WorldWideScience

Sample records for dye resin application

  1. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    M. Ghaemy

    2014-03-01

    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  2. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  3. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  4. Radiochromic dye film studies for brachytherapy applications

    International Nuclear Information System (INIS)

    Martinez-Davalos, A.; Rodriguez-Villafuerte, M.; Diaz-Perches, R.; Arzamendi-Perez, S.

    2002-01-01

    Commercial radiochromic dye films have been used in recent years to quantify absorbed dose in several medical applications. In this study we present the characterisation of the GafChromic MD-55-2 dye film, a double sensitive layer film suitable for photon irradiation in brachytherapy applications. Dose measurements were carried out with a low dose rate 137 Cs brachytherapy source, which produces very steep dose gradients in its vicinity, and therefore requires the capability of producing high spatial resolution isodose curves. Quantification of the dose rate in water per unit air kerma strength was obtained using a high-resolution transmission commercial scanner (Agfa DuoScan T1200) with the capability of digitising up to 600 x 1200 pixels per inch using 36 bits per pixel, together with optical density measurements. The Monte Carlo calculations and experimental measurements compared well in the 0-50 Gy dose interval used in this study. (author)

  5. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Science.gov (United States)

    2010-07-01

    ... thermosetting resins subcategory. 414.50 Section 414.50 Protection of Environment ENVIRONMENTAL PROTECTION... Thermosetting Resins § 414.50 Applicability; description of the thermosetting resins subcategory. The provisions... the products classified under SIC 28214 thermosetting resins including those resins and resin groups...

  6. Development and application of high performance resins for crud removal

    International Nuclear Information System (INIS)

    Deguchi, Tatsuya; Izumi, Takeshi; Hagiwara, Masahiro

    1998-01-01

    The development of crud removal technology has started with the finding of the resin aging effect that an old ion exchange resin, aged by long year of use in the condensate demineralizer, had an enhanced crud removal capability. It was confirmed that some physical properties such as specific surface area and water retention capacity were increased due to degradation caused by long year of contact with active oxygens in the condensate water. So, it was speculated that those degradation in the resin matrix enhanced the adsorption of crud particulate onto the resin surface, hence the crud removal capability. Based on this, crud removal resin with greater surface area was first developed. This resin has shown an excellent crud removal efficiency in an actual power plant, and the crud iron concentration in the condensate effluent was drastically reduced by this application. However, the cross-linkage of the cation resin had to be lowered in a delicate manner for that specific purpose, and this has caused higher organic leachables from the resin, and the sulfate level in the reactor was raised accordingly. Our major goals, therefore, has been to develop a crud resin of as little organic leachables as possible with keeping the original crud removal efficiency. It was revealed through the evaluation of the first generation crud resin and its improved version installed in the actual condensate demineralizers that there was a good correlation between crud removal efficiency and organic leaching rate. The bast one among a number of developmental resins has shown the organic leaching rate of 1/10 of that of the original crud resin (ETR-C), and the crud removal efficiency of 90%. So far as we understand, the resin was considered to have the best overall balance between crud removal and leaching characteristics. The result of six month evaluation of this developmental resin, ETR-C3, in one vessel of condensate demineralizer of a power plant will be presented. (J.P.N.)

  7. Analytical applications of resins containing amide and polyamine functional groups

    International Nuclear Information System (INIS)

    Orf, G.M.

    1977-12-01

    A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from sea water

  8. Analytical applications of resins containing amide and polyamine functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Orf, Gene Michael [Iowa State Univ., Ames, IA (United States)

    1977-12-01

    A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from sea water.

  9. Analytical applications of resins containing amide and polyamine functional groups

    International Nuclear Information System (INIS)

    Orf, G.M.

    1977-01-01

    Resins are prepared by chemically bonding N,N-dialkylamides and polyamine functional groups to Amberlite XAD-4. These resins are applied to the concentration of metal ions from dilute aqueous solution and the rapid separation of metal ions by high-speed liquid chromatography with continuous on-line detection of the eluent stream. A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from seawater. A triethylenetetramine resin is used for the separation of copper(II) from equal molar amounts and large excesses of nickel(II), cobalt(II), zinc(II), cadmium(II), iron(III) and aluminum(III). Copper(II), nickel(II), zinc(II), cobalt(II) and cadmium(II) are determined in the presence of large excesses of calcium(II) and magnesium(II). The resin was found to be selective for silver(I) and mercury(II) at low pH values and a rapid separation of equal molar amounts of copper(II) and silver(I) was performed. The resin was also found to have an affinity for anionic metal complexes such as iron(III)-tartrate when the resin is in the hydrogen form. A study of the retention of the anions chromium(III)-tartrate and dichromate at various pH values was performed to better understand the anion exchange properties of the resin. Triethylenetetramine resins were also prepared from polystyrene gel to make a resin with higher capacities for copper

  10. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  11. Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials.

