WorldWideScience

Sample records for dyes

  1. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  2. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  3. Nano-dyeing

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2016-01-01

    Full Text Available Dyeing nanofibers is a frontier of both modern textile engineering and nanotechnology. This paper suggest a feasible method for dyeing nanofibers with a natural red (Roselle Calyx by bubble electrospinning. Reactive dye (Red S3B and acid dye (Red 2B were also used in the experiment for comparison. The dyeing process was finished during the spinning process.

  4. Photoelectrochemical studies of dye-sensitized solar cells using organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Marinado, Tannia

    2009-10-15

    The dye-sensitized solar cell (DSC) is a promising efficient low-cost molecular photovoltaic device. One of the key components in DSCs is the dye, as it is responsible for the capture of sunlight. State-of-the-art DSC devices, based on ruthenium dyes, show record efficiencies of 10-12 %. During the last decade, metal-free organic dyes have been extensively explored as sensitizers for DSC application. The use of organic dyes is particularly attractive as it enables easy structural modifications, due to fairly short synthetic routes and reduced material cost. Novel dye should in addition to the light-harvesting properties also be compatible with the DSC components. In this thesis, a series of new organic dyes are investigated, both when integrated in the DSC device and as individual components. The evaluation methods consisted of different electrochemical and photoelectrochemical techniques. Whereas the light-harvesting properties of the dyes were fairly easily improved, the behavior of the dye integrated in the DSC showed less predictable photovoltaic results. The dye series studied in Papers II and IV revealed that their dye energetics limited vital electron-transfer processes, the dye regeneration (Paper II) and injection quantum yield (Paper IV). Further, in Papers III-VI, it was observed that different dye structures seemed to alter the interfacial electron recombination with the electrolyte. In addition to the dye structure sterics, some organic dyes appear to enhance the interfacial recombination, possibly due to specific dye-redox acceptor interaction (Paper V). The impact of dye sterical modifications versus the use of coadsorbent was explored in Paper VI. The dye layer properties in the presence and absence of various coadsorbents were further investigated in Paper VII. The core of this thesis is the identification of the processes and properties limiting the performance of the DSC device, aiming at an overall understanding of the compatibility between the

  5. Characteristics of dye-sensitized solar cells using natural dye

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Shoji, E-mail: furukawa@cse.kyutech.ac.j [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan); Iino, Hiroshi; Iwamoto, Tomohisa; Kukita, Koudai; Yamauchi, Shoji [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan)

    2009-11-30

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such as the dye of red-cabbage, curcumin, and red-perilla. As a result, it was found that the conversion efficiency of the solar cell fabricated using the mixture of red-cabbage and curcumin was about 0.6% (light source: halogen lamp), which was larger than that of the solar cells using one kind of dye. It was also found that the conversion efficiency was about 1.0% for the solar cell with the oxide semiconductor film fabricated using polyethylene glycol (PEG) whose molecular weight was 2,000,000 and red-cabbage dye. This indicates that the cost performance (defined by [conversion efficiency]/[cost of dye]) of the latter solar cell (dye: red-cabbage) is larger by more than 50 times than that of the solar cell using Ruthenium complex, even if the effect of the difference between the halogen lamp and the standard light source is taken into account.

  6. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    Science.gov (United States)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  7. OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION

    Directory of Open Access Journals (Sweden)

    MIRALLES Verónica

    2017-05-01

    Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.

  8. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    Science.gov (United States)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.

  9. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    International Nuclear Information System (INIS)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO 2 . In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO 2 as working electrodes, and the rest are directly mixed TiO 2 paste to obtain dye titanium dioxide.The paste TiO 2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO 2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO 2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO 2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization. (paper)

  10. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  11. Fabrication and characterization of mixed dye: Natural and synthetic organic dye

    Science.gov (United States)

    Richhariya, Geetam; Kumar, Anil

    2018-05-01

    Mixed dye from hibiscus sabdariffa and eosin Y was employed in the fabrication of dye sensitized solar cell (DSSC). Nanostructured mesoporous film was prepared from the titanium dioxide (TiO2). The energy conversion efficiency of hibiscus, eosin Y and mixed dye was obtained as 0.41%, 1.53% and 2.02% respectively. Mixed DSSC has shown improvement in the performance of the cell as compared to hibiscus and eosin Y dye due to addition of synthetic organic dye. This illustrates the effect of synthetic organic dyes in performance enhancement of natural dyes. It has been credited to the improved absorption of light mainly in higher energy state (λ = 440-560 nm) when two dyes were employed simultaneously as was obvious from the absorption spectra of dyes adsorbed onto TiO2 electrode. The cell with TiO2 electrode sensitized by mixed dye gives short circuit current density (Jsc) = 4.01 mA/cm2, open circuit voltage (Voc) = 0.67 V, fill factor (FF) = 0.60 and energy conversion efficiency (η) of 2.02%.

  12. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  13. Theoretical study of indoline dyes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Kim, Young Sik

    2010-01-01

    Indoline dye sensitizers were designed and studied theoretically to increase molar extinction coefficients in the visible to near infrared region for solar-cell devices. To gain insight into dye sensitizers' structural, electronic, and optical properties, DFT/TDDFT calculations were performed on a series of dye sensitizers derived from the D149. The good agreement between the experimental and TDDFT calculated absorption spectra of the D149 sensitizer allowed us to provide a detailed assessment of the main spectral features of a series of dye sensitizers. Increase in the conjugation length resulted in a more red-shifted spectral response and less positive oxidation potential than that of the D149. The dye with the dimethylfluorene group showed stronger absorption bands due to a large dipole moment. The calculated dipoles for the dye series correlate well with the observed strong absorption bands of the electronic spectra. These results provided useful clues for the molecular engineering of efficient organic dye sensitizers.

  14. Biochemical study of some environmental pollutants dyes Part II: disperse dyes

    International Nuclear Information System (INIS)

    Shakra, S.; Ahmed, F.A.; Fetyan, N.A.

    2005-01-01

    This work was aimed to develop a method for removal of the dyes color from the textile wastewater that is well be much less costly than the other chemical or physical methods used. It therefore included: 1. Preparation of three disperses dyes. 2. Isolation of dyes degradable microorganisms from wastewater effluents and soil after adding 200 ppm of each dye individually. 3. Decolorisation and biodegradation of the dyes in liquid culture of the isolated bacteria (Bacillus thuringiensis). 4. Identification of the probable byproducts by different instruments. 5. Toxicity assessment of the dyes and their biodegraded products

  15. Synthesis, characterization and dyeing behavior of heterocyclic acid dyes and mordent acid dyes on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    Patel Hitendra M.

    2012-01-01

    Full Text Available Novel heterocyclic acid and mordent acid dyes were synthesized by the coupling of diazonium salt solution of different aromatic amines with 2- butyl-3-(4-hydroxybenzoylbenzofuran. The resulting heterocyclic acid dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1HNMR, 13C-NMR spectral studies and UV- visible spectroscopy. The dyeing performance of all the heterocyclic acid dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness.

  16. Studies on Dyeing Performance of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2,4-Dihydroxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2009-01-01

    Full Text Available Novel acid azo and mordent acid azo dyes have been prepared by the coupling of diazo solution of different aminonaphthol sulphonic acids and aromatic amino acids with 2,4-dihydroxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structure property relationship. The dyeing assessments of all the dyes were evaluated on wool and silk textile fibers. The dyeing of chrome pretreated wool and silk have also been monitored. The result shows that better hue was obtained on mordented fiber. Results of bactericidal studies of chrome pretreated fibers revealed that the toxicity of mordented dyes against bacteria is fairly good. Dyeing on wool and silk fibers resulted in yellowish pink to reddish brown colourations having excellent light fastness and washing fastness.

  17. WATERLESS DYEING [REVIEW

    Directory of Open Access Journals (Sweden)

    DEVRENT Nalan

    2015-05-01

    Full Text Available The textile industry is believed to be one of the biggest consumers of water. Water consumption and exhaustion in dyeing textile materials in conventional methods is an important environmental problem. The cost of waste water treatment will cause a prominent problem in the future as it does today. Increasing consideration of ecologic consequences of industrial processes as well as legislation enforcing the avoidance of environmental problems have caused a reorientation of thinking and promoted projects for replacement of conventional technologies. One of these new technologies is dyeing in supercritical fluids. Dyeing with supercritical carbon dioxide is a favourable concept considering the value of water as a natural resource and the cost of waste water treatment. This dyeing method offers many advantages over conventional aqueous dyeing: During this dyeing process no water is used, therefore there is no waste water problem, no other chemicals are required; the carbon dioxide can be recycled; the dystuff which is not adsorbed on the substrate can be collected and reused; The necessary energy consumption in this process is relatively lower than is needed to heat water in conventional methods of dyeing. Due to unnecessary of drying process, it helps to save both energy and time; and dyeing cycle is shorter compared with traditional methods. In addition carbon dioxide is non-toxic and non-flammable. Supercritical fluid, supercritical dyeing, disperse dyestuffs, solid-fluid equilibrium

  18. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  19. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho

    2011-01-05

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance. © 2011 Wiley-VCH Verlag GmbH& Co. KGaA.

  20. Dyes for displays

    Science.gov (United States)

    Claussen, U.

    1984-01-01

    The improvement of contrast and visibility of LCD by two different means was undertaken. The two methods are: (1) development of fluorescent dyes to increase the visibility of fluorescent activated displays (FLAD); and (2) development of dichroic dyes to increase the contrast of displays. This work was done in close cooperation with the electronic industry, where the newly synthesized dyes were tested. The targets for the chemical synthesis were selected with the help of computer model calculations. A marketable range of dyes was developed. Since the interest of the electronic industries concerning FLAD was low, the investigations were stopped. Dichroic dyes, especially black mixtures with good light fastness, order parameter, and solubility in nematic phases were developed. The application of these dyes is restricted to indoor use because of an increase of viscosity below -10 C. Applications on a technical scale, e.g., for the automotive industry, will be possible if the displays work at temperatures down to -40 C. This problem requires a complex optimization of the dye/nematic phase system.

  1. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  2. Ultrasound for low temperature dyeing of wool with acid dye.

    Science.gov (United States)

    Ferrero, F; Periolatto, M

    2012-05-01

    The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents. Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis. Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60°C, a temperature process strongly lower than 98°C, currently used in industry

  3. DYEING COTTON WITH EISENIA BICYCLIS AS NATURAL DYE USING DIFFERENT BIOMORDANTS

    Directory of Open Access Journals (Sweden)

    BONET Mª Ángeles

    2015-05-01

    Full Text Available Natural dyes are known for their use in coloring of food substrate, leather as well as natural protein fibers like wool, silk and cotton as major areas of application since pre-historic times. Nowadays, there has been revival of the growing interest on the application of natural dyes on natural fibers due to worldwide environmental consciousness. Some researchers focus their studies on the improvement of these dyes using mordants. Most works use metallic mordants like aluminum or iron are used, but some of them are hazardous. In this work we used a biomordant to solve environmental problems caused by metallic mordants. The effects of chitosan weight molecular in mordanting on the dyeing characteristics and the UV protection property were examined in this study. Chitosan mordanted Eisenia Bicyclis dyed cotton showed better dyeing characteristic and higher UV protection property compared with undyed cotton fabric. To analyze the differences of the dyeing, reflection spectrophotometer was used, evaluating the results of CIELAB color difference values and the strength color (in terms of K/S value. We conclude that the type of chitosan used affect the dyeing efficiency and the UV protection, showing different behavior between dye sample using chitosan with low or medium molecular weight.

  4. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  5. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    Science.gov (United States)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  6. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  7. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  8. Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%.

    Science.gov (United States)

    Kamel, M M; Helmy, H M; Mashaly, H M; Kafafy, H H

    2010-01-01

    The dyeing of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% has been studied with both conventional and ultrasonic techniques. The effect of dye concentration, dye bath pH, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with both techniques were compared. Colour strength values obtained were found to be higher with ultrasonic than with conventional heating. The results of fastness properties of the dyed fabrics were studied. X-ray and Scanning Electron Microscope SEM were carried out on dyed samples using both methods of dyeing to find out an explanation for the better dyeability of acrylic fabrics with (US) method. Dyeing kinetics of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% using conventional and ultrasonic conditions were compared. The time/dye-uptake isotherms are revealing the enhanced dye-uptake in the second phase of dyeing. The values of dyeing rate constant, half-time of dyeing and standard affinity and ultrasonic efficiency have been calculated and discussed.

  9. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    International Nuclear Information System (INIS)

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B.; Freeman, Harold S.; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC–ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: ► Aqueous solutions of Disperse Red 1 were treated with chlorine. ► The chlorination products of Disperse Red 1 were identified using LC–ESI-MS/MS. ► Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. ► The chlorinated dye was more mutagenic than the dye itself. ► Chlorination should be avoided in effluents containing azo-dyes.

  10. Direct thermal dyes

    Science.gov (United States)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  11. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  12. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    International Nuclear Information System (INIS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-01-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO 2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO 2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO 2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively. (paper)

  13. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  14. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    Science.gov (United States)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  15. Acid-base indicator properties of dyes from local plants I: Dyes from ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Acid-base indicator properties of dyes from local plants I: Dyes from Basella alba. (Indian spinach) and ... solution, which change colour immediately after the equivalence point has .... The pH ranges over which the dyes change colour were ...

  16. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    Energy Technology Data Exchange (ETDEWEB)

    Vacchi, Francine Inforcato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil); Ormond, Alexandra B.; Freeman, Harold S. [Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Zocolo, Guilherme Juliao; Zanoni, Maria Valnice Boldrin [Departamento de Quimica Analitica, Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Quimica de Araraquara, Araraquara, SP 14801-970 (Brazil); Umbuzeiro, Gisela, E-mail: giselau@ft.unicamp.br [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil)

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: Black-Right-Pointing-Pointer Aqueous solutions of Disperse Red 1 were treated with chlorine. Black-Right-Pointing-Pointer The chlorination products of Disperse Red 1 were identified using LC-ESI-MS/MS. Black-Right-Pointing-Pointer Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. Black-Right-Pointing-Pointer The chlorinated dye was more mutagenic

  17. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  18. Novel diyne-bridged dyes for efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jing-Kun, E-mail: fjk@njust.edu.cn [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China); Sun, Tengxiao [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China); Tian, Yi [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Zhang, Yingjun, E-mail: ZhangYingjun@hec.cn [HEC Pharm Group, HEC R& D Center, Dongguan, 523871 (China); Jin, Chuanfei [HEC Pharm Group, HEC R& D Center, Dongguan, 523871 (China); Xu, Zhimin; Fang, Yu; Hu, Xiangyu; Wang, Haobin [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China)

    2017-07-01

    Three new metal free organic dyes (FSD101-103) were synthesized to investigate the influence of diyne unit on dye molecules. FSD101 and FSD102 with diyne unit and FSD103 with monoyne unit were applied as sensitizers in the dye-sensitized solar cells (DSSCs). The optical and electrochemical properties, theoretical studies, and photovoltaic parameters of DSSCs sensitized by these dyes were systematically investigated. By replacing the monoyne unit with a diyne unit, FSD101 exhibited broader absorption spectrum, lower IP, higher EA, lower band gap energy, higher oscillator strength, more efficient electron injection ability, broader IPCE response range and higher τ{sub e} in comparison with FSD103. Hence, DSSC sensitized by FSD101 showed higher J{sub sc} and V{sub oc} values, and demonstrated a power conversion efficiency of 3.12%, about 2-fold as that of FSD103 (1.55%). FSD102 showed similar results as FSD101, with a power conversion efficiency of 2.98%, despite a stronger electron withdraw cyanoacrylic acid group was introduced. This may be due to the lower efficiency of the electron injection from dye to TiO{sub 2} and lower τ{sub e} of FSD102 than that of FSD101. These results indicate that the performance of DSSCs can be significantly improved by introducing a diyne unit into this type of organic dyes. - Highlights: • Diyne-bridge was introduced into dye molecules by a transition-metal-free protocol. • Power conversion efficiency grows from 1.55% to 3.12% by replacing monoyne unit with diyne unit. • FSD101 with diyne unit shows the highest electron lifetime resulting in a higher V{sub oc}.

  19. Natural dyes as photosensitizers for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Sancun; Wu, Jihuai; Huang, Yunfang; Lin, Jianming [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021 (China)

    2006-02-15

    The dye-sensitized solar cells (DSC) were assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers. The I{sub SC} from 1.142mA to 0.225mA, the V{sub OC} from 0.551V to 0.412V, the fill factor from 0.52 to 0.63, and P{sub max} from 58{mu}W to 327{mu}W were obtained from the DSC sensitized with natural dye extracts. In the extracts of natural fruit, leaves and flower chosen, the black rice extract performed the best photosensitized effect, which was due to the better interaction between the carbonyl and hydroxyl groups of anthocyanin molecule on black rice extract and the surface of TiO{sub 2} porous film. The blue-shift of absorption wavelength of the black rice extract in ethanol solution on TiO{sub 2} film and the blue-shift phenomenon from absorption spectrum to photoaction spectrum of DSC sensitized with black rice extract are discussed in the paper. Because of the simple preparation technique, widely available and low cheap cost natural dye as an alternative sensitizer for dye-sensitized solar cell is promising. (author)

  20. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  1. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  2. Dataset on analysis of dyeing property of natural dye from Thespesia populnea bark on different fabrics

    Directory of Open Access Journals (Sweden)

    Kuchekar Mohini

    2018-02-01

    Full Text Available The natural dyes separated from plants are of gaining interest as substitutes for synthetic dyes in food and cosmetics. Thespesia populnea (T. populnea is widely grown plant and used in the treatment of various diseases. This study was aimed to separate natural dye from T. populnea bark and analysis of its dyeing property on different fabrics. In this investigation pharmacognostic study was carried out. The pharmacognostic study includes morphological study, microscopical examination, proximate analysis along with the phytochemical study. The dyeing of different fabric was done with a natural dye extracted from T. populnea bark. The fabrics like cotton, butter crep, polymer, chiken, lone, ulene and tarakasa were dye with plant extract. The various evaluation parameters were studied. It includes effect of washing with water, effect of soap, effect of sunlight, effect of alum, effect of Cupric sulphate, microscopical study of fabrics and visual analysis of dyeing by common people were studied. In results, natural dye isolated from T. populnea bark could be used for dyeing fabrics with good fastness properties. The studies reveals that, the dyeing property of fabrics after washing with water and soap, exposed to sunlight does not get affected. It was observed that cotton and tarakasa stains better as compared with other fabrics. It was concluded that the ethanolic extract having good dyeing property. Keywords: Plant, Thespesia populnea, Bark, Natural dye, Fabrics

  3. Synthesis of azo pyridone dyes

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2011-01-01

    Full Text Available Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were used rapidly since 1970 in inks for the heat-transfer printing of polyester. The main synthetic route for the preparation of azo dyes is coupling reaction between an aromatic diazo compound and a coupling component. Of all dyes manufactured, about 60% are produced by this reaction. Arylazo pyridone dyes can be prepared from pyridone moiety as a coupling component, where substituent can be on nitrogen, and diazonim salts which can be derived from different substituted anilines or other heterocyclic derivatives. In addition, arylazo dyes containing pyridone ring can be prepared from arylazo diketones or arylazo ketoesters (obtained by coupling β-diketones or β-ketoesters with diazonim salts by condensation with cyanoacetamide. Disazo dyes can be prepared by tetrazotizing a dianiline and coupling it with a pyridone or by diazotizing aniline and coupling it with a dipyridone. Trisazo dyes can be also prepared by diazotizing of aniline and coupling it with a tripyridone or by hexazotizing a trianiline and coupling it with a pyridone. The main goal of this paper is to give a brief review on the synthesis of arylazo pyridone dyes due to the lack of such reviews. In addition, some properties of arylazo pyridone dyes as light fastness and azo-hydrazon tautomerism are disccused.

  4. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.; Yum, Jun-Ho; Hoke, Eric T.; Jun, Young Chul; Péchy, Peter; Torres, Tomás; Brongersma, Mark L.; Nazeeruddin, Md. Khaja; Grätzel, Michael; McGehee, Michael D.

    2010-01-01

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3

  5. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Science.gov (United States)

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    Science.gov (United States)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  7. Use of dyes in cariology.

    Science.gov (United States)

    van de Rijke, J W

    1991-04-01

    The property of dyes to enhance contrast by their colour can be used in clinical dentistry and in investigations in vitro or in vivo. They have been used for indication of affected dental tissues, improvement of diagnostic methods, enhancement of patient awareness and information about specific processes. The development of particular dye systems, aimed at clinical application, is often laborious because of toxic effects, lack of specificity, irreversible staining or difficulties with removal of the dye. Clinically used dyes are often visually observed, which means a qualitative assessment of the staining, while quantification of the staining, if performed at all, is confined mostly to laboratory experiments. In this paper the application of dyes, arranged according to their specific purpose in cariology, is discussed, and a brief historical overview is given of the development of two particular dye applications for which commercial dye systems are now available. If certain requirements are met, dyes can be of great help in detection and quantification when used with several diagnostic methods.

  8. Dye-sensitized solar cells with natural dyes extracted from achiote seeds

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ortiz, N.M.; Vazquez-Maldonado, I.A.; Azamar-Barrios, J.A.; Oskam, G. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida, Yuc. 97310 (Mexico); Perez-Espadas, A.R.; Mena-Rejon, G.J. [Laboratorio de Quimica Organica de Investigacion, Facultad de Quimica, Universidad Autonoma de Yucatan, Merida, Yuc. 97150 (Mexico)

    2010-01-15

    We have explored the application of natural dyes extracted from the seeds of the achiote shrub (Bixa orellana L.) in dye-sensitized solar cells (DSCs). The main pigments are bixin and norbixin, which were obtained by separation and purification from the dark-red extract (annatto). The dyes were characterized using {sup 1}H-NMR, FTIR spectroscopy, and UV-Vis spectrophotometry. Solar cells were prepared using TiO{sub 2} and ZnO nanostructured, mesoporous films and the annatto, bixin, and norbixin as sensitizers. The best results were obtained with bixin-sensitized TiO{sub 2} solar cells with efficiencies of up to 0.53%, illustrating the importance of purification of dyes from natural extracts. (author)

  9. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Md. Khalid Hossain

    Full Text Available In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV–Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell’s (DSSC photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric. Keywords: DSSC, Natural dye, TiO2 photoanode, Dye extracting solvent, Dye-adsorption time

  10. Development auxiliaries for dyeing polyester with disperse dyes at low temperatures

    Science.gov (United States)

    Carrion-Fite, F. J.; Radei, S.

    2017-10-01

    High-molecular weight organic compounds known as carriers are widely used to expedite polyester dyeing at atmospheric pressure at 100 °C. However, carriers are usually poorly biodegradable and can partially plasticize fibres. Also, dyeing at temperatures above 100 °C in the absence of a carrier entails using expensive equipment. In this work, we developed an alternative method for dyeing polyester at temperatures below 100 °C that reduces energy expenses, dispenses with the need to invest in new equipment and avoids the undesirable effects of non-biodegradable carriers. The method uses disperse dyes in a microemulsion containing a low proportion of a non-toxic organic solvent and either of two alternative development auxiliaries (coumarin and o-vanillin) that is prepared with the aid of ultrasound.

  11. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2012-04-01

    Full Text Available Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used. The new dye-bath formulation using the organic salt gave more than 90% dye-fixation. Traditional pad-steam process of dyeing cotton with reactive dyes requires the use of inorganic electrolyte, sodium-chloride, and alkali, sodium-carbonate, to ensure effective dye consumption and fixation. These inorganic chemicals when drained generate heavy contents of dissolved solids and oxygen demand in the effluent leading to environmental pollution. Thus, Tetrasodium N, N-biscarboxylatomethyl-L-Glutamate was used in place of inorganic electrolyte and alkali to improve effluent quality. A significant increase in dye-fixation and ultimate color-yield was obtained with same colorfastness properties of the dyed fabric comparing to the traditional pad-steam dye-bath formulation.

  12. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Chennai-603110, Tamilnadu (India)

    2016-05-23

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2} and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.

  13. Green dyeing process of modified cotton fibres using natural dyes extracted from Tamarix aphylla (L.) Karst. leaves.

    Science.gov (United States)

    Baaka, Noureddine; Mahfoudhi, Adel; Haddar, Wafa; Mhenni, Mohamed Farouk; Mighri, Zine

    2017-01-01

    This research work involves an eco-friendly dyeing process of modified cotton with the aqueous extract of Tamarix aphylla leaves. During this process, the dyeing step was carried out on modified cotton by several cationising agents in order to improve its dyeability. The influence of the main dyeing conditions (dye bath pH, dyeing time, dyeing temperature, salt addition) on the performances of this dyeing process were studied. The dyeing performances of this process were appreciated by measuring the colour yield (K/S) and the fastness properties of the dyed samples. The effect of mordant type with different mordanting methods on dyeing quality was also studied. The results showed that mordanting gave deeper shades and enhanced fastness properties. In addition, environmental indicators (BOD 5 , COD and COD/BOD 5 ) were used to describe potential improvements in the biodegradability of the dyebath wastewater. Further, HPLC was used to identify the major phenolic compounds in the extracted dye.

  14. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brian E.; Hoke, Eric T.; Baranoff, Etienne; Zakeeruddin, Shaik M.; Nazeeruddin, Mohammad K.; Torres, Tomas; McGehee, Michael D.; Grä tzel, Michael

    2011-01-01

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse

  15. In-situ Decolorization of Residual Dye Effluent in Textile Jet Dyeing Machine by Ozone

    Directory of Open Access Journals (Sweden)

    Irfan Ahmed Shaikh

    2014-12-01

    Full Text Available In this study, a new idea of decolourization was investigated in which residual dyeing effluent from textile dyeing process was treated using O3 in the same machine where it was generated. The novelty comes from the idea of doing dyeing and treatment simultaneously. At the completion of dyeing process, O3 gas was injected directly into the machine to remove colour and COD from the wastewater. To evaluate the effectiveness of new method, pilot-scale studies were performed, and decolourization of residual dyeing effluents containing C.I. Reactive Orange 7, C.I. Reactive Blue 19, and C.I. Reactive Black 5 was carried out in specially built textile jet dyeing machine. The results showed that almost 100% colour removal and 90% COD reduction were achieved when process conditions such as pH, dye concentration (mg/L, ozone production rate (g/hr, and temperature were optimized. The study concludes that new method has a great potential to eliminate the need of a separate end-of-the-pipe wastewater treatment system, thus offering an on-site and cost-effective solution.

  16. Performance variation from triphenylamine- to carbazole-triphenylamine-rhodaniline-3-acetic acid dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chien-Hsin, E-mail: yangch@nuk.edu.tw [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lin, Wen-Churng [Department of Environmental Engineering, Kun Shan University, Tainan 710, Taiwan (China); Wang, Tzong-Liu; Shieh, Yeong-Tarng; Chen, Wen-Janq; Liao, Shao-Hong; Sun, Yu-Kuang [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China)

    2011-10-17

    Highlights: {yields} We synthesized an organic dye of carbazole-rhodaniline-3-acetic acid-triphenylamine. {yields} A dye-sensitized solar cell is fabricated using this dye with efficiency of 4.64%. {yields} Carbazole donor in the dye molecule provides electron in increasing efficiency. {yields} Two rhodaniline-3-acetic acids play a key role in increasing efficiency. {yields} AC impedance proves this dye's effect on enhancing charge transfer in TiO{sub 2}. - Abstract: Organic dyes have been synthesized which contain an extra-electron donor (carbazole) and electron acceptors (rhodaniline-3-acetic acid) on triphenylamines (TPA). Photophysical, electrochemical, and theoretical computational methods have categorized these compounds. Nanocrystalline TiO{sub 2}-based dye-sensitized solar cells (DSSCs) are fabricated using these dye molecules as light-harvesting sensitizers. The overall efficiency of sensitized cells has 4.64% relative to a cis-di(thiocyanato)-bis(2,2'-bipyridyl)-4,4'-dicarboxylate ruthenium (II) (N3 dye)-sensitized device (7.83%) fabricated and measured under the same conditions. Carbazole-electron donation in the dye molecules plays a key role in the increased efficiency. Two rhodaniline-3-acetic acid groups appear to help convey the charge transfer from the excited dye molecules to the conduction band of TiO{sub 2}, leading to a higher efficiency of devices using such a dye. Electrochemical impedance supports this dye's effect on enhancing charge transfer in TiO{sub 2} (e{sup -}). Computations on this dye compound also indicate the larger charge transfer efficiency in the electronically excited state.

  17. Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H., E-mail: f10381@ntut.edu.t [Department of Mechanical Engineering, National Taipei University of Technology, No. 1. Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Wu, H.M. [Department of Materials Engineering, Tatung University, No. 40, Sec. 3, Jhongshan N. Rd. Jhongshan District, Taipei City 104, Taiwan (China); Chen, T.L. [Department of Industrial Design, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Huang, K.D. [Department of Vehicle Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Jwo, C.S. [Department of Energy and Air-Conditioning Refrigeration Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Lo, Y.J. [Department of Mechanical Engineering, National Taipei University of Technology, No. 1. Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China)

    2010-04-16

    This study used spinach extract, ipomoea leaf extract and their mixed extracts as the natural dyes for a dye-sensitized solar cell (DSSC). Spinach and ipomoea leaves were first placed separately in ethanol and the chlorophyll of these two kinds of plants was extracted to serve as the natural dyes for using in DSSCs. In addition, the self-developed nanofluid synthesis system prepared a TiO{sub 2} nanofluid with an average particle size of 50 nm. Electrophoresis deposition was performed to let the TiO{sub 2} deposit nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO{sub 2} thin film with the thickness of 11.61 {mu}m. This TiO{sub 2} thin film underwent sintering at 450 {sup o}C to enhance the compactness of thin film. Finally, the sintered TiO{sub 2} thin film was immersed in the natural dye solutions extracted from spinach and ipomoea leaves, completing the production of the anode of DSSC. This study then further inspected the fill factor, photoelectric conversion efficiency and incident photon current efficiency of the encapsulated DSSC. According to the experimental results of current-voltage curve, the photoelectric conversion efficiency of the DSSCs prepared by natural dyes from ipomoea leaf extract is 0.318% under extraction temperature of 50 {sup o}C and pH value of extraction fluid at 1.0. This paper also investigated the influence of the temperature in the extraction process of this kind of natural dye and the influence of pH value of the dye solution on the UV-VIS patterns absorption spectra of the prepared natural dye solutions, and the influence of these two factors on the photoelectric conversion efficiency of DSSC.

  18. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  19. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  20. Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials.

    Science.gov (United States)

    De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard

    2018-03-16

    Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.

  1. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Science.gov (United States)

    Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.

    In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.

  2. Extraction of dye

    African Journals Online (AJOL)

    Dyes of natural origins are great for color appreciation as any variation in the concentration of dye, mordant, type of water, soil and climate give variations in ... Grey scale and blue dyed silk were used for color fastness rating. ..... Down to Earth.

  3. Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2-hydroxy-4-methoxybenzophenone on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    DHIRUBHAI J. DESAI

    2010-05-01

    Full Text Available Novel acid mono azo and mordent acid mono azo dyes were synthesised by the coupling of diazonium salt solution of different aromatic amines with 2-hydroxy-4-methoxybenzophenone. The resulting dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1H-NMR and UV–visible spectroscopy. The dyeing performance of all the dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre-treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness. The results of antibacterial studies of chrome pre-treated fabrics revealed that the toxicity of mordented dyes against Escherichia coli, Staphylococcus aureus, Salmonella typhi, Bacillus subtilis bacteria was fairly good.

  4. BODIPYs for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Klfout, Hafsah; Stewart, Adam; Elkhalifa, Mahmoud; He, Hongshan

    2017-11-22

    BODIPY, abbreviation of boron-dipyrromethene, is one class of robust organic molecules that has been used widely in bioimaging, sensing, and logic gate design. Recently, BODIPY dyes have been explored for dye-sensitized solar cells (DSCs). Studies demonstrate their potential as light absorbers for the conversion of solar energy to electricity. However, their photovoltaic performance is inferior to many other dyes, including porphyrin dyes. In this review, several synthetic strategies of BODIPY dyes for DSCs and their further functionalization are described. The photophysical properties of dye molecules and their photovoltaic performances in DSCs are summarized. We aim to provide readers a clear picture of the field and expect to shed light on the next generation of BODIPY dyes for their applications in solar energy conversion.

  5. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    Science.gov (United States)

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  6. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    International Nuclear Information System (INIS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-01-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash –SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties. - Highlights: ► The optimum absorbed dose obtained for surface modification of cotton (RC) is 8 kGy. ► Irradiation has enhanced antioxidant, anti bacterial and hemolytic activities. ► Optimum dyeing conditions are 60 min dyeing time and 8 g/L salt concentration. ► At optimum conditions, color strength and fastness properties are enhanced.

  7. DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    JIE XU

    2010-02-01

    Full Text Available A series of indoline dyes with promising efficiency for dye-sensitized solar cells (DSSCs were studied using the density functional theory at the B3LYP/6-31g (d level. The ground-state geometries, electronic structures and absorption spectra of these dyes are reported. The calculated results indicate that the energy levels of the HOMOs and LUMOs of these dyes are advantageous for electron injection. Their intense and broad absorption bands as well as favorable excited-state energy levels are key factor for their outstanding efficiencies in DSSCs.

  8. Synthesis and dyeing performance of bisazo disperse dyes based on 3-[4-(4-amino-2-chlorophenoxyanilino]phenol

    Directory of Open Access Journals (Sweden)

    Rajesh H. Parab

    2016-09-01

    Full Text Available The present communication aims to develop bisazo disperse dyes based on 3-[4-(4-amino-2-chlorophenoxyanilino]phenol (DAP both as a coupling component as well as a diazonium salt. Coupling reaction of DAP was carried out with a diazonium salt of 4-aminoacetanilide to yield a monoazo disperse dye, and then it was further used as a diazonium salt and coupled with a different aromatic phenol to synthesize bisazo disperse dyes. All the disperse dyes were characterized by elemental analysis, IR, NMR and UV–Visible spectral studies with a view to determine their chemical structure. The dyeing ability of these bisazo disperse dyes has been evaluated in terms of their dyeing behavior and fastness properties on different fabrics.

  9. Natural dyes versus lysochrome dyes in cheiloscopy: A comparative evaluation.

    Science.gov (United States)

    Singh, Narendra Nath; Brave, V R; Khanna, Shally

    2010-01-01

    Cheiloscopy is the study of lip prints. Lip prints are genotypically determined and are unique, and stable. At the site of crime, lip prints can be either visible or latent. To develop lip prints for study purpose various chemicals such as lysochrome dyes, fluorescent dyes, etc. are available which are very expensive. Vermilion (Sindoor used by married Indian women) and indigo dye (fabric whitener) are readily available, naturally derived, and cost-effective reagents available in India. To compare the efficacy of sudan black, vermilion, and indigo in developing visible and latent lip prints made on bone china cup, satin fabric, and cotton fabric. Out of 45 Volunteers 15 lip prints were made on bone China cup 15 lip prints on Satin fabric and 15 on Cotton fabric. Sudan black, vermilion and indigo were applied on visible and latent lip prints and graded as good (+,+), fair (+), and poor (-) and statistically evaluated. The vermilion and indigo dye gives comparable results to that of sudan black for developing visible and latent lip prints.

  10. Survery on Actual Conditions of Food Dyes

    OpenAIRE

    佐藤, ひろみ

    1981-01-01

    Many food dyes are widely used as food additives in Japan, and many investigations have been pointed the problems of safety of these food dyes used in Japanese food. There are two types of commercial food dyes, one is synthetic dyes and the other is natural dyes.Recently Japanese food is not stained so colourfully, but it is stained faintly in colour near to natural food by using of mixed synthetic dyes. On their hand, many consumers have a tendency to prefer natural food dyes because they ha...

  11. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.; Hoke, Eric T.; Armstrong, Paul B.; Yum, Jun-Ho; Comte, Pascal; Torres, Tomá s; Fré chet, Jean M. J.; Nazeeruddin, Md Khaja; Grä tzel, Michael; McGehee, Michael D.

    2009-01-01

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near

  12. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  13. Eco-friendly synthesis of 4-4-diaminodiphenylurea, a dye intermediate and direct dyes derived from it

    International Nuclear Information System (INIS)

    Amjad, R.; Khan, S.R.; Naeem, M.; Sohaib, M.; Munawar, M.A.

    2011-01-01

    A rapid, environmental friendly and highly efficient method for the synthesis of 4-4/sup '/-diaminodiphenyl- urea and direct dyes derived form it has been reported. The reported method is environmentally friendly, as it doesn't involve the usage of environmentally hazardous material like phosgene and tri phosgene. Novel azo dyes have been prepared by the coupling of 4-4/sup '/-Diamino diphenylurea with various couplers. Structure elucidation of the synthesized dyes was carried out by IR, NMR, Elemental analysis, and confirmation was made by Mass Spectrometry. The dyeing performance of these dyes was assessed on cotton fabric. The dye bath exhaustion, sublimation and fastness properties were also determined. The dyed fabric showed moderate to good light fastness and very good to excellent fastness properties for washing, rubbing, perspiration, and sublimation. (author)

  14. Photodegradation in multiple-dye luminescent solar concentrators

    International Nuclear Information System (INIS)

    Mooney, Alex M.; Warner, Kathryn E.; Fontecchio, Paul J.; Zhang, Yu-Zhong; Wittmershaus, Bruce P.

    2013-01-01

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield

  15. Development of AVLIS dye laser system

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Nakayama, Tsuyoshi; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    CVL pumped single mode dye laser was performed. It was found that pressure tuning has some excellent feature in comparison to mechanical tuning in dye laser frequency control. For evaluation of dye laser amplifier, two-dimensional rate equation was proposed. Calculated data by this equation agreed with experimental data in large diameter input dye laser beam condition. (author)

  16. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  17. The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2017-11-01

    Anthocyanin and chlorophyll dyes have been blended as the photosensitizer of Dye-Sensitized Solar Cell (DSSC). The results study showed the effect of chemical bond dyes on TiO2 and the efficiency of DSSC. Ratio blend of the anthocyanin and chlorophyll dyes are 1:1. The absorbance of dyes and TiO2 were characterized using UV-Vis Spectrophotometer. The chemical bonds contained in TiO2-dyes were characterized using FT-IR spectrophotometer. The efficiency of DSSC was calculated using I-V meter. The absorption spectra of chlorophyll: anthocyanin blend dye solutions and TiO2 films can increase after the dye adsorption. Absorbance characterization of anthocyanin and chlorophyll dye blend solutions showed three peaks at the wavelength of 412 nm; 535.5 nm; and 656.5 nm. Absorbance characterization of spinach before being blend with anthocyanin dyes solutions showed two peaks at the wavelength of 431 nm and 665.5 nm. The absorption spectra of TiO2 films can increase after the dyes adsorption at the wavelength of 400 nm. FT-IR spectra of TiO2 founded the functional groups C-Br, C=C, and O-H. The functional groups founded in anthocyanin: chlorophyll dye blended on the surface of TiO2 are C-Br, C-O, O-H, C-H, C=C, C=O, and O-H. The result showed that the greatest efficiency of 0.0544% at dye red cabbage-spinach. Adsorption blends of anthocyanin and chlorophyll dyes on the surface of TiO2 can be used as the photosensitizer for DSSC.

  18. Synthesis, dyeing performance on polyester fiber and antimicrobial studies of some novel pyrazolotriazine and pyrazolyl pyrazolone azo dyes

    Directory of Open Access Journals (Sweden)

    Hala F. Rizk

    2017-05-01

    Full Text Available 5-Amino-4-heterylazo-3-phenyl-1H-pyrazoles (2a–d were diazotized and coupled with malononitrile to give pyrazoloazo malononitrile which by heating in glacial acetic acid gave novel pyrazolo[5,1-c][1,2,4]triazine dyes (3a–d. Also, some diazopyrazolyl pyrazolone dyes (4a–h were synthesized by diazotization of 2a–d and coupled with some pyrazolone derivatives. The structure of the synthesized dyes was determined by elemental analysis and spectral data. All the synthesized compounds were applied as disperse dyes and their dyeing performance on polyester fabric was studied. The fastness and colorimetric properties were measured. The results revealed that the monoazo dyes have good fastness and good to moderate affinity to polyester fabric than diazo dyes. In addition, the synthesized dyes were screened for their antimicrobial activities against Staphylococcus aureus, Pseudomonas aeruginosa (Gram positive, Bacillus subtitles, Escherichia coli (Gram negative and Candida albicans, Aspergillus niger (Fungi. The results revealed that most of the prepared dyes have high antibacterial activity.

  19. Inclusion of aggregation effect to evaluate the performance of organic dyes in dye-sensitized solar cells

    Science.gov (United States)

    Sun, Kenan; Zhang, Weiyi; Heng, Panpan; Wang, Li; Zhang, Jinglai

    2018-05-01

    Two new indoline-based D-A-π-A dyes, D3F and D3F2 (see Scheme 1), are developed on the basis of the reported D3 by insertion of one or two F atoms on benzothiadiazole group. Our central aim is to explore high-efficiency organic dyes applied in dye-sensitized solar cells by inclusion of a simple group rather than by employment of new complicated groups. The performance of two new designed organic dyes, D3F and D3F2, is compared with that of D3 from various aspects including absorption spectrum, light harvesting efficiency, driving force, and open-circuit voltage. Besides the isolated dye, the interfacial property between dye and TiO2 surface is studied. D3F and D3F2 do not show absolute superiority than D3 not only for the isolated dyes but also for the monomeric adsorption system. However, D3F and D3F2 would effectively reduce the influence of aggregation resulting in the much smaller intermolecular electronic coupling. Although the aggregation has attracted much attention recently, it is studied alone in most of studies. To comprehensively evaluate the performance of dye-sensitized solar cells, it is necessary to consider aggregation along with electron injection time from dye into TiO2 rather than only static items, such as, band gap and absorption region.

  20. Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan-Hong; Liu, Rui-Rui [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Zhu, Kai-Li [College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000, Gansu (China); Song, Yan-Lin [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Geng, Zhi-Yuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China)

    2016-09-15

    A novel organic dye with 2D-A structure has been designed and calculated whereby density functional theory (DFT) and time-dependent density functional theory (TD-DFT) for dye-sensitized solar cells. The double-donor branched dye which was consisted of two separated light-harvesting moieties was beneficial to photocurrent generation. First, we discussed the effects of different donor chains on photoelectric performance in the dye molecule, using the DTP-B8 which was a previously reported structure as the reference. Only to conclude that the suitable length can achieve the satisfactory efficiency. Secondly, to modify and sift potential sensitizers further, three series of dyes (BC-series, CB-series and CC-series) were designed and characterized. The increased molar extinction coefficient and the red-shifted λ{sub max} was attributed to an increasing in electron conjunction. This work presented a new route to design sensitizers that provide two channels for donating more electrons and improve the final efficiency. It is expected to provide some theoretical guidance on designing and synthetizing high efficiency photosensitive dye in the future experiments. - Highlights: • A novel organic dye with 2D-A structure was designed and characterized. • The double-donor branched dye was consisted of two separated light-harvesting paths. • The double-donor branched dye was beneficial to photocurrent generation. • The molar extinction coefficient was greatly improved in this novel structure. • Four promising candidates have been screened out.

  1. Radiative characteristics of CVL pumped dye laser

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Uichi; Ishiguro, Takahide

    1987-09-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or ethylene glycol was useful solvent for dye laser.

  2. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    Energy Technology Data Exchange (ETDEWEB)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  3. Bioremediation of coractive blue dye by using Pseudomonas spp. isolated from the textile dye wastewater

    Science.gov (United States)

    Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.

  4. Radiative characteristics of CVL pumped dye laser

    International Nuclear Information System (INIS)

    Kubo, Uichi; Ishiguro, Takahide.

    1987-01-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or Ethylene Glycol was useful solvent for dye laser. (author)

  5. Influence of styryl dyes on blood erythrocytes

    Science.gov (United States)

    Nizomov, Negmat; Barakaeva, Mubaro; Kurtaliev, Eldar N.; Rahimov, Sherzod I.; Khakimova, Dilorom P.; Khodjayev, Gayrat; Yashchuk, Valeriy N.

    2008-08-01

    It was studied the influence of F, Sbt, Sil, Sbo monomer and homodimer Dst-5, Dst-10, Dbt-5, Dbt-10, Dil-10, Dbo-10 styryl dyes on blood erythrocytes of white rats. It was shown that the homodimer styryl dyes Dst-5, Dbt-5 and Dbo-10 decrease the erythrocytes quantity by 1.5-2 times more as compared with monomer dyes Sbt and Sbo. The main cause of dyes different action is the different oxidation degree of intracellular hemoglobin evoked by these dyes. It was established that the observed effects was connected with different penetration of these dyes through membrane of erythrocytes and with interaction of these dyes with albumin localized in membranes of cells.

  6. Diffusion dynamics in micro-fluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  7. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez. [Department of Physical Chemistry, University of Seville, Seville (Spain)

    2012-05-21

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH{sub 2}, and -OCH{sub 3}) and two different substituents with steric effect: -CH{sub 2}-CH{sub 2}-CH{sub 2}- and -CH{sub 2}-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH{sub 2} group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH{sub 2}-CH{sub 2}-CH{sub 2}- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH{sub 2}-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  8. Organic dye for highly efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Ito, S.; Graetzel, M. [Institut des Sciences et Ingenierie Chimiques (ISIC), Laboratoire de Photonique et Interfaces (LPI), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Horiuchi, T.; Miura, H. [Technology Research Laboratory, Corporate Research Center, Mitsubishi Paper Mills Limited, 46, Wadai, Tsukuba City, Ibaraki 300-4247 (Japan); Uchida, S. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1-1 Katahira 2-chome, Aoba-ku, Sendai 980-8577 (Japan)

    2005-04-04

    The feasibility of solid-state dye-sensitized solar cells as a low-cost alternative to amorphous silicon cells is demonstrated. Such a cell with a record efficiency of over 4 % under simulated sunlight is reported, made possible by using a new organic metal-free indoline dye as the sensitizer with high absorption coefficient. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  9. Feasibility of solar-pumped dye lasers

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  10. Chemistry of Natural Dyes

    Indian Academy of Sciences (India)

    scientific principles, and the interaction between the dye and the dyed material is ... Dyes are classified based on their structure, source, method of application .... the right source that gives not only beautiful tones, but colourfast shades as well.

