracellular level despite substantial arguments that favor the consideration of intracellular spatial dependence. The replication of the hepatitis C virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural virus-encoded proteins (NSPs) and host cellular factors. The NSPs are responsible for the replication of the vRNA and their movement is restricted to the ER surface. Therefore, in this study we developed fully spatio-temporal resolved models of the vRNA replication cycle of HCV. Our simulations are performed upon realistic reconstructed cell structures-namely the ER surface and the membranous webs-based on data derived from immunostained cells replicating HCV vRNA. We visualized 3D simulations that reproduced dynamics resulting from interplay of the different components of our models (vRNA, NSPs, and a host factor), and we present an evaluation of the concentrations for the components within different regions of the cell. Thus far, our model is restricted to an internal portion of a hepatocyte and is qualitative more than quantitative. For a quantitative adaption to complete cells, various additional parameters will have to be determined through further in vitro cell biology experiments, which can be stimulated by the results deccribed in the present study.

  8. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    Directory of Open Access Journals (Sweden)

    Freslier Marie

    2011-07-01

    Full Text Available Abstract Background Dynamic three-dimensional (3D deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better

  9. Gel de plaquetas: arcabouço 3D para cultura celular Platelet gel: 3D scaffold for cell culture

    Directory of Open Access Journals (Sweden)

    Andrei Moroz

    2009-01-01

    Full Text Available INTRODUÇÃO: O reparo tissular é o objetivo final da cirurgia. A cultura celular requer arcabouço mecânico que dê suporte ao crescimento celular e difusão dos nutrientes. O uso do plasma rico em plaquetas (PRP como um arcabouço 3D possui diversas vantagens: é material biológico, de fácil absorção pós-transplante, rico em fatores de crescimento, em especial PDGF- ββ e TGF-β que estimula síntese de matriz extracelular na cartilagem. OBJETIVO: Desenvolver arcabouço 3D à base de PRP. MATERIAIS E MÉTODOS: Duas formas foram idealizadas: Sphere e Carpet. Condições estéreis foram utilizadas. O gel de plaquetas permaneceu em cultura celular, observado diariamente em microscópio invertido. RESULTADOS: Ambos arcabouços obtiveram sucesso, com aspectos positivos e negativos. DISCUSSÃO: A forma Sphere não aderiu ao plástico. Observou-se retração do gel e investigação ao microscópio dificultada devido às áreas opacas no campo visual. A forma Carpet não aderiu ao plástico e apresentou-se translúcida. O tempo de estudo foi de 20 dias. CONCLUSÕES: A produção de um arcabouço 3D PRP foi um sucesso, e trata-se de uma alternativa que necessita ser mais utilizado e investigado para que se consolide em uma rota eficiente e confiável na tecnologia de engenharia tissular, particularmente em cultura de tecido cartilaginoso.INTRODUCTION: Tissue repair has been the ultimate goal of surgery. Cell culture requires a mechanical scaffold that supports cell growth and nutrient diffusion. Using platelet-rich plasma (PRP as a 3D scaffold presents various advantages: it is a biological material, easily absorbed after transplantation, rich in growth factors, in particular, PDGF-ββ and TGF-β that stimulate extracellular matrix synthesis in cartilage culture. OBJECTIVE: To develop a PRP 3D scaffold. Material and METHODS: Two forms were idealized: Sphere and Carpet. Sterile conditions were used. The platelet gel remained in culture

  10. Comparison between 3D and 1D simulations of a regenerative blower for fuel cell applications

    International Nuclear Information System (INIS)

    Badami, M.; Mura, M.

    2012-01-01

    Highlights: ► A hydrogen recirculation blower for automotive fuel cells applications is studied. ► A 3D CFD analysis has been carried out to better understand the internal flows of the machine. ► The CFD results are compared to a 1D model set up by the authors in previous works. ► The main hypotheses put forward for the theoretical 1D model are compatible with the 3D analysis. - Abstract: A 3D Computational Fluid Dynamics (CFD) analysis has been carried out to better understand the internal fluid dynamics of a regenerative blower used for hydrogen recirculation in a Proton Exchange Membrane (PEM), Fuel Cell (FC) utilized for automotive applications. The obtained results are used to highlight the motion of the fluid in the vanes and in the side channel of the machine and to verify the main hypotheses put forward concerning the theoretical 1D model set up by the authors in previous works on the basis of the momentum exchange theory. Finally, the CFD analysis has been used to point out the effect of the slope of the vanes on the performance of the regenerative blower, and the results have been compared with those obtained using of the 1D model.

  11. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  12. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo

    2011-01-01

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  13. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com; Song, Guanbin, E-mail: song@cqu.edu.cn

    2016-10-15

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  14. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    International Nuclear Information System (INIS)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Song, Guanbin

    2016-01-01

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  15. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    Science.gov (United States)

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  16. Simulation of Missing Pellet Surface thermal behavior with 3D dynamic gap element

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Koo, Yang Hyun; Kang, Chang Hak; Lee Sung Uk; Yang, Dong Yol

    2014-01-01

    Most of the fuel performance codes that are able to simulate a multidimensional analysis are used to calculate the radial temperature distribution and perform a multidimensional mechanical analysis based on a one-dimensional (1D) temperature result. The FRAPCON-FRAPTRAN code system incorporates a 1D thermal module and two-dimensional (2D) mechanical module when FEM option is activated. In this method, the multidimensional gap conductance model is not required because one-dimensional thermal analysis is carried out. On the other hand, a gap conductance model for a multi-dimension should be developed in the code to perform a multidimensional thermal analysis. ALCYONE developed by CEA introduces an equivalent heat convection coefficient that represents the multidimensional gap conductance. However, the code does not employ dynamic gap conductance which is a function of gap thickness and gap characteristics in direct. The BISON code, which has been developed by INL (Idaho National Laboratory), employed a thermo-mechanical contact method that is specifically designed for tightly-coupled implicit solutions that employ Jacobian-free solution methods. Owing to tightly-coupled implicit solutions, the BISON code solves gap conductance and gap thickness simultaneously with given boundary conditions. In this paper, 3D dynamic gap element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. To evaluate 3D dynamic gap element module, 3D thermomechanical module using FORTRAN77 has been implemented incorporating 3D dynamic gap element. To demonstrate effect of 3D dynamic gap element, thermal behavior of missing pellet surface (MPS) has been simulated by the developed module. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and convergence characteristics. In

  17. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  18. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  19. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    Science.gov (United States)

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. © FASEB.

  20. Reprogramming mediated radio-resistance of 3D-grown cancer cells

    International Nuclear Information System (INIS)

    Xue Gang; Ren Zhenxin; Chen Yaxiong; Zhu Jiayun; Du Yarong; Pan Dong; Li Xiaoman; Hu Burong; Grabham, Peter W.

    2015-01-01

    In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine. (author)

  1. 3D dynamic pituitary MR imaging with CAIPIRINHA: Initial experience and comparison with 2D dynamic MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, Yasutaka, E-mail: yfushimi@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Okada, Tomohisa; Kanagaki, Mitsunori; Yamamoto, Akira; Kanda, Yumiko; Sakamoto, Ryo [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Hojo, Masato; Takahashi, Jun C.; Miyamoto, Susumu [Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan)

    2014-10-15

    Objectives: To evaluate the validity of 3D dynamic pituitary MR imaging with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA), with special emphasis on demarcation of pituitary posterior lobe and stalk. Methods: Participants comprised 32 patients who underwent dynamic pituitary MR imaging due to pituitary or parasellar lesions. 3D dynamic MR with CAIPIRINHA was performed at 3 T with 20-s-interval, precontrast, 1st to 5th dynamic images. Normalized values and enhanced ratios (dynamic postcontrast image values divided by precontrast ones) were compared between 3D and 2D dynamic MR imaging for patients with visual identification of posterior lobe and stalk. Results: In 3D, stalk was identified in 29 patients and unidentified in 3, and posterior lobe was identified in 28 and unidentified in 4. In 2D, stalk was identified in 26 patients and unidentified in 6 patients, and posterior lobe was identified in 15 and unidentified in 17. Normalized values of pituitary posterior lobe and stalk were higher in 3D than 2D (P < 0.001). No significant difference in enhancement ratio was seen between 3D and 2D. Conclusions: 3D dynamic pituitary MR provided better identification and higher normalized values of pituitary posterior lobe and stalk than 2D.

  2. Imaging of the 3D dynamics of flagellar beating in human sperm.

    Science.gov (United States)

    Silva-Villalobos, F; Pimentel, J A; Darszon, A; Corkidi, G

    2014-01-01

    The study of the mechanical and environmental factors that regulate a fundamental event such as fertilization have been subject of multiple studies. Nevertheless, the microscopical size of the spermatozoa and the high beating frequency of their flagella (up to 20 Hz) impose a series of technological challenges for the study of the mechanical factors implicated. Traditionally, due to the inherent characteristics of the rapid sperm movement, and to the technological limitations of microscopes (optical or confocal) to follow in three dimensions (3D) their movement, the analysis of their dynamics has been studied in two dimensions, when the head is confined to a surface. Flagella propel sperm and while their head can be confined to a surface, flagellar movement is not restricted to 2D, always displaying 3D components. In this work, we present a highly novel and useful tool to analyze sperm flagella dynamics in 3D. The basis of the method is a 100 Hz oscillating objective mounted on a bright field optical microscope covering a 16 microns depth space at a rate of ~ 5000 images per second. The best flagellum focused subregions were associated to their respective Z real 3D position. Unprecedented graphical results making evident the 3D movement of the flagella are shown in this work and supplemental material illustrating a 3D animation using the obtained experimental results is also included.

  3. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks

    DEFF Research Database (Denmark)

    Canali, Chiara; Mohanty, Soumyaranjan; Heiskanen, Arto

    2015-01-01

    We present the application of electrochemical impedance spectroscopy (EIS) as a method for discriminating between different polydimethylsiloxane (PDMS) scaffolds for three-dimensional (3D) cell cultures. The validity of EIS characterisation for scaffolds having different degree of porosity...... serve as means of single-frequency measurements for fast scaffold characterization combined with in vitro monitoring of 3D cell cultures....

  4. Engineering muscle cell alignment through 3D bioprinting.

    Science.gov (United States)

    Mozetic, Pamela; Giannitelli, Sara Maria; Gori, Manuele; Trombetta, Marcella; Rainer, Alberto

    2017-09-01

    Processing of hydrogels represents a main challenge for the prospective application of additive manufacturing (AM) to soft tissue engineering. Furthermore, direct manufacturing of tissue precursors with a cell density similar to native tissues has the potential to overcome the extensive in vitro culture required for conventional cell-seeded scaffolds seeking to fabricate constructs with tailored structural and functional properties. In this work, we present a simple AM methodology that exploits the thermoresponsive behavior of a block copolymer (Pluronic ® ) as a means to obtain good shape retention at physiological conditions and to induce cellular alignment. Pluronic/alginate blends have been investigated as a model system for the processing of C2C12 murine myoblast cell line. Interestingly, C2C12 cell model demonstrated cell alignment along the deposition direction, potentially representing a new avenue to tailor the resulting cell histoarchitecture during AM process. Furthermore, the fabricated constructs exhibited high cell viability, as well as a significantly improved expression of myogenic genes vs. conventional 2D cultures. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2582-2588, 2017. © 2017 Wiley Periodicals, Inc.

  5. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  6. 3D wake dynamics of the VAWT : Experimental and numerical investigation

    NARCIS (Netherlands)

    Ferreira, C.; Hofemann, C.; Dixon, K.; Van Kuik, G.A.M.; Van Bussel, G.J.W.

    2010-01-01

    The Vertical Axis Wind Turbine, in its 2D form, is characterized by a complex unsteady aerodynamic flow, including dynamic stall and blade vortex interaction. Adding to this complexity, the 3D flow causes spanwise effects and the presence of trailing vorticity and tip vortices. The objective of the

  7. Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  8. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    Science.gov (United States)

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  9. On the Dynamic Programming Approach for the 3D Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Manca, Luigi

    2008-01-01

    The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed

  10. 3D morphology of photoactive layers of polymer solar cells

    NARCIS (Netherlands)

    Bavel, van S.S.

    2009-01-01

    Nanostructured polymer solar cells (PSCs) have emerged as a promising low-cost alternative to conventional silicon-based photovoltaic devices. Since PSCs can be fabricated by processing polymers, eventually together with other organic materials, from solution and depositing them onto different types

  11. Usefulness of 3D-VIBE method in breast dynamic MRI. Imaging parameters and contrasting effects

    International Nuclear Information System (INIS)

    Uchikoshi, Masato; Ueda, Takashi; Nishiki, Shigeo; Satou, Kouichi; Wada, Akihiko; Imaoka, Izumi; Matsuo, Michimasa

    2003-01-01

    MR imaging (MRI) has been reported to be a useful modality to characterize breast tumors and to evaluate disease extent. Contrast-enhanced dynamic MRI, in particular, allows breast lesions to be characterized with high sensitivity and specificity. Our study was designed to develop three-dimensional volumetric interpolated breath-hold examination (3D-VIBE) techniques for the evaluation of breast tumors. First, agarose/Gd-DTPA phantoms with various concentrations of Gd-DTPA were imaged using 3D-VIBE and turbo spin echo (TSE). Second, one of the phantoms was imaged with 3D-VIBE using different flip angles. Finally, water excitation (WE) and a chemical shift-selective (CHESS) pulse were applied to the images. Each image was analyzed for signal intensity, signal-to-noise ratio (1.25*Ms/Mb) (SNR), and contrast ratio [(Ms1-Ms2)/{(Ms1+Ms2)/2}]. The results showed that 3D-VIBE provided better contrast ratios with a linear fit than TSE, although 3D-VIBE showed a lower SNR. To reach the best contrast ratio, the optimized flip angle was found to be 30 deg for contrast-enhanced dynamic study. Both WE and CHESS pulses were reliable for obtaining fat- suppressed images. In conclusion, the 3D-VIBE technique can image the entire breast area with high resolution and provide better contrast than TSE. Our phantom study suggests that optimized 3D-VIBE may be useful for the assessment of breast tumors. (author)

  12. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    International Nuclear Information System (INIS)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won

    1997-01-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20

  13. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20.

  14. 3-D subduction dynamics in the western Pacific: Mantle pressure, plate kinematics, and dynamic topography.

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.; Faccenna, C.

    2017-12-01

    While it is well established that the slab pull of negatively buoyant oceanic plates is the primary driving force of plate tectonics, the dynamic "details" of subduction have proved difficult to pin down. We use the Philippine Sea Plate region of the western Pacific as a site to explore links between kinematic observables (e.g. topography and plate motions) and the dynamics of the subduction system (e.g. mantle flow, mantle pressure). To first order, the Philippine Sea Plate can be considered to be the central plate of a double slab system containing two slabs that dip in the same direction, to the west. This subduction configuration presents the opportunity to explore subduction dynamics in a setting where two closely spaced slabs interact via subduction-induced mantle flow and stresses transmitted through the intervening plate. We use a 3-D numerical approach (e.g. Holt et al., 2017), augmented by semi-analytical models (e.g. Jagoutz et al., 2017), to develop relationships between dynamic processes and kinematic properties, including plate velocities, lithospheric stress state, slab dip angles, and topography. When combined with subduction zone observables, this allows us to isolate the first order dynamic processes that are in operation in the Philippine Sea Plate region. Our results suggest that positive pressure build-up occurs in the asthenosphere between the two slabs (Izu-Bonin-Mariana and Ryukyu-Nankai), and that this is responsible for producing much of the observed kinematic variability in the region, including the steep dip of the Pacific slab at the Izu-Bonin-Mariana trench, as compared to the flat dip of the Pacific slab north of Japan. We then extend our understanding of the role of asthenospheric pressure to examine the forces responsible for the plate kinematics and dynamic topography of the entire Western Pacific subduction margin(s). References:Holt, A. F., Royden, L. H., Becker, T. W., 2017. Geophys. J. Int., 209, 250-265Jagoutz, O., Royden, L

  15. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    Science.gov (United States)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. © 2013 Elsevier B.V. All rights reserved.

  16. Interim results of the sixth three-dimensional AER dynamic benchmark problem calculation. Solution of problem with DYN3D and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Hadek, J.; Kral, P.; Macek, J.

    2001-01-01

    The paper gives a brief survey of the 6 th three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAPS-3D at NRI Rez. This benchmark was defined at the 10 th AER Symposium. Its initiating event is a double ended break in the steam line of steam generator No. I in a WWER-440/213 plant at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations as well as tuning of initial state before the transient were performed with the code DYN3D. Transient calculations were made with the system code RELAPS-3D.The KASSETA library was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the 6 th AER dynamic benchmark purposes. The RELAPS-3D full core neutronic model was connected with seven coolant channels thermal-hydraulic model of the core (Authors)

  17. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine.

    Science.gov (United States)

    Liu, Zhongmin; Tang, Mingliang; Zhao, Jinping; Chai, Renjie; Kang, Jiuhong

    2018-04-01

    Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of 3D Cultivation Conditions on the Differentiation of Endodermal Cells

    Science.gov (United States)

    Petrakova, O. S.; Ashapkin, V. V.; Voroteliak, E. A.; Bragin, E. Y.; Shtratnikova, V. Y.; Chernioglo, E. S.; Sukhanov, Y. V.; Terskikh, V. V.; Vasiliev, A. V.

    2012-01-01

    Cellular therapy of endodermal organs is one of the most important issues in modern cellular biology and biotechnology. One of the most promising directions in this field is the study of the transdifferentiation abilities of cells within the same germ layer. A method for anin vitroinvestigation of the cell differentiation potential (the cell culture in a three-dimensional matrix) is described in this article. Cell cultures of postnatal salivary gland cells and postnatal liver progenitor cells were obtained; their comparative analysis under 2D and 3D cultivation conditions was carried out. Both cell types have high proliferative abilities and can be cultivated for more than 20 passages. Under 2D cultivation conditions, the cells remain in an undifferentiated state. Under 3D conditions, they undergo differentiation, which was confirmed by a lower cell proliferation and by an increase in the differentiation marker expression. Salivary gland cells can undergo hepatic and pancreatic differentiation under 3D cultivation conditions. Liver progenitor cells also acquire a pancreatic differentiation capability under conditions of 3D cultivation. Thus, postnatal salivary gland cells exhibit a considerable differentiation potential within the endodermal germ layer and can be used as a promising source of endodermal cells for the cellular therapy of liver pathologies. Cultivation of cells under 3D conditions is a useful model for thein vitroanalysis of the cell differentiation potential. PMID:23346379

  19. Nano-scale microfluidics to study 3D chemotaxis at the single cell level.

    Directory of Open Access Journals (Sweden)

    Corina Frick

    Full Text Available Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controllability of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo.

  20. Effects of geometry and cell-matrix interactions on the mechanics of 3D engineered microtissues

    Science.gov (United States)

    Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel

    Approaches to measure and control cell-extracellular matrix (ECM) interactions in a dynamic mechanical environment are important both for studies of mechanobiology and for tissue design for bioengineering applications. We have developed a microtissue-based platform capable of controlling the ECM alignment of 3D engineered microtissues while simultaneously permitting measurement of cellular contractile forces and the tissues' mechanical properties. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of flexible elastic pillars. Tissue geometry and ECM alignment are controlled by the pillars' number, shape and location. Optical tracking of the pillars provides readout of the tissues' contractile forces. Magnetic materials bound to selected pillars allow quasi-static or dynamic stretching of the tissue, and together with simultaneous measurements of the tissues' local dynamic strain field, enable characterization of the mechanical properties of the system, including their degree of anisotropy. Results on the effects of symmetry and degree of ECM alignment and organization on the role of cell-ECM interactions in determining tissue mechanical properties will be discussed. This work is supported by NSF CMMI-1463011 and CMMI-1462710.

  1. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  2. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.

    Science.gov (United States)

    Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst

    2016-02-04

    A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 3D tissue formation : the kinetics of human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera Sierra, Gustavo

    2010-01-01

    The main thesis in this book proposes that physical phenomena underlies the formation of three-dimensional (3D) tissue. In this thesis, tissue regeneration with mesenchymal stem cells was studied through the law of conservation of mass. MSCs proliferation and 3D tissue formation were explored from

  4. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2016-01-01

    Accumulating evidences have demonstrated that mesenchymal stem cells (MSC) could be recruited to the tumor microenvironment. Umbilical cord mesenchymal stem cells (UCMSC) were attractive vehicles for delivering therapeutic agents against cancer. Nevertheless, the safety of UCMSC in the treatment of tumors including hepatocellular carcinoma (HCC) was still undetermined. In this study, an in vitro co-culture system was established to evaluate the effect of UCMSC on the cell growth, cancer stem cell (CSC) characteristics, drug resistance, metastasis of 3D-cultured HCC cells, and the underlying mechanism was also investigated. It was found that after co-cultured with UCMSC, the metastatic ability of 3D-cultured HCC cells was significantly enhanced as indicated by up-regulation of matrix metalloproteinase (MMP), epithelial-mesenchymal transition (EMT)-related genes, and migration ability. However, cell growth, drug resistance and CSC-related gene expression of HCC cells were not affected by UCMSC. Moreover, EMT was reversed, MMP-2 expression was down-regulated, and migration ability of HCC cell was significantly inhibited when TGF-β receptor inhibitor SB431542 was added into the co-culture system. Therefore, these data indicated that UCMSC could significantly enhance the tumor cell metastasis, which was due to the EMT of HCC cells induced by TGF-β. The online version of this article (doi:10.1186/s12885-016-2595-4) contains supplementary material, which is available to authorized users

  5. Design of 3D printed insert for hanging culture of Caco-2 cells

    International Nuclear Information System (INIS)

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2015-01-01

    A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which have been recommended to be more physiological relevant, were not superior to the Transwell culture in either accuracy or convenience in drug permeability testing. Using rapid 3D printing prototyping techniques, this study proposed a hanging culture of Caco-2 cells that performed with high accuracy in predicting drug permeability in humans. As found, hanging cultured Caco-2 cells formed a confluent monolayer and maintained high cell viability on the 3D printed insert. Compared with the normal culture on Transwell, the Caco-2 cells on the 3D printed insert presented ∼30–100% higher brush border enzyme activity and ∼2–7 folds higher activity of P-glycoprotein/multidrug resistance-associated protein 2 during 21 days of incubation. For the eight membrane transporter substrates, the predictive curve of the 3D printing culture exhibited better linearity (R 2  = 0.92) to the human oral adsorption than that of the Transwell culture (R 2  = 0.84), indicating better prediction by the 3D printing culture. In this regard, the 3D printed insert for hanging culture could be potentially developed as a convenient and low-cost tool for testing drug oral absorption. (paper)

  6. [Dynamic study of the female levator ani muscle using MRI 3D vectorial modeling].

    Science.gov (United States)

    Delmas, Vincent; Ami, Olivier; Iba-Zizen, Marie-Thérèse

    2010-06-01

    The levator ani muscle has a major role in the female pelvic floor, and is involved in the pathophysiology of pelvic prolapse and stress urinary incontinence. We conducted an anatomical and morphological study of this muscle using dynamic 3D vectorial reconstruction MRI, in order to analyze the contraction of two major components of the levator ani: the iliococcygeus and pubococcygeus. Three volunteer healthy continent nulliparous women aged from 19 to 22 underwent dynamic pelvic MRI. Coronal T2-weighted pelvic images were obtained in the supine position, at rest, holding back, and during Valsalva stress effort. 3D vectorial models were reconstructed by manual segmentation of the source images, and were set up on bony anatomic marks. Iliococcygeus and pubococcygeus volumes were measured in the three positions. Volumetrics, displacement and dynamic morphing changes were analyzed with 3D vectorial animation software. The urogenital hiatus extended more holding back (mean +4.31 mm) than on effort (mean +2.78 mm). The iliococcygeus lowered (mean -3.95 mm) and deviated outward (mean +3.01 mm). The basic tone of the iliococcygeus muscle gives it a dome shape, and its reflex contraction against abdominal strain ensures anal and urinary continence The levator ani is more than a pelvic diaphragm: it is a truly dynamic pelvic floor. Its points of support on the stiff osseous frame allow it to retain the pelvic organs. The levator ani muscle seems to prevent anal prolapse during stress strain.

  7. Preliminary results of the seventh three-dimensional AER dynamic benchmark problem calculation. Solution with DYN3D and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Bencik, M.; Hadek, J.

    2011-01-01

    The paper gives a brief survey of the seventh three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAP5-3D at Nuclear Research Institute Rez. This benchmark was defined at the twentieth AER Symposium in Hanassari (Finland). It is focused on investigation of transient behaviour in a WWER-440 nuclear power plant. Its initiating event is opening of the main isolation valve and re-connection of the loop with its main circulation pump in operation. The WWER-440 plant is at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations were performed with the code DYN3D. Transient calculation was made with the system code RELAP5-3D. The two-group homogenized cross sections library HELGD05 created by HELIOS code was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the seventh AER dynamic benchmark purposes. The RELAP5-3D full core neutronic model was coupled with 49 core thermal-hydraulic channels and 8 reflector channels connected with the three-dimensional model of the reactor vessel. The detailed nodalization of reactor downcomer, lower and upper plenum was used. Mixing in lower and upper plenum was simulated. The first part of paper contains a brief characteristic of RELAP5-3D system code and a short description of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. (Authors)

  8. First application of the 3D-MHB on dynamic compressive behavior of UHPC

    Directory of Open Access Journals (Sweden)

    Cadoni Ezio

    2015-01-01

    Full Text Available In order to study the dynamic behaviour of material in confined conditions a new machine was conceived and called 3D-Modified Hopkinson Bar (3D-MHB. It is a Modified Hopkinson Bar apparatus designed to apply dynamic loading in materials having a tri-axial stress state. It consists of a pulse generator system (with pre-tensioned bar and brittle joint, 1 input bar, and 5 output bars. The first results obtained on Ultra High Performance Concrete in compression with three different mono-axial compression states are presented. The results show how the pre-stress states minimize the boundary condition and a more uniform response is obtained.

  9. Neural cell 3D microtissue formation is marked by cytokines' up-regulation.

    Directory of Open Access Journals (Sweden)

    Yinzhi Lai

    Full Text Available Cells cultured in three dimensional (3D scaffolds as opposed to traditional two-dimensional (2D substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate. Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.

  10. Development of 3D dynamic gap element for simulation of asymmetric fuel behavior

    International Nuclear Information System (INIS)

    Kim, Hyochan; Yang, Yongsik; Koo, Yanghyun; Kang, Changhak; Lee, Sunguk; Yang, Dongyol

    2014-01-01

    The accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding the fuel performance, including cladding stress and behavior under irradiated conditions. To establish a heat transfer model through a gap in the fuel performance code, the gap conductance based on the Ross and Stoute model was employed in most previous works. In this model, the gap conductance that determines the temperature gradient within the gap is a function of gap thickness, which is dependent on mechanical behavior. Recently, many researchers have been developing fuel performance codes based on the finite element method (FE) to calculate the temperature, stress, and strain in 2D or 3D. The gap conductance model for FE can be a challenging issue in terms of convergence and nonlinearity because the elements that are positioned in a gap have a different gap conductance, and the boundary conditions of the gap vary at each iteration step. In this paper, the specified 3D dynamic gap element has been proposed and implemented to simulate asymmetric thermo-mechanical fuel behavior. A thermo-mechanical 3D finite element module incorporating a gap element has been implemented using FORTRAN77. To evaluate the proposed 3D gap element, the missing pellet surface (MPS), which results in an asymmetric heat transfer in the pellet and cladding, was simulated. As a result, the maximum temperature of a pellet for the MPS problem calculated with the specified 3D gap element is much higher than the temperature calculated with a uniform gap conductance model that a multidimensional fuel performance code employs. The results demonstrate that a 3D simulation is essential to evaluate the temperature and stress of the pellet and cladding for an asymmetric geometry simulation. (author)

  11. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Directory of Open Access Journals (Sweden)

    Cemal Cagatay Bilgin

    Full Text Available BioSig3D is a computational platform for high-content screening of three-dimensional (3D cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i morphogenesis of a panel of human mammary epithelial cell lines (HMEC, and (ii heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  12. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.