    Science.gov (United States)

    De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard

    2018-03-16

    Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.

  12. Resin-composite blocks for dental CAD/CAM applications.

    Science.gov (United States)

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.

  13. Diphonix trademark Resin: A review of its properties and applications

    International Nuclear Information System (INIS)

    Chiarizia, R.; Horwitz, E.P.; Alexandratos, S.D.

    1995-01-01

    The recently developed Diphonix trademark resin is a new multifunctional chelating ion exchange resin containing seminally substituted diphosphonic acid ligands chemically bonded to a styrene-based polymeric matrix. Diphonix can be regarded as a dual mechanism polymer, with a sulfonic acid cation exchange group allowing for rapid access, mostly non-specific, of ions into the polymeric network, and the diphosphonic acid group responsible for specificity (recognition) for a number of metal cations. The Diphonix resin exhibits an extraordinarily strong affinity for actinides, especially in the tetra- and hexavalent oxidation states. It has potential applications in TRU and mixed waste treatment and characterization, and in the development of new procedures for rapid actinide preconcentration and separation from environmental samples. Metal uptake studies have been extended to alkaline earth cations, to transition and post transition metal species, and to metal sorption from neutral or near neutral solutions. Also the kinetic behavior of the resin has been investigated in detail. Influence of the most commonly occurring matrix constituents (Na, Ca, Al, Fe, hydrofluoric, sulfuric, oxalic and phosphoric acids) on the uptake of actinide ions has been measured. This review paper summarizes the most important results studies on the Diphonix resin and gives an overview of the applications already in existence or under development in the fields of mixed waste treatment, actinide separation procedures, treatment of radwaste from nuclear power plants, and removal of iron from copper electrowinning solutions

  14. Application of THOR-Technology on resins

    International Nuclear Information System (INIS)

    Lorenzen, J.; Lindberg, M.

    2003-01-01

    The THermal Organic Reduction (THOR) process, developed and patented by studsvik utilises pyrolysis / steam reforming technology. The THOR-process provides a reliable and safe method for treating a wide variety of LLW in a unique, fluidised bed treatment system at moderate temperature. This technology is suitable for processing hazardous, mixed and dry active LLW with appropriate waste feed modifications. Both solid and liquid LLRW and ILRW streams including ion exchange resins, activated carbon (charcoal), graphite, oils, solvents and cleaning solutions with contact radiation levels of up to 4 Sv/hr can be processed. Studsvik has completed over four years of operation at its facility at Erwin, Tennessee, USA. During this period studsvik has processed more than 1,5 thousand tons of radioactive ion exchange bead resins. powdered filter media and active carbon, with a cumulative total radioactivity of about 7 (E+8) MBq. Operations have demonstrated consistent, reliable, robust operating characteristics. Due to the widely varying characteristics of the incoming waste streams various efficiencies and volume reductions have been experienced. Input waste has varied in total inorganic content from 90%. A substantial element of this variability has been the ''soluble salt'' content of the input waste streams. Final reformed residue comprises a non-dispersible, granular solid which is suitable for long-term storage or direct burial in a qualified container. Special containers, THOR-liners, are available from studsvik for the transport of waste from the customer to the Erwin facility and HICs (high integrity containers) for transport of the residues to Barnwell. The paper will give an overview of the last four years of commercial operations processing LLRW from commercial nuclear power plans. (orig.)

  15. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.

    Science.gov (United States)

    Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

    2014-08-01

    This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. Copyright © 2014. Published by Elsevier B.V.

  16. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  17. Application of ion exchange resin in floating drug delivery system.

    Science.gov (United States)

    Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant

    2008-10-01

    The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.