  11. Electrophoresis-base dye adsorption into titanium dioxide film for dye sensitized solar cell application

    International Nuclear Information System (INIS)

    Ratno Nuryadi; Zico Alaia Akbar Junior; Lia Aprilia

    2010-01-01

    Dye Sensitized Solar Cell (DSSC) is one of renewable energy sources which has demanded a substitute non renewable energy sources. The most important factor influencing DSSC performance is dye adsorption into semiconductor nano-porous TiO 2 particles. The purpose of this work is to study the effect of dye eosin Y adsorption on DSSC characteristics by an electrophoresis method. As result, Open Circuit Voltage (V oc ) of DSSC increases as the applied voltage of electrophoresis increases. It is also found that the eosin Y absorbance at wavelength of around 500 nm increases when the electrophoresis voltage is increased. These results indicate that electrophoresis process plays an important role in dye adsorption. (author)

  12. The comparison of spectra and dyeing properties of new azonaphthalimide with analogues azobenzene dyes on natural and synthetic polymers

    Directory of Open Access Journals (Sweden)

    Mozhgan Hosseinnezhad

    2017-05-01

    Full Text Available The aim of the present research was to prepare new acid dyes based on naphthalimides. In this respect a series of monoazo acid dyes have been obtained using 4-amino-N-methyl (alternatively N-butyl-1,8-naphthalimide, aniline and p-nitroaniline as diazo components. 2-Naphthol-6-sulfonic acid (Schaeffer’s acid and 1-naphthol-8-amino-3,6-disulfonic acid (H-acid were used as coupling components. The spectrophotometric properties of the synthesized dyes were investigated in various solvents and compared with analogues azobenzene dyes. It is found, when acid dyes are applied in various solvents and different pH, additional bathochromically shifted bands of different intensity appear in the electronic spectra. This effect is caused by the occurrence of the equilibrium of azo and hydrazone forms in the dyes. The synthesized acid dyes were applied on wool fabrics in order to consider their dyeing properties, fastnesses and the obtainable color gamut. The synthesized dyes represented that they have the ability of dyeing wool and polyamide fabrics and give red to violet hues with good wash, medium light, and good milling and perspiration fastnesses.

  13. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  14. Biological wastewater treatment of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A. (Environmental Protection Agency, Cincinnati, OH (USA))

    1988-09-01

    EPA Water Engineering Research Laboratory, Office of Research and Development, undertook a study to determine the fate of specific water soluble azo dye compounds in the activated sludge process (ASP). The study was approached by dosing the feed to the pilot ASP systems with various water soluble azo dyes and by monitoring each dye compound through the system, analyzing both liquid and sludge samples. The fate of the parent dye compound was assessed via mass balance calculations. These data could determine if the compound was removed by adsorption, apparent biodegradation, or not removed at all. The paper presents results for 18 dye compounds tested from June 1985 through August 1987. The study was conducted at EPAs Test and Evaluation Facility in Cincinnati, Ohio. The objective of this study was to determine the partitioning of water soluble azo dyes in the ASP.

  15. QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors

    Science.gov (United States)

    Xu, Jie; Zhang, Hui; Wang, Lei; Liang, Guijie; Wang, Luoxin; Shen, Xiaolin; Xu, Weilin

    2010-07-01

    A quantitative structure-property relationship (QSPR) study was performed for the prediction of the absorption maxima ( λmax) of organic dyes for dye-sensitized solar cells (DSSCs). The entire set of 70 dyes was divided into a training set of 53 dyes and a test set of 17 dyes according to Kennard and Stones algorithm. Three-dimensional (3D) descriptors were calculated to represent the dye molecules. A ten-descriptor model, with a squared correlation coefficient ( R2) of 0.9543 and a standard error of estimation ( s) of 14.7 nm, was produced by using the stepwise multilinear regression analysis (MLRA) on the training set. The reliability of the proposed model was further illustrated using various evaluation techniques: leave-one-out cross-validation procedure, randomization tests, and validation through the external test set. All descriptors involved in the model were derived solely from the chemical structure of the dye molecules, which makes the model very useful to estimate the λmax of dyes before they are actually synthesized.

  16. A Note on the Dyeing of Wool Fabrics Using Natural Dyes Extracted from Rotten Wood-Inhabiting Fungi

    Directory of Open Access Journals (Sweden)

    Vicente A. Hernández

    2018-02-01

    Full Text Available Fungal isolates obtained from rotten wood samples were identified and selected by their ability to produce fungal dyes in liquid media. Fungal isolates produced natural extracellular dyes with colors ranging from red to orange, yellow and purple. Dyes from two of these fungi, Talaromyces australis (red and Penicillium murcianum (yellow, were extracted and used to dye wool samples in a Data Color Ahiba IR Pro-Trade (model Top Speed II machine. The protein nature of wool interacted well with the fungal dyes producing colors suitable for textile applications when used to a concentration of 0.1 g·L−1. Results on color fastness when washing confirmed the affinity of the dyes with wool as the dyed samples kept their color in acceptable ranges after washing, without the implementation of mordanting pretreatments or the use of fixing agents.

  17. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  18. Radiation Degradation of some Commercial Dyes in Wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.

    1999-01-01

    The degradation Kinetic due to irradiation of aqueous solutions of some commercial dyes, (Reactive Blue Brilliant, Reactive Yellow and Basic Blue 9 Dye (Methylene Blue 2 B), was studied. Factors affecting radiolysis of the dye such as dye concentration, irradiation dose, dose rate and ph of the solutions were studied. The effects of different additives such as nitrogen oxygen, hydrogen peroxide and sodium hypochlorite on the degradation process were investigated. The effect of irradiation dose on the different dye solutions at various concentrations, showed that the Reactive Yellow G. was very sensitive to gamma radiation. The effect of the ph of the dye solutions proved to very according type of the dye. Synergistic treatment of the dye solutions by irradiation and conventional method showed that saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of oxygen resulted in a remarkable enhancement of the degradation of the dyes. Also, the addition of sodium hypochlorite (5%) and the oxidation by hydrogen peroxide resulted in more radiation degradation, Also, adsorption of the dyes onto Ga and some ion exchangers showed that Ga has the highest adsorption capacity. Radiation degradation of the toxic dye pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (Mpc) according to international standards, proved to be better than conventional methods of purification alone

  19. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  20. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    Science.gov (United States)

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  1. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also

  2. Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat

    2017-06-19

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are utilized to study the geometry, electronic structure, electrostatic potential (ESP) and absorption spectrum, for a representative donor-π bridge-acceptor (D–π–A) dye for DSSC. The coplanar geometry of the dye (D1) facilitates strong conjugation and considerable delocalization originating the π CT interaction from donor to acceptor orbitals and the hyper-conjugative interactions involving Rydberg states. A model simulating the adsorption of the dye on the TiO surface is utilized to estimate binding energies. The effect of fluorine substituents in the π-spacer on the quantum efficiency of DSSCs was investigated. Gibb’s free energy values, redox potentials, excited state lifetime, non-linear optical properties (NLO) and driving forces for D1 and its fluorinated derivatives were computed.

  3. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    International Nuclear Information System (INIS)

    Liu Guangfei; Wang Jing; Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long

    2009-01-01

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L -1 , the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  4. Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells.

    Science.gov (United States)

    Weidelener, Martin; Powar, Satvasheel; Kast, Hannelore; Yu, Ze; Boix, Pablo P; Li, Chen; Müllen, Klaus; Geiger, Thomas; Kuster, Simon; Nüesch, Frank; Bach, Udo; Mishra, Amaresh; Bäuerle, Peter

    2014-11-01

    Four new donor-π-acceptor dyes differing in their acceptor group have been synthesized and employed as model systems to study the influence of the acceptor groups on the photophysical properties and in NiO-based p-type dye-sensitized solar cells. UV/Vis absorption spectra showed a broad range of absorption coverage with maxima between 331 and 653 nm. Redox potentials as well as HOMO and LUMO energies of the dyes were determined from cyclic voltammetry measurements and evaluated concerning their potential use as sensitizers in p-type dye-sensitized solar cells (p-DSCs). Quantum-chemical density functional theory calculations gave further insight into the frontier orbital distributions, which are relevant for the electronic processes in p-DSCs. In p-DSCs using an iodide/triiodide-based electrolyte, the polycyclic 9,10-dicyano-acenaphtho[1,2-b]quinoxaline (DCANQ) acceptor-containing dye gave the highest power conversion efficiency of 0.08%, which is comparable to that obtained with the perylenemonoimide (PMI)-containing dye. Interestingly, devices containing the DCANQ-based dye achieve a higher V(OC) of 163 mV compared to 158 mV for the PMI-containing dye. The result was further confirmed by impedance spectroscopic analysis showing higher recombination resistance and thus a lower recombination rate for devices containing the DCANQ dye than for PMI dye-based devices. However, the use of the strong electron-accepting tricyanofurane (TCF) group played a negative role in the device performance, yielding an efficiency of only 0.01% due to a low-lying LUMO energy level, thus resulting in an insufficient driving force for efficient dye regeneration. The results demonstrate that a careful molecular design with a proper choice of the acceptor unit is essential for development of sensitizers for p-DSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saltan, Gözde Murat [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Dinçalp, Haluk, E-mail: haluk.dincalp@cbu.edu.tr [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Kıran, Merve; Zafer, Ceylan [Solar Energy Institute, Ege University, Bornova, 35100 Izmir (Turkey); Erbaş, Seçil Çelik [Celal Bayar University, Materials Engineering Department, Faculty of Engineering, Yunus Emre, 45140 Manisa (Turkey)

    2015-08-01

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO{sub 2}-coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation.

  6. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Saltan, Gözde Murat; Dinçalp, Haluk; Kıran, Merve; Zafer, Ceylan; Erbaş, Seçil Çelik

    2015-01-01

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO 2 -coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation

  7. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were...

  8. Synthesis and characterization of natural dye and counter electrode thin films with different carbon materials for dye-sensitized solar cells.

    Science.gov (United States)

    Chang, Ho; Chen, Tien-Li; Kao, Mu-Jung; Chen, Chih-Hao; Chien, Shu-Hua; Jiang, Lii-Jenq

    2011-08-01

    This study aims to deal with the film of the counter electrode of dye-sensitized solar cells (DSSCs) and the preparation, structure and characteristics of the extract of natural dye. This study adopts different commercial carbon materials such as black lead, carbon black and self-made TiO2-MWCNT compound nanoparticle as the film of the counter electrodes. Moreover, for the preparation of natural dyes, anthocyanins and chlorophyll dyes are extracted from mulberry and pomegranate respectively. Furthermore, the extracted anthocyanins and chlorophyll are blended into cocktail dye to complete the preparation of natural dye. Results show that the photoelectric conversion efficiency of the single-layer TiO2-MWCNT counter electrode film and the cocktail dye of the DSSCs is 0.462%.

  9. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brianâ E.; Moon, Soo-Jin; Baranoff, Etienne; Nà ¼ esch, Frank; McGehee, Michaelâ D.; Grà ¤ tzel, Michael; Nazeeruddin, Mohammadâ K.

    2009-01-01

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture

  10. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  11. Newer approach of using alternatives to (Indium doped) metal electrodes, dyes and electrolytes in dye sensitized solar cell

    Science.gov (United States)

    Patni, Neha; Sharma, Pranjal; Pillai, Shibu G.

    2018-04-01

    This work demonstrates the PV study of dye sensitised solar cells by fabricating the (PV) cell using the ITO, FTO and AZO glass substrate. Dyes used for the fabrication were extracted from beetroot and spinach and a cocktail dye by mixing both of the dyes was also prepared. Similarly the three dufferent electrolytes used were iodide-triiodide couple, polyaniline and mixture of polyaniline and iodide couple. Mixed dye and mixed electrolyte has emerged as the highest efficient cell. The electrical characterisation shows that the highest power conversion efficiency of 1.86% was achieved by FTO substrate, followed by efficiency of 1.83% by AZO substrate and efficiency of 1.63% with ITO substrate using mixed dye and mixed electrolyte approach. This justifies that FTO and AZO shows better efficiency and hence proposed to be used as an alternative to indium free system.

  12. Effect of composition of chlorophyll and ruthenium dyes mixture (hybrid) on the dye-sensitized solar cell performance

    Science.gov (United States)

    Pratiwi, D. D.; Nurosyid, F.; Kusumandari; Supriyanto, A.; Suryana, R.

    2018-03-01

    The fabrication of dye-sensitized solar cell (DSSC) has been conducted by varying the composition of natural dye from moss chlorophyll (Bryophyte) and synthesis dye from ruthenium complex N719. The sandwich structure of DSSC consists of the working electrode using TiO2, dye, electrolyte, and counter electrode using carbon. The composition of chlorophyll and synthesis dyes mixture were 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80%. The UV-Vis absorption spectra of moss chlorophyll showed the first peak in the wavelength range of 450-500 nm and the second peak at wavelength of 650-700 nm. The peak value of absorbance at wavelengths of 450-500 nm was 6.1004 and at wavelengths of 650-700 nm was 3.5835. The IPCE characteristic curves showed the absorption peak of photon for DSSCs occurred at wavelength of 550-650 nm. It considered that photon in this wavelength can contribute dominantly to produce the optimum electrons. The I-V characteristics of DSSCs with composition of chlorophyll and synthesis dyes mixture of 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80% resulted the efficiency of 0.0022; 0.0194; 0.0239; 0.0342; and 0.0414, respectively. It suggested that the addition of a little composition of the ruthenium complex dye into moss chlorophyll dye can increase the efficiency significantly.

  13. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    Science.gov (United States)

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  14. Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures - Can sterically hindered pyridines prevent dye degradation?

    Energy Technology Data Exchange (ETDEWEB)

    Tuyet Nguyen, Phuong; Lund, Torben [Department of Science, Systems and Models, Roskilde University, 4000 Roskilde (Denmark); Rand Andersen, Anders [University of Southern Denmark, Institute of Sensors, Signals and Electrotechnics (SENSE), Niels Bohrs Alle 1, 5230 Odense M (Denmark); Danish Technological Institute, Plastics Technology, Gregersensvej 2630 Taastrup (Denmark); Morten Skou, Eivind [University of Southern Denmark, Department of Chemical Engineering, Biotechnology and Enviromental Technology, Niels Bohrs Alle 1, 5230 Odense M (Denmark)

    2010-10-15

    The homogeneous kinetics of the nucleophilic substitution reactions between the ruthenium dye N719 and eight pyridines and 1-methylbenzimidazole have been investigated in 3-methoxypropionitrile at 100 C. The half lives of N719 with the additives 4-tert-butylpyridine (0.5 M) and 1-methylbenzimidazole (0.5 M) were 57 and 160 h, respectively. Sterically hindered pyridines like 2,6-lutidine did not react with N719. The efficiencies of dye-sensitized solar cells (DSC, area=8.0 cm{sup 2}) prepared with 1-methylbenzimidazole (MBI), 4-tert-butylpyridine (4-TBP), 2,6-lutidine and without any additive were 7.1%, 6.2%, 6.0% and 4.8%, respectively. The cells were stored in dark at 85 C and their I-V curves and impedance spectra were measured at regular time intervals. The N719 dye degradation in the cells were monitored by a new dye extraction protocol combined with analysis of the dye extract by HPLC coupled to mass spectrometry. After 300 h storage in dark at 85 C 40% of the initial amount of N719 dye was degraded in DSC cells prepared with MBI and the efficiency was decreased to 40% of its initial value. DSC cells prepared with 2,6-lutidine or no additives showed smaller thermal dye and efficiency stability at elevated temperatures than DSC cells prepared with the none sterically hindered additives MBI and 4-TBP. In the cells prepared with 2,6-lutidine or no additive higher contents of the iodo products [RuL{sub 2}(NCS)(iodide)]{sup +} and [RuL{sub 2}(3-MPN)(iodide)]{sup +} were found than in cells prepared with 4-TBP and MBI. It is suggested that sterically hindered pyridines have smaller complexation constants with I{sub 3}{sup -} than unsterically hindered additives. This may explain the observed faster nucleophilic substitution rates of uncomplexed I{sub 3}{sup -} with N719 in DSC cells prepared with sterically hindered pyridines. The EIS analysis showed that the lifetime of the injected electrons in the TiO{sub 2}{tau}{sub eff} is reduced by a thermally induced change

  15. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  16. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  17. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangfei [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Wang Jing, E-mail: wangjingbio@yahoo.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China)

    2009-11-15

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L{sup -1}, the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  18. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N.; Han, Jin Wook; Han, Sung-Hwan

    2010-01-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs (∼80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm 2 under 80 mW/cm 2 irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  19. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  20. Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells

    KAUST Repository

    Hinkel, Felix

    2018-01-26

    The charge generation and recombination processes in three novel push-pull photosensitizers for dye-sensitized solar cells (DSSCs) are studied by ps–μs transient absorption (TA) and quasi-steady-state photoinduced absorption (PIA) spectroscopy. The three cyclopentadithiophene-based photosensitizer dye molecules exhibit comparably low power conversion efficiencies ranging from 0.8% to 1.7% in solid-state DSSCs. We find that the photocurrents increase in the presence of Li-salt additives. Both TA and PIA measurements observe long-lived dye cations created by electron injection from the dyes’ excited state for two dyes from the series. However, the third dye shows significantly lower performance as a consequence of the less efficient electron injection even after the addition of Li-salts and faster electron-hole recombination on the ns-μs time scale. In essence, the prerequisites for this class of donor-π bridge-acceptor photosensitizers to reach higher charge generation efficiencies are a combination of strong dipole moments and fine tuning of the electronic landscape at the titania-dye interface by Li-salt addition.

  1. Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells

    KAUST Repository

    Hinkel, Felix; Kim, Yoojin M.; Zagraniarsky, Yulian; Schlü tter, Florian; Andrienko, Denis; Mü llen, Klaus; Laquai, Fré dé ric

    2018-01-01

    The charge generation and recombination processes in three novel push-pull photosensitizers for dye-sensitized solar cells (DSSCs) are studied by ps–μs transient absorption (TA) and quasi-steady-state photoinduced absorption (PIA) spectroscopy. The three cyclopentadithiophene-based photosensitizer dye molecules exhibit comparably low power conversion efficiencies ranging from 0.8% to 1.7% in solid-state DSSCs. We find that the photocurrents increase in the presence of Li-salt additives. Both TA and PIA measurements observe long-lived dye cations created by electron injection from the dyes’ excited state for two dyes from the series. However, the third dye shows significantly lower performance as a consequence of the less efficient electron injection even after the addition of Li-salts and faster electron-hole recombination on the ns-μs time scale. In essence, the prerequisites for this class of donor-π bridge-acceptor photosensitizers to reach higher charge generation efficiencies are a combination of strong dipole moments and fine tuning of the electronic landscape at the titania-dye interface by Li-salt addition.

  2. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    Directory of Open Access Journals (Sweden)

    Kęstutis BELEŠKA

    2013-05-01

    Full Text Available The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on temperature. The diffusion coefficient of dye C.I. Acid Red 423 calculated according to Weisz model is higher when dyeing conventional leather. The change of deliming method has influence on chromed leather dyeing but this influence is not significant. The adsorption ability of control leather fibres at 30 ºC and 45 ºC is higher using both dyes as compared to the dyeing the experimental one. The increase of dyeing temperature increases the adsorption ability independently on the sort of leather fibres. Such dependence of the adsorption ability on the temperature shows that hydrophobic action and van der Waals forces prevail between dye and fibres during dyeing process. The Gibbs energy changes show that adsorption of both dyes by leather fibres independently on their sort is a spontaneous process. The affinity of both dyes to conventional leather fibres is higher comparing with experimental one. The change of enthalpy is positive in all cases, and it means that the driving force of the dyeing is the change of entropy.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4431

  3. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Directory of Open Access Journals (Sweden)

    Chih-Ping Yen

    2016-08-01

    Full Text Available The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP, and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE for application to dye-sensitized solar cell (DSSC is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  4. Molecular design of new hydrazone dyes for dye-sensitized solar cells: Synthesis, characterization and DFT study

    KAUST Repository

    Al-Sehemi, Abdullah G.

    2012-07-01

    Three new sensitizers 2-{4-[2-(4-Nitrobenzylidene)hydrazino)]phenyl} ethylene-1,1,2-tricarbonitrile (NBHPET), 2-{4-[2-p-Chlorobenzylidenehydrazino] phenyl}- ethylene-1,1,2-tri carbonitrile (CBHPET) and 2-{4-[2-p- Bromobenzylidenehydrazino] phenyl}ethylene-1,1,2-tricarbonitrile (BBHPET) have been synthesized. The dyes showed pronounced solvatochromic effects as the polarity of the solvents increased. The structures have been optimized at B3LYP/6-31G(d) level of theory. The torsion in E-isomer is smaller than Z-isomer and azo isomers. The highest occupied molecular orbitals are delocalized on whole molecule while lowest unoccupied molecular orbitals are distributed on the tricarbonitrile. The lowest unoccupied molecular orbital energies are above the conduction band of titanium dioxide, highest occupied molecular orbitals of the dyes are below the redox couple of new synthesized dyes and small energy gap revealed these dyes would be better sensitizers for dye-sensitized solar cells. © 2012 Elsevier B.V. All rights reserved.

  5. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chih-Ping [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Yu, Pin-Feng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Wang, Jyhpyng [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China); Lin, Jiunn-Yuan [Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Chen, Yen-Mu [SuperbIN Co., Ltd., Taipei 114, Taiwan (China); Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China)

    2016-08-15

    The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP), and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE) for application to dye-sensitized solar cell (DSSC) is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  6. Kinetics of low temperature polyester dyeing with high molecular weight disperse dyes by solvent microemulsion and agrosourced auxiliaries

    OpenAIRE

    Radei, Shahram; Carrión-Fité, Francisco Javier; Ardanuy Raso, Mònica; Canal Arias, José Ma

    2018-01-01

    This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin) using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100...

  7. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  8. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  9. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Jin Wook, E-mail: jwhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of)

    2010-09-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs ({approx}80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm{sup 2} under 80 mW/cm{sup 2} irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  10. Bleaching and diffusion dynamics in optofluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Asger

    2007-01-01

    The authors have investigated the bleaching dynamics that occur in optofluidic dye lasers where the liquid laser dye in a microfluidic channel is locally bleached due to optical pumping. They find that for microfluidic devices, the dye bleaching may be compensated through diffusion of dye molecules...

  11. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    Science.gov (United States)

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  12. Contact allergy to common ingredients in hair dyes

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rustemeyer, Thomas; Gonçalo, Margarida

    2013-01-01

    p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed.......p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed....

  13. DYEING SILK FABRICS WITH STINK BEAN POD (PARKIA SPECIOSA HASSK. NATURAL DYE IN THE COLOR FASTNESS AND UV PROTECTION

    Directory of Open Access Journals (Sweden)

    M. MASAE

    2017-07-01

    Full Text Available This paper describes natural dye extracted from stink bean pod (Parkia speciosa Hassk. which was dyed on the silk fabric. The mordants as aluminum potassium sulfate, iron chloride, sodium hydroxide and mud were used to dye fabric using three different dyeing methods: pre-mordanting, meta-mordanting and post-mordanting. The color fastness to washing, water, perspiration, light and crocking of the dyed samples was determined according to AATCC test methods. In this study the UV-protection properties on silk fabrics were investigated. The chemical functional groups of the dyes were characterized by Fourier transform infrared spectroscopy (FTIR. The results revealed that the dyeing silk fabrics with stink beans pod were fair to good fastness to washing and crocking and very poor to poor light fastness with the exception of samples mordanted with iron chloride. The water and perspiration fastness ratings were fair to good. Silk fabrics mordanted with iron chloride and dyed with stink bean usually showed good UV-protection levels even if undyed. These extracts gave polyphenolic, betalain dye and chlorophyll content. Therefore, it was suggested that stink bean pod has the potential in producing functional dyes that could be imparted into the silk dyeing natural colorant system.

  14. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2018-03-01

    Dye-sensitized solar cell (DSSC) is one of the alternative energy that can convert light energy into electrical energy. The component of DSSC consists of FTO substrates, TiO2, electrolyte, dye sensitizer, and counter electrode. This study aim was to determine the effect of optical properties of anthocyanin dyes on efficiency of DSSC. The dye sensitizer used can be extracted from anthocyanin pigments such as dragon fruit, black rice, and red cabbage. The red cabbage sensitizer shows lower absorbance value in the visible range (450-580 nm), than dragon fruit and black rice. The chemical structure of each dye molecules has an R group (carbonyl and hydroxyl) that forms a bond with the oxide layer. Red cabbage dye cell has the highest efficiency, 0.06% then dragon fruit and black rice, 0.02% and 0.03%.

  15. Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat; Aziz, Saadullah G.; Osman, Osman I.; Bredas, Jean-Luc

    2017-01-01

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD

  16. Dye-sensitized photopolymerization of N,N ...

    Indian Academy of Sciences (India)

    Unknown

    and a primary radical derived from the reducing agent. This radical initiates the vinyl polymerization. (scheme 1). In scheme 1, D is the dye, 1D the first excited singlet state, 3D the triplet state, DH. • the semi- quinone dye, DH2 the leuco dye, RH the reducing agent and R. • the initiating radical. Similar schemes. 1D → 3D,.

  17. Use of the ultrasonic cavitation in wool dyeing process: Effect of the dye-bath temperature.

    Science.gov (United States)

    Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S

    2017-03-01

    The present work aims to study the effect of the liquid temperature on the performance of ultrasounds (US) in a dyeing process. The approach was both theoretical and experimental. In the theoretical part the simplified model of a single bubble implosion is used to demonstrate that the "maximum implosion pressure" calculated with the well known Rayleigh-Plesset equation for a single bubble can be correlated with the cavitation intensity experimentally measured with an Ultrasonic Energy Meter (by PPB Megasonics). In particular the model was used to study the influence of the fluid temperature on the cavitation intensity. The "relative" theoretical data calculated from the implosion pressure were satisfactorily correlated with the experimental ones and evidence a zone, between 50 and 60°C, were the cavitation intensity is almost constant and still sufficiently high. Hence an experimental part of wool dyeing was carried out both to validate the previous results and to verify the dyeing quality at low temperatures (40-70°C) in presence of US. A prototype dyeing equipment able to treat textile samples with US system of 600W power, was used. The dyeing performances in the presence and absence of US were verified by measuring ΔE (colour variation), R e,% (reflectance percentage), K/S (colour strength) and colour fastness. The US tests performed in the temperature range of 40-70°C were compared with the conventional wool dyeing at 98°C. The obtained results show that a temperature close to 60°C should be chosen as the recommended US dyeing condition, being a compromise between the cavitation intensity and the kinetics which rules the dyestuff diffusion within the fibres. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  19. Supramolecular hair dyes: a new application of cocrystallization

    DEFF Research Database (Denmark)

    Delori, Amit; Urquhart, Andrew; Oswald, Iain D. H.

    2016-01-01

    The manuscript presents the first report of hair dyes of various colors formed by cocrystallization. Unlike the most popular oxidative hair dye (OHD) products, these dyes are NH3 free and do not require H2O2 as a color developer. The importance of these new hair dyes products is further enhanced...

  20. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer

    Science.gov (United States)

    Mozaffari, Sayed Ahmad; Saeidi, Mahsa; Rahmanian, Reza

    2015-05-01

    Natural dye extracted from Siahkooti fruit with/without purification by solid phase extraction (SPE) technique was used in the fabrication of DSSC as natural sensitizer. The UV-Vis absorption spectroscopy and Fourier transform infrared (FTIR) were employed to indicate the presence of anthocyanins in the fruit of red Siahkooti. The photoelectrochemical performance and the efficiency of assembled DSSC using Siahkooti fruit dye extract were evaluated and efficiency enhancement was obtained by a preliminary purification of extracted dye. The efficiency and fill factor of the DSSC using purified Siahkooti fruit dye were 0.32% and 0.73%, respectively. The results successfully showed that the DSSC, using Siahkooti fruit extract as a dye sensitizer, is useful for the preparation of environmentally friendly, low-cost, renewable and clean sources of energy.

  2. Degradation of azo dyes by environmental microorganisms and helminths

    Energy Technology Data Exchange (ETDEWEB)

    Kingthom Chung; Stevens, S.E. Jr. (Memphis State Univ., TN (United States). Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  3. Dye removal from textile wastewater using bioadsorbent

    International Nuclear Information System (INIS)

    Gardazi, S.M.H.

    2014-01-01

    Textile industries throughout the world produce huge quantities of dyes and pigments annually. Effluents from textile industries are dye wastewater, and disposal of these wastes to freshwater bodies causes damage to the environment. Among the treatment technologies, adsorption is an attractive and viable option, provided that the sorbent is inexpensive and readily available for use. In this study, a typical basic dye, methylene blue, in wastewater was treated using Melia azedarach sawdust. The effects of contact time, adsorbent amount and particle size were investigated on the removal efficiency of adsorbent for methylene blue. Complete removal of the dye were attained at higher adsorbent dose of 3 g/L with 50 mg/L initial dye concentration. The maximum adsorption was at 240 minutes, whereas more than 90% removal with 105 meu m particle size of 1 g/L adsorbent for same initial dye concentration. The experimental data best fits with 2 Langmuir adsorption isotherm (R= 0.991). (author)

  4. Significance of hair-dye base-induced sensory irritation.

    Science.gov (United States)

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  5. Kinetics of Low Temperature Polyester Dyeing with High Molecular Weight Disperse Dyes by Solvent Microemulsion and AgroSourced Auxiliaries

    Directory of Open Access Journals (Sweden)

    Shahram Radei

    2018-02-01

    Full Text Available This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100 °C. Moreover, the dyeing rate constants, correlation coefficient and activation energies were proposed for this system. It was found that o-vanillin yielded higher dye absorption levels than coumarin, leading to exhaustions of 88% and 87% for Disperse Red 167 and Disperse Blue 79, respectively. K/S values of dyed polyester were also found to be higher for dye baths containing o-vanillin with respect to the ones with coumarin. In terms of hot pressing fastness and wash fastness, generally no adverse influence on fastness properties was reported, while o-vanillin showed slightly better results compared to coumarin.

  6. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6Gand rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  7. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  8. Kinetics of Low Temperature Polyester Dyeing with High Molecular Weight Disperse Dyes by Solvent Microemulsion and AgroSourced Auxiliaries

    OpenAIRE

    Shahram Radei; F. Javier Carrión-Fité; Mònica Ardanuy; José María Canal

    2018-01-01

    This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin) using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100...

  9. Treatment of dye house effluents

    International Nuclear Information System (INIS)

    Waheed, S.; Ashraf, C.M.

    1999-01-01

    Environmental considerations play an increasingly important role in processing of textiles. For textile, limits on particular substances have been and are being laid down either by law or as a result of the demands of clothing manufactures. One of the most complex areas in textile processing is textile printing and dyeing. Here, virtually all dye classes are used. In some printing processes such as reactive printing, many of products used end up in the wastewater. A study of the optimisation of wastewater treatment systems and the systematic management of water and the problems of dyeing are reviewed in this article. (author)

  10. Performance of dye sensitized solar cells (DSSC) using Syngonium Podophyllum Schott as natural dye and counter electrode

    Science.gov (United States)

    Oktariza, Lingga Ghufira; Yuliarto, Brian; Suyatman

    2018-05-01

    The extraction of chlorophyll pigment of Syngonium podophyllum Schott leaves which is used as natural dyes in this DSSC devices. The use of dye from nature with its simple production process is very effective to reduce DSSC production cost. Besides being used as a natural dye, chlorophyll can also be used as an alternative counter electrode. Chlorophyll that is used as a counter electrode has been through chemical activation and carbonization processes. The characterization were done using Uv-Vis, Cyclic Voltametry and DSSC device under solar simulator. Characterization of chlorophyll absorbance using UV-Vis has resulted in typical absorbance peak at visible light wavelength of 447 nm and 666 nm. The Tauc equation analysis of the Uv-Vis characterization showed 1.91 eV energy gap of chlorophyll. Chlorophyll carbonized dye is used as an alternative to Pt counter electrode. Carbonized chlorophyll dye resulted in lower conversion efficiency of 0.308% with HSE electrolyte.

  11. COMPARATIVE STUDY OF TWO DYEING METHODS USING REACTIVE DYE

    Directory of Open Access Journals (Sweden)

    HINOJOSA Belén

    2016-05-01

    Full Text Available Environment preservation is a common worry not only for people but for companies as well. Industry is more and more concern about the necessity of developing new and more respectful processes. Dye is one of the most important processes in the textile industry but it is also considered as no too safe regarding environment issues. This process uses large amounts of water and generates big volumes of wastewater. Following this issue, new regulations and laws emerge to control the waste generated. This leads to the companies and increased costs in terms of wastewater treatments and high water consumption. In this research we compare two systems on garment finishing application, the conventional bath process and the new Ecofinish system that is able to save water and product. To compare these processes, we carried out a reactive dyeing using both systems in order to determine the quality differences in the final product. For this purpose, the samples have been tested to washing and rubbing fastness, according to UNE EN ISO 105 C10 and UNE- EN ISO 105 X12 standards, respectively. This study confirms that this system achieves water savings and reduces the wastewater produced, getting a good dyeing. This process can be considered as an alternative to the conventional one.

  12. Modelling of polyester fabric dyeing in the presence of ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Kodrić Marija

    2017-01-01

    Full Text Available In this paper, modelling of dyeing, i.e. adsorptive behaviour of disperse dyes on polyester fibres (dyeing, under the influence of ultrasound has been considered with the aim of getting the data about mechanisms of binding the dyes and defining the conditions of dyeing process of this synthetic fibres along with additional energy source without the use of carriers, compounds that increase permeability of the fibres and help dyeing. Dyeing - adsorption is conducted under different conditions, and the concentration of dyes, mass of the substrate, recipes and time of dyeing were being varied. It has been established that ultrasound allows dyeing without carriers and the efficiency of dyeing depends on the time of contact, initial concentration of the dye and the amount of absorbent - material. There is the continuity of growth of the amount of bound dye to the mass of the absorbent. Characteristic graphs, obtained from Langmuir isotherm, have confirmed that this model ensures precise description of polyester dyeing by disperse dye. Kinetic of dyeing has been remarkably interpreted by pseudo second-order in regards to the high functionality.

  13. Quirks of dye nomenclature. 1. Evans blue.

    Science.gov (United States)

    Cooksey, C J

    2014-02-01

    The history, origin, identity, chemistry and use of Evans blue dye are described along with the first application to staining by Herbert McLean Evans in 1914. In the 1930s, the dye was marketed under the name, Evans blue dye, which was profoundly more acceptable than the ponderous chemical name.

  14. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    OpenAIRE

    Kęstutis BELEŠKA; Virgilijus VALEIKA; Justa ŠIRVAITYTĖ; Violeta VALEIKIENĖ

    2013-01-01

    The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on...

  15. Isolasi Dye Organik Alam dan Karakterisasinya Sebagai Sensitizer

    Directory of Open Access Journals (Sweden)

    Nurussaniah Nurussaniah

    2018-03-01

    Full Text Available Tujuan penelitian ini adalah untuk mengetahui cara mengisolasi dan karakteristik dye organik alam sebagai sensitizer. Penelitian ini dilakukan melalui beberapa tahap yaitu persiapan, isolasi dye organik alam, karakterisasi sifat optik, analisis dan menyimpulkan. Isolasi dye organic alam dilakukan untuk memperoleh sari dari bahan-bahan alam. Penelitian ini menggunakan bahan alam yaitu jagung (Zea mays dan labu kuning (Cucurbita moschata. Karakterisasi optik dye organik alam dalam penelitian ini dilihat dari spektrum absorbansi yang diukur menggunakan Spektrophotometer Uv-Vis. Spektrum absorbansi dye diukur dalam kuvet optik, pada panjang gelombang 350-800 . Hasil penelitian menunjukkan bahwa isolasi dye organik alam diperoleh melalui metode ekstraksi, yaitu suatu metode untuk memperoleh sari dari bahan-bahan alam. Proses ekstraksi dilakukan dengan melarutkan biji jagung (Zea mays dan daging buah labu kuning (Cucurbita moschata dalam pelarut etanol dengan konsentrasi 1:5. Karaktistik optik jagung (Zea mays dan labu kuning (Cucurbita moschata  menunjukkan panjang gelombang yaitu berada pada cahaya tampak dengan rentang panjang gelombang 350 – 500 nm.  Dengan demikian  dye  beta-karoten yang berasal dari jagung (Zea mays dan labu kuning (Cucurbita moschata dapat dimanfaatkan sebagai sensitizer dalam prototipe Dye Sensitized Solar Cell (DSSC.

  16. Radiation induced degradation of dyes-An overview

    International Nuclear Information System (INIS)

    Rauf, M.A.; Ashraf, S. Salman

    2009-01-01

    Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. An unfortunate side effect of extensive use of these chemicals is that huge amounts of these potentially carcinogenic compounds enter our water supplies. Various advanced oxidation processes (AOPs) including the use of high-energy radiation have been developed to degrade these compounds. In this review, dye decoloration and degradation as a result of its exposure to high energy radiation such as gamma radiation and pulsed electron beam are discussed in detail. The role of various transient species such as ·H, ·OH and e aq - are taken into account as reported by various researchers. Literature citations in this area show that e aq - is very effective in decolorization but is less active in the further degradation of the products formed. The degradation of the dyes is initiated exclusively by ·OH attack on electron-rich sites of the dye molecules. Additionally, various parameters that affect the efficiency of radiation induced degradation of dyes, such as effect of radiation dose, oxygen, pH, hydrogen peroxide, added ions and dye classes are also reviewed and summarized. Lastly, pilot plant application of radiation for wastewater treatment is briefly discussed.

  17. Photochemistry of triarylmethane dyes bound to proteins

    Science.gov (United States)

    Indig, Guilherme L.

    1996-04-01

    Triarylmethanes represent a class of cationic dyes whose potential as photosensitizers for use in photodynamic therapy of neoplastic diseases has never been comprehensively evaluated. Here, the laser-induced photodecomposition of three triarylmethane dyes, crystal violet, ethyl violet, and malachite green, non-covalently bound to bovine serum albumin (a model biological target) was investigated. Upon laser excitation at 532 nm, the bleaching of the corresponding dye-protein molecular complexes follows spectroscopic patterns that suggest the formation of reduced forms of the dyes as major reaction photoproducts. That implies that an electron or hydrogen atom transfer from the protein to the dye's moiety within the guest-host complex is the first step of the photobleaching process. Since the availability of dissolved molecular oxygen was not identified as a limiting factor for the phototransformations to occur, these dyes can be seen as potential phototherapeutic agents for use in hypoxic areas of tumors. These triarylmethane dyes strongly absorb at relatively long wavelengths (absorption maximum around 600 nm; (epsilon) max approximately equals 105 M-1 cm-1), and only minor changes in their absorption characteristics are observed upon binding to the protein. However the binding event leads to a remarkable increase in their fluorescence quantum yield and photoreactivity.

  18. PHYSICO-CHEMICAL STUDIES OF DISAZO DYES DERIVED ...

    African Journals Online (AJOL)

    DJFLEX

    with disazo disperse dyes on synthetic polymer-fibres. (Venkataraman, 1974; Otutu et al., 2008). In this present study, the physico-chemical studies of disazo dyes derived from p-aminophenol recently prepared by our research group is described. We also described the kinetics of the dyes on nylon 6 fibre. In another study.

  19. Design of new metal-free dyes for dye-sensitized solar cells: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Xiong; Zhou, Le; Li, Yawei [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Sun, Qiang, E-mail: sunqiang@pku.edu.cn [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2012-08-06

    Five new metal-free dyes with acceptor–π–donor (A–π–D) structure are studied using first-principles calculation based on density functional theory. Benzothiadiazole (BTD) and triphenylamine (TPA) were chosen, respectively, as an acceptor and a donor with 4-(dicyanomethylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran (DCM) as a π linker. The linker was further modified by -CH=CH- resulting in a red-shift with improved absorption spectra caused by the smaller energy gap and the increased orbital hybridization. The designed dyes are found to exhibit wide absorption spectra, high molar extinction coefficients, desirable orbital distributions, and good energy levels alignment, and hence can have potential applications in dye-sensitized solar cells. -- Highlights: ► New metal-free dyes with A–π–D architecture. ► With wide absorption spectra and high molar extinction coefficients. ► With desirable orbital distribution and good energy levels alignment.

  20. Theoretical Study of Ultrafast Electron Injection into a Dye/TiO2 System in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Lin, Chundan; Xia, Qide; Li, Kuan; Li, Juan; Yang, Zhenqing

    2018-06-01

    The ultrafast injection of excited electrons in dye/TiO2 system plays a critical role, which determines the device's efficiency in large part. In this work, we studied the geometrical structures and electronic properties of a dye/TiO2 composite system for dye-sensitized solar cells (DSSCs) by using density functional theory, and we analyzed the mechanism of ultrafast electron injection with emphasis on the power conversion efficiency. The results show that the dye SPL103/TiO2 (101) surface is more stable than dye SPL101. The electron injection driving force of SPL103/TiO2 (101) is 3.55 times that of SPL101, indicating that SPL103/TiO2 (101) has a strong ability to transfer electrons. SPL103 and SPL101/TiO2 (101) both have fast electron transfer processes, and especially the electron injection time of SPL103/TiO2 (101) is only 1.875 fs. The results of this work are expected to provide a new understanding of the mechanism of electron injection in dyes/TiO2 systems for use in highly effective DSSCs.

  1. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Anna, J Lakshmi; Vijayeeswarri, J; Swaminathan, G

    2009-08-01

    There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 degrees C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol-water with 80W ultrasonic power for 3h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80W as compared to MS process both using 1:1 ethanol-water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from

  2. Treatment of dyeing drainage by radiation

    International Nuclear Information System (INIS)

    Shimokawa, Toshinari; Sawai, Takeshi

    1985-01-01

    Decolorization of artificial dyeing drainage and sewage by radiation treatment. Artifical dyeing drainage was prepared from water, polyvinyl alcohol, starch, urea and several kinds of inorganic salts, and artificial sewage, from water, peptone, broth, urea and several kinds of inorganic salts. The above mentioned sample liquors of artificial dyeing drainage and sewage were exposed to γ-radiation of 5 kCi of 60 Co source by aerating through a ball filter. Absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD) were determined after irradiation to evaluate radiation treatment effect. With the experimental data obtained, it was clarified that absorbance, COD and TOC was decreased with the increase of absorbed dose. Decoloring was made effectively and about 95 % of bleaching ratio was obtained at 5 kGy of radiation. COD was decreased also by irradiation rather slower decreasing rate than that of decolorization, and TOC decrease was very slow at the initial stage of radiation but 40 % of TOC was decomposed by 10 kGy radiation. Dye of chemically stable structure was found more resistant to radiation decolorization. Decomposition efficiency was found less for dyes in the artificial sewage but secondary treated sewage showed no adverse effect. With the obtained understandings, a tentative scheme was planned for the radiation decolorization of dyeing drainage after aeration treatment. (Takagi, S.)

  3. Phytoremediation in education: textile dye teaching experiments.

    Science.gov (United States)

    Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E

    2009-07-01

    Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students.

  4. Insights into the Mechanism of a Covalently Linked Organic Dye-Cobaloxime Catalyst System for Dye-Sensitized Solar Fuel Devices.

    Science.gov (United States)

    Pati, Palas Baran; Zhang, Lei; Philippe, Bertrand; Fernández-Terán, Ricardo; Ahmadi, Sareh; Tian, Lei; Rensmo, Håkan; Hammarström, Leif; Tian, Haining

    2017-06-09

    A covalently linked organic dye-cobaloxime catalyst system based on mesoporous NiO is synthesized by a facile click reaction for mechanistic studies and application in a dye-sensitized solar fuel device. The system is systematically investigated by photoelectrochemical measurements, density functional theory, time-resolved fluorescence, transient absorption spectroscopy, and photoelectron spectroscopy. The results show that irradiation of the dye-catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer process to reduce the catalyst. Moreover, the dye adopts different structures with different excited state energies, and excitation energy transfer occurs between neighboring molecules on the semiconductor surface. The photoelectrochemical experiments also show hydrogen production by this system. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye-catalyst system on the photocathode is proposed on the basis of this study. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. A Study of Mixed Vegetable Dyes with Different Extraction Concentrations for Use as a Sensitizer for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Kun-Ching Cho

    2014-01-01

    Full Text Available Two vegetable dyes are used for the study: chlorophyll dye from sweet potato leaf extract and anthocyanin dye from extracts of blueberry, purple cabbage, and grape. The chlorophyll and anthocyanin dyes are blended in a cocktail in equal proportions, by volume. This study determines the effect of different extraction concentrations and different vegetable dyes on the photoelectric conversion efficiency of dye-sensitized solar cells. In order to make the electrode for the experiments, P25 TiO2 powder was coated on the ITO conducting surface, using a medical blade, to form a thin film with a thickness of around 35 μm. The experimental results show that the cocktail dye blended using extracts of sweet potato leaf and blueberries, in the volumetric proportion 1 : 1, at a weight concentration of 40%, using an extraction temperature of 50°C and an extraction heating time of 10 min produces the greatest photoelectric conversion efficiency (η of up to 1.57%, an open-circuit voltage (VOC of 0.61 V, and a short-circuit current density (JSC of 4.75 mA/cm2.

  6. Polymerization of novel methacrylated anthraquinone dyes

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-02-01

    Full Text Available A new series of polymerizable methacrylated anthraquinone dyes has been synthesized by nucleophilic aromatic substitution reactions and subsequent methacrylation. Thereby, green 5,8-bis(4-(2-methacryloxyethylphenylamino-1,4-dihydroxyanthraquinone (2, blue 1,4-bis(4-((2-methacryloxyethyloxyphenylaminoanthraquinone (6 and red 1-((2-methacryloxy-1,1-dimethylethylaminoanthraquinone (12, as well as 1-((1,3-dimethacryloxy-2-methylpropan-2-ylaminoanthraquinone (15 were obtained. By mixing of these brilliant dyes in different ratios and concentrations, a broad color spectrum can be generated. After methacrylation, the monomeric dyes can be covalently emplaced into several copolymers. Due to two polymerizable functionalities, they can act as cross-linking agents. Thus, diffusion out of the polymer can be avoided, which increases the physiological compatibility and makes the dyes promising compounds for medical applications, such as iris implants.