    Science.gov (United States)

    Ong, Louis Jun Ye; Chong, Lor Huai; Jin, Lin; Singh, Pawan Kumar; Lee, Poh Seng; Yu, Hanry; Ananthanarayanan, Abhishek; Leo, Hwa Liang; Toh, Yi-Chin

    2017-10-01

    The practical application of microfluidic liver models for in vitro drug testing is partly hampered by their reliance on human primary hepatocytes, which are limited in number and have batch-to-batch variation. Human stem cell-derived hepatocytes offer an attractive alternative cell source, although their 3D differentiation and maturation in a microfluidic platform have not yet been demonstrated. We develop a pump-free microfluidic 3D perfusion platform to achieve long-term and efficient differentiation of human liver progenitor cells into hepatocyte-like cells (HLCs). The device contains a micropillar array to immobilize cells three-dimensionally in a central cell culture compartment flanked by two side perfusion channels. Constant pump-free medium perfusion is accomplished by controlling the differential heights of horizontally orientated inlet and outlet media reservoirs. Computational fluid dynamic simulation is used to estimate the hydrostatic pressure heads required to achieve different perfusion flow rates, which are experimentally validated by micro-particle image velocimetry, as well as viability and functional assessments in a primary rat hepatocyte model. We perform on-chip differentiation of HepaRG, a human bipotent progenitor cell, and discover that 3D microperfusion greatly enhances the hepatocyte differentiation efficiency over static 2D and 3D cultures. However, HepaRG progenitor cells are highly sensitive to the time-point at which microperfusion is applied. Isolated HepaRG cells that are primed as static 3D spheroids before being subjected to microperfusion yield a significantly higher proportion of HLCs (92%) than direct microperfusion of isolated HepaRG cells (62%). This platform potentially offers a simple and efficient means to develop highly functional microfluidic liver models incorporating human stem cell-derived HLCs. Biotechnol. Bioeng. 2017;114: 2360-2370. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs

    OpenAIRE

    M?ller, Thomas; Amoroso, Matteo; H?gg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; K?lby, Lars; Gatenholm, Paul

    2017-01-01

    Background: The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Methods: Thirty-six nude mice (Balb-C, female) received a 5- ? 5- ? 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/...

  14. 3D printing – a key technology for tailored biomedical cell culture lab ware

    Directory of Open Access Journals (Sweden)

    Schmieder Florian

    2016-09-01

    Full Text Available Today’s 3D printing technologies offer great possibilities for biomedical researchers to create their own specific laboratory equipment. With respect to the generation of ex vivo vascular perfusion systems this will enable new types of products that will embed complex 3D structures possibly coupled with cell loaded scaffolds closely reflecting the in-vivo environment. Moreover this could lead to microfluidic devices that should be available in small numbers of pieces at moderate prices. Here, we will present first results of such 3D printed cell culture systems made from plastics and show their use for scaffold based applications.

  15. TRICE - A program for reconstructing 3D reciprocal space and determining unit-cell parameters

    International Nuclear Information System (INIS)

    Zou Xiaodong; Hovmoeller, Anders; Hovmoeller, Sven

    2004-01-01

    A program system-Trice-for reconstructing the 3D reciprocal lattice from an electron diffraction tilt series is described. The unit-cell parameters can be determined from electron diffraction patterns directly by Trice. The unit cell can be checked and the lattice type and crystal system can be determined from the 3D reciprocal lattice. Trice can be applied to all crystal systems and lattice types

  16. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Paulo, Pedro M.R. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Merchán, M.D. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Garcia-Fernandez, Emilio; Costa, Sílvia M.B. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Velázquez, M.M., E-mail: mvsal@usal.es [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain)

    2017-03-15

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  17. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    International Nuclear Information System (INIS)

    Alejo, T.; Paulo, Pedro M.R.; Merchán, M.D.; Garcia-Fernandez, Emilio; Costa, Sílvia M.B.; Velázquez, M.M.

    2017-01-01

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  18. Static/dynamic fluid-structure interaction analysis for 3-D rotary blade model

    International Nuclear Information System (INIS)

    Kim, Dong Hyun; Kim, Yu Sung; Kim, Dong Man; Park, Kang Kyun

    2009-01-01

    In this study, static/dynamic fluid-structure interaction analyses have been conducted for a 3D rotary blade model like a turbo-machinery or wind turbine blade. Advanced computational analysis system based on Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) has been developed in order to investigate detailed dynamic responses of rotary type models. Fluid domains are modeled using the computational grid system with local grid deforming techniques. Reynolds-averaged Navier-Stokes equations with various turbulence model are solved for unsteady flow problems of the rotating blade model. Detailed static/dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating blades.

  19. PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A. [Sandia National Labs., Albuquerque, NM (United States); Zadoks, R.I. [Univ. of Texas, El Paso, TX (United States)

    1998-06-01

    This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.

  20. Stereoscopic 3D display with dynamic optical correction for recovering from asthenopia

    Science.gov (United States)

    Shibata, Takashi; Kawai, Takashi; Otsuki, Masaki; Miyake, Nobuyuki; Yoshihara, Yoshihiro; Iwasaki, Tsuneto

    2005-03-01

    The purpose of this study was to consider a practical application of a newly developed stereoscopic 3-D display that solves the problem of discrepancy between accommodation and convergence. The display uses dynamic optical correction to reduce the discrepancy, and can present images as if they are actually remote objects. The authors thought the display may assist in recovery from asthenopia, which is often caused when the eyes focus on a nearby object for a long time, such as in VDT (Visual Display Terminal) work. In general, recovery from asthenopia, and especially accommodative asthenopia, is achieved by focusing on distant objects. In order to verify this hypothesis, the authors performed visual acuity tests using Landolt rings before and after presenting stereoscopic 3-D images, and evaluated the degree of recovery from asthenopia. The experiment led to three main conclusions: (1) Visual acuity rose after viewing stereoscopic 3-D images on the developed display. (2) Recovery from asthenopia was particularly effective for the dominant eye in comparison with the other eye. (3) Interviews with the subjects indicated that the Landolt rings were particularly clear after viewing the stereoscopic 3-D images.

  1. 3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration.

    Science.gov (United States)

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan; Jiang, Xinquan; Wu, Chengtie

    2017-12-01

    Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root-like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration.

  2. 3D Printing of Lotus Root‐Like Biomimetic Materials for Cell Delivery and Tissue Regeneration

    Science.gov (United States)

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan

    2017-01-01

    Abstract Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root‐like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration. PMID:29270348

  3. Immunological compatibility status of placenta-derived stem cells is mediated by scaffold 3D structure.

    Science.gov (United States)

    Azizian, Sara; Khatami, Fatemeh; Modaresifar, Khashayar; Mosaffa, Nariman; Peirovi, Habibollah; Tayebi, Lobat; Bahrami, Soheyl; Redl, Heinz; Niknejad, Hassan

    2018-02-23

    Placenta-derived amniotic epithelial cells (AECs), a great cell source for tissue engineering and stem cell therapy, are immunologically inert in their native state; however, immunological changes in these cells after culture and differentiation have challenged their applications. The aim of this study was to investigate the effect of 2D and 3D scaffolds on human lymphocyte antigens (HLA) expression by AECs. The effect of different preparation parameters including pre-freezing time and temperature was evaluated on 3D chitosan-gelatine scaffolds properties. Evaluation of MHC class I, HLA-DR and HLA-G expression in AECs after 7 d culture on 2D bed and 3D scaffold of chitosan-gelatine showed that culture of AECs on the 2D substrate up-regulated MHC class I and HLA-DR protein markers on AECs surface and down-regulated HLA-G protein. In contrast, 3D scaffold did not increase protein expression of MHC class I and HLA-DR. Moreover, HLA-G protein expression remained unchanged in 3D culture. These results confirm that 3D scaffold can remain AECs in their native immunological state and modification of physical properties of the scaffold is a key regulator of immunological markers at the gene and protein expression levels; a strategy which circumvents rejection challenge of amniotic stem cells to be translated into the clinic.

  4. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    Full Text Available The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2, double (SPI-1/2 and complete T3SS knockout (SPI-1/SPI-2: flhDC also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.

  5. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    Science.gov (United States)

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-08-09

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.

  6. Simultaneous cell tracking and image alignment in 3D CLSM imagery of growing arabidopsis thaliana sepals

    NARCIS (Netherlands)

    Fick, R.H.J.; Fedorov, D.; Roeder, A.H.K.; Manjunath, B.S.

    2013-01-01

    In this research we propose a combined cell matching and image alignment method for tracking cells based on their nuclear locations in 3D fluorescent Confocal Laser Scanning Microscopy (CLSM) image sequences. We then apply it to study the cell division pattern in the developing sepal of the small

  7. 3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.

    Science.gov (United States)

    Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li

    2017-03-23

    We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.

  8. Modeling radiation belt dynamics using a 3-D layer method code

    Science.gov (United States)

    Wang, C.; Ma, Q.; Tao, X.; Zhang, Y.; Teng, S.; Albert, J. M.; Chan, A. A.; Li, W.; Ni, B.; Lu, Q.; Wang, S.

    2017-08-01

    A new 3-D diffusion code using a recently published layer method has been developed to analyze radiation belt electron dynamics. The code guarantees the positivity of the solution even when mixed diffusion terms are included. Unlike most of the previous codes, our 3-D code is developed directly in equatorial pitch angle (α0), momentum (p), and L shell coordinates; this eliminates the need to transform back and forth between (α0,p) coordinates and adiabatic invariant coordinates. Using (α0,p,L) is also convenient for direct comparison with satellite data. The new code has been validated by various numerical tests, and we apply the 3-D code to model the rapid electron flux enhancement following the geomagnetic storm on 17 March 2013, which is one of the Geospace Environment Modeling Focus Group challenge events. An event-specific global chorus wave model, an AL-dependent statistical plasmaspheric hiss wave model, and a recently published radial diffusion coefficient formula from Time History of Events and Macroscale Interactions during Substorms (THEMIS) statistics are used. The simulation results show good agreement with satellite observations, in general, supporting the scenario that the rapid enhancement of radiation belt electron flux for this event results from an increased level of the seed population by radial diffusion, with subsequent acceleration by chorus waves. Our results prove that the layer method can be readily used to model global radiation belt dynamics in three dimensions.

  9. Dynamic scattering theory for dark-field electron holography of 3D strain fields

    International Nuclear Information System (INIS)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain–reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. - Author-Highlights: • We derive a simple dynamic scattering formalism for dark field electron holography based on a perturbative two-beam theory. • The formalism facilitates the projection of 3D strain fields by a simple weighting integral. • The weighted projection depends analytically on the diffraction order, the excitation error and the specimen thickness. • The weighting integral formalism represents an important prerequisite towards the development of tomographic strain reconstruction techniques

  10. The computer simulation of 3d gas dynamics in a gas centrifuge

    Science.gov (United States)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  11. The computer simulation of 3d gas dynamics in a gas centrifuge

    International Nuclear Information System (INIS)

    Borman, V D; Bogovalov, S V; Borisevich, V D; Tronin, I V; Tronin, V N

    2016-01-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there. (paper)

  12. New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny [Ecole Polytechnique Federale de Lausanne (Switzerland); Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany); Fridman, Emil; Bilodid, Yuri; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany)

    2017-07-15

    The reactor dynamics code DYN3D being developed at the Helmholtz-Zentrum Dresden-Rossendorf is currently under extension for Sodium cooled Fast Reactor analyses. This paper provides an overview on the new version of DYN3D to be used for SFR core calculations. The current article shortly describes the newly implemented thermal mechanical models, which can account for thermal expansion effects of the reactor core. Furthermore, the methodology used in Sodium cooled Fast Reactor analyses to generate homogenized few-group cross sections is summarized. The conducted and planned verification and validation studies are briefly presented. Related publications containing more detailed descriptions are outlined for the completeness of this overview.

  13. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels.

    Science.gov (United States)

    Lai, Janice H; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-19

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  14. 3D ion-scale dynamics of BBFs and their associated emissions in Earth's magnetotail using 3D hybrid simulations and MMS multi-spacecraft observations

    Science.gov (United States)

    Breuillard, H.; Aunai, N.; Le Contel, O.; Catapano, F.; Alexandrova, A.; Retino, A.; Cozzani, G.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Nakamura, R.; Fuselier, S. A.; Turner, D. L.; Schwartz, S. J.; Torbert, R. B.; Burch, J.

    2017-12-01

    Transient and localized jets of hot plasma, also known as Bursty Bulk Flows (BBFs), play a crucial role in Earth's magnetotail dynamics because the energy input from the solar wind is partly dissipated in their vicinity, notably in their embedded dipolarization front (DF). This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic particles up to the high-latitude plasma sheet. The ion-scale dynamics of BBFs have been revealed by the Cluster and THEMIS multi-spacecraft missions. However, the dynamics of BBF propagation in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances, as well as simulation limitations. The NASA/MMS fleet, which features unprecedented high time resolution instruments and four spacecraft separated by kinetic-scale distances, has also shown recently that the DF normal dynamics and its associated emissions are below the ion gyroradius scale in this region. Large variations in the dawn-dusk direction were also observed. However, most of large-scale simulations are using the MHD approach and are assumed 2D in the XZ plane. Thus, in this study we take advantage of both multi-spacecraft observations by MMS and large-scale 3D hybrid simulations to investigate the 3D dynamics of BBFs and their associated emissions at ion-scale in Earth's magnetotail, and their impact on particle heating and acceleration.

  15. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC (China); Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Kuo, Shyh Ming [Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Guei-Sheung [Centre for Eye Research Australia, University of Melbourne (Australia); Chen, Wan-Nan U. [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China); Chuang, Chin-Wen [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Li-Feng, E-mail: liulf@isu.edu.tw [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  16. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-01-01

    Highlights: ► Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. ► Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. ► 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 μm porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  17. 3D cell culture to determine in vitro biocompatibility of bioactive glass in association with chitosan.

    Science.gov (United States)

    Bédouin, Y; Pellen Mussi, P; Tricot-Doleux, S; Chauvel-Lebret, D; Auroy, P; Ravalec, X; Oudadesse, H; Perez, F

    2015-01-01

    This study reports the in vitro biocompatibility of a composite biomaterial composed of 46S6 bioactive glass in association with chitosan (CH) by using 3D osteoblast culture of SaOS2. The 46S6 and CH composite (46S6-CH) forms small hydroxyapatite crystals on its surface after only three days immersion in the simulated body fluid. For 2D osteoblast culture, a significant increase in cell proliferation was observed after three days of contact with 46S6 or 46S6-CH-immersed media. After six days, 46S6-CH led to a significant increase in cell proliferation (128%) compared with pure 46S6 (113%) and pure CH (122%). For 3D osteoblast culture, after six days of culture, there was an increase in gene expression of markers of the early osteoblastic differentiation (RUNX2, ALP, COL1A1). Geometric structures corresponding to small apatite clusters were observed by SEM on the surface of the spheroids cultivated with 46S6 or 46S6-CH-immersed media. We showed different cellular responses depending on the 2D and 3D cell culture model. The induction of osteoblast differentiation in the 3D cell culture explained the differences of cell proliferation in contact with 46S6, CH or 46S6-CH-immersed media. This study confirmed that the 3D cell culture model is a very promising tool for in vitro biological evaluation of bone substitutes' properties.

  18. Fixation free femoral hernia repair with a 3D dynamic responsive implant. A case series report.

    Science.gov (United States)

    Amato, G; Romano, G; Agrusa, A; Gordini, L; Gulotta, E; Erdas, E; Calò, P G

    2018-04-23

    To date, no gold standard for the surgical treatment of femoral hernia exists. Pure tissue repair as well as mesh/plug implantation, open or laparoscopic, are the most performed methods. Nevertheless, all these techniques need sutures or mesh fixation. This implies the risk of damaging sensitive structures of the femoral area, along with complications related to tissue tear and postoperative discomfort consequent to poor quality mesh incorporation. The present retrospective multicenter case series highlights the results of femoral hernia repair procedures performed with a 3D dynamic responsive implant in a cohort of 32 patients during a mean follow up of 27 months. Aiming to simplify the surgical procedure and reduce complications, a 3D dynamic responsive implant was delivered for femoral hernia repair, in a patient cohort. After returning the hernia sack to the abdominal cavity, the implant was simply delivered into the hernia defect where it remained, thanks to its inherent centrifugal expansion, obliterating the hernia opening without need of fixation. Postoperative pain assessment was determined using the VAS score system. The use of the 3D prosthetic device allowed for easier and faster surgical repair in a fixation free fashion. None of the typical fixation related complications occurred in the examined patients. Postoperative pain assessment with VAS score showed a very low level of pain, allowing the return of patients to normal activities in extremely reduced times. In the late postoperative period, no discomfort or chronic pain was reported. Femoral hernia repair with the 3D dynamic revealed a quick and safe placement procedure. The reduced pain intensity, as well as the absence of adverse events consequent to sutures or mesh fixation, seems to be a significant benefit of the motile compliance of the device. Furthermore, this 3D prosthesis has already proven to induce an enhanced probiotic response showing ingrowth in the implant of the typical tissue

  19. Thermoresponsive microgels containing trehalose as soft matrices for 3D cell culture.

    Science.gov (United States)

    Burek, Małgorzata; Waśkiewicz, Sylwia; Lalik, Anna; Student, Sebastian; Bieg, Tadeusz; Wandzik, Ilona

    2017-01-31

    A series of thermoresponsive glycomicrogels with trehalose in the cross-links or with trehalose in the cross-links and as pending moieties was synthesized. These materials were obtained by surfactant-free precipitation copolymerization of N-isopropylacrylamide and various amounts of trehalose monomers. The resultant particles showed a spherical shape and a submicrometer hydrodynamic size with a narrow size distribution. At 25 °C, glycomicrogels in solutions with physiological ionic strength formed stable colloids, which further gelled upon heating to physiological temperature forming a macroscopic hydrogel with an interconnected porous structure. These extremely soft matrices with dynamic storage modulus in the range of 9-70 Pa were examined in 3D culture systems for HeLa cell culture in comparison to traditional 2D mode. They showed relatively low syneresis over time, especially when glycomicrogels with a high content of hydrophilic trehalose were used as building blocks. An incorporated pending trehalose composed of two α,α'-1,1'-linked d-glucose moieties was used with the intention of providing multivalent interactions with glucose transporters (GLUTs) expressed on the cell surface. A better cell viability was observed when a soft hydrogel with the highest content of trehalose and the lowest syneresis was used as a matrix compared to a 2D control assay.

  20. Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP)

    Energy Technology Data Exchange (ETDEWEB)

    Benkert, Thomas; Blaimer, Martin; Breuer, Felix A. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Ehses, Philipp [Tuebingen Univ. (Germany). Dept. of Neuroimaging; Max Planck Institute for Biological Cybernetics, Tuebingen (Germany). High-Field MR Center; Jakob, Peter M. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Wuerzburg Univ. (Germany). Dept. of Experimental Physics 5

    2016-05-01

    Aims: Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging. Methods: While banding artifact removal with DYPR-SSFP relies on the applied dynamic phase-cycle, this aspect can lead to artifacts, at least when the number of acquired projections lies below a certain limit. However, by using a 3D radial trajectory with quasi-random view ordering for image acquisition, this problem is intrinsically solved, enabling 3D DYPR-SSFP imaging at or even below the Nyquist criterion. The approach is validated for brain and knee imaging at 3 Tesla. Results: Volumetric, banding-free images were obtained in clinically acceptable scan times with an isotropic resolution up to 0.56 mm. Conclusion: The combination of DYPR-SSFP with a 3D radial trajectory allows banding-free isotropic volumetric bSSFP imaging with no expense of scan time. Therefore, this is a promising candidate for clinical applications such as imaging of cranial nerves or articular cartilage.

  1. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    Science.gov (United States)

    Cho, Nam-Hoon; Choi, Heung-Kook

    2014-01-01

    One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701

  2. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    Directory of Open Access Journals (Sweden)

    Tae-Yun Kim

    2014-01-01

    Full Text Available One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system.

  3. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated

  4. A 3D Sphere Culture System Containing Functional Polymers for Large-Scale Human Pluripotent Stem Cell Production

    Directory of Open Access Journals (Sweden)

    Tomomi G. Otsuji

    2014-05-01

    Full Text Available Utilizing human pluripotent stem cells (hPSCs in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.

  5. The northern tidal dynamic of Aceh waters: A 3D numerical model

    Science.gov (United States)

    Irham, M.; Miswar, E.; Ilhamsyah, Y.; Setiawan, I.

    2018-05-01

    The northern tidal dynamic of Aceh waters studied by employing three-dimensional (3D) numerical hydrodynamic model. The purpose of this study is to understand the phenomena and the characteristic of the northern tidal dynamic of Aceh waters. The research used the explicit-splitting scheme numerical model of Navier-Stokes formulation. The result displays that the vertical rotation of flow movement (vertical eddy) at a depth of 15 to 25 meter eastern part of the study area. Hence, the result also informs that the current circulation identically to the upwelling in the western region of Aceh during the wet season and vice versa. However, during the transitional season, the flow circulation depends on how the tidal dynamic occurs in the area.

  6. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation

    Science.gov (United States)

    2013-01-01

    The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087

  7. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  8. Quantification of Diaphragm Mechanics in Pompe Disease Using Dynamic 3D MRI.

    Directory of Open Access Journals (Sweden)

    Katja Mogalle

    Full Text Available Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness.The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle.Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls.Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response.

  9. A biplanar X-ray approach for studying the 3D dynamics of human track formation.

    Science.gov (United States)

    Hatala, Kevin G; Perry, David A; Gatesy, Stephen M

    2018-05-09

    Recent discoveries have made hominin tracks an increasingly prevalent component of the human fossil record, and these data have the capacity to inform long-standing debates regarding the biomechanics of hominin locomotion. However, there is currently no consensus on how to decipher biomechanical variables from hominin tracks. These debates can be linked to our generally limited understanding of the complex interactions between anatomy, motion, and substrate that give rise to track morphology. These interactions are difficult to study because direct visualization of the track formation process is impeded by foot and substrate opacity. To address these obstacles, we developed biplanar X-ray and computer animation methods, derived from X-ray Reconstruction of Moving Morphology (XROMM), to analyze the 3D dynamics of three human subjects' feet as they walked across four substrates (three deformable muds and rigid composite panel). By imaging and reconstructing 3D positions of external markers, we quantified the 3D dynamics at the foot-substrate interface. Foot shape, specifically heel and medial longitudinal arch deformation, was significantly affected by substrate rigidity. In deformable muds, we found that depths measured across tracks did not directly reflect the motions of the corresponding regions of the foot, and that track outlines were not perfectly representative of foot size. These results highlight the complex, dynamic nature of track formation, and the experimental methods presented here offer a promising avenue for developing and refining methods for accurately inferring foot anatomy and gait biomechanics from fossil hominin tracks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Cell volume and geometric parameters determination in living cells using confocal microscopy and 3D reconstruction

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: David Hevia, Aida Rodriguez-Garcia, Marta Alonso-Gervós, Isabel Quirós-González, Henar M Cimadevilla, Carmen Gómez-Cordovés, Rosa M Sainz & Juan C Mayo ### Abstract The protocol reported here describes a simple, easy, fast and reproducible method aimed to know the geometric parameters of living cells based on confocal laser scanning microscopy combined with 3D reconstruction software. Briefly, the method is based on intrinsic fluorescence properties of acridine orange (AO), a...

  11. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Salomonowitz, Erich; Brenneis, Christian; Ungersboeck, Karl; Riet, Wilma van der; Buchfelder, Michael; Ganslandt, Oliver

    2012-01-01

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  12. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Andreas [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Salomonowitz, Erich [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); Brenneis, Christian [Landesklinikum St. Poelten, Department of Neurology, St. Poelten (Austria); Ungersboeck, Karl [Landesklinikum St. Poelten, Department of Neurosurgery, St. Poelten (Austria); Riet, Wilma van der [European MRI Consultancy (EMRIC), Strasbourg (France); Buchfelder, Michael; Ganslandt, Oliver [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2012-01-15

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  13. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton.

    Science.gov (United States)

    Wang, Maojun; Wang, Pengcheng; Lin, Min; Ye, Zhengxiu; Li, Guoliang; Tu, Lili; Shen, Chao; Li, Jianying; Yang, Qingyong; Zhang, Xianlong

    2018-02-01

    The formation of polyploids significantly increases the complexity of transcriptional regulation, which is expected to be reflected in sophisticated higher-order chromatin structures. However, knowledge of three-dimensional (3D) genome structure and its dynamics during polyploidization remains poor. Here, we characterize 3D genome architectures for diploid and tetraploid cotton, and find the existence of A/B compartments and topologically associated domains (TADs). By comparing each subgenome in tetraploids with its extant diploid progenitor, we find that genome allopolyploidization has contributed to the switching of A/B compartments and the reorganization of TADs in both subgenomes. We also show that the formation of TAD boundaries during polyploidization preferentially occurs in open chromatin, coinciding with the deposition of active chromatin modification. Furthermore, analysis of inter-subgenomic chromatin interactions has revealed the spatial proximity of homoeologous genes, possibly associated with their coordinated expression. This study advances our understanding of chromatin organization in plants and sheds new light on the relationship between 3D genome evolution and transcriptional regulation.

  14. The 3-D alignment of objects in dynamic PET scans using filtered sinusoidal trajectories of sinogram

    International Nuclear Information System (INIS)

    Kostopoulos, Aristotelis E.; Happonen, Antti P.; Ruotsalainen, Ulla

    2006-01-01

    In this study, our goal is to employ a novel 3-D alignment method for dynamic positron emission tomography (PET) scans. Because the acquired data (i.e. sinograms) often contain noise considerably, filtering of the data prior to the alignment presumably improves the final results. In this study, we utilized a novel 3-D stackgram domain approach. In the stackgram domain, the signals along the sinusoidal trajectory signals of the sinogram can be processed separately. In this work, we performed angular stackgram domain filtering by employing well known 1-D filters: the Gaussian low-pass filter and the median filter. In addition, we employed two wavelet de-noising techniques. After filtering we performed alignment of objects in the stackgram domain. The local alignment technique we used is based on similarity comparisons between locus vectors (i.e. the signals along the sinusoidal trajectories of the sinogram) in a 3-D neighborhood of sequences of the stackgrams. Aligned stackgrams can be transformed back to sinograms (Method 1), or alternatively directly to filtered back-projected images (Method 2). In order to evaluate the alignment process, simulated data with different kinds of additive noises were used. The results indicated that the filtering prior to the alignment can be important concerning the accuracy

  15. 3D Discrete Dislocation Dynamics Applied to Interactions between Dislocation Walls and Particles

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Dlouhý, Antonín

    2012-01-01

    Roč. 122, č. 3 (2012), s. 450-452 ISSN 0587-4246. [International Symposium on Physics of Materials /12./ - ISPMA 12. Prague, 04.09.2011-08.09.2011] R&D Projects: GA ČR GD106/09/H035; GA ČR GA202/09/2073; GA MŠk OC 162 Institutional research plan: CEZ:AV0Z20410507 Keywords : 3D discrete dislocation dynamics * tilt boundary * migration * diffusion * pecipitation hardening Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  16. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, F. P., E-mail: fpsturm@lbl.gov [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institut für Kernphysik, Universität Frankfurt, Max-von-Laue Str. 1, D-60438 Frankfurt (Germany); Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Belkacem, A.; Weber, Th. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ranitovic, P. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged H6720 (Hungary)

    2016-06-15

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  17. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E.A.P.; Oostra, A.J.; Schropp, R.E.I.; Vece, Di M.

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  18. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  19. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C B [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Ventura, J M G [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Lemos, A F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Ferreira, J M F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Leite, M F [Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Goes, A M [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil)

    2007-06-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation.

  20. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Machado, C B; Ventura, J M G; Lemos, A F; Ferreira, J M F; Leite, M F; Goes, A M

    2007-06-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation.

  1. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Machado, C B; Ventura, J M G; Lemos, A F; Ferreira, J M F; Leite, M F; Goes, A M

    2007-01-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation

  2. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model.

    Science.gov (United States)

    Chang, Robert; Nam, Jae; Sun, Wei

    2008-06-01

    A novel targeted application of tissue engineering is the development of an in vitro pharmacokinetic model for drug screening and toxicology. An in vitro pharmacokinetic model is needed to realistically and reliably predict in vivo human response to drug administrations and potential toxic exposures. This paper details the fabrication process development and adaptation of microfluidic devices for the creation of such a physiologically relevant pharmacokinetic model. First, an automated syringe-based, layered direct cell writing (DCW) bioprinting process creates a 3D microorgan that biomimics the cell's natural microenvironment with enhanced functionality. Next, soft lithographic micropatterning techniques are used to fabricate a microscale in vitro device to house the 3D microorgan. This paper demonstrates the feasibility of the DCW process for freeform biofabrication of 3D cell-encapsulated hydrogel-based tissue constructs with defined reproducible patterns, direct integration of 3D constructs onto a microfluidic device for continuous perfusion drug flow, and characterization of 3D tissue constructs with predictable cell viability/proliferation outcomes and enhanced functionality over traditional culture methods.