  18. Particle Image Velocimetry Applications of Fluorescent Dye-Doped Particles

    OpenAIRE

    Petrosky, Brian Joseph

    2015-01-01

    Laser flare can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in a flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following thesis is formatted in a hybrid manuscript style, including a full paper presenting the applications of fluorescent Kiton R...

  19. Encapsulation of dye molecules into mesoporous polymer resin and mesoporous polymer-silica films by an evaporation-induced self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Chi Yue; Li Nan; Tu Jinchun; Zhang Yujie [School of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, Changchun 130012 (China); Li Xiaotian, E-mail: xiaotianli@jlu.edu.c [School of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, Changchun 130012 (China); Shao Changlu, E-mail: clshao@nenu.edu.c [Center for Advanced Optoelectronic Functional Materials Research, Northeast Normal University, Changchun 130024 (China)

    2010-03-15

    Polymer resin and polymer-silica films with highly ordered mesostructure have been used as host materials to encapsulate DCM (4-(dicyanomethylene) -2-methyl-6-(4-dimethylaminostyryl)-4h-pyran), a kind of fluorescent dye, through evaporation-induced self-assembly method (EISA). After encapsulation, the composites show significant blue-shift in photoluminescence (PL) spectra. Particularly, by changing the excitation wavelength, the samples show different emission bands. These phenomena are related to the mesostructure and the positions of DCM molecules in the host.

  20. Supramolecular hair dyes: a new application of cocrystallization

    DEFF Research Database (Denmark)

    Delori, Amit; Urquhart, Andrew; Oswald, Iain D. H.

    2016-01-01

    The manuscript presents the first report of hair dyes of various colors formed by cocrystallization. Unlike the most popular oxidative hair dye (OHD) products, these dyes are NH3 free and do not require H2O2 as a color developer. The importance of these new hair dyes products is further enhanced...

  1. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    Science.gov (United States)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  2. 40 CFR 63.5737 - How do I demonstrate compliance with the resin and gel coat application equipment cleaning...

    Science.gov (United States)

    2010-07-01

    ... the resin and gel coat application equipment cleaning standards? 63.5737 Section 63.5737 Protection of... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations § 63.5737 How do I demonstrate compliance with the resin and gel coat application equipment cleaning...

  3. Surface roughness comparison of methacrylate and silorane-based composite resins after 40% hydrogen peroxide application

    Directory of Open Access Journals (Sweden)

    Rori Sasmita

    2018-01-01

    Full Text Available The change of the tooth colour could be restored with bleaching. The tooth bleaching will affects the surface roughness of the composite resins. Recently, the material basis for composite resins has developed, among others are methacrylate-based and silorane based composite resins. The objective of this study was to distinguish the surface roughness value of methacrylate-based composite resin and silorane based composite resins. This research was quasi-experimental. The sample used in this study were methacrylate and silorane based composite resins in discs form, with the size of 6 mm and the thickness of 3 mm, manufactured into 20 specimens and divided into 2 groups. The control group was immersed in the artificial saliva, and the treatment group was applied with 40% hydrogen peroxide. The result of the experiment analyzed using unpaired sample t-test showed significant differences in the average value of the surface roughness after the application of 40% hydrogen peroxide. The average value of methacrylate and silorane based composite resins were 2.744 μm and 3.417 μm, respectively. There was a difference in the surface roughness of methacrylate and silorane based composite resin compounds after the application of 40% hydrogen peroxide. The surface roughness value of the silorane-based composite resin was higher than the methacrylate-based.

  4. Evans Blue Dye: A Revisit of Its Applications in Biomedicine.

    Science.gov (United States)

    Yao, Linpeng; Xue, Xing; Yu, Peipei; Ni, Yicheng; Chen, Feng

    2018-01-01

    Evans blue (EB) dye has owned a long history as a biological dye and diagnostic agent since its first staining application by Herbert McLean Evans in 1914. Due to its high water solubility and slow excretion, as well as its tight binding to serum albumin, EB has been widely used in biomedicine, including its use in estimating blood volume and vascular permeability, detecting lymph nodes, and localizing the tumor lesions. Recently, a series of EB derivatives have been labeled with PET isotopes and can be used as theranostics with a broad potential due to their improved half-life in the blood and reduced release. Some of EB derivatives have even been used in translational applications in clinics. In addition, a novel necrosis-avid feature of EB has recently been reported in some preclinical animal studies. Given all these interesting and important advances in EB study, a comprehensive revisiting of EB has been made in its biomedical applications in the review.