  7. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In{sub 2}S{sub 3} nanoflowers: dye charge-dependent roles of reactive species

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Suxiang [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China); Cai, Lejuan, E-mail: 494169965@qq.com [Central China Normal University, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry (China); Li, Dapeng, E-mail: lidapengabc@126.com; Fa, Wenjun; Zhang, Yange; Zheng, Zhi [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In{sub 2}S{sub 3} nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In{sub 2}S{sub 3} nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  8. Environmental impact analysis of batik natural dyes using life cycle assessment

    Science.gov (United States)

    Rinawati, Dyah Ika; Sari, Diana Puspita; Purwanggono, Bambang; Hermawan, Andy Tri

    2017-11-01

    The use of natural dyes for batik dyeing is fewer than synthetic dyes because of its limitations in the application such complexity in manufacture and usage. For ease of use, natural dyes need to be processed into instant products. Extract of natural dyes are generally produced in liquid form that are less practical in long-term use. Dye powder obtained by drying the liquid extract using spray dryer. Production process of liquid natural dye is simpler and require less energy but need more energy for transporting. It is important to know which type of natural dyes should be produced based on their environmental impact. This research aim to compare environmental impact between liquid and powder natural dyes and also to find relative contribution of different stage in life cycle to total environmental impact. The appropriate method to analyze and compare the environmental impacts of powder and liquid natural dyes is Life Cycle Assessment (LCA). The "cradle to grave" approach used to assess environmental impact of powder and liquid natural dyes of Jalawe rind throughout production process of natural dyes, distribution and use of natural dyes for coloring batik. Results of this research show that powder natural dyes has lower environmental impacts than liquid natural dyes. It was found that distribution, mordanting and packaging of liquid dyes have big contribution to environmental impact.

  9. Dye sensitized photovoltaic cells: Attaching conjugated polymers to zwitterionic ruthenium dyes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.

    2006-01-01

    The synthesis of a zwitterionic ruthenium dye that binds to anatase surfaces and has a built-in functionality that allows for the attachment of a conjugated polymer chain is presented. The system was found to adsorb on the surface of anatase anchored by the ruthenium dye. Two types of devices were...... prepared: standard photoelectrochemical (PEC) solar cells and polymer solar cells. The PEC solar cells employed a sandwich geometry between TiO2 nanoporous photoanodes and Pt counter electrodes using LiI/I-2 in CH3CN as an electrolyte. The polymer solar cells employed planar anatase electrodes...

  10. Knowledge, attitude, and practice of dyeing and printing workers

    Directory of Open Access Journals (Sweden)

    Paramasivam Parimalam

    2010-01-01

    Full Text Available Background: Millions of workers are occupationally exposed to dyes in the world, but little is known about their knowledge and attitudes toward the effects of dye on their health. Objectives: The aim of this study was to assess the fabric dyers′ and fabric printers′ knowledge, attitude, and practice toward the health hazard of dyes. Materials and Methods: The present study was taken up in the Madurai district which is situated in the Southern Tamil Nadu, India. One hundred and forty-two workers employed in small-scale dyeing and printing units participated in a face-to-face confidential interview . Results: The mean age of fabric dyers and fabric printers was 42 years (΁10.7. When enquired about whether dyes affect body organ(s, all the workers agreed that dye(s will affect skin, but they were not aware that dyes could affect other parts of the body. All the workers believed that safe methods of handling of dyes and disposal of contaminated packaging used for dyes need to be considered. It was found that 34% of the workers were using personal protective equipment (PPE such as rubber hand gloves during work. Conclusion: The workers had knowledge regarding the occupational hazards, and their attitudinal approach toward the betterment of the work environment is positive.

  11. Study of the Leacril Dyeing Process by a Cationic Dye from an Emulsion System.

    Science.gov (United States)

    Chibowski, E.; Ortega, A. Ontiveros; Espinosa-Jiménez, M.; Perea-Carpio, R.; Holysz, L.

    2001-03-15

    Adsorption studies of a cationic dye, Rhodamine B, from an emulsion phase on Leacril fabric at different temperatures were conducted. The emulsion phase consisted of n-hexadecane emulsified by isopropyl alcohol (1 M) and stabilized by tannic acid. In the alcohol solution Rhodamine B was dissolved. The kinetics of its adsorption and desorption is discussed. The changes in Leacril surface free energy components in the dyeing process were also determined. The adsorption data show that the presence of an emulsion increases the dye adsorption at room temperature (293 K) and at 313 K, while at 333 K it is smaller than that from Rhodamine solution alone. However, Rhodamine desorbs more when adsorbed from the solution. Surface free energy components differ for the Leacril samples dyed at different temperatures, and the most hydrophobic surface was obtained for the samples dyed at 333 K, where the electron-donor component is the lowest one. In general, the work of water spreading is close to zero, except for the above sample for which it is relatively highly negative. Possible mechanisms of the dye adsorption are discussed. Copyright 2001 Academic Press.

  12. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  13. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    International Nuclear Information System (INIS)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv

    2011-01-01

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  14. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv, E-mail: rajiv.manohar@gmail.com [Liquid Crystal Research Laboratory, Physics Department, University of Lucknow, Lucknow-226007 (India)

    2011-03-15

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  15. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...... are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd: YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold...... fluences down to similar to 7 mu J/mm2 are observed. The large FSR facilitates wavelength tuning over the full gain spectrum of the chosen laser dye and we demonstrate 45 nm tunability using a single laser dye by changing the grating period and dye solution refractive index. The lasers are straight...

  16. Degradation of textile dyes by cyanobacteria.

    Science.gov (United States)

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Diphenyl (4′-(Aryldiazenylbiphenyl-4-ylamino(pyridin-3-ylmethylphosphonates as Azo Disperse Dyes for Dyeing Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Mohamed F. Abdel-Megeed

    2013-01-01

    Full Text Available Diphenyl (4′-aminobiphenyl-4-ylamino(pyridin-3-ylmethylphosphonate (1 was synthesized in 88% yield from reaction of pyridine-3-carboxaldehyde with benzidine and triphenylphosphite in the presence of titanium tetrachloride as a catalyst. Diazotization of 1 gave the corresponding diazonium salt 2 which was coupled with several hydroxyl or amino compounds to give the corresponding azo dyes 3–8 in 82–88% yields after crystallization. The dyes produced were applied to polyesters as disperse dyes and their fastness properties were elevated.

  18. Studies on Synthesis and Dyeing Preformance of Acid Dyes Based on 4,7-Dihydroxy-1,10-Phenanthroline-2,9-Dione

    Directory of Open Access Journals (Sweden)

    B. V. Patel

    2008-01-01

    Full Text Available Some new azo acid dyes were prepared by coupling various diazotized acid components such as anthranilic acid, sulphanilic acid, laurent acid, peri acid, tobias acid, H-acid, J-acid, gamma acid, sulphotobias acid, 4-aminotoluiene-3-sulphonic acid, 5-sulpho- anthranilic acid, 2-naphthylamine-3,6,8-trisulphonic acid, bronner acid, metanilic acid and cleve acid with 4,7-dihydroxy-1,10-phenanthroline-2,9-dione. The dyes were characterized by elemental, IR and TLC analyses. Their dyeing performance as acid dyes has been assessed on viscose rayon, wool and cotton fibres.

  19. Quirks of dye nomenclature. 5. Rhodamines.

    Science.gov (United States)

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.

  20. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    Science.gov (United States)

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-07

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications.

  1. Studies on the use of power ultrasound in leather dyeing.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2003-03-01

    Uses of power ultrasound for acceleration/performing the chemical as well as physical processes are gaining importance. In conventional leather processing, the diffusion of chemicals through the pores of the skin/hide is achieved by the mechanical agitation caused by the paddle or drumming action. In this work, the use of power ultrasound in the dyeing of leather has been studied with the aim to improve the exhaustion of dye for a given processing time, to reduce the dyeing time and to improve the quality of dyed leather. The effect of power ultrasound in the dyeing of full chrome cow crust leather in a stationary condition is compared with dyeing in the absence of ultrasound as a control experiment both in a stationary as well as conventional drumming condition. An ultrasonic cleaner (150 W and 33 kHz) was used for the experiments. Actual power dissipated into the system was calculated from the calorimetric measurement. Experiments were carried out with variation in type of dye, amount of dye offer, temperature and time. The results show that there is a significant improvement in the percentage exhaustion of dye due to the presence of ultrasound, when compared to dyeing in absence of ultrasound. Experiments on equilibrium dye uptake carried out with or without ultrasound suggest that ultrasound help to improve the kinetics of leather dyeing. The results indicate that leathers dyed in presence of ultrasound have higher colour values, better dye penetration and fastness properties compared to control leathers. The physical testing results show that strength properties of the dyed leathers are not affected due to the application of ultrasound under the given process conditions. Apparent diffusion coefficient during the initial stage of dyeing process, both in presence and in absence of ultrasound was calculated. The values show that ultrasound helps in improving the apparent diffusion coefficient more for the difficult dyeing conditions such as in the case of metal

  2. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation.

    Science.gov (United States)

    Shakir, Kamal; Elkafrawy, Ahmed Faouzy; Ghoneimy, Hussein Fouad; Elrab Beheir, Shokry Gad; Refaat, Mamdoh

    2010-03-01

    The present work deals with removal, by ion flotation, of two dyes: a basic dye (rhodamine B (RB)) and an acidic one (thoron (TH)) from dilute aqueous solutions and simulated wastewaters. These dyes are widely used for analytical and biological staining purposes. Besides, RB is commonly used in dyeing of various industrial products. Therefore, wastewaters emanating from chemical and radiochemical laboratories, and biomedical and biological research laboratories may be contaminated with RB and TH. Ion flotation of these dyes has been investigated over a wide range of pH using the anionic surfactant, sodium lauryl sulfate (NaLS) and the cationic surfactant, cetyltrimethylammonium bromide (CTAB) as collectors. Successful removals could be achieved for RB and TH with the anionic collector, NaLS, and the cationic collector, CTAB, respectively. In addition to the effects of pH and type of collector on the efficiency of removal of each dye, the effects of collector and dye concentrations, frother dosage, ionic strength, bubbling time period and presence of foreign salts were investigated and the optimal removal conditions have been established. Removals exceeding 99.5 % and 99.9% could be achieved for RB and TH, respectively. The results obtained are discussed with respect to dissociation of dye, type of collector, ionic strength and sign and magnitude of charge of added foreign ions. Kinetics of flotation were also studied. Further studies demonstrate that under optimum conditions the developed flotation processes can be applied for the treatment of dye-contaminated wastewaters simulated to those generated at dyeing industries and radiochemical laboratories. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Spectral sensitization of TiO2 by new hemicyanine dyes in dye solar cell yielding enhanced photovoltage: Probing chain length effect on performance

    International Nuclear Information System (INIS)

    Fadadu, Kishan B.; Soni, Saurabh S.

    2013-01-01

    Graphical abstract: New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. We have achieved remarkable photovoltage and overall performance of DSSC. Highlights: ► New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. ► Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. ► Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. -- Abstract: New hemicyanine dyes having indole nucleus with different alkyl chain length were synthesized and characterized using 1 H NMR and mass spectroscopy. These dyes were used to sensitize the TiO 2 film in dye sensitized solar cell. Nanocrystalline dye solar cells were fabricated and characterized using various electrochemical techniques. It has been found that the alkyl chain length present in the dye molecules greatly affects the overall performance of dye solar cell. Molecules having longer alkyl chain are having better sensitizers which enhance V oc to significant extent. Chain length dependent performance was further investigated using Tafel polarization and impedance method. Hemicyanine dye having hexyl chain has outperformed by attaining 2.9% solar to electricity conversion efficiency

  4. Degradation of Synthetic Dyes by Laccases – A Mini-Review

    Directory of Open Access Journals (Sweden)

    Legerská Barbora

    2016-06-01

    Full Text Available Laccases provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. These enzymes are able to oxidize a wide range of phenolic substrates without the presence of additional co-factors. Laccases have been confirmed for their potential of synthetic dye degradation from wastewater and degradation products of these enzymatic reactions become less toxic than selected dyes. This study discusses the potential of laccase enzymes as agents for laccase-catalyzed degradation in terms of biodegradation efficiency of synthetic dyes, specifically: azo dyes, triphenylmethane, indigo and anthraquinone dyes. Review also summarizes the laccase-catalyzed degradation mechanisms of the selected synthetic dyes, as well as the degradation products and the toxicity of the dyes and their degradation products.

  5. Unconsumed precursors and couplers after formation of oxidative hair dyes

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Søsted, Heidi; Johansen, Jeanne Duus

    2006-01-01

    Contact allergy to hair dye ingredients, especially precursors and couplers, is a well-known entity among consumers having hair colouring done at home or at a hairdresser. The aim of the present investigation was to estimate consumer exposure to some selected precursors (p-phenylenediamine, toluene......-2,5-diamine) and couplers (3-aminophenol, 4-aminophenol, resorcinol) of oxidative hair dyes during and after hair dyeing. Concentrations of unconsumed precursors and couplers in 8 hair dye formulations for non-professional use were investigated, under the conditions reflecting hair dyeing. Oxidative...... hair dye formation in the absence of hair was investigated using 6 products, and 2 products were used for experimental hair dyeing. In both presence and absence of hair, significant amounts of unconsumed precursors and couplers remained in the hair dye formulations after final colour development. Thus...

  6. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  7. Basic dye decomposition kinetics in a photocatalytic slurry reactor

    International Nuclear Information System (INIS)

    Wu, C.-H.; Chang, H.-W.; Chern, J.-M.

    2006-01-01

    Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO 2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO 2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO 2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 deg. C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO 2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO 2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well

  8. Antibacterial Dyeing of Wool with Natural Cationic Dye Using Metal Mordants

    Directory of Open Access Journals (Sweden)

    Aminoddin HAJI

    2012-09-01

    Full Text Available In this study, Berberine colorant extracted from berberis vulgaris root was applied on wool fiber using alum (aluminum potassium sulfate, copper sulfate and potassium dichromate as mordant. The effect of treatment variables such as amount of mordant, time and temperature on the color strength of dyed fibers was examined. The fastness properties of dyed wool against washing, light and wet rubbing were evaluated. the use of metal mordants increased the color strength of the dyed goods. Increase in dyeing time and temperature caused deeper shades. All mordants, increased the rub fastness and wash fastness of dyed samples, but the light fastness was increased except in case of alum. Berberine is a cationic dye and because of it's quaternary ammonium structure can act as an antibacterial agent. So, dyed samples were tested for antibacterial activity using AATCC test method 100-2004. The dyed wool represented a high level of antibacterial activity. The extract of the berberis vulgaris can be considered as a natural dye of acceptable fastness properties together with excellent antibacterial activity for woolen textiles.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2437

  9. Ultrafast photodynamics of the indoline dye D149 adsorbed to porous ZnO in dye-sensitized solar cells.

    Science.gov (United States)

    Rohwer, Egmont; Richter, Christoph; Heming, Nadine; Strauch, Kerstin; Litwinski, Christian; Nyokong, Tebello; Schlettwein, Derck; Schwoerer, Heinrich

    2013-01-14

    We investigate the ultrafast dynamics of the photoinduced electron transfer between surface-adsorbed indoline D149 dye and porous ZnO as used in the working electrodes of dye-sensitized solar cells. Transient absorption spectroscopy was conducted on the dye in solution, on solid state samples and for the latter in contact to a I(-)/I(3)(-) redox electrolyte typical for dye-sensitized solar cells to elucidate the effect of each component in the observed dynamics. D149 in a solution of 1:1 acetonitrile and tert-butyl alcohol shows excited-state lifetimes of 300±50 ps. This signature is severely quenched when D149 is adsorbed to ZnO, with the fastest component of the decay trace measured at 150±20 fs due to the charge-transfer mechanism. Absorption bands of the oxidized dye molecule were investigated to determine regeneration times which are in excess of 1 ns. The addition of the redox electrolyte to the system results in faster regeneration times, of the order of 1 ns. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Low-threshold conical microcavity dye lasers

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Schleede, Simone; Hauser, Mario

    2010-01-01

    element simulations confirm that lasing occurs in whispering gallery modes which corresponds well to the measured multimode laser-emission. The effect of dye concentration on lasing threshold and lasing wavelength is investigated and can be explained using a standard dye laser model....

  11. Pulse radiolysis of ethanolic solutions of rhodamine dyes

    International Nuclear Information System (INIS)

    Kartasheva, L.I.; Kucherenko, E.A.; Kozlov, A.S.; Pikaev, A.K.

    1983-01-01

    The primary products of radiolytical transformations of rhodamine 6G, rhodamine B, rhodamine 3B and rhodamine 110 in ethanolic solutions were studied by pulse radiolysis method under various conditions. It was found that the semireduced form of a dye was the only intermediate product of such transformations in ethanolic solutions of all dyes. It was shown that this species was formed by interaction of the dye with esub(s) - and CH 3 CHOH. The properties of this species were investigated and the rate constants of respective reactions for each dye were determined. It was found that nature and position of a substituent in the molecule of the dye have an effect on the rate of formation of the semi-reduced form. (author)

  12. Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of Phloxine B and Bromophenol blue dyes on ZnO photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Suman; Bahadur, Lal, E-mail: lbahadur@bhu.ac.in

    2015-05-15

    A single dye usually absorbs light only in a limited range of solar spectrum. In order to widen the absorption range, a combination of dyes, namely, Phloxine B and Bromophenol blue have been used as sensitizers in ZnO based dye sensitized solar cell (DSSC). It has been found that the DSSC sensitized by mixed dyes exhibited better photovoltaic performance than those observed with the DSSCs using test dyes individually. It has been ascribed to the enhanced absorption of light particularly in higher energy region (λ=400–550 nm) when both dyes were used together as was evident from the absorption spectra of dyes adsorbed onto ZnO electrode. The DSSC using ZnO electrode sensitized by mixed dyes provided J{sub SC}=5.6 mA cm{sup −2}, V{sub OC}=0.606 V, FF=0.53 and maximum energy conversion efficiency (η) of 1.35% on illuminating the cell with visible light of 150 mW cm{sup −2} intensity. - Highlights: • Phloxine B and Bromophenol blue have been used as sensitizers in ZnO based DSSC. • DSSC sensitized by mixed dyes exhibited better photovoltaic performance than those observed with the DSSCs using test dyes individually. • Enhanced absorption of light particularly in higher energy region (λ=400–550 nm) have been observed when both dyes were used together. • The DSSC using ZnO electrode sensitized by mixed dyes provided J{sub sc}=5.6 mA cm{sup −2}, V{sub oc}=0.606 V, FF=0.53. • Efficiency of 1.35% is achieved at visible light intensity of 150 mW cm{sup −2}.

  13. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  14. Kinetics of leather dyeing pretreated with enzymes: role of acid protease.

    Science.gov (United States)

    Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan

    2009-04-01

    In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.

  15. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    Science.gov (United States)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  16. Design and construction of liquid lasers using organic dyes

    International Nuclear Information System (INIS)

    Hariri, Akbar.

    1984-01-01

    Organic dye solution show great promise of obtaining tunable coherent light over the uv, visible and near infrared portion of spectrum. In this paper we describe various pumping schemes of dye molecules. Design, construction and performance of a pulsed dye laser, transversely pumped by a nitrogen laser and wall-ablation flash lamp-pumped dye lasers are the particular examples which are presented in detail

  17. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.; Hardin, Brian E.; McGehee, Michael D.

    2010-01-01

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation

  18. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  19. Photophysical properties of pyronin dyes in reverse micelles of AOT

    Energy Technology Data Exchange (ETDEWEB)

    Bayraktutan, Tuğba; Meral, Kadem; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr

    2014-01-15

    The photophysical properties of pyronin B (PyB) and pyronin Y (PyY) in reverse micelles formed with water/sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT)/n-heptane were investigated by UV–vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques. This study was carried out a wide range of reverse micelle sizes, with hydrodynamic radii ranging from 1.85 to 9.38 nm. Significant photophysical parameters as band shifts, fluorescence quantum yields and fluorescence lifetimes were determined to understand how photophysical and spectroscopic features of the dye compounds were affected by the variation of reverse micelle sizes. In this regard, control of reverse micelle size by changing W{sub 0}, the molar ratio of water to surfactant, allowed tuning the photophysical properties of the dyes in organic solvent via reverse micelle. Non-fluorescent H-aggregates of pyronin dyes were observed for the smaller reverse micelles whereas an increase in the reverse micelle size induced an increment in the amount of dye monomers instead of dye aggregates. Thus, the fluorescence intensities of the dyes were improved by increasing W{sub 0} due to the predomination of the fluorescent dye monomers. As a result, the fluorescence quantum yields also increased. The fluorescence lifetimes of the dyes in the reverse micelles were determined by the time-resolved fluorescence decay studies. Evaluation of the fluorescence lifetimes calculated for pyronin dyes in the reverse micelles showed that the size of reverse micelle affected the fluorescence lifetimes of pyronin dyes. -- Highlights: • The photophysical properties of pyronin dyes were examined by spectroscopic techniques. • Optical properties of the dyes were tuned by changing of W{sub 0} values. • The fluorescence lifetime and quantum yield values of the dyes in reverse micelles were discussed.

  20. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  1. Hair dye poisoning and the developing world

    Directory of Open Access Journals (Sweden)

    Sampathkumar Krishnaswamy

    2009-01-01

    Full Text Available Hair dye poisoning has been emerging as one of the important causes of intentional self harm in the developing world. Hair dyes contain paraphenylene-diamine and a host of other chemicals that can cause rhabdomyolysis, laryngeal edema, severe metabolic acidosis and acute renal failure. Intervention at the right time has been shown to improve the outcome. In this article, we review the various manifestations, clinical features and treatment modalities for hair dye poisoning.

  2. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... Azo dyes generally resist aerobic microbial degra- dation, only organisms with specialized azo dye reducing enzymes were found to degrade azo dyes under fully aerobic ... textile mill, in sterile plastic bottles. Isolation of ...

  3. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push-Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Fernandes, Sara S M; Castro, M Cidália R; Pereira, Ana Isabel; Mendes, Adélio; Serpa, Carlos; Pina, João; Justino, Licínia L G; Burrows, Hugh D; Raposo, M Manuela M

    2017-12-31

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push-pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO 2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine-thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO 2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20-64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%.

  4. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push–Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells

    Science.gov (United States)

    2017-01-01

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push–pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine–thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20–64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%. PMID:29302638

  5. Excimer Pumped Pulsed Tunable Dye Laser

    Science.gov (United States)

    Littman, Michael G.

    1988-06-01

    It has been recently shown and reported for the first time at this meeting, that Excimer pumping of a single-mode, short-cavity, grazing-incidence, longitudinally-pumped pulsed dye laser is feasible. In this paper the key concepts upon which this latest development is based are presented and are in a somewhat unusual form. This manuscript describes five specific dye laser examples. The five examples represent a progression from the simplest type of dye laser to the single-mode version mentioned above. The examples thus serve as a tutorial introduction to potential users of dye lasers. The article is organized into five sections or STEPS, each of which describes a different pulsed dye laser. Since the subtle points about dye lasers are best appreciated only after one actually attempts to build a working model, a PROCEDURES category is included in which details about the construction of the particular form of laser are given. As one reads through this category, think of it as looking over the shoulder of the laser builder. The NOTES category which follows is a brief but essential discussion explaining why various components and procedures are used, as well as how laser performance specifications are obtained. This subsection can he viewed as a discussion with the laser builder concerning the reasons for specific actions and choices made in the assembly of the example laser. The last category contains COMMENTS which provide additional related information pertaining to the example laser that goes beyond the earlier annotated discussion. If you like, these are the narrator's comments. At the end of the article, after the five sequential forms of the laser have been presented, there is a brief summation.

  6. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  7. Dyeing of γ-irradiated cotton with natural flavonoid dye extracted from irradiated onion shells (Allium cepa) powder

    Science.gov (United States)

    Rehman, Fazal-ur; Adeel, Shahid; Shahid, Muhammad; Bhatti, Ijaz Ahmad; Nasir, Faiza; Akhtar, Nasim; Ahmad, Zulfiqar

    2013-11-01

    Powder of Onion shells as a source of natural flavonoid dye (Quercetin) and cotton fabrics were exposed to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Irradiated and un-irradiated dye powder was used for extraction of quercetin as well as antibacterial, hemolytic and antioxidant activities were also determined to observe the effect of radiation. Furthermore, color strength and colourfastness of irradiated fabrics were improved by using pre and post-mordants such as alum and iron. It is found that 4 kGy is the optimal absorbed dose for extraction of natural quercetin extracted from onion shells while maximum color strength and acceptable fastness properties are obtained on dyeing of irradiated fabric at 60 °C keeping M:L of 1:30 using 10% alum as pre-mordant and 6% alum as post-mordant. Gamma irradiation has not only improved the color strength of the dye using irradiated cotton but also that of colourfastness properties.

  8. Enhanced Photovoltaic Performances of Dye-Sensitized Solar Cells by Co-Sensitization of Benzothiadiazole and Squaraine-Based Dyes.

    Science.gov (United States)

    Islam, Ashraful; Akhtaruzzaman, Md; Chowdhury, Towhid H; Qin, Chuanjiang; Han, Liyuan; Bedja, Idriss M; Stalder, Romain; Schanze, Kirk S; Reynolds, John R

    2016-02-01

    Dye-sensitized solar cells (DSSCs) based on a donor-acceptor-donor oligothienylene dye containing benzothiadiazole (T4BTD-A) were cosensitized with dyes containing cis-configured squaraine rings (HSQ3 and HSQ4). The cosensitized dyes showed incident monochromatic photon-to-current conversion efficiency (IPCE) greater than 70% in the 300-850 nm wavelength region. The individual overall conversion efficiencies of the sensitizers T4BTD-A, HSQ3, and HSQ4 were 6.4%, 4.8%, and 5.8%, respectively. Improved power conversion efficiencies of 7.0% and 7.7% were observed when T4BTD-A was cosensitized with HSQ3 and HSQ4, respectively, thanks to a significant increase in current density (JSC) for the cosensitized DSSCs. Intensity-modulated photovoltage spectroscopy results showed a longer lifetime for cosensitized T4BTD-A+HSQ3 and T4BTD-A+HSQ4 compared to that of HSQ3 and HSQ4, respectively.

  9. Revealing the influence of Cyano in Anchoring Groups of Organic Dyes on Adsorption Stability and Photovoltaic Properties for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chen, Wei-Chieh; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang

    2017-07-10

    Determining an ideal adsorption configuration for a dye on the semiconductor surface is an important task in improving the overall efficiency of dye-sensitized solar cells. Here, we present a detailed investigation of different adsorption configurations of designed model dyes on TiO 2 anatase (101) surface using first principles methods. Particularly, we aimed to investigate the influence of cyano group in the anchoring part of dye on its adsorption stability and the overall photovoltaic properties such as open circuit voltage, electron injection ability to the surface. Our results indicate that the inclusion of cyano group increases the stability of adsorption only when it adsorbs via CN with the surface and it decreases the photovoltaic properties when it does not involve in binding. In addition, we also considered full dyes based on the results of model dyes and investigated the different strength of acceptor abilities on stability and electron injection ability. Among the various adsorption configurations considered here, the bidentate bridging mode (A3) is more appropriate one which has higher electron injection ability, larger V OC value and more importantly it has higher dye loading on the surface.

  10. Physicochemical aspects of the liposome-wool interaction in wool dyeing.

    Science.gov (United States)

    Martí, Meritxell; Barsukov, Leonid I; Fonollosa, Jordi; Parra, José Luis; Sukhanov, Stanislav V; Coderch, Luisa

    2004-04-13

    Despite the promising application of liposomes in wool dyeing, little is known about the mechanism of liposome interactions with the wool fiber and dyestuffs. The kinetics of wool dyeing by two dyes, Acid Green 27 (hydrophobic) and Acid Green 25 (hydrophilic), were compared in three experimental protocols: (1) without liposomes, (2) in the presence of phosphatidylcholine (PC) liposomes, and (3) with wool previously treated with PC liposomes. Physicochemical interactions of liposomes with wool fibers were studied under experimental dyeing conditions with particular interest in the liposome affinity to the fiber surface and changes in the lipid composition of the wool fibers. The results obtained indicate that the presence of liposomes favors the retention of these two dyes in the dyeing bath, this effect being more pronounced in case of the hydrophobic dye. Furthermore, the liposome treatment is accompanied by substantial absorption of PC by wool fibers with simultaneous partial solubilization of their polar lipids (more evident at higher temperatures). This may result in structural modification of the cell membrane complex of wool fibers, which could account for a high level of the dye exhaustion observed at the end of the liposome dyeing process.

  11. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2013-01-01

    Full Text Available There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.

  12. Incorporation of Kojic Acid-Azo Dyes on TiO2 Thin Films for Dye Sensitized Solar Cells Applications

    Directory of Open Access Journals (Sweden)

    Carolynne Zie Wei Sie

    2017-01-01

    Full Text Available Sensitization of heavy metal free organic dyes onto TiO2 thin films has gained much attention in dye sensitized solar cells (DSSCs. A series of new kojic acid based organic dyes KA1–4 were synthesized via nucleophilic substitution of azobenzene bearing different vinyl chains A1–4 with kojyl chloride 4. Azo dyes KA1–4 were characterized for photophysical properties employing absorption spectrometry and photovoltaic characteristic in TiO2 thin film. The presence of vinyl chain in A1–4 improved the photovoltaic performance from 0.20 to 0.60%. The introduction of kojic acid obtained from sago waste further increases the efficiency to 0.82–1.54%. Based on photovoltaic performance, KA4 achieved the highest solar to electrical energy conversion efficiency (η = 1.54% in the series.

  13. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27

    OpenAIRE

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Background Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. Methods In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by ...

  14. Hypersensitivity to contrast media and dyes.

    Science.gov (United States)

    Brockow, Knut; Sánchez-Borges, Mario

    2014-08-01

    This article updates current knowledge on hypersensitivity reactions to diagnostic contrast media and dyes. After application of a single iodinated radiocontrast medium (RCM), gadolinium-based contrast medium, fluorescein, or a blue dye, a hypersensitivity reaction is not a common finding; however, because of the high and still increasing frequency of those procedures, patients who have experienced severe reactions are nevertheless frequently encountered in allergy departments. Evidence on allergologic testing and management is best for iodinated RCM, limited for blue dyes, and insufficient for fluorescein. Skin tests can be helpful in the diagnosis of patients with hypersensitivity reactions to these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf

    Directory of Open Access Journals (Sweden)

    Wuletaw Andargie Ayalew

    2016-12-01

    Full Text Available Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. In this study, dye-sensitized solar cells (DSSCs were fabricated using natural dyes light harvesting materials. The natural dyes were extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. In the as-prepared DSSC, a quasi-solid state electrolyte was sandwiched between the working electrode (photoanode and counter electrode (PEDOT-coated FTO glass. The photoelectrochemical performance of the as-prepared quasi-solid state DSSCs showed open-circuit voltages (VOC varied from 0.475 to 0.507 V, the short-circuit current densities (JSC ranged from 0.352 to 0.642 mA cm−2 and the fill factors (FF varied from 47 to 60% at 100 mWcm−2 light intensity. The dye extracted from A. sennii chiovenda flower, using acidified ethanol (in 1% HCl as extracting solvent, exhibited best conversion efficiency with a maximum open-circuit voltage (VOC of 0.507 V, short-circuit current density (JSC of 0.491 mA cm−2, fill factor (FF of 0.60 and an overall conversion efficiency (η of 0.15%. On the other hand, the maximum power conversion efficiency of the dye extracted from E. cotinifolia leaf was 0.136%. This is the first study that reports the fabrication of DSSC using natural dye sensitizers extracted from these plants in the presence of quasi-solid state electrolyte and PEDOT as a counter electrode.

  16. Spectral-optical characteristics of anthocyanin-containing natural dye staff

    International Nuclear Information System (INIS)

    Astanov, S.; Sharipov, M.Z.; Dalmuradova, N.N.

    2007-01-01

    Spectral-optical characteristics of anthocyanin-containing natural dye staff received from fruit ficus carica are determined. The chromatographic separating of dyeing pigment obtained is performed. The data obtained can be used as passport characteristics of the new food dye staff. (authors)

  17. A Novel Preparation Method of Two Polymer Dyes with Low Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dongjun Lv

    2017-02-01

    Full Text Available A new preparation method of polymer dyes was developed to improve both the grafting degree of the azo dyes onto O-carboxymethyl chitosan (OMCS and the water solubility of prepared polymer dyes. Firstly, the coupling compound of two azo edible colorants, sunset yellow (SY and allura red (AR, was grafted onto OMCS, and then coupled with their diazonium salt. The chemical structure of prepared polymer dyes was determined by Fourier transform-infrared spectroscopy and 1H-NMR, and the results showed that the two azo dyes were successfully grafted onto OMCS. The grafting degree onto OMCS and the water solubility of polymer dyes were tested, and the results showed that they were both improved as expected. The UV-vis spectra analysis results showed that the prepared polymer dyes showed similar color performance with the original azo dyes. Eventually, the cytotoxicity of prepared polymer dyes was tested and compared with the original azo dyes by a cytotoxicity test on human liver cell lines LO2, and the results showed that their grafting onto OMCS significantly reduced the cytotoxicity.

  18. [1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio

    2016-04-15

    Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices.

  19. Vibrational spectroscopy of photosensitizer dyes for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez Leon, C.

    2005-11-18

    Ruthenium(II) complexes containing polypyridyl ligands are intensely investigated as potential photosensitizers in organic solar cells. Of particular interest is their use in dye-sensitized solar cells based on nanocrystalline films of TiO{sub 2}. Functional groups of the dye allow for efficient anchoring on the semiconductor surface and promote the electronic communication between the donor orbital of the dye and the conduction band of the semiconductor. In the present work a new dye, [Ru(dcbpyH{sub 2}){sub 2}(bpy-TPA{sub 2})](PF6{sub )2}, and the well known (Bu{sub 4}N){sub 2}[Ru(dcbpyH){sub 2}(NCS){sub 2}] complex were spectroscopically characterized. The electronic transitions of both dyes showed solvatochromic shifts due to specific interactions of the ligands with the solvent molecules. The surface-enhanced Raman (SER) spectra of the dyes dissolved in water, ethanol, and acetonitrile were measured in silver and gold colloidal solutions. The results demonstrate that the dyes were adsorbed on the metallic nanoparticles in different ways for different solvents. It was also found that in the gold colloid, the aqueous solutions of both dyes did not produce any SERS signal, whereas in ethanolic solution the SERS effect was very weak. Deprotonation, H-bonding, and donor-acceptor interactions seem to determine these different behaviors. Our results indicate the important role of the charge transfer mechanism in SERS. The adsorption of the dye on two different TiO{sub 2} substrates, anatase paste films and anatase nanopowder, was also studied to clarify the role of the carboxylate groups in the anchoring process of the dyes on the semiconductor surface. The recorded spectra indicate a strong dependence of the anchoring configuration on the morphology of the semiconductor. (orig.)

  20. Enzyme-mediated bacterial biodegradation of an azo dye (C.I. Acid blue 113): reuse of treated dye wastewater in post-tanning operations.

    Science.gov (United States)

    Senthilvelan, T; Kanagaraj, J; Panda, R C

    2014-11-01

    "Dyeing" is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.

  1. Modification of azo dyes by lactic acid bacteria.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F

    2009-08-01

    The ability of Lactobacillus casei and Lactobacillus paracasei to modify the azo dye, tartrazine, was recently documented as the result of the investigation on red coloured spoilage in acidified cucumbers. Fourteen other lactic acid bacteria (LAB) were screened for their capability to modify the food colouring tartrazine and other azo dyes of relevance for the textile industry. Most LAB modified tartrazine under anaerobic conditions, but not under aerobic conditions in modified chemically defined media. Microbial growth was not affected by the presence of the azo dyes in the culture medium. The product of the tartrazine modification by LAB was identified as a molecule 111 daltons larger than its precursor by liquid chromatography-mass spectrometry. This product had a purple colour under aerobic conditions and was colourless under anaerobic conditions. It absorbed light at 361 and 553 nm. LAB are capable of anabolizing azo dyes only under anaerobic conditions. IMPACT AND SIGNIFICANCE OF THE STUDY: Although micro-organisms capable of reducing the azo bond on multiple dyes have been known for decades, this is the first report of anabolism of azo dyes by food related micro-organisms, such as LAB.

  2. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    OpenAIRE

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J.M.

    2013-01-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process...

  3. Interactions of Fluorescein Dye with Spherical and Star Shaped Gold Nanoparticles.

    Science.gov (United States)

    Pal, Gopa Dutta; Paul, Somnath; Bardhan, Munmun; Ganguly, Tapan

    2018-04-01

    UV-vis absorption, FT-IR, steady state fluorescence and fluorescence lifetime measurements were made on Fluorescein dye (Fl dye) molecules in presence of gold nanoparticles of different morphologies: spherical gold nanoparticles (GNP) and star shaped gold nanoparticles (GNS). The experimental observations demonstrate that Fl dye molecules form dimers when adsorbed on nanosurface of spherical gold particles. On the other hand possibly due to lack of adsorption on the surface of GNS the dye molecules were unable to form dimers. The projected tips on the surface of GNS may possibly hinder the dyes to adsorb on the surface of this nanoparticle. From the spectral analysis and measurements of thermodynamic parameters it is inferred that two different types of ground state interactions occur between Fl-dye-GNP and Fl dye-GNS systems. Both the observed negative values of the thermodynamic parameters ΔH and ΔS in the case of the former system predict the possibility of occurrences of hydrogen bonding interactions between two neighboring Fl dye molecules when adsorbed on the nanosurface of GNP. On the other hand in Fl dye-GNS system electrostatic interactions appear to occur, as evidenced from negative ΔH and positive value of ΔS, between the positive charges residing on the tips of the nanoparticles and anionic form of Fl dye. It has been concluded that as the adsorption of organic dyes on solid surfaces is prerequisite for the degradation of dye pollutants, the present experimental observations demonstrate that GNP could be used as a better candidate than GNS in degradation mechanism of the xanthenes dyes.

  4. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho

    2009-11-23

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture), absorption of red photons by the sensitizer transfers an electron into TiO2 and a hole into the electrolyte. Blue photons absorbed by the ERD are transferred by FRET to the sensitizer. Chemical Equitation Presentation © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Solvent effect on indocyanine dyes: A computational approach

    International Nuclear Information System (INIS)

    Bertolino, Chiara A.; Ferrari, Anna M.; Barolo, Claudia; Viscardi, Guido; Caputo, Giuseppe; Coluccia, Salvatore

    2006-01-01

    The solvatochromic behaviour of a series of indocyanine dyes (Dyes I-VIII) was investigated by quantum chemical calculations. The effect of the polymethine chain length and of the indolenine structure has been satisfactorily reproduced by semiempirical Pariser-Parr-Pople (PPP) calculations. The solvatochromism of 3,3,3',3'-tetramethyl-N,N'-diethylindocarbocyanine iodide (Dye I) has been deeply investigated within the ab initio time-dependent density functional theory (TD-DFT) approach. Dye I undergoes non-polar solvation and a linear correlation has been individuated between absorption shifts and refractive index. Computed absorption λ max and oscillator strengths obtained by TD-DFT are in good agreement with the experimental data

  6. Photocatalytic Removal of Azo Dye and Anthraquinone DyeUsing TiO2 Immobilised on Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    P. N. Palanisamy

    2011-01-01

    Full Text Available The photocatalytic activity of TiO2 immobilized on different supports; cement and ceramic tile, was studied to decolorize two commercial dyes. The catalyst was immobilised by two different techniques, namely, slurry method on ceramic tile and powder scattering on cement. The degradation of the dyes was carried out using UV and solar irradiation. The comparative efficiency of the catalyst immobilised on two different supports was determined. The photodegradation process was monitored by UV-Vis spectrophotometer. The catalyst immobilised on ceramic tile was found to be better than the catalyst immobilised on cement. Experimental results showed that both illumination and the catalyst were necessary for the degradation of the dyes and UV irradiation is more efficient compared to solar irradiation.

  7. Interplay between transparency and efficiency in dye sensitized solar cells.

    Science.gov (United States)

    Tagliaferro, Roberto; Colonna, Daniele; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2013-02-11

    In this paper we analyze the interplay between transparency and efficiency in dye sensitized solar cells by varying fabrication parameters such as the thickness of the nano-crystalline TiO(2) layer, the dye loading and the dye type. Both transparency and efficiency show a saturation trend when plotted versus dye loading. By introducing the transparency-efficiency plot, we show that the relation between transparency and efficiency is linear and is almost independent on the TiO(2) thickness for a certain thickness range. On the contrary, the relation between transparency and efficiency depends strongly on the type of the dye. Moreover, we show that co-sensitization techniques can be effectively used to access regions of the transparency-efficiency space that are forbidden for single dye sensitization. The relation found between transparency and efficiency (T&E) can be the general guide for optimization of Dye Solar Cells in building integration applications.

  8. Threshold pump power of a solar-pumped dye laser

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1988-01-01

    Threshold solar power for dye laser pumping has been determined by measuring the gain of a rhodamine 6G dye laser amplifier at various solar-simulated irradiances on an amplifier cell. The measured threshold was 20,000 solar constants (2.7 kW/sq cm) for the dye volume of 2 x 5 x 40 cu mm and the optimum dye concentration of 0.001 M. The threshold is about one-third of that achievable with a high-intensity solar concentrator.

  9. Management of Industrial Dye Wastes Through Adsorption By Functionalized Graft Copolymers

    International Nuclear Information System (INIS)

    El-Nagger Abdel-Wahab, M.; Hegazy El-Sayed, A.; Aly Hussein, A.; Zahran Abdel-Hamid, H.

    1999-01-01

    The sorption of Methyl Green (basic dye) by different grafted polymers with individual acrylonitrile (AN) and its binary comonomer mixture with N-vinylpyrrolidone (NVP) has been investigated. It was found that at approximately equal levels of graft yield of AN, poly(tetrafluoroethylene-hexafluoropropylene)(FEP) showed the highest dye sorption of the basic dye while the grafted low density polyethylene (LDPE) displayed the lowest dye sorption. On the other hand, the different grafted polymers with AN/NVP binary monomers which having an approximately equal total graft yield (TGY) showed a dye sorption for the same basic dye according to the order: HDPE>FEP> LDPE>PP. Nevertheless, it was found that the dye sorption values by the grafted polymers with AN/NVP mixtures are much higher than those by the grafted polymers with individual AN monomer. The dye ability of HDPE grafted with individual AN and the comonomer mixture AN/NVP towards basic and disperse dyes was utilized to investigate the synergism during radiation grafting of the comonomer mixture. Results showed that such graft materials are promising in practical use for the treatment of industrial dye wastes from textile factories

  10. Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kragh, Søren; Kjeldsen, B.G.

    2003-01-01

    We investigate a micro-fluidic dye laser, which can be integrated with polymer-based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the lasing threshold. The laser device is characterised using the laser dye Rhodamine 6G dissolved...... in ethanol, and the influence of dye concentration on the lasing wavelength and threshold is investigated. The experiments confirm the predictions of the rate-equation model, that lasing can be achieved in the 10 mum long laser cavity with moderate concentrations of Rhodamine 6G in ethanol, starting from 5 x...

  11. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  12. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  13. Effect of Isotopic Substitution on Elementary Processes in Dye-Sensitized Solar Cells: Deuterated Amino-Phenyl Acid Dyes on TiO2

    Directory of Open Access Journals (Sweden)

    Sergei Manzhos

    2013-03-01

    Full Text Available We present the first computational study of the effects of isotopic substitution on the operation of dye-sensitized solar cells. Ab initio molecular dynamics is used to study the effect of deuteration on light absorption, dye adsorption dynamics, the averaged over vibrations driving force to injection (∆Gi and regeneration (∆Gr, as well as on promotion of electron back-donation in dyes NK1 (2E,4E-2-cyano-5-(4-dimethylaminophenylpenta-2,4-dienoic acid and NK7 (2E,4E-2-cyano-5-(4-diphenylaminophenylpenta-2,4-dienoic acid adsorbed in monodentate molecular and bidentate bridging dissociative configurations on the anatase (101 surface of TiO2. Deuteration causes a red shift of the absorption spectrum of the dye/TiO2 complex by about 5% (dozens of nm, which can noticeably affect the overlap with the solar spectrum in real cells. The dynamics effect on the driving force to injection and recombination (the difference between the averaged <∆Gi,r> and ∆Gi,requil at the equilibrium configuration is strong, yet there is surprisingly little isotopic effect: the average driving force to injection <∆Gi> and to regeneration <∆Gr> changes by only about 10 meV upon deuteration. The nuclear dynamics enhance recombination to the dye ground state due to the approach of the electron-donating group to TiO2, yet this effect is similar for deuterated and non-deuterated dyes. We conclude that the nuclear dynamics of the C-H(D bonds, mostly affected by deuteration, might not be important for the operation of photoelectrochemical cells based on organic dyes. As the expectation value of the ground state energy is higher than its optimum geometry value (by up to 0.1 eV in the present case, nuclear motions will affect dye regeneration by recently proposed redox shuttle-dye combinations operating at low driving forces.

  14. Integrated and sequential anaerobic/aerobic biodegradation of azo dyes

    NARCIS (Netherlands)

    Tan, N.G.C.

    2001-01-01

    Azo dyes constitute a major class of environmental pollutants accounting for 60 to 70% of all dyes and pigments used. These compounds are characterized by aromatic moieties linked together with azo groups (-N=N-). The release of azo dyes into the environment is a concern due to coloration

  15. Photo- and chemocatalytic oxidation of dyes in water.

    Science.gov (United States)

    Du, Wei-Ning; Chen, Shyi-Tien

    2018-01-15

    Three commonly used dyes, Acid Red-114 (AR-114), Reactive Black-5 (RB-5), and Disperse Black EX-SF (DB-EX-SF), were treated in a pH-neutral liquid with ultraviolet (UV) light by two reactive methods: photocatalysis with titanium dioxide (TiO 2 ), and/or chemocatalysis with hydrogen peroxide (H 2 O 2 ) as the oxidant and various ferrous-based electron mediators as catalysts. Important factors for dye oxidation were determined through bifactorial experiments. The optimum combinations and doses of the three key reagents, namely TiO 2 , H 2 O 2 , and EDTA-Fe, were also determined. The degradation kinetics of the studied dyes at their optimum doses reveal that the oxidation reactions are pseudo-first-order in nature, and that certain dyes are selectively degraded more by one method than the other. The overall results suggest that co-treatment using more than one oxidative method is beneficial for the treatment of wastewater from dyeing processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts

    Science.gov (United States)

    MeenaKumari, M.; Philip, Daizy

    2015-01-01

    We present for the first time biogenic reduction and stabilization of gold and silver ions at room temperature using fruit juice of Punica granatum. The formation, morphology and crystalline structure of the synthesized nanoparticles are determined using UV-Visible, XRD and TEM. An attempt to reveal the partial role of phenolic hydroxyls in the reduction of Au3+ and Ag+ is done through FTIR analysis. The synthesized nanoparticles are used as potential catalysts in the degradation of a cationic phenothiazine dye, an anionic mono azo dye and a cationic fluorescent dye. The calculated values of percentage removal of dyes and the rate constants from pseudo first order kinetic data fit give a comparative study on degradation of organic dyes in presence of prepared gold and silver nanoparticles.