  3. Priming 3D cultures of human mesenchymal stromal cells toward cartilage formation via developmental pathways.

    Science.gov (United States)

    Centola, Matteo; Tonnarelli, Beatrice; Schären, Stefan; Glaser, Nicolas; Barbero, Andrea; Martin, Ivan

    2013-11-01

    The field of regenerative medicine has increasingly recognized the importance to be inspired by developmental processes to identify signaling pathways crucial for 3D organogenesis and tissue regeneration. Here, we aimed at recapitulating the first events occurring during limb development (ie, cell condensation and expansion of an undifferentiated mesenchymal cell population) to prime 3D cultures of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) toward the chondrogenic route. Based on embryonic development studies, we hypothesized that Wnt3a and fibroblast growth factor 2 (FGF2) induce hBM-MSC to proliferate in 3D culture as an undifferentiated pool of progenitors (defined by clonogenic capacity and expression of typical markers), retaining chondrogenic potential upon induction by suitable morphogens. hBM-MSC were responsive to Wnt signaling in 3D pellet culture, as assessed by significant upregulation of main target genes and increase of unphosphorylated β-catenin levels. Wnt3a was able to induce a five-fold increase in the number of proliferating hBM-MSC (6.4% vs. 1.3% in the vehicle condition), although total DNA content of the 3D construct was decreasing over time. Preconditioning with Wnt3a improved transforming growth factor-β1 mediated chondrogenesis (30% more glycosaminoglycans/cell in average). In contrast to developmental and 2D MSC culture models, FGF2 antagonized the Wnt-mediated effects. Interestingly, the CD146⁺ subpopulation was found to be more responsive to Wnt3a. The presented data indicate a possible strategy to prime 3D cultures of hBM-MSC by invoking a "developmental engineering" approach. The study also identifies some opportunities and challenges to cross-fertilize skeletal development models and 3D hBM-MSC culture systems.

  4. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    Directory of Open Access Journals (Sweden)

    Reema A. Khorshed

    2015-07-01

    Full Text Available Measuring three-dimensional (3D localization of hematopoietic stem cells (HSCs within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components.

  5. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    Science.gov (United States)

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  6. Growth Inhibition of Osteosarcoma Cell Lines in 3D Cultures: Role of Nitrosative and Oxidative Stress.

    Science.gov (United States)

    Gorska, Magdalena; Krzywiec, Pawel Bieniasz; Kuban-Jankowska, Alicja; Zmijewski, Michal; Wozniak, Michal; Wierzbicka, Justyna; Piotrowska, Anna; Siwicka, Karolina

    2016-01-01

    3D cell cultures have revolutionized the understanding of cell behavior, allowing culture of cells with the possibility of resembling in vivo intercellular signaling and cell-extracellular matrix interaction. The effect of limited oxygen penetration into 3D culture of highly metastatic osteosarcoma 143B cells in terms of expression of nitro-oxidative stress markers was investigated and compared to standard 2D cell culture. Human osteosarcoma (143B cell line) cells were cultured as monolayers, in collagen and Matrigel. Cell viability, gene expression of nitro-oxidative stress markers, and vascular endothelial growth factor were determined using Trypan blue assay, quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Three-dimensional environments modify nitro-oxidative stress and influence gene expression and cell proliferation of OS 143B cells. Commercial cell lines might not constitute a good model of 3D cultures for bone tissue engineering, as they are highly sensitive to hypoxia, and hypoxic conditions can induce oxidation of the cellular environment. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. An Innovative Cell Microincubator for Drug Discovery Based on 3D Silicon Structures

    Directory of Open Access Journals (Sweden)

    Francesca Aredia

    2016-01-01

    Full Text Available We recently employed three-dimensional (3D silicon microstructures (SMSs consisting in arrays of 3 μm-thick silicon walls separated by 50 μm-deep, 5 μm-wide gaps, as microincubators for monitoring the biomechanical properties of tumor cells. They were here applied to investigate the in vitro behavior of HT1080 human fibrosarcoma cells driven to apoptosis by the chemotherapeutic drug Bleomycin. Our results, obtained by fluorescence microscopy, demonstrated that HT1080 cells exhibited a great ability to colonize the narrow gaps. Remarkably, HT1080 cells grown on 3D-SMS, when treated with the DNA damaging agent Bleomycin under conditions leading to apoptosis, tended to shrink, reducing their volume and mimicking the normal behavior of apoptotic cells, and were prone to leave the gaps. Finally, we performed label-free detection of cells adherent to the vertical silicon wall, inside the gap of 3D-SMS, by exploiting optical low coherence reflectometry using infrared, low power radiation. This kind of approach may become a new tool for increasing automation in the drug discovery area. Our results open new perspectives in view of future applications of the 3D-SMS as the core element of a lab-on-a-chip suitable for screening the effect of new molecules potentially able to kill tumor cells.

  8. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture

    KAUST Repository

    Inal, Sahika

    2017-05-03

    This work reports the design of a live-cell monitoring platform based on a macroporous scaffold of a conducting polymer, poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate). The conducting polymer scaffolds support 3D cell cultures due to their biocompatibility and tissue-like elasticity, which can be manipulated by inclusion of biopolymers such as collagen. Integration of a media perfusion tube inside the scaffold enables homogenous cell spreading and fluid transport throughout the scaffold, ensuring long term cell viability. This also allows for co-culture of multiple cell types inside the scaffold. The inclusion of cells within the porous architecture affects the impedance of the electrically conducting polymer network and, thus, is utilized as an in situ tool to monitor cell growth. Therefore, while being an integral part of the 3D tissue, the conducting polymer is an active component, enhancing the tissue function, and forming the basis for a bioelectronic device with integrated sensing capability.

  9. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    Science.gov (United States)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2013-12-01

    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  10. Investigating dynamic stall, 3-D and rotational effects on wind turbine blades by means of an unsteady quasi-3D Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [CRES-Center for Renewable Energy Sources, Pikermi Attiki (Greece)

    1997-08-01

    The blade element codes provide surprisingly accurate predictions of the aerodynamic loads provided that they are `fed` with proper lift and drag - incidence curves for the profiles mounted on the rotor blades. The evident question is how one can obtain such data. It is common experience that the use of the mostly available steady two-dimensional profile data may lead to serious discrepancies between measured and simulated loads. Although several correction techniques have been proposed as a remedy during the last years, from simplified dynamic stall models suitably tuned for wind turbines to 3-D correction schemes for profile data, the problem is by no means over-passed. Especially for the three-dimensional effects it seems that part of the difficulty is due to our limited understanding of the physical mechanism which is responsible for the extra loading of the inner part of the blades. Recognizing the importance of the above aspects two relevant Joule projects have been launched, the concluded `Dynamic Stall and 3-D Effects` JOU2-CT93-0345 and the ongoing `VISCWIND` JOR3-CT95-0007 project. Part of the activities in the first and all the activities in the second project are devoted to the identification and quantification of the dynamic stall and three-dimensional effects experienced by the wind turbine blades using Navier-Stokes computations. The contribution of CRES in these two projects is briefly presented in this paper. (EG)

  11. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    Science.gov (United States)

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  12. A novel two-level dynamic parallel data scheme for large 3-D SN calculations

    International Nuclear Information System (INIS)

    Sjoden, G.E.; Shedlock, D.; Haghighat, A.; Yi, C.

    2005-01-01

    We introduce a new dynamic parallel memory optimization scheme for executing large scale 3-D discrete ordinates (Sn) simulations on distributed memory parallel computers. In order for parallel transport codes to be truly scalable, they must use parallel data storage, where only the variables that are locally computed are locally stored. Even with parallel data storage for the angular variables, cumulative storage requirements for large discrete ordinates calculations can be prohibitive. To address this problem, Memory Tuning has been implemented into the PENTRAN 3-D parallel discrete ordinates code as an optimized, two-level ('large' array, 'small' array) parallel data storage scheme. Memory Tuning can be described as the process of parallel data memory optimization. Memory Tuning dynamically minimizes the amount of required parallel data in allocated memory on each processor using a statistical sampling algorithm. This algorithm is based on the integral average and standard deviation of the number of fine meshes contained in each coarse mesh in the global problem. Because PENTRAN only stores the locally computed problem phase space, optimal two-level memory assignments can be unique on each node, depending upon the parallel decomposition used (hybrid combinations of angular, energy, or spatial). As demonstrated in the two large discrete ordinates models presented (a storage cask and an OECD MOX Benchmark), Memory Tuning can save a substantial amount of memory per parallel processor, allowing one to accomplish very large scale Sn computations. (authors)

  13. Lensfree diffractive tomography for the imaging of 3D cell cultures

    Science.gov (United States)

    Berdeu, Anthony; Momey, Fabien; Dinten, Jean-Marc; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric

    2017-02-01

    New microscopes are needed to help reaching the full potential of 3D organoid culture studies by gathering large quantitative and systematic data over extended periods of time while preserving the integrity of the living sample. In order to reconstruct large volumes while preserving the ability to catch every single cell, we propose new imaging platforms based on lens-free microscopy, a technic which is addressing these needs in the context of 2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. We built lens-free diffractive tomography setups performing multi-angle acquisitions of 3D organoid cultures embedded in Matrigel and developed dedicated 3D holographic reconstruction algorithms based on the Fourier diffraction theorem. Nonetheless, holographic setups do not record the phase of the incident wave front and the biological samples in Petri dish strongly limit the angular coverage. These limitations introduce numerous artefacts in the sample reconstruction. We developed several methods to overcome them, such as multi-wavelength imaging or iterative phase retrieval. The most promising technic currently developed is based on a regularised inverse problem approach directly applied on the 3D volume to reconstruct. 3D reconstructions were performed on several complex samples such as 3D networks or spheroids embedded in capsules with large reconstructed volumes up to 25 mm3 while still being able to identify single cells. To our knowledge, this is the first time that such an inverse problem approach is implemented in the context of lens-free diffractive tomography enabling to reconstruct large fully 3D volumes of unstained biological samples.

  14. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  15. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar

    Science.gov (United States)

    Ma, Rui; Zheng, Hao; Zhu, Zhangming

    2017-08-01

    This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.

  16. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    Science.gov (United States)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  17. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.

    Science.gov (United States)

    Kuss, Mitchell A; Wu, Shaohua; Wang, Ying; Untrauer, Jason B; Li, Wenlong; Lim, Jung Yul; Duan, Bin

    2017-09-13

    Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  18. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  19. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    Directory of Open Access Journals (Sweden)

    Akpe Victor

    2007-12-01

    Full Text Available Abstract Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. Results Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. Conclusion Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology.

  20. Reconstruction of incomplete cell paths through a 3D-2D level set segmentation

    Science.gov (United States)

    Hariri, Maia; Wan, Justin W. L.

    2012-02-01

    Segmentation of fluorescent cell images has been a popular technique for tracking live cells. One challenge of segmenting cells from fluorescence microscopy is that cells in fluorescent images frequently disappear. When the images are stacked together to form a 3D image volume, the disappearance of the cells leads to broken cell paths. In this paper, we present a segmentation method that can reconstruct incomplete cell paths. The key idea of this model is to perform 2D segmentation in a 3D framework. The 2D segmentation captures the cells that appear in the image slices while the 3D segmentation connects the broken cell paths. The formulation is similar to the Chan-Vese level set segmentation which detects edges by comparing the intensity value at each voxel with the mean intensity values inside and outside of the level set surface. Our model, however, performs the comparison on each 2D slice with the means calculated by the 2D projected contour. The resulting effect is to segment the cells on each image slice. Unlike segmentation on each image frame individually, these 2D contours together form the 3D level set function. By enforcing minimum mean curvature on the level set surface, our segmentation model is able to extend the cell contours right before (and after) the cell disappears (and reappears) into the gaps, eventually connecting the broken paths. We will present segmentation results of C2C12 cells in fluorescent images to illustrate the effectiveness of our model qualitatively and quantitatively by different numerical examples.

  1. Mechano-sensing and cell migration: a 3D model approach

    International Nuclear Information System (INIS)

    Borau, C; García-Aznar, J M; Kamm, R D

    2011-01-01

    Cell migration is essential for tissue development in different physiological and pathological conditions. It is a complex process orchestrated by chemistry, biological factors, microstructure and surrounding mechanical properties. Focusing on the mechanical interactions, cells do not only exert forces on the matrix that surrounds them, but they also sense and react to mechanical cues in a process called mechano-sensing. Here, we hypothesize the involvement of mechano-sensing in the regulation of directional cell migration through a three-dimensional (3D) matrix. For this purpose, we develop a 3D numerical model of individual cell migration, which incorporates the mechano-sensing process of the cell as the main mechanism regulating its movement. Consistent with this hypothesis, we found that factors, such as substrate stiffness, boundary conditions and external forces, regulate specific and distinct cell movements

  2. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Andrea Cochis

    2018-04-01

    Full Text Available A possible strategy in regenerative medicine is cell-sheet engineering (CSE, i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS. The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na2SO4 and PBS. MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3 and endothelial murine cells (MS1, and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  3. Measurement of cell motility on proton beam micromachined 3D scaffolds

    International Nuclear Information System (INIS)

    Zhang, F.; Sun, F.; Kan, J.A. van; Shao, P.G.; Zheng, Z.; Ge, R.W.; Watt, F.

    2005-01-01

    Tissue engineering is a rapidly developing and highly interdisciplinary field that applies the principles of cell biology, engineering and material science. In natural tissues, the cells are arranged in a three-dimensional (3D) matrix which provides the appropriate functional, nutritional and spatial conditions. In scaffold guided tissue engineering 3D scaffolds provide the critical function of acting as extracellular matrices onto which cells can attach, grow, and form new tissue. The main focus of this paper is to understand cell behavior on micro-grooved and ridged substrates and to study the effects of geometrical constraints on cell motility and cell function. In this study, we found that BAE (Bovine Aortic Endothelial) cells naturally align with and are guided along 3D ridges and grooves machined into polymethylmethacrylate (PMMA) substrates. Average cell speed on micro-grooves and ridges ranged from 0.015 μm/s (for 12 μm wide and 10 μm deep ridges) to 0.025 μm/s (for 20 μm wide and 10 μm deep ridges). This compares with the cell motility rate on a flat PMMA surface where the average cell speed is around 0.012 μm/s. In this work we used scaffolds which were directly written with a focused proton beam, typically 1 MeV protons with a beam spot size of 1 x 1 μm 2

  4. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.

    Science.gov (United States)

    Cochis, Andrea; Bonetti, Lorenzo; Sorrentino, Rita; Contessi Negrini, Nicola; Grassi, Federico; Leigheb, Massimiliano; Rimondini, Lia; Farè, Silvia

    2018-04-10

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na₂SO₄ and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  5. A simple hanging drop cell culture protocol for generation of 3D spheroids.

    Science.gov (United States)

    Foty, Ramsey

    2011-05-06

    Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels or in biomaterial scaffolds. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of

  6. Differences in gene expression of cells growing in conventional 2D versus 3D cell culture

    International Nuclear Information System (INIS)

    Zschenker, Oliver; Cordes, Nils; Streichert, Thomas

    2009-01-01

    Full text: Telomeres are DNA protein complexes on the ends of chromosomes that distinguish the ends of chromosomes from double strand breaks and prevent degradation or fusion by nonhomologous end-joining. The loss of telomeres is associated with a loss of heterochromatic features leading to a less compact chromatin structure which allows e.g. DNA repair proteins to get better access to the site of the DNA damage and facilitate chromosome fusions. Telomerase is an enzyme that can counteract the loss of telomeres by adding telomeric repeats on the ends of chromosomes. Since telomerase is active in most tumor cells, telomerase is suggested to be the reason for the unlimited number of cell divisions of cancer cells. TRF2 is one of the most important proteins of the Shelterin complex protecting the telomeres from shortening by inhibiting ATM which is up-stream of the DNA repair mechanisms. Thus, we are concentrating on TRF2 and telomerase to investigate the differences in DNA repair in telomeric (heterochromatic) versus euchromatic regions. Human cancer cells with differences in status of p53 and telomerase like A549, UT-SCC15 and FaDu cells are used. Without any treatment, FaDu cells express high levels of telomerase and TRF2 in conventional 2D cell culture which is in contrast to e.g. A549. We found that telomerase is even higher expressed in 3D than in 2D cell culture. To connect telomere associated processes to both repair of radiogenic DNA damage/lesions and to cell-extracellular matrix interactions, we performed whole genome microarray analysis. By comparing the differential expression of genes associated with these three cell functions, we intend to yield new molecular insight into radiotherapy relevant tumor characteristics, particularly radioresistance and DNA damage response network processing. (author)

  7. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.

    Science.gov (United States)

    Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo

    2018-02-01

    Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Perfusion directed 3D mineral formation within cell-laden hydrogels.

    Science.gov (United States)

    Sawyer, Stephen William; Shridhar, Shivkumar Vishnempet; Zhang, Kairui; Albrecht, Lucas; Filip, Alex; Horton, Jason; Soman, Pranav

    2018-06-08

    Despite the promise of stem cell engineering and the new advances in bioprinting technologies, one of the major challenges in the manufacturing of large scale bone tissue scaffolds is the inability to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create thick, perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) hydrogel and 3D printed polyvinyl alcohol (PVA) pipes were used to create perfusable channels. A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in order to induce mineral deposition which was subsequently quantified via microCT. Histological staining was used to verify mineral deposition around the perfused channels, while COMSOL modeling was used to simulate oxygen diffusion between adjacent channels. This information was used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden GelMA. Progressive matrix mineralization was observed by cells surrounding perfused channels as opposed to random mineral deposition in static constructs. MicroCT confirmed that there was a direct relationship between channel mineralization within perfused constructs and time within the bioreactor. Furthermore, the scalable method presented in this work serves as a model on how large-scale bone tissue replacement constructs could be made using commonly available 3D printers, sacrificial materials, and hydrogels. © 2018 IOP Publishing Ltd.

  9. Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: An experimental and numerical analysis.

    NARCIS (Netherlands)

    Moroni, Lorenzo; Poort, G.; van Keulen, F.; de Wijn, J.R.; van Blitterswijk, Clemens

    2006-01-01

    Mechanical properties of three-dimensional (3D) scaffolds can be appropriately modulated through novel fabrication techniques like 3D fiber deposition (3DF), by varying scaffold's pore size and shape. Dynamic stiffness, in particular, can be considered as an important property to optimize the

  10. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    Science.gov (United States)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  11. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    International Nuclear Information System (INIS)

    Karki, Surya B; Gupta, Tripti Thapa; Yildirim-Ayan, Eda; Ayan, Halim; Eisenmann, Kathryn M

    2017-01-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  12. Caveolin-1 mediated radioresistance of 3D grown pancreatic cancer cells

    International Nuclear Information System (INIS)

    Hehlgans, Stephanie; Eke, Iris; Storch, Katja; Haase, Michael; Baretton, Gustavo B.; Cordes, Nils

    2009-01-01

    Background and purpose: Resistance of pancreatic ductal adenocarcinoma (PDAC) to chemo- and radiotherapy is a major obstacle. The integral membrane protein Caveolin-1 (Cav-1) has been suggested as a potent target in human pancreatic carcinoma cells. Materials and methods: Human pancreatic tumor cells were examined in a three-dimensional (3D) cell culture model with regard to clonogenic survival, apoptosis, radiogenic DNA-double strand breaks and protein expression and phosphorylation under siRNA-mediated knockdown of Cav-1 without and in combination with irradiation (X-rays, 0-6 Gy). Immunohistochemistry was used to assess Cav-1 expression in biopsies from patients with PDAC. Results: Tumor cells in PDAC showed significantly higher Cav-1 expression relative to tumor stroma. Cav-1 knockdown significantly reduced β1 integrin expression and Akt phosphorylation, induced Caspase 3- and Caspase 8-dependent apoptosis and enhanced the radiosensitivity of 3D cell cultures. While cell cycling and Cav-1 promoter activity remained stable, Cav-1 knockdown-induced radiosensitization correlated with elevated numbers of residual DNA-double strand breaks. Conclusions: Our data strongly support the concept of Cav-1 as a potent target in pancreatic carcinoma cells due to radiosensitization and Cav-1 overexpression in tumor cells of PDAC. 3D cell cultures are powerful and useful tools for the testing of novel targeting strategies to optimize conventional radio- and chemotherapy regimes for PDAC.

  13. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    Science.gov (United States)

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells.

    Science.gov (United States)

    Ortinau, Stefanie; Schmich, Jürgen; Block, Stephan; Liedmann, Andrea; Jonas, Ludwig; Weiss, Dieter G; Helm, Christiane A; Rolfs, Arndt; Frech, Moritz J

    2010-11-11

    3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenviroment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them. In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay. Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures. Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3

  15. A 3D Microfluidic Model to Recapitulate Cancer Cell Migration and Invasion

    Directory of Open Access Journals (Sweden)

    Yi-Chin Toh

    2018-04-01

    Full Text Available We have developed a microfluidic-based culture chip to simulate cancer cell migration and invasion across the basement membrane. In this microfluidic chip, a 3D microenvironment is engineered to culture metastatic breast cancer cells (MX1 in a 3D tumor model. A chemo-attractant was incorporated to stimulate motility across the membrane. We validated the usefulness of the chip by tracking the motilities of the cancer cells in the system, showing them to be migrating or invading (akin to metastasis. It is shown that our system can monitor cell migration in real time, as compare to Boyden chambers, for example. Thus, the chip will be of interest to the drug-screening community as it can potentially be used to monitor the behavior of cancer cell motility, and, therefore, metastasis, in the presence of anti-cancer drugs.

  16. Surface 3D nanostructuring by tightly focused laser pulse: simulations by Lagrangian code and molecular dynamics

    Science.gov (United States)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.

    2016-02-01

    There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.

  17. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating.

    Science.gov (United States)

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G; Mullins, John J; Davies, Jamie A; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).

  18. Magnetic assembly of 3D cell clusters: visualizing the formation of an engineered tissue.

    Science.gov (United States)

    Ghosh, S; Kumar, S R P; Puri, I K; Elankumaran, S

    2016-02-01

    Contactless magnetic assembly of cells into 3D clusters has been proposed as a novel means for 3D tissue culture that eliminates the need for artificial scaffolds. However, thus far its efficacy has only been studied by comparing expression levels of generic proteins. Here, it has been evaluated by visualizing the evolution of cell clusters assembled by magnetic forces, to examine their resemblance to in vivo tissues. Cells were labeled with magnetic nanoparticles, then assembled into 3D clusters using magnetic force. Scanning electron microscopy was used to image intercellular interactions and morphological features of the clusters. When cells were held together by magnetic forces for a single day, they formed intercellular contacts through extracellular fibers. These kept the clusters intact once the magnetic forces were removed, thus serving the primary function of scaffolds. The cells self-organized into constructs consistent with the corresponding tissues in vivo. Epithelial cells formed sheets while fibroblasts formed spheroids and exhibited position-dependent morphological heterogeneity. Cells on the periphery of a cluster were flattened while those within were spheroidal, a well-known characteristic of connective tissues in vivo. Cells assembled by magnetic forces presented visual features representative of their in vivo states but largely absent in monolayers. This established the efficacy of contactless assembly as a means to fabricate in vitro tissue models. © 2016 John Wiley & Sons Ltd.

  19. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs.

    Science.gov (United States)

    Möller, Thomas; Amoroso, Matteo; Hägg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; Kölby, Lars; Gatenholm, Paul

    2017-02-01

    The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Thirty-six nude mice (Balb-C, female) received a 5- × 5- × 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow-derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery.

  20. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling

    Science.gov (United States)

    Madl, Christopher M.; Lesavage, Bauer L.; Dewi, Ruby E.; Dinh, Cong B.; Stowers, Ryan S.; Khariton, Margarita; Lampe, Kyle J.; Nguyen, Duong; Chaudhuri, Ovijit; Enejder, Annika; Heilshorn, Sarah C.

    2017-12-01

    Neural progenitor cell (NPC) culture within three-dimensional (3D) hydrogels is an attractive strategy for expanding a therapeutically relevant number of stem cells. However, relatively little is known about how 3D material properties such as stiffness and degradability affect the maintenance of NPC stemness in the absence of differentiation factors. Over a physiologically relevant range of stiffness from ~0.5 to 50 kPa, stemness maintenance did not correlate with initial hydrogel stiffness. In contrast, hydrogel degradation was both correlated with, and necessary for, maintenance of NPC stemness. This requirement for degradation was independent of cytoskeletal tension generation and presentation of engineered adhesive ligands, instead relying on matrix remodelling to facilitate cadherin-mediated cell-cell contact and promote β-catenin signalling. In two additional hydrogel systems, permitting NPC-mediated matrix remodelling proved to be a generalizable strategy for stemness maintenance in 3D. Our findings have identified matrix remodelling, in the absence of cytoskeletal tension generation, as a previously unknown strategy to maintain stemness in 3D.

  1. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    NARCIS (Netherlands)

    Ricci, C.; Mota, C.M.; Moscato, S.; D' Alessandro, D.; Ugel, S.; Sartoris, S.; Bronte, V.; Boggi, U.; Campani, D.; Funel, N.; Moroni, Lorenzo; Danti, S.

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl

  2. 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity

    International Nuclear Information System (INIS)

    Loubere, Raphael; Maire, Pierre-Henri; Vachal, Pavel

    2013-01-01

    The aim of the present work is the 3D extension of a general formalism to derive a staggered discretization for Lagrangian hydrodynamics on unstructured grids. The classical compatible discretization is used; namely, momentum equation is discretized using the fundamental concept of subcell forces. Specific internal energy equation is obtained using total energy conservation. The subcell force is derived by invoking the Galilean invariance and thermodynamic consistency. A general form of the subcell force is provided so that a cell entropy inequality is satisfied. The subcell force consists of a classical pressure term plus a tensorial viscous contribution proportional to the difference between the node velocity and the cell-centered velocity. This cell-centered velocity is an extra degree of freedom solved with a cell-centered approximate Riemann solver. The second law of thermodynamics is satisfied by construction of the local positive definite subcell tensor involved in the viscous term. A particular expression of this tensor is proposed. A more accurate extension of this discretization both in time and space is also provided using a piecewise linear reconstruction of the velocity field and a predictor-corrector time discretization. Numerical tests are presented in order to assess the efficiency of this approach in 3D. Sanity checks show that the 3D extension of the 2D approach reproduces 1D and 2D results. Finally, 3D problems such as Sedov, Noh, and Saltzman are simulated. (authors)

  3. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    Science.gov (United States)

    Ye, Ken; Felimban, Raed; Traianedes, Kathy; Moulton, Simon E; Wallace, Gordon G; Chung, Johnson; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-01-01

    Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  4. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    Directory of Open Access Journals (Sweden)

    Ken Ye

    Full Text Available Infrapatellar fat pad adipose stem cells (IPFP-ASCs have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  5. 3-D dynamic rupture simulations of the 2016 Kumamoto, Japan, earthquake

    Science.gov (United States)

    Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi; Kubo, Hisahiko

    2017-11-01

    Using 3-D dynamic rupture simulations, we investigated the 2016 Mw7.1 Kumamoto, Japan, earthquake to elucidate why and how the rupture of the main shock propagated successfully, assuming a complicated fault geometry estimated on the basis of the distributions of the aftershocks. The Mw7.1 main shock occurred along the Futagawa and Hinagu faults. Within 28 h before the main shock, three M6-class foreshocks occurred. Their hypocenters were located along the Hinagu and Futagawa faults, and their focal mechanisms were similar to that of the main shock. Therefore, an extensive stress shadow should have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of the relocated aftershock hypocenters. We then evaluated the static stress changes on the main shock fault plane that were due to the occurrence of the three foreshocks, assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that Coulomb failure stress change (ΔCFS) was positive just below the hypocenter of the main shock, while the ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the propagation of the rupture toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes caused by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we computed 3-D dynamic rupture by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges that could reproduce the characteristic features of the main shock rupture revealed by seismic waveform analyses. We also

  6. Determination of Drug Toxicity Using 3D Spheroids Constructed From an Immortal Human Hepatocyte Cell Line

    Science.gov (United States)

    Fey, Stephen J.; Wrzesinski, Krzysztof

    2012-01-01

    Numerous publications have documented that the immortal cells grown in three-dimensional (3D) cultures possess physiological behavior, which is more reminiscent of their parental organ than when the same cells are cultivated using classical two-dimensional (2D) culture techniques. The goal of this study was to investigate whether this observation could be extended to the determination of LD50 values and whether 3D data could be correlated to in vivo observations. We developed a noninvasive means to estimate the amount of protein present in a 3D spheroid from it is planar area (± 21%) so that a precise dose can be provided in a manner similar to in vivo studies. This avoided correction of the actual dose given based on a protein determination after treatment (when some cells may have lysed). Conversion of published in vitro LC50 data (mM) for six common drugs (acetaminophen, amiodarone, diclofenac, metformin, phenformin, and valproic acid) to LD50 data (mg compound/mg cellular protein) showed that the variation in LD50 values was generally less than that suggested by the original LC50 data. Toxicological analysis of these six compounds in 3D spheroid culture (either published or presented here) demonstrated similar LD50 values. Although in vitro 2D HepG2 data showed a poor correlation, the primary hepatocyte and 3D spheroid data resulted in a much higher degree of correlation with in vivo lethal blood plasma levels. These results corroborate that 3D hepatocyte cultures are significantly different from 2D cultures and are more representative of the liver in vivo. PMID:22454432

  7. A 3D dynamical model of the colliding winds in binary systems

    Science.gov (United States)

    Parkin, E. R.; Pittard, J. M.