  5. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  6. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  7. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-01-01

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  8. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-15

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  9. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Anna, J Lakshmi; Vijayeeswarri, J; Swaminathan, G

    2009-08-01

    There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 degrees C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol-water with 80W ultrasonic power for 3h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80W as compared to MS process both using 1:1 ethanol-water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from

  10. Urea-formaldehyde resins: production, application, and testing

    Science.gov (United States)

    Nuryawan, A.; Risnasari, I.; Sucipto, T.; Heri Iswanto, A.; Rosmala Dewi, R.

    2017-07-01

    Urea-formaldehyde (UF) resin, one of the most important formaldehyde resin adhesives, is a polymeric condensation product of formaldehyde with urea, and being widely used for the manufacture of wood-based composite panels, such as plywood, particleboard, and fiberboard. In spite of its benefits such as fast curing, good performance in the panels (colorless), and lower cost; formaldehyde emission (FE) originated from either UF resin itself or composite products bonded by UF resins is considered a critical drawback as it affects human health particularly in indoor environment. In order to reduce the FE, lowering formaldehyde/urea (F/U) mole ratio in the synthesis of the UF resin was done. In this study, synthesis of UF resins was carried out following the conventional alkaline-acid two-step reaction with a second addition of urea, resulting in F/U mole ratio around 1.0, namely 0.95; 1.05, and 1.15. The UF resins produced were used as binder for particleboard making. The board was manufactured in the laboratory using shaving type particle of Gmelina wood, 8% UF resin based on oven dry particle, and 1% NH4Cl (20%wt) as hardener for the resin. The target of the thickness was 10 mm and the dimension was 25 cm x 25 cm. The resulted particleboard then was evaluated the physical and the mechanical properties by Japanese Industrial Standard (JIS) A 5908 (2003). Further, the resulted particleboard also was used for the mice cage’s wall in order to mimic the real living environment. After four weeks exposure in the cages, the mice then were evaluated their mucous organs as well as their blood. The experiment results were as follows: 1) It was possible to synthesis UF resins with low F/U mole ratio; 2) However, the particleboard bonded UF resins with low F/U mole ratio showed poor properties, particularly on the thickness swelling and modulus of elasticity; 3) There was no significant differences among the mucous organs of the mice after a month exposure FE originated from

  11. Study and application on lean resin converting in uranium mill

    International Nuclear Information System (INIS)

    Zhao Shaoxi; Huang Qijin; Zhu Shuguang; Yi Faqing; Du Wenjie

    2012-01-01

    The field test about sulphuric acid used to convert lean resin was finished. The results indicated sulphuric acid could replace chlorin in lean resin and could be reclaimed to desorption procedure. The consumption of NaCl decreased, the chlorin concentration of tailing decreased too. Both of uranium loss and waste water volume were reduced. The uranium concentration of tailing decreased and energy saving and emission reduction can be achieved. (authors)

  12. The application of PLC automatic control system for resin transfer in pulsed elution

    International Nuclear Information System (INIS)

    Long Maoxiong

    2001-01-01

    An application of Programmable Logic Controller (PLC) in automatic control system for resin transfer in pulsed elution column is described. The design principle as well as hardware and software are also described in detail

  13. Electrophoresis-base dye adsorption into titanium dioxide film for dye sensitized solar cell application

    International Nuclear Information System (INIS)

    Ratno Nuryadi; Zico Alaia Akbar Junior; Lia Aprilia

    2010-01-01

    Dye Sensitized Solar Cell (DSSC) is one of renewable energy sources which has demanded a substitute non renewable energy sources. The most important factor influencing DSSC performance is dye adsorption into semiconductor nano-porous TiO 2 particles. The purpose of this work is to study the effect of dye eosin Y adsorption on DSSC characteristics by an electrophoresis method. As result, Open Circuit Voltage (V oc ) of DSSC increases as the applied voltage of electrophoresis increases. It is also found that the eosin Y absorbance at wavelength of around 500 nm increases when the electrophoresis voltage is increased. These results indicate that electrophoresis process plays an important role in dye adsorption. (author)

  14. Application of natural dyes in textile industry and the treatment of dye solutions using electrolytic techniques

    OpenAIRE

    Abouamer, Karima Massaud

    2008-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 25/02/2008. Anodic oxidation of a commercial dye, methylene blue (MB), from aqueous solutions using an electrochemical cell is reported. Data are provided on the effects of eight different types of supporting electrolytes, concentration of electrolytes, initial dye concentration, current and electrolytic time on the percentage removal of methylene blue. Anodic oxidation was found to be effect...