  17. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  18. A dye center laser pumped by emission from copper vapor and dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Loktyushin, A A; Chernyshev, A I; Soldatov, A N; Sukhanov, V B; Troitskiy, V O

    1983-01-01

    LiF:F2+ lasing is reported for the case of pumping by total emission with frequencies of 570.6 and 578.2 nanometers or by a single yellow copper vapor laser line and emission from an oxazene-17 dye laser excited by emission from a Cu laser. Lasing with a mean power level of 23 milliwatts with a maximum at 911 nanometers is obtained. The maximum efficiency was 3.4 percent with pumping of the dye centers by emission from the yellow Cu laser line. The lasing characteristics of the laser for all the types of pumping used are given.

  19. Resonance Raman and UV-visible spectroscopy of black dyes on textiles.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Smith, John R Lindsay; Moore, John N

    2010-10-10

    Resonance Raman and UV-visible diffuse reflectance spectra were recorded from samples of cotton, viscose, polyester, nylon, and acrylic textile swatches dyed black with one of seven single dyes, a mixture of two dyes, or one of seven mixtures of three dyes. The samples generally gave characteristic Raman spectra of the dyes, demonstrating that the technique is applicable for the forensic analysis of dyed black textiles. Survey studies of the widely used dye Reactive Black 5 show that essentially the same Raman spectrum is obtained on bulk sampling from the dye in solution, on viscose, on cotton at different uptakes, and on microscope sampling from the dye in cotton threads and single fibres. The effects of laser irradiation on the Raman bands and emission backgrounds from textile samples with and without dye are also reported. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Soeda, Shin [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2011-02-15

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  1. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Soeda, Shin

    2011-01-01

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  2. The Versatile SALSAC Approach to Heteroleptic Copper(I Dye Assembly in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Frederik J. Malzner

    2018-05-01

    Full Text Available Surface-bound heteroleptic copper(I dyes [Cu(Lanchor(Lancillary]+ are assembled using the “surfaces-as-ligands, surfaces as complexes” (SALSAC approach by three different procedures. The anchoring and ancillary ligands chosen are ((6,6′-dimethyl-[2,2′-bipyridine]-4,4′-diyl-bis(4,1-phenylenebis(phosphonic acid (3 and 4,4′-bis(4-iodophenyl-6,6′-diphenyl-2,2′-bipyridine (4, respectively. In the first SALSAC procedure, the FTO/TiO2 electrode is functionalized with 3 in the first dye bath, and then undergoes ligand exchange with the homoleptic complex [Cu(42][PF6] to give surface-bound [Cu(3(4]+. In the second method, the FTO/TiO2 electrode functionalized with 3 is immersed in a solution containing a 1:1 mixture of [Cu(MeCN4][PF6] and 4 to give surface-anchored [Cu(3(4]+. In the third procedure, the anchor 3, copper(I ion and ancillary ligand 4 are introduced in a sequential manner. The performances of the DSSCs show a dependence on the dye assembly procedure. The sequential method leads to the best-performing DSSCs with the highest values of JSC (7.85 and 7.73 mA cm−2 for fully masked cells and overall efficiencies (η = 2.81 and 2.71%, representing 41.1 and 39.6% relative to an N719 reference DSSC. Use of the 1:1 mixture of [Cu(MeCN4][PF6] and 4 yields DSSCs with higher VOC values but lower JSC values compared to those assembled using the sequential approach; values of η are 2.27 and 2.29% versus 6.84% for the N719 reference DSSC. The ligand exchange procedure leads to DSSCs that perform relatively poorly. The investigation demonstrates the versatile and powerful nature of SALSAC in preparing dyes for copper-based DSSCs, allowing the photoconversion efficiency of dye to be optimized for a given dye. The SALSAC strategy provides alternative hierarchical strategies where the isolation of the homoleptic [Cu(Lancillary2]+ is difficult or time-consuming; stepwise strategies are more atom-economic than ligand exchange involving the

  3. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature

    DEFF Research Database (Denmark)

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2007-01-01

    investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit......The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include...... the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we...

  4. Effects of Introducing Methoxy Groups into the Ancillary Ligands in Bis(diimine Copper(I Dyes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Annika Büttner

    2018-04-01

    Full Text Available A systematic investigation of four heteroleptic bis(diimine copper(I dyes in n-type Dye-Sensitized Solar Cells (DSSCs is presented. The dyes are assembled using a stepwise, on-surface assembly. The dyes contain a phosphonic acid-functionalized 2,2′-bipyridine (bpy anchoring domain (5 and ancillary bpy ligands that bear peripheral phenyl (1, 4-methoxyphenyl (2, 3,5-dimethoxyphenyl (3, or 3,4,5-trimethoxyphenyl (4 substituents. In masked DSSCs, the best overall photoconversion efficiency was obtained with the dye [Cu(5(4]+ (1.96% versus 5.79% for N719. Values of JSC for both [Cu(5(2]+ (in which the 4-MeO group is electron releasing and [Cu(5(4]+ (which combines electron-releasing and electron-withdrawing effects of the 4- and 3,5-substituents and are enhanced with respect to [Cu(5(1]+. DSSCs with [Cu(5(3]+ show the lowest JSC. Solid-state absorption spectra and external quantum efficiency spectra reveal that [Cu(5(4]+ benefits from an extended spectral range at higher energies. Values of VOC are in the order [Cu(5(4]+ > [Cu(5(1]+ > [Cu(5(2]+ > [Cu(5(3]+. Density functional theory calculations suggest that methoxyphenyl character in MOs within the HOMO manifold in [Cu(5(2]+ and [Cu(5(4]+ may contribute to the enhanced performances of these dyes with respect to [Cu(5(1]+.

  5. Radiation resistance of organic azo dyes in aqueous solutions

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.

    1987-01-01

    The resistance to the action of the ionizing radiation of aqueous and aqueous-alcoholic solutions of organic mono- and diazo dyes was studied. The radiation chemical yield of decolorization of the dye, determined from the kinetic decolorization curves served as a quantitative criterion of the radiation resistance. The influence of pH, addition of ethanol, hydroquinone, thiourea, glucose and oxygen on the radiation resistance of the azo dyes was studied. An attempt was made to relate the efficiency of radiation decolorization to the chemical nature of the dye

  6. Dye-sensitized solar cells based on purple corn sensitizers

    Science.gov (United States)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  7. Bio-degradation of synthetic textile dyes by thermophilic lignolytic fungal isolates

    Directory of Open Access Journals (Sweden)

    Nidhi Sahni

    2014-10-01

    Full Text Available Synthetic dyes are extensively used in different industries like textile dyeing, paper, printing, color, photography, pharmaceutics and cosmetics. These are generally toxic and carcinogenic in nature. If not treated, they will remain in nature for a long period of time as they are recalcitrant. Among these, azo dyes represent the largest and most versatile class of synthetic dyes. Approximately 10-15% of the dyes are released into the environment during manufacture and usage. Various methods are used for dye removal viz. physical, chemical, electrochemical and biological. Advantage of chemical, electrochemical and biological methods over physical involves the complete destruction of the dye, but chemical and electrochemical methods are found to be expensive and have operational problems. So the biological method is preferred over other methods for degradation/decolorization of dyes. In the present study, thermophilic lignolytic fungal culture was isolated from compost/soil/digested slurry/plant debris, were subjected for acclimatization to Remazol Brilliant Blue (RBB at 0.05% concentration, in the malt extract broth (MEB. The most promising fungal isolates were used for further dye degradation studies. The results suggest that the isolates T10, T14 and T17 as a useful tool for degradation of reactive dyes.

  8. Product Diversification of Turmeric (Curcuma Domestica Val) for TextileDyes

    International Nuclear Information System (INIS)

    Kuntari-Sasas; Syafril-Nurdiansyah

    2000-01-01

    In order to increase the use of natural source and variation of naturalpigment for textile dyes, research activity has been carried out in productdiversification of turmeric for textile dyes however its fixation ability tocotton fibre in this dyes does not have strong fixation ability to cottonfibre in order to improve its colour fastness it was necessary to do aftertreatment with mordant. Up to present time, it has been well known thatturmeric was used as raw material for medicine and cosmetic. Considering thatturmeric contains of carbonyl as chromophore in natural pigment. it has highpossibility to serve it as textile dyes. In this study, turmeric wasextracted with water and used its yields for dyeing cotton fabrics. Theextraction was carried out by using water as medium with ratio of 1 : 4 byboiling until reaching the medium ratio of 1 : 2. The extracted turmeric wasre-extracted again with fresh water in the same condition as the previousextraction and repeating the process up to several times until no more dyeswill be extracted out. The mixture of the extracted dyes were then put intoevaporation to obtain dry pigment and was grinned to obtain powder dyes.Color measurement by means of spectrophotometry was subjected to the dyespowder from known various concentrations to obtain the linear calibrationcurve between dyes concentrations and absorbance. The linear equationobtained from this experiment was : Y = 0.0075 + 0.0435 X. From this equationit was calculated that the dyes yields from the whole turmeric extraction was2.6805 %, and from 3 times repeating extraction was 2.2648 % or 84.49 % fromthe whole extracted dyes. Dyeing experiment for cotton fabrics were carriedout at 60 o C for various times of dyeing (30 minutes to 120 minutes). Thedyed fabrics were then mordanted or after treatment with respected potassiumbichromate, aluminum potassium sulphate (Tawas), and diazonium salt (Red SaltB). The dyed fabrics and the mordanted ones were tested for color fastness

  9. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    Science.gov (United States)

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  10. Experimental Researches Regarding the Ecological Dyeing with Natural Extracts

    Directory of Open Access Journals (Sweden)

    Budeanu Ramona

    2014-12-01

    Full Text Available The concept of ‘environmental awareness’ has recently had a major impact on the textile industry and on the fashion world as well. In this context, the use of natural fibres and the development of natural dyeing processes gradually became important goals of the textile industry. Of all natural textile fibres, hemp is considered to be one of the strongest and most durable. A wide range of natural extracts have been used for natural textile coloration and dyeing. Dyes deriving from natural sources have emerged as an important alternative to synthetic dyes. Ecofriendly, nontoxic, sustainable and renewable natural dyes and pigments have been used for colouring the food substrate, leather, wood, natural fibres and fabrics from the dawn of human history. The purpose of the research is to obtain ecologically coloured fabrics for textiles by using a method of dyeing that relies on natural ingredients extracted from red beet, onion leaves and black tea. The experiments are conducted on three different types of hemp fabrics. This paper presents the results of the studies regarding the dyeing process of hemp fabrics with natural extracts, the colours of the dyed samples inspected with reflectance spectra and the CIE L*a*b* colour space measurements.

  11. Mycoremediation of congo red dye by filamentous fungi

    OpenAIRE

    Bhattacharya, Sourav; Das, Arijit; G, Mangai.; K, Vignesh.; J, Sangeetha.

    2011-01-01

    Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was t...

  12. DEGRADATION OF TEXTILE DYES BY WHITE ROT BASIDIOMYCETES

    OpenAIRE

    B.P. PARMAR, P.N. MERVANA B.R.M. VYAS*

    2014-01-01

    ABSTRACT: Dyes released by the textile industries pose a threat to environmental quality. Ligninolytic white-rot basidiomycetes can effectively degrade colored effluents and conventional dyes. White-rot fungi produce various isoforms of extracellular oxidases including laccase, Mn peroxidase and lignin peroxidase (LiP), which are involved in the degradation of lignin in their natural lignocellulosic substrates.  The textile industry, by far the most avid user of synthetic dyes, is in need...

  13. Effect of Tannic Acid on the zeta Potential, Sorption, and Surface Free Energy in the Process of Dyeing of Leacril with a Cationic Dye.

    Science.gov (United States)

    Espinosa-Jiménez; Giménez-Martín; Ontiveros-Ortega

    1998-11-01

    The behavior of the surface free energy in the process of dyeing Leacril pretreated with tannic acid and subsequently dyeing with the cationic dye Rhodamine B has been studied. Also the electrokinetic behavior of these systems has been analyzed by studying the zeta potential, which has been obtained by means of the streaming potential technique. Values more significative of the zeta potential of these systems have been obtained using the three models of capillaries existing in the literature. The qualitative behavior of the zeta potential is the same for the three models of capillaries tested in this paper. These models are those of Goring and Mason, Biefer and Mason, and Chang and Robertson. The zeta potential of the systems analyzed is negative in the range of concentration of the dye in the liquid phase from 10(-6) to ca. 10(-4) M of dye. In the range of low concentrations (from 10(-6) to ca. 10(-5) M of dye) the zeta potential of the system untreated Leacril/Rhodamine B increases in absolute value due to increasing hydrophobic attractions between both the hydrophobic chains of the dye and the Leacril fibers in aqueous media. In the system Leacril treated with tannic acid/Rhodamine B, this increase is also due to the presence of hydrogen bonding between the phenolic hydroxyl groups of the tannic acid and the sulfonate and sulfate end groups of Leacril fibers. For concentrations of dye between 10(-5) and 10(-4) M of dye in solution, the zeta potential decreases in absolute value due to the electrostatic attractions between the groups negatively charged in the fiber and the cation of the dye. The zeta potential changes its sign at the highest concentrations of dye used in this work. The adsorption of Rhodamine B onto both untreated Leacril and Leacril treated with tannic acid is favored by the increasing temperature of adsorption. The behavior of the components of the surface free energy obtained by the thin-layer wicking technique led us to consider that the

  14. Radiation degradation and hemolytic toxicity evaluation of mono azo reactive dyes

    International Nuclear Information System (INIS)

    Saeed, Q.U.; Bhatti, I.A.; Ashraf, A.

    2017-01-01

    Monoazo reactive dyes have been synthesized and subjected to degradation before their application. Advanced oxidation process has been recognized as a promising radiation technology for the remediation of hazardous organic compounds. Radiation induced degradation of two mono azo reactive dyes have been tried at different absorbed dose, 5 kGy,10 kGy and 15 kGy. Aqueous solutions of these dyes were treated with gamma radiation using Cs 137 radiation source at Nuclear Institute of Agriculture and Biology (NIAB) Faisalabad. Dyes were evaluated spectrophotometrically by UV-visible and fourier transform infra red (FT-IR) spectroscopic techniques before and after irradiation to analyse their percentage decolorization and degradation. Maximum percentage decolorization of 93% and 63% was achieved for mono azo dyes D1 and D2 at 15 kGy absorbed dose. Toxicity study of these dyes was also tested by haemolytic activity assay. Percentage haemolytic activity of untreated dyes was found within permissible limit showing non toxicity of dye solutions. (author)

  15. Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps

    International Nuclear Information System (INIS)

    Zainal, Zulkarnain; Hui, Lee Kong; Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin; Abdullah, Abdul Halim; Ramli, Irmawati

    2005-01-01

    The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent, the photodegradation experiment was carried out in each dye photodegradation reactive pH range at ∼28 deg C. The dyes removal efficiency was studied and compared using UV-vis spectrophotometer analysis. The total removal of each dye was: methylene blue (90.3%), methyl orange (98.5%), indigo carmine (92.4%), chicago sky blue 6B (60.3%), and mixed dyes (70.1%), respectively. The characteristic of the photocatalyst was investigated using X-ray diffractometer (XRD). The amount of each dye intermediate produced in the photodegradation process was also determined with the help of total organic carbon (TOC) analysis

  16. Extraction and Characterization of Natural Dye from Green Walnut Shells and Its Use in Dyeing Polyamide: Focus on Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Mohammad Mirjalili

    2013-01-01

    Full Text Available Extraction of dyes from walnut using Soxhlet apparatus has been studied. The color components extracted and isolated from walnut shells were characterized by column chromatography, thin layer chromatography (TLC, nuclear magnetic resonance (NMR, mass spectroscopy (MS, and infrared (IR techniques. Natural dye extract obtained from the walnut was used in dyeing polyamide fabrics with different mordants. The dyed fabrics were evaluated for antibacterial activity against pathogenic strains of Gram-positive (Staphylococcus aureus and Gram-negative (Escherichia coli bacteria. As such, the relationship between antibacterial activity and dye concentration is investigated. Durability of antibacterial activity to laundering is also discussed. Results indicate that the polyamide dyed with walnut displayed excellent antibacterial activity in the presence of ferric sulfate, cupric sulfate, and potassium aluminum sulfate and exhibited good and durable fastness properties.

  17. Effects of gamma irradiation on the degradation of dyes

    International Nuclear Information System (INIS)

    Piccinini, N.; Ferrero, F.

    1975-01-01

    To investigate the degradation kinetics of aqueous solutions of dyes of several classes, we studied the effects of gamma irradiation versus the dose (up to 80 krad), the dye concentration, the pH and the oxygen content of these solutions. To study the influence of some of the above-mentioned parameters, anthraquinonic dyes have been irradiated in a wide range of doses (up to 5 Mrad). Furthermore these dyes were acted upon in order to investigate the complex reactions of molecular alteration through chromatographic separations and spectrophotometric analyses. Experimental results agreed with a first order kinetics for dye concentrations lower than 0.04 g/1, and with a zero order one for higher concentrations. The pH was found to have a different influence according to the type of dye; for example we found that the degradation efficiency for anthraquinonic dyes has higher values for basic ranges. The dissolved oxygen supports the degradation in comparison with de-aerated solutions, though its influence varies according to the dye type and the pH. The oxygen action is particularly evident with high doses; in fact, tests on anthraquinonic dyes with doses up to 5 Mrad showed a marked decrease in the kinetic constants caused by the oxygen disappearance. Radiochemical degradation yields (Gd), never greater than a few units, show that the radical reactions responsible for the decolorization effect, are limited to a few transfer sequences. COD decrease, on the other hand, confirms the presence of oxidation phenomena which correspond to computed radiochemical yields (Gsub(ox)) markedly higher than those spectrophotometrically measured; such a difference is enhanced in the case of irradiation with aeration of solutions. The theoretical considerations are also described that were developed for outlining a general scheme involving the experimental results of both the kinetics and the radiochemical yield. (author)

  18. Decolorization of reactive dyes under batch anaerobic condition by ...

    African Journals Online (AJOL)

    However, decolorization was lower for the dye of RB 49 than other two dyes in all concentrations despite 72 h incubation period by mixed anaerobic culture. All of the three dyes correlated with 1st order reaction kinetic with respect to decolorization kinetics. The results of the study demonstrated that high decolorization was ...

  19. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Nguyen, Thai Anh; Fu, Chun-Chieh; Juang, Ruey-Shin

    2016-11-01

    The ability of the bacterial strain Acidithiobacillus thiooxidans to remove sulfur blue 15 (SB15) dye from water samples was examined. This bacterium could not only oxidize sulfur compounds to sulfuric acid but also promote the attachment of the cells to the surface of sulfidic particles, therefore serving as an efficient biosorbent. The biosorption isotherms were better described by the Langmuir equation than by the Freundlich or Dubinin-Radushkevich equation. Also, the biosorption process followed the pseudo-second-order kinetics. At pH 8.3 and SB15 concentrations up to 2000 mg L(-1) in the biomass/mineral salt solution, the dye removal and decolorization were 87.5% and 91.4%, respectively, following the biosorption process. Biodegradation was proposed as a subsequent process for the remaining dye (250-350 mg L(-1)). A central composite design was used to analyze independent variables in the response surface methodology study. Under the optimal conditions (i.e., initial dye concentration of 300 mg L(-1), initial biomass concentration of 1.0 g L(-1), initial pH of 11.7, and yeast extract dose of 60 mg L(-1)), up to 50% of SB15 was removed after 4 days of biodegradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Physical and chemical investigations on natural dyes

    Science.gov (United States)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  1. Extracting natural dyes from wool--an evaluation of extraction methods.

    Science.gov (United States)

    Manhita, Ana; Ferreira, Teresa; Candeias, António; Dias, Cristina Barrocas

    2011-05-01

    The efficiency of eight different procedures used for the extraction of natural dyes was evaluated using contemporary wool samples dyed with cochineal, madder, woad, weld, brazilwood and logwood. Comparison was made based on the LC-DAD peak areas of the natural dye's main components which had been extracted from the wool samples. Among the tested methods, an extraction procedure with Na(2)EDTA in water/DMF (1:1, v/v) proved to be the most suitable for the extraction of the studied dyes, which presented a wide range of chemical structures. The identification of the natural dyes used in the making of an eighteenth century Arraiolos carpet was possible using the Na(2)EDTA/DMF extraction of the wool embroidery samples and an LC-DAD-MS methodology. The effectiveness of the Na(2)EDTA/DMF extraction method was particularly observed in the extraction of weld dye components. Nine flavone derivatives previously identified in weld extracts could be identified in a single historical sample, confirming the use of this natural dye in the making of Arraiolos carpets. Indigo and brazilwood were also identified in the samples, and despite the fact that these natural dyes were referred in the historical recipes of Arraiolos dyeing, it is the first time that the use of brazilwood is confirmed. Mordant analysis by ICP-MS identified the widespread use of alum in the dyeing process, but in some samples with darker hues, high amounts of iron were found instead.

  2. Application of dye analysis in forensic fibre and textile examination: Case examples.

    Science.gov (United States)

    Schotman, Tom G; Xu, Xiaoma; Rodewijk, Nicole; van der Weerd, Jaap

    2017-09-01

    Seven cases and a quality assurance test are presented. In these cases, fibres or textiles submitted for investigation were analysed by HPLC-DAD-MS to identify the dyes present. The cases presented illustrate that it is possible to identify textile dyes in fibre traces recovered for forensic analysis. The results show that a mixture of dyes is present in all textiles investigated, except one sample that was taken from a manufacturer dye shade card. It is concluded that dye analyses improves the evidential value of forensic fibre examinations, as it becomes possible to distinguish textiles that are different in dye chemistry, but have a similar colour. In addition dye analysis makes the examination more robust, as it becomes possible to attribute colour differences between samples to identical dyes (mixed in different ratios) or to chemically different dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Green grasses as light harvesters in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Intermolecular energy transfer in binary systems of dye polymers

    Science.gov (United States)

    Liu, Lin-I.; Barashkov, Nikolay N.; Palsule, Chintamani P.; Gangopadhyay, Shubhra; Borst, Walter L.

    2000-10-01

    We present results and physical interpretations for the energy transfer mechanisms in two-component dye polymer systems. The data consist of fluorescence emission spectra and decays. Two dyes were embedded in an epoxypolymer base, and only they participated in the energy transfer. Following pulsed laser excitation of the donor dye, energy transfer took place to the accept dye. The possible transfer paths considered here were nonradiative and radiative transfer. The latter involves two steps, emission and absorption of a photon, and therefore is relatively slow, while nonradiative transfer is a fast single step resulting from direct Coulomb interactions. A predominantly nonradiative transfer is desirable for applications, for instance in wavelength shifters in high energy particle detection. We studied the concentration effects of the dyes on the energy transfer and obtained the relative quantum efficiencies of various wavelength shifters from the fluorescence emission spectra. For low acceptor concentrations, radiative transfer was found to dominate, while nonradiative transfer became dominant at increasing dye concentrations. The fluorescence decays were analyzed with a sum-of-exponentials method and with Förster kinetics. The sum of exponential model yielded mean decay times of the dye polymers useful for a general classification. The decay times decreased as desired with increasing acceptor concentration. The samples, in which nonradiative energy transfer dominated, were analyzed with Förster kinetics. As a result, the natural decay times of the donor and acceptor dyes and the critical radii for nonradiative energy transfer were obtained from a global best fit.

  5. Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye

    Science.gov (United States)

    Choi, Jongwan; Kim, Felix Sunjoo

    2018-03-01

    We studied the influence of photoanode thickness on the photovoltaic characteristics and impedance responses of the dye-sensitized solar cells based on a ruthenium dye containing a hexyloxyl-substituted carbazole unit (Ru-HCz). As the thickness of photoanode increases from 4.2 μm to 14.8 μm, the dye-loading amount and the efficiency increase. The device with thicker photoanode shows a decrease in the efficiency due to the higher probability of recombination of electron-hole pairs before charge extraction. We also analyzed the electron-transfer and recombination characteristics as a function of photoanode thickness through detailed electrochemical impedance spectroscopy analysis.

  6. DYE-SENSITIZED PHOTOPOLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COUMARIN DYE/IODONIUM SALT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Fang Gao; Yong-yuan Yang

    1999-01-01

    The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.

  7. Screening of freshwater fungi for decolorizing multiple synthetic dyes.

    Science.gov (United States)

    Yang, Panpan; Shi, Wenxiao; Wang, Hongkai; Liu, Hongmei

    The biodegradation of synthetic dyes by fungi is emerging as an effective and promising approach. In the present study, freshwater fungal strains isolated from submerged woods were screened for the decolorization of 7 synthetic dyes. Subsequently, 13 isolates with high decolorization capability were assessed in a liquid system; they belonged to 9 different fungal species. Several strains exhibited a highly effective decolorization of multiple types of dyes. New absorbance peaks appeared after the treatment with 3 fungal strains, which suggests that a biotransformation process occurred through fungal biodegradation. These results showed the unexploited and valuable capability of freshwater fungi for the treatment of dye-containing effluents. The ability of certain fungi to decolorize dyes is reported here for the first time. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Formation of double-layered TiO2 structures with selectively-positioned molecular dyes for efficient flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kim, Eun Yi; Yu, Sora; Moon, Jeong Hoon; Yoo, Seon Mi; Kim, Chulhee; Kim, Hwan Kyu; Lee, Wan In

    2013-01-01

    Graphical abstract: A novel flexible tandem dye-sensitized solar cell, selectively loading different dyes in discrete layers, was successfully formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye-adsorbed TiO 2 film by a typical compression process at room temperature. -- Highlights: • A novel flexible dye-sensitized solar cell, selectively loading two different dyes in discrete layers, was successfully formed on a plastic substrate. • η of the flexible tandem cell obtained by transferring the high-temperature-processed TiO 2 layer was enhanced from 2.91% to 6.86%. • Interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the top to bottom TiO 2 layer. -- Abstract: To fabricate flexible dye-sensitized solar cells (DSCs) utilizing full solar spectrum, the double-layered TiO 2 films, selectively loading two different dyes in discrete layers, were formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye (TA-St-CA)-sensitized TiO 2 film by a typical compression process at room temperature. It was found that interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the N719/TiO 2 to the TA-St-CA/TiO 2 layer. Electron impedance spectra (EIS) and transient photoelectron spectroscopic analyses exhibited that introduction of a thin interfacial TiO 2 layer between the two TiO 2 layers remarkably decreased the resistance at the interface, while increasing the electron diffusion constant (D e ) by ∼10 times. As a result, the photovoltaic conversion efficiency (η) of the flexible tandem DSC was 6.64%, whereas that of the flexible cell derived from the single TA-St-CA/TiO 2 layer was only 2.98%. Another organic dye (HC-acid), absorbing a short wavelength region of solar spectrum, was also applied to fabricate flexible tandem DSC. The η of the cell

  9. Dye characteristics of Zingiber officinale var rubrum, Cinnamomum zaylanicum, Curcuma longa L., Oryza sativa L. Indica in dye sensitized solar cell (DSSC)

    Science.gov (United States)

    Cari; Mahfudli Fadli, U.; Bayu Prasada, A.; Supriyanto, A.

    2017-01-01

    The aims of the research to were know performance of DSSC using the dye of Zingiber, Cinnamomum, Curcuma, and Oryza as a photosensitizer with a variation of dye deposition area with spin coating techniques. The structure of the samples as a sandwich consisting of the working electrode (TiO2), dye, electrodes of platinum (Pt) and the electrolyte sandwiched between two electrodes. Test absorbance dye using UV-Visible Spectrophotometer Lambda 25, using a two-point conductivity test probes El Kahfi 100 and characterization test IV using a Keithley 2602A. For Zingiber results showed that absorbance at 243 nm and 279 nm, photoconductivity of 0.29 Ω-1m-1 and the efficiency is 0.015% on 0.5 cm2. Cinnamomum results showed that absorbance at 253 nm and 403 nm, photoconductivity of 0.11 Ω-1m-1 and the efficiency is 0.002% on 3 cm2. Curcuma results showed that absorbance at 243 nm and 422 nm, photoconductivity of 0.177 Ω-1m-1 and the efficiency is 0.072% on 3 cm2. Oryza results showed that absorbance at 240 nm and 423 nm, photoconductivity of 0.21 Ω-1m-1 and the efficiency is 0.04% on 2.25 cm2. Best absorbance value was obtained from Oryza dye; the highest photoconductivity was obtained from Zingiber dye, and the highest efficiency was obtained from Curcuma dye.

  10. Dye characteristics of Zingiber officinale var rubrum, Cinnamomum zaylanicum, Curcuma longa L., Oryza sativa L. Indica in dye sensitized solar cell (DSSC)

    International Nuclear Information System (INIS)

    Cari; Fadli, U. Mahfudli; Prasada, A. Bayu; Supriyanto, A.

    2017-01-01

    The aims of the research to were know performance of DSSC using the dye of Zingiber , Cinnamomum , Curcuma , and Oryza as a photosensitizer with a variation of dye deposition area with spin coating techniques. The structure of the samples as a sandwich consisting of the working electrode (TiO 2 ), dye, electrodes of platinum (Pt) and the electrolyte sandwiched between two electrodes. Test absorbance dye using UV-Visible Spectrophotometer Lambda 25, using a two-point conductivity test probes El Kahfi 100 and characterization test IV using a Keithley 2602A. For Zingiber results showed that absorbance at 243 nm and 279 nm, photoconductivity of 0.29 Ω -1 m -1 and the efficiency is 0.015% on 0.5 cm 2 . Cinnamomum results showed that absorbance at 253 nm and 403 nm, photoconductivity of 0.11 Ω -1 m -1 and the efficiency is 0.002% on 3 cm 2 . Curcuma results showed that absorbance at 243 nm and 422 nm, photoconductivity of 0.177 Ω -1 m -1 and the efficiency is 0.072% on 3 cm 2 . Oryza results showed that absorbance at 240 nm and 423 nm, photoconductivity of 0.21 Ω -1 m -1 and the efficiency is 0.04% on 2.25 cm 2 . Best absorbance value was obtained from Oryza dye; the highest photoconductivity was obtained from Zingiber dye, and the highest efficiency was obtained from Curcuma dye. (paper)

  11. Removal of some basic dyes by poly (Vinyl Alcohol/ acrylic acid)Hydrogel

    International Nuclear Information System (INIS)

    Hegazy, S.A.; Abdel-AAl, S.E.; Abdel-Rehim, H.A.; Khalifa, N.A.; El-Hosseiny, E.M.

    2000-01-01

    A study has made on the preparation and properties of poly (vinyl alcohol/ acrylic acid) hydrogel for the purpose of removal of cationic dyes from aqueous solutions. The effect of dose and monomer concentration on the uptake property of the hydrogel toward dye was studied. The uptake of basic methylene blue-9 dye with PVA/AAc was studied by the batch adsorption technique. The effect of pH on the dye uptake was demonstrated to find out that the suitable pH for maximum uptake occurred at pH 5. It was observed that as the concentration of dye is increased the dye uptake decreased. Furthermore, the uptake of dye by hydrogels increased as the temperature was elevated. The recovery of dye adsorbed is possible by treating the hydrogel with 5% HCl. The results obtained suggested this hydrogel possessed good removal properties towards basic methylene blue-9 dye, and this suggests that such hydrogels could be acceptable for practical uses

  12. Application of natural dyes in textile industry and the treatment of dye solutions using electrolytic techniques

    OpenAIRE

    Abouamer, Karima Massaud

    2008-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 25/02/2008. Anodic oxidation of a commercial dye, methylene blue (MB), from aqueous solutions using an electrochemical cell is reported. Data are provided on the effects of eight different types of supporting electrolytes, concentration of electrolytes, initial dye concentration, current and electrolytic time on the percentage removal of methylene blue. Anodic oxidation was found to be effect...

  13. First principles DFT study of dye-sensitized CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kalpna; Singh, Kh. S. [Department of Physics, D. J. College, Baraut -250611, U.P. (India); Kishor, Shyam, E-mail: shyam387@gmail.com [Department of Chemistry, J. V. College, Baraut -250611, U.P. (India); Josefesson, Ida; Odelius, Michael [Fysikum, Albanova University Center, Stockholm University, S-106 91 Stockholm (Sweden); Ramaniah, Lavanya M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positions of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.

  14. Contact dermatitis in tie and dye industry workers

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, N K; Mathur, A; Banerjee, K

    1985-01-01

    A survey of the Tie and Dye industry of Jodhpur City in India was made to investigate occupational dermatoses. 49 (16.6%) of 250 workers had incapacitating dermatitis. Skin lesions were seen mostly over the dorsa of the hands and fingers. 26 patients were patch tested with various dyes and chemicals; 14 were positive. Fast Red RC salt was the most potent sensitizer. Other dyes showing positive reactions were Orange GC salt, Bordeaux GP salt, Blue B salt, Red B base and naphthol.

  15. Immune responses to hair dyes containing toluene-2,5-diamine

    DEFF Research Database (Denmark)

    Schmidt, J D; Johansen, J D; Nielsen, M M

    2014-01-01

    BACKGROUND: Toluene-2,5-diamine (PTD) is the most frequently used dye in oxidative hair dyes on the Scandinavian market. However, little is known about immune responses to PTD-containing oxidative hair dyes. OBJECTIVES: To study immune responses induced by PTD-containing hair dyes in mice. METHODS......: Immune responses against two different permanent hair dye products containing 1·60% (w/w) and 0·48% (w/w) PTD within the colour gel, and various concentrations of pure PTD were studied. The local inflammatory response was measured by ear swelling and cell infiltration, and T- and B-cell infiltration...... and proliferation was determined in the draining lymph nodes. RESULTS: Concentration-dependent immune responses were seen to PTD both in the skin and draining lymph nodes. The hair dye containing 1·60% PTD induced strong local inflammation and caused T- and B-cell infiltration and proliferation as well...

  16. Ranking of hair dye substances according to predicted sensitization potency

    DEFF Research Database (Denmark)

    Søsted, H; Basketter, D A; Estrada, E

    2004-01-01

    Allergic contact dermatitis following the use of hair dyes is well known. Many chemicals are used in hair dyes and it is unlikely that all cases of hair dye allergy can be diagnosed by means of patch testing with p-phenylenediamine (PPD). The objectives of this study are to identify all hair dye...... in order to help select a number of chemically diverse hair dye substances that could be used in subsequent clinical work. Various information sources, including the Inventory of Cosmetics Ingredients, new regulations on cosmetics, data on total use and ChemId (the Chemical Search Input website provided...... by the National Library of Medicine), were used in order to identify the names and structures of the hair dyes. A QSAR model, developed with the help of experimental local lymph node assay data and topological sub-structural molecular descriptors (TOPS-MODE), was used in order to predict the likely sensitization...

  17. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voïtchovsky, Kislon

    2015-05-27

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell\\'s performance depends on the molecular arrangement and the density of the dye on the semiconductor surface, but a molecular-level picture of the cell-electrolyte interface is still lacking. Here, we present subnanometer in situ atomic force microscopy images of the Z907 dye at the surface of TiO2 in a relevant liquid. Our results reveal changes in the conformation and the lateral arrangement of the dye molecules, depending on their average packing density on the surface. Complementary quantitative measurements on the ensemble of the film are obtained by the quartz-crystal microbalance with dissipation technique. An atomistic picture of the dye coverage-dependent packing, the effectiveness of the hydrophobic alkyl chains as blocking layer, and the solvent accessibility is obtained from molecular dynamics simulations. (Figure Presented).

  18. Dye sensitized solar cells. How do they work?

    International Nuclear Information System (INIS)

    Laurie M, Peter

    2008-01-01

    Dye sensitized solar cells (DSC), also known as Gratzel cells, harvest sunlight using a dye adsorbed onto the high surface area of a porous nanocrystalline titanium dioxide film. Photoexcitation of the dye results in the injection of electrons into the conduction band of the oxide. The dye is regenerated in its original state by donation of electrons from iodide ions presenting an electrolyte that permeates the porous oxide film. The regeneration cycle is completed at a platinum coated cathode at which tri-iodide ions are reduced to iodide ions. DSC has achieved solar conversion efficiencies of over 10% in the laboratory, with best module efficiencies of around 8%. This lecture will describe the fabrication of the basic DSC and discuss the basic Physics and Chemistry of the cell. (Full text)

  19. Investigation of the lasing of dyes under copper vapor laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Danilova, V I; Kopylova, T N; Maier, G V; Masarnovskii, L V; Soldatov, A N; Sukhanov, V B

    1980-10-01

    The lasing characteristics of dyes pumped by copper vapor laser radiation are investigated in order to determine the optimal energetic parameters of the dye-laser system. Expressions are derived for the yields of stimulated emission from dye molecules, and it is shown that the most effective means of improving the lasing characteristics of rhodamine dye solutions is by the modification of intermolecular interactions, in part by the use of multicomponent solutions. Results are then presented of experimental measurements of the emission intensities of combinations of rhodamine dyes irradiated by the 5106-A line of a copper vapor laser. An increase in the lasing efficiency of the acceptor molecule is found for all the dye pairs investigated, with even greater emission intensities observed for multicomponent dye mixtures when the mixtures were pumped transversely. Under longitudinal pumping, improvements in lasing efficiency were obtained only for mixtures of rhodamine 6 Zh with cresil violet.

  20. Specific interactions within micelle microenvironment in different charged dye/surfa

    Directory of Open Access Journals (Sweden)

    Adina Roxana Petcu

    2016-01-01

    Full Text Available The interactions of two ionic dyes, Crystal Violet and Methyl Orange, with different charged surfactants and also with a nonionic surfactant were investigated using surface tension measurements and visible spectroscopy in pre-micellar and post-micellar regions. It was found that for the water dominant phase systems the dye was localized between the polar heads, at the exterior of the direct micelle shells for all the systems. For the oil dominant phase systems, in case of the same charged dye/surfactant couples, the dye was localized in the micelle shell between the hydrocarbon chain of the surfactant nearby the hydrophilic head groups while for nonionic surfactant and oppositely charged dye/surfactant, localization of dye was between the oxyethylenic head groups towards the interior of the micelle core. Mixed aggregates of the dye and surfactant (below the critical micellar concentration of cationic surfactant, dye-surfactant ion pair and surfactant-micelles were present. The values of equilibrium constants (for TX-114/MO and TX-114/CV systems were 0.97 and 0.98, respectively, partition coefficients between the micellar and bulk water phases and standard free energy (for the nonionic systems were −12.59 kJ/mol for MO and −10.97 kJ/mol for CV were calculated for all the studied systems. The partition processes were exothermic and occurred spontaneously.

  1. Using Eggshell in Acid Orange 2 Dye Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2015-05-01

    Full Text Available Background and purpose: Generated dye wastewater by the textile industry is usually toxic, non-biodegradable and resistant in the environment. Eggshell is one of the inexpensive material and for the reason the vesicular structures can be used as a proper adsorbent for pollutants removal. The aim of this study is to investigate the efficiency of eggshell for removal of acid orange 2 dye from aqueous solution. Materials and Methods: In the experimental study was determined the efficacy of variant variables such as contact time (15, 30, 60, 90 and 120 min, pH (3, 7 and 11, adsorbent dose (10, 25, 50 and 75 g/L, and initial dye concentration (25, 50 and 100 mg/L. The concentration of dye by spectrophotometer ultraviolet/visible in the wavelength 483 nm was examined. Results: The results showed that with increasing contact time and adsorbent dose, the dye removal efficiency was increased, but with increasing pH and initial dye concentration the removal efficiency was decreased. The maximum of removal efficiency of acid orange 2 dye got in the optimum pH: 3, contact time: 90 min, adsorbent dose: 50 g/L and initial dye concentration: 25 mg/L. Adsorption of acid orange 2 dye (R2 = 0.87 follow the Freundlich isotherm. Conclusion: Eggshells can be used as an inexpensive and effective adsorbent for the removal of acid orange 2 dye.

  2. Photophysical and laser characteristics of pyrromethene 567 dye ...

    Indian Academy of Sciences (India)

    Narrow-band laser performance of alcohol solutions of pyrromethene 567 ... curves of each dye solution were obtained by scanning the wavelength of the dye ... solutions, using ethanol and methanol solvents, are summarized in table 1.

  3. Dye-Sensitized Approaches to Photovoltaics

    Science.gov (United States)

    Grätzel, Michael

    2008-03-01

    Sensitization of wide band-gap semiconductors to photons of energy less than the band-gap is a key step in two technically important processes - panchromatic photography and photoelectrochemical solar cells. In both cases the photosensitive species is not the semiconductor - silver halide or metal oxide - but rather an electrochemically active dye. The gap between the highest occupied molecular level (HOMO) and the lowest unoccupied molecular level (LUMO) is less than the band-gap of the semiconductor with which it is associated. It can therefore absorb light of a wavelength longer than that to which the semiconductor itself is sensitive. The electrochemical process is initiated when the dye molecule relaxes from its photoexcited level by electron injection into the semiconductor, which therefore acts as a photoanode. If the dye is in contact with a redox electrolyte, the negative charge represented by the lost electron can be recovered from the reduced state of the redox system, which in return is regenerated by charge transfer from a cathode. An external load completes the electrical circuit. The system therefore represents a conversion of the energy of absorbed photons into an electrical current by a regenerative device in every functional respect analogous to a solid-state photovoltaic cell. As in any engineering system, choice of materials, their optimization and their synergy are essential to efficient operation. While a semiconductor-electrolyte contact is analogous to a Schottky contact, in that a barrier is established between two materials of different conduction mechanism, with the possibility of optical absorption, charge carrier pair generation and separation, it should be remembered that the photogenerated valence band hole in the semiconductor represents a powerful oxidizing agent. Given that the band-gap is related to the strength and therefore the stability of chemical bonding within the semiconductor, for narrow-gap materials the most likely

  4. Tunable lasers in isotope separation, a colorful view of a dye chemist

    International Nuclear Information System (INIS)

    Hammond, P.R.

    1976-01-01

    Some of the problems to be encountered in the large-scale use of dye lasers in an isotope separation plant are discussed. Why should dye lasers be employed. How can dye conversion efficiency be optimized. How can dye photochemical decomposition and hence running costs be minimized and how serious is this effect anyway. What are toxicity problems with the dye. These and similar issues are examined

  5. Modified dynamical equation for dye doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)

    2010-04-15

    Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.

  6. Assessment of the dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R. D. [Center for Basic Sciences, National Renewable Energy Laboratory, MIS 3211, 1617 Cole Boulevard, Golden, CO 80401 (United States)

    2002-09-01

    The field of solar electricity, or photovoltaics (PV), is rich in that there are many materials and concepts for converting sunlight into electricity. The technologies accepted as conventional are those well along in the process of commercialization. The dye-sensitized solar cell, developed in the 1990s, is a nonconventional solar electric technology that has attracted much attention, perhaps a result of its record cell efficiency above 10%. This paper reviews the technology, discusses new research results and approaches presented at a recent symposium of many of the world's important dye solar cell researchers, and presents an assessment of the dye-sensitized solar cell in a comparison with current conventional solar electric technologies. It concludes the dye solar cell has potential for becoming a cost-effective means for producing electricity, capable of competing with available solar electric technologies and, eventually, with today's conventional power technologies. But it is a relatively new technology and faces many hurdles on the path to commercialization. Because of its potential, this assessment recommends further funding for research and development (RandD) of the dye-sensitized solar cell technology on the basis of the promising technical characteristics of the technology, a strong US and worldwide research base, positive industry interest, and today's relatively small funding allocation for its RandD. (Author)

  7. Efficient dye-sensitized solar cells from mesoporous zinc oxide nanostructures sensitized by N719 dye

    Science.gov (United States)

    Kumara, G. R. A.; Deshapriya, U.; Ranasinghe, C. S. K.; Jayaweera, E. N.; Rajapakse, R. M. G.

    2018-03-01

    Dye-sensitized solar cells (DSCs) have attracted a great deal of attention due to their low-cost and high power conversion efficiencies. They usually utilize an interconnected nanoparticle layer of TiO2 as the electron transport medium. From the fundamental point of view, faster mobility of electrons in ZnO is expected to contribute to better performance in DSCs than TiO2, though the actual practical situation is quite the opposite. In this research, we addressed this problem by first applying a dense layer of ZnO on FTO followed by a mesoporous layer of interconnected ZnO nanoparticle layer, both were prepared by spray pyrolysis technique. The best cell shows a power conversion efficiency of 5.2% when the mesoporous layer thickness is 14 μm and the concentration of the N719 dye in dye coating solution is 0.3 mM, while a cell without a dense layer shows 4.2% under identical conditions. The surface concentration of dye adsorbed in the cell with a dense layer and that without a dense layer are 5.00 × 10‑7 and 3.34 × 10‑7 mol/cm2, respectively. The cell with the dense layer has an electron lifetime of 54.81 ms whereas that without the dense layer is 11.08 ms. As such, the presence of the dense layer improves DSC characteristics of ZnO-based DSCs.

  8. Decolorization of dyes by recombinase CotA from Escherichia coli ...

    African Journals Online (AJOL)

    The CotA laccase could efficiently decolorize anthraquinone and azo dyes in 24 h. The decolourization capacity of this recombinant laccase suggested that it could be a useful biocatalyst for the treatment of dye-containing effluents. Key words: Recombinant CotA laccase, Escherichia coli, purification, dye decolorization.

  9. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    Science.gov (United States)

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  10. Interaction Between Cyanine Dye IR-783 and Polystyrene Nanoparticles in Solution.

    Science.gov (United States)

    Zhang, Yunzhi; Xu, Hui; Casabianca, Leah B

    2018-05-17

    The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In the present work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference (STD)-NMR was also used to show that protons near the positively-charged nitrogen in the dye are more strongly associated with the negatively-charged nanoparticle surface than protons near the negatively-charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles. This article is protected by copyright. All rights reserved.