    2008-08-01

    We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.

  8. Description of patellar movement by 3D parameters obtained from dynamic CT acquisition

    Science.gov (United States)

    de Sá Rebelo, Marina; Moreno, Ramon Alfredo; Gobbi, Riccardo Gomes; Camanho, Gilberto Luis; de Ávila, Luiz Francisco Rodrigues; Demange, Marco Kawamura; Pecora, Jose Ricardo; Gutierrez, Marco Antonio

    2014-03-01

    The patellofemoral joint is critical in the biomechanics of the knee. The patellofemoral instability is one condition that generates pain, functional impairment and often requires surgery as part of orthopedic treatment. The analysis of the patellofemoral dynamics has been performed by several medical image modalities. The clinical parameters assessed are mainly based on 2D measurements, such as the patellar tilt angle and the lateral shift among others. Besides, the acquisition protocols are mostly performed with the leg laid static at fixed angles. The use of helical multi slice CT scanner can allow the capture and display of the joint's movement performed actively by the patient. However, the orthopedic applications of this scanner have not yet been standardized or widespread. In this work we present a method to evaluate the biomechanics of the patellofemoral joint during active contraction using multi slice CT images. This approach can greatly improve the analysis of patellar instability by displaying the physiology during muscle contraction. The movement was evaluated by computing its 3D displacements and rotations from different knee angles. The first processing step registered the images in both angles based on the femuŕs position. The transformation matrix of the patella from the images was then calculated, which provided the rotations and translations performed by the patella from its position in the first image to its position in the second image. Analysis of these parameters for all frames provided real 3D information about the patellar displacement.

  9. 3D digital dynamic management of maintenance projects for nuclear power plant

    International Nuclear Information System (INIS)

    Wang Baizhong; Luo Yalin; Fang Hao; Ma Li; Zhang Jie; Wang Ruobing; Xie Min

    2005-01-01

    The whole process for the application of digital plant technique in the equipment transport in reactor building and the dynamic management of the spatial arrangement in Daya Bay Nuclear Power Station was introduced in the paper. The establishment of 3D digital Daya Bay plant, and the method and procedure to apply it in the nuclear power plant maintenance project have been discussed. This project utilizes the outer database to preserve the maintenance status of equipments, and avoids the damage or changing of the original 3D final model. Based on the maintenance procedure, the spatial arrangement and schedule for the maintenance of nuclear power station have been simulated and optimized for the whole process. This technique can simulate and optimize the arrangement and spatial arrangement for maintenance in limited space. It has been applied successfully in the reactor vessel head replacement for Unit 2 of Daya Bay NPP to shorten the time for key routes and the total time of this project by 16 hours and 92.5 hours, respectively. (author)

  10. Quantification of diaphragm mechanics in Pompe disease using dynamic 3D MRI

    DEFF Research Database (Denmark)

    Mogalle, Katja; Perez-Rovira, Adria; Ciet, Pierluigi

    2016-01-01

    BACKGROUND: Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respira......BACKGROUND: Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification...... methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle....... RESULTS: Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function...

  11. Design of new dusty plasma apparatus to view 3D particle dynamics of fluorescent dust clouds

    Science.gov (United States)

    Thome, Kathreen; Fontanetta, Alexandra; Zwicker, Andrew

    2008-11-01

    Particles suspended in dusty plasmas represent both contamination in industrial plasmas and a primary interstellar medium component. Typically, dusty plasma behavior is studied by laser scattering techniques that provide 2D dust cloud images. However, the 3D structure of the dust cloud is essential to understand the waves, group dynamics, and stabilities of the cloud. Techniques used to study this structure include stereoscopic particle image velocimetry and rapid laser scanning. Our UV illumination technique reveals translational and rotational velocities of fluorescent dust particles as a function of UV intensity. The new argon DC glow discharge experiment designed to study the 3D aspects of fluorescent dust consists of a 13.25'' diameter chamber, two 8'' window ports for CCD cameras, one along the plasma and another transverse to it, two additional 8'' window ports transverse to the plasma for laser or UV light illumination of the dust cloud, and a diagnostic probe port. Results from different electrodes--including mesh and ring--observations and imaging will be presented.

  12. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT.

    Science.gov (United States)

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-05-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction.

  13. Novel image analysis methods for quantification of in situ 3-D tendon cell and matrix strain.

    Science.gov (United States)

    Fung, Ashley K; Paredes, J J; Andarawis-Puri, Nelly

    2018-01-23

    Macroscopic tendon loads modulate the cellular microenvironment leading to biological outcomes such as degeneration or repair. Previous studies have shown that damage accumulation and the phases of tendon healing are marked by significant changes in the extracellular matrix, but it remains unknown how mechanical forces of the extracellular matrix are translated to mechanotransduction pathways that ultimately drive the biological response. Our overarching hypothesis is that the unique relationship between extracellular matrix strain and cell deformation will dictate biological outcomes, prompting the need for quantitative methods to characterize the local strain environment. While 2-D methods have successfully calculated matrix strain and cell deformation, 3-D methods are necessary to capture the increased complexity that can arise due to high levels of anisotropy and out-of-plane motion, particularly in the disorganized, highly cellular, injured state. In this study, we validated the use of digital volume correlation methods to quantify 3-D matrix strain using images of naïve tendon cells, the collagen fiber matrix, and injured tendon cells. Additionally, naïve tendon cell images were used to develop novel methods for 3-D cell deformation and 3-D cell-matrix strain, which is defined as a quantitative measure of the relationship between matrix strain and cell deformation. The results support that these methods can be used to detect strains with high accuracy and can be further extended to an in vivo setting for observing temporal changes in cell and matrix mechanics during degeneration and healing. Copyright © 2017. Published by Elsevier Ltd.

  14. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning

    International Nuclear Information System (INIS)

    Occhetta, P; Piraino, F; Redaelli, A; Rasponi, M; Sadr, N; Moretti, M

    2013-01-01

    Native tissues are characterized by spatially organized three-dimensional (3D) microscaled units which functionally define cells–cells and cells–extracellular matrix interactions. The ability to engineer biomimetic constructs mimicking these 3D microarchitectures is subject to the control over cell distribution and organization. In the present study we introduce a novel protocol to generate 3D cell laden hydrogel micropatterns with defined size and shape. The method, named photo-mold patterning (PMP), combines hydrogel micromolding within polydimethylsiloxane (PDMS) stamps and photopolymerization through a recently introduced biocompatible ultraviolet (UVA) activated photoinitiator (VA-086). Exploiting PDMS micromolds as geometrical constraints for two methacrylated prepolymers (polyethylene glycol diacrylate and gelatin methacrylate), micrometrically resolved structures were obtained within a 3 min exposure to a low cost and commercially available UVA LED. The PMP was validated both on a continuous cell line (human umbilical vein endothelial cells expressing green fluorescent protein, HUVEC GFP) and on primary human bone marrow stromal cells (BMSCs). HUVEC GFP and BMSCs were exposed to 1.5% w/v VA-086 and UVA light (1 W, 385 nm, distance from sample = 5 cm). Photocrosslinking conditions applied during the PMP did not negatively affect cells viability or specific metabolic activity. Quantitative analyses demonstrated the potentiality of PMP to uniformly embed viable cells within 3D microgels, creating biocompatible and favorable environments for cell proliferation and spreading during a seven days' culture. PMP can thus be considered as a promising and cost effective tool for designing spatially accurate in vitro models and, in perspective, functional constructs. (paper)

  15. First study of small-cell 3D Silicon Pixel Detectors for the High Luminosity LHC

    CERN Document Server

    E. Currás (1), J. Duarte-Campderrós (1), M. Fernández (1), A. García (1), G. Gómez (1), J. González (1), R. Jaramillo (1), D. Moya (1), I. Vila (1), S. Hidalgo (2), M. Manna (2), G. Pellegrini (2), D. Quirion (2), D. Pitzl (3), A. Ebrahimi (4), T. Rohe (5), S. Wiederkehr (5); ((1) Instituto de Física de Cantabria, (2) Instituto de Microelectrónica de Barcelona - Centro Nacional de Microelectrónica, (3) Deutsches Elektronen Synchrotron, (4) University of Hamburg, (5) Paul Scherrer Institut)

    2018-01-01

    A study of 3D pixel sensors of cell size 50 {\\mu}m x 50 {\\mu}m fabricated at IMB-CNM using double-sided n-on-p 3D technology is presented. Sensors were bump-bonded to the ROC4SENS readout chip. For the first time in such a small-pitch hybrid assembly, the sensor response to ionizing radiation in a test beam of 5.6 GeV electrons was studied. Results for non-irradiated sensors are presented, including efficiency, charge sharing, signal-to-noise, and resolution for different incidence angles.

  16. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Estimation of Pulmonary Motion in Healthy Subjects and Patients with Intrathoracic Tumors Using 3D-Dynamic MRI: Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Plathow, Christian; Schoebinger, Max; Meinzer, Heinz Peter [German Cancer Research Center, Heidelberg (Germany); Herth, Felix; Tuengerthal, Siegfried [Clinic of Thoracic Disease, Heidelberg (Germany); Kauczor, Hans Ulrich [University of Heidelberg, Heidelberg (Germany)

    2009-12-15

    To estimate a new technique for quantifying regional lung motion using 3D-MRI in healthy volunteers and to apply the technique in patients with intra- or extrapulmonary tumors. Intraparenchymal lung motion during a whole breathing cycle was quantified in 30 healthy volunteers using 3D-dynamic MRI (FLASH [fast low angle shot] 3D, TRICKS [time-resolved interpolated contrast kinetics]). Qualitative and quantitative vector color maps and cumulative histograms were performed using an introduced semiautomatic algorithm. An analysis of lung motion was performed and correlated with an established 2D-MRI technique for verification. As a proof of concept, the technique was applied in five patients with non-small cell lung cancer (NSCLC) and 5 patients with malignant pleural mesothelioma (MPM). The correlation between intraparenchymal lung motion of the basal lung parts and the 2D-MRI technique was significant (r = 0.89, p < 0.05). Also, the vector color maps quantitatively illustrated regional lung motion in all healthy volunteers. No differences were observed between both hemithoraces, which was verified by cumulative histograms. The patients with NSCLC showed a local lack of lung motion in the area of the tumor. In the patients with MPM, there was global diminished motion of the tumor bearing hemithorax, which improved significantly after chemotherapy (CHT) (assessed by the 2D- and 3D-techniques) (p < 0.01). Using global spirometry, an improvement could also be shown (vital capacity 2.9 {+-} 0.5 versus 3.4 L {+-} 0.6, FEV1 0.9 {+-} 0.2 versus 1.4 {+-} 0.2 L) after CHT, but this improvement was not significant. A 3D-dynamic MRI is able to quantify intraparenchymal lung motion. Local and global parenchymal pathologies can be precisely located and might be a new tool used to quantify even slight changes in lung motion (e.g. in therapy monitoring, follow-up studies or even benign lung diseases)

  18. MAPLE deposition of 3D micropatterned polymeric substrates for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Irina Alexandra, E-mail: irina.paun@physics.pub.ro [National Institute for Laser, Plasma and Radiation Physics, RO-077125, Magurele, Bucharest (Romania); Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042, Bucharest (Romania); Mihailescu, Mona [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042, Bucharest (Romania); Calenic, Bogdan [Department of Biochemistry, Faculty of Dentistry, UMF Carol Davila, Bucharest (Romania); Luculescu, Catalin Romeo [National Institute for Laser, Plasma and Radiation Physics, RO-077125, Magurele, Bucharest (Romania); Greabu, Maria [Department of Biochemistry, Faculty of Dentistry, UMF Carol Davila, Bucharest (Romania); Dinescu, Maria, E-mail: dinescum@nipne.ro [National Institute for Laser, Plasma and Radiation Physics, RO-077125, Magurele, Bucharest (Romania)

    2013-08-01

    3D micropatterned poly(lactide-co-glycolide)/polyurethane (PLGA/PU) substrates were produced by MAPLE deposition through masks and used for regulating the behavior of oral keratinocyte stem cells in response to topography. Flat PLGA/PU substrates were produced for comparison. 3D imaging of the PLGA/PU substrates and of the cultured cells was performed by Digital Holographic Microscopy. The micropatterns were in the shape of squares of 50 × 50 and 80 × 80 μm{sup 2} areas, ∼1.8 μm in height and separated by 20 μm wide channels. It was found that substrate topography guided the adhesion of the cultured cells: on the smooth substrates the cells adhered randomly and showed no preferred orientation; in contrast, on the micropatterned substrates the cells adhered preferentially onto the squares and not in the separating channels. Furthermore, key properties of the cells (size, viability, proliferation rate and stem cell marker expression) did not show any dependence on substrate topography. The size of the cultured cells, their viability, the proportions of actively/slow proliferating cells, as well as the stem cell markers expressions, were similar for both flat and micropatterned substrates. Finally, it was found that the cells cultured on the PLGA/PU substrates deposited by MAPLE exhibited similar properties as the controls (i.e. cells cultured on glass slides), indicating the capability of the former to preserve the properties of the keratinocyte stem cells.

  19. Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting.

    Science.gov (United States)

    Wei Zhu; Harris, Brent T; Zhang, Lijie Grace

    2016-08-01

    Nervous system is extremely complex which leads to rare regrowth of nerves once injury or disease occurs. Advanced 3D bioprinting strategy, which could simultaneously deposit biocompatible materials, cells and supporting components in a layer-by-layer manner, may be a promising solution to address neural damages. Here we presented a printable nano-bioink composed of gelatin methacrylamide (GelMA), neural stem cells, and bioactive graphene nanoplatelets to target nerve tissue regeneration in the assist of stereolithography based 3D bioprinting technique. We found the resultant GelMA hydrogel has a higher compressive modulus with an increase of GelMA concentration. The porous GelMA hydrogel can provide a biocompatible microenvironment for the survival and growth of neural stem cells. The cells encapsulated in the hydrogel presented good cell viability at the low GelMA concentration. Printed neural construct exhibited well-defined architecture and homogenous cell distribution. In addition, neural stem cells showed neuron differentiation and neurites elongation within the printed construct after two weeks of culture. These findings indicate the 3D bioprinted neural construct has great potential for neural tissue regeneration.

  20. Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response

    International Nuclear Information System (INIS)

    Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.

    2007-01-01

    We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation

  1. Development of an environment for 3D visualization of riser dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bernardes Junior, Joao Luiz; Martins, Clovis de Arruda [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica]. E-mails: joao.bernardes@poli.usp.br; cmartins@usp.br

    2006-07-01

    This paper describes the merging of Virtual Reality and Scientific Visualization techniques in the development of Riser View, a multi platform 3D environment for real time, interactive visualization of riser dynamics. Its features, architecture, unusual collision detection algorithm and how up was customized for the project are discussed. Using Open GL through VRK, the software is able to make use of the resources available in most modern Graphics. Acceleration Hardware to improve performance. IUP/LED allows for native loo-and-feel in MS-Windows or Linux platform. The paper discusses conflicts that arise between scientific visualization and aspects such as realism and immersion, and how the visualization is prioritized. (author)

  2. High temperature dislocation processes in precipitation hardened crystals investigated by a 3D discrete dislocation dynamics

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Svoboda, Jiří; Dlouhý, Antonín

    2017-01-01

    Roč. 97, OCT (2017), s. 1-23 ISSN 0749-6419 R&D Projects: GA ČR(CZ) GA14-22834S; GA ČR(CZ) GA202/09/2073; GA ČR(CZ) GD106/09/H035; GA MŠk(CZ) EE2.3.20.0214; GA MŠk OC 162 EU Projects: European Commission(XE) 309916 - Z-ULTRA Institutional support: RVO:68081723 Keywords : 3D discrete dislocation dynamics * Dislocations * Strengthening mechanisms * Low angle grain boundaries * Particulate reinforced material Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 5.702, year: 2016

  3. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.

    Science.gov (United States)

    Apelgren, Peter; Amoroso, Matteo; Lindahl, Anders; Brantsing, Camilla; Rotter, Nicole; Gatenholm, Paul; Kölby, Lars

    2017-01-01

    Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm) were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.

  4. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.

    Directory of Open Access Journals (Sweden)

    Peter Apelgren

    Full Text Available Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.

  5. A 3D human neural cell culture system for modeling Alzheimer’s disease

    Science.gov (United States)

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  6. Organic MEMS/NEMS-based high-efficiency 3D ITO-less flexible photovoltaic cells

    International Nuclear Information System (INIS)

    Kassegne, Sam; Moon, Kee; Martín-Ramos, Pablo; Majzoub, Mohammad; Őzturk, Gunay; Desai, Krishna; Parikh, Mihir; Nguyen, Bao; Khosla, Ajit; Chamorro-Posada, Pedro

    2012-01-01

    A novel approach based on three-dimensional (3D) architecture for polymeric photovoltaic cells made up of an array of sub-micron and nano-pillars which not only increase the area of the light absorbing surface, but also improve the carrier collection efficiency of bulk-heterojunction organic solar cells is presented. The approach also introduces coating of 3D anodes with a new solution-processable highly conductive transparent polymer (Orgacon™) that replaces expensive vacuum-deposited ITO (indium tin oxide) as well as the additional hole-collecting layer of conventional PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)). In addition, the described procedure is well suited to roll-to-roll high-throughput manufacturing. The high aspect-ratio 3D pillars which form the basis for this new architecture are patterned through micro-electromechanical-system- and nano-electromechanical-system-based processes. For the particular case of P3HT (poly(3-hexylthiophene)) and PCBM (phenyl-C61-butyric acid methyl ester) active material, efficiencies in excess of 6% have been achieved for these photovoltaic cells of 3D architecture using ITO-less flexible PET (polyethylene terephthalate) substrates. This increase in efficiency turns out to be more than twice higher than those achieved for their 2D counterparts. (paper)

  7. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    Science.gov (United States)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  8. Fabrication of Dye-Sensitized Solar Cells with a 3D Nanostructured Electrode

    Directory of Open Access Journals (Sweden)

    Guo-Yang Chen

    2010-01-01

    Full Text Available A novel Dye-Sensitized Solar Cell (DSSC scheme for better solar conversion efficiency is proposed. The distinctive characteristic of this novel scheme is that the conventional thin film electrode is replaced by a 3D nanostructured indium tin oxide (ITO electrode, which was fabricated using RF magnetron sputtering with an anodic aluminum oxide (AAO template. The template was prepared by immersing the barrier-layer side of an AAO film into a 30 wt% phosphoric acid solution to produce a contrasting surface. RF magnetron sputtering was then used to deposit a 3D nanostructured ITO thin film on the template. The crystallinity and conductivity of the 3D ITO films were further enhanced by annealing. Titanium dioxide nanoparticles were electrophoretically deposited on the 3D ITO film after which the proposed DSSC was formed by filling vacant spaces in the 3D nanostructured ITO electrode with dye. The measured solar conversion efficiency of the device was 0.125%. It presents a 5-fold improvement over that of conventional spin-coated TiO2 film electrode DSSCs.

  9. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  10. Measuring the correlation between cell mechanics and myofibroblastic differentiation during maturation of 3D microtissues

    Science.gov (United States)

    Zhao, Ruogang; Wang, Weigang; Boudou, Thomas; Chen, Christopher; Reich, Daniel

    2013-03-01

    Tissue stiffness and cellular contractility are two of the most important biomechanical factors regulating pathological transitions of encapsulated cells, such as the differentiation of fibroblasts into myofibroblasts - a key event contributing to tissue fibrosis. However, a quantitative correlation between tissue stiffness and cellular contraction and myofibroblast differentiation has not yet been established in 3D environments, mainly due to the lack of suitable 3D tissue culture models that allow both tissue remodeling and simultaneous measurement of the cell/tissue mechanics. To address this, we have developed a magnetic microtissue tester system that allows the remodeling of arrays of cell-laden 3D collagen microtissues and the measurement of cell and tissue mechanics using magnetically actuated elastomeric microcantilevers. By measuring the development of cell/tissue mechanical properties and the expression level of α-smooth muscle actin (α-SMA, a marker for myofibroblast differentiation) during a 6 day culture period, we found microtissue stiffness increased by 45% and α-SMA expression increased by 38%, but tissue contraction forces only increased by 10%, indicating that tissue stiffness may be the predominant mechanical factor for regulation of myofibroblast differentiation. This study provides new quantitative insight into the regulatory effect of cell and tissue mechanics on cellular function. Supported in part by NIH grant HL090747

  11. Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape

    NARCIS (Netherlands)

    Kamperman, Tom; Henke, Sieger; Visser, Claas Willem; Karperien, Marcel; Leijten, Jeroen

    2017-01-01

    Single-cell-laden microgels support physiological 3D culture conditions while enabling straightforward handling and high-resolution readouts of individual cells. However, their widespread adoption for long-term cultures is limited by cell escape. In this work, it is demonstrated that cell escape is

  12. 3D-printed and CNC milled flow-cells for chemiluminescence detection.

    Science.gov (United States)

    Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S

    2014-08-01

    Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A; Itoh, Munenari; Christiano, Angela M

    2015-01-01

    The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.

  14. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Karl Gledhill

    Full Text Available The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.

  15. Effect of fiber directionality on the static and dynamic mechanical properties of 3D SiCf/SiC composites

    International Nuclear Information System (INIS)

    Hou, Zhenhua; Luo, Ruiying; Yang, Wei; Xu, Huaizhe; Han, Tao

    2016-01-01

    The static and dynamic mechanical properties of three-dimensional (3D) 4-directional and 3D 5-directional braided SiC f /SiC composites fabricated by polymer infiltration and pyrolysis (PIP) were investigated using static and dynamic bending tests, as well as microstructural characterization. X-ray diffraction revealed that polycarbosilane was converted into a matrix of crystalline β-SiC after PIP cycling. Test results indicated that the density, flexural strength, elastic modulus, fracture toughness, and storage modulus of 3D 5-directional SiC f /SiC composites were superior to those of 3D 4-directional braided SiC f /SiC composites; the former also showed a smaller internal friction than the latter. Results from Weibull statistical analysis indicated that the scale parameter σ 0 (736.9 MPa) and Weibull modulus m (21.7) of the 3D 5-directional specimen were higher than those of 3D 4-directional braided SiC f /SiC composites (629.6 MPa, 14.7). Both 3D braided composites demonstrated good toughness and avoided catastrophic brittle fractures under loading because of the effective crack energy dissipating mechanisms of crack deflection, interface debonding, and fiber pull-out. The internal friction and storage modulus of the 3D braided composites were sensitive to temperature. The cross angle of fiber placement in the preform and the direction of the applied force, as well as the pre-crack propagation remarkably influenced the static mechanical properties and failure behavior of the 3D braided SiC f /SiC composites. The dynamic mechanical properties of the 3D braided composites, including internal friction and storage modulus, were also considerably affected by fiber directionality in their preforms.

  16. Pin cell discontinuity factors in the transient 3-D discrete ordinates code TORT-TD - 237

    International Nuclear Information System (INIS)

    Seubert, A.

    2010-01-01

    This paper describes the application of generalized equivalence theory to the time-dependent 3-D discrete ordinates neutron transport code TORT-TD. The introduction of pin cell discontinuity factors into the discrete ordinates transport equation is described by assuming a linear dependence of the homogenized neutron angular flux within a pin cell which may be discontinuous at the interfaces to adjacent cells. The homogenized flux discontinuity at cell interfaces is expressed by pin cell discontinuity factors which in turn are determined from fuel assembly lattice calculations using HELIOS. Application of TORT-TD to the all rods in state of the PWR MOX/UO 2 Core Transient Benchmark with pin cell homogenized nuclear cross sections demonstrate the potential of pin cell discontinuity factors to reduce pin cell homogenization errors. (authors)

  17. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    Science.gov (United States)

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  18. Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms

    Science.gov (United States)

    Kengne, J.; Jafari, S.; Njitacke, Z. T.; Yousefi Azar Khanian, M.; Cheukem, A.

    2017-11-01

    Mathematical models (ODEs) describing the dynamics of almost all continuous time chaotic nonlinear systems (e.g. Lorenz, Rossler, Chua, or Chen system) involve at least a nonlinear term in addition to linear terms. In this contribution, a novel (and singular) 3D autonomous chaotic system without linear terms is introduced. This system has an especial feature of having two twin strange attractors: one ordinary and one symmetric strange attractor when the time is reversed. The complex behavior of the model is investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov exponent plots, time series and Poincaré sections. Some interesting phenomena are found including for instance, period-doubling bifurcation, antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits) and chaos while monitoring the system parameters. Compared to the (unique) case previously reported by Xu and Wang (2014) [31], the system considered in this work displays a more 'elegant' mathematical expression and experiences richer dynamical behaviors. A suitable electronic circuit (i.e. the analog simulator) is designed and used for the investigations. Pspice based simulation results show a very good agreement with the theoretical analysis.

  19. The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. C.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2017-03-10

    High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in H α and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.

  20. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions

    International Nuclear Information System (INIS)

    Podesta, Mark; Persoon, Lucas CGG; Verhaegen, Frank

    2014-01-01

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors. The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation

  1. Direct 3D cell-printing of human skin with functional transwell system.

    Science.gov (United States)

    Kim, Byoung Soo; Lee, Jung-Seob; Gao, Ge; Cho, Dong-Woo

    2017-06-06

    Three-dimensional (3D) cell-printing has been emerging as a promising technology with which to build up human skin models by enabling rapid and versatile design. Despite the technological advances, challenges remain in the development of fully functional models that recapitulate complexities in the native tissue. Moreover, although several approaches have been explored for the development of biomimetic human skin models, the present skin models based on multistep fabrication methods using polydimethylsiloxane chips and commercial transwell inserts could be tackled by leveraging 3D cell-printing technology. In this paper, we present a new 3D cell-printing strategy for engineering a 3D human skin model with a functional transwell system in a single-step process. A hybrid 3D cell-printing system was developed, allowing for the use of extrusion and inkjet modules at the same time. We began by revealing the significance of each module in engineering human skin models; by using the extrusion-dispensing module, we engineered a collagen-based construct with polycaprolactone (PCL) mesh that prevented the contraction of collagen during tissue maturation; the inkjet-based dispensing module was used to uniformly distribute keratinocytes. Taking these features together, we engineered a human skin model with a functional transwell system; the transwell system and fibroblast-populated dermis were consecutively fabricated by using the extrusion modules. Following this process, keratinocytes were uniformly distributed onto the engineered dermis by the inkjet module. Our transwell system indicates a supportive 3D construct composed of PCL, enabling the maturation of a skin model without the aid of commercial transwell inserts. This skin model revealed favorable biological characteristics that included a stabilized fibroblast-stretched dermis and stratified epidermis layers after 14 days. It was also observed that a 50 times reduction in cost was achieved and 10 times less medium was

  2. Cancer Cell Migration within 3D Layer-By-Layer Microfabricated Photocrosslinked PEG Scaffolds with Tunable Stiffness

    OpenAIRE

    Soman, Pranav; Kelber, Jonathan A.; Lee, Jin Woo; Wright, Tracy; Vecchio, Kenneth S.; Klemke, Richard L.; Chen, Shaochen

    2012-01-01

    Our current understanding of 3-dimensional (3D) cell migration is primarily based on results from fibrous scaffolds with randomly organized internal architecture. Manipulations that change the stiffness of these 3D scaffolds often alter other matrix parameters that can modulate cell motility independently or synergistically, making observations less predictive of how cells behave when migrating in 3D. In order to decouple microstructural influences and stiffness effects, we have designed and ...

  3. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads

    OpenAIRE

    Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.

    2013-01-01

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and ...

  4. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond.

    Science.gov (United States)

    Liu, Chun; Oikonomopoulos, Angelos; Sayed, Nazish; Wu, Joseph C

    2018-03-08

    The advent of human induced pluripotent stem cells (iPSCs) presents unprecedented opportunities to model human diseases. Differentiated cells derived from iPSCs in two-dimensional (2D) monolayers have proven to be a relatively simple tool for exploring disease pathogenesis and underlying mechanisms. In this Spotlight article, we discuss the progress and limitations of the current 2D iPSC disease-modeling platform, as well as recent advancements in the development of human iPSC models that mimic in vivo tissues and organs at the three-dimensional (3D) level. Recent bioengineering approaches have begun to combine different 3D organoid types into a single '4D multi-organ system'. We summarize the advantages of this approach and speculate on the future role of 4D multi-organ systems in human disease modeling. © 2018. Published by The Company of Biologists Ltd.

  5. Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing.

    Science.gov (United States)

    Wüst, Silke; Müller, Ralph; Hofmann, Sandra

    2011-08-04

    Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing.

  6. Controlled Positioning of Cells in Biomaterials—Approaches Towards 3D Tissue Printing

    Directory of Open Access Journals (Sweden)

    Sandra Hofmann

    2011-08-01

    Full Text Available Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing.