  15. Application of radioactive tracers in upgradation of industrial grade ion exchange resin (Amberlite IRA-400)

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.

    1998-01-01

    The exchange rates of ion exchange are determined by application of 131 I as a tracer isotope. The exchange study carried out in this investigation deals with understanding the effectiveness of ion exchange resin (in iodide form) Amberlite IRA-400 at different concentrations of potassium iodide solution (electrolyte) with temperature of solution varying from 27-48 degC by keeping amount of ion exchange resin constant (1.0 g). The exchange study is also carried out by varying amount of ion exchange resins, for fixed temperature (27.0 degC) and for fixed concentration of potassium iodide solution (0.005 M). (author)

  16. The application of epoxy resin coating in grounding grid

    Science.gov (United States)

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  17. Application of fluorescent dyes for some problems of bioelectromagnetics

    Science.gov (United States)

    Babich, Danylo; Kylsky, Alexandr; Pobiedina, Valentina; Yakunov, Andrey

    2016-04-01

    Fluorescent organic dyes solutions are used for non-contact measurement of the millimeter wave absorption in liquids simulating biological tissue. There is still not any certain idea of the physical mechanism describing this process despite the widespread technology of microwave radiation in the food industry, biotechnology and medicine. For creating adequate physical model one requires an accurate command of knowledge concerning to the relation between millimeter waves and irradiated object. There were three H-bonded liquids selected as the samples with different coefficients of absorption in the millimeter range like water (strong absorption), glycerol (medium absorption) and ethylene glycol (light absorption). The measurements showed that the greatest response to the action of microwaves occurs for glycerol solutions: R6G (building-up luminescence) and RC (fading luminescence). For aqueous solutions the signal is lower due to lower quantum efficiency of luminescence, and for ethylene glycol — due to the low absorption of microwaves. In the area of exposure a local increase of temperature was estimated. For aqueous solutions of both dyes the maximum temperature increase is about 7° C caused with millimeter waves absorption, which coincides with the direct radio physical measurements and confirmed by theoretical calculations. However, for glycerol solution R6G temperature equivalent for building-up luminescence is around 9° C, and for the solution of ethylene glycol it's about 15°. It is assumed the possibility of non-thermal effect of microwaves on the different processes and substances. The application of this non-contact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  18. Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Baviskar, P.K. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India); Zhang, J.B. [Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gupta, V.; Chand, S. [Organic and Hybrid Solar Cell, Physics of Energy Harvesting Division, Dr. K. S. Krishnan Marg, National Physical Laboratory, New Delhi 110012 (India); Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India)

    2012-01-05

    Highlights: > Synthesis of ZnO film was done at room temperature (27 deg. C). > Simple and inexpensive chemical bath deposition method was employed. > The as deposited film consists of mixed phases of hydroxide and oxide. > The post annealing was done at 200 deg. C in order to remove hydroxide phase. > Low-cost, metal free Rhodamine B dye was used for DSSC application. - Abstract: Cost effective, ruthenium metal free rhodamine B dye has been chemically adsorbed on ZnO films consisting of nanobeads to serve as a photo anode in dye sensitized solar cells. These ZnO films were chemically synthesized at room temperature (27 deg. C) on to fluorine doped tin oxide (FTO) coated glass substrates followed by annealing at 200 deg. C. These films consisting of inter connected nanobeads (20-40 nm) which are due to the agglomeration of very small size particles (3-5 nm) leading to high surface area. The film shows wurtzite structure having high crystallinity with optical direct band gap of 3.3 eV. Optical absorbance measurements for rhodamine B dye covered ZnO film revealed the good coverage in the visible region (460-590 nm) of the solar spectrum. With poly-iodide liquid as an electrolyte, device exhibits photon to electric energy conversion efficiency ({eta}) of 1.26% under AM 1.5G illumination at 100 mW/cm{sup 2}.