  11. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  12. Configuration of organic dye excimers in nanoporous SiO2 matrices

    International Nuclear Information System (INIS)

    Sorokin, A.V.; Gnap, B.A.; Bespalova, I.I.; Yefimova, S.L.; Malyukin, Yu.V.

    2016-01-01

    The effect of cyanine dye 3,3′-dioctadecyloxacarbocyanine perchlorate (DiO) and benzimidazole dye 4-dimethylamino-1,8-naphthoylene-1′,2′-benzimidazole (DNBI) accumulation in nanoporous silica matrices on the dyes luminescence properties has been studied. For both dyes, ground state dimer formation with perpendicular transition dipoles at high dye concentrations has been considered as a result of restricted geometry of the nanoscale pores. The dimer excitation leads to excimer formation revealing by appearance of new long-wavelength luminescence band and shortening the dye luminescence lifetime. In the excimer luminescence excitation spectra two additional bands have been observed, one of which is bathochromically shifted relatively to the absorption band and another one is hypsocromically shifted. Using the Kasha exciton model it was shown that the excimers possess oblique transition dipoles configuration. - Highlights: • Organic dye molecules are efficiently accumulated in nanoporous silica matrices. • Restricted geometry of SiO 2 nanopores provokes excimerization of both cyanine and benzimidazole dyes. • The excimers reveal configuration of oblique dimers. • The excimers are originated from ground state dimers with a perpendicular arrangement of transition dipoles.

  13. Nine cases of bladder cancer occurring in occupational dye users

    OpenAIRE

    村瀬, 達良; 高士, 宗久; 青田, 泰博; 下地, 敏雄; 三宅, 弘治; 三矢, 英輔

    1985-01-01

    Workers in the dye manufacturing industry have a high risk of urinary bladder cancer. There may also be a high relative risk of bladder cancer in occupational dye users. Nine occupational dye users were found to have bladder cancer. The period of engaging with dye work ranged from 5 to 40 years. Seven patients had bladder cancer and the other 2 patients had lesions both in the bladder and in the renal pelvis. Histopathology of all cases was transitional cell carcinoma. Three cases were classi...

  14. Biophotovoltaics: Natural pigments in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Hug, Hubert; Bader, Michael; Mair, Peter; Glatzel, Thilo

    2014-01-01

    Highlights: • Natural pigments are photosensitizers in dye-sensitized solar cells (DSSCs). • Efficiency is still lower compared to synthetic pigments. • The use of natural pigments such as carotenoids and polyphenols is cheap. • General advantages of DSSCs are flexibility, color and transparency. • Usage under diffuse light and therefore, indoor applications are possible. - Abstract: Dye-sensitized solar cells (DSSCs) which are also called Graetzel cells are a novel type of solar cells. Their advantages are mainly low cost production, low energy payback time, flexibility, performance also at diffuse light and multicolor options. DSSCs become more and more interesting since a huge variety of dyes including also natural dyes can be used as light harvesting elements which provide the charge carriers. A wide band gap semiconductor like TiO 2 is used for charge separation and transport. Such a DSSC contains similarities to the photosynthetic apparatus. Therefore, we summarize current available knowledge on natural dyes that have been used in DSSCs which should provide reasonable light harvesting efficiency, sustainability, low cost and easy waste management. Promising natural compounds are carotenoids, polyphenols and chlorophylls

  15. Dye shift: a neglected source of genotyping error in molecular ecology.

    Science.gov (United States)

    Sutton, Jolene T; Robertson, Bruce C; Jamieson, Ian G

    2011-05-01

    Molecular ecologists must be vigilant in detecting and accounting for genotyping error, yet potential errors stemming from dye-induced mobility shift (dye shift) may be frequently neglected and largely unknown to researchers who employ 3-primer systems with automated genotyping. When left uncorrected, dye shift can lead to mis-scoring alleles and even to falsely calling new alleles if different dyes are used to genotype the same locus in subsequent reactions. When we used four different fluorophore labels from a standard dye set to genotype the same set of loci, differences in the resulting size estimates for a single allele ranged from 2.07 bp to 3.68 bp. The strongest effects were associated with the fluorophore PET, and relative degree of dye shift was inversely related to locus size. We found little evidence in the literature that dye shift is regularly accounted for in 3-primer studies, despite knowledge of this phenomenon existing for over a decade. However, we did find some references to erroneous standard correction factors for the same set of dyes that we tested. We thus reiterate the need for strict quality control when attempting to reduce possible sources of genotyping error, and in cases where different dyes are applied to a single locus, perhaps mistakenly, we strongly discourage researchers from assuming generic correction patterns. © 2011 Blackwell Publishing Ltd.

  16. Severe allergic hair dye reactions in 8 children

    DEFF Research Database (Denmark)

    Sosted, Heidi; Johansen, Jeanne Duus; Andersen, Klaus Ejner

    2006-01-01

    Serious adverse skin reactions to permanent hair dyes and temporary black tattoos have been reported. As temporary tattoos have become fashionable among adolescents, the risk profile for p-phenylenediamine (PPD) sensitization of the population has changed simultaneously with an increasing use...... of hair dyes in this age group. This investigation reports PPD sensitization in children with regard to cause of sensitization, clinical presentation and consequences. Clinical history and patch test results for consecutive children below 16 years of age with suspected hair dye allergic reactions...... and positive patch tests to PPD were collected over 2 years in 2 Danish dermatology clinics. 8 children aged 12-15 years were collected, and they all reacted to several hair dye ingredients. 5 of the patients were hospitalized, 1 in the intensive care unit. 6 of the patients gave a history of prior reaction...

  17. Modified Multiwalled Carbon Nanotubes for Treatment of Some Organic Dyes in Wastewater

    Directory of Open Access Journals (Sweden)

    M. I. Mohammed

    2014-01-01

    Full Text Available In Iraq, a large quantity of basic orange and methyl violet dyes contaminated wastewater from textile industries is discharged into Tigris River. So the aim of this work is to found an efficient and fast technique that can be applied directly for removal of such dyes from the wastewater before discharging into river. Accordingly, CNTs as a new approach prepared by CCVD technique were purified, functionalized, and used as adsorption material to remove dyes from wastewater. The effect of pH, contact time, CNTs dosage, and dyes concentration on removal of pollutants was studied. The removal percentage of both dyes was proportional to the contact time, CNTs dosage, and pH and inversely proportional to the dyes concentration. The results show that the equilibrium time was 20 and 30 min for basic orange and methyl violet dyes, respectively, and the maximum removal percentage for all dyes concentrations was at pH = 8.5 and CNTs dosage of 0.25 g/L and 0.3 g/L for methyl violet and basic orange dye, respectively. The adsorption isotherm shows that the correlation coefficient of Freundlich model was higher than Langmuir model for both dyes, indicating that the Freundlich model is more appropriate to describe the adsorption characteristics of organic pollutants.

  18. THE DYEING PROCESS OF KNITTED FABRICS AT DIFFERENT TEMPERATURES USING ULTRASOUND

    Directory of Open Access Journals (Sweden)

    MITIC Jelena

    2014-05-01

    Full Text Available The dyeing of knitted fabrics made from 100 % cellulose using on-line procedure vinyl sulfonic reactive dye, with or without ultrasound energy, is carried out in this paper. The impact of temperature has been observed. The dye exhaustion is monitored using the method of absorption spectrophotometry, and the quality control of the coloration is monitored using color measurements. The acting of ultrasound on coloration consistency, as well as on some mechanical characteristics has also been examined. All examples of the ultrasound dyeing process show greater dye exhaustion in comparison to the conventional procedure. In addition, all the samples, which have been dyed with the ultrasound energy at 40°C, are significantly darker and have deeper color in comparison with the referent sample. The temperature has a great influence on kinetic energy of the dye molecules, and therefore on the diffusion processes in the dyeing system. The exhaustion chart indicates that when the temperature is lower the exhaustion degree drops. However, all the samples dyed with the ultrasound energy have bigger exhaustion. Besides that, ultrasound energy contributes to warming up the processing environment, so the additional warm up with the electricity is unnecessary, unlike the conventional way of dyeing. Since the reactive dyes chemically connect themselves with the cellulose substrate and in that way form covalent connection, the dyed fabrics have good washing consistency. Analysis results indicate that the consistencies are identical regardless the applied dyeing procedure. In other words, the dyeing method using the ultrasound energy produces the dyed fabric of the same quality. After analyzing the results of breaking force and elongation at break of knitted fabrics, it is noticeable that there is no degradation of previously mentioned knitted fabrics features (horizontally and vertically during the ultrasound wave’s activity.

  19. Evaluation of concordance between labelling and content of 52 hair dye products: overview of the market of oxidative hair dye.

    Science.gov (United States)

    Antelmi, Annarita; Bruze, Magnus; Zimerson, Erik; Engfeldt, Malin; Young, Ewa; Persson, Lena; Foti, Caterina; Sörensen, Östen; Svedman, Cecilia

    2017-04-01

    Hair dyes contain strong allergens and are widely available. Correct labelling is a necessity in order to provide information about the contents. To compare the labelling and content of hair dyes. In total, 52 hair dyes, from 11 different countries, were bought over the counter. High-pressure liquid chromatography was used for the analysis of p-phenylenediamine (PPD), toluene-2,5-diamine (2,5-TDA), and three oxidation products of PPD. There was good agreement between labelling and content, although seven of the 52 products (13.5%) studied were incorrectly labelled. There were differences in the geographical use of PPD and 2,5-TDA; 2,5-TDA was more common in European products, while PPD was more common in products purchased outside Europe and was present in higher concentrations. All dyes purchased in Europe contained PPD and 2,5-TDA at levels within the limits defined by European legislation, however, levels were higher in some products purchased outside Europe. Only a small group of hair dyes sold in Europe were mislabelled. Further improvement in labelling, by providing the concentration of chemicals, may facilitate products to be purchased both locally and within the global market, when travelling or on the internet.

  20. Biotreatment of anthraquinone dye Drimarene Blue K 2 RL | Siddiqui ...

    African Journals Online (AJOL)

    Drimarene Blue (Db) K2RL is a reactive anthraquinone dye, used extensively in textile industry, due to poor adsorbability to textile fiber; it has a higher exhaustion rate in wastewater. The dye is toxic, carcinogenic, mutagenic and resistant to degradation. Decolorization of this dye was studied in two different systems.

  1. Column studies for biosorption of dyes from aqueous solutions on ...

    African Journals Online (AJOL)

    Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye wastewaters. Based on the results of batch studies on biosorption of the dyes on powdered fungal biomass, Aspergillus niger, an immobilised fungal biomass was used in column studies for removal of four ...

  2. Quirks of dye nomenclature. 6. Malachite green.

    Science.gov (United States)

    Cooksey, C J

    2016-08-01

    Malachite green was discovered independently by two researchers in Germany in the 19(th) century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.

  3. A comparative study of polymer-dye interaction

    Directory of Open Access Journals (Sweden)

    Nandini R.

    2009-08-01

    Full Text Available The interaction between an anionic dye Methyl Orange and two poly cations namely, Poly (N-vinyl-4-methylpyridiniumiodide, (PC1 & Poly (vinylbenzyltriphenylphosphoniumchloride, (PC2 has been investigated by spectrophotometric method. The polymers are observed to induce metachromasy in the dye as evidenced from the considerable blue shift in the absorption maximum of the dye. The interaction constant and thermodynamic parameters of interaction have been determined by absorbance measurements at the metachromatic band. The effect of additives such as ionic salts, alcohols, urea and polyelectrolytes on the reversal of metachromasy has been studied and used to determine the stability of the metachromatic complex and to understand the nature of binding.

  4. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    Science.gov (United States)

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  5. Crossflow Ultrafiltration for Removing Direct-15 Dye from Wastewater of Textile Industry

    Directory of Open Access Journals (Sweden)

    A.L. Ahmad

    2017-11-01

    Full Text Available Ultrafiltration membrane was used to treat the effluent from textile industries. Crossflow ultrafiltration using GN polymeric membrane was used to remove the dye from textile effluent. A synthetic textile effluent of Direct-15 dye was used. The study focused through the effect of feed concentration, transmembrane pressure and solution’s pH on the permeate flux and percentage of dye removal were investigated. Dye concentration had significant effects on flux values. Under the fixed pressures and pH, the flux decreased while the dye rejection increased with increasing feed concentration. Transmembrane pressure also had significant effect on flux values. Under the fixed feed concentration and pH, the flux increased while dye rejection decreased with increasing pressure. Experiment data showed that the highest flux was observed at pH 4 (acidic condition while the highest dye removal observed at pH 7. Data collection could be used to improve the effectiveness of dye removal from textile industry wastewater using membrane technology.

  6. Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties

    Science.gov (United States)

    Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn

    2018-01-01

    Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.

  7. Effect of auxiliary group for p-type organic dyes in NiO-based dye-sensitized solar cells: The first principal study

    Science.gov (United States)

    Li, Juan; Zhang, Shijie; Shao, Di; Yang, Zhenqing; Zhang, Wansong

    2018-03-01

    Auxiliary acceptor groups play a crucial role in D-A-π-A structured organic dyes. In this paper, we designed three D-A-π-A structured organic molecules based on the prototype dye QT-1, named ME18-ME20, and further investigated their electronic and optical properties with density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated results indicate that the scope and intensity of dyes' absorption spectra have some outstanding changes by inserting auxiliary groups. ME20 has not only 152 nm redshifts to long wave orientation, but also 78% increased oscillator strength compared to QT-1, and its absorption spectrum broadens region even up to 1400 nm. Then, we studied the reason that the effect of the introduced different auxiliary acceptor groups in these dyes through their ground states geometries and energy levels, electron transfer and recombination rate.

  8. Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells

    Science.gov (United States)

    Zanoni, Kassio P. S.; Amaral, Ronaldo C.; Murakami Iha, Neyde Y.; Abreu, Felipe D.; de Carvalho, Idalina M. M.

    2018-06-01

    A versatile Ru(II) complex bearing an anthracene moiety was synthesized in our search for suitable compounds towards efficient molecular devices. The new engineered dye, cis‑[Ru(dcbH2)(NCS)2(mbpy‑anth)] (dcbH2 = 2,2‧‑bipyridyl‑4,4‧‑dicarboxylic acid, mbpy‑anth = 4‑[N‑(2‑anthryl)carbamoyl]‑4‧‑methyl‑2,2‧‑bipyridine), exhibits a blueish emission in a vibronically structured spectrum ascribed to the fluorescence of a 1LCAnth (ligand centered) excited state in the anthracene and has a potential to be exploited in the fields of smart lighting and displays. This complex was also employed in dye-sensitized solar cells with fairly efficient solar energy conversion with the use of self-assembled TiO2 compact layers beneath the TiO2 mesoporous film to prevent meso‑TiO2/dye back reactions. Further photoelectrochemical investigations through incident photon-to-current efficiency and electrochemical impedance spectra showed that the all-nano-TiO2 compact layer acts as contact layers that increase the electron harvesting in the external circuit, enhancing efficiencies up to 50%.

  9. Enhancement of dye-sensitized solar cells performances by improving electron density in conduction band of nanostructure TiO2 electrode with using a metalloporphyrin as additional dye

    International Nuclear Information System (INIS)

    Mojiri-Foroushani, M.; Dehghani, H.; Salehi-Vanani, N.

    2013-01-01

    Highlights: ► N719 and ZnTCPP dyes were used in a sequential adsorption process. ► By using two dyes, improved the performance of the cell. ► Density of electrons in the conduction band of TiO 2 electrodes improved. -- Abstract: A zinc(II)-porphyrin dye with four carboxyphenyl moiety of ancillary (ZnTCPP) was studied as a sensitizer in combination with a ruthenium complex (N719) in co-sensitized solar cells. The high molar extinction coefficient (ε) of porphyrin dyes leads to high light absorption in the dye-sensitized TiO 2 electrode. In spite of the high ε of porphyrin dyes, they usually have a narrow absorption band and also to suffer from dye aggregation due to their planar structural nature. This causes lower efficiencies of the DSSCs for the porphyrins than the ruthenium complexes. Co-sensitization of two or more dyes with complementary absorption spectra on TiO 2 film is an important method to further enhance the IPCE response and energy conversion efficiency of dye-sensitized solar cells. Interestingly, when the ZnTCPP electrode was used to assemble a co-sensitized solar cell by additional adsorption of N719 dye, the efficiency improved to 6.35% (in comparison to N719 that the efficiency was 4.74%). The results indicated that the co-sensitized device shows enhancements of photovoltaic performance not only in short-circuit current density (J SC ) but also in open-circuit voltage (V OC ). In the present study we have been shown that co-sensitization of a zinc(II)-porphyrin with N719 dye changes the energy levels of the TiO 2 electrode and in result produces further improvement for its device performance

  10. Photoelectrode nanostructure dye-sensitized solar cell | Kimpa ...

    African Journals Online (AJOL)

    This study used carica papaya (pawpaw leaf) extracts as natural organic dye for dye sensitized solar cell (DSSC). Pawpaw leaf extract is rich in chlorophyll and was extracted using ethanol as the extracting solvent and serve as the sensitizer for DSSC. The specialty of the DSSC relative to other types of solar cells is the use ...

  11. Alignment of the dye's molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT-TDDFT study

    International Nuclear Information System (INIS)

    De Angelis, Filippo; Fantacci, Simona; Selloni, Annabella

    2008-01-01

    We present a theoretical study of the lineup of the LUMO of Ru(II)-polypyridyl (N3 and N719) molecular dyes with the conduction band edge of a TiO 2 anatase nanoparticle. We use density functional theory (DFT) and the Car-Parrinello scheme for efficient optimization of the dye-nanoparticle systems, followed by hybrid B3LYP functional calculations of the electronic structure and time-dependent DFT (TDDFT) determination of the lowest vertical excitation energies. The electronic structure and TDDFT calculations are performed in water solution, using a continuum model. Various approximate procedures to compute the excited state oxidation potential of dye sensitizers are discussed. Our calculations show that the level alignment for the interacting nanoparticle-sensitizer system is very similar, within about 0.1 eV, to that for the separated TiO 2 and dye. The excellent agreement of our results with available experimental data indicates that the approach of this work could be used as an efficient predictive tool to help the optimization of dye-sensitized solar cells.

  12. Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.

    Science.gov (United States)

    Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won

    2015-09-14

    The adsorption mechanism for the N719 dye on a TiO2 electrode was examined by the kinetic and diffusion models (pseudo-first order, pseudo-second order, and intra-particle diffusion models). Among these methods, the observed adsorption kinetics are well-described using the pseudo-second order model. Moreover, the film diffusion process was the main controlling step of adsorption, which was analysed using a diffusion-based model. The photodynamic properties in dye-sensitized solar cells (DSSCs) were investigated using time-resolved transient absorption techniques. The photodynamics of the oxidized N719 species were shown to be dependent on the adsorption time, and also the adsorbed concentration of N719. The photovoltaic parameters (Jsc, Voc, FF and η) of this DSSC were determined in terms of the dye adsorption amounts. The solar cell performance correlates significantly with charge recombination and dye regeneration dynamics, which are also affected by the dye adsorption amounts. Therefore, the photovoltaic performance of this DSSC can be interpreted in terms of the adsorption kinetics and the photodynamics of oxidized N719.

  13. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    Science.gov (United States)

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  14. Electronic spectral study of interaction of electron donor – acceptor dyes in the ground and excited state with a metal ion. Effect of molecular structure of the dye

    International Nuclear Information System (INIS)

    Sardar, Sanjib Kr; Mandal, Prasun K.; Bagchi, Sanjib

    2014-01-01

    Interaction of manganese (II) ion with electron donor (D)–acceptor (A) dyes having symmetric D–A–D configuration of chromophores (ketocyanine dye) and the corresponding parent merocyanines (D–A configuration) in acetonitrile has been compared by monitoring the electronic absorption, and steady state and time resolved fluorescence characteristics of the dyes. Absorption spectral studies point to the formation of a 1:1 metal ion–dye (S 0 -state) complex. Equilibrium constant (K 0 ) and other thermodynamic parameters for complex formation have been determined for all the systems. Symmetric ketocyanine dyes (D–A–D) form stronger complex than the corresponding dye with D–A configuration. Quenching of fluorescence is caused due to complex formation with the cation. However, for very low concentration of salts, where complex formation is insignificant, an enhancement of fluorescence intensity takes place due to addition of salt. The absorption band of the dye undergoes a slight blue shift in the same concentration range of the metal ion. Fluorescence life time of the excited state also increases with an increase in salt concentration in that concentration range. Results have been explained in terms of formation of a weak association complex where one or more cations replace equivalent solvent molecules in the cybotatic region around the dye. The binding constant of the association complex involving cation and the dye (S 1 -state) has been determined. While the value of the binding constant is higher for a symmetric D–A–D dye relative to that for the corresponding dye with D–A configuration, the extent of fluorescence enhancement for the latter is larger. Values of decay constant for the different photophysical processes have been calculated. Formation of association complex in the S 1 -state is characterised by a slower nonradiative decay of S 1 -state of the dyes. -- Highlights: • A ketocyanine dye forms 1:1 complex with metal ions. • Slight

  15. Factor Affecting Textile Dye Removal Using Adsorbent From Activated Carbon: A Review

    Directory of Open Access Journals (Sweden)

    Mohammad Razi Mohd Adib

    2017-01-01

    Full Text Available Industrial company such as textile, leather, cosmetics, paper and plastic generated wastewater containing large amount of dye colour. The removal of dye materials are importance as the presence of this kind of pollutant influence the quality of water and makes it aesthetically unpleasant. As their chemical structures are complicated, it is difficult to treat dyes with municipal waste treatment operations. Even a small quantity of dye does cause high visibility and undesirability. There have been various treatment technique reviewed for the removal of dye in wastewater. However, these treatment process has made it to another expensive treatment method. This review focus on the application of adsorbent in dye removal from textile wastewater as the most economical and effective method, adsorption has become the most preferred method to remove dye. The review provides literature information about different basis materials used to produce activated carbon like agricultural waste and industrial waste as well as the operational parameters factors in term of contact time, adsorbent dosage, pH solution and initial dye concentration that will affect the process in removing textile dye. This review approach the low cost and environmental friendly adsorbent for replacing conventional activated carbon.

  16. Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles

    Directory of Open Access Journals (Sweden)

    Ilana Perelshtein

    2016-01-01

    Full Text Available The sonochemical technique has already been proven as one of the best coating methods for stable functionalization of substrates over a wide range of applications. Here, we report for the first time on the simultaneous sonochemical dyeing and coating of textiles with antibacterial metal oxide (MO nanoparticles. In this one-step process the antibacterial nanoparticles are synthesized in situ and deposited together with dye nanoparticles on the fabric surface. It was shown that the antibacterial behavior of the metal oxides was not influenced by the presence of the dyes. Higher K/S values were achieved by sonochemical deposition of the dyes in comparison to a dip-coating (exhaustion process. The stability of the antibacterial properties and the dye fastness was studied for 72 h in saline solution aiming at medical applications.

  17. Influence of Dye Adsorbtion Time on TiO2 Dye-Sensitized Solar Cell with Krokot Extract (Portulaca Oleracea. L as A Natural Sensitizer

    Directory of Open Access Journals (Sweden)

    Didik Krisdiyanto

    2015-03-01

    Full Text Available Dye sensitized solar cells (DSSC photoelectrodes were fabricated using titanium oxide (TiO2 and sensitized with the krokot extract dye. This study investigated the effect of dye adsorption time to an efficiency of the solar cells. The fabrication cells immersed with krokot extract dye for 1, 8 and 26 hours. The photochemical performance of the DSSC showed that the open circuit voltage (Voc were 0.33, 0.036 and 0.27 V with short photocurrent density (Isc 8.00 x 10-5, 6.80 x 10-7 and 3.10 x 10-4. The photo-to-electric conversion efficiency of the DSSC reached 4.63 x 10-3 % for 26 hours adsorption time.

  18. Biotransformation of Food Dyes by Human Intestinal Bacteria ...

    African Journals Online (AJOL)

    Biotransformation of food dyes (Tartrazine and Quinoline yellow) by Streptococcus faecalis and Escherichia coli isolated from human intestinal microflora was investigated. Decolourisation of the media containing the dyes was used as an index of biotransformation. Biotransformation was higher under aerobic than under ...

  19. Dye and its removal from aqueous solution by adsorption: a review.

    Science.gov (United States)

    Yagub, Mustafa T; Sen, Tushar Kanti; Afroze, Sharmeen; Ang, H M

    2014-07-01

    In this review article the authors presented up to-date development on the application of adsorption in the removal of dyes from aqueous solution. This review article provides extensive literature information about dyes, its classification and toxicity, various treatment methods, and dye adsorption characteristics by various adsorbents. One of the objectives of this review article is to organise the scattered available information on various aspects on a wide range of potentially effective adsorbents in the removal of dyes. Therefore, an extensive list of various adsorbents such as natural materials, waste materials from industry, agricultural by-products, and biomass based activated carbon in the removal of various dyes has been compiled here. Dye bearing waste treatment by adsorption using low cost alternative adsorbent is a demanding area as it has double benefits i.e. water treatment and waste management. Further, activated carbon from biomass has the advantage of offering an effected low cost replacement for non-renewable coal based granular activated carbon provided that they have similar or better adsorption on efficiency. The effectiveness of various adsorbents under different physico-chemical process parameters and their comparative adsorption capacity towards dye adsorption has also been presented. This review paper also includes the affective adsorption factors of dye such as solution pH, initial dye concentration, adsorbent dosage, and temperature. The applicability of various adsorption kinetic models and isotherm models for dye removal by wide range of adsorbents is also reported here. Conclusions have been drawn from the literature reviewed and few suggestions for future research are proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Role of Dyestuff in Improving Dye-Sensitized Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    Yehia Selim

    2017-03-01

    Full Text Available Dye-sensitized solar cells DSSCs have attracted great attention for their simple fabrication process, low production costs, relatively high conversion efficiency, and being environmental friendly.DSSC are a combination of materials, consisting of a transparent electrode coated with a dye-sensitized mesoporous film of nanocrystalline particles of TiO2, an electrolyte containing a suitable redox-couple and a electrode.DSSCs use organic dye assist to produce electricity in a wide range of light conditions, indoors and outdoors.The dye in the solar cell is the key element since it is responsible for light harvesting ability, photoelectron generation (the creation of free charges after injection of electrons into the nanostructured semi-conducting oxide and electron transfer.For this reason, this paper gives a background of dyestuff, types and limitations. The motivation of this work is to design a simple, easy and prepare an efficient organic dye sensitizer.Also, this paper investigates the important criteria which are considered for selecting dye to enhance DSSC efficiency. 

  1. Application of thin film cellulose composite membrane for dye wastewater reuse

    KAUST Repository

    Puspasari, Tiara

    2016-09-22

    The use of low cost membranes with high salt/dye selectivity and high flux is ideal for an economic and eco-friendly treatment of dye wastewater. Here, regenerated cellulose membranes prepared from trimethylsilyl cellulose are studied for treating artificial dye effluents. In the experiments using a feed containing Congo Red and high NaCl concentration, the membrane featured impressive dye removal with zero salt rejection combined with high flux. More interestingly, the membrane reached as much as 600 LMH flux at 80 °C and 4 bar while maintaining high dye rejection close to 98%. In prolonged experiments up to 75 h the membrane exhibited good antifouling behavior with nearly 100% flux recovery. This study may provide a promising alternative of dye effluent treatment where high amounts of monovalent salts are present. © 2016

  2. Brazilwood, sappanwood, brazilin and the red dye brazilein: from textile dyeing and folk medicine to biological staining and musical instruments.

    Science.gov (United States)

    Dapson, R W; Bain, C L

    2015-01-01

    Brazilin is a nearly colorless dye precursor obtained from the heartwood of several species of trees including brazilwood from Brazil, sappanwood from Asia and the Pacific islands, and to a minor extent from two other species in Central America, northern South America and the Caribbean islands. Its use as a dyeing agent and medicinal in Asia was recorded in the 2(nd) century BC, but was little known in Europe until the 12(th) century AD. Asian supplies were replaced in the 16(th) century AD after the Portuguese discovered vast quantities of trees in what is now Brazil. Overexploitation decimated the brazilwood population to the extent that it never fully recovered. Extensive environmental efforts currently are underway to re-create a viable, sustainable population. Brazilin is structurally similar to the better known hematoxylin, thus is readily oxidized to a colored dye, brazilein, which behaves like hematein. Attachment of the dye to fabric is by hydrogen bonding or in conjunction with certain metallic mordants by coordinative bonding. For histology, most staining procedures involve aluminum (brazalum) for staining nuclei. In addition to textile dyeing and histological staining, brazilin and brazilein have been and still are used extensively in Asian folk medicine to treat a wide variety of disorders. Recent pharmacological studies for the most part have established a scientific basis for these uses and in many cases have elucidated the biochemical pathways involved. The principal use of brazilwood today is for the manufacture of bows for violins and other stringed musical instruments. The dye and other physical properties of the wood combine to produce bows of unsurpassed tonal quality.

  3. Studi Eksperimental Pengaruh Intensitas Cahaya terhadap Performa DSSC (Dye Sensitized Solar Cell dengan Ekstrak Buah dan Sayur Sebagai Dye Sensitizer

    Directory of Open Access Journals (Sweden)

    Khoiruz Zadit Taqwa

    2015-03-01

    Full Text Available Sel surya adalah peralatan yang dapat mengubah energi matahari menjadi energi listrik dengan menggunakan efek photovoltaic. Desain dan konstruksi dari solar cell mengalami perkembangan seiring dengan berkembangnya teknologi saat ini, hingga pada tahun 1991 ditemukan DSSC (Dye Sensitized Solar Cell. Sampai saat ini bahan yang umum digunakan sebagai dye pada pembuatan DSSC adalah ruthenium complex yang berharga mahal dan sulit untuk disintesa. Karena itu perlu dilakukannya penelitian tentang penggunaan bahan lain yang murah dan mudah untuk disintesa sebagai bahan dye, karena itu perlu diadakan pengujian terhadap performa yang dihasilkan dari DSSC dengan bahan dye tersebut dan apa saja variabel yang mempengaruhinya. Metode penelitian yang digunakan adalah studi eksperimental terhadap prototype DSSC dengan variasi bahan dye sensitizer dari ekstrak kulit manggis (Garcinia mangostana, ekstrak daun bayam (Amaranthus hybridus l. ekstrak buah naga merah (Hylocereus polyrhizus. Pengujian prototype DSSC dilakukan dengan cara menyinarinya menggunakan cahaya lampu halogen yang diatur tegangannya menggunakan sebuah dimmer untuk mengendalikan temperatur dari lampu, sehingga lampu tersebut menghasilkan variasi tintensitas cahaya sebesar 29 W/m2, 36 W/m2 dan 49 W/m2. Selanjutnya pengujian dilakukian dengan cara yang sama, tetapi dengan ditambahkan pendingin berupa air yang mengalir dibawah permukaan prototype DSSC. Penilitian ini menghasilkan kesimpulan bahwa semakin tinggi intensitas cahaya, maka semakin tinggi Pmax yang dihasilkan oleh prototype. Semakin bertambah temperatur pencahayaan maka semakin berkurang performa dari prototype DSSC. Efisiensi yang paling besar dihasilkan oleh prototype dengan bahan dye dari ekstrak kulit manggis pada intensitas 29 W/m2 sebesar 0,73%,Pendinginan yang diberikan kepada prototype mampu memperbaiki efisiensi dari prototype DSSC yang dibuat akan tetapi tidak signifikan.

  4. Occupational exposure to allergens in oxidative hair dyes

    Directory of Open Access Journals (Sweden)

    Polona Zaletel

    2013-05-01

    Full Text Available Oxidative hair dyes are the most important hair dying products. Hairdressers are exposed to the allergens found in oxidative hair dyes during the process of applying dyes to the hair, when cutting freshly dyed hair, or as a consequence of prior contamination of the working environment. pphenylenediamine, toluene-2,5-diamine and its sulphate are the most common ingredients in oxidative hair dyes that cause allergic contact dermatitis in hairdressers. Cross-reactivity of p-phenylenediamine with para-amino benzoic acid, sulphonamides, sulphonylurea, dapsone, azo dyes, benzocaine, procaine, and black henna temporary tattoos is possible. Allergic contact dermatitis is classified as delayed-type hypersensitivity, according to Coombs and Gell. Skin changes typically appear on the hands after previous sensitization to causative allergens. Combined with the patient’s overall medical and work history and clinical picture, epicutaneous testing is the basic diagnostic procedure for confirming the diagnosis and identifying the causative allergens. The simplest and most effective measure for preventing the occurrence of allergic contact dermatitis in hairdressers is prevention. Preventive measures should be applied as early as in the beginning stage of vocational guidance for this profession. It is important to include health education in the process of professional training and to implement general technical safety measures, in order to reduce sensitization to allergens in hairdressing. Here, special emphasis must be given to the correct use of protective gloves. Legislation must limit the concentration of allergenic substances in hair dyes, based on their potential hazards documented by scientific research.

  5. Implementation of a biotechnological process for vat dyeing with woad.

    Science.gov (United States)

    Osimani, Andrea; Aquilanti, Lucia; Baldini, Gessica; Silvestri, Gloria; Butta, Alessandro; Clementi, Francesca

    2012-09-01

    The traditional process for vat dyeing with woad (Isatis tinctoria L.) basically relies on microbial reduction of indigo to its soluble form, leucoindigo, through a complex fermentative process. In the 19th century, cultivation of woad went into decline and use of synthetic indigo dye and chemical reduction agents was established, with a consequent negative impact on the environment due to the release of polluting wastewaters by the synthetic dyeing industry. Recently, the ever-growing demand for environmentally friendly dyeing technologies has led to renewed interest in ecological textile traditions. In this context, this study aims at developing an environmentally friendly biotechnological process for vat dyeing with woad to replace use of polluting chemical reduction agents. Two simple broth media, containing yeast extract or corn steep liquor (CSL), were comparatively evaluated for their capacity to sustain the growth and reducing activity of the strain Clostridium isatidis DSM 15098(T). Subsequently, the dyeing capacity of the CSL medium added with 140 g L⁻¹ of woad powder, providing 2.4 g L⁻¹ of indigo dye, was evaluated after fermentation in laboratory bioreactors under anaerobic or microaerophilic conditions. In all fermentations, a sufficiently negative oxidation/reduction potential for reduction of indigo was reached as early as 24 h and maintained up to the end of the monitoring period. However, clearly faster indigo dye reduction was seen in the broth cultures fermented under strict anaerobiosis, thus suggesting the suitability of the N₂ flushing strategy for enhancement of bacterial-driven indigo reduction.

  6. Effects of the aspect ratio on the dye adsorption of ZnO nanorods grown by using a sonochemical method for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Choi, Seok Cheol; Yun, Won Suk; Sohn, Sang Ho; Oh, Sang Jin

    2012-01-01

    Well-aligned ZnO nanorods for the photoelectrode of dye-sensitized solar cells (DSSCs) were grown via a sonochemical method, and the effects of their aspect ratios on the dye adsorption in DSSCs were studied. The control of the aspect ratio of well-aligned ZnO nanorods was performed by tuning the mole concentration of zinc acetate dehydrate in the range of 0.04 ∼ 0.06M. The dye amounts adsorbed in the ZnO nanorods were estimated from the UV-Visible absorbance by using the Beer-Lambert law. The efficiency of DSSCs with ZnO nanorods was measured to investigate the effects of the aspect ratio of the ZnO nanorods on the dye adsorption properties. A change in the aspect ratio of the ZnO nanorods was founded to yield a change in their dye adsorption ability, resulting in a change in the efficiency of the DSSCs.

  7. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  8. PVA with nopal dye as holographic recording material

    Science.gov (United States)

    Toxqui-López, S.; Olivares-Pérez, A.; Fuentes-Tapia, I.; Pinto-Iguanero, B.

    2011-09-01

    Cactus nopal dye is introduced into a polyvinyl alcohol matrix achieving a like brown appearance thick film, such that they can be used as a recording medium. This dye material provides excellent property as photosensitizer, i.e., easy handling, low cost and can be used in real time holographic recording applications. The experimental results show the diffraction efficiencies obtained by recording grating patterns induced by a He-Cd laser (442nm). For the samples, a thick film of polyvinyl alcohol and dye from cactus nopal was deposited by the gravity technique on a glass substrate. This mixture dries to form a photosensitive emulsion.

  9. Dye incorporation in polyphosphate gels: synthesis and theoretical calculations

    Directory of Open Access Journals (Sweden)

    Jordan Del Nero

    2003-06-01

    Full Text Available In this work we described theoretical calculations on the electronic structure and optical properties of the dyes crystal violet and malachite green based in semiempirical methods (Parametric Method 3 and Intermediate Neglect of Differential Overlap / Spectroscopic - Configuration Interaction and the synthesis of a new hybrid material based upon the incorporation of these dyes in an aluminum polyphosphate gel network. The samples are nearly transparent, free-standing thick films. The optical properties of the entrapped dyes are sensitive to chemical changes within the matrix caused either by gel aging or external stimulli such as exposition to acidic and basic vapors that can percolate within the matrix. Our theoretical modeling is in good agreement with the experimental results for the dyes.

  10. Electrolyte influence on sorption behaviours of Direct Blue 71 dye on ramie fibre

    Directory of Open Access Journals (Sweden)

    Yuan Chi

    2017-01-01

    Full Text Available Ramie loose fibre was dyed using Direct Blue 71 dye at 70, 80, 90 and 100°C without and with NaCl electrolyte in order to investigate the distinction of dye sorption behaviours. The results show that the dye exhaustion increases with addition of NaCl and shortens the equilibrium dyeing time. The dye adsorption process of dyeing without and with NaCl followed pseudo second-order kinetics, but the rate constant of sorption is larger for the latter compared to the former.

  11. Irradiation treatment of textile dyes: Apollofix-red

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2004-01-01

    The UV-VIS absorption spectra of azo dyes in aqueous solutions strongly overlap with the spectra of intermediates produced in reaction with the intermediates of water radiolysis. This overlap complicates the investigation of reaction mechanisms. The paper describes a method for the separation of the two spectra on the example of Apollofix-Red, a triazine and H-acid containing dye. The reactivity of water radiolysis intermediates (e aq - , OH, H, O 2 /HO 2 ) with the dye is also discussed. The most intensive decolouration was found in the reaction of e aq - and H which is due to the fast reaction of these intermediates with the -N=N-azo group of the unreacted molecule and their slow reaction with the transformed molecules. (author)

  12. The Influence of Natural Color Dyes Procedure of Sirih Leaves at Silk

    International Nuclear Information System (INIS)

    Srie-Sunaryati; Suprih-Hartini; Ernaningsih

    2000-01-01

    Synthetic dyes are usually carcinogenic, thus, it is necessary to use analternative dyes to reduce the application of synthetic dyes. In this work,Sirih leaves (Piper beetle Linn) is studied for natural dyes. Sirih leavesextracted in boiling water until 1/5 of water volume is remaining. Thissolution is then applied as liquor dyeing into 100% silk. The liquor dyeingprocess is categorized into two distinct scheme; i.e., simultaneousmordanting and mordanting after dyeing. Mordant agents used in the work areCaCO 3 , Gambier, mixture CaCO 3 -gambier, AI 2 K 2 (SO 4 ) 3 and FeSO 4 7H 2 O. Heresults show Sirih leaves give brown color into silk, while mordantingprocess produce different shade color for every single mordant agent that areused. Silk's dyeing without mordant gives darker color than simultaneousmordanting, but it given lighter color than mordanting after dyeing. On theother hand, mordanting gives no significance effect to color fastness torubbing and washing. Mordanting also shows no significant effect to colourfastness to light. (author)

  13. Local Delivery of Fluorescent Dye For Fiber-Optics Confocal Microscopy of the Living Heart

    Directory of Open Access Journals (Sweden)

    Chao eHuang

    2014-09-01

    Full Text Available Fiber-optics confocal microscopy (FCM is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release versus foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  14. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  15. A new technology for harnessing the dye polluted water and dye collection in the chemical factory

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new technology for harnessing the dye polluted water and dyecollection was developed. It is based on the enhanced evaporation by using solar, wind, and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2) polluted water circulating system (pumping-spraying-collecting); (3) heating system; (4) workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind, and air temperature energy). In case, when there is no roof for the carrier system, thepolluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard for discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.

  16. The copper-pumped dye laser system at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Hackel, R.P.; Warner, B.E.

    1993-01-01

    The Lawrence Livermore National Laboratory's (LLNL) Atomic Vapor Laser Isotope Separation (AVLIS) Program has developed a high-average-power, pulsed, tunable, visible laser system. Testing of this hardware is in progress at industrial scale. The LLNL copper-dye laser system is prototypical of a basic module of a uranium-AVLIS plant. The laser demonstration facility (LDF) system consists of copper vapor lasers arranged in oscillator-amplifier chains providing optical pump power to dye-laser master-oscillator-power-amplifier chains. This system is capable of thousands of watts (average) tunable between 550 and 650 mm. The copper laser system at LLNL consists of 12 chains operating continuously. The copper lasers operate at nominally 4.4 kHz, with 50 ns pulse widths and produce 20 W at near the diffraction limit from oscillators and >250 W from each amplifier. Chains consist of an oscillator and three amplifiers and produce >750 W average, with availabilities >95% (i.e., >8,300 h/y). The total copper laser system power averages ∼9,000 W and has operated at over 10,000 W for extended intervals. The 12 copper laser beams are multiplexed and delivered to the dye laser system where they pump multiple dye laser chains. Each dye chain consists of a master oscillator and three or four power amplifiers. The master oscillator operates at nominally 100 mW with a 50 MHz single mode bandwidth. Amplifiers are designed to efficiently amplify the dye beam with low ASE content and high optical quality. Sustained dye chain powers are up to 1,400 W with dye conversion efficiency >50%, ASE content <5%, and wavefront quality correctable to <λ/10 RMS, using deformable mirrors. Since the timing of the copper laser chains can be offset, the dye laser system is capable of repetition rates which are multiples of 4.4 kHz, up to 26 kHz, limited by the dye pumping system. Development of plant-scale copper and dye laser hardware is progressing in off-line facilities

  17. Dye-sensitized solar cells: a successful combination of materials

    Directory of Open Access Journals (Sweden)

    Longo Claudia

    2003-01-01

    Full Text Available Dye-sensitized TiO2 solar cells, DSSC, are a promising alternative for the development of a new generation of photovoltaic devices. DSSC are a successful combination of materials, consisting of a transparent electrode coated with a dye-sensitized mesoporous film of nanocrystalline particles of TiO2, an electrolyte containing a suitable redox-couple and a Pt coated counter-electrode. In general, Ru bipyridyl complexes are used as the dye sensitizers. The light-to-energy conversion performance of the cell depends on the relative energy levels of the semiconductor and dye and on the kinetics of the electron-transfer processes at the sensitized semiconductor | electrolyte interface. The rate of these processes depends on the properties of its components. This contribution presents a discussion on the influence of each of the materials which constitute the DSSC of the overall process for energy conversion. An overview of the results obtained for solid-state dye-sensitized TiO2 solar cells assembled with polymer electrolytes is also presented.

  18. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    International Nuclear Information System (INIS)

    Balla, Wafaa; Essadki, A.H.; Gourich, B.; Dassaa, A.; Chenik, H.; Azzi, M.

    2010-01-01

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm -2 and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E dye ) in optimal conditions for real effluent was calculated. 170 kWh/kg dye was required for a reactive dye, 120 kWh/kg dye for disperse and 50 kWh/kg dye for the mixture.

  19. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Balla, Wafaa [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Essadki, A.H., E-mail: essadki@est-uh2c.ac.ma [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Dassaa, A. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Chenik, H. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Azzi, M. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco)

    2010-12-15

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm{sup -2} and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E{sub dye}) in optimal conditions for real effluent was calculated. 170 kWh/kg{sub dye} was required for a reactive dye, 120 kWh/kg{sub dye} for disperse and 50 kWh/kg{sub dye} for the mixture.

  20. Studies on Synthesis and Dyeing Preformance of Acid Dyes Based on 4,7-Dihydroxy-3,8-di-α-naphthylazo-1,10-phenanthroline-2,9-Dione

    Directory of Open Access Journals (Sweden)

    B. V. Patel

    2007-01-01

    Full Text Available Some new azo acid dyes were prepared by coupling various diazotized acid components such as anthranilic acid, sulphanilic acid, laurentacid, peri acid, tobias acid, H-acid, J-acid, gamma acid, sulphotobias acid,4-aminotoluiene-3-sulphonic acid, 5-sulpho- anthranilic acid, 2-naphthylamine-3,6,8-trisulphonic acid, bronner acid, metanilic acid and cleve acid with 4,7-dihydroxy-3,8-di-α-naphthylazo-1,10-phenanthroline-2,9-dione. The dyes were characterized by elemental, IR and TLC analyses. Their dyeing performance as acid dyes has been assessed on viscose rayon, wool and cotton fibres.

  1. Effect of gamma-irradiation on basic dye maxilon blue in aqueous solution

    International Nuclear Information System (INIS)

    Andayani, Winarti; Bagyo, Agustin S.M.; Winarno, Ermin K.; Winarno, Hendig

    1998-01-01

    The effects of radiation of basic dye maxilon blue have been studied. Irradiation was done at various pH (3, 5, 7, 9, and 12) with doses of 0 - 4 kGy/h. at pH 5 irradiation of dye solution with variation of concentration i.e. 10; 25; 50.8; 78.2 and 106 ppm were done. Bubbling of air were done during irradiation of dye solution. Parameters examined were the change of the spectrum by spectrophotometer, the decrease of pH by pH meter and degradation products such as organic acids by HPLC. The results showed that the percentage of degradation at acid pH is higher than that basic and neutral pH. G value (degradation) of the dye at pH 5 was 0.876 with a dose rate of 5 kGy/h. Percentage of decoloration of dye solution at initial concentration 10 and 25 ppm were higher than 90% at dose of 0.5 kGy, dye solution at initial concentration between 50 to 106 ppm were higher than 90% at 2 kGy. The equation of degradation rate of the dye was V=-d(dye)/dt = 1.4 x 10 -2 [dye] 1,1107 ppm/min. Degradation of the dye has first order pseudo with the rate constant of 1.4 x 10 -2 min -1 . Degradation products that could be detected was oxalic acid. (authors)

  2. Bioflocculation of Basic Dye onto Isolated Microbial Biopolymers

    Directory of Open Access Journals (Sweden)

    M. Elkady

    2017-10-01

    Full Text Available Three purified biopolymers isolated from Bacillus velezensis (40B, Bacillus mojavensis (32A and Pseudomonas (38A strains were evaluated for dye decolourization as bioflocculants. The decolourization capacity of the three polymers was inspected using C.I 28 basic yellow dye as hazardous pollutant. The chemical compositions of these purified biopolymers were considered by HPLC and FTIR spectrum. The decolourization efficiency of the three purified biopolymers was determined using both real dye polluted wastewater (discharged from AKSA EGYPT acrylic fibres industry and simulated synthetic wastewater. The maximum decolourization efficiencies of the purified biopolymers of the three studied strains (40B, (32A and (38A were 91, 89 and 88 %, respectively. The equilibrium of dye sorption process onto biopolymers was described using Langmuir isotherm equation. However, its kinetics follows the pseudo second order model. The thermodynamic examination investigated the exothermic and spontaneous nature of the decolourization process using the purified biopolymers.