  7. 3D instantaneous dynamics modeling of present-day Aegean subduction

    Science.gov (United States)

    Glerum, Anne; Spakman, Wim; van Hinsbergen, Douwe; Pranger, Casper

    2017-04-01

    To study the sensitivity of surface observables to subduction and mantle flow, i.e. the coupling of crustal tectonics and the underlying mantle dynamics, we have developed 3D numerical models of the instantaneous crust-mantle dynamics of the eastern Mediterranean. These models comprise both a realistic crust-lithosphere system and the underlying mantle. The focus for this presentation lies on the regional crustal flow response to the present-day Aegean subduction system. Our curved model domain measures 40°x40°x2900km with the Aegean subduction system taken as the geographic center. Model set-ups are based on geological and geophysical data of the eastern Mediterranean. We first create a 3D synthetic geometry of the crust-lithosphere system in a stand-alone program, including the present-day configuration of the plates in the region and crust and lithosphere thickness variations abstracted from Moho and LAB maps (Faccenna et al., 2014, Carafa et al., 2015). In addition we construct the geometry of the Aegean slab from a seismic tomography model (UU-P07; Amaru, 2007) and earthquake hypocenters (NCEDC, 2014). Geometries are then imported into the finite element code ASPECT (Kronbichler et al., 2012) using specially designed plugins. The mantle initial temperature conditions can include deviations from an adiabatic profile obtained from conversion of the UU-P07 seismic velocity anomalies to temperature anomalies using a depth-dependent scaling (Karato, 2008). We model compressible mantle flow for which material properties are obtained from thermodynamics P-T lookup-tables (Perple_X, Connolly, 2009) in combination with nonlinear viscoplastic rheology laws. Sublithospheric flow through the lateral model boundaries is left free via open boundary conditions (Chertova et al., 2012), while plate motion is prescribed at the model sides in terms of relative as well as absolute plate motion velocities (e.g. Doubrovine et al., 2012). So far, we used a free-slip surface, but

  8. Dual-wavelength OR-PAM with compressed sensing for cell tracking in a 3D cell culture system

    Science.gov (United States)

    Huang, Rou-Xuan; Fu, Ying; Liu, Wang; Ma, Yu-Ting; Hsieh, Bao-Yu; Chen, Shu-Ching; Sun, Mingjian; Li, Pai-Chi

    2018-02-01

    Monitoring dynamic interactions of T cells migrating toward tumor is beneficial to understand how cancer immunotherapy works. Optical-resolution photoacoustic microscope (OR-PAM) can provide not only high spatial resolution but also deeper penetration than conventional optical microscopy. With the aid of exogenous contrast agents, the dual-wavelength OR-PAM can be applied to map the distribution of CD8+ cytotoxic T lymphocytes (CTLs) with gold nanospheres (AuNS) under 523nm laser irradiation and Hepta1-6 tumor spheres with indocyanine green (ICG) under 800nm irradiation. However, at 1K laser PRF, it takes approximately 20 minutes to obtain a full sample volume of 160 × 160 × 150 μm3 . To increase the imaging rate, we propose a random non-uniform sparse sampling mechanism to achieve fast sparse photoacoustic data acquisition. The image recovery process is formulated as a low-rank matrix recovery (LRMR) based on compressed sensing (CS) theory. We show that it could be stably recovered via nuclear-norm minimization optimization problem to maintain image quality from a significantly fewer measurement. In this study, we use the dual-wavelength OR-PAM with CS to visualize T cell trafficking in a 3D culture system with higher temporal resolution. Data acquisition time is reduced by 40% in such sample volume where sampling density is 0.5. The imaging system reveals the potential to understand the dynamic cellular process for preclinical screening of anti-cancer drugs.

  9. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo

    OpenAIRE

    Apelgren, Peter; Amoroso, Matteo; Lindahl, Anders; Brantsing, Camilla; Rotter, Nicole; Gatenholm, Paul; Kölby, Lars

    2017-01-01

    Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold....

  10. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Duru, Kenneth, E-mail: kduru@stanford.edu [Department of Geophysics, Stanford University, Stanford, CA (United States); Dunham, Eric M. [Department of Geophysics, Stanford University, Stanford, CA (United States); Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA (United States)

    2016-01-15

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture

  11. Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe

    Science.gov (United States)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-10-01

    Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.

  12. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells.

    Science.gov (United States)

    Song, Jiwon; Millman, Jeffrey R

    2016-12-01

    Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing β cells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies.

  13. Functionalization of titanium surface with chitosan via silanation: 3D CLSM imaging of cell biocompatibility behaviour.

    Science.gov (United States)

    Attik, G N; D'Almeida, M; Toury, B; Grosgogeat, B

    2013-09-16

    Biocompatibility ranks as one of the most important properties of dental materials. One of the criteria for biocompatibility is the absence of material toxicity to cells, according to the ISO 7405 and 10993 recommendations. Among numerous available methods for toxicity assessment; 3-dimensional Confocal Laser Scanning Microscopy (3D CLSM) imaging was chosen because it provides an accurate and sensitive index of living cell behavior in contact with chitosan coated tested implants. The purpose of this study was to investigate the in vitro biocompatibility of functionalized titanium with chitosan via a silanation using sensitive and innovative 3D CLSM imaging as an investigation method for cytotoxicity assessment. The biocompatibility of four samples (controls cells, TA6V, TA6V-TESBA and TA6V-TESBAChitosan) was compared in vitro after 24h of exposure. Confocal imaging was performed on cultured human gingival fibroblast (HGF1) like cells using Live/Dead® staining. Image series were obtained with a FV10i confocal biological inverted system and analyzed with FV10-ASW 3.1 Software (Olympus France). Image analysis showed no cytotoxicity in the presence of the three tested substrates after 24 h of contact. A slight decrease of cell viability was found in contact with TA6V-TESBA with and without chitosan compared to negative control cells. Our findings highlighted the use of 3D CLSM confocal imaging as a sensitive method to evaluate qualitatively and quantitatively the biocompatibility behavior of functionalized titanium with chitosan via a silanation. The biocompatibility of the new functionalized coating to HGF1 cells is as good as the reference in biomedical device implantation TA6V.

  14. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision

    OpenAIRE

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision ...

  15. A new 3-D ray tracing method based on LTI using successive partitioning of cell interfaces and traveltime gradients

    Science.gov (United States)

    Zhang, Dong; Zhang, Ting-Ting; Zhang, Xiao-Lei; Yang, Yan; Hu, Ying; Qin, Qian-Qing

    2013-05-01

    We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.

  16. A rigidity transition and glassy dynamics in a model for confluent 3D tissues

    Science.gov (United States)

    Merkel, Matthias; Manning, M. Lisa

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.

  17. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.

    Science.gov (United States)

    Brancato, Virginia; Garziano, Alessandro; Gioiella, Filomena; Urciuolo, Francesco; Imparato, Giorgia; Panzetta, Valeria; Fusco, Sabato; Netti, Paolo A

    2017-01-01

    We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor

  18. A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation

    Directory of Open Access Journals (Sweden)

    Indrakumar Vetharaniam

    2014-05-01

    Full Text Available We have developed a novel 3-D, agent-based model of cell-wall digestion to improve our understanding of ruminal cell-wall digestion. It offers a capability to study cell walls and their enzymatic modification, by providing a representation of cellulose microfibrils and non-cellulosic polysaccharides and by simulating their spatial and catalytic interactions with enzymes. One can vary cell-wall composition and the types and numbers of enzyme molecules, allowing the model to be applied to a range of systems where cell walls are degraded and to the modification of cell walls by endogenous enzymes. As a proof of principle, we have modelled the wall of a mesophyll cell from the leaf of perennial ryegrass and then simulated its enzymatic degradation. This is a primary, non-lignified cell wall and the model includes cellulose, hemicelluloses (glucuronoarabinoxylans, 1,3;1,4-β-glucans, and xyloglucans and pectin. These polymers are represented at the level of constituent monosaccharides, and assembled to form a 3-D, meso-scale representation of the molecular structure of the cell wall. The composition of the cell wall can be parameterised to represent different walls in different cell types and taxa. The model can contain arbitrary combinations of different enzymes. It simulates their random diffusion through the polymer networks taking collisions into account, allowing steric hindrance from cell-wall polymers to be modelled. Steric considerations are included when target bonds are encountered, and breakdown products resulting from enzymatic activity are predicted.

  19. Differences of statin activity in 2D and 3D pancreatic cancer cell cultures

    Directory of Open Access Journals (Sweden)

    Paškevičiūtė M

    2017-11-01

    Full Text Available Miglė Paškevičiūtė,1 Vilma Petrikaitė1,21Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania; 2Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology, Vilnius, LithuaniaPurpose: To evaluate the anticancer activity of lovastatin (LOVA, mevastatin (MEVA, pitavastatin (PITA, and simvastatin (SIMVA in 2D and 3D models of three human pancreatic cancer cell lines (BxPC-3, MIA PaCa-2, and PANC-1.Methods: The effect of statins on cell viability was estimated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide test. The activity of statins in 3D pancreatic cancer cell cultures was examined by measuring the size change of spheroids. The type of cell death was identified by cell staining with Hoechst 33342 and propidium iodide. The activity of statins on the clonogenicity of cancer cells was tested by evaluating the effect on the colony-forming ability of cells.Results: The rank order of the activity of tested statins on cell viability was as follows: PITA > SIMVA > LOVA > MEVA. Among the tested statins, PITA had the greatest effect on cell viability (half maximal effective concentration values after 72 h on BxPC-3, MIA PaCa-2, and PANC-1 cells were 1.4±0.4 µM, 1.0±0.2 µM, and 1.0±0.5 µM, respectively. PITA also showed the strongest effect on tumor spheroid growth. Statins suppressed the colony formation of cancer cells. PITA demonstrated the greatest reduction in colony size and number. Apoptosis and necrosis assay results showed that at lower concentrations statins mostly induced cell death through apoptosis, whereas higher concentrations of compounds activated also necrotic processes.Conclusion: Statins, especially PITA, demonstrate an anticancer activity against pancreatic cancer cell lines BxPC-3, MIA PaCa-2, and PANC-1 in both 2D and 3D models.Keywords: HMG-CoA reductase, cell viability, spheroid, apoptosis

  20. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  1. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    Science.gov (United States)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  2. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Philip, B.; Wang, Z.; Berrill, M.A.; Birke, M.; Pernice, M.

    2014-01-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence

  3. Optimal design of wind barriers using 3D computational fluid dynamics simulations

    Science.gov (United States)

    Fang, H.; Wu, X.; Yang, X.

    2017-12-01

    Desertification is a significant global environmental and ecological problem that requires human-regulated control and management. Wind barriers are commonly used to reduce wind velocity or trap drifting sand in arid or semi-arid areas. Therefore, optimal design of wind barriers becomes critical in Aeolian engineering. In the current study, we perform 3D computational fluid dynamics (CFD) simulations for flow passing through wind barriers with different structural parameters. To validate the simulation results, we first inter-compare the simulated flow field results with those from both wind-tunnel experiments and field measurements. Quantitative analyses of the shelter effect are then conducted based on a series of simulations with different structural parameters (such as wind barrier porosity, row numbers, inter-row spacing and belt schemes). The results show that wind barriers with porosity of 0.35 could provide the longest shelter distance (i.e., where the wind velocity reduction is more than 50%) thus are recommended in engineering designs. To determine the optimal row number and belt scheme, we introduce a cost function that takes both wind-velocity reduction effects and economical expense into account. The calculated cost function show that a 3-row-belt scheme with inter-row spacing of 6h (h as the height of wind barriers) and inter-belt spacing of 12h is the most effective.

  4. Fluido-Dynamic and Electromagnetic Characterization of 3D Carbon Dielectrophoresis with Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Rodrigo Martinez-Duarte

    2008-12-01

    Full Text Available The following work presents the fluido-dynamic and electromagnetic characterization of an array of 3D electrodes to be used in high throughput and high efficiency Carbon Dielectrophoresis (CarbonDEP applications such as filters, continuous particle enrichment and positioning of particle populations for analysis. CarbonDEP refers to the induction of Dielectrophoresis (DEP by carbon surfaces. The final goal is, through an initial stage of modeling and analysis, to reduce idea-to-prototype time and cost of CarbonDEP devices to be applied in the health care field. Finite Element Analysis (FEA is successfully conducted to model flow velocity and electric fields established by polarized high aspect ratio carbon cylinders, and its planar carbon connecting leads, immersed in a water-based medium. Results demonstrate correlation between a decreasing flow velocity gradient and an increasing electric field gradient toward electrodes’ surfaces which is optimal for selected CarbonDEP applications. Simulation results are experimentally validated in the proposed applications.

  5. Spectral history modeling in the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Bilodid, Yurii

    2014-01-01

    A new method of treating spectral history effects in reactor core calculations was developed and verified in this dissertation. The nature of history effects is a dependence of fuel properties not only on the burnup, but also on the local spectral conditions during burnup. The basic idea of the proposed method is the use of the plutonium-239 concentration as the spectral history indicator. The method was implemented in the reactor dynamics code DYN3D and provides a correction for nodal cross sections according to the local spectral history. A verification of the new method was performed by single-assembly calculations in comparison with results of the lattice code HELIOS. The application of plutonium-based history correction significantly improves the cross section estimation accuracy both for UOX and MOX fuel, with quadratic and hexagonal geometry. The new method was applied to evaluate the influence of history effects on full-core calculation results. Analysis of a PWR equilibrium fuel cycle has shown a significant effect on the axial power distribution during a whole cycle, which causes axial temperature and burnup redistributions. The observed neutron flux redistribution improves neutron economy, so the fuel cycle is longer than in calculations without history corrections. Analyses of hypothetical control rod ejection accidents have shown a minor influence of history effects on the transient course and safety relevant parameters.

  6. Dynamic 3-D computer graphics for designing a diagnostic tool for patients with schizophrenia.

    Science.gov (United States)

    Farkas, Attila; Papathomas, Thomas V; Silverstein, Steven M; Kourtev, Hristiyan; Papayanopoulos, John F

    2016-11-01

    We introduce a novel procedure that uses dynamic 3-D computer graphics as a diagnostic tool for assessing disease severity in schizophrenia patients, based on their reduced influence of top-down cognitive processes in interpreting bottom-up sensory input. Our procedure uses the hollow-mask illusion, in which the concave side of the mask is misperceived as convex, because familiarity with convex faces dominates sensory cues signaling a concave mask. It is known that schizophrenia patients resist this illusion and their resistance increases with illness severity. Our method uses virtual masks rendered with two competing textures: (a) realistic features that enhance the illusion; (b) random-dot visual noise that reduces the illusion. We control the relative weights of the two textures to obtain psychometric functions for controls and patients and assess illness severity. The primary novelty is the use of a rotating mask that is easy to implement on a wide variety of portable devices and avoids the use of elaborate stereoscopic devices that have been used in the past. Thus our method, which can also be used to assess the efficacy of treatments, provides clinicians the advantage to bring the test to the patient's own environment, instead of having to bring patients to the clinic.

  7. Effect of a Material Contrast on a Dynamic Rupture: 3-D

    Science.gov (United States)

    Harris, R. A.; Day, S. M.

    2003-12-01

    We use numerical simulations of spontaneously propagating ruptures to examine the effect of a material contrast on earthquake dynamics. We specifically study the case of a lateral contrast whereby the fault is the boundary between two different rock-types. This scenario was previously studied in two-dimensions by Harris and Day [BSSA, 1997], and Andrews and Ben-Zion [JGR, 1997], in addition to subsequent 2-D studies, but it has not been known if the two-dimensional results are applicable to the real three-dimensional world. The addition of the third dimension implies a transition from pure mode II (i.e., plane-strain) to mixed-mode crack dynamics, which is more complicated since in mode II the shear and normal stresses are coupled whereas in mode III (i.e., anti-plane strain) they are not coupled. We use a slip-weakening fracture criterion and examine the effect on an earthquake rupture of material contrasts of up to 50 percent across the fault zone. We find a surprisingly good agreement between our earlier 2-D results, and our 3-D results for along-strike propagation. We find that the analytical solution presented in Harris and Day [BSSA, 1997] does an excellent job at predicting the bilateral, along-strike rupture velocities for the three-dimensional situation. In contrast, the along-dip propagation behaves much as expected for a purely mode-III rupture, with the rupture velocities up-dip and down-dip showing the expected symmetries.

  8. Two millennia of soil dynamics derived from ancient desert terraces using high resolution 3-D data

    Science.gov (United States)

    Filin, Sagi; Arav, Reuma; Avni, Yoav

    2017-04-01

    Large areas in the arid southern Levant are dotted with ancient terrace-based agriculture systems which were irrigated by runoff harvesting techniques. They were constructed and maintained between the 3rd - 9th centuries AD and abandoned in the 10th century AD. During their 600 years of cultivation, these terraces documented the gradual aggradation of alluvial soils, erosion processes within the drainage basins, as well as flashflood damage. From their abandonment and onwards, they documented 1000 years and more of land degradation and soil erosion processes. Examination of these installations presents an opportunity to study natural and anthropogenic induced changes over almost two millennia. On a global scale, such an analysis is unique as it is rare to find intact manifestations of anthropogenic influences over such time-scales because of landscape dynamics. It is also rare to find a near millennia documentation of soil erosion processes. We study in this paper the aggradation processes within intact agriculture plots in the region surrounding the world heritage Roman-Byzantine ancient city of Avdat, Negev Highlands. We follow the complete cycle of the historical desert agriculture, from the configuration pre-dating the first anthropogenic intervention, through the centuries of cultivation, and up to the present erosion phase, which spans over more than a millennium. We use high resolution 3-D laser scans to document the erosion and the environmental dynamics during these two millennia. The high-resolution data is then utilized to compute siltation rates as well as erosion rates. The long-term measures of soil erosion and land degradation we present here significantly improve our understanding of the mechanism of long-term environmental change acting in arid environments. For sustainable desert inhabitation, the study offers insights into better planning of modern agriculture in similar zones as well as insights on strategies needed to protect such historical

  9. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  10. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  11. DESTINY: A Comprehensive Tool with 3D and Multi-Level Cell Memory Modeling Capability

    Directory of Open Access Journals (Sweden)

    Sparsh Mittal

    2017-09-01

    Full Text Available To enable the design of large capacity memory structures, novel memory technologies such as non-volatile memory (NVM and novel fabrication approaches, e.g., 3D stacking and multi-level cell (MLC design have been explored. The existing modeling tools, however, cover only a few memory technologies, technology nodes and fabrication approaches. We present DESTINY, a tool for modeling 2D/3D memories designed using SRAM, resistive RAM (ReRAM, spin transfer torque RAM (STT-RAM, phase change RAM (PCM and embedded DRAM (eDRAM and 2D memories designed using spin orbit torque RAM (SOT-RAM, domain wall memory (DWM and Flash memory. In addition to single-level cell (SLC designs for all of these memories, DESTINY also supports modeling MLC designs for NVMs. We have extensively validated DESTINY against commercial and research prototypes of these memories. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g., latency, area or energy-delay product for a given memory technology, choosing the suitable memory technology or fabrication method (i.e., 2D v/s 3D for a given optimization target, etc. We believe that DESTINY will boost studies of next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers. The latest source-code of DESTINY is available from the following git repository: https://bitbucket.org/sparshmittal/destinyv2.

  12. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells

    Science.gov (United States)

    Wertheim, Lior; Shapira, Assaf; Amir, Roey J.; Dvir, Tal

    2018-04-01

    In microfluidics-based lab-on-a-chip systems, which are used for investigating the effect of drugs and growth factors on cells, the latter are usually cultured within the device’s channels in two-dimensional, and not in their optimal three-dimensional (3D) microenvironment. Herein, we address this shortfall by designing a microfluidic system, comprised of two layers. The upper layer of the system consists of multiple channels generating a gradient of soluble factors. The lower layer is comprised of multiple wells, each deposited with 3D, nanofibrous scaffold. We first used a mathematical model to characterize the fluid flow within the system. We then show that induced pluripotent stem cells can be seeded within the 3D scaffolds and be exposed to a well-mixed gradient of soluble factors. We believe that utilizing such system may enable in the future to identify new differentiation factors, investigate drug toxicity, and eventually allow to perform analyses on patient-specific tissues, in order to fit the appropriate combination and concentration of drugs.

  13. Fibroblast Cluster Formation on 3D Collagen Matrices Requires Cell Contraction-Dependent Fibronectin Matrix Organization

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2012-01-01

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. PMID:23117111

  14. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization.

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2013-02-15

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin (FN) fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    International Nuclear Information System (INIS)

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E 2 (PGE 2 ) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  16. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chitcholtan, Kenny, E-mail: kenny.chitcholtan@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Asselin, Eric, E-mail: Eric.Asselin@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Parent, Sophie, E-mail: Sophie.Parent@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Sykes, Peter H., E-mail: peter.sykes@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Evans, John J., E-mail: john.evans@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Centre of Neuroendocrinology and The MacDiarmid Institute of Advanced Materials and Nanotechnology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  17. Computation of 3D neutron fluxes in one pin hexagonal cell

    International Nuclear Information System (INIS)

    Prabha, Hem; Marleau, Guy

    2013-01-01

    Highlights: ► Computations of 3D neutron fluxes in one pin hexagonal cell is performed by Carlvik’s method of collision probability. ► Carlvik’s method requires computation of track lengths in the geometry. ► Equations are developed to compute tracks, in 2D and 3D, in hexagons and are implemented in a program HX7. ► The program HX7 is implemented in NXT module of the code DRAGON, where tracks in pins are computed. ► The tracks are plotted and fluxes are compared with the EXCELT module of the code DRAGON. - Abstract: In this paper we are presenting the method of computation of three dimensional (3D) neutron fluxes in one pin hexagonal cell. Carlvik’s collision probability method of solving neutron transport equation for computing fluxes has been used here. This method can consider exact geometrical details of the given geometry. While using this method, track length computations are required to be done. We have described here the method of computing tracks in one 3D hexagon. A program HX7 has been developed for this purpose. This program has been implemented in the NXT module of the code DRAGON, where tracks in the pins are computed. For computing tracks in 3D, first we use the tracks computed in the two dimensions (2D) and then we project them in the third dimension. We have developed equations for this purpose. In both the regions, fuel pin as well as in the moderator surrounding the pin the fluxes are assumed to be uniform. A uniform source is assumed in the moderator region. Reflecting boundary conditions are applied on all the sides as well as on the top and bottom surfaces. One group 2D and 3D fluxes are compared with the respective results obtained by the EXCELT module of DRAGON. To check the computations, tracks are plotted and errors in the computations are obtained. It is observed by using both the modules EXCELT and NXT that the fluxes in the pins converge faster and in the moderator region fluxes converge very slowly

  18. Flow-through 3D biofuel cell anode for NAD{sup +}-dependent enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Rosalba A.; Lau, Carolin; Garcia, Kristen E. [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States); Atanassov, Plamen, E-mail: plamen@unm.ed [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States)

    2011-02-01

    NAD{sup +}-dependent enzymes require the presence of catalysts for cofactor regeneration in order to be employed in enzymatic biofuel cells. Poly-(methylene green) catalysts have proven to help the oxidation reaction of NADH allowing for the use of such enzymes in electrocatalytic oxidation reactions. In this paper we present the development of 3D anode based on NAD{sup +}-dependent malate dehydrogenase. The 3D material chosen was reticulated vitreous carbon (RVC) which was modified with poly-(MG) for NADH oxidation and it also accommodated the porous immobilization matrix for MDH consisting of MWCNTs embedded in chitosan; allowing for mass transport of the substrate to the electrode. Scanning electron microscopy was used in order to characterize the poly-(MG)-modified RVC, and electrochemical evaluation of the anode was performed.

  19. Flow-through 3D biofuel cell anode for NAD+-dependent enzymes

    International Nuclear Information System (INIS)

    Rincon, Rosalba A.; Lau, Carolin; Garcia, Kristen E.; Atanassov, Plamen

    2011-01-01

    NAD + -dependent enzymes require the presence of catalysts for cofactor regeneration in order to be employed in enzymatic biofuel cells. Poly-(methylene green) catalysts have proven to help the oxidation reaction of NADH allowing for the use of such enzymes in electrocatalytic oxidation reactions. In this paper we present the development of 3D anode based on NAD + -dependent malate dehydrogenase. The 3D material chosen was reticulated vitreous carbon (RVC) which was modified with poly-(MG) for NADH oxidation and it also accommodated the porous immobilization matrix for MDH consisting of MWCNTs embedded in chitosan; allowing for mass transport of the substrate to the electrode. Scanning electron microscopy was used in order to characterize the poly-(MG)-modified RVC, and electrochemical evaluation of the anode was performed.

  20. 3D X-Ray Nanotomography of Cells Grown on Electrospun Scaffolds.

    Science.gov (United States)

    Bradley, Robert S; Robinson, Ian K; Yusuf, Mohammed

    2017-02-01

    Here, it is demonstrated that X-ray nanotomography with Zernike phase contrast can be used for 3D imaging of cells grown on electrospun polymer scaffolds. The scaffold fibers and cells are simultaneously imaged, enabling the influence of scaffold architecture on cell location and morphology to be studied. The high resolution enables subcellular details to be revealed. The X-ray imaging conditions were optimized to reduce scan times, making it feasible to scan multiple regions of interest in relatively large samples. An image processing procedure is presented which enables scaffold characteristics and cell location to be quantified. The procedure is demonstrated by comparing the ingrowth of cells after culture for 3 and 6 days. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif

    2017-05-04

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication. In this paper, we present low-cost 3-D nano-spikes-based ECL (NSP-ECL) chips for efficient cell lysis at low power consumption. Highly ordered High-Aspect-Ratio (HAR). NSP arrays with controllable dimensions were fabricated on commercial aluminum foils through scalable and electrochemical anodization and etching. The optimized multiple pulse protocols with minimized undesirable electrochemical reactions (gas and bubble generation), common on micro parallel-plate ECL chips. Due to the scalability of fabrication process, 3-D NSPs were fabricated on small chips as well as on 4-in wafers. Phase diagram was constructed by defining critical electric field to induce cell lysis and for cell lysis saturation Esat to define non-ECL and ECL regions for different pulse parameters. NSP-ECL chips have achieved excellent cell lysis efficiencies ηlysis (ca 100%) at low applied voltages (2 V), 2~3 orders of magnitude lower than that of conventional systems. The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 3~9 orders of magnitude lower as compared with the other methods (5J/mL-540kJ/mL). [2016-0305

  2. 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells.

    Science.gov (United States)

    Feng, Xingmei; Lu, Xiaohui; Huang, Dan; Xing, Jing; Feng, Guijuan; Jin, Guohua; Yi, Xin; Li, Liren; Lu, Yuanzhou; Nie, Dekang; Chen, Xiang; Zhang, Lei; Gu, Zhifeng; Zhang, Xinhua

    2014-08-01

    A key aspect of cell replacement therapy in brain injury treatment is construction of a suitable biomaterial scaffold that can effectively carry and transport the therapeutic cells to the target area. In the present study, we created small 3D porous chitosan scaffolds through freeze-drying, and showed that these can support and enhance the differentiation of dental pulp stem cells (DPSCs) to nerve cells in vitro. The DPSCs were collected from the dental pulp of adult human third molars. At a swelling rate of ~84.33 ± 10.92 %, the scaffold displayed high porosity and interconnectivity of pores, as revealed by SEM. Cell counting kit-8 assay established the biocompatibility of the chitosan scaffold, supporting the growth and survival of DPSCs. The successful neural differentiation of DPSCs was assayed by RT-PCR, western blotting, and immunofluorescence. We found that the scaffold-attached DPSCs showed high expression of Nestin that decreased sharply following induction of differentiation. Exposure to the differentiation media also increased the expression of neural molecular markers Microtubule-associated protein 2, glial fibrillary acidic protein, and 2',3'-cyclic nucleotide phosphodiesterase. This study demonstrates that the granular 3D chitosan scaffolds are non-cytotoxic, biocompatible, and provide a conducive and favorable micro-environment for attachment, survival, and neural differentiation of DPSCs. These scaffolds have enormous potential to facilitate future advances in treatment of brain injury.

  3. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting

    Directory of Open Access Journals (Sweden)

    Christoph eSchmitz

    2014-05-01

    Full Text Available Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D cell counting approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38–99% and false-positive rates from 3.6–82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections.