  19. Textile impregnation with thermoplastic resin - models and application

    NARCIS (Netherlands)

    Loendersloot, Richard; Grouve, Wouter Johannes Bernardus; Lamers, E.A.D.; Wijskamp, Sebastiaan; Kelly, P.A.; Bickerton, S.; Lescher, P.; Govignon, Q.

    2012-01-01

    One of the key issues of the development of cost-effective thermoplastic composites for the aerospace industry is the process quality control. A complete, void free impregnation of the textile reinforcement by the thermoplastic resin is an important measure of the quality of composites. The

  20. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  1. Synthesis of dye linked conducting block copolymers, dye linked conducting homopolymers and preliminary application to photovoltaics

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Hagemann, O.; Jørgensen, M.

    2004-01-01

    A synthetic approach to the synthesis of a large super molecule composed of two chemically different conducting polymer blocks with, respectively, high and low lying electronic energy levels linked through a porphyrin dye molecule is presented. The synthetic strategies to these molecular architec...

  2. Application of Electrocoagulation Process for Reactive Red 198 Dye Removal from the Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2014-04-01

    Full Text Available Abstract Background and purpose:The main objectives of this research were to evaluating the application of electrocoagulation process for 198 dye from the aqueous phase and determining the optimum operating conditions to the dye removal using aluminum and iron electrodes. Materials and Methods:The present study was conducted in bench-scale. The spectrophotometer DR 5000 was used to determine the dye concentration. The effects of pH, retention time, voltage, dye concentration on the efficiency of electrocoagulation process were investigated. Data were analyzed in SPSS for Windows 16.0 using Pearson’scorrelation coefficient to analyze the relationship between these parameters. Results:The results showed that the optimal conditions for reactive red 198 (RR-198 dye removal from the aqueous solution are pH of 11, the voltage of 32 V, the initial dye concentration of 10 ppm, and the reaction time of 40 min. Pearson correlation analysis showed that there is a significant relationship between voltage and the reaction time with the removal efficiencies (P< 0.01. Conclusion:It was revealed that the removal efficiency of dye was directly proportional to the voltage and reaction time, but inversely proportional to the initial dye concentration. In conclusion, electrocoagulation process using two-fold iron and aluminum electrodes is an appropriate method for reducing the RR-198 dye in the aqueous phase.

  3. Compatibility analysis of 3D printer resin for biological applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-08-30

    The salient features of microfluidics such as reduced cost, handling small sample and reagent volumes and less time required to fabricate the devices has inspired the present work. The incompatibility of three-dimensional printer resins in their native form and the method to improve their compatibility to many biological processes via surface modification are reported. The compatibility of the material to build microfluidic devices was evaluated in three different ways: (i) determining if the ultraviolet (UV) cured resin inhibits the polymerase chain reaction (PCR), i.e. testing devices for PCR compatibility; (ii) observing agglutination complex formed on the surface of the UV cured resin when anti-C-reactive protein (CRP) antibodies and CRP proteins were allowed to agglutinate; and (iii) by culturing human embryonic kidney cell line cells and testing for its attachment and viability. It is shown that only a few among four in its native form could be used for fabrication of microchannels and that had the least effect on biological molecules that could be used for PCR and protein interactions and cells, whereas the others were used after treating the surface. Importance in building lab-on-chip/micrototal analysis systems and organ-on-chip devices is found.

  4. 40 CFR 63.5734 - What standards must I meet for resin and gel coat application equipment cleaning operations?

    Science.gov (United States)

    2010-07-01

    ... and gel coat application equipment cleaning operations? 63.5734 Section 63.5734 Protection of... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations § 63.5734 What standards must I meet for resin and gel coat application equipment cleaning operations...

  5. Radiolytic effects on Simpson Violet dye and their applications

    International Nuclear Information System (INIS)

    El-Banna, M.; Barakat, M.F.