  3. Control of interfacial charge-transfer interaction of dye and p-CuI in solid-state dye-sensitized solar cells

    Science.gov (United States)

    Moribe, Shinya; Kato, Naohiko; Higuchi, Kazuo; Mizumoto, Katsuyoshi; Toyoda, Tatsuo

    2017-04-01

    We systematically investigated the photovoltaic and absorption characteristics of solid-state dye-sensitized solar cells with CuI to elucidate the impact of the interaction between the dye and CuI. For the ruthenium complex N719, the incident photon-to-current conversion efficiency (IPCE) on the longer-wavelength side decreased owing to the change of the metal-to-ligand charge transfer (CT) of N719 due to the interaction between the thiocyanate groups of N719 and CuI. In contrast, when D149 — which included rhodanine groups — was used, the interaction with CuI and the resultant CT increased the IPCE. The results provide a new strategy for improving the photovoltaic performance by controlling the interfacial CT between the dye and CuI.

  4. Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Baviskar, P.K. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India); Zhang, J.B. [Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gupta, V.; Chand, S. [Organic and Hybrid Solar Cell, Physics of Energy Harvesting Division, Dr. K. S. Krishnan Marg, National Physical Laboratory, New Delhi 110012 (India); Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India)

    2012-01-05

    Highlights: > Synthesis of ZnO film was done at room temperature (27 deg. C). > Simple and inexpensive chemical bath deposition method was employed. > The as deposited film consists of mixed phases of hydroxide and oxide. > The post annealing was done at 200 deg. C in order to remove hydroxide phase. > Low-cost, metal free Rhodamine B dye was used for DSSC application. - Abstract: Cost effective, ruthenium metal free rhodamine B dye has been chemically adsorbed on ZnO films consisting of nanobeads to serve as a photo anode in dye sensitized solar cells. These ZnO films were chemically synthesized at room temperature (27 deg. C) on to fluorine doped tin oxide (FTO) coated glass substrates followed by annealing at 200 deg. C. These films consisting of inter connected nanobeads (20-40 nm) which are due to the agglomeration of very small size particles (3-5 nm) leading to high surface area. The film shows wurtzite structure having high crystallinity with optical direct band gap of 3.3 eV. Optical absorbance measurements for rhodamine B dye covered ZnO film revealed the good coverage in the visible region (460-590 nm) of the solar spectrum. With poly-iodide liquid as an electrolyte, device exhibits photon to electric energy conversion efficiency ({eta}) of 1.26% under AM 1.5G illumination at 100 mW/cm{sup 2}.

  5. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  6. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains.

    Science.gov (United States)

    Yu, J; Wang, X; Yue, P L

    2001-10-01

    Pseudomonas spp were isolated from an anaerobic-aerobic dyeing house wastewater treatment facility as the most active azo-dye degraders. Decolorization of azo dyes and non-azo dyes including anthraquinone, metal complex and indigo was compared with individual strains and a bacterial consortium consisting of the individual strain and municipal sludge (50 50wt). The consortium showed a significant improvement on decolorization of two recalcitrant non-azo dyes, but little effect on the dyes that the individual strains could degrade to a great or moderate extent. Decolorization of Acid violet 7 (monoazo) by a Pseudomonas strain GM3 was studied in detail under various conditions. The optimum decolorization activity was observed in a narrow pH range (7-8), a narrow temperature range (35-40 degrees C), and at the presence of organic and ammonium nitrogen. Nitrate had a severe inhibitory effect on azo dye decolorization: 10 mg/L led to 50% drop in decolorization activity and 1000 mg/L to complete activity depression. A kinetic model is established giving the dependence of decolorization rate on cell mass concentration (first-order) and dye concentration (half order). The rate increased with temperature from 10 to 35 C, which can be predicted by Arrhenius equation with the activation energy of 16.87 kcal/mol and the frequency factor of 1.49 x 10(11) (mg L)1/2/g DCM min.

  7. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Science.gov (United States)

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  8. Voltage-sensitive dye recording from networks of cultured neurons

    Science.gov (United States)

    Chien, Chi-Bin

    This thesis describes the development and testing of a sensitive apparatus for recording electrical activity from microcultures of rat superior cervical ganglion (SCG) neurons by using voltage-sensitive fluorescent dyes.The apparatus comprises a feedback-regulated mercury arc light source, an inverted epifluorescence microscope, a novel fiber-optic camera with discrete photodiode detectors, and low-noise preamplifiers. Using an NA 0.75 objective and illuminating at 10 W/cm2 with the 546 nm mercury line, a typical SCG neuron stained with the styryl dye RH423 gives a detected photocurrent of 1 nA; the light source and optical detectors are quiet enough that the shot noise in this photocurrent--about.03% rms--dominates. The design, theory, and performance of this dye-recording apparatus are discussed in detail.Styryl dyes such as RH423 typically give signals of 1%/100 mV on these cells; the signals are linear in membrane potential, but do not appear to arise from a purely electrochromic mechanism. Given this voltage sensitivity and the noise level of the apparatus, it should be possible to detect both action potentials and subthreshold synaptic potentials from SCG cell bodies. In practice, dye recording can easily detect action potentials from every neuron in an SCG microculture, but small synaptic potentials are obscured by dye signals from the dense network of axons.In another microculture system that does not have such long and complex axons, this dye-recording apparatus should be able to detect synaptic potentials, making it possible to noninvasively map the synaptic connections in a microculture, and thus to study long-term synaptic plasticity.

  9. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Directory of Open Access Journals (Sweden)

    Nurhidayatullaili Muhd Julkapli

    2014-01-01

    Full Text Available During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag and organic matter (C, N, Cl, and F showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.

  10. Plastic encapsulated, dye sensitised photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Potter, R.J.; Otley, L.C.; Durrant, J.R.; Haque, S.; Xu, C. [Imperial College of Science, Technology and Medicine, London (United Kingdom); Holmes, A.B.; Park, T.; Schulte, N. [Cambridge Univ. (United Kingdom)

    2004-07-01

    The report presents the results of a collaborative project that aimed to demonstrate the technical feasibility of a plastic-encapsulated, solid state, dye-sensitised solar cell (DSSC) with an energy conversion efficiency (ECE) of at least 3%. DSSCs offer a possible 'step change' in photovoltaic technology resulting in lower costs compared with existing technologies. The project involved a series of eight main tasks: the development of first and second generation HTM electrolytes; the development of polymer-supported electrolytes; the development of low temperature electrode coating procedures; dye development; cell assembly and testing; component integration; and overall process development. A wide range of innovative HTMs have been synthesised, including materials incorporating both hole-transporting and ion-chelating functional groups. The ruthenium-based dye, N3, remained the preferred sensitising component. The project has produced a system that can routinely achieve over 5% ECE at 0.1 Sun illumination on 1 cm{sup 2} cells using polymer-supported electrolytes.

  11. Ethnobotany of dye plants in Dong communities of China.

    Science.gov (United States)

    Liu, Yujing; Ahmed, Selena; Liu, Bo; Guo, Zhiyong; Huang, Weijuan; Wu, Xianjin; Li, Shenghua; Zhou, Jiangju; Lei, Qiyi; Long, Chunlin

    2014-02-19

    Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011-2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye plants, their efficacy in enhancing food

  12. New triarylamine organic dyes containing the 9-hexyl-2-(hexyloxy)-9H-carbazole for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Su, Jianyang; Chen, Yu; Wu, Yungen; Ghimire, Raju Prasad; Xu, Yingjun; Liu, Xiujie; Wang, Zhihui; Liang, Mao

    2017-01-01

    Highlights: •9-hexyl-2-(hexyloxy)-9H-carbazole (HHCBZ) was synthesized for organic dyes. •Three new triarylamine sensitizers based on the HHCBZ unit were synthesized. •The HHCBZ unit outperforms the HCBZ when used as an electron donor. •An efficiency of 8.67% was achieved by M92 with the HHCBZ donor. -- Abstract: Developing carbazole derivatives as the electron donor for organic dyes have attracted extensive interest recently. Three organic dyes M92-94 based on the 9-hexyl-2-(hexyloxy)-9H-carbazole (HHCBZ) electron donor have been successfully designed and synthesized for dye-sensitized solar cells. M95 with the 9-hexyl-9H-carbazole (HCBZ) unit has also been synthesized for comparison. An introduction of the HHCBZ unit in triarylamine brings several advantages: (i) red shifting the absorption peak and increasing the maximum molar absorption coefficient of absorption bands; (ii) decreasing the charge recombination in cobalt cells as well as iodine cells; (iii) enhancing photocurrent/photovoltage and thus the power conversion efficiencies of cobalt cells as well as iodine cells. Devices prepared with M92 show consistently higher light-to-electric energy conversion efficiencies, with the champion device reaching 8.67%, surpassing M93-95.

  13. A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells

    KAUST Repository

    Ball, James M.

    2012-01-01

    The development of ruthenium-free sensitizers which absorb light over a broad range of the solar spectrum is important for improving the power conversion efficiency of dye-sensitized solar cells. Here we study three chemically tailored porphyrin-based dyes. We show that by fusing the porphyrin core to an anthracene unit, we can extend the conjugation length and lower the optical gap, shifting the absorption spectrum into the near-infrared (NIR). All three dyes were tested in dye-sensitized solar cells, using both titanium dioxide and tin dioxide as the electron-transport material. Solar cells incorporating the anthracene-fused porphyrin dye exhibit photocurrent collection at wavelengths up to about 1100 nm, which is the longest reported for a porphyrin-based system. Despite extending the photon absorption bandwidth, device efficiency is found to be low, which is a common property of cells based on porphyrin dyes with NIR absorption. We show that in the present case the efficiency is reduced by inefficient electron injection into the oxide, as opposed to dye regeneration, and highlight some important design considerations for panchromatic sensitizers. © 2012 The Royal Society of Chemistry.

  14. Radiation degradation adsorption treatment of some toxic dyes present in wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Hegazy, E.A.; El-Kelesh, N.A.

    2000-01-01

    The degradation kinetics due to gamma irradiation of aqueous solutions of some organic pollutants (reactive yellow dye, acidic yellow Dye and fast yellow Dye) were investigated. A combined treatment of gamma irradiation and conventional methods was applied and is much more effective than either alone. Factors affecting the radiolysis of the pollutants such as concentration, irradiation dose, dose rate and ph of the solutions was studied. Radiochemical degradation yields were calculated to elucidate the mechanism of the degradation process. Also, the feasibility of using granular activated carbon (GAC), ion exchange resins (Merck I, III, Iv) for the removal of these pollutants from aqueous solution were studied. Synergistic treatment of the dye solutions by irradiation methods showed that the saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of O 2 , H 2 O 2 or Na Ocl resulted in remarkable enhancement. Adsorption of the dyes into GAC and some ion-exchangers, showed that GAC has the highest adsorption capacity compared with ion-exchangers. Irradiation followed by adsorption resulted in the removal of these toxic pollutants from wastewater

  15. Radiation degradation adsorption treatment of some toxic dyes present in wastewater

    International Nuclear Information System (INIS)

    Al-Dousougi, A. M.; Hijarzi, A. A.; Al-Qalash, N. A. A.

    2002-01-01

    The degradation kinetics due to gamma irradiation of aqueous solutions of some organic pollutants (Reactive Yellow Dye, acidic yellow dye and fast yellow dye) were investigated. A combined treatment of gamma irradiation and conventional methods was applied and is much more effective than either alone. Factors affecting the radiolysis of the pollutants such as concentration, irradiation dose, dose rate, and pH of the solutions was studied. Radiochemical degradation yields were calculated to elucidate the mechanism of the degradation process. Also, the feasibility of using granular Activated carbon (GAC), ion exchange resins (Metck I, II, III, IV) for the removal of these pollutants from aqueous solutions were studied. Synergistic treatment of the dye solutions by irradiation methods showed that the saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of O 2 , H 2 O 2 or NaOCI resulted in remarkable enhancement. Adsorption of the dyes onto GAC and some ion-exchangers, showed that GAC has the highest adsorption capacity compared with ion-exchangers. Irradiation followed by adsorption resulted in the removal of these toxic pollutants from wastewater. (author)

  16. Radiation degradation-adsorption treatment of some toxic dyes present in wastewater

    International Nuclear Information System (INIS)

    El-Kelesh, N.A.; Dessouki, A.M.; Amer, S.I.

    2002-01-01

    The radiolysis or three toxic dyes, viz. Reactive Yellow 3, Reactive Black 39, and Basic Blue 26, was investigated as a function of the dye concentration, pH, irradiation dose and dose rate. The radiolytic degradation was more pronounced with Reactive yellow 3 and Reactive Black 39 than with Basic Blue 26. The degree of degradation could be increased by combining the irradiation procedure with the conventional treatment, such as addition of oxygen or hydrogen peroxide; addition of nitrogen, on the other hand, resulted in no change. A pH drop was observed and tentatively attributed to the degradation of the dye molecules to lower molecular weight compounds such as organic acids. The primary radiolysis products as well as the secondary products are responsible for the degradation of the dye chromophore. Experiments with the adsorption or exchange of the dyes on GAC, some ion exchange resins and polymeric membranes were carried out to find that the polymeric membranes have the highest adsorption capacity for the pollutants except the basic dye. The combined treatment by irradiation and adsorption resulted in a complete removal of the toxic dyes in question

  17. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voï tchovsky, Kislon; Ashari-Astani, Negar; Tavernelli, Ivano; Té treault, Nicolas; Rothlisberger, Ursula; Stellacci, Francesco; Grä tzel, Michael; Harms, Hauke A.

    2015-01-01

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell's performance depends on the molecular arrangement and the density of the dye on the semiconductor surface

  18. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    Science.gov (United States)

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  19. The use of fluorescent indoline dyes for side population analysis.

    Science.gov (United States)

    Kohara, Hiroshi; Watanabe, Kohei; Shintou, Taichi; Nomoto, Tsuyoshi; Okano, Mie; Shirai, Tomoaki; Miyazaki, Takeshi; Tabata, Yasuhiko

    2013-01-01

    Dye efflux assay evaluated by flow cytometry is useful for stem cell studies. The side population (SP) cells, characterized by the capacity to efflux Hoechst 33342 dye, have been shown to be enriched for hematopoietic stem cells (HSCs) in bone marrow. In addition, SP cells are isolated from various tissues and cell lines, and are also potential candidates for cancer stem cells. However, ultra violet (UV) light, which is not common for every flow cytometer, is required to excite Hoechst 33342. Here we showed that a fluorescent indoline dye ZMB793 can be excited by 488-nm laser, equipped in almost all the modern flow cytometers, and ZMB793-excluding cells showed SP phenotype. HSCs were exclusively enriched in the ZMB793-excluding cells, while ZMB793 was localized in cytosol of bone marrow lineage cells. The efflux of ZMB793 dye was mediated by ATP binding cassette (ABC) transporter Abcg2. Moreover, staining properties were affected by the side-chain structure of the dyes. These data indicate that the fluorescent dye ZMB793 could be used for the SP cell analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  1. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  2. Assessment of the Dyeing Properties of the Pigments Produced by Talaromyces spp.

    Science.gov (United States)

    Morales-Oyervides, Lourdes; Oliveira, Jorge; Sousa-Gallagher, Maria; Méndez-Zavala, Alejandro; Montañez, Julio Cesar

    2017-07-05

    The high production yields of pigments by Talaromyces spp. and their high thermal stability have implied that industrial application interests may emerge in the food and textile industries, as they both involve subjecting the colourants to high temperatures. The present study aimed to assess the potential application of the pigments produced by Talaromyces spp. in the textile area by studying their dyeing properties. Dyeing studies were performed on wool. The dyeing process consisted of three stages: scouring, mordanting, and dyeing. Two different mordants (alum, A; ferric chloride, F) were tested at different concentrations on fabric weight (A: 5, 10, 15%; F: 10, 20, 30%). The mordanting process had a significant effect on the final colour of the dyed fabrics obtained. The values of dyeing rate constant ( k ), half-time of dyeing ( t 1/2 ), and sorption kinetics behaviour were evaluated and discussed. The obtained results showed that pigments produced by Talaromyces spp. could serve as a source for the natural dyeing of wool textiles.

  3. Assessment of the Dyeing Properties of the Pigments Produced by Talaromyces spp.

    Science.gov (United States)

    Oliveira, Jorge; Sousa-Gallagher, Maria; Montañez, Julio Cesar

    2017-01-01

    The high production yields of pigments by Talaromyces spp. and their high thermal stability have implied that industrial application interests may emerge in the food and textile industries, as they both involve subjecting the colourants to high temperatures. The present study aimed to assess the potential application of the pigments produced by Talaromyces spp. in the textile area by studying their dyeing properties. Dyeing studies were performed on wool. The dyeing process consisted of three stages: scouring, mordanting, and dyeing. Two different mordants (alum, A; ferric chloride, F) were tested at different concentrations on fabric weight (A: 5, 10, 15%; F: 10, 20, 30%). The mordanting process had a significant effect on the final colour of the dyed fabrics obtained. The values of dyeing rate constant (k), half-time of dyeing (t1/2), and sorption kinetics behaviour were evaluated and discussed. The obtained results showed that pigments produced by Talaromyces spp. could serve as a source for the natural dyeing of wool textiles. PMID:29371555

  4. Can methylene blue dye be used as an alternative to patent blue dye to find the sentinel lymph node in breast cancer surgery?

    Directory of Open Access Journals (Sweden)

    Asieh Sadat Fattahi

    2014-01-01

    Full Text Available Background: Sentinel lymph node biopsy (SLNB is standard care to evaluate axillary involvement in early breast cancer. It has fewer complications than complete lymph node dissection; however, using blue dye in SLNB is controversial. We have evaluated the detection rate and local complications associated with methylene blue dye (MBD used in SLNB in early breast cancer patients and compared these results to patent blue dye (PBD. Materials and Methods : In a cohort prospective study, 312 patients with early breast cancer without axillary lymph node involvement were divided into two groups according to dye type. All of the patients received radiotracer and one type of blue dye. We filled out a checklist for the patients that contained demographic data, size of tumor, stage, detection of sentinel lymph node, and complications and then analyzed the data. Results: Demographic and histopathologic characteristics were not significantly different in both groups. Mean (standard deviation [SD] tumor size in all patients was 2.4 (0.8 cm. Detection rate in the MBD group was 77.5% with dye alone and 94.2% with dye and radioisotope; and in the PBD group it was 80.1% and 92.9% respectively (P > 0.05. We had blue discoloration of the skin in 23.7% in the PBD and 14.1% in the MBD group (P < 0.05 local inflammation was detected in one patient in the PBD and five in the MBD group (P < 0.05. Skin necrosis and systemic complications were not observed. Conclusion: Methylene blue has an acceptable detection rate, which may be a good alternative in SLNB. Complication such as blue discoloration of the skin was also lower with MBD.

  5. Chitosan-edible oil based materials as upgraded adsorbents for textile dyes.

    Science.gov (United States)

    Dos Santos, Clayane Carvalho; Mouta, Rodolpho; Junior, Manoel Carvalho Castro; Santana, Sirlane Aparecida Abreu; Silva, Hildo Antonio Dos Santos; Bezerra, Cícero Wellington Brito

    2018-01-15

    Biopolymer chitosan is a low cost, abundant, environmentally friendly, very selective and efficient anionic dyes adsorbent, being a promising material for large-scale removal of dyes from wastewater. However, raw chitosan (CS) is an ineffective cationic dyes adsorbent and its performance is pH sensitive, thus, CS modifications that address these issues need to be developed. Here, we report the preparation and characterization of two new CS modifications using edible oils (soybean oil or babassu oil), and their adsorption performance for two dyes, one anionic (remazol red, RR) and one cationic (methylene blue, MB). Both modifications extended the pH range of RR adsorption. The babassu oil modification increased adsorption capacity of the cationic dye MB, whereas the soybean oil modification increased that of RR. Such improvements demonstrate the potential of these two new CS modifications as adsorbent candidates for controlling dyes pollution in effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pond dyes are Culex mosquito oviposition attractants

    Directory of Open Access Journals (Sweden)

    Natali Ortiz Perea

    2017-05-01

    Full Text Available Background British mosquito population distribution, abundance, species composition and potential for mosquito disease transmission are intimately linked to the physical environment. The presence of ponds and water storage can significantly increase the density of particular mosquito species in the garden. Culex pipiens is the mosquito most commonly found in UK gardens and a potential vector of West Nile Virus WNV, although the current risk of transmission is low. However any factors that significantly change the distribution and population of C. pipiens are likely to impact subsequent risk of disease transmission. Pond dyes are used to control algal growth and improve aesthetics of still water reflecting surrounding planting. However, it is well documented that females of some species of mosquito prefer to lay eggs in dark water and/or containers of different colours and we predict that dyed ponds will be attractive to Culex mosquitoes. Methods Black pond dye was used in oviposition choice tests using wild-caught gravid C. pipiens. Larvae from wild-caught C. pipiens were also reared in the pond dye to determine whether it had any impact on survival. An emergence trap caught any adults that emerged from the water. Water butts (80 L were positioned around university glasshouses and woodland and treated with black pond dye or left undyed. Weekly sampling over a six month period through summer and autumn was performed to quantified numbers of larvae and pupae in each treatment and habitat. Results Gravid female Culex mosquitoes preferred to lay eggs in dyed water. This was highly significant in tests conducted under laboratory conditions and in a semi-field choice test. Despite this, survivorship in black dyed water was significantly reduced compared to undyed water. Seasonal analysis of wild larval and pupal numbers in two habitats with and without dye showed no impact of dye but a significant impact of season and habitat. Mosquitoes were more

  7. PicoGreen dye as an active medium for plastic lasers

    Science.gov (United States)

    Pradeep, C.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-08-01

    Deoxyribonucleic acid lipid complex thin films are used as a host material for laser dyes. We tested PicoGreen dye, which is commonly used for the quantification of single and double stranded DNA, for its applicability as lasing medium. PicoGreen dye exhibits enhanced fluorescence on intercalation with DNA. This enormous fluorescence emission is amplified in a planar microcavity to achieve yellow lasing. Here the role of DNA is not only a host medium, but also as a fluorescence dequencher. With the obtained results we have ample reasons to propose PicoGreen dye as a lasing medium, which can lead to the development of DNA based bio-lasers.

  8. Tuning the Electron-Transport and Electron-Accepting Abilities of Dyes through Introduction of Different π-Conjugated Bridges and Acceptors for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Li, Yuanzuo; Sun, Chaofan; Song, Peng; Ma, Fengcai; Yang, Yanhui

    2017-02-17

    A series of dyes, containing thiophene and thieno[3,2-b]thiophene as π-conjugated bridging units and six kinds of groups as electron acceptors, were designed for dye-sensitized solar cells (DSSCs). The ground- and excited-state properties of the designed dyes were investigated by using density functional theory (DFT) and time-dependent DFT, respectively. Moreover, the parameters affecting the short-circuit current density and open-circuit voltage were calculated to predict the photoelectrical performance of each dye. In addition, the charge difference density was presented through a three-dimensional (3D) real-space analysis method to investigate the electron-injection mechanism in the complexes. Our results show that the longer conjugated bridge would inhibit the intramolecular charge transfer, thereby affecting the photoelectrical properties of DSSCs. Similarly, owing to the lowest chemical hardness, largest electron-accepting ability, dipole moment (μnormal ) and the change in the energy of the TiO 2 conduction band (ΔECB ), the dye with a (E)-3-(4-(benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-2-cyanoacrylic acid (TCA) acceptor group would exhibit the most significant photoelectrical properties among the designed dyes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Selective adsorption of cationic dyes by UiO-66-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; He, Qinqin; Lv, Mengmeng; Xu, Yanli; Yang, Hanbiao; Liu, Xueting, E-mail: wmlxt@163.com; Wei, Fengyu, E-mail: weifyliuj@163.com

    2015-02-01

    Graphical abstract: - Highlights: • Two Zr(IV)-based MOFs can remove cationic dyes more effectively than anionic dyes. • UiO-66 has higher selectivity for cationic dyes after modification with NH{sub 2}. • The mechanism for adsorption selectivity is rationally proposed. - Abstract: Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH{sub 2} had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N{sub 2} adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH{sub 2} and its more negative zeta potential resulted from the charge balance for the protonation of –NH{sub 2}, UiO-66-NH{sub 2} displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66.

  10. Bioaccumulation versus adsorption of reactive dye by immobilized growing Aspergillus fumigatus beads

    International Nuclear Information System (INIS)

    Wang, B.-E.; Hu Yongyou

    2008-01-01

    The removal of reactive brilliant blue KN-R using growing Aspergillus fumigatus (abbr. A. fumigatus) immobilized on carboxymethylcellulose (CMC) beads with respect to initial dye concentration was investigated. Bioaccumulation was the dominant mechanism of the dye removal. According to the UV-vis spectra and the results of three sets of experiments, it could be concluded that the bioaccumulation using immobilized growing A. fumigatus beads was achieved by metabolism-dependent accumulation and metabolism-independent adsorption (15-23% proportion of overall dye removal), which included biosorption by mycelia entrapped in them and adsorption on immobilization matrix. The transmission electron microscope (TEM) images showed the intracellular structures of mycelia and the toxicity of dye. It was found that the fungus had a considerable tolerance to reactive brilliant blue KN-R at initial dye concentrations of <114.7 mg/l. Though at high initial dye concentrations the growth of mycelia was inhibited significantly by the dye molecules in the growth medium, the bioaccumulation capacity was not markedly affected and the maximum bioaccumulation capacity was 190.5 ± 2.0 mg/g at an initial dye concentration of 374.4 mg/l. The bioaccumulation rates were not constant over the contact time

  11. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    Science.gov (United States)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  12. Distributed feedback dye laser pumped with copper-vapor laser emission

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    The power-spectrum characteristics of the emission of a distributed feedback dye laser pumped with a copper vapor laser have been studied. Laser action has been observed in five dyes over a tuning range of 530-723 nm with an efficiency of 12.4%. The specfic features of the distributed feedback dye laser operating at pulse repetition rates of 4 kHz are discussed.

  13. Photocatalytic decolorization of basic dye by TiO2 nanoparticle in photoreactor

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn1

    2012-04-01

    Full Text Available Photocatalytic decolorization of rhodamine B (RB and malachite green (MG basic dyes in aqueous solution wasevaluated using TiO2 powder as a semiconductor photocatalyst under UV black light irradiation. A 0.5 L batch photoreactorcontaining dyeing solution was installed in a stainless steel chamber with air cooling under irradiation. The TiO2 powder wascharacterized by XRD observation and it was shown that the nanoparticles could be identified as 73 nm anatase crystals. Theeffects of operational parameters such as light intensity (0-114 W/m2, initial dye concentration (10-30 mg/L, and TiO2 powderloading (0.5-1.5 g/L on the decolorization of dye samples were examined. The photocatalytic decolorization rate depended onthe pollutant’s structure, such that the MG dye could be removed faster than the RB dye. Decolorization efficiency (% of thephotocatalytic system increased with increasing TiO2 loading and light intensity; however, it decreased with increasing initialdye concentration. A loading of 1.5 g TiO2/L, initial dye concentration of 20 mg/L, and light intensity of 114 W/m2 were foundto yield the highest removal efficiency of dye solution based on time requirement. The kinetics are of first order and dependon the TiO2 powder loading and dye structure. The research had a perfect application foreground.

  14. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    International Nuclear Information System (INIS)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-01-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  15. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    Science.gov (United States)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  16. The Covalent Binding of Photosensitive Dyes to Monocrystalline Silicon Surface and Their Spectral Response

    Institute of Scientific and Technical Information of China (English)

    郭志新; 郝纪祥; 张祖训; 曹子祥

    1993-01-01

    A chemical method is proposed to bond photo-sensitive dyes directly to the surface of polished monocrystalline silicon. A methincyanine dye and a trimethincyanine dye have been bonded covalently onto silicon surface through Si—N bond, which are characterized by XPS technique and laser Raman spectra. Photovoltaic effect has been observed with the In/dye/n-Si sandwich devices composed of the dye-bonded n-Si wafers. Significant spectral response shows the characteristic absorptance maxima of the bonded dyes.

  17. Phytoremediation of textile dyes and effluents: Current scenario and future prospects.

    Science.gov (United States)

    Khandare, Rahul V; Govindwar, Sanjay P

    2015-12-01

    Phytoremediation has emerged as a green, passive, solar energy driven and cost effective approach for environmental cleanup when compared to physico-chemical and even other biological methods. Textile dyes and effluents are condemned as one of the worst polluters of our precious water bodies and soils. They are well known mutagenic, carcinogenic, allergic and cytotoxic agents posing threats to all life forms. Plant based treatment of textile dyes is relatively new and hitherto has remained an unexplored area of research. Use of macrophytes like Phragmites australis and Rheum rhabarbarum have shown efficient removal of Acid Orange 7 and sulfonated anthraquinones, respectively. Common garden and ornamental plants namely Aster amellus, Portulaca grandiflora, Zinnia angustifolia, Petunia grandiflora, Glandularia pulchella, many ferns and aquatic plants have also been advocated for their dye degradation potential. Plant tissue cultures like suspension cells of Blumea malcolmii and Nopalea cochenillifera, hairy roots of Brassica juncea and Tagetes patula and whole plants of several other species have confirmed their role in dye degradation. Plants' oxidoreductases such as lignin peroxidase, laccase, tyrosinase, azo reductase, veratryl alcohol oxidase, riboflavin reductase and dichlorophenolindophenol reductase are known as key biodegrading enzymes which break the complex structures of dyes. Schematic metabolic pathways of degradation of different dyes and their environmental fates have also been proposed. Degradation products of dyes and their fates of metabolism have been reported to be validated by UV-vis spectrophotometry, high performance liquid chromatography, high performance thin layer chromatography, Fourier Transform Infrared Spectroscopy, gas chromatograph-mass spectroscopy and several other analytical tools. Constructed wetlands and various pilots scale reactors were developed independently using the plants of P. australis, Portulaca grandiflora, G. pulchella

  18. The Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) Experiment Overview: Binational Dye Tracer Releases to Study Pollution Transport and Dilution.

    Science.gov (United States)

    Feddersen, F.; Giddings, S. N.; Kumar, N.; Grimes, D. J.; Pawlak, G. R.; Rivas, D.; Diaz, M.

    2016-02-01

    Per square km, the surfzone and inner-shelf are by far the most economically and ecologically important ocean regions, vital for recreation, food, and ecosystem services. Despite the importance of clean coastal waters to our economy and well-being, declining water quality threatens coastal ecosystem and human health worldwide. Healthy coasts are a significant priority to federal agencies, local government, and NGOs. In particular the San Diego US and Tijuana Mexico border region have unique and persistent water quality issues due to a range of pollution sources. Cross-shore exchange of tracers (e.g., pathogens, anthropogenic nutrients, harmful algal blooms - HABs, larvae) between the well-mixed surfzone and stratified inner-shelf is poorly understood. The surfzone, inner- and mid-shelf span drastically different dynamical regimes, with varying cross-shelf exchange mechanisms due to wave, wind, buoyancy, and tidal processes and intrinsic variability. The NSF funded CSIDE (Cross Surfzone/Inner-shelf Dye Exchange) experiment (Sept & Oct 2015) aims to increase our understanding of cross-shelf material exchange by performing 3 shoreline dye release experiments that are tracked for up to 20 km alongshore and over 48+ hrs. One dye release will be performed in Mexico and the dye transport tracked across the border. The dye will be tracked via a broad range of binational instrumentation. In this presentation, we present an overview of the CSIDE experiment, in particular the binational aspects of the study,

  19. DYE-SENSITIZED PHOTOLYSIS OF o-Cl-HEXAARYLBIIMIDAZOLE AND PHOTOPOLYMERIZATION KINETICS STUDY OF THE LONG WAVE-LENGTH DYE/HEXAARYLBIIMIDAZOLE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Fang Gao; Chun-ying Zhao; Li-dong Li; Shu-jing Feng; Yong-yuan Yang

    2000-01-01

    o-Chloro-hexaarylbiimidazole (o-Cl-HABI) can be sensitized efficiently by the dyes 1-ethyl-3'-methyl thiacyanine bromide (C1), 3,3'-diethyl thiacarbocyanine iodide (C2), and cyclopentanone 2,5-bis[2-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)ethylidene] (C3) through electron transfer proceses. When exposed to a xenon lamp (filtered by Pyrex glass),the photosensitive systems composed of o-Cl-HABI and the above dyes can produce free radicals which initiate the polymerization of MMA. The photopolymerization kinetics equation was obtained for the o-Cl-HABI/C2 system, Rp =K [C2]0.75[o-Cl-HABI]0.44[MTA]0.12[MMA]1.0. A comparison of the influence of different dyes on the conversion of MMA photopolymerization was conducted.

  20. Radiolysis of anthraquinone dyes in aqueous solutions

    International Nuclear Information System (INIS)

    Vysotskaya, N.A.; Bortun, L.N.; Ogurtsov, N.A.; Migdalovich, E.A.; Revina, A.A.; Volodko, V.V.; AN SSSR, Moscow. Inst. Ehlektrokhimii)

    1986-01-01

    The commercial anthraquinone dyes (Dark Blue, Light Blue, Green) in aqueous solutions were shown to be decoloured and degrade under the action of ionizing radiation. The degree of decolouration and degradation of aromatic rings was found to increase in presence of oxygen. Hydroxyl radicals were shown to play the key role in the degradation of the dyes under irradiation. The radiolysis intermediate products were studied using the pulse radiolysis technique. (author)

  1. The absorption spectra of natural dyes and their suitability as a ...

    African Journals Online (AJOL)

    This paper analyzes the suitability of organic dyes (hibiscus, Solanum nigrum, beetroot and eggplant) that are locally available in East Africa for low-budget dye sensitized solar cells (DSSC). The natural dyes were extracted in different ways, where the nightshade berries and eggplant were simply crushed and sieved to ...

  2. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Chen, Bor-Yann, E-mail: bychen@niu.edu.tw [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Yen, Chia-Yi [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China)

    2009-08-15

    This novel comparative study tended to disclose how the molecular structures present in seven azo dyes including two types of azo dyes (i.e., naphthol type azo dyes - Reactive Black 5 (RB 5), Reactive Blue 171 (RB 171), Reactive Green 19 (RG19), Reactive Red 198 (RR198), Reactive Red 141 (RR141) and non-naphthol type azo dyes - Direct Yellow 86 (DY86), Reactive Yellow 84 (RY84)) affected color removal capability of Aeromonas hydrophila. Generally speaking, the decolorization rate of naphthol type azo dye with hydroxyl group at ortho to azo bond was faster than that of non-naphthol type azo dye without hydroxyl group, except of RG19. The azo dyes with electron-withdrawing groups (e.g., sulfo group in RR198, RB5 and RR141) would be easier to be decolorized than the azo dyes with the electron-releasing groups (e.g., -NH-triazine in RB171 and RG19). In addition, the azo dyes containing more electron-withdrawing groups (e.g., RR198, RB5 and RR141) showed significantly faster rate of decolorization. The azo dyes with electron-withdrawing groups (e.g., sulfo group) at para and ortho to azo bond (e.g., RR198, RB5 and RR141) could be more preferred for color removal than those at meta (e.g., DY86 and RY84). The former azo dyes with para and ortho sulfo group provided more effective resonance effects to withdraw electrons from azo bond, causing azo dyes to be highly electrophilic for faster rates of reductive biodecolorization. However, since the ortho substituent caused steric hindrance near azo linkage(s), azo dyes with para substituent could be more favorable (e.g., SO{sub 2}(CH{sub 2}){sub 2}SO{sub 4}{sup -} in RR198 and RB5) than those with ortho substituent (e.g., sulfo group at RR141) for decolorization. Thus, the ranking of the position for the electron-withdrawing substituent in azo dyes to escalate decolorization was para > ortho > meta. This study suggested that both the positions of substituents on the aromatic ring and the electronic characteristics of

  3. Mass transfer of Disperse Red 153 and its crude dye in supercritical CO2 fluid

    Directory of Open Access Journals (Sweden)

    Zheng Huan-Da

    2017-01-01

    Full Text Available In this paper, polyester fibers were dyed with Disperse Red 153 and its crude dye in supercritical CO2. The effect of dyeing temperature, dyeing time, dyeing pressure, as well as auxiliaries in the commercialized Disperse Red 153 on the dyeing performance of polyester fibers was investigated. The obtained results showed that the dyeing effect of crude dye for polyester was better than that of Disperse Red 153 in the same dyeing condition. The color strength values of the dyed polyester samples were increased gradually with the increase of temperature and pressure since mass transfer of dye was improved. In addition, the mass transfer model of Disperse Red 153 in supercritical CO2 was also proposed.

  4. Color removal from dye-containing wastewater by magnesium chloride.

    Science.gov (United States)

    Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Zhou, Wei-Zhi

    2007-01-01

    Color removal by MgCl(2) when treating synthetic waste containing pure dyes was studied. The color removal efficiency of MgCl(2)/Ca(OH)(2) was compared with that of Al(2)(SO(4))(3), polyaluminum chloride (PAC) and FeSO(4)/Ca(OH)(2). The mechanism of color removal by MgCl(2) was also investigated. The experimental results show that the color removal efficiency of MgCl(2) is related to the type of dye and depends on the pH of the waste and the dosage of the coagulants used. Treatment of waste containing reactive dye or dispersed dye with MgCl(2) yielded an optimum color removal ratio when the pH of the solution was equal to or above 12.0. For both the reactive and dispersed dye waste, MgCl(2)/Ca(OH)(2) was shown to be superior to MgCl(2)/NaOH, Al(2)(SO(4))(3), PAC and FeSO(4)/Ca(OH)(2) for color removal. A magnesium hydroxide precipitate formed at pH values greater than 12.0, which provided a large adsorptive surface area and a positive electrostatic surface charge, enabling it to remove the dyes through charge neutralization and an adsorptive coagulating mechanism. So, the MgCl(2)/Ca(OH)(2) system is a viable alternative to some of the more conventional forms of chemical treatment, especially for treating actual textile waste with high natural pH.

  5. Biological decolorization of xanthene dyes by anaerobic granular biomass.

    Science.gov (United States)

    Apostol, Laura Carmen; Pereira, Luciana; Pereira, Raquel; Gavrilescu, Maria; Alves, Maria Madalena

    2012-09-01

    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L⁻¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L⁻¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L⁻¹ AC₀). Using different modified AC samples (from the treatment of AC₀), a threefold higher rate was obtained with the most basic one, AC(H₂), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na₂S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.

  6. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    Science.gov (United States)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  7. Fluorescence study of some xanthine dyes under stepped laser excitation

    International Nuclear Information System (INIS)

    Chirkova, L.V.; Ketsle, G.A.; Ermagambetov, K.T.

    1996-01-01

    Paper is devoted to definition of triplet state in molecules of xanthine dyes and study of intramolecular energy circulation. Stepped two-quanta excitation of dyes has been carried out with help of experimental unit. Intensive luminescence activated by excitation of triplet molecules of dyes within triplet-triplet band with wave length of 1060 nm was registered for eosin. Given luminescence spectrally coincides with fast fluorescence. 5 refs., 6 figs

  8. Dye-sensitized solar cells based on purple corn sensitizers

    International Nuclear Information System (INIS)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-01-01

    Graphical abstract: - Highlights: • Extract from husk, cob and silk of purple corn was used as a photosensitizer in DSSC. • Effect of solvents i.e. acetone, ethanol and DI water on DSSC efficiency was studied. • The highest efficiency of 1.06% was obtained in DSSC based on acetone extraction. - Abstract: Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  9. Dye-sensitized solar cells based on purple corn sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Phinjaturus, Kawin [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Maiaugree, Wasan [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Suriharn, Bhalang [Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand); Pimanpaeng, Samuk; Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Swatsitang, Ekaphan, E-mail: ekaphan@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Extract from husk, cob and silk of purple corn was used as a photosensitizer in DSSC. • Effect of solvents i.e. acetone, ethanol and DI water on DSSC efficiency was studied. • The highest efficiency of 1.06% was obtained in DSSC based on acetone extraction. - Abstract: Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  10. Personal use of hair dyes and temporary black tattoos in Copenhagen hairdressers

    DEFF Research Database (Denmark)

    Hansen, Henriette S; Johansen, Jeanne D; Thyssen, Jacob P

    2010-01-01

    Hairdressers are occupationally and personally exposed to hair dye substances and adverse reactions from the skin are well known. Currently, little is known about personal exposure to hair dye ingredients and temporary black tattoos.......Hairdressers are occupationally and personally exposed to hair dye substances and adverse reactions from the skin are well known. Currently, little is known about personal exposure to hair dye ingredients and temporary black tattoos....

  11. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.

    Directory of Open Access Journals (Sweden)

    Yoko Hayashi-Takanaka

    Full Text Available To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph and acetylated H3K9 (H3K9ac. These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green, Cy3 (red, and Cy5 or CF640 (far-red.

  12. Natural Dyeing and UV Protection of Raw and Bleached/Mercerised Cotton

    Directory of Open Access Journals (Sweden)

    Čuk Nina

    2017-05-01

    Full Text Available Dyeing with natural dyes extracted from curcuma, green tea, avocado seed, pomegranate peel and horse chestnut bark was studied to evaluate the dyeability and ultraviolet (UV blocking properties of raw and bleached/mercerised cotton fabrics. 20 g/l of powdered plant material was extracted in distilled water and used as a dyeing bath. No mordants were used to obtain ecologically friendly finishing. The colour of samples was measured on a refl ectance spectrophotometer, while UV-blocking properties were analysed with UV-Vis spectrophotometer. The results showed that dyeing increased UV protection factor (UPF to all samples, however much higher UPF values were measured for the dyed raw cotton samples. The highest UPF values were obtained on both cotton fabrics dyed with pomegranate peel and green tea extracts, giving them excellent protective properties (UPF 50+. The lowest UPF values were obtained by dyeing cotton with avocado seed extract and curcumin. Dyeing with selected dyes is not stable to washing, so the UV-blocking properties worsen after repetitive washing. However, raw cotton samples retain their very good Uvblocking properties, while bleached/mercerised cotton fabrics do not provide even satisfactory UV-blocking properties. No correlation between CIE L*a*b*, K/S and UPF values were found.

  13. Dyeing of γ-irradiated cotton with natural flavonoid dye extracted from irradiated onion shells (Allium cepa) powder

    International Nuclear Information System (INIS)

    Rehman, Fazal-ur; Adeel, Shahid; Shahid, Muhammad; Bhatti, Ijaz Ahmad; Nasir, Faiza; Akhtar, Nasim; Ahmad, Zulfiqar

    2013-01-01

    Powder of Onion shells as a source of natural flavonoid dye (Quercetin) and cotton fabrics were exposed to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Irradiated and un-irradiated dye powder was used for extraction of quercetin as well as antibacterial, hemolytic and antioxidant activities were also determined to observe the effect of radiation. Furthermore, color strength and colourfastness of irradiated fabrics were improved by using pre and post-mordants such as alum and iron. It is found that 4 kGy is the optimal absorbed dose for extraction of natural quercetin extracted from onion shells while maximum color strength and acceptable fastness properties are obtained on dyeing of irradiated fabric at 60 °C keeping M:L of 1:30 using 10% alum as pre-mordant and 6% alum as post-mordant. Gamma irradiation has not only improved the color strength of the dye using irradiated cotton but also that of colourfastness properties. - Highlights: • The optimal absorbed dose obtained for surface modification of cotton (RC) is 4 kGy. • The optimal absorbed dose for extraction of colorant from onion shell powder (RP) is 4 kGy. • Optimum dying conditions: 60 °C, 1 30 as M:L. • Optimum pre-mordant 10% alum and 6% alum as post-mordant. • At these optimum conditions: color strength and fastness properties are improved

  14. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  15. Photo Degradation in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    T. J. Abodunrin

    2015-05-01

    Full Text Available Mesoporous TiO2 of 20nm diameter is prepared in-tandem with organic dyes and based on Fluorine –doped SnO2 (FTO, conducting base is produced by hydrothermal process. The prepared mesoporous Cola Acuminata (C.acuminata, Lupinus Arboreus (L.arboreus and Bougainvillea Spectabilis (B.spectabilis films (0.16 cm2 are applied; individually and in combination as interfacial layer in-between nanocrystalline TiO2 (NC- TiO2 and the FTO anode in the dye-sensitized solar cell (DSSC. Absorbance index (A.I of all three dyes was studied within wavelength range 200-900 nm for a period of 11 months, equivalent to 352 sun exposure. C.acuminata had A.I value 4.00 that decreased to 2.32 under exposure to AM1.5 global conditions. B.spectabilis A.I was 1.19 but decreased to 0.520 within same period of study. Combination of C.acuminata and B.spectabilis gave A.I value 1.40, dye cocktails of C.acuminata, B.spectabilis and L.arboreus gave 2.00 A.I value for same wavelength range. A UV/Vis photo spectrometer was used to determine the prominent peaks and absorbance at such wavelengths. This exponential relationship is subject of our explorative study.

  16. Rose bengal-sensitized nanocrystalline ceria photoanode for dye ...

    Indian Academy of Sciences (India)

    The bandgap of 2.93 eV is calculated using UV–visible ... Keywords. Wide bandgap; dye-sensitized solar cells; CeO2; rose bengal dye. 1. ... and renewable energy, its high-cost production and installa- tion excludes direct commercial use. It is an urgent require- .... surface leads to oxygen vacancies and defects, whose influ-.