  4. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    Science.gov (United States)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  5. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time

    Directory of Open Access Journals (Sweden)

    Baek N

    2016-11-01

    Full Text Available NamHuk Baek,1,* Ok Won Seo,1,* MinSung Kim,1 John Hulme,2 Seong Soo A An2 1Department of R & D, NanoEntek Inc., Seoul, Republic of Korea; 2Department of BioNano Technology Gachon University, Gyeonggi-do, Republic of Korea *These authors contributed equally to this work Abstract: Recently, increasing numbers of cell culture experiments with 3D spheroids presented better correlating results in vivo than traditional 2D cell culture systems. 3D spheroids could offer a simple and highly reproducible model that would exhibit many characteristics of natural tissue, such as the production of extracellular matrix. In this paper numerous cell lines were screened and selected depending on their ability to form and maintain a spherical shape. The effects of increasing concentrations of doxorubicin (DXR on the integrity and viability of the selected spheroids were then measured at regular intervals and in real-time. In total 12 cell lines, adenocarcinomic alveolar basal epithelial (A549, muscle (C2C12, prostate (DU145, testis (F9, pituitary epithelial-like (GH3, cervical cancer (HeLa, HeLa contaminant (HEp2, embryo (NIH3T3, embryo (PA317, neuroblastoma (SH-SY5Y, osteosarcoma U2OS, and embryonic kidney cells (293T, were screened. Out of the 12, 8 cell lines, NIH3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U2OS formed regular spheroids and the effects of DXR on these structures were measured at regular intervals. Finally, 5 cell lines, A549, HeLa, SH-SY5Y, U2OS, and 293T, were selected for real-time monitoring and the effects of DXR treatment on their behavior were continuously recorded for 5 days. A potential correlation regarding the effects of DXR on spheroid viability and ATP production was measured on days 1, 3, and 5. Cytotoxicity of DXR seemed to occur after endocytosis, since the cellular activities and ATP productions were still viable after 1 day of the treatment in all spheroids, except SH-SY5Y. Both cellular activity and ATP production were

  6. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    Science.gov (United States)

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  7. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D.

    Science.gov (United States)

    Bäcker, Anne; Erhardt, Olga; Wietbrock, Lukas; Schel, Natalia; Göppert, Bettina; Dirschka, Marian; Abaffy, Paul; Sollich, Thomas; Cecilia, Angelica; Gruhl, Friederike J

    2017-02-01

    In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze-drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers. © 2016 Wiley Periodicals, Inc.

  8. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    Science.gov (United States)

    Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula

    2016-08-01

    Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application. © 2015 Society for Laboratory Automation and Screening.

  9. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells.

    Science.gov (United States)

    Kucukgul, Can; Ozler, S Burce; Inci, Ilyas; Karakas, Ezgi; Irmak, Ster; Gozuacik, Devrim; Taralp, Alpay; Koc, Bahattin

    2015-04-01

    Cardiovascular diseases are the leading cause of deaths throughout the world. Vascular diseases are mostly treated with autografts and blood vessel transplantations. However, traditional grafting methods have several problems including lack of suitable harvest sites, additional surgical costs for harvesting procedure, pain, infection, lack of donors, and even no substitutes at all. Recently, tissue engineering and regenerative medicine approaches are used to regenerate damaged or diseased tissues. Most of the tissue engineering investigations have been based on the cell seeding into scaffolds by providing a suitable environment for cell attachment, proliferation, and differentiation. Because of the challenges such as difficulties in seeding cells spatially, rejection, and inflammation of biomaterials used, the recent tissue engineering studies focus on scaffold-free techniques. In this paper, the development of novel computer aided algorithms and methods are developed for 3D bioprinting of scaffold-free biomimetic macrovascular structures. Computer model mimicking a real human aorta is generated using imaging techniques and the proposed computational algorithms. An optimized three-dimensional bioprinting path planning are developed with the proposed self-supported model. Mouse embryonic fibroblast (MEF) cell aggregates and support structures (hydrogels) are 3D bioprinted layer-by-layer according to the proposed self-supported method to form an aortic tissue construct. © 2014 Wiley Periodicals, Inc.

  10. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation.

    Science.gov (United States)

    Du, Vicard; Luciani, Nathalie; Richard, Sophie; Mary, Gaëtan; Gay, Cyprien; Mazuel, François; Reffay, Myriam; Menasché, Philippe; Agbulut, Onnik; Wilhelm, Claire

    2017-09-12

    The ability to create a 3D tissue structure from individual cells and then to stimulate it at will is a major goal for both the biophysics and regenerative medicine communities. Here we show an integrated set of magnetic techniques that meet this challenge using embryonic stem cells (ESCs). We assessed the impact of magnetic nanoparticles internalization on ESCs viability, proliferation, pluripotency and differentiation profiles. We developed magnetic attractors capable of aggregating the cells remotely into a 3D embryoid body. This magnetic approach to embryoid body formation has no discernible impact on ESC differentiation pathways, as compared to the hanging drop method. It is also the base of the final magnetic device, composed of opposing magnetic attractors in order to form embryoid bodies in situ, then stretch them, and mechanically stimulate them at will. These stretched and cyclic purely mechanical stimulations were sufficient to drive ESCs differentiation towards the mesodermal cardiac pathway.The development of embryoid bodies that are responsive to external stimuli is of great interest in tissue engineering. Here, the authors culture embryonic stem cells with magnetic nanoparticles and show that the presence of magnetic fields could affect their aggregation and differentiation.

  11. 3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores.

    Science.gov (United States)

    Jiang, Yunyao; Li, Yaning

    2018-02-05

    By combining the two basic deformation mechanisms for auxetic open-cell metamaterials, re-entrant angle and chirality, new hybrid chiral mechanical metamaterials are designed and fabricated via a multi-material 3D printer. Results from mechanical experiments on the 3D printed prototypes and systematic Finite Element (FE) simulations show that the new designs can achieve subsequential cell-opening mechanism under a very large range of overall strains (2.91%-52.6%). Also, the effective stiffness, the Poisson's ratio and the cell-opening rate of the new designs can be tuned in a wide range by tailoring the two independent geometric parameters: the cell size ratio [Formula: see text], and re-entrant angle θ. As an example application, a sequential particle release mechanism of the new designs was also systematically explored. This mechanism has potential application in drug delivery. The present new design concepts can be used to develop new multi-functional smart composites, sensors and/or actuators which are responsive to external load and/or environmental conditions.

  12. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    Science.gov (United States)

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. How the Venetian Blind Percept Emergesfrom the Laminar Cortical Dynamics of 3D Vision

    OpenAIRE

    Stephen eGrossberg

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model shows how identified neurons that interact in hierarchically organized laminar circuits of the visual cortex can simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in s...

  14. Highly defined 3D printed chitosan scaffolds featuring improved cell growth.

    Science.gov (United States)

    Elviri, Lisa; Foresti, Ruben; Bergonzi, Carlo; Zimetti, Francesca; Marchi, Cinzia; Bianchera, Annalisa; Bernini, Franco; Silvestri, Marco; Bettini, Ruggero

    2017-07-12

    The augmented demand for medical devices devoted to tissue regeneration and possessing a controlled micro-architecture means there is a need for industrial scale-up in the production of hydrogels. A new 3D printing technique was applied to the automation of a freeze-gelation method for the preparation of chitosan scaffolds with controlled porosity. For this aim, a dedicated 3D printer was built in-house: a preliminary effort has been necessary to explore the printing parameter space to optimize the printing results in terms of geometry, tolerances and mechanical properties of the product. Analysed parameters included viscosity of the starting chitosan solution, which was measured with a Brookfield viscometer, and temperature of deposition, which was determined by filming the process with a cryocooled sensor thermal camera. Optimized parameters were applied to the production of scaffolds from solutions of chitosan alone or with the addition of raffinose as a viscosity modifier. Resulting hydrogels were characterized in terms of morphology and porosity. In vitro cell culture studies comparing 3D printed scaffolds with their homologous produced by solution casting evidenced an improvement in biocompatibility deriving from the production technique as well as from the solid state modification of chitosan stemming from the addition of the viscosity modifier.

  15. Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells.

    Science.gov (United States)

    Li, Wen; Zhu, Bofan; Strakova, Zuzana; Wang, Rong

    2014-08-08

    It has been well established that an aligned matrix provides structural and signaling cues to guide cell polarization and cell fate decision. However, the modulation role of cells in matrix remodeling and the feedforward effect on stem cell differentiation have not been studied extensively. In this study, we report on the concerted changes of human decidua parietalis placental stem cells (hdpPSCs) and the highly ordered collagen fibril matrix in response to cell-matrix interaction. With high-resolution imaging, we found the hdpPSCs interacted with the matrix by deforming the cell shape, harvesting the nearby collagen fibrils, and reorganizing the fibrils around the cell body to transform a 2D matrix to a localized 3D matrix. Such a unique 3D matrix prompted high expression of β-1 integrin around the cell body that mediates and facilitates the stem cell differentiation toward neural cells. The study offers insights into the coordinated, dynamic changes at the cell-matrix interface and elucidates cell modulation of its matrix to establish structural and biochemical cues for effective cell growth and differentiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. On the unsteady wake dynamics behind a circular disk using fully 3D proper orthogonal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianzhi; Liu, Minghou; Gu, Hailin; Yao, Mengyun [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wu, Guang, E-mail: mhliu@ustc.edu.cn [Technical Services Engineer, ANSYS, Inc (United States)

    2017-02-15

    In the present work, the wakes behind a circular disk at various transitional regimes are numerically explored using fully 3D proper orthogonal decomposition (POD). The Reynolds numbers considered in this study (Re = 152, 170, 300 and 3000) cover four transitional states, i.e. the reflectional-symmetry-breaking (RSB) mode, the standing wave (SW) mode, a weakly chaotic state, and a higher-Reynolds-number state. Through analysis of the spatial POD modes at different wake states, it is found that a planar-symmetric vortex shedding mode characterized by the first mode pair is persistent in all the states. When the wake develops into a weakly chaotic state, a new vortex shedding mode characterized by the second mode pair begins to appear and completely forms at the higher-Reynolds-number state of Re = 3000, i.e. planar-symmetry-breaking vortex shedding mode. On the other hand, the coherent structure at Re = 3000 extracted from the first two POD modes shows a good resemblance to the wake configuration in the SW mode, while the coherent structure reconstructed from the first four POD modes shows a good resemblance to the wake configuration in the RSB mode. The present results indicate that the dynamics or flow instabilities observed at transitional RSB and SW modes are still preserved in a higher-Reynolds-number regime. (paper)

  17. Foot roll-over evaluation based on 3D dynamic foot scan.

    Science.gov (United States)

    Samson, William; Van Hamme, Angèle; Sanchez, Stéphane; Chèze, Laurence; Van Sint Jan, Serge; Feipel, Véronique

    2014-01-01

    Foot roll-over is commonly analyzed to evaluate gait pathologies. The current study utilized a dynamic foot scanner (DFS) to analyze foot roll-over. The right feet of ten healthy subjects were assessed during gait trials with a DFS system integrated into a walkway. A foot sole picture was computed by vertically projecting points from the 3D foot shape which were lower than a threshold height of 15 mm. A 'height' value of these projected points was determined; corresponding to the initial vertical coordinates prior to projection. Similar to pedobarographic analysis, the foot sole picture was segmented into anatomical regions of interest (ROIs) to process mean height (average of height data by ROI) and projected surface (area of the projected foot sole by ROI). Results showed that these variables evolved differently to plantar pressure data previously reported in the literature, mainly due to the specificity of each physical quantity (millimeters vs Pascals). Compared to plantar pressure data arising from surface contact by the foot, the current method takes into account the whole plantar aspect of the foot, including the parts that do not make contact with the support surface. The current approach using height data could contribute to a better understanding of specific aspects of foot motion during walking, such as plantar arch height and the windlass mechanism. Results of this study show the underlying method is reliable. Further investigation is required to validate the DFS measurements within a clinical context, prior to implementation into clinical practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows

    Science.gov (United States)

    Veerapaneni, Shravan K.; Gueyffier, Denis; Biros, George; Zorin, Denis

    2009-10-01

    We extend [Shravan K. Veerapaneni, Denis Gueyffier, Denis Zorin, George Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics 228(7) (2009) 2334-2353] to the case of three-dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous flows. Although the main components of the algorithm are similar in spirit to the 2D case—spectral approximation in space, semi-implicit time-stepping scheme—the main differences are that the bending and viscous force require new analysis, the linearization for the semi-implicit schemes must be rederived, a fully implicit scheme must be used for the toroidal topology to eliminate a CFL-type restriction and a novel numerical scheme for the evaluation of the 3D Stokes single layer potential on an axisymmetric surface is necessary to speed up the calculations. By introducing these novel components, we obtain a time-scheme that experimentally is unconditionally stable, has low cost per time step, and is third-order accurate in time. We present numerical results to analyze the cost and convergence rates of the scheme. To verify the solver, we compare it to a constrained variational approach to compute equilibrium shapes that does not involve interactions with a viscous fluid. To illustrate the applicability of method, we consider a few vesicle-flow interaction problems: the sedimentation of a vesicle, interactions of one and three vesicles with a background Poiseuille flow.

  19. Nonlinear complexity behaviors of agent-based 3D Potts financial dynamics with random environments

    Science.gov (United States)

    Xing, Yani; Wang, Jun

    2018-02-01

    A new microscopic 3D Potts interaction financial price model is established in this work, to investigate the nonlinear complexity behaviors of stock markets. 3D Potts model, which extends the 2D Potts model to three-dimensional, is a cubic lattice model to explain the interaction behavior among the agents. In order to explore the complexity of real financial markets and the 3D Potts financial model, a new random coarse-grained Lempel-Ziv complexity is proposed to certain series, such as the price returns, the price volatilities, and the random time d-returns. Then the composite multiscale entropy (CMSE) method is applied to the intrinsic mode functions (IMFs) and the corresponding shuffled data to study the complexity behaviors. The empirical results indicate that the 3D financial model is feasible.

  20. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    Science.gov (United States)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  1. Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix.

    Science.gov (United States)

    Wang, Xuanzhi; Dai, Xingliang; Zhang, Xinzhi; Li, Xinda; Xu, Tao; Lan, Qing

    2018-04-15

    Cancer stem cells (CSCs), being tumor-initiating with self-renewal capacity and heterogeneity, are most likely the cause of tumor resistance, reoccurrence and metastasis. To further investigate the role of CSCs in tumor biology, there is a need to develop an effective culture system to grow, maintain and enrich CSCs. Three-dimensional (3D) cell culture model has been widely used in tumor research and drug screening. Recently, researchers have begun to utilize 3D models to culture cancer cells for CSCs enrichment. In this study, glioma cell line was cultured with 3D porous chitosan (CS) scaffolds or chitosan-hyaluronic acid (CS-HA) scaffolds to explore the possibility of glioma stem cells (GSCs)-like cells enrichment, to study the morphology, gene expression, and in vivo tumorigenicity of 3D scaffolds cells, and to compare results to 2D controls. Results showed that glioma cells on both CS and CS-HA scaffolds could form tumor cell spheroids and increased the expression of GSCs biomarkers compared to conventional 2D monolayers. Furthermore, cells in CS-HA scaffolds had higher expression levels of epithelial-to-mesenchymal transition (EMT)-related gene. Specifically, the in vivo tumorigenicity capability of CS-HA scaffold cultured cells was greater than 2D cells or CS scaffold cultured cells. It is indicated that the chemical composition of scaffold plays an important role in the enrichment of CSCs. Our results suggest that CS-HA scaffolds have a better capability to enrich GSCs-like cells and can serve as a simple and effective way to cultivate and enrich CSCs in vitro to support the study of CSCs biology and development of novel anti-cancer therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision.

    Science.gov (United States)

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon

  3. AMC-Bio-Artificial Liver culturing enhances mitochondrial biogenesis in human liver cell lines: The role of oxygen, medium perfusion and 3D configuration

    NARCIS (Netherlands)

    Adam, Aziza A. A.; van Wenum, Martien; van der Mark, Vincent A.; Jongejan, Aldo; Moerland, Perry D.; Houtkooper, Riekelt H.; Wanders, Ronald J. A.; Oude Elferink, Ronald P.; Chamuleau, Robert A. F. M.; Hoekstra, Ruurdtje

    2017-01-01

    Human liver cell lines, like HepaRG and C3A, acquire higher functionality when cultured in the AMC-Bio-Artificial Liver (AMC-BAL). The three main differences between BAL and monolayer culture are the oxygenation (40% vs 20%O2), dynamic vs absent medium perfusion and 3D vs 2D configuration. Here, we

  4. Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Andersen, Thomas Rieks; Pedersen, Emil Bøje Lind

    2015-01-01

    one after the other by wet processing leaves plenty of room for error and the process development calls for an analytical technique that enables 3D reconstruction of the layer stack with the possibility to probe thickness, density, and chemistry of the individual layers in the stack. The use......The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate results in a fully scalable process but also requires accurate control during layer formation to succeed. The serial process where the layers are added...

  5. In-cell maintenance by manipulator arm with 3D workspace information recreated by laser rangefinder

    International Nuclear Information System (INIS)

    Kitamura, Akihiro; Nakai, Koji; Namekawa, Takashi; Watahiki, Masatoshi

    2011-01-01

    Highlights: → We developed a remote control system for maintenance of in-cell type fuel fabrication equipment. → The system display recreated three-dimensional information of the workspace from data obtained by laser rangefinder and conventional cameras. It has allowed us to operate a manipulator arm remotely with several control modes. → We implemented remote handling experiments using mock up equipment. Performance was compared for remote operation conducted using several different display and operation modes. → It was observed that integration of 3D information from the laser rangefinder reduced operation time and reinforced visual information during remote operation. - Abstract: We developed a remote control system for maintenance of in-cell type fuel fabrication equipment. The system display recreated three-dimensional information of the workspace from data obtained by laser rangefinder and conventional cameras. It has allowed us to operate a manipulator arm remotely with several control modes. In order to evaluate the effectiveness and usefulness of developed system, we implemented remote handling experiments using mock up equipment. Performance was compared for remote operation conducted using several different display and operation modes. We confirmed that the system is able to maintain in-cell fuel fabrication equipment in each display and operation mode. Times required to complete the remote operations were collected and compared in each mode. It was observed that integration of 3D information from the laser rangefinder reduced operation time and reinforced visual information during remote operation.

  6. Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Ho, Beatrice Xuan; Pek, Nicole Min Qian; Soh, Boon-Seng

    2018-03-21

    The rising interest in human induced pluripotent stem cell (hiPSC)-derived organoid culture has stemmed from the manipulation of various combinations of directed multi-lineage differentiation and morphogenetic processes that mimic organogenesis. Organoids are three-dimensional (3D) structures that are comprised of multiple cell types, self-organized to recapitulate embryonic and tissue development in vitro. This model has been shown to be superior to conventional two-dimensional (2D) cell culture methods in mirroring functionality, architecture, and geometric features of tissues seen in vivo. This review serves to highlight recent advances in the 3D organoid technology for use in modeling complex hereditary diseases, cancer, host-microbe interactions, and possible use in translational and personalized medicine where organoid cultures were used to uncover diagnostic biomarkers for early disease detection via high throughput pharmaceutical screening. In addition, this review also aims to discuss the advantages and shortcomings of utilizing organoids in disease modeling. In summary, studying human diseases using hiPSC-derived organoids may better illustrate the processes involved due to similarities in the architecture and microenvironment present in an organoid, which also allows drug responses to be properly recapitulated in vitro.

  7. Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.

    Science.gov (United States)

    Antonica, Francesco; Kasprzyk, Dominika Figini; Schiavo, Andrea Alex; Romitti, Mírian; Costagliola, Sabine

    2017-01-01

    During the last decade three-dimensional (3D) cultures of pluripotent stem cells have been intensively used to understand morphogenesis and molecular signaling important for the embryonic development of many tissues. In addition, pluripotent stem cells have been shown to be a valid tool for the in vitro modeling of several congenital or chronic human diseases, opening new possibilities to study their physiopathology without using animal models. Even more interestingly, 3D culture has proved to be a powerful and versatile tool to successfully generate functional tissues ex vivo. Using similar approaches, we here describe a protocol for the generation of functional thyroid tissue using mouse embryonic stem cells and give all the details and references for its characterization and analysis both in vitro and in vivo. This model is a valid approach to study the expression and the function of genes involved in the correct morphogenesis of thyroid gland, to elucidate the mechanisms of production and secretion of thyroid hormones and to test anti-thyroid drugs.

  8. One-Year stable perovskite solar cells by 2D/3D interface engineering

    Science.gov (United States)

    Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; de Angelis, F.; Graetzel, M.; Nazeeruddin, Mohammad Khaja

    2017-06-01

    Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells.

  9. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.

  10. Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat

    Science.gov (United States)

    2018-01-01

    Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat’s inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal’s instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task. PMID:29633711

  11. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells

    International Nuclear Information System (INIS)

    Gruene, M; Deiwick, A; Koch, L; Schlie, S; Unger, C; Chichkov, B N; Pflaum, M; Wilhelmi, M; Haverich, A

    2011-01-01

    Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation ability nor the differentiation behaviour of the stem cells was affected by the LaBP procedure. Furthermore, the 3D grafts were differentiated down the adipogenic lineage pathway for 10 days. We verify by quantitative assessments of adipogenic markers that the 3D grafts resemble cell lineages present in natural adipose tissue. Additionally, we provide the proof that even pre-differentiated hASCs could be utilized for the generation of 3D tissue grafts. These results indicate that the biofabrication of living grafts resembling their complex native origin is within reach.

  12. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gruene, M; Deiwick, A; Koch, L; Schlie, S; Unger, C; Chichkov, B N [Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: m.gruene@lzh.de [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)

    2011-03-15

    Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation ability nor the differentiation behaviour of the stem cells was affected by the LaBP procedure. Furthermore, the 3D grafts were differentiated down the adipogenic lineage pathway for 10 days. We verify by quantitative assessments of adipogenic markers that the 3D grafts resemble cell lineages present in natural adipose tissue. Additionally, we provide the proof that even pre-differentiated hASCs could be utilized for the generation of 3D tissue grafts. These results indicate that the biofabrication of living grafts resembling their complex native origin is within reach.

  13. AC electric field induced dipole-based on-chip 3D cell rotation.

    Science.gov (United States)

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-07

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  14. Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness.

    Science.gov (United States)

    Soman, Pranav; Kelber, Jonathan A; Lee, Jin Woo; Wright, Tracy N; Vecchio, Kenneth S; Klemke, Richard L; Chen, Shaochen

    2012-10-01

    Our current understanding of 3-dimensional (3D) cell migration is primarily based on results from fibrous scaffolds with randomly organized internal architecture. Manipulations that change the stiffness of these 3D scaffolds often alter other matrix parameters that can modulate cell motility independently or synergistically, making observations less predictive of how cells behave when migrating in 3D. In order to decouple microstructural influences and stiffness effects, we have designed and fabricated 3D polyethylene glycol (PEG) scaffolds that permit orthogonal tuning of both elastic moduli and microstructure. Scaffolds with log-pile architectures were used to compare the 3D migration properties of normal breast epithelial cells (HMLE) and Twist-transformed cells (HMLET). Our results indicate that the nature of cell migration is significantly impacted by the ability of cells to migrate in the third dimension. 2D ECM-coated PEG substrates revealed no statistically significant difference in cell migration between HMLE and HMLET cells among substrates of different stiffness. However, when cells were allowed to move along the third dimension, substantial differences were observed for cell displacement, velocity and path straightness parameters. Furthermore, these differences were sensitive to both substrate stiffness and the presence of the Twist oncogene. Importantly, these 3D modes of migration provide insight into the potential for oncogene-transformed cells to migrate within and colonize tissues of varying stiffness. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. How the Venetian Blind Percept Emergesfrom the Laminar Cortical Dynamics of 3D Vision

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2014-08-01

    Full Text Available The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model shows how identified neurons that interact in hierarchically organized laminar circuits of the visual cortex can simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. The model describes how monocular and binocular oriented filtering interacts with later stages of 3D boundary formation and surface filling-in in the lateral geniculate nucleus (LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes enables computationally complementary boundary and surface formation properties to generate a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity

  16. Role of differential physical properties in emergent behavior of 3D cell co-cultures

    Science.gov (United States)

    Kolbman, Dan; Das, Moumita

    2015-03-01

    The biophysics of binary cell populations is of great interest in many biological processes, whether the formation of embryos or the initiation of tumors. During these processes, cells are surrounded by other cell types with different physical properties, often with important consequences. For example, recent experiments on a co-culture of breast cancer cells and healthy breast epithelial cells suggest that the mechanical mismatch between the two cell types may contribute to enhanced migration of the cancer cells. Here we explore how the differential physical properties of different cell types may influence cell-cell interaction, aggregation, and migration. To this end, we study a proof of concept model- a three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as elastic stiffness, contractility, and particle-particle adhesion, using Langevin Dynamics simulations. Our results may provide insights into emergent behavior such as segregation and differential migration in cell co-cultures in three dimensions.

  17. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation.

    Science.gov (United States)

    Reid, John A; Mollica, Peter A; Johnson, Garett D; Ogle, Roy C; Bruno, Robert D; Sachs, Patrick C

    2016-06-07

    The precision and repeatability offered by computer-aided design and computer-numerically controlled techniques in biofabrication processes is quickly becoming an industry standard. However, many hurdles still exist before these techniques can be used in research laboratories for cellular and molecular biology applications. Extrusion-based bioprinting systems have been characterized by high development costs, injector clogging, difficulty achieving small cell number deposits, decreased cell viability, and altered cell function post-printing. To circumvent the high-price barrier to entry of conventional bioprinters, we designed and 3D printed components for the adaptation of an inexpensive 'off-the-shelf' commercially available 3D printer. We also demonstrate via goal based computer simulations that the needle geometries of conventional commercially standardized, 'luer-lock' syringe-needle systems cause many of the issues plaguing conventional bioprinters. To address these performance limitations we optimized flow within several microneedle geometries, which revealed a short tapered injector design with minimal cylindrical needle length was ideal to minimize cell strain and accretion. We then experimentally quantified these geometries using pulled glass microcapillary pipettes and our modified, low-cost 3D printer. This systems performance validated our models exhibiting: reduced clogging, single cell print resolution, and maintenance of cell viability without the use of a sacrificial vehicle. Using this system we show the successful printing of human induced pluripotent stem cells (hiPSCs) into Geltrex and note their retention of a pluripotent state 7 d post printing. We also show embryoid body differentiation of hiPSC by injection into differentiation conducive environments, wherein we observed continuous growth, emergence of various evaginations, and post-printing gene expression indicative of the presence of all three germ layers. These data demonstrate an

  18. Solar Potential Analysis and Integration of the Time-Dependent Simulation Results for Semantic 3d City Models Using Dynamizers

    Science.gov (United States)

    Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.

    2017-10-01

    Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.

  19. 1D + 3D two-phase flow numerical model of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Ferreira, Rui B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R.

    2017-01-01

    Highlights: •A 1D + 3D model of a PEM fuel cell is described and experimentally validated. •VOF method tracks the two-phase flow and electrochemical reactions are considered. •Water dynamics inside a serpentine channel is analyzed for different voltages. •Water content in different regions of channel is quantified. •Important issues on coupling of the VOF model with electrochemical reactions are addressed. -- Abstract: In this work, a numerical model of a proton exchange membrane (PEM) fuel cell is presented. The volume of fluid (VOF) method is employed to simulate the air-water two-phase flow in the cathode gas channel, at the same time that the cell electrochemical performance is predicted. The model is validated against an experimental polarization curve and through the visualization of water distribution inside a transparent fuel cell. The water dynamics inside a serpentine gas channel is numerically analyzed under different operating voltages. Moreover, water content in different regions of the channel is quantified. Current density and water generation rate spatial distributions are also displayed and it is shown how they affect the process of water emergence into the gas channel. Important issues on the simulation of the PEM fuel cells two-phase flow are addressed, especially concerning the coupling of the VOF technique with electrochemical reactions. Both the model and the numerical results aim to contribute to a better understanding of the two-phase flow phenomenon that occurs in these devices.

  20. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    Science.gov (United States)

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. © The Author(s) 2016.

  1. Has 3-D conformal radiotherapy (3D CRT) improved the local tumour control for stage I non-small cell lung cancer?

    International Nuclear Information System (INIS)

    Lagerwaard, Frank J.; Senan, Suresh; Meerbeeck, Jan P. van; Graveland, Wilfried J.

    2002-01-01

    Aims and background: The high local failure rates observed after radiotherapy in stage I non-small cell lung cancer (NSCLC) may be improved by the use of 3-dimensional conformal radiotherapy (3D CRT). Materials and methods: The case-records of 113 patients who were treated with curative 3D CRT between 1991 and 1999 were analysed. No elective nodal irradiation was performed, and doses of 60 Gy or more, in once-daily fractions of between 2 and 3 Gy, were prescribed. Results: The median actuarial survival of patients was 20 months, with 1-, 3- and 5-year survival of 71, 25 and 12%, respectively. Local disease progression was the cause of death in 30% of patients, and 22% patients died from distant metastases. Grade 2-3 acute radiation pneumonitis (SWOG) was observed in 6.2% of patients. The median actuarial local progression-free survival (LPFS) was 27 months, with 85 and 43% of patients free from local progression at 1 and 3 years, respectively. Endobronchial tumour extension significantly influenced LPFS, both on univariate (P=0.023) and multivariate analysis (P=0.023). The median actuarial cause-specific survival (CSS) was 19 months, and the respective 1- and 3-year rates were 72 and 30%. Multivariate analysis showed T2 classification (P=0.017) and the presence of endobronchial tumour extension (P=0.029) to be adverse prognostic factors for CSS. On multivariate analysis, T-stage significantly correlated with distant failure (P=0.005). Conclusions: Local failure rates remain substantial despite the use of 3D CRT for stage I NSCLC. Additional improvements in local control can come about with the use of radiation dose escalation and approaches to address the problem of tumour mobility

  2. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  3. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models?