    2005-01-01

    Simpson Violet dye has been exposed to γ-irradiation in non-aqueous solvents, and the color bleaching by irradiation was studied. The color bleaching was related to the applied dose. In another series of experiments, Simpson Violet dye was incorporated in polymethylmethacrylate films for studying the dose-response relationship. Finally, the results were compared with those obtained for externally dyed polymeric films. Most of the systems investigated were found suitable for gamma dose evaluation within a certain dose range. (author)

  6. Application of four dyes in gene expression analyses by microarrays

    Directory of Open Access Journals (Sweden)

    van Schooten Frederik J

    2005-07-01

    Full Text Available Abstract Background DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. Results Following tests for cross-talk of fluorescence signals, Alexa 488, Alexa 594, Cyanine 3 and Cyanine 5 were selected for hybridizations. For self-hybridizations, a single RNA sample was labelled with all dyes and hybridized on commercial cDNA arrays or on in-house spotted oligonucleotide arrays. Correlation coefficients for all combinations of dyes were above 0.9 on the cDNA array. On the oligonucleotide array they were above 0.8, except combinations with Alexa 488, which were approximately 0.5. Standard deviation of expression differences for replicate spots were similar on the cDNA array for all dye combinations, but on the oligonucleotide array combinations with Alexa 488 showed a higher variation. Conclusion In conclusion, the four dyes can be used simultaneously for gene expression experiments on the tested cDNA array, but only three dyes can be used on the tested oligonucleotide array. This was confirmed by hybridizations of control with test samples, as all combinations returned similar numbers of differentially expressed genes with comparable effects on gene expression.

  7. Mycoremediation of Textile Dyes: Application of Novel Autochthonous Fungal Isolates

    Directory of Open Access Journals (Sweden)

    Sweety

    2017-07-01

    Full Text Available Four fungal isolates Trichoderma virens, Phlebiopsis cf. ravenelii, Talaromyces stipitatus, Aspergillus niger originally isolated from the textile dye contaminated soil of Meerut (U.P. India. They were used for the decolorization studies of selected textile azo dyes under laboratory conditions. Out of total 74 isolates, selected four fungal strains were picked on the basis of primary screening carried out using agar layer decolorization method. Decolorization efficiency of textile dyes was studied at an interval of 3, 5, 7 and 9 days at temperatures 20, 25, 30 and 40°C using five synthetic dyes viz. Xylene cynol FF, Brilliant blue R, Aniline Blue, Orange G II and Crystal violet. Decolorization study was carried out under shaking and stationary conditions at pH 4.0, 5.4, 6.5, and 8.0. The results obtained showed that Trichoderma virens and Aspergillus niger were more efficient then Phlebiopsis cf. ravenelii and Talaromyces stipitatus. Highest biodegradation activities of dyes by these aboriginal fungal isolates were observed at pH 5.4 after 9 days of incubation. Maximum decolorization 99.84 % was achieved by Aspergillus niger, followed by Trichoderma virens. This is the first report where the bioremediation aspects of Phlebiopsis cf. ravenelii and Talaromyces stipitatus has been revealed.

  8. Characterization of solid UV curable 3D printer resins for biological applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-12-19

    In this paper, we report a simple method to evaluate biocompatibility of solid UV cross-linked resin as a material for microfluidic devices that can be used for biological applications. We evaluated the biocompatibility of the material in two different ways (1) determining if the UV cured resin inhibits the polymerase chain reaction (PCR) and (2) observing agglutination complex formed on the surface of the UV cured resin when anti-CRP antibodies and C- reactive protein (CRP) proteins were allowed to agglutinate. Six different types of 3D printer resins were compared to test the biocompatibility. The study showed that only few among them could be used for fabrication of micro channels and that had least effect on biological molecules that could be used for PCR and protein interactions. Through these studies it is possible to estimate the curing time of various resin and their type of interaction with biomolecules. This study finds importance in on-chip tissue engineering and organ-on-chip applications.

  9. Photolysis of hexaarylbiimidazole sensitized by dyes and application in photopolymerization

    Institute of Scientific and Technical Information of China (English)

    GAO, Fang(高放); XU, Jin- Qi(徐锦棋); SONG, Xiao-You(宋晓友); LI, Li-Dong(李立东); YANG, Yong-Yuan(杨永源); FENG, Shu-Jing(冯树京)

    2000-01-01

    Kinetic studies on the near-UV photo-initiating polymerization of methylmethacrylate (MMA) sensitized by dye/hexaarylbiimidazole systems were carried out. When exposed to highpressure mercury lamp (filtered by Pyrex glass), dye/hexaarylbiimidazole system undergoes quick electron transfer and free radicals are produced. RSH, as hydrogen donor, can improve the polymerization efficiency of MMA. Comparisons of influence of different dyes and different RSH on the conversion of MMA photopolymerization were carried out. Excellent results have been obtained in photoimaging studies, e.g. a minimum exposure energy of the photosensitive systems of 8 mJ/cm2 can be reached and the resolution of presensitized printing plate was ca. 10μm.