  17. Chromatographic separation and spectro-analytical characterization of a natural African mineral dye

    Directory of Open Access Journals (Sweden)

    G.B. Adebayo

    2007-08-01

    Full Text Available Chromatographic fractionation and spectroscopic characterization of a natural African mineral dye have been carried out. The chromatographic separation of the dyes made use of column and thin layer chromatographic techniques. Some physicochemical properties of the dye including solubility in polar and non-polar solvents, pH, ash and organic contents were determined. The spectro-analytical techniques used for characterization included energy dispersive X-ray fluorescence (EDXRF, X-ray diffractometry (XRD, Optical microscopy, infrared (IR and UV-VIS spectroscopy. Four different fractions having colours yellow, grey, orange and purple were obtained from the chromatographic separation. All the fractions were found to contain aromatic nucleus based on IR and UV-VIS spectroscopic data. Other functional groups detected are Ar-NH2, -CONH2, C=C, C-C and metal-carbon chelate rings. The presence of aromatic amine in the dye provides strong evidence for its use as hair dye. The dye was found to be soluble in both aqueous and non-aqueous solvents. The pH of the dye's aqueous solution was found to be 8.6, and the ash and organic content of the raw dye were 49 % and 51 % respectively. The XRF revealed that the dye contains twenty elements with concentrations ranging from major to ultra-trace levels. The XRD also showed that the sample contains about forty-six mineral phases which include both inorganic and organic components. The maximum absorption wavelength (λmax in UV-VIS of the aqueous solution was found to be 464 nm. The optical microscopic investigation gave indication that the dyes are likely to be of the marine origin.

  18. Study of radon, thoron and toxic elements in some textile dyes

    International Nuclear Information System (INIS)

    Abel-Ghany, H.A.

    2013-01-01

    Elemental analysis of textile dyes may provide valuable information concerning the content and concentrations of element, especially the toxic ones. Such information monitors the safety of handling and using these dyes in textile industry. In addition to the safety of wearing of clothes stained with these dyes. In the present work, the specific activity of both radon and thoron were measured in nine textile dyes by using alpha emitters registration which are emitted from radon and thoron gases in CR-39 nuclear track detectors. Unexpectedly, the results obtained reports a high concentration of both radon and thoron gases in some samples (samples D5 and D9). Also the concentration of toxic elements (Cu, Pb, Zn, Mn, Cd and Cr) in textile dyes were determined by flame and graphite furnace atomic absorption spectrometry. (author)

  19. Kinetics and mechanism of azo dye destruction in advanced oxidation processes

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2007-01-01

    The kinetics and mechanism of dye destruction in advanced oxidation processes is discussed on the example of Apollofix Red (Ar-28) radiolysis in aqueous solution. When the reactive intermediate reacts with the color bearing part of the molecule causing with nearly 100% efficiency destruction of the conjugation, the dose dependence, or time dependence of color disappearance is linear. In this case, spectrophotometry can be used to follow-up dye decomposition. Linear dependence was observed when hydrated electrons or hydrogen atoms reacted with the dye. In hydroxyl radical reactions some colored products form with spectra similar to those of the starting dye molecules. For that reason, spectrophotometry gives false result about the intact dye molecule concentration. Analysis by the HPLC reveals logarithmic time dependence in agreement with a theoretical model developed

  20. Influence of mass transfer and chemical reaction on ozonation of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I.S.; Wiesmann, U. [Dept. of Environmental Engineering, Technical Univ. of Berlin, Berlin (Germany)

    2003-07-01

    Azo dyes can be only mineralised by chemical oxidation. In this paper the oxidation of reactive black 5 (RB 5) and reactive orange 96 (RO 96) with concentrations between 35 and 5700 mgL{sup -1} (RB 5) and between 20 and 2050 mgL{sup -1} (RO 96) is investigated. A lab scale bubble column was used, which was gassed by a mixture of O{sub 2} and O{sub 3}. The oxidation rate was influenced by mass transfer for all dye concentrations used. For lower dye concentrations mass transfer alone was decisive for reaction rate showing an enhancement factor of E {approx} 1. However, in the region of higher dye concentrations, the slope of the decreasing ozone concentration inside the liquid boundary layer increases more and more with increasing dye concentration as a result of a chemical oxidation. Therefore, the enhancement factor depends on the kind and concentration of the azo dyes. For RB 5 as an diazo dye an enhancement factor of E = 9 was observed for 3800 mgL{sup -1}, RO 96 as a mono azo dye with a remarkable higher chemical oxidation rate shows an E = 17 already for 2050 mgL{sup -1}. (orig.)

  1. The Determination of Food Dyes in Vitamins by RP-HPLC

    Directory of Open Access Journals (Sweden)

    Monika Šuleková

    2016-10-01

    Full Text Available Reversed-phase high performance liquid chromatography (RP-HPLC for the determination of five synthetic food dyes (Quinoline Yellow E104, Sunset Yellow E110, Ponceau 4R E124, Tartrazine E102 and Carmine E120 in vitamins was used. The dyes were analyzed within 10 min using a column with stationary phase C 18 (250 mm × 4.6 mm, 5 μm at 40 °C with isocratic elution, and the mobile phase contained acetonitrile and a mixture of CH3COONa:CH3OH (85:15, v/v in a ratio of 10:90 (v/v for yellow-colored capsules and 20:80 (v/v for red-colored capsules, respectively. A diode-array detector was used to monitor the dyes between 190 and 800 nm. It was established that the analyzed samples contained synthetic dyes in a concentration range from 79.5 ± 0.01 μg/capsule of Ponceau 4R, E124 to 524 ± 0.01 μg/capsule of Tartrazine, E102. The obtained results were compared with existing acceptable daily intakes (ADIs for individual dyes. This paper provides information about the content of dyes in samples of vitamins. This information is not generally available to consumers.

  2. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    Directory of Open Access Journals (Sweden)

    Valentina Buscio

    2016-06-01

    Full Text Available The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates. Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range.

  3. Potential of roselle and blue pea in the dye-sensitized solar cell

    Science.gov (United States)

    Dayang, S.; Irwanto, M.; Gomesh, N.; Ismail, B.

    2017-09-01

    This paper discovers the use of natural dyes from Roselle flower and Blue Pea flower which act as a sensitizer in DSSC and in addition has a potential in absorbing visible light spectrum. The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using `degas' mode at the temperature of 30°C. Absorption spectra of roselle dye and blue pea dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. It was found that Roselle dye absorbs at a range of 400 nm - 620 nm and Blue Pea absorbs at the range of wavelength 500 nm - 680 nm. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. The concept of Dye-Sensitized Solar Cell (DSSC) similar to photosynthesis process has attracted much attention since it demonstrates a great potential due to the use of low-cost materials and environmentally friendly sources of technology.

  4. EXTRACTION OF MONOAZO DYES BY HYDROPHILIC EXTRACTANTS FROM AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available The extraction of mono azo dyes E102, E122, E110, E124, E129 from aqueous solutions with hydrophilic solvents (alcohols, esters, ketones and polymers (poly-N-vinylamides, polyethylene glycol was studied. The main regularities of extraction are established. The distribution coefficients and degree of extraction of dyes was estimate. The influence of the nature of solvents and polymers on the extraction of dyes from aqueous solutions are established.

  5. Molecular engineering of D-A-π-A dyes with 2-(1,1-dicyanomethylene)rhodanine as an electron-accepting and anchoring group for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Mao, Jiangyi; Zhang, Xiaoyu; Liu, Shih-Hung; Shen, Zhongjin; Li, Xing; Wu, Wenjun; Chou, Pi-Tai; Hua, Jianli

    2015-01-01

    Graphical abstract: We designed and synthesized two new D-A-π-A dyes (RD-III and RD-IV) with 2-(1,1-dicyanomethylene) rhodanine (DCRD) as an electron-accepting and anchoring group. The theoretical calculation of dye/(TiO 2 ) 38 displayed that the angle between the molecule of RD-III and the surface of TiO 2 was only 31.84 0 in contrast to 97.16 0 for CA-III. This adsorption state can facilitate dye aggregation and charge recombination, resulting in a decrease of short circuit current density (J sc ) and open circuit voltage (V oc ). Further improvement has been successfully made by adding long alkoxy chains with large steric hindrance. After introducing the alkoxy chains of the benzothiadiazole unit, the dihedral angle between RD-IV and TiO 2 increased to 42.61 0 and the steric hindrance can inhibit dye aggregation and charge recombination. Therefore, higher photoelectric conversion efficiency of 5.53% was obtained with RD-IV in DSSC devices compared with 4.51% for DSSC based on RD-III. - Highlights: • We obtained two D-A-π-A dyes with 2-(1,1-dicyanomethylene) rhodanine as acceptor. • Introduction of octyloxy groups can increase the angle of dye/TiO 2 . • Octyloxy groups can inhibit dye aggregation and charge recombination effectively. • Higher power conversion efficiency of 5.53% was obtained with dye octyloxy group. - Abstract: The electron-accepting and anchoring group plays a significant role on the optical and electrochemical properties of an organic dye. They also affect the intramolecular charge transfer, the electron injection processes and the adsorption mode, hence the photostability of the dye on TiO 2 films. In this study, we have designed and synthesized two new D-A-π-A dyes (RD-III and RD-IV) with 2-(1,1-dicyanomethylene) rhodanine (DCRD) as electron-accepting and anchoring group. For comparison, an analogue of RD-III, namely CA-III, with cyanoacrylic acid (CA) as the acceptor was also prepared. We have carefully examined their optical and

  6. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    Energy Technology Data Exchange (ETDEWEB)

    Mulyanto, Subur, E-mail: subur.mulyanto@poltekba.ac.id [Graduate Program of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Department of Mechanical Engineering, State Polytechnic of Balikpapan, Jl. Soekarno-Hatta Km.8 Balikpapan (Indonesia); Suyitno,, E-mail: suyitno@uns.ac.id; Rachmanto, Rendy Adhi, E-mail: rendy.ar@gmail.com; Hidayat, Lullus Lambang Govinda, E-mail: lulus-l@yahoo.com; Hadi, Syamsul, E-mail: syamsulhadi@ft.uns.ac.id [Department of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Wibowo, Atmanto Heru, E-mail: aheruwibowo@yahoo.com [Department of Chemistry, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  7. Adsorption of Reactive Red Dye from Wastewater Using Modified Citrulluscolosynthis Ash

    Directory of Open Access Journals (Sweden)

    Mohammadreza Rezaei Kahkha

    2016-07-01

    Full Text Available Dye-bearing wastes pose serious risks to and leave harmful effects on the environment. Increasing wastewater color intensity leads to reduced light reaching the aquatic environment, which adversely affects the life and growth of aquatic plants and invertebrates. Among the many methods available for dye removal from wastewater, membrane separation, oxidation, coagulation, and anaerobic treatment are more common but they are all costly and involve complex processes. Biosorption, in contrast, enjoys both ease of application and simple design so that it is widely used for removing dyes, heavy metals, and phenolic compounds from both water and wastewater. In this paper, the ability of citrulluscolosynthis ash as a bioadsorbent for the removal of reactive red dye is investigated for the first time. Sodium hydroxide is also used to modify the plant ash surface which expectedly enhances its dye removal efficiency. Measurements and removal levels are determined using a UV-vis spectrophotometer. Finally, the effects of pH, adsorbent dosage, dye concentration, and reaction time on dye removal efficiency are also explored. Results show that the optimum conditions to achieve maximum dye removal are as follows: A pH level of 2, an adsorbant dosage of 1.75 g l-1, an initial concentration equal to 90 mg L-1, and A reaction time of 70 min. Adsorption isotherm is found to obey the Ferundlich isotherm. Also, an adsorption capacity of 36 mg g‒1 is achieved under the best conditions. It may thus be concluded that modified citrulluscolosynthis ash can be used as an effective adsorbent to treat colored wastewaters.

  8. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    International Nuclear Information System (INIS)

    Mulyanto, Subur; Suyitno,; Rachmanto, Rendy Adhi; Hidayat, Lullus Lambang Govinda; Hadi, Syamsul; Wibowo, Atmanto Heru

    2016-01-01

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  9. Dyes assay for measuring physicochemical parameters.

    Science.gov (United States)

    Moczko, Ewa; Meglinski, Igor V; Bessant, Conrad; Piletsky, Sergey A

    2009-03-15

    A combination of selective fluorescent dyes has been developed for simultaneous quantitative measurements of several physicochemical parameters. The operating principle of the assay is similar to electronic nose and tongue systems, which combine nonspecific or semispecific elements for the determination of diverse analytes and chemometric techniques for multivariate data analysis. The analytical capability of the proposed mixture is engendered by changes in fluorescence signal in response to changes in environment such as pH, temperature, ionic strength, and presence of oxygen. The signal is detected by a three-dimensional spectrofluorimeter, and the acquired data are processed using an artificial neural network (ANN) for multivariate calibration. The fluorescence spectrum of a solution of selected dyes allows discreet reading of emission maxima of all dyes composing the mixture. The variations in peaks intensities caused by environmental changes provide distinctive fluorescence patterns which can be handled in the same way as the signals collected from nose/tongue electrochemical or piezoelectric devices. This optical system opens possibilities for rapid, inexpensive, real-time detection of a multitude of physicochemical parameters and analytes of complex samples.

  10. Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach

    Directory of Open Access Journals (Sweden)

    Supratik Kar

    2016-12-01

    Full Text Available Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs. Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron transfer step. This depends on the relative position of the sensitized organic dye in the metal oxide composite system. In the present work, we developed quantitative structure-property relationship (QSPR models to set up the quantitative relationship between the overall PCE and quantum chemical molecular descriptors. They were calculated from density functional theory (DFT and time-dependent DFT (TD-DFT methods as well as from DRAGON software. This allows for understanding the basic electron transfer mechanism along with the structural attributes of arylamine-organic dye sensitizers for the DSSCs explicit to cobalt electrolyte. The identified properties and structural fragments are particularly valuable for guiding time-saving synthetic efforts for development of efficient arylamine organic dyes with improved power conversion efficiency.

  11. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    CSIR Research Space (South Africa)

    Zongo, S

    2015-06-01

    Full Text Available Natural dyes with highly delocalized p-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended p-electron delocalization is one of the most attractive dyes...

  12. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  13. Comparative sensitizing potencies of fragrances, preservatives, and hair dyes

    DEFF Research Database (Denmark)

    Lidén, Carola; Yazar, Kerem; Johansen, Jeanne Duus

    2016-01-01

    the sensitizing potencies of fragrance substances, preservatives, and hair dye substances, which are skin sensitizers that frequently come into contact with the skin of consumers and workers, LLNA results and EC3 values for 72 fragrance substances, 25 preservatives and 107 hair dye substances were obtained from...... two published compilations of LLNA data and opinions by the Scientific Committee on Consumer Safety and its predecessors. The median EC3 values of fragrances (n = 61), preservatives (n = 19) and hair dyes (n = 59) were 5.9%, 0.9%, and 1.3%, respectively. The majority of sensitizing preservatives...... and hair dyes are thus strong or extreme sensitizers (EC3 value of ≤2%), and fragrances are mostly moderate sensitizers. Although fragrances are typically moderate sensitizers, they are among the most frequent causes of contact allergy. This indicates that factors other than potency need to be addressed...

  14. Adsorption characteristics of brilliant green dye on kaolin

    International Nuclear Information System (INIS)

    Nandi, B.K.; Goswami, A.; Purkait, M.K.

    2009-01-01

    Experimental investigations were carried out to adsorb toxic brilliant green dye from aqueous medium using kaolin as an adsorbent. Characterization of kaolin is done by measuring: (i) particle size distribution using particle size analyzer, (ii) BET surface area using BET surface analyzer, and (iii) structural analysis using X-ray diffractometer. The effects of initial dye concentration, contact time, kaolin dose, stirring speed, pH and temperature were studied for the adsorption of brilliant green in batch mode. Adsorption experiments indicate that the extent of adsorption is strongly dependent on pH of solution. Free energy of adsorption (ΔG 0 ), enthalpy (ΔH 0 ) and entropy (ΔS 0 ) changes are calculated to know the nature of adsorption. The calculated values of ΔG 0 at 299 K and 323 K indicate that the adsorption process is spontaneous. The estimated values of ΔH 0 and ΔS 0 both show the negative sign, which indicate that the adsorption process is exothermic and the dye molecules are organized on the kaolin surface in less randomly fashion than in solution. The adsorption kinetic has been described by first-order, pseudo-second-order and intra-particle-diffusion models. It was observed that the rate of dye adsorption follows pseudo-second-order model for the dye concentration range studied in the present case. Standard adsorption isotherms were used to fit the experimental equilibrium data. It was found that the adsorption of brilliant green on kaolin follows the Langmuir adsorption isotherm

  15. Design and Synthesis of Novel Antimicrobial Acyclic and Heterocyclic Dyes and Their Precursors for Dyeing and/or Textile Finishing Based on 2-N-Acylamino-4,5,6,7-tetrahydro-benzo[b]thiophene Systems

    Directory of Open Access Journals (Sweden)

    Rafat Milad Mohareb

    2011-07-01

    Full Text Available A series of novel polyfunctionalized acyclic and heterocyclic dye precursors and their respective azo (hydrazone counterpart dyes and dye precursors based on conjugate enaminones and/or enaminonitrile moieties were synthesized. The dyes and their precursors are based on 2-cyano-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl-acetamide, 2-ethoxycarbonyl-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl-acetamide or 2-phenylcarbamoyl-N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl-acetamide systems as precursors. The latter compounds were used to synthesize polyfunctional thiophene-, thiazole-, pyrazole, pyridine-, pyrimidine-, oxazine-, as well as acyclic moieties. The dyes and dye precursors were characterized by elemental analysis and spectral methods. All dyes and their precursors were screened in vitro and evaluated for both their antibacterial and antifungal activities. MIC data of the novel dye systems and their respective precursors showed significant antimicrobial activity against most tested organisms. Some compounds exhibited comparable or even higher efficiency than selected standards. Dyes were applied at 5% depth for disperse dyeing of nylon, acetate and polyester fabrics. Their spectral characteristics and fastness properties were measured and evaluated.

  16. Si Functionalization With Dye Molecular as Light-Harvesting Material

    International Nuclear Information System (INIS)

    Nurul Aqidah Mohd Sinin; Mohd Adib Ibrahim; Mohd Asri Mat Teridi; Norasikin Ahmad Ludin; Suhaila Sepeai; Kamaruzzaman Sopian

    2015-01-01

    The surface plays an important role in thin silicon solar cells, especially with regard to the surface state and interface electronic properties that influence the electron and hole to recombine. In order to keep the recombination loss at a tolerable minimum and avoid an unacceptably large efficiency loss when moving towards thinner silicon materials, the surface must be electronically well passivated. Passivation is the most significant step for the functionalization of silicon. In this study, Si functionalization with a dye molecule might increase the absorption of light that acts as light-harvesting material on the silicon surface. Two types of dye molecular were used; DiL (λ_p_e_a_k = 549 nm) and DiO (λ_p_e_a_k = 484 nm). Both dyes were deposited using a spin-coating technique. These dye layers on the silicon surface were characterized using a Kelvin probe (KP) and photoluminescence (PL) spectroscopy. A different mechanism of slow charge trapping and detrapping was observed using KP measurement. A lifetime decay was observed that indicated a slow process of charge detrapping, owing to light trapping inside the dye/ SiNW interface, with a slow process for an equilibrium to establish between the surface states and the space charge region. An average lifetime of the entire fluorescence decay process was recorded at about 1.24 ns (DiO) and 0.22 ns (DiL), using PL spectroscopy. We show conclusively that these two types of dye can be used as light absorbers, in order to improve the surface properties of the silicon. (author)

  17. Interaction of anthraquinone dyes with lysozyme: Evidences from spectroscopic and docking studies

    International Nuclear Information System (INIS)

    Paramaguru, G.; Kathiravan, A.; Selvaraj, S.; Venuvanalingam, P.; Renganathan, R.

    2010-01-01

    The interaction between lysozyme and anthraquinone dyes such as Alizarin Red S, Acid blue 129 and Uniblue was studied using steady state, time resolved fluorescence measurements and docking studies. Addition of anthraquinone dyes effectively quenched the intrinsic fluorescence of lysozyme. Fluorescence quenching of lysozyme by dyes has revealed the formation of complex. The number of binding sites (n) and binding constant (K) for all the three dyes was calculated by relevant fluorescence quenching data. Based on Foerster's non-radiative energy transfer theory, distance (r 0 ) between the donor (lysozyme) and acceptor (dyes) as well as the critical energy transfer distance (R 0 ) has also been calculated. The interaction between dyes and lysozyme occurs through static quenching mechanism as confirmed by time resolved spectroscopy. The conformational change of lysozyme has been analyzed using synchronous fluorescence measurement. Finally, docking studies revealed that specific interactions were observed with the residue of Trp 62.

  18. Assessing Urinary Tract Junction Obstruction Defects by Methylene Blue Dye Injection.

    Science.gov (United States)

    Yun, Kangsun

    2017-10-12

    Urinary tract junction obstruction defects are congenital anomalies inducing hydronephrosis and hydroureter. Murine urinary tract junction obstruction defects can be assessed by tracking methylene blue dye flow within the urinary system. Methylene blue dye is injected into the renal pelvis of perinatal embryonic kidneys and dye flow is monitored from the renal pelvis of the kidney through the ureter and into the bladder lumen after applying hydrostatic pressure. Dye accumulation will be evident in the bladder lumen of the normal perinatal urinary tract, but will be constrained between the renal pelvis and the end point of an abnormal ureter, if urinary tract obstructions occur. This method facilitates the confirmation of urinary tract junction obstructions and visualization of hydronephrosis and hydroureter. This manuscript describes a protocol for methylene blue dye injection into the renal pelvis to confirm urinary tract junction obstructions.

  19. Development of high-power laser technology. Fabrication of a dye cell of the high power dye laser and development of the measurement technology of the fluid velocities in a dye cell

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jae Heung; Chang, Soo; Lim, Kwon; Kim, Jee Teak; Choi, Wan Hae [Hannam University, Taejon (Korea, Republic of)

    1995-08-01

    The computer simulation code for the simulation of the steady-state flow in a dye cell is developed by using the finite element method. The situation of the fluid flow is measured by the diode laser LDV system and compared with results of the computer simulation. The small size Fiber-Optic LDV with a directional coupler is designed and fabricated for the real time measurement of fluid velocities in a dye cell. (author). 13 refs.

  20. Color pollution control in textile dyeing industry effluents using tannery sludge

    Directory of Open Access Journals (Sweden)

    Sajjala Sreedhar Reddy

    2008-12-01

    Full Text Available Effective treatment of dyestuff containing textile dyeing industry effluents require advanced treatment technologies such as adsorption for the removal of dyestuffs. Powdered commercial coal based activated carbon has been the most widely used adsorbent for the removal of dyestuffs from dyeing industry effluents. As an alternative to commercial coal based activated carbon, activated carbon prepared from dried tannery sludge was used as an adsorbent for dyestuff removal from simulated textile dying industry effluent in this study. The color removal performance of tannery sludge derived activated carbon and commercial coal based activated carbon has been investigated using parameters such as adsorbent dosage, initial dye concentration, pH and temperature. It was found that tannery sludge derived activated carbon exhibits dye removal efficiency that is about 80–90 % of that observed with commercial coal based activated carbon. The amount of dye adsorbed on to tannery sludge derived activated carbon is lower compared with commercial activated carbon at equilibrium and dye adsorption capacity increased with increase of initial dye concentration and temperature, and deceasing pH. It was found that the Langmuir isotherm appears to fit the isotherm data better than the Freundlich isotherm. The leachate of heavy metals from tannery sludge derived activated carbon to the environment is very low, which are within the standard limit of industrial effluent and leachable substances.

  1. optimization of crystal violet dye removal from aqueous solution

    African Journals Online (AJOL)

    maje malamiyo

    -Journal of Chemistry, 6(4):1109-1116. Malik P.K. (2003): Use of activated carbons prepared from sawdust and rice-husk for Adsorption of acid dyes: a case study of acid yellow 36,. Dyes Pigments 56:239-249. Malik, R., Ramteke, D.S., and ...

  2. Analytical procedures for the determination of disperse azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Betowski, L.D.; Jones, T.L. (Environmental Protection Agency, Las Vegas, NV (USA)); Munslow, W.; Nunn, N.J. (Lockheed Engineering and Management Services Co., Las Vegas, NV (USA))

    1988-09-01

    Disperse Blue 79 is the most widely-used azo dye in the US. Its economic importance for the dye industry and textile industry is very great. Because of its use and potential for degradation to aromatic amines, this compound has been chosen for testing by the Interagency Testing Committee. The authors laboratory has been developing methods for the analytical determination of Disperse Blue 79 and any possible degradation products in wastewater. This work has been taking place in conjunction with the study of the fate of azo dyes in the wastewater treatment processes by the Water Engineering Research Laboratory of the US EPA in Cincinnati. There were various phases for this analytical development. The first step involved purifying the commercial material or presscake to obtain a standard for quantitative determination. A combination of HPLC, TLC and mass spectrometric methods was used to determine purity after extraction and column cleanup. Phase two involved the extraction of the dye from the matrices involved. The third phase was the actual testing of Disperse Blue 79 in the waste activated sludge system and anaerobic digester. Recovery of the dye and any degradation products at each sampling point (e.g., secondary effluent, waste activated sludge) was the goal of this phase.

  3. Natural dyeing and UV protection of plasma treated cotton

    Science.gov (United States)

    Gorjanc, Marija; Mozetič, Miran; Vesel, Alenka; Zaplotnik, Rok

    2018-03-01

    Raw cotton fabrics have been exposed to low-pressure non-equilibrium gaseous plasma to improve the adsorption of natural dyes as well as ultraviolet (UV) protection factor. Plasma created in a glass tube by an electrodeless radiofrequency (RF) discharge was created either in oxygen or ammonia at the pressure of 50 Pa to stimulate formation of oxygen and nitrogen groups, respectively. The type and concentration of functional groups was determined by X-ray photoelectron spectroscopy (XPS) and morphological modifications by scanning electron microscopy (SEM). The colour yield for curcumin dye was improved significantly for samples treated with ammonia plasma what was explained by bonding of the dye to surface of amino groups. Contrary, the yield decreased when oxygen plasma treatment was applied due to the negatively charged surface that repels the negatively charged dye molecules. The effect was even more pronounced when using green tea extract as the colouring agent. The colour difference between the untreated and ammonia plasma treated sample increased linearly with plasma treatment time reaching the factor of 3.5 for treatment time of 300 s. The ultraviolet protection factor (UPF) was over 50 indicating excellent protection due to improved adsorption of the dye on the ammonia plasma treated samples.

  4. Stability of the elderberry dye in vodkas

    International Nuclear Information System (INIS)

    Pizlo, A.; Jankowska, D.

    2001-01-01

    The effect of light, pH, strength of vodkas and by-products on Sambucus nigra pigments stability was tested in this paper. The elderberry dye was unstable in vodkas during light action in general. It was stated that low strength of vodkas and high pH effected an increase of the vodkas colour stability. The presence of vitamin C caused discolouring effect on elderberry dye but chockeberry distillate effected an increase of the vodkas colour stability

  5. A survey of extraction solvents in the forensic analysis of textile dyes.

    Science.gov (United States)

    Groves, Ethan; Palenik, Christopher S; Palenik, Skip

    2016-11-01

    The characterization and identification of dyes in fibers can be used to provide investigative leads and strengthen associations between known and questioned items of evidence. The isolation of a dye from its matrix (e.g., a textile fiber) permits detailed characterization, comparison and, in some cases, identification using methods such as thin layer chromatography in conjunction with infrared and Raman spectroscopy. A survey of dye extraction publications reveals that pyridine:water (4:3) is among the most commonly cited extraction solvent across a range of fiber and dye chemistries. Here, the efficacy of this solvent system has been evaluated for the extraction of dyes from 172 commercially prevalent North American textile dyes. The evaluated population represents seven dye application classes, 18 chemical classes, and spans nine types of commercial textile fibers. The results of this survey indicate that ∼82% of the dyestuffs studied are extractable using this solvent system. The results presented here summarize the extraction efficacy by class and fiber type and illustrate that this solvent system is applicable to a wider variety of classes and fibers than previously indicated in the literature. While there is no universal solvent for fiber extraction, these results demonstrate that pyridine:water represents an excellent first step for extracting unknown dyes from questioned fibers in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. The destructive degradation of some organic textile dye compounds using gamma ray irradiation

    International Nuclear Information System (INIS)

    Abdel-Gawad Emara, A.S.; Abdel-Fattah, A.A.; Ebraheem, S.E.; Ali, Z.I.; Gad, H.

    2001-01-01

    The destructive degradation of 8 coloured reactive and direct dye compounds currently used in the textile industry has been investigated. These dyes are: Levafix Blue ERA (LB), Levafix Brilliant Red E4BA (LBR), Levafix Brilliant Yellow EGA (LBY), Drimarene Scarlet F3G (DS), Drimarene Brilliant Green X3G (DBG), Fast Yellow RL (FY), Fast Violet 2RL (FV) and Fast Orange 3R (FO). The process of degradation of the respective dye has been followed spectrophotometrically at the characteristic lmax. The variation of the colour intensity of aerated aqueous solution of the investigated dyes has been measured as a function of gamma irradiation dose. In all cases, the amplitude of the absorption bands of the dye compound was found to decrease with the increase of the gamma dose. Irradiation was carried out for actual waste and distilled water. By comparing the heights of the absorption maxima in both the visible and ultraviolet ranges, it was found that complete decolouration is attained at lower doses than that needed for the process of degradation of the dye. The kinetics of the degradation process has been traced and the kinetic constant, k 1 , was calculated and found to be concentration dependent indicating a first order reaction in all cases. The radiation-chemical yield (G-value) as a measure of the efficiency of gamma ray to degrade the respective dye was calculated for all dye compounds and it was found that the G-value in all cases increases exponentially for low radiation doses and changes linearly for high radiation doses. Also the K* value (the efficiency coefficient of dye radiolysis) was calculated and compared for the different dye compounds e.g. for FO, FY and FV dyes, the K* values were found to range from 5.5x10 9 to 1.92x10 -7 mol·L -1 '·cm -1 . In addition to the study of a single dye compound in solution, mixtures of different dyes (3 dyes) were also subjected to g-ray irradiation simulating more closely actual waste effluents. Also the effect of some

  7. Azoreductase and dye detoxification activities of Bacillus velezensis strain AB.

    Science.gov (United States)

    Bafana, Amit; Chakrabarti, Tapan; Devi, Sivanesan Saravana

    2008-01-01

    Azo dyes are known to be a very important and widely used class of toxic and carcinogenic compounds. Although lot of research has been carried out for their removal from industrial effluents, very little attention is given to changes in their toxicity and mutagenicity during the treatment processes. Present investigation describes isolation of a Bacillus velezensis culture capable of degrading azo dye Direct Red 28 (DR28). Azoreductase enzyme was isolated from it, and its molecular weight was found to be 60 kDa. The enzyme required NADH as cofactor and was oxygen-insensitive. Toxicity and mutagenicity of the dye during biodegradation was monitored by using a battery of carefully selected in vitro tests. The culture was found to degrade DR28 to benzidine and 4-aminobiphenyl, both of which are potent mutagens. However, on longer incubation, both the compounds were degraded further, resulting in reduction in toxicity and mutagenicity of the dye. Thus, the culture seems to be a suitable candidate for further study for both decolourization and detoxification of azo dyes, resulting in their safe disposal.

  8. An eco-friendly approach for sodium chloride free cotton dyeing

    International Nuclear Information System (INIS)

    Umer, T.

    2014-01-01

    Present study was conducted with an aim to develop an environmental friendly method of dyeing cotton as an alternative to standard reactive dyeing process that requires high level of salt. When dyeing was carried out in the absence of sodium chloride (NaCl), an extremely lighter depth of shade was experienced, and hence this particular research was focused on the reduction of the total colour difference (AE) to a minimum level. Instead of adding any other chemical or any additional process like cationization, salt-free reactive dyeing was carried out by varying three common process parameters (dyes, alkali, and process time) to achieve required depth of shade. The results obtained were compared with those of conventionally dyed fabrics in terms of depth of shade (AL), total colour difference (AE), washing fastness, and rubbing fastness. The results were found to be promising and comparable to those dyed with using NaCl. Moreover, the investigated method showed a significant reduction of Total Dissolved Solids (TDS) and Electrical Conductivity (EC) in the wastewater, and thus proved to be an environment friendly process. (author)

  9. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    Science.gov (United States)

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  10. Enriching PMMA nanospheres with adjustable charges as novel templates for multicolored dye-PMMA nanocomposites

    International Nuclear Information System (INIS)

    Wang Xumei; Xu Shuping; Xu Weiqing; Liang Chongyang; Li Hongrui; Sun Fei

    2011-01-01

    Multicolored fluorescent dye loaded PMMA nanospheres were synthesized by the electrostatic adsorption of dye molecules on the charged PMMA nanospheres, whose charges were adjusted by choosing different initiators. The charged PMMA nanospheres have a wider capacity and advantage for combining the charged dyes. The fluorescent dye-PMMA composite nanospheres possess the advantages of higher brightness, longer lifetime and stronger resistance to photobleaching relative to dye molecules. Dye leakage remained lower than 5% over one week. These fluorescent nanospheres have been used in biological labels in cell imaging. They can easily stain blood cancer cells without further surface modification.

  11. Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum

    Science.gov (United States)

    Pratiwi, Diah; Indrianingsih, A. W.; Darsih, Cici; Hernawan

    2017-12-01

    Batik is product of traditional Indonesia culture that developed into a large textile industry. Synthetic dyes which widely used in textile industries including batik. Colour can be removed from wastewater effluent by chemical, physical, and biology methods. Bioremediation is one of the methods that used for processing colored effluent. Isolated White-rot fungi Ganoderma lucidum was used for bioremediation process for batik effluent. G. lucidum was developed by G. lucidum cultivation on centers of mushroom farmer Media Agro Merapi Kaliurang, Yogyakarta. The batik effluent was collected from a private small and medium Batik enterprises located at Petir, Rongkop, Gunungkidul Regency. The aim of the study were to optimize decolorization of Naphtol Black (NB) using G. lucidum. The effect of process parameters like incubation time and dye concentration on dye decolorization and COD degradation was studied. G. lucidum were growth at pH 5-6 and temperature 25°C at various Naphtol Black dye with concentration 20 ppm, 50 ppm, and 100 ppm for 30 day incubation time. The result from this study increased decolorization in line with the increasing of COD degradation. Increasing percentage of decolorization and COD degradation gradually increased with incubation time and dye concentration. The maximum decolorization and COD reduction were found to be 60,53% and 81,03%. G. lucidum had potential to decolorized and degraded COD for NB dye effluent on higher concentration.

  12. Application of four dyes in gene expression analyses by microarrays

    Directory of Open Access Journals (Sweden)

    van Schooten Frederik J

    2005-07-01

    Full Text Available Abstract Background DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. Results Following tests for cross-talk of fluorescence signals, Alexa 488, Alexa 594, Cyanine 3 and Cyanine 5 were selected for hybridizations. For self-hybridizations, a single RNA sample was labelled with all dyes and hybridized on commercial cDNA arrays or on in-house spotted oligonucleotide arrays. Correlation coefficients for all combinations of dyes were above 0.9 on the cDNA array. On the oligonucleotide array they were above 0.8, except combinations with Alexa 488, which were approximately 0.5. Standard deviation of expression differences for replicate spots were similar on the cDNA array for all dye combinations, but on the oligonucleotide array combinations with Alexa 488 showed a higher variation. Conclusion In conclusion, the four dyes can be used simultaneously for gene expression experiments on the tested cDNA array, but only three dyes can be used on the tested oligonucleotide array. This was confirmed by hybridizations of control with test samples, as all combinations returned similar numbers of differentially expressed genes with comparable effects on gene expression.

  13. Structure and linear spectroscopic properties of near IR polymethine dyes

    International Nuclear Information System (INIS)

    Webster, Scott; Padilha, Lazaro A.; Hu Honghua; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Davydenko, Iryna G.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2008-01-01

    We performed a detailed experimental investigation and quantum-chemical analysis of a new series of near IR polymethine dyes with 5-butyl-7,8-dihydrobenzo[cd]furo[2,3-f]indolium terminal groups. We also synthesized and studied two neutral dyes, squaraine and tetraone, with the same terminal groups and performed a comparison of the spectroscopic properties of this set of 'near IR' dyes (polymethine, squaraine, and tetraone) with an analogous set of 'visible' dyes with simpler benzo[e]indolium terminal groups. From these measurements, we find that the dyes with dihydrobenzo[cd]furo[2,3-f]indolium terminal groups are characterized by a remarkably large shift ∼300 nm (∼200 nm for tetraone) of their absorption bands towards the red region. We discuss the difference in electronic structure for these molecules and show that the 'near IR' dyes are characterized by an additional weak fluorescence band from the higher lying excited states connected with the terminal groups. Absorption spectra for the longest polymethines are solvent-dependent and are characterized by a broadening of the main band in polar solvents, which is explained by ground state symmetry breaking and reduced charge delocalization within the polymethine chromophore. The results of these experiments combined with the agreement of quantum chemical calculations moves us closer to a predictive capability for structure-property relations in cyanine-like molecules

  14. Patterned dye structures limit reabsorption in luminescent solar concentrators

    NARCIS (Netherlands)

    Tsoi, S.; Broer, D.J.; Bastiaansen, C.W.M.; Debije, M.G.

    2010-01-01

    This work describes a method for limiting internal losses of a luminescent solar concentrator (LSC) due to reabsorption through patterning the fluorescent dye doped coating of the LSC. By engineering the dye coating into regular line patterns with fill factors ranging from 20 - 80%, the surface

  15. Determination of 8 Synthetic Food Dyes by Solid Phase Extraction ...

    African Journals Online (AJOL)

    Keywords: Synthetic colors, Food, Fruit flavored drinks, Solid phase extraction, RP-HPLC. Tropical Journal of ..... food dyes by thin-layer chromatography-fast atom bombardment ... food dyes in soft drinks containing natural pigments by.

  16. Analysis of Dyes Extracted from Millimeter-Size Nylon Fibers by Micellar Electrokinetic Chromatography

    International Nuclear Information System (INIS)

    Lewis, L.A.

    2001-01-01

    The Learning Objective is to present to the forensic community a potential qualitative/quantitative method for trace-fiber color comparisons using micellar electrokinetic chromatography (MEKC). Developing a means of analyzing extracted dye constituents from millimeter-size nylon fiber samples was the objective of this research initiative. Aside from ascertaining fiber type, color evaluation and source comparison of trace-fiber evidence plays a critical role in forensic-fiber examinations. Literally thousands of dyes exist to date, including both natural and synthetic compounds. Typically a three-color-dye combination is employed to affect a given color on fiber material. The result of this practice leads to a significant number of potential dye combinations capable of producing a similar color and shade. Since a typical forensic fiber sample is 2 mm or less in length, an ideal forensic dye analysis would qualitatively and quantitatively identify the extracted dye constituents from a sample size of 1 mm or smaller. The goal of this research was to develop an analytical method for comparing individual dye constituents from trace-fiber evidence with dyes extracted from a suspected source, while preserving as much of the original evidence as possible

  17. The removal of reactive dyes using high-ash char

    Directory of Open Access Journals (Sweden)

    Moreira R.F.P.M.

    2001-01-01

    Full Text Available The thermodynamics and kinetics of adsorption of reactive dyes on high-ash char was studied. Equilibrium data were obtained using the static method with controlled agitation at temperatures in the range of 30 to 60ºC. The Langmuir isotherm model was used to describe the equilibrium of adsorption, and the equilibrium parameters, R L, in the range of 0 to 1 indicate favorable adsorption. The amount of dye adsorbed increased as temperature increased from 30 to 40ºC, but above 40ºC the increase in temperature resulted in a decrease in the amount of dye adsorbed. The kinetic data presented are for controlled agitation at 50 rpm and constant temperature with dye concentrations in the range of 10 ppm to50 ppm. The film mass transfer coefficient, Kf, and the effective diffusivity inside the particle, De, were fitted to the experimental data. The results indicate that internal diffusion governs the adsorption rate.

  18. Study of Modern Nano Enhanced Techniques for Removal of Dyes and Metals

    Directory of Open Access Journals (Sweden)

    Samavia Batool

    2014-01-01

    Full Text Available Industrial effluent often contains the significant amount of hexavalent chromium and synthetic dyes. The discharge of wastewater without proper treatment into water streams consequently enters the soil and disturbs the aquatic and terrestrial life. A range of wastewater treatment technologies have been proposed which can efficiently reduce both Cr(VI and azo dyes simultaneously to less toxic form such as biodegradation, biosorption, adsorption, bioaccumulation, and nanotechnology. Rate of simultaneous reduction of Cr(VI and azo dyes can be enhanced by combining different treatment techniques. Utilization of synergistic treatment is receiving much attention due to its enhanced efficiency to remove Cr(VI and azo dye simultaneously. This review evaluates the removal methods for simultaneous removal of Cr(VI and azo dyes by nanomicrobiology, surface engineered nanoparticles, and nanophotocatalyst. Sorption mechanism of biochar for heavy metals and organic contaminants is also discussed. Potential microbial strains capable of simultaneous removal of Cr(VI and azo dyes have been summarized in some details as well.

  19. Interaction of anthraquinone dyes with lysozyme: Evidences from spectroscopic and docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Paramaguru, G.; Kathiravan, A.; Selvaraj, S.; Venuvanalingam, P. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Renganathan, R., E-mail: rrengas@gmail.com [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2010-03-15

    The interaction between lysozyme and anthraquinone dyes such as Alizarin Red S, Acid blue 129 and Uniblue was studied using steady state, time resolved fluorescence measurements and docking studies. Addition of anthraquinone dyes effectively quenched the intrinsic fluorescence of lysozyme. Fluorescence quenching of lysozyme by dyes has revealed the formation of complex. The number of binding sites (n) and binding constant (K) for all the three dyes was calculated by relevant fluorescence quenching data. Based on Foerster's non-radiative energy transfer theory, distance (r{sub 0}) between the donor (lysozyme) and acceptor (dyes) as well as the critical energy transfer distance (R{sub 0}) has also been calculated. The interaction between dyes and lysozyme occurs through static quenching mechanism as confirmed by time resolved spectroscopy. The conformational change of lysozyme has been analyzed using synchronous fluorescence measurement. Finally, docking studies revealed that specific interactions were observed with the residue of Trp 62.

  20. Removal of dissolved textile dyes from wastewater by a compost sorbent

    Science.gov (United States)

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  1. A Generalized Approach to Forensic Dye Identification: Development and Utility of Reference Libraries.

    Science.gov (United States)

    Groves, Ethan; Palenik, Skip; Palenik, Christopher S

    2018-04-18

    While color is arguably the most important optical property of evidential fibers, the actual dyestuffs responsible for its expression in them are, in forensic trace evidence examinations, rarely analyzed and still less often identified. This is due, primarily, to the exceedingly small quantities of dye present in a single fiber as well as to the fact that dye identification is a challenging analytical problem, even when large quantities are available for analysis. Among the practical reasons for this are the wide range of dyestuffs available (and the even larger number of trade names), the low total concentration of dyes in the finished product, the limited amount of sample typically available for analysis in forensic cases, and the complexity of the dye mixtures that may exist within a single fiber. Literature on the topic of dye analysis is often limited to a specific method, subset of dyestuffs, or an approach that is not applicable given the constraints of a forensic analysis. Here, we present a generalized approach to dye identification that ( 1 ) combines several robust analytical methods, ( 2 ) is broadly applicable to a wide range of dye chemistries, application classes, and fiber types, and ( 3 ) can be scaled down to forensic casework-sized samples. The approach is based on the development of a reference collection of 300 commercially relevant textile dyes that have been characterized by a variety of microanalytical methods (HPTLC, Raman microspectroscopy, infrared microspectroscopy, UV-Vis spectroscopy, and visible microspectrophotometry). Although there is no single approach that is applicable to all dyes on every type of fiber, a combination of these analytical methods has been applied using a reproducible approach that permits the use of reference libraries to constrain the identity of and, in many cases, identify the dye (or dyes) present in a textile fiber sample.

  2. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons.

    Science.gov (United States)

    Kennedy, Tyler; Broadie, Kendal

    2017-10-11

    Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function. SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural

  3. Amazonian açai and food dyes for staining arbuscular- micorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Aline Lourdes Martins Silva

    2015-12-01

    Full Text Available Arbuscular mycorrhizae microscopy requires differential staining of typical structures. Dyes employed, such as trypan blue, pose risks to health and environment. Alternative dyes such as pen ink and aniline have variable coloring efficiency. In this work, Brachiaria decumbens roots, discolored with caustic soda (NaOH, were stained with açai, annatto, saffron, trypan blue and pen inks. There were significant differences among dyes regarding stained mycorrhizal structures and pictures quality. Acai was considered the best alternative dye, with similar results to trypan blue.

  4. Decolorization of six synthetic dyes by fungi

    OpenAIRE

    Hartikainen, E. Samuel; Miettinen, Otto; Hatakka, Annele; Kähkönen, Mika A.

    2016-01-01

    To find out ability of fourteen basidiomycetes and four ascomycetes strains to grow in the presence of synthetic colour dyes and to degrade them, fungi were cultivated on the malt agar plates containing 0.5 g kg-1 dye, either Remazol Brilliant Blue R, Remazol Brilliant Yellow GL, Remazol Brilliant Orange 3 R, Reactive Blue 4, Remazol Brilliant Red F3B or Reactive Black 5. Fungi representing basidiomycetes were Phlebia radiata (FBCC 43), Tremella encephala (FBCC 1145), Dichomitus squalens (FBC...

  5. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    KAUST Repository

    Kalathil, Shafeer; Chaudhuri, Rajib Ghosh

    2016-01-01

    Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs) in the presence of solid and hollow palladium (Pd) nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  6. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    KAUST Repository

    Kalathil, Shafeer

    2016-08-04

    Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs) in the presence of solid and hollow palladium (Pd) nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  7. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    Directory of Open Access Journals (Sweden)

    Shafeer Kalathil

    2016-08-01

    Full Text Available Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs in the presence of solid and hollow palladium (Pd nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation.