    Directory of Open Access Journals (Sweden)

    Gibrat Jean-François

    2008-01-01

    Full Text Available Abstract Background Recent approaches for predicting the three-dimensional (3D structure of proteins such as de novo or fold recognition methods mostly rely on simplified energy potential functions and a reduced representation of the polypeptide chain. These simplifications facilitate the exploration of the protein conformational space but do not permit to capture entirely the subtle relationship that exists between the amino acid sequence and its native structure. It has been proposed that physics-based energy functions together with techniques for sampling the conformational space, e.g., Monte Carlo or molecular dynamics (MD simulations, are better suited to the task of modelling proteins at higher resolutions than those of models obtained with the former type of methods. In this study we monitor different protein structural properties along MD trajectories to discriminate correct from erroneous models. These models are based on the sequence-structure alignments provided by our fold recognition method, FROST. We define correct models as being built from alignments of sequences with structures similar to their native structures and erroneous models from alignments of sequences with structures unrelated to their native structures. Results For three test sequences whose native structures belong to the all-α, all-β and αβ classes we built a set of models intended to cover the whole spectrum: from a perfect model, i.e., the native structure, to a very poor model, i.e., a random alignment of the test sequence with a structure belonging to another structural class, including several intermediate models based on fold recognition alignments. We submitted these models to 11 ns of MD simulations at three different temperatures. We monitored along the corresponding trajectories the mean of the Root-Mean-Square deviations (RMSd with respect to the initial conformation, the RMSd fluctuations, the number of conformation clusters, the evolution of

  4. Characterization and modelling of signal dynamics in 3D-DDTC detectors

    International Nuclear Information System (INIS)

    Zoboli, A.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Gabos, P.; Piemonte, C.; Ronchin, S.; Zorzi, N.

    2010-01-01

    In the past few years we have developed 3D detector technologies within a collaboration between INFN and FBK-irst aiming at a simplification of the fabrication technology with respect to the original 3D design. These detectors are the object of an increasing interest from the HEP community because of their intrinsic radiation hardness, making them appealing for innermost layers of tracking at the foreseen upgrades of the large hadron collider. In this paper we evaluate the signal shape in response to localized and uniform charge deposition both by solving Ramo's theorem and with the aid of TCAD simulations. Signals observed in 3D diodes, stimulated by lasers at different wavelengths, are compared with simulations results.

  5. Characterization and modelling of signal dynamics in 3D-DDTC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A., E-mail: zoboli@disi.unitn.i [INFN, Sezione di Padova (Gruppo Collegato di Trento), and Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38050 Povo (Trento) (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38050 Povo (Trento) (Italy); Bosisio, L. [INFN, Sezione di Trieste, e Dipartimento di Fisica, Universita di Trieste, I-34127 Trieste (Italy); Dalla Betta, G.-F.; Gabos, P. [INFN, Sezione di Padova (Gruppo Collegato di Trento), and Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38050 Povo (Trento) (Italy); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38050 Povo (Trento) (Italy)

    2010-05-21

    In the past few years we have developed 3D detector technologies within a collaboration between INFN and FBK-irst aiming at a simplification of the fabrication technology with respect to the original 3D design. These detectors are the object of an increasing interest from the HEP community because of their intrinsic radiation hardness, making them appealing for innermost layers of tracking at the foreseen upgrades of the large hadron collider. In this paper we evaluate the signal shape in response to localized and uniform charge deposition both by solving Ramo's theorem and with the aid of TCAD simulations. Signals observed in 3D diodes, stimulated by lasers at different wavelengths, are compared with simulations results.

  6. A 3D City Model with Dynamic Behaviour Based on Geospatial Managed Objects

    DEFF Research Database (Denmark)

    Kjems, Erik; Kolář, Jan

    2014-01-01

    of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited resources in the most sustainable way. Using 3D......One of the major development efforts within the GI Science domain are pointing at real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation...... occasions we have been advocating for a new and advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This chapter presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily by the Norwegian Research Council where the concept...

  7. Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device

    KAUST Repository

    Raisch, A.

    2014-07-01

    We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.

  8. 3D-Mössbauer spectroscopic microscope for mc-Si solar cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Y., E-mail: y-ino@ob.sist.ac.jp; Soejima, H.; Hayakawa, K.; Yukihira, K.; Tanaka, K.; Fujita, H.; Watanabe, T. [Shizuoka Institute of Science and Technology (Japan); Ogai, K.; Moriguchi, K.; Harada, Y. [APCO. Ltd. (Japan); Yoshida, Y. [Shizuoka Institute of Science and Technology (Japan)

    2016-12-15

    A 3D-Mössbauer Spectroscopic Microscope is developed to evaluate Fe impurities in multi-crystalline Si solar cells, which combines the Mössbauer spectroscopic microscope with a scanning electron microscope (SEM), an electron beam induced current (EBIC), an electron backscatter diffraction (EBSD), and an electron energy analyzer (HV-CSA). In addition, a new moving-coil-actuator with a liner encoder of 100 nm-resolution is incorporated for the operations with both a constant velocity and a constant acceleration mode successfully with the same precision as that obtained by the conventional transducers. Furthermore, a new multi-capillary X-ray lens is designed to achieve a γ-ray spot size less than 100 μm in diameter. The new microscope provides us to investigate the space correlation between Fe impurities and the lattice defects such as grain boundaries in multi-crystalline Si solar cells.

  9. Improving organic tandem solar cells based on water-processed nanoparticles by quantitative 3D nanoimaging

    DEFF Research Database (Denmark)

    Pedersen, Emil Bøje Lind; Angmo, Dechan; Dam, Henrik Friis

    2015-01-01

    particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top......Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation...... specifically reveals the need to improve the coatability and layer formation of Landfester nanoparticles, thus allowing improved solar cells to be produced....

  10. Imaging- and Flow Cytometry-based Analysis of Cell Position and the Cell Cycle in 3D Melanoma Spheroids

    OpenAIRE

    Beaumont, Kimberley A.; Anfosso, Andrea; Ahmed, Farzana; Weninger, Wolfgang; Haass, Nikolas K.

    2015-01-01

    Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the sphero...

  11. Current State-of-the-Art 3D Tissue Models and Their Compatibility with Live Cell Imaging.

    Science.gov (United States)

    Bardsley, Katie; Deegan, Anthony J; El Haj, Alicia; Yang, Ying

    2017-01-01

    Mammalian cells grow within a complex three-dimensional (3D) microenvironment where multiple cells are organized and surrounded by extracellular matrix (ECM). The quantity and types of ECM components, alongside cell-to-cell and cell-to-matrix interactions dictate cellular differentiation, proliferation and function in vivo. To mimic natural cellular activities, various 3D tissue culture models have been established to replace conventional two dimensional (2D) culture environments. Allowing for both characterization and visualization of cellular activities within possibly bulky 3D tissue models presents considerable challenges due to the increased thickness and subsequent light scattering features of such 3D models. In this chapter, state-of-the-art methodologies used to establish 3D tissue models are discussed, first with a focus on both scaffold-free and scaffold-based 3D tissue model formation. Following on, multiple 3D live cell imaging systems, mainly optical imaging modalities, are introduced. Their advantages and disadvantages are discussed, with the aim of stimulating more research in this highly demanding research area.

  12. Loss of notochordal cell phenotype in 3D-cell cultures: implications for disc physiology and disc repair.

    Science.gov (United States)

    Omlor, G W; Nerlich, A G; Tirlapur, U K; Urban, J P; Guehring, T

    2014-12-01

    Embryonic notochordal disc nucleus cells (NC) have been identified to protect disc tissue against disc degeneration but in human beings NC phenotype gets lost with aging and the pathophysiological mechanisms are poorly understood. NC may stimulate other cells via soluble factors, and NC-conditioned medium can be used to stimulate matrix production of other disc cells and mesenchymal stem cells and thus may be of special interest for biological disc repair. As this stimulatory effect is associated with the NC phenotype, we investigated how cell morphology and gene-expression of the NC phenotype changes with time in 3D-cell culture. NC and inner annulus chondrocyte-like cells (CLC) from immature pigtails (freshly isolated cells/tissue, 3D-alginate beads, 3D-clusters) were cultured for up to 16 days under normoxia and hypoxia. Protein-expression was analysed by immunohistology and gene-expression analysis was carried out on freshly isolated cells and cultured cells. Cell morphology and proliferation were analysed by two-photon-laser-microscopy. Two-photon-laser-microscopy showed a homogenous and small CLC population in the inner annulus, which differed from the large vacuole-containing NC in the nucleus. Immunohistology found 93 % KRT8 positive cells in the nucleus and intracellular and pericellular Col2, IL6, and IL12 staining while CLC were KRT8 negative. Freshly isolated NC showed significantly higher KRT8 and CAIII but lower Col2 gene-expression than CLC. NC in 3D-cultures demonstrated significant size reduction and loss of vacuoles with culture time, all indicating a loss of the characteristic NC morphology. Hypoxia reduced the rate of decrease in NC size and vacuoles. Gene-expression of KRT8 and CAIII in NC fell significantly early in culture while Col2 did not decrease significantly within the culture period. In CLC, KRT8 and CAIII gene-expression was low and did not change noticeably in culture, whereas Col2 expression fell with time in culture. 3D

  13. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI

    DEFF Research Database (Denmark)

    Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S

    2015-01-01

    BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dyn...

  14. Dynamics of electron emission in double photoionization processes near the krypton 3d threshold

    International Nuclear Information System (INIS)

    Penent, F; Sheinerman, S; Andric, L; Lablanquie, P; Palaudoux, J; Becker, U; Braune, M; Viefhaus, J; Eland, J H D

    2008-01-01

    Two-electron emission following photoabsorption near the Kr 3d threshold is investigated both experimentally and theoretically. On the experimental side, electron/electron coincidences using a magnetic bottle time-of-flight spectrometer allow us to observe the complete double photo ionization (DPI) continua of selected Kr 2+ final states, and to see how these continua are affected by resonant processes in the vicinity of the Kr 3d threshold. The analysis is based on a quantum mechanical approach that takes into account the contribution of three different processes: (A) Auger decay of the inner 3d vacancy with the associated post-collision interaction (PCI) effects, (B) capture of slow photoelectrons into discrete states followed by valence multiplet decay (VMD) of the excited ionic states and (C) valence shell DPI. The dominant process for each Kr 2+ (4p -2 ) final state is the photoionization of the inner shell followed by Auger decay of the 3d vacancies. Moreover, for the 4p -2 ( 3 P) and 4p -2 ( 1 D) final ionic states an important contribution comes from the processes of slow photoelectron capture followed by VMD as well as from double ionization of the outer shell involving also VMD

  15. The First Static and Dynamic Analysis of 3-D Printed Sintered Ceramics for Body Armor Applications

    Science.gov (United States)

    2016-09-01

    hardness , and fracture strength) and semi-infinite penetration performance of 3-D printed sintered alumina. These results are compared with traditionally...parameters (including density, hardness , and fracture strength), semi-infinite penetration performance, and the fracture profile following impact of 3...of advanced ceramics differs mostly in terms of the initial green part formation when compared with a traditional manufacturing process. The

  16. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.

    Science.gov (United States)

    Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A

    2017-11-15

    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell

  17. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae.

    Science.gov (United States)

    Lopez-Garcia, Martin; Masters, Nathan; O'Brien, Heath E; Lennon, Joseph; Atkinson, George; Cryan, Martin J; Oulton, Ruth; Whitney, Heather M

    2018-04-01

    Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia . The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light-adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling.

  18. 3D Dynamic Modeling of the Head-Neck Complex for Fast Eye and Head Orientation Movements Research

    Directory of Open Access Journals (Sweden)

    Daniel A. Sierra

    2011-01-01

    Full Text Available A 3D dynamic computer model for the movement of the head-neck complex is presented. It incorporates anatomically correct information about the diverse elements forming the system. The skeleton is considered as a set of interconnected rigid 3D bodies following the Newton-Euler laws of movement. The muscles are modeled using Enderle's linear model, which shows equivalent dynamic characteristics to Loeb's virtual muscle model. The soft tissues, namely, the ligaments, intervertebral disks, and facet joints, are modeled considering their physiological roles and dynamics. In contrast with other head and neck models developed for safety research, the model is aimed to study the neural control of the complex during fast eye and head movements, such as saccades and gaze shifts. In particular, the time-optimal hypothesis and the feedback control ones are discussed.

  19. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds.

    Directory of Open Access Journals (Sweden)

    Hang Li

    Full Text Available Neural stem/progenitor cells (NSPCs are the stem cell of the adult central nervous system (CNS. These cells are able to differentiate into the major cell types found in the CNS (neurons, oligodendrocytes, astrocytes, thus NSPCs are the mechanism by which the adult CNS could potentially regenerate after injury or disorder. Microenviromental factors are critical for guiding NSPC differentiation and are thus important for neural tissue engineering. In this study, D-mannitol crystals were mixed with photocrosslinkable methacrylamide chitosan (MAC as a porogen to enhance pore size during hydrogel formation. D-mannitol was admixed to MAC at 5, 10 and 20 wt% D-mannitol per total initial hydrogel weight. D-mannitol crystals were observed to dissolve and leave the scaffold within 1 hr. Quantification of resulting average pore sizes showed that D-mannitol addition resulted in larger average pore size (5 wt%, 4060±160 µm(2, 10 wt%, 6330±1160 µm(2, 20 wt%, 7600±1550 µm(2 compared with controls (0 wt%, 3150±220 µm(2. Oxygen diffusion studies demonstrated that larger average pore area resulted in enhanced oxygen diffusion through scaffolds. Finally, the differentiation responses of NSPCs to phenotypic differentiation conditions were studied for neurons, astrocytes and oligodendrocytes in hydrogels of varied porosity over 14 d. Quantification of total cell numbers at day 7 and 14, showed that cell numbers decreased with increased porosity and over the length of the culture. At day 14 immunohistochemistry quantification for primary cell types demonstrated significant differentiation to the desired cells types, and that total percentages of each cell type was greatest when scaffolds were more porous. These results suggest that larger pore sizes in MAC hydrogels effectively promote NSPC 3D differentiation.

  20. A MULTISCALE APPROACH TO THE REPRESENTATION OF 3D IMAGES, WITH APPLICATION TO POLYMER SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    Ralf Thiedmann

    2011-03-01

    Full Text Available A multiscale approach to the description of geometrically complex 3D image data is proposed which distinguishes between morphological features on a ‘macro-scale’ and a ‘micro-scale’. Since our method is mainly tailored to nanostructures observed in composite materials consisting of two different phases, an appropriate binarization of grayscale images is required first. Then, a morphological smoothing is applied to extract the structural information from binarized image data on the ‘macro-scale’. A stochastic algorithm is developed for the morphologically smoothed images whose goal is to find a suitable representation of the macro-scale structure by unions of overlapping spheres. Such representations can be interpreted as marked point patterns. They lead to an enormous reduction of data and allow the application of well-known tools from point-process theory for their analysis and structural modeling. All those voxels which have been ‘misspecified’ by the morphological smoothing and subsequent representation by unions of overlapping spheres are interpreted as ‘micro-scale’ structure. The exemplary data sets considered in this paper are 3D grayscale images of photoactive layers in hybrid solar cells gained by electron tomography. These composite materials consist of two phases: a polymer phase and a zinc oxide phase. The macro-scale structure of the latter is represented by unions of overlapping spheres.

  1. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    International Nuclear Information System (INIS)

    Jiang, Huawei; Dong, Liang; Halverson, Larry J

    2015-01-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm −3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs. (paper)

  2. A 3-D Thermal Analysis of the HANARO Cold Neutron Moderator Cell

    International Nuclear Information System (INIS)

    Han, Gee Y.; Kim, Heo Nil

    2007-01-01

    Fundamental studies on a thermal analysis of a cryogenic system such as a cold neutron source (CNS) have increased significantly for a successful CNS design in cold neutron research during recent years. A three-dimensional (3-D) thermal analysis model for the HANARO CNS was developed and used to accurately predict a temperature distribution between the hydrogen inside and the entire inner and outer surfaces of a moderator cell, whose moderator and cell walls are heated differently, under a steady-state operating condition by using the HEATING 7 code. The objective of this study is primarily to predict a temperature distribution through a heat flow in a cold neutron moderator cell heated from a nuclear heating and cooled by a cryogenic coolant. This paper presents satisfactory results of a steady-state temperature distribution in a cryogenic moderator cell. They are used to support the thermal stress analysis of the moderator cell walls and to provide a safe operation for the HANARO CNS facility

  3. Dual targeting of EGFR and focal adhesion kinase in 3D grown HNSCC cell cultures

    International Nuclear Information System (INIS)

    Eke, Iris; Cordes, Nils

    2011-01-01

    Purpose: Epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK) show frequent overexpression and hyperactivity in various human malignancies including head and neck squamous cell carcinomas (HNSCC). To examine effects of dual EGFR/FAK inhibition on cellular radiosensitivity of HNSCC cells in a more physiological environment, we employed a previously established laminin-rich extracellular matrix (lrECM) based three-dimensional (3D) cell culture model. Materials and methods: UTSCC15 and SAS HNSCC cell lines stably transfected with EGFR-CFP or CFP were used. Single or combined EGFR (Cetuximab, siRNA) and FAK (TAE226, siRNA) inhibition were accomplished prior to measuring clonogenic survival and protein expression and phosphorylation. Immunofluorescence enabled visualization of EGFR-CFP and FAK. Results: Cetuximab resulted in higher radiosensitization in EGFR-CFP overexpressing cell lines than CFP controls. Single EGFR or FAK inhibition mediated radiosensitization, while dual EGFR/FAK targeting further augmented this effect. Despite signaling alterations upon Cetuximab and siRNA knockdown, analysis of protein expression and phosphorylation indicates EGFR and FAK signaling coexistence without obvious overlap. Conclusions: Combined EGFR/FAK targeting yielded stronger radiosensitization than either approach alone, which might be based on non-overlapping downstream signaling. Whether dual targeting of EGFR and FAK can reasonably be combined with radiotherapy and chemotherapy needs clarification.

  4. Near-Infrared Light-Sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cell-Instructive 3D Microenvironments.

    Science.gov (United States)

    Qin, Xiao-Hua; Wang, Xiaopu; Rottmar, Markus; Nelson, Bradley J; Maniura-Weber, Katharina

    2018-03-01

    Advanced hydrogel systems that allow precise control of cells and their 3D microenvironments are needed in tissue engineering, disease modeling, and drug screening. Multiphoton lithography (MPL) allows true 3D microfabrication of complex objects, but its biological application requires a cell-compatible hydrogel resist that is sufficiently photosensitive, cell-degradable, and permissive to support 3D cell growth. Here, an extremely photosensitive cell-responsive hydrogel composed of peptide-crosslinked polyvinyl alcohol (PVA) is designed to expand the biological applications of MPL. PVA hydrogels are formed rapidly by ultraviolet light within 1 min in the presence of cells, providing fully synthetic matrices that are instructive for cell-matrix remodeling, multicellular morphogenesis, and protease-mediated cell invasion. By focusing a multiphoton laser into a cell-laden PVA hydrogel, cell-instructive extracellular cues are site-specifically attached to the PVA matrix. Cell invasion is thus precisely guided in 3D with micrometer-scale spatial resolution. This robust hydrogel enables, for the first time, ultrafast MPL of cell-responsive synthetic matrices at writing speeds up to 50 mm s -1 . This approach should enable facile photochemical construction and manipulation of 3D cellular microenvironments with unprecedented flexibility and precision. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.

    Science.gov (United States)

    Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit

    2018-02-01

    The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 3-D Dynamic rupture simulation for the 2016 Kumamoto, Japan, earthquake sequence: Foreshocks and M6 dynamically triggered event

    Science.gov (United States)

    Ando, R.; Aoki, Y.; Uchide, T.; Imanishi, K.; Matsumoto, S.; Nishimura, T.

    2016-12-01

    A couple of interesting earthquake rupture phenomena were observed associated with the sequence of the 2016 Kumamoto, Japan, earthquake sequence. The sequence includes the April 15, 2016, Mw 7.0, mainshock, which was preceded by multiple M6-class foreshock. The mainshock mainly broke the Futagawa fault segment striking NE-SW direction extending over 50km, and it further triggered a M6-class earthquake beyond the distance more than 50km to the northeast (Uchide et al., 2016, submitted), where an active volcano is situated. Compiling the data of seismic analysis and InSAR, we presumed this dynamic triggering event occurred on an active fault known as Yufuin fault (Ando et al., 2016, JPGU general assembly). It is also reported that the coseismic slip was significantly large at a shallow portion of Futagawa Fault near Aso volcano. Since the seismogenic depth becomes significantly shallower in these two areas, we presume the geothermal anomaly play a role as well as the elasto-dynamic processes associated with the coseismic rupture. In this study, we conducted a set of fully dynamic simulations of the earthquake rupture process by assuming the inferred 3D fault geometry and the regional stress field obtained referring the stress tensor inversion. As a result, we showed that the dynamic rupture process was mainly controlled by the irregularity of the fault geometry subjected to the gently varying regional stress field. The foreshocks ruptures have been arrested at the juncture of the branch faults. We also show that the dynamic triggering of M-6 class earthquakes occurred along the Yufuin fault segment (located 50 km NE) because of the strong stress transient up to a few hundreds of kPa due to the rupture directivity effect of the M-7 event. It is also shown that the geothermal condition may lead to the susceptible condition of the dynamic triggering by considering the plastic shear zone on the down dip extension of the Yufuin segment, situated in the vicinity of an

  7. Influence of neuromuscular noise and walking speed on fall risk and dynamic stability in a 3D dynamic walking model.

    Science.gov (United States)

    Roos, Paulien E; Dingwell, Jonathan B

    2013-06-21

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Microcirculation in the murine liver: a computational fluid dynamic model based on 3D reconstruction from in vivo microscopy.

    Science.gov (United States)

    Piergiovanni, Monica; Bianchi, Elena; Capitani, Giada; Li Piani, Irene; Ganzer, Lucia; Guidotti, Luca G; Iannacone, Matteo; Dubini, Gabriele

    2017-10-03

    The liver is organized in hexagonal functional units - termed lobules - characterized by a rather peculiar blood microcirculation, due to the presence of a tangled network of capillaries - termed sinusoids. A better understanding of the hemodynamics that governs liver microcirculation is relevant to clinical and biological studies aimed at improving our management of liver diseases and transplantation. Herein, we built a CFD model of a 3D sinusoidal network, based on in vivo images of a physiological mouse liver obtained with a 2-photon microscope. The CFD model was developed with Fluent 16.0 (ANSYS Inc., Canonsburg, PA), particular care was taken in imposing the correct boundary conditions representing a physiological state. To account for the remaining branches of the sinusoids, a lumped parameter model was used to prescribe the correct pressure at each outlet. The effect of an adhered cell on local hemodynamics is also investigated for different occlusion degrees. The model here proposed accurately reproduces the fluid dynamics in a portion of the sinusoidal network in mouse liver. Mean velocities and mass flow rates are in agreement with literature values from in vivo measurements. Our approach provides details on local phenomena, hardly described by other computational studies, either focused on the macroscopic hepatic vasculature or based on homogeneous porous medium model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Use of magnetic micro-cantilevers to study the dynamics of 3D engineered smooth muscle constructs

    Science.gov (United States)

    Liu, Alan; Zhao, Ruogang; Copeland, Craig; Chen, Christopher; Reich, Daniel

    2013-03-01

    The normal and pathological response of arterial tissue to mechanical stimulus sheds important light on such conditions as atherosclerosis and hypertension. While most previous methods of determining the biomechanical properties of arteries have relied on excised tissue, we have devised a system that enables the growth and in situ application of forces to arrays of stable suspended microtissues consisting of arterial smooth muscle cells (SMCs). Briefly, this magnetic microtissue tester system consists of arrays of pairs of elastomeric magnetically actuated micro-cantilevers between which SMC-infused 3D collagen gels self-assemble and remodel into aligned microtissue constructs. These devices allow us to simultaneously apply force and track stress-strain relationships of multiple microtissues per substrate. We have studied the dilatory capacity and subsequent response of the tissues and find that the resulting stress-strain curves show viscoelastic behavior as well as a linear dynamic recovery. These results provide a foundation for elucidating the mechanical behavior of this novel model system as well as further experiments that simulate pathological conditions. Supported in part by NIH grant HL090747.

  10. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul; Woo, Jongwook; Goodman, Matthew; Huffman, Todd; Choe, Yoonsuck

    2013-01-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy

  11. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    Science.gov (United States)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  12. New sparse matrix solver in the KIKO3D 3-dimensional reactor dynamics code

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.; Hegedus, C.

    2005-01-01

    The goal of this paper is to present a more effective method Bi-CGSTAB for accelerating the large sparse matrix equation solution in the KIKO3D code. This equation system is obtained by using the factorization of the improved quasi static (IQS) method for the time dependent nodal kinetic equations. In the old methodology standard large sparse matrix techniques were considered, where Gauss-Seidel preconditioning and a GMRES-type solver were applied. The validation of KIKO3D using Bi-CGSTAB has been performed by solving of a VVER-1000 kinetic benchmark problem. Additionally, the convergence characteristics were investigated in given macro time steps of Control Rod Ejection transients. The results have been obtained by the old GMRES and new Bi-CGSTAB methods are compared. (author)

  13. Versatile, immersive, creative and dynamic virtual 3-D healthcare learning environments: a review of the literature.

    Science.gov (United States)

    Hansen, Margaret M

    2008-09-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and "serious gaming" that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger's Diffusion of Innovations Theory and Siemens' Connectivism Theory for today's learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare.

  14. Motion field estimation for a dynamic scene using a 3D LiDAR.

    Science.gov (United States)

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  15. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    Directory of Open Access Journals (Sweden)

    Qingquan Li

    2014-09-01

    Full Text Available This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  16. Three-dimensional (3D)- computed tomography bronchography and angiography combined with 3D-video-assisted thoracic surgery (VATS) versus conventional 2D-VATS anatomic pulmonary segmentectomy for the treatment of non-small cell lung cancer.

    Science.gov (United States)

    She, Xiao-Wei; Gu, Yun-Bin; Xu, Chun; Li, Chang; Ding, Cheng; Chen, Jun; Zhao, Jun

    2018-02-01

    Compared to the pulmonary lobe, the anatomical structure of the pulmonary segment is relatively complex and prone to variation, thus the risk and difficulty of segmentectomy is increased. We compared three-dimensional computed tomography bronchography and angiography (3D-CTBA) combined with 3D video-assisted thoracic surgery (3D-VATS) to perform segmentectomy to conventional two-dimensional (2D)-VATS for the treatment of non-small cell lung cancer (NSCLC). We retrospectively reviewed the data of randomly selected patients who underwent 3D-CTBA combined with 3D-VATS (3D-CTBA-VATS) or 2D-VATS at the Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University Hospital, from January 2014 to May 2017. The operative duration of 3D group was significantly shorter than the 2D group (P 0.05). The extent of intraoperative bleeding and postoperative drainage in the 3D group was significantly lower than in the 2D group (P 3D group was shorter than in the 2D group (P 0.05). However, hemoptysis and pulmonary air leakage (>3d) occurred significantly less frequently in the 3D than in the 2D group (P 3D-CTBA-VATS is a more accurate and smooth technique and leads to reduced intraoperative and postoperative complications. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  17. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments.

    Science.gov (United States)

    Astashkina, Anna; Grainger, David W

    2014-04-01

    Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. 3D reconstruction modeling of bulk heterojunction organic photovoltaic cells: Effect of the complexity of the boundary on the morphology

    Science.gov (United States)

    Kim, Sung-Jin; Jeong, Daun; Kim, SeongMin; Choi, Yeong Suk; Ihn, Soo-Ghang; Yun, Sungyoung; Lim, Younhee; Lee, Eunha; Park, Gyeong-Su

    2016-02-01

    Although the morphology of the active layer in bulk heterojunction organic photovoltaic (BHJ-OPV) cells is critical for determining the quantum efficiency (QE), predicting the real QE for a 3-dimensional (3D) morphology has long been difficult because structural information on the composition complexity of donor (D): acceptor (A) blends with small domain size is limited to 2D observations via various image-processing techniques. To overcome this, we reconstruct the 3D morphology by using an isotropic statistical approach based on 2D energy-filtered transmission electron microscopy (EF-TEM) images. This new reconstruction method is validated to obtain the internal QE by using a dynamic Monte Carlo simulation in the BHJ-OPV system with different additives such as 4 vol% 1-chloronaphthalene (CN) and 4 vol% 1,8-diiodooctane (DIO) (compared to the case of no additive); the resulting trend is compared with the experimental QE. Therefore, our developed method can be used to predict the real charge transport performance in the OPV system accurately.