  8. Study of the Direct Red 81 Dye/Copper(II-Phenanthroline System

    Directory of Open Access Journals (Sweden)

    Elsa Walger

    2018-01-01

    Full Text Available Recovered papers contain several chromophores, such as wood lignin and dyes. These have to be eliminated during paper recycling in order to produce white paper. Hydrogen peroxide under alkaline conditions is generally used to decolorize lignin, but its effect on dyes is limited. Copper(II-phenanthroline (Cu-Phen complexes can activate the oxidation of lignin by hydrogen peroxide. Hydrogen peroxide may also be activated during recycled fiber bleaching, thus enhancing its color-stripping efficiency towards unoxidizable azo dyes. The purpose of this paper was to determine the effect of Cu-Phen complexes on a model azo dye, Direct Red 81 (DR81, in aqueous solution. Different Cu-Phen solutions (with different initial Cu:Phen molar ratios were prepared and mixed with the dye at different pHs. The geochemical computer program PHREEQC allowed precise calculation of the theoretical distribution between different possible coordinates (CuPhenOH+, Cu(Phen22+, CuPhen(OH2, Cu(Phen32+, etc. depending on pH and initial concentrations. UV-vis spectroscopic measurements were correlated with the major species theoretically present in each condition. The UV absorbance of the system was mainly attributed to the Cu-Phen complex and the visible absorbance was only due to the dye. Cu-Phen appeared to reduce the color intensity of the DR81 dye aqueous solution under specific conditions (more effective at pH 10.7 with Cu:Phen = 1:1, probably owing to the occurrence of a coordination phenomenon between DR81 and Cu-Phen. Hence, the ligand competition between phenanthroline and hydroxide ions would be disturbed by a third competitor, which is the dye molecule. Further investigation proved that the DR81 dye is able to form a complex with copper-phenanthroline, leading to partial color-stripping. This new “color-stripping effect” may be a new opportunity in paper and textile industries for wastewater treatment.

  9. Assessment of dye distribution in sensitized solar cells by microprobe techniques

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, M.A., E-mail: alexandra.barreiros@lneg.pt [Laboratório Nacional de Energia e Geologia, LEN/UES, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa (Portugal); Corregidor, V. [IPFN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); Alves, L.C. [C2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); Guimarães, F. [Laboratório Nacional de Energia e Geologia, LGM/UCTM, Rua da Amieira, Apartado 1089, 4466-901 S. Mamede de Infesta (Portugal); Mascarenhas, J.; Torres, E.; Brites, M.J. [Laboratório Nacional de Energia e Geologia, LEN/UES, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2015-04-01

    Dye sensitized solar cells (DSCs) have received considerable attention once this technology offers economic and environmental advantages over conventional photovoltaic (PV) devices. The PV performance of a DSC relies on the characteristics of its photoanode, which typically consists of a nanocrystalline porous TiO{sub 2} film, enabled with a large adsorptive surface area. Dye molecules that capture photons from light during device operation are attached to the film nanoparticles. The effective loading of the dye in the TiO{sub 2} electrode is of paramount relevance for controlling and optimizing solar cell parameters. Relatively few methods are known today for quantitative evaluation of the total dye adsorbed on the film. In this context, microprobe techniques come out as suitable tools to evaluate the dye surface distribution and depth profile in sensitized films. Electron Probe Microanalysis (EPMA) and Ion Beam Analytical (IBA) techniques using a micro-ion beam were used to quantify and to study the distribution of the Ru organometallic dye in TiO{sub 2} films, making use of the different penetration depth and beam sizes of each technique. Different 1D nanostructured TiO{sub 2} films were prepared, morphologically characterized by SEM, sensitized and analyzed by the referred techniques. Dye load evaluation in different TiO{sub 2} films by three different techniques (PIXE, RBS and EPMA/WDS) provided similar results of Ru/Ti mass fraction ratio. Moreover, it was possible to assess dye surface distribution and its depth profile, by means of Ru signal, and to visualize the dye distribution in sample cross-section through X-ray mapping by EPMA/EDS. PIXE maps of Ru and Ti indicated an homogeneous surface distribution. The assessment of Ru depth profile by RBS showed that some films have homogeneous Ru depth distribution while others present different Ru concentration in the top layer (2 μm thickness). These results are consistent with the EPMA/EDS maps obtained.

  10. An investigation to adopt zero liquid discharge in textile dyeing using advanced oxidation processes

    International Nuclear Information System (INIS)

    Ahmd, F.

    2015-01-01

    In this study, a novel idea of using ozone oxidation at the end of reactive dyeing process was explored in order to achieve zero discharge dyeing. An advanced oxidative treatment was given during the dyeing process to remove unfixed and hydrolyzed reactive dyes from cotton substrate. Three different shades were dyed using vinylsulphone reactive class of dyes. At the end of fixation step, washing of fabrics was carried out using appropriate quantities of ozone in the process. Ozone oxidation continued until the liquor was decolorized around 95-100% and COD (Chemical Oxygen Demand) was reduced about 80-90%, thus achieving zero liquid discharge dyeing process. The decolouration efficiency of wastewater was regarded as an indicative of removal of dyes from the textile materials because fabric was being washed continuously in the same liquor. Fabric samples dyed with conventional and new methods were compared in terms of change in shade, colourfastness properties, colour stripping, and fabric appearance. Overall results showed that the use of ozone during reactive dyeing can result in less water consumption, reduced process time, and zero discharge of coloured effluents from textile dyeing factories. (author)

  11. Hair Dyes and Cancer Risk

    Science.gov (United States)

    ... http://www.fda.gov/aboutfda/centersoffices/officeoffoods/cfsan/default.htm . Selected References Huncharek M, Kupelnick B. Personal use of hair dyes and the risk of bladder cancer: results of a meta-analysis. ...

  12. Study of decolorisation of binary dye mixture by response surface methodology.

    Science.gov (United States)

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Electronic structure of the indium tin oxide/nanocrystalline anatase (TiO2)/ruthenium-dye interfaces in dye-sensitized solar cells

    Science.gov (United States)

    Lyon, J. E.; Rayan, M. K.; Beerbom, M. M.; Schlaf, R.

    2008-10-01

    The electronic structure of two interfaces commonly found in dye-sensitized photovoltaic cells based on nanocrystalline anatase TiO2 ("Grätzel cells") was investigated using photoemission spectroscopy (PES). X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS) measurements were carried out on the indium tin oxide (ITO)/TiO2 and the TiO2/cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye ("N719" or "Ruthenium 535-bisTBA") interfaces. Both contacts were investigated using a multistep deposition procedure where the entire structure was prepared in vacuum using electrospray deposition. In between deposition steps the surface was characterized with XPS and UPS resulting in a series of spectra, allowing the determination of the orbital and band lineup at the interfaces. The results of these efforts confirm previous PES measurements on TiO2/dye contacts prepared under ambient conditions, suggesting that ambient contamination might not have significant influence on the electronic structure at the dye/TiO2 interface. The results also demonstrate that there may be a significant barrier for electron injection at the sputtered ITO/TiO2 interface and that this interface should be viewed as a semiconductor heterojunction rather than as metal-semiconductor (Schottky) contact.

  14. Removal of reactive dyes from wastewater by shale

    Directory of Open Access Journals (Sweden)

    Jareeya Yimrattanabovorn

    2012-02-01

    Full Text Available Colored textile effluents represent severe environmental problems as they contain mixture of chemicals, auxiliariesand dyestuffs of different classes and chemical constitutions. Elimination of dyes in the textile wastewater by conventionalwastewater treatment methods is very difficult. At present, there is a growing interest in using inexpensive and potentialmaterials for the adsorption of reactive dyes. Shale has been reported to be a potential media to remove color from wastewaterbecause of its chemical characteristics. In this study, shale was used as an adsorbent. The chosen shale had particlesizes of : A (1.00 < A < 2.00 mm, B (0.50 < B < 1.00 mm, C (0.25 < C < 0.50 mm, D (0.18 < D < 0.25 mm and E (0.15 < E < 0.18mm. Remazol Deep Red RGB (Red, Remazol Brilliant Blue RN gran (Blue and Remazol Yellow 3RS 133% gran (Yellow wereused as adsorbates. Batch adsorption experiments were performed to investigate the effect of contact time, pH, temperatureand initial dye concentration. It was found that the equilibrium data were best described by the Langmuir isotherm model,with the maximum monolayer adsorption capacities of 0.0110-0.0322 mg/g for Red, 0.4479-1.1409 mg/g for Blue and 0.0133-0.0255 mg/g for Yellow, respectively. The maximum adsorption capacity of reactive dye by shale occurred at an initial pH of 2,initial concentration of 700 Pt-Co and temperature 45°C. Reactive dye adsorption capacities increased with an increase of theinitial dye concentration and temperature whereas with a decrease of pH. The fixed bed column experiments were appliedwith actual textile wastewater for estimation of life span. The results showed that COD and color removal efficiencies of shalefix bed column were 97% and 90%, respectively. Also the shale fixed bed columns were suitable for using with textile effluentfrom activated sludge system because of their COD and color removal efficiencies and life expectancy comparison using withdyebath wastewater and raw

  15. Z-scan and optical limiting properties of Hibiscus Sabdariffa dye

    Science.gov (United States)

    Diallo, A.; Zongo, S.; Mthunzi, P.; Rehman, S.; Alqaradawi, S. Y.; Soboyejo, W.; Maaza, M.

    2014-12-01

    The intensity-dependent refractive index n 2 and the nonlinear susceptibility χ (3) of Hibiscus Sabdariffa dye solutions in the nanosecond regime at 532 nm are reported. More presicely, the variation of n 2, β, and real and imaginary parts of χ (3) versus the natural dye extract concentration has been carried out by z-scan and optical limiting techniques. The third-order nonlinearity of the Hibiscus Sabdariffa dye solutions was found to be dominated by nonlinear refraction, which leads to strong optical limiting of laser.

  16. Investigation of rf plasma light sources for dye laser excitation

    International Nuclear Information System (INIS)

    Kendall, J.S.; Jaminet, J.F.

    1975-06-01

    Analytical and experimental studies were performed to assess the applicability of radio frequency (rf) induction heated plasma light sources for potential excitation of continuous dye lasers. Experimental efforts were directed toward development of a continuous light source having spectral flux and emission characteristics approaching that required for pumping organic dye lasers. Analytical studies were performed to investigate (1) methods of pulsing the light source to obtain higher radiant intensity and (2) methods of integrating the source with a reflective cavity for pumping a dye cell. (TFD)

  17. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  18. 21 CFR 864.1850 - Dye and chemical solution stains.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dye and chemical solution stains. 864.1850 Section 864.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical...

  19. Comparative studies on dyeing rate migration and wash fastness ...

    African Journals Online (AJOL)

    Migration and diffusion properties of synthesized azo dyes from 2-aminothiazole derivatives applied on commercial grade undyed cellulose acetate (CA) and cellulose triacetate (CTA) were investigated using dyeing conditions of 2% on weight of fabric (owf), 50:1 liquor ratio and subjected to ISO3 and ISO4 standard wash ...

  20. Analysis of in vivo penetration of textile dyes causing allergic reactions

    International Nuclear Information System (INIS)

    Lademann, J; Patzelt, A; Worm, M; Richter, H; Sterry, W; Meinke, M

    2009-01-01

    Contact allergies to textile dyes are common and can cause severe eczema. In the present study, we investigated the penetration of a fluorescent textile dye, dissolved from a black pullover, into the skin of one volunteer during perspiration and nonperspiration. Previously, wearing this pullover had induced a severe contact dermatitis in an 82-year old woman, who was not aware of her sensitization to textile dyes. The investigations were carried out by in vivo laser scanning microscopy. It could be demonstrated that the dye was eluted from the textile material by sweat. Afterwards, the dye penetrated into the stratum corneum and into the hair follicles. Inside the hair follicles, the fluorescent signal was still detectable after 24 h, whereas it was not verifiable anymore in the stratum corneum, Laser scanning microscopy represents an efficient tool for in vivo investigation of the penetration and storage of topically applied substances and allergens into the human skin and reveals useful hints for the development and optimization of protection strategies

  1. Chitosan pretreatment for cotton dyeing with black tea

    Science.gov (United States)

    Campos, J.; Díaz-García, P.; Montava, I.; Bonet-Aracil, M.; Bou-Belda, E.

    2017-10-01

    Chitosan is used in a wide range of applications due to its intrinsic properties. Chitosan is a biopolymer obtained from chitin and among their most important aspects highlights its bonding with cotton and its antibacterial properties. In this study two different molecular weight chitosan are used in the dyeing process of cotton with black tea to evaluate its influence. In order to evaluate the effect of the pretreatment with chitosan, DSC and reflection spectrophotometer analysis are performed. The curing temperature is evaluated by the DSC analysis of cotton fabric treated with 15 g/L of chitosan, whilst the enhancement of the dyeing is evaluated by the colorimetric coordinates and the K/S value obtained spectrophotometrically. This study shows the extent of improvement of the pretreatment with chitosan in dyeing with natural products as black tea.

  2. Phosphate cellulose with metaphosphoric acid for dye removal

    International Nuclear Information System (INIS)

    Silva, S.C.C.; Silva, F.C.; Lima, L.C.B.; Santos, M.R.M.C.; Osajima, J.A.; Silva Filho, E.C. da

    2014-01-01

    The chemical modification of cellulose is a suitable method used for producing value-added products, making them more efficient and selective for certain applications such as adsorption of dye. Thus the aim of this study was to modify the natural cellulose with metaphosphoric acid, characterized it through the techniques of FTIR and "3"1P NMR and applies it in the adsorption of brilliant green dye, evaluating the kinetic models of pseudo first-order and pseudo second-order and the theoretical models of the Langmuir, Freundlich and Temkin isotherms. The characterizations demonstrated the effectiveness of the modification, the maximum adsorption capacity was 150.0 mg g-1, adjusting better to the kinetic model of pseudo-second order and the theoretical model of Temkin, with the adsorbent showing efficient for removal of brilliant green dye. (author)

  3. Organic dyes removal using magnetically modified rye straw

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva, E-mail: baldie@email.cz [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic)

    2015-04-15

    Rye straw, a very low-cost material, was employed as a biosorbent for two organic water-soluble dyes belonging to different dye classes, namely acridine orange (acridine group) and methyl green (triarylmethane group). The adsorption properties were tested for native and citric acid–NaOH modified rye straw, both in nonmagnetic and magnetic versions. The adsorption equilibrium was reached in 2 h and the adsorption isotherms data were analyzed using the Langmuir model. The highest values of maximum adsorption capacities were 208.3 mg/g for acridine orange and 384.6 mg/g for methyl green. - Highlights: • Rye derivatives can be considered as efficient adsorbents for organic dyes. • Magnetic modification of straw by microwave-synthesized magnetic iron oxides. • Citric acid–NaOH modification increased the maximum adsorption capacities.

  4. Perylene Derivative Dyes Luminescence in Polysiloxane Matrix in Presence of Gold Nanoparticles.

    Science.gov (United States)

    Mantel, Artur; Shautenbaeva, Nazerke; Irgibaeva, Irina; Aldongarov, Anuar; Lang, Albina; Barashkov, Nikolay; Mukatayev, Iskander

    2016-11-01

    Four perylene derivatives, including commercially available dyes Lumogen Red and Lumogen Orange, as well as 1,6,7,12-tetrachlоrоperylene-3,4,9,10-tetradicarboxydianhydride (Dye I) and 3,4:9,10-bis(1,2-benzimidazole)- 1,6,7,12-tetra(4-tert-octylphenoxy) perylene (syn/ anti-isomers) (Dye III, which was prepared from dye I through intermediate 3,4:9,10-bis(1,2-benzimidazole)-1,6,7,12-tetrachloro perylene (Dye II)) were used for preparation of polysiloxane samples (PSi) containing different concentrations of gold nanoparticles (GN). Dyes I and III demonstrate significant fluorescence intensity increase upon addition of GN independent on excitation energy. For Lumogen Red composition in PSi some increase of fluorescence intensity was observed upon addition of small concentrations of GN, while further increase of GN concentration quenches fluorescence. The increase of Lumogen Red emission intensity, which depends on energy of excitation, is probably due to the increase of radiation decay rate since excitation rate decreases. Effect of GN on Lumogen Orange provided quenching of fluorescence even at small concentrations of GN. Calculations at DFT level of approximation for dye III suggest location of GN in plane of perylene core for increase of fluorescence intensity.

  5. Dyes, Fibers, and Paper: A Botany Lab Exercise for Non-Biology Majors

    Science.gov (United States)

    Egan, Todd P.; Meekins, J. Forrest; Maluso, Diane

    2004-01-01

    This laboratory exercise affords students a hands-on experience learning about traditional dyes, fiber strength, and paper making. It is economical, simple to prepare, provides satisfactory results, and is student friendly. Dyes were extracted from plant leaves, stems, roots, and fruits. Hard-boiled eggs were place in the dyes for 15 minutes to…

  6. Dye film dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Humphreys, J.C.; McLaughlin, W.L.

    1981-01-01

    Commercially available plastic films containing dyes or dye precursors are convenient dosimeters and imaging media for electron beams or photons used for industrial radiation processing. As ''grainless'' imaging systems having thicknesses down to a few micrometers, they provide high spatial resolution for determining detailed absorbed dose distributions through microdensitometric analysis. The radiation absorption properties of these systems are adjusted by changing film composition so that the dosimeter materials can be made to simulate the material of interest undergoing irradiation. Other advantages include long-term stability, dose-rate independence, and ease of use and calibration. Radiochromic dye films with thicknesses varying from 0.005 to 1 mm are presently used to monitor electron-beam or gamma-ray doses from 10 to 10 5 Gy (10 3 to 10 7 rad), typical of those encountered in medical applications, radiation curing of polymeric composites, wire and cable insulation, shrinkable plastic tubing and film, as well as sterilization of medical supplies and treatment of municipal and industrial wastes. An NBS calibration service to industry involves the traceability of standard 60 Co gamma ray absorbed dose measurements by means of these films employed as transfer standards

  7. Different techniques recently used for the treatment of textile dyeing effluents: a review

    International Nuclear Information System (INIS)

    Altaf, A.; Noor, S.; Sharif, Q.M.; Najeebullah, M.

    2010-01-01

    Industrial textile processing comprises the operation of pretreatment dyeing printing and finishing. These production processes produce a substantial amount of chemical pollution. Textile finishing's wastewater, especially dye house effluent, contain different classes of organic dyes, chemicals and auxiliaries. They are colored and have extreme pH, COD and BOD values, and contain different salts, surfactants heavy metals and mineral oils. Therefore, dye bath effluents have to be treated before being discharge into the environment or municipal wastewater reservoir. This paper presents the review of different techniques currently used for the treatment of textile effluent, which are based on carbon adsorption, filtration, chemical precipitation, photo degradation, biodegradation and electrolytic chemical treatment. Membrane Technology has also been applied with the objective of recovering dyes and water. Biological processes could be adopted as a pretreatment decolorization step, combined with conventional treatment system (eg. coagulation flocculation, adsorption on activated carbon) to reduce the COD and BOD, an effective alternative for use by the textile dyeing industries. Electrochemical oxidation is an efficient process for the removal of colour and total organic carbon in reactive dyes textile wastewater. The ozonation is effective for decolorization of several dyes of different classes. Practical application of this process is feasible by treating industrial textile effluent after biological treatment. Processes using membranes technique, very interesting possibilities of separating hydrolyzed dyestuffs, dyeing auxiliaries and reuse treated wastewater in different finishing operation of textile industries. (author)

  8. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.

    Science.gov (United States)

    Vidal, Jorge; Villegas, Loreto; Peralta-Hernández, Juan M; Salazar González, Ricardo

    2016-01-01

    Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure.

  9. Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media

    International Nuclear Information System (INIS)

    Norton, D.L.; Glass, R.J.

    1993-01-01

    This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media

  10. Degradation of Some Textile Dyes using Biological and Physical Treatments

    International Nuclear Information System (INIS)

    Hmd, R.F.K.

    2011-01-01

    A total of twenty samples composed of ten samples of decaying eucalyptus leaves and ten soil samples were collected from El-Kanater El-Khairia district. All isolates were purified and identified to the species level. They found to be belonging to two main genera: Aspergillus sp. and Penicillium sp. The obtained fungal isolates were screened for testing their ability to decolorize Isolan dyes. The strain Aspergillus niger ES-5 was chosen for its highest ability to decolorize the four Isolan dyes. The biological decolorization of the textile metal azo dye was investigated under co-metabolic conditions. The decolorization capacity of the strain was influenced by the presence and/or absence of media components. The majority of decolorization was growth related, where resulted in 90.4%, 99.6%, 95.0% and 94.6% for I.Y, I.R, I.N and I.G, respectively after 72 h, only 2.5, 1.3, 1.4 and 3.0% for I.Y, I.R, I.N and I.G, respectively were desorbed, while negligible decolorization was detected using extracellular fluid (ECF) as well as using dead pellets. The addition of the dye to fungal cultures didn’t affect the extracellular GOD production while intracellular GOD production exhibited a different profile. Pictures of the mycelia represent dye uptake over the 72 h period of decolorization. The metal detection using Energy Dispersive X-ray Spectroscopy (EDS) of the outer fungal mycelium wall and ECF were both below detection level after the decolorization process took place. Thus, decolorization process and the removal of the elements by A. niger ES-5 involve initial adsorption followed by entrapment of the adsorbed dye inside the fungal biomass. Gamma rays increase color intensity in I.Y, while the other three Isolan dyes showed negative decolorization efficiency till 2.5 kGy after which, slow increase in the decolorization was observed.

  11. Biochemical Studies in Some Indigenous Dye Yielding Plants of Manipur

    Directory of Open Access Journals (Sweden)

    Joylani D. SAIKHOM

    2013-08-01

    Full Text Available Ten natural dye yielding and two mordant plants were biochemically analyzed. Though natural dyes are widely used, information about the active principles responsible for dyeing is hardly available. In the present experiment, total chlorophyll, carotinoids, tannins, phenolics, flavonoids and curcumin were determined among the dye yielding plants, while K, S, P, Ca, Mg, Mn, Zn, Fe, Cu and Co were determined in the case of mordant plants. In Bixa orellana, used for yellow dyeing, the carotinoid content was 163.11 mg g-1 and in Clerodendrum chinense and Datura stramonium, which were used for green colouring, total chlorophyll content of 10.29 mg and 11.83 mg g-1 was recorded. Curcumin content responsible for orange colouring in Curcuma domestica was 27.7 mg g-1 while flavonoid content in Solanum nigrum and Terminalia chebula, which were used for brown, brown to black dyes was 24.89 and 21.73 mg g-1. Among the plants used for dyeing different colours, Punica granatum and Parkia timoriana were found to contain higher amounts of total phenols and bound phenols by recording 681.2 mg g-1 and 287.6 mg g-1 total phenols and 151.6 mg g-1 and 130.2mg g-1 bound phenols, while higher amounts of orthodihydric phenols and tannins were recorded in Punica granatum and Strobilanthes flaccidifolius by recording 20.11mg g-1 and 9.54mg g-1 orthodihydric phenols and 675.57mg g-1 and 648.12 mg g-1 tannins, respectively. In case of the plants used as mordant, higher contents of Ca, Mg, K, Zn, Fe and Mn were detected in Achyranthes aspera, while higher amounts of P, Fe and Cu were recorded in Garcinia xanthochymus.

  12. Random laser emission at dual wavelengths in a donor-acceptor dye mixture solution

    Directory of Open Access Journals (Sweden)

    Sunita Kedia

    Full Text Available The work was aimed to generate random laser emissions simultaneously at two wavelengths in a weakly scattering system containing mixture of binary dyes, rhodamine-B (Rh-B and oxazine-170 (O-170 dispersed with ZnO nano-particles serving as scattering centres. Random lasing performances for individual Rh-B dye were extensively studied for varying small signal gain/scatterer density and we found lasing threshold to significantly depend upon number density of dispersed nano-particles. In spite of inefficient pumping, we demonstrated possibility of random lasing in O-170 dye solution on account of resonance energy transfer from Rh-B dye which served as donor. At optimum concentrations of fluorophores and scatterer in dye mixture solution, incoherent random lasing was effectively attained simultaneously at two wavelengths centered 90 nm apart. Dual-emission intensities, lasing thresholds and rate of amplifications could be controlled and made equivalent for both donor and acceptor in dye mixture solution by appropriate choice of concentrations of dyes and scatterers. Keywords: Random lasing, Energy transfer, Rhodamine-B, Oxazine-170, Zinc oxide

  13. Molecular and excited state properties of isomeric scarlet disperse dyes

    Science.gov (United States)

    Lim, Jihye; Szymczyk, Malgorzata; Mehraban, Nahid; Ding, Yi; Parrillo-Chapman, Lisa; El-Shafei, Ahmed; Freeman, Harold S.

    2018-06-01

    This work was part of an investigation aimed at characterizing the molecular and excited state properties of currently available disperse dyes developed to provide stability to extensive sunlight exposures when adsorbed on poly(ethylene terephthalate) (PET) fibers. Having completed the characterization of yellow, magenta, and cyan disperse dyes for PET-based fabrics used outdoors, our attention turned to the colors designed to enhance the color gamut of a standard 4-member (cyan/yellow/magenta/black) color set. The present study pertained specifically to the characterization of commercially available scarlet dyes. In this regard, HPLC analysis showed that a scarlet product used for PET coloration was mainly a 70/30 mixture of dyes, and the use of HRMS and single crystal X-ray diffraction analyses indicated that these two dyes were azo compounds derived from isomeric pyridine-based couplers which differed in the location of the primary amino (sbnd NH2) and anilino (sbnd NHPh) groups attached to the pyridine ring. One dye structure has the sbnd NHPh group para to the azo group (Sc2), while the other has that group in the ortho position (Sc3). The presence of either ortho substituent provides photostabilization through intramolecular H-bonding with the azo moiety. Further, results from molecular modeling studies showed that the lower excited state oxidation potential of Sc3 relative to that of Sc2 allows Sc3 to function as an energy quencher for the excited state of Sc2 - through thermodynamically favorable electron transfer.

  14. Dye gain gold NW array of surface plasmon polariton waveguide

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. At present in the single visible light frequency, the optical gain method of constraint SPP on metal nanowires structure reported less. We design the gold nanowire array structure, consisting of PMMA and R6G dye molecules as gain, by 488 nm pump in the middle of the nanowires position for wide range of light, use symmetry broken overcome that momentum does not match the photonic and SPP energy conversion. Theoretical analysis shows that dyes provide coherent optical feedback, resulting in nanowires face will observe laser properties of surface plasmons. Feature analysis: the incident light and pump joint strength is greater than the sum of strength which is the incident light, pump respectively. Under the effect of dye molecules gain effective, length of SPP transmission can increase 1 µm. The results achieved in a single optical frequency of stimulated radiation, application of dye optical gain can achieve continuous gain effect. This is for the future development of plasma amplifier and the wavelength laser. Keywords: SPP, Stimulated radiation, Gold nanowires array, Dye molecules

  15. Fluorescent properties of novel dendrimer dyes based on thiazole orange

    International Nuclear Information System (INIS)

    Fei Xuening; Gu Yingchun; Lan Yunquan; Shi Bin

    2011-01-01

    In this paper, polyamidoamine (PAMAM) dendrimers with active amino group of some generations (G=0.5-2) were prepared from commercial aminoacetaldehyde diethyl acetal by the divergent method. After that, thiazole orange (TO) with -COOH was incorporated with dendrimers of G=1 and 2 to afford novel dendrimer-TO dyes. The fluorescent properties studies showed that the fluorescent intensity of the same concentration of dendrimer-TO (G=2) was higher than that of the dendrimer-TO (G=1), and both of them were much stronger than free TO with -COOH. There was a fluorescent enhancement of the dendrimer dyes compared with free dye. The dendrimer dyes were of well-defined chemical structure,with little aggregation and self-quenching as well as good fluorescence properties of good stability, high intensity and sensitivity, which could be used in labeling cancer cells and further in diagnosis and detection of early-stage tumors. - Highlights: → A kind of dendrimer probe based on TO was designed and synthesized. → Dendrimers showed an obvious fluorescence enhancement compared to free dye. → Dendrimers labeled with BSA also showed fluorescence enhancement. → Dendrimers may be used in diagnosis and detection of early-stage tumors.

  16. Application of low-cost adsorbents for dye removal--a review.

    Science.gov (United States)

    Gupta, V K; Suhas

    2009-06-01

    Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  17. Molecular dynamics stimulations to study laser dye aggregation in water (comparison with experiments)

    International Nuclear Information System (INIS)

    Dare-Doyen, St.; Doizi, D.

    2000-01-01

    A laser facility consists of dye laser chains where the active medium is composed of fluorescent dyes dissolved in ethanol. The use of water as a solvent would offer two major advantages: greater safety of the laser facility by drastically reducing fire risks, easier design of the laser beam correcting devices required at the end of the dye laser chains, thanks to the properties of water. Unfortunately, laser dyes exhibit poor optical properties in water, due to the formation of dye aggregates. Molecular dynamics simulations were used to study and develop means to prevent this behavior between two charged species. The results were compared with NMR (Nuclear Magnetic Resonance) experiments

  18. A spectroscopic study of interaction of cationic dyes with heparin

    Directory of Open Access Journals (Sweden)

    R. Nandini

    2010-01-01

    Full Text Available The interaction of two cationic dyes namely, acridine orange and pinacyanol chloride with an anionic polyelectrolyte, heparin, has been investigated by spectrophotometric method.The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between acridine orange and heparin was found to be lesser than that formed between pinacyanol chloride and heparin. This fact was further confirmed by reversal studies using alcohols, urea and surfactants. The interaction of acridine orange with heparin has also been investigated fluorimetrically.The interaction parameters revealed that binding between acridine orange and heparin arises due to electrostatic interaction while that between pinacyanol chloride and heparin is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye in inducing metachromasy has also been discussed.

  19. Novel squarylium dyes for detection of amyloid fibrils in vitro

    Directory of Open Access Journals (Sweden)

    K. O. Vus

    2015-04-01

    Full Text Available A series of novel symmetrical and asymmetrical squarylium dyes with the different substituents in the donor moieties have been tested for their ability to detect and characterize insulin and lysozyme amyloid fibrils prepared in acidic buffer at elevated temperature. The dye-protein binding parameters were estimated in terms of the one-site Langmuir adsorption model using the data of direct and reverse fluorimetric titrations. By comparing the dye quantum yields, binding affinities, and extents of the fluorescence enhancement in the protein-bound state, G6 and G7 were selected as the most prospective amyloid tracers. Furthermore, these probes provided evidence for the lower polarity of the lysozyme fibrillar grooves compared to insulin aggregates. The novel dyes G6 and G7 were recommended for amyloid fibril detection and characterization in the near-infrared region.

  20. Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania

    Directory of Open Access Journals (Sweden)

    Peter J. Holliman

    2008-01-01

    Full Text Available Sorption kinetics and isotherms have been measured for a commercial dye (Direct Red 23 on different samples of powdered Titania, and the data were analysed to better understand the dye sensitization process for dye sensitised solar cells (DSSCs. For the sorption kinetics, the data show rapid initial sorption (<1 hour followed by slower rate of increasing uptake between 1 and 24 hours. While higher initial concentrations of dye correspond to higher sorption overall, less dye is absorbed from higher initial dye concentrations when considered as percentage uptake. The correlation between the sorption data and model isotherms has been considered with time. The Langmuir model shows better correlations compared to the Freundlich isotherm. The dye uptake data has also been correlated with Titania characterization data (X-ray diffraction, scanning electron microscopy, BET and zero point charge analysis. Kinetic data show significantly better fits to second-order models compared to first order. This suggests that chemisorption is taking place and that the interaction between the dye sorbate and the Titania sorbent involves electron sharing to form an ester bond.

  1. Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach

    OpenAIRE

    Supratik Kar; Juganta K. Roy; Danuta Leszczynska; Jerzy Leszczynski

    2016-01-01

    Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs). Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE) to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron...

  2. Structures of Two Yellow Dyes Found in Cucumbers Pickled in Soy Sauce Colored with Tartrazine (Y4).

    Science.gov (United States)

    Ogawa, Asamoe; Shindo, Tetsuya; Kyoko, Hitomi; Sadamasu, Yuki; Sakamaki, Narue; Uematsu, Yoko; Monma, Kimio

    2017-01-01

    Two yellow dyes, together with tartrazine (Y4), were found in cucumbers pickled in soy sauce, for which the use of tartrazine is permitted, by TLC, LC-DAD, and LC-MS. The retention times on LC chromatograms and the maximum absorbance wavelengths measured by LC-DAD of the two dyes were different from those of tartrazine. Mass spectra of the dyes indicated that these dyes lacked one sulfonyl group of tartrazine. The presence of two less sulfonated dyes in tartrazine has been reported. Hence, the two less sulfonated dyes were synthesized. The two dyes found in cucumbers were compared with the synthesized dyes by LC-DAD and LC-MS. Since the retention times of the dyes in cucumbers on the LC chromatograms, as well as their LC-DAD spectra and mass spectra, were found to be identical with those of the synthesized dyes, we concluded these dyes are the less sulfonated subsidiary dyes of tartrazine.

  3. Preparation and flow cytometry of uniform silica-fluorescent dye microspheres.

    Science.gov (United States)

    Bele, Marjan; Siiman, Olavi; Matijević, Egon

    2002-10-15

    Uniform fluorescent silica-dye microspheres have been prepared by coating preformed monodispersed silica particles with silica layers containing rhodamine 6G or acridine orange. The resulting dispersions exhibit intense fluorescent emission between 500 and 600 nm, over a broad excitation wavelength range of 460 to 550 nm, even with exceedingly small amounts of dyes incorporated into the silica particles (10-30 ppm, expressed as weight of dye relative to weight of dry particles). The fluorescent particles can be prepared in micrometer diameters suitable for analyses using flow cytometry with 488-nm laser excitation.

  4. Dye-sensitized solar cells: Out with both baby and bathwater

    Science.gov (United States)

    Elliott, C. Michael

    2011-03-01

    After two decades of research, the efficiency of dye-sensitized solar cells seems to have reached a plateau. Now, changing both electrolyte and dye opens up new opportunities that offer the hope that the efficiency ceiling can be broken.

  5. A New Synergetic Nanocomposite for Dye Degradation in Dark and Light

    Science.gov (United States)

    Lakshmi Prasanna, V.; Rajagopalan, Vijayaraghavan

    2016-12-01

    Environmental hazard caused due to the release of dyes in effluents is a concern in many countries. Among the various methods to combat this problem, Advanced Oxidation Process, in which semiconductor photocatalysts are used, is considered the most effective one. These materials release Reactive Oxygen Species (ROS) such as hydroxyl radical and superoxide in suspension that degrade the dyes into non-toxic minerals. However, this process requires visible or UV light for activation. Hence, there is a need to develop materials that release ROS, both in the absence and in the presence of light, so that the efficiency of dye removal is enhanced. Towards this objective, we have designed and synthesized a new nanocomposite ZnO2/polypyrrole which releases ROS even in the dark. The ROS released in the dark and in light were estimated by standard methods. It is to be noted that ZnO2 degrades the dye only under UV light but not in dark or in the presence of visible light. We propose the mechanism of dye degradation in dark and light. The synergically coupled nanocomposite of ZnO2/ppy is the first example that degrades dyes in the dark, through advanced oxidation process without employing additional reagents.

  6. Tunable lasers in isotope separation: a colorful view of a dye chemist

    International Nuclear Information System (INIS)

    Hammond, P.R.

    1977-01-01

    Some of the problems to be encountered in the possible large scale use of dye lasers in an isotope separation plant are discussed.The effect of laser dye deterioration on performance is examined algebraically in terms of disappearance of dye molecules and the appearance of a new, single chemical product having absorption in the fluorescence band for a single pass through a transversely pumped amplifier. Loss of output, defined as ''quantum yield of laser deterioration'', Q/sub L/, is related to the true quantum yield of molecular destruction of the dye Q/sub M/, and other known parameters. 6-Diethylamino 3-keto fluoran, an example of an oxygen tricyclic merocyanine, is described. It was first reported in the pre-1900 German literature under the name of Chromogen Red B and it is an ineffective lasing dye on account of low fluorescence quantum yield. The techniques for measurement and the excited state absorption cross-sections are reported for the dyes rhodamine 6G fluoroborate in alcohol, rhodamine B basic solution in trifluoroethanol and kiton red S in trifluoroethanol

  7. Binding of dyes to hydroxyapatite treated with cetylpyridinium chloride or cetrimonium bromide.

    Science.gov (United States)

    Jensen, J E

    1978-03-01

    The effect of cetylpyridinium chloride (CPC) and cetrimonium bromide (CTAB) on the adsorption of some acidic food dyes to hydroxyapatite was studied. The dyes investigated were brilliant blue (FD&C Blue No. 1), tartrazine (FD&C Yellow No. 5), sunset yellow (FD&C Yellow No. 6) and amaranth (FD&C Red No. 2). The apatite had adsorbed 9.2 mumol CPC per g dry weight. The adsorbed CPC was in equilibrium with a free concentration of 20 microgram/ml (58 micrometer). The adsorption of CPC and CTAB to the apatite was followed by an increased ability of the crystals to bind the dyes. The dyes were very firmly adsorbed and were not released during a series of washings. Untreated apatite showed only a minor affinity for the dyes. The adsorbed dyes were easily washed out. CPC and CTAB showed the smae specific ability to increase the binding capacity of the apatite. The results are discussed and related to the formation of stains on the teeth in persons using quaternary ammonium compounds for mouthrinsing. A mechanism explaining the production of stains is proposed.

  8. Simultaneous identification of synthetic and natural dyes in different food samples by UPLC-MS

    Science.gov (United States)

    Mandal, Badal Kumar; Mathiyalagan, Siva; Dalavai, Ramesh; Ling, Yong-Chien

    2017-11-01

    Fast foods and variety food items are populating among the food lovers. To improve the appearance of the food product in surviving gigantic competitive environment synthetic or natural food dyes are added to food items and beverages. Although regulatory bodies permit addition of natural colorants due to its safe and nontoxic nature in food, synthetic dyes are stringently controlled in all food products due to their toxicity by regulatory bodies. Artificial colors are need certification from the regulatory bodies for human consumption. To analyze food dyes in different food samples many analytical techniques are available like high pressure liquid chromatography (HPLC), thin layer chromatography (TLC), spectroscopic and gas chromatographic methods. However all these reported methods analyzed only synthetic dyes or natural dyes. Not a single method has analyzed both synthetic and natural dyes in a single run. In this study a robust ultra-performance liquid chromatographic method for simultaneous identification of 6 synthetic dyes (Tartrazine, Indigo carmine, Briliant blue, Fast green, malachite green, sunset yellow) and one natural dye (Na-Cu-Chlorophyllin) was developed using acquitic UPLC system equipped with Mass detector and acquity UPLC HSS T3 column (1.8 μm, 2.1 × 50 mm, 100Å). All the dyes were separated and their masses were determined through fragments’ masses analyses.

  9. Uptake of Cationic Dyes from Aqueous Solution by Biosorption Using Granulized Annona squmosa Seed

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2009-01-01

    Full Text Available A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A sample of granulized Annona squmosa seeds had been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB, methylene red (MR and malachite green (MG. The effects of various experimental parameters (e.g., contact time, dye concentration, adsorbent dose and pH were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 5, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir model in the case of MB sorption and the Freundlich model for all three dyes sorption. The biosorption processes followed the pseudo first order rate kinetics. The results in this study indicated that granulized Annona squmosa seed was an attractive candidate for removing cationic dyes from the dye wastewater.

  10. Kinetics of γ-rays induced decoloration of textile dye aqueous solutions

    International Nuclear Information System (INIS)

    Perkowski, J.; Ledakowicz, S.; Nowicki, L.

    1987-01-01

    The γ-rays induced decoloration of aqueous solutions of commercial dyes has been studied. Four chemical classes of dyes were applied. The initial dye concentration and the irradiation dose rate ranged from 0.025 to 0.250 g/dm 3 and 0.014 to 2.0 Gy/s respectively. On the base of obtained experimental data the kinetic paramaters in the proposed rate equation were calculated. 8 refs., 8 figs., 2 tabs. (author)

  11. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L.

    Science.gov (United States)

    Agustia, Yuda Virgantara; Suyitno, Arifin, Zainal; Sutanto, Bayu

    2016-03-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, EHOMO and ELUMO was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where Ered = -0.37V, ELUMO = -4.28 eV, Eox = 1.15V, EHOMO = -5.83 eV, and Eband gap = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  12. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-01-01

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q 0 of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q 0 of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q 0 ) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  13. Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology

    Science.gov (United States)

    Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk

    2015-09-01

    This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer.

  14. 55 cases of allergic reactions to hair dye: a descriptive, consumer complaint-based study

    DEFF Research Database (Denmark)

    Søsted, H; Agner, T; Andersen, Klaus Ejner

    2002-01-01

    themselves, and adverse reactions to hair dye may not necessarily be recorded by the health care system, unless the reactions are especially severe. Based on this assumption, we suspected that hair dye dermatitis was occurring more frequently than reported in the literature. Consumer complaint-based data......Severe facial and scalp dermatitis following the use of permanent hair dyes has been reported in several cases. Para-phenylenediamine (PPD) is known as a potent contact allergen, and PPD is allowed in hair dye at a concentration of 6%. Hair dye reactions are usually diagnosed by the patients...

  15. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Basudev; Batabyal, Sudip K.; Pal, Amlan J. [Indian Association for the Cultivation of Science, Department of Solid State Physics, Kolkata 700032 (India)

    2007-05-23

    We fabricate dye-sensitized solar cells (DSSC) using vertically oriented, high density, and crystalline array of ZnO nanowires, which can be a suitable alternative to titanium dioxide nanoparticle films. The vertical nanowires provide fast routes or channels for electron transport to the substrate electrode. As an alternative to conventional ruthenium complex, we introduce Rose Bengal dye, which acts as a photosensitizer in the dye-sensitized solar cells. The dye energetically matches the ZnO with usual KI-I{sub 2} redox couple for dye-sensitized solar cell applications. (author)

  16. Tunable ultraviolet solid-state dye laser based on MPMMA doped with pyrromethene 597

    International Nuclear Information System (INIS)

    Jiang, Y G; Fan, R W; Xia, Y Q; Chen, D Y

    2011-01-01

    Solid-state dye sample based on modified polymethyl methacrylate (MPMMA) co-doped with pyrromethene 597 (PM597), and coumarin 460 (C460) were prepared. A frequency-doubled pulsed Nd:YAG laser is used to pump solid-state dye sample, and the narrow linewidth dye laser of 94.4 mJ was obtained at 582 nm in an oscillator-amplifier configuration. Using a beta-BaB 2 O 4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 279 to 305 nm was demonstrated from a single doped PM597 dye. To the best of our knowledge, the UV tuning range is the best under the same condition so far. The conversion slope efficiency from solid dye laser to UV laser was 8.9% and the highest UV laser output energy reached 6.94 mJ at 291 nm

  17. Piper Ornatum and Piper Betle as Organic Dyes for TiO2 and SnO2 Dye Sensitized Solar Cells

    Science.gov (United States)

    Hayat, Azwar; Putra, A. Erwin E.; Amaliyah, Novriany; Hayase, Shuzi; Pandey, Shyam. S.

    2018-03-01

    Dye sensitized solar cell (DSSC) mimics the principle of natural photosynthesis are now currently investigated due to low manufacturing cost as compared to silicon based solar cells. In this report, we utilized Piper ornatum (PO) and Piper betle (PB) as sensitizer to fabricate low cost DSSCs. We compared the photovoltaic performance of both sensitizers with Titanium dioxide (TiO2) and Tin dioxide (SnO2) semiconductors. The results show that PO and PB dyes have higher Short circuit current (Jsc) when applied in SnO2 compared to standard TiO2 photo-anode film even though the Open circuit voltage (Voc) was hampered on SnO2 device. In conclusion, from the result, higher electron injections can be achieved by choosing appropriate semiconductors with band gap that match with dyes energy level as one of strategy for further low cost solar cell.

  18. Degradation chemistry of N719 and Z-907 dyes at elevated temperatures

    DEFF Research Database (Denmark)

    Lund, Torben; Nguyen, Hoang Thai; Phuong, Nguyen Tuyet

    2009-01-01

    Degradation chemistry of N719 and Z-907 dyes at elevated temperatures.   Torben Lunda, Phuong Tuyet Nguyena and Hoang Thai Nguyenb aDepartment of Science, Systems and Models, Roskilde University, DK-4000, Denmark bDepartment of Chemistry, University of Sciences, HoChiMinh City, Vietnam......      The popular dye sensitized solar cell dyes N719 and Z-907 are in general accepted to be very stable under solar cell conditions below 45 ºC.1 The dyes, however, may undergo thiocyanate ligand substitution reactions with the DSC solvent and additive molecules at elevated temperatures (80-100 º...

  19. Radiation-Adsorption Purification of bisolute containing pesticide and dye

    International Nuclear Information System (INIS)

    Abd El-Aal, S.E.; Sokker, H.H.; Dessouki, A.M.

    2005-01-01

    Radiation induced decomposition of various organic hydrocarbons such as pesticide (Atrazine) and dye (Cresol Red) in water represents a new and very efficient possibility for elimination of the steadily increasing pollution. Experimental results considering the removal of pesticides and dyes alone and in their mixtures were studied. Adsorption of the remaining part of the under graded pollutants will be carried out using granular activated carbon (GAC) and acrylamide (AAm) graft copolymer onto poly vinylalcohol (PVA).Freundlich model will be used to predict the equilibrium uptake of pesticide and dye in binary and single solutions.the preliminary results show that the method of radiation combined with adsorption using GAC was effective than that of a graft copolymer

  20. Numerical Procedure for Optimizing Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mihai Razvan Mitroi

    2014-01-01

    Full Text Available We propose a numerical procedure consisting of a simplified physical model and a numerical method with the aim of optimizing the performance parameters of dye-sensitized solar cells (DSSCs. We calculate the real rate of absorbed photons (in the dye spectral range Grealx by introducing a factor β<1 in order to simplify the light absorption and reflection on TCO electrode. We consider the electrical transport to be purely diffusive and the recombination process only to occur between electrons from the TiO2 conduction band and anions from the electrolyte. The used numerical method permits solving the system of differential equations resulting from the physical model. We apply the proposed numerical procedure on a classical DSSC based on Ruthenium dye in order to validate it. For this, we simulate the J-V characteristics and calculate the main parameters: short-circuit current density Jsc, open circuit voltage Voc, fill factor FF, and power conversion efficiency η. We analyze the influence of the nature of semiconductor (TiO2 and dye and also the influence of different technological parameters on the performance parameters of DSSCs. The obtained results show that the proposed numerical procedure is suitable for developing a numerical simulation platform for improving the DSSCs performance by choosing the optimal parameters.