  19. Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations.

    Directory of Open Access Journals (Sweden)

    Vivek Nandakumar

    Full Text Available Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the

  20. 3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces.

    Science.gov (United States)

    Abdel Fattah, Abdel Rahman; Mishriki, Sarah; Kammann, Tobias; Sahu, Rakesh P; Geng, Fei; Puri, Ishwar K

    2018-02-27

    A magnet array is employed to manipulate diamagnetic cells that are contained in paramagnetic medium to demonstrate for the first time the contactless bioprinting of three-dimensional (3D) cellular structures and co-cultures of breast cancer MCF-7 and endothelial HUVEC at prescribed locations on tissue culture treated well plates. Sequential seeding of different cell lines and the spatial displacement of the magnet array creates co-cultured cellular structures within a well without using physically intrusive well inserts. Both monotypic and co-culture experiments produce morphologically rich 3D cell structures that are otherwise absent in regular monolayer cell cultures. The magnetic contactless bioprinting of cells provides further insight into cell behaviour, invasion strategies and transformations that are useful for potential applications in drug screening, 3D cell culture formation and tissue engineering.

  1. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs

    Directory of Open Access Journals (Sweden)

    Samar Damiati

    2018-02-01

    Full Text Available Hepatic oval cells (HOCs are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab, which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV and square wave voltammetry (SWV were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection.

  2. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs)

    Science.gov (United States)

    Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A.; Schuster, Bernhard

    2018-01-01

    Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection. PMID:29443890

  3. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs).

    Science.gov (United States)

    Damiati, Samar; Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A; Becker, Holger; Kodzius, Rimantas; Schuster, Bernhard

    2018-02-14

    Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection.

  4. 3D culture of Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of therapeutic response.

    Science.gov (United States)

    Gangadhara, Sharath; Smith, Chris; Barrett-Lee, Peter; Hiscox, Stephen

    2016-06-01

    The Her2 receptor is overexpressed in up to 25 % of breast cancers and is associated with a poor prognosis. Around half of Her2+ breast cancers also express the estrogen receptor and treatment for such tumours can involve both endocrine and Her2-targeted therapies. However, despite preclinical data supporting the effectiveness of these agents, responses can vary widely in the clinical setting. In light of the increasing evidence pointing to the interplay between the tumour and its extracellular microenvironment as a significant determinant of therapeutic sensitivity and response here we investigated the impact of 3D matrix culture of breast cancer cells on their therapeutic sensitivity. A 3D Matrigel-based culture system was established and optimized for the growth of ER+/Her2+ breast cancer cell models. Growth of cells in response to trastuzumab and endocrine agents in 3D culture versus routine monolayer culture were assessed using cell counting and Ki67 staining. Endogenous and trastuzumab-modulated signalling pathway activity in 2D and 3D cultures were assessed using Western blotting. Breast cancer cells in 3D culture displayed an attenuated response to both endocrine agents and trastuzumab compared with cells cultured in traditional 2D monolayers. Underlying this phenomenon was an apparent matrix-induced shift from AKT to MAPK signalling; consequently, suppression of MAPK in 3D cultures restores therapeutic response. These data suggest that breast cancer cells in 3D culture display a reduced sensitivity to therapeutic agents which may be mediated by internal MAPK-mediated signalling. Targeting of adaptive pathways that maintain growth in 3D culture may represent an effective strategy to improve therapeutic response clinically.

  5. 3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening

    Directory of Open Access Journals (Sweden)

    Michaela Thomas

    2017-11-01

    Full Text Available Neurodegenerative diseases affect millions of individuals in North America and cost the health-care industry billions of dollars for treatment. Current treatment options for degenerative diseases focus on physical rehabilitation or drug therapies, which temporarily mask the effects of cell damage, but quickly lose their efficacy. Cell therapies for the central nervous system remain an untapped market due to the complexity involved in growing neural tissues, controlling their differentiation, and protecting them from the hostile environment they meet upon implantation. Designing tissue constructs for the discovery of better drug treatments are also limited due to the resolution needed for an accurate cellular representation of the brain, in addition to being expensive and difficult to translate to biocompatible materials. 3-D printing offers a streamlined solution for engineering brain tissue for drug discovery or, in the future, for implantation. New microfluidic and bioplotting devices offer increased resolution, little impact on cell viability and have been tested with several bioink materials including fibrin, collagen, hyaluronic acid, poly(caprolactone, and poly(ethylene glycol. This review details current efforts at bioprinting neural tissue and highlights promising avenues for future work.

  6. Improving organic tandem solar cells based on water-processed nanoparticles by quantitative 3D nanoimaging.

    Science.gov (United States)

    Pedersen, E B L; Angmo, D; Dam, H F; Thydén, K T S; Andersen, T R; Skjønsfjell, E T B; Krebs, F C; Holler, M; Diaz, A; Guizar-Sicairos, M; Breiby, D W; Andreasen, J W

    2015-08-28

    Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation and easier access to the printing industry, which has reduced the use of organic solvents since the 1980s. Through ptychographic X-ray computed tomography (PXCT), we image quantitatively a roll-to-roll coated photovoltaic tandem stack consisting of one bulk heterojunction active layer and one Landfester particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top- and bottom interfaces, wide thickness distribution and only partial surface coverage causing electric short circuits through the layer. By top coating a polymer material onto the Landfester nanoparticles we eliminate the structural defects of the layer such as porosity and roughness, and achieve the increased performance larger than 1 V expected for a tandem cell. This study highlights that quantitative imaging of weakly scattering stacked layers of organic materials has become feasible by PXCT, and that this information cannot be obtained by other methods. In the present study, this technique specifically reveals the need to improve the coatability and layer formation of Landfester nanoparticles, thus allowing improved solar cells to be produced.

  7. An efficient 3D cell culture method on biomimetic nanostructured grids.

    Directory of Open Access Journals (Sweden)

    Maria Wolun-Cholewa

    Full Text Available Current techniques of in vitro cell cultures are able to mimic the in vivo environment only to a limited extent, as they enable cells to grow only in two dimensions. Therefore cell culture approaches should rely on scaffolds that provide support comparable to the extracellular matrix. Here we demonstrate the advantages of novel nanostructured three-dimensional grids fabricated using electro-spinning technique, as scaffolds for cultures of neoplastic cells. The results of the study show that the fibers allow for a dynamic growth of HeLa cells, which form multi-layer structures of symmetrical and spherical character. This indicates that the applied scaffolds are nontoxic and allow proper flow of oxygen, nutrients, and growth factors. In addition, grids have been proven to be useful in in situ examination of cells ultrastructure.

  8. Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations.

    Science.gov (United States)

    Nandakumar, Vivek; Kelbauskas, Laimonas; Hernandez, Kathryn F; Lintecum, Kelly M; Senechal, Patti; Bussey, Kimberly J; Davies, Paul C W; Johnson, Roger H; Meldrum, Deirdre R

    2012-01-01

    Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria. We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure. We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At pfibrocystic from the metastatic cell populations. Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.

  9. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot; Schuster, Gerard T.

    2010-01-01

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual

  10. Pulmonary hilar lymph nodes in lung cancer: assessment with 3D-dynamic contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Hasegawa, Ichiro; Eguchi, Keisuke; Kohda, Ehiichi; Tanami, Yutaka; Mori, Toru; Hatabu, Hiroto; Kuribayashi, Sachio

    2003-01-01

    Purpose: We performed 3D-dynamic MRI on patients with primary lung cancer to identify its usefulness for detecting hilar adenopathy shown at surgery. Methods and materials: 30 consecutive patients with peripheral lung cancer underwent preoperative 3D-dynamic Gd-DTPA-enhanced MRI. Two thoracic radiologists blinded to histopathologic findings reviewed those studies independently for hilar adenopathy visualization. The results were correlated with surgical and histopathologic findings. Interreader agreement for the detection of hilar adenopathy was assessed by means of the κ statistic. Results: Dynamic MRI demonstrated hilar adenopathy, with or without metastasis revealed at surgery, in all of 15 patients. Adenopathy without metastasis was shown in four patients. Dynamic MRI also revealed metastatic adenopathy in 11 of 12 patients with pathologically proven metastasis. There was only one case with lymph node metastasis that did not have adenopathy either on MRI or even at surgery. The diagnostic accuracy of dynamic MRI for adenopathy with or without metastases revealed at surgery were as follows; sensitivity, 100%; specificity, 100%; positive predictive value, 100%; and negative predictive value, 100%, respectively. The diagnostic accuracy of dynamic MRI for hilar lymph nodes metastasis were as follows; sensitivity, 92%; specificity, 78%; positive predictive value, 73%; and negative predictive value, 93%. Interreader agreement was substantial (κ=0.73) for detection of hilar adenopathy. Conclusion: Hilar adenopathy on 3D-dynamic MRI correlated well with that of surgical finding on patients with primary lung cancer. It may have the potential to make an accurate preoperative evaluation of hilar lymph node metastasis from lung cancer

  11. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique.

    Science.gov (United States)

    Jeon, Hyeryeon; Kang, Kyojin; Park, Su A; Kim, Wan Doo; Paik, Seung Sam; Lee, Sang-Hun; Jeong, Jaemin; Choi, Dongho

    2017-01-15

    Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liverspecific markers was quantified on days 1, 7, 14, and 21. The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver.

  12. Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP

    OpenAIRE

    Hansen , K. M.; Christensen , J. H.; Brandt , J.; Frohn , L. M.; Geels , C.

    2004-01-01

    International audience; The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of...

  13. X-ray tomography: Biological cells in 3-D at better than 50 nm resolution

    International Nuclear Information System (INIS)

    Larabell, C.; Le Gros, M.

    2004-01-01

    Full text: X-ray microscopy can be used to image whole, hydrated, specimens with a spatial resolution 5-10 times better than that obtained using visible light microscopy. X-ray imaging at photon energies below the K- absorption edge of oxygen, referred to as the water window, exploits the strong natural contrast for organic material embedded in a mostly water matrix. With a transmission X-ray microscope using Fresnel zone plate optics, specimens up to 10 microns thick can be examined. The highest X-ray transmission in hydrated samples is obtained at a wavelength of 2.4 nm but, due to the low numerical aperture of zone plate lenses operated in st order diffraction mode the structures resolved are much larger than the X-ray wavelength. Because of the low NA of X-ray lenses (NA=0.05), combined with the effect of polychromatic illumination and a wavelength dependant focal length, the effective depth of ld is large (6-10 microns). The experiments presented here were performed at the Advanced Light Source using the full ld transmission X-ray microscope, XM-1. This microscope employs a bend magnet X-ray source and zone plate condenser and objective lenses. The condenser zone plate acts as a monochromator and the X-ray images are recorded directly on a cooled, back-thinned 1024x1024 pixel CCD camera. The sample holder was a rotationally symmetric glass tube; the region containing the sample was 10 microns in diameter with a wall thickness of 200 nm. Live yeast cells were loaded into the tube, rapidly frozen by a blast of liquid nitrogen-cooled helium gas, and maintained at 140 deg C by a steady flow of cold helium. The image sequence spanned 180 deg and consisted of 45 images spaced by 4 deg. The images were aligned to a common axis and computed tomographic reconstruction was used to obtain the 3-D X-ray linear absorption coefficient. Volume rendering and animation of reconstructed data was performed using the 3-D program, Amira. Acquisition time for 90 images was 3 min

  14. A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts

    Science.gov (United States)

    Hao, Wenfeng; Liu, Ye; Huang, Xinrong; Liu, Yinghua; Zhu, Jianguo

    2018-06-01

    In this work, the elastic constants of 3D four directional cylindrical braided composite shafts were predicted using analytical and numerical methods. First, the motion rule of yarn carrier of 3D four directional cylindrical braided composite shafts was analyzed, and the horizontal projection of yarn motion trajectory was obtained. Then, the geometry models of unit-cells with different braiding angles and fiber volume contents were built up, and the meso-scale models of 3D cylindrical braided composite shafts were obtained. Finally, the effects of braiding angles and fiber volume contents on the elastic constants of 3D braided composite shafts were analyzed theoretically and numerically. These results play a crucial role in investigating the mechanical properties of 3D 4-directional braided composites shafts.

  15. Enhancement of human neural stem cell self-renewal in 3D hypoxic culture.

    Science.gov (United States)

    Ghourichaee, Sasan Sharee; Powell, Elizabeth M; Leach, Jennie B

    2017-05-01

    The pathology of neurological disorders is associated with the loss of neuronal and glial cells that results in functional impairments. Human neural stem cells (hNSCs), due to their self-renewing and multipotent characteristics, possess enormous tissue-specific regenerative potential. However, the efficacy of clinical applications is restricted due to the lack of standardized in vitro cell production methods with the capability of generating hNSC populations with well-defined cellular compositions. At any point, a population of hNSCs may include undifferentiated stem cells, intermediate and terminally differentiated progenies, and dead cells. Due to the plasticity of hNSCs, environmental cues play crucial roles in determining the cellular composition of hNSC cultures over time. Here, we investigated the independent and synergistic effect of three important environmental factors (i.e., culture dimensionality, oxygen concentration, and growth factors) on the survival, renewal potential, and differentiation of hNSCs. Our experimental design included two dimensional (2D) versus three dimensional (3D) cultures and normoxic (21% O 2 ) versus hypoxic (3% O 2 ) conditions in the presence and absence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Additionally, we discuss the feasibility of mathematical models that predict hNSC growth and differentiation under these culture conditions by adopting a negative feedback regulatory term. Our results indicate that the synergistic effect of culture dimensionality and hypoxic oxygen concentration in the presence of growth factors enhances the proliferation of viable, undifferentiated hNSCs. Moreover, the same synergistic effect in the absence of growth factors promotes the differentiation of hNSCs. Biotechnol. Bioeng. 2017;114: 1096-1106. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy

    OpenAIRE

    Bullen, Anwen; West, Timothy; Moores, Carolyn; Ashmore, Jonathan; Fleck, Roland A.; MacLellan-Gibson, Kirsty; Forge, Andrew

    2015-01-01

    ABSTRACT The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network ...

  17. A 3-D Printed Microfluidic Microgravity Microbial Fuel Cell for Satellite Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This project focused on developing bioelectrochemical test units that could be manufactured principally using additive manufacturing (3D printing) methodologies....

  18. Pin cell discontinuity factors in the transient 3-D discrete ordinates code TORT-TD

    International Nuclear Information System (INIS)

    Seubert, A.

    2010-01-01

    Even with the rapid increase of computing power, whole core transient and accident analyses based on the direct solution of the 3-D neutron transport equation with a large number of energy groups and a detailed heterogeneous description of the core still remain computationally challenging. Current industrial methods for reactor core calculations therefore involve a two step approach in which lattice (assembly) depletion transport methods are used to prepare energy collapsed and fuel assembly or pin cell homogenized cross sections for subsequent whole core transport calculations. Spatial homogenization, in principal, requires the knowledge of both the actual boundary condition (local core environment) of the fuel assembly and the exact heterogeneous flux distribution (reference solution) of the whole core problem within that fuel assembly. Since, in particular, the latter is not known a priori, an infinite medium (zero net current) condition is used in the lattice calculations. It is well known that this approximation may lead to undesirable errors in cores in which large flux gradients are present across the fuel assemblies. This is the case in cores that have high heterogeneity and/or strong local absorbers, e.g. PWRs with partial MOX loading and inserted control rod clusters. There are two major approaches to mitigate spatial homogenization errors, superhomogenization (SPH) factors, and discontinuity factors within the scope of equivalence theory (ET) and generalized equivalence theory (GET). Although discontinuity factors are usually applied at the level of fuel assembly node size (assembly discontinuity factors, ADF), the methodology can be extended to pin cell homogenized whole core calculations involving pin cell discontinuity factors (PDF). There are also further developments for both the diffusion and the simplified transport (SP3) equation. In this paper, PDFs are introduced into the time-dependent 3-D discrete ordinates code TORT-TD in order to reduce the

  19. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Contracts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cornforth, Michael N. [The University of Texas Medical Branch at Galveston, TX (United States)

    2013-05-03

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. The aims of this work apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. These aims are: to analyze by multi-flour fluorescence in situ hybridization (mFISH) the chromosomes in clonal descendents of individual human fibroblasts that were previously irradiated; to examine irradiated clones from Aim 1 for submicroscopic deletions by subjecting their DNA to comparative genomic hybridization (CGH) microarray analysis; and to flow-sort aberrant chromosomes from clones containing stable radiation-induced translocations and map the breakpoints to within an average resolution of 100 kb using the technique of 'array painting'.

  20. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Contracts. Final report

    International Nuclear Information System (INIS)

    Cornforth, Michael N.

    2013-01-01

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. The aims of this work apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. These aims are: to analyze by multi-flour fluorescence in situ hybridization (mFISH) the chromosomes in clonal descendents of individual human fibroblasts that were previously irradiated; to examine irradiated clones from Aim 1 for submicroscopic deletions by subjecting their DNA to comparative genomic hybridization (CGH) microarray analysis; and to flow-sort aberrant chromosomes from clones containing stable radiation-induced translocations and map the breakpoints to within an average resolution of 100 kb using the technique of 'array painting'

  1. Dynamic domains of amyloid fibrils can be site-specifically assigned with proton detected 3D NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Alexander S.; Siemer, Ansgar B., E-mail: asiemer@usc.edu [Keck School of Medicine of USC, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute (United States)

    2016-11-15

    Several amyloid fibrils have cores framed by highly dynamic, intrinsically disordered, domains that can play important roles for function and toxicity. To study these domains in detail using solid-state NMR spectroscopy, site-specific resonance assignments are required. Although the rapid dynamics of these domains lead to considerable averaging of orientation-dependent NMR interactions and thereby line-narrowing, the proton linewidths observed in these samples is far larger than what is regularly observed in solution. Here, we show that it is nevertheless possible to record 3D HNCO, HNCA, and HNcoCA spectra on these intrinsically disordered domains and to obtain site-specific assignments.

  2. Application of 3D Laser Scanning Technology in Inspection and Dynamic Reserves Detection of Open-Pit Mine

    Science.gov (United States)

    Hu, Zhumin; Wei, Shiyu; Jiang, Jun

    2017-10-01

    The traditional open-pit mine mining rights verification and dynamic reserve detection means rely on the total station and RTK to collect the results of the turning point coordinates of mining surface contours. It resulted in obtaining the results of low precision and large error in the means that is limited by the traditional measurement equipment accuracy and measurement methods. The three-dimensional scanning technology can obtain the three-dimensional coordinate data of the surface of the measured object in a large area at high resolution. This paper expounds the commonly used application of 3D scanning technology in the inspection and dynamic reserve detection of open mine mining rights.

  3. Dynamic domains of amyloid fibrils can be site-specifically assigned with proton detected 3D NMR spectroscopy

    International Nuclear Information System (INIS)

    Falk, Alexander S.; Siemer, Ansgar B.

    2016-01-01

    Several amyloid fibrils have cores framed by highly dynamic, intrinsically disordered, domains that can play important roles for function and toxicity. To study these domains in detail using solid-state NMR spectroscopy, site-specific resonance assignments are required. Although the rapid dynamics of these domains lead to considerable averaging of orientation-dependent NMR interactions and thereby line-narrowing, the proton linewidths observed in these samples is far larger than what is regularly observed in solution. Here, we show that it is nevertheless possible to record 3D HNCO, HNCA, and HNcoCA spectra on these intrinsically disordered domains and to obtain site-specific assignments.

  4. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells.

    Science.gov (United States)

    Fahimipour, Farahnaz; Dashtimoghadam, Erfan; Rasoulianboroujeni, Morteza; Yazdimamaghani, Mostafa; Khoshroo, Kimia; Tahriri, Mohammadreza; Yadegari, Amir; Gonzalez, Jose A; Vashaee, Daryoosh; Lobner, Douglas C; Jafarzadeh Kashi, Tahereh S; Tayebi, Lobat

    2018-02-01

    A systematic characterization of hybrid scaffolds, fabricated based on combinatorial additive manufacturing technique and freeze-drying method, is presented as a new platform for osteoblastic differentiation of dental pulp cells (DPCs). The scaffolds were consisted of a collagenous matrix embedded in a 3D-printed beta-tricalcium phosphate (β-TCP) as the mineral phase. The developed construct design was intended to achieve mechanical robustness owing to 3D-printed β-TCP scaffold, and biologically active 3D cell culture matrix pertaining to the Collagen extracellular matrix. The β-TCP precursor formulations were investigated for their flow-ability at various temperatures, which optimized for fabrication of 3D printed scaffolds with interconnected porosity. The hybrid constructs were characterized by 3D laser scanning microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and compressive strength testing. The in vitro characterization of scaffolds revealed that the hybrid β-TCP/Collagen constructs offer superior DPCs proliferation and alkaline phosphatase (ALP) activity compared to the 3D-printed β-TCP scaffold over three weeks. Moreover, it was found that the incorporation of TCP into the Collagen matrix improves the ALP activity. The presented results converge to suggest the developed 3D-printed β-TCP/Collagen hybrid constructs as a new platform for osteoblastic differentiation of DPCs for craniomaxillofacial bone regeneration. Copyright © 2017. Published by Elsevier Ltd.

  5. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.

    Science.gov (United States)

    Lee, Jia Min; Yeong, Wai Yee

    2016-11-01

    Bioprinting is an emerging technology that allows the assembling of both living and non-living biological materials into an ideal complex layout for further tissue maturation. Bioprinting aims to produce engineered tissue or organ in a mechanized, organized, and optimized manner. Various biomaterials and techniques have been utilized to bioprint biological constructs in different shapes, sizes and resolutions. There is a need to systematically discuss and analyze the reported strategies employed to fabricate these constructs. We identified and discussed important design factors in bioprinting, namely shape and resolution, material heterogeneity, and cellular-material remodeling dynamism. Each design factors are represented by the corresponding process capabilities and printing parameters. The process-design map will inspire future biomaterials research in these aspects. Design considerations such as data processing, bio-ink formulation and process selection are discussed. Various printing and crosslinking strategies, with relevant applications, are also systematically reviewed. We categorized them into 5 general bioprinting strategies, including direct bioprinting, in-process crosslinking, post-process crosslinking, indirect bioprinting and hybrid bioprinting. The opportunities and outlook in 3D bioprinting are highlighted. This review article will serve as a framework to advance computer-aided design in bioprinting technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. WARP3D-Release 10.8: Dynamic Nonlinear Analysis of Solids using a Preconditioned Conjugate Gradient Software Architecture

    Science.gov (United States)

    Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.

    1998-01-01

    This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves

  7. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope.

    Science.gov (United States)

    Kumar, Ankur N; Miga, Michael I; Pheiffer, Thomas S; Chambless, Lola B; Thompson, Reid C; Dawant, Benoit M

    2015-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient's preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1 Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (∼1 h) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square

  8. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope

    Science.gov (United States)

    Kumar, Ankur N.; Miga, Michael I.; Pheiffer, Thomas S.; Chambless, Lola B.; Thompson, Reid C.; Dawant, Benoit M.

    2014-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient’s preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (~1 hour) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square

  9. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model.

    Science.gov (United States)

    Takagi, Ryoji; Ishimaru, Junko; Sugawara, Ayaka; Toyoshima, Koh-Ei; Ishida, Kentaro; Ogawa, Miho; Sakakibara, Kei; Asakawa, Kyosuke; Kashiwakura, Akitoshi; Oshima, Masamitsu; Minamide, Ryohei; Sato, Akio; Yoshitake, Toshihiro; Takeda, Akira; Egusa, Hiroshi; Tsuji, Takashi

    2016-04-01

    The integumentary organ system is a complex system that plays important roles in waterproofing, cushioning, protecting deeper tissues, excreting waste, and thermoregulation. We developed a novel in vivo transplantation model designated as a clustering-dependent embryoid body transplantation method and generated a bioengineered three-dimensional (3D) integumentary organ system, including appendage organs such as hair follicles and sebaceous glands, from induced pluripotent stem cells. This bioengineered 3D integumentary organ system was fully functional following transplantation into nude mice and could be properly connected to surrounding host tissues, such as the epidermis, arrector pili muscles, and nerve fibers, without tumorigenesis. The bioengineered hair follicles in the 3D integumentary organ system also showed proper hair eruption and hair cycles, including the rearrangement of follicular stem cells and their niches. Potential applications of the 3D integumentary organ system include an in vitro assay system, an animal model alternative, and a bioengineered organ replacement therapy.

  10. A 3D Human Renal Cell Carcinoma-on-a-Chip for the Study of Tumor Angiogenesis.

    Science.gov (United States)

    Miller, Chris P; Tsuchida, Connor; Zheng, Ying; Himmelfarb, Jonathan; Akilesh, Shreeram

    2018-06-01

    Tractable human tissue-engineered 3D models of cancer that enable fine control of tumor growth, metabolism, and reciprocal interactions between different cell types in the tumor microenvironment promise to accelerate cancer research and pharmacologic testing. Progress to date mostly reflects the use of immortalized cancer cell lines, and progression to primary patient-derived tumor cells is needed to realize the full potential of these platforms. For the first time, we report endothelial sprouting induced by primary patient tumor cells in a 3D microfluidic system. Specifically, we have combined primary human clear cell renal cell carcinoma (ccRCC) cells from six independent donors with human endothelial cells in a vascularized, flow-directed, 3D culture system ("ccRCC-on-a-chip"). The upregulation of key angiogenic factors in primary human ccRCC cells, which exhibited unique patterns of donor variation, was further enhanced when they were cultured in 3D clusters. When embedded in the matrix surrounding engineered human vessels, these ccRCC tumor clusters drove potent endothelial cell sprouting under continuous flow, thus recapitulating the critical angiogenic signaling axis between human ccRCC cells and endothelial cells. Importantly, this phenotype was driven by a primary tumor cell-derived biochemical gradient of angiogenic growth factor accumulation that was subject to pharmacological blockade. Our novel 3D system represents a vascularized tumor model that is easy to image and quantify and is fully tunable in terms of input cells, perfusate, and matrices. We envision that this ccRCC-on-a-chip will be valuable for mechanistic studies, for studying tumor-vascular cell interactions, and for developing novel and personalized antitumor therapies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix

    International Nuclear Information System (INIS)

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Zhang, Xiaohui; Xu, Feng; Ling, Kai

    2015-01-01

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue. (paper)

  12. 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation.

    Science.gov (United States)

    Gu, Qi; Tomaskovic-Crook, Eva; Wallace, Gordon G; Crook, Jeremy M

    2017-09-01

    The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human iPSCs for in situ expansion and sequential differentiation. Specifically, we have extrusion printed the bioink including iPSCs, alginate (Al; 5% weight/volume [w/v]), carboxymethyl-chitosan (5% w/v), and agarose (Ag; 1.5% w/v), crosslinked the bioink in calcium chloride for a stable and porous construct, proliferated the iPSCs within the construct and differentiated the same iPSCs into either EBs comprising cells of three germ lineages-endoderm, ectoderm, and mesoderm, or more homogeneous neural tissues containing functional migrating neurons and neuroglia. This defined, scalable, and versatile platform is envisaged being useful in iPSC research and translation for pharmaceuticals development and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thunderstorms in my computer : The effect of visual dynamics and sound in a 3D environment

    NARCIS (Netherlands)

    Houtkamp, J.; Schuurink, E.L.; Toet, A.

    2008-01-01

    We assessed the effects of the addition of dynamic visual elements and sounds to a levee patroller training game on the appraisal of the environment and weather conditions, the engagement of the users and their performance. Results show that the combination of visual dynamics and sounds best conveys

  14. Mutual information as a measure of reconstruction quality in 3D dynamic lung EIT

    International Nuclear Information System (INIS)

    Crabb, M G; Lionheart, W R B; Davidson, J L; Wright, P; McCann, H; Little, R; Naish, J H; Parker, G J M; Kikinis, R

    2013-01-01

    We report on a pilot study with healthy subjects who had an MR scan in addition to EIT data acquired with the Manchester fEITER system. The MR images are used to inform the external shape of a 3D EIT reconstruction model of the thorax, and small changes in the boundary that occur during respiration are addressed by incorporating the sensitivity with respect to boundary shape into a robust reconstruction algorithm. A quantitative comparison of the image quality for different EIT reconstructions is achieved through calculation of their mutual information with a segmented MR image. A shape corrected reconstruction algorithm reduces boundary artefacts relative to a standard reconstruction, and has a greater mutual information of approximately 4% with the segmented MR image.

  15. <