  10. DecoFungi: a web application for automatic characterisation of dye decolorisation in fungal strains.

    Science.gov (United States)

    Domínguez, César; Heras, Jónathan; Mata, Eloy; Pascual, Vico

    2018-02-27

    Fungi have diverse biotechnological applications in, among others, agriculture, bioenergy generation, or remediation of polluted soil and water. In this context, culture media based on color change in response to degradation of dyes are particularly relevant; but measuring dye decolorisation of fungal strains mainly relies on a visual and semiquantitative classification of color intensity changes. Such a classification is a subjective, time-consuming and difficult to reproduce process. DecoFungi is the first, at least up to the best of our knowledge, application to automatically characterise dye decolorisation level of fungal strains from images of inoculated plates. In order to deal with this task, DecoFungi employs a deep-learning model, accessible through a user-friendly web interface, with an accuracy of 96.5%. DecoFungi is an easy to use system for characterising dye decolorisation level of fungal strains from images of inoculated plates.

  11. Recyclable epoxy resins: An example of green approach for advanced composite applications

    Science.gov (United States)

    Cicala, Gianluca; Rosa, Daniela La; Musarra, Marco; Saccullo, Giuseppe; Banatao, Rey; Pastine, Stefan

    2016-05-01

    Automotive composite applications are increasingly growing due to demand for lightweight structures to comply to the requirements for fuel reduction. HP-RTM is gaining relevance as one of the preferred production technologies for high volume applications. The BMW i3 life module being a notable example of HP-RTM application. The key aspects of HP-RTM are the short injection times (i.e. less than 1min) and the fast curing of the thermoset resins (i.e. less than 10min). The choice of using thermosets poses relevant issues for their limited recycling options. The standard recycling solution is the incineration but, this solution poses some concerns in terms of global environmental impact. Novel solutions are presented in this work based on the use of recyclable epoxy systems. In our work the results of experimentation carried out by our group with cleavable ammines by Connora Technologies and bioepoxy resins by Entropy Resins will be discussed. The multiple uses of recycled matrices obtained treating the recyclable epoxy resins are discussed in the framework of a "cradle" to "crave" approach. Finally, Life Cycle Assessment (LCA) is used to evaluate the environmental benefits of the proposed approach.

  12. An enhanced mangiferaindica for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Uno, U. E., E-mail: moses.emetere@covenantuniversity.edu.ng [Department of Physics, Federal University of Technology, Minna (Nigeria); Emetere, M. E., E-mail: uno-essang@yahoo.co.uk [Department of Physics, Covenant University, Ota (Nigeria); Fadipe, L. A. [Department of Chemistry, Federal University of Technology, Minna (Nigeria); Oluranti, Jonathan, E-mail: jonathan.oluranti@covenantuniversity.edu.ng [Department of Computer & Information Sciences, Covenant University, Ota (Nigeria)

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO{sub 2} conductive. The DSSC fabricated consist of 2.25 cm{sup 2} active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10{sup −2}, current density (Jsc)=4.07×10{sup −2}, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  13. Color stability and flexural strength of poly (methyl methacrylate and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: An in vitro study

    Directory of Open Access Journals (Sweden)

    Anil K Gujjari

    2013-01-01

    Full Text Available Aim: To evaluate the color stability and flexural strength of poly (methyl methacrylate (PMMA and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Materials and Methods: Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA (Group A, and one Protemp 4 Temporization Material (bis-acrylic composite (Group B were used. Disk-shaped specimens for color stability testing (n = 30 for each material and bar-shaped specimens for flexural strength testing (n = 30 for each material were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Results: Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. Conclusion: The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.

  14. Color stability and flexural strength of poly (methyl methacrylate) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: an in vitro study.

    Science.gov (United States)

    Gujjari, Anil K; Bhatnagar, Vishrut M; Basavaraju, Ravi M

    2013-01-01

    To evaluate the color stability and flexural strength of poly (methyl methacrylate) (PMMA) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA) (Group A), and one Protemp 4 Temporization Material (bis-acrylic composite) (Group B) were used. Disk-shaped specimens for color stability testing (n = 30 for each material) and bar-shaped specimens for flexural strength testing (n = 30 for each material) were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.

  15. Debundling and Selective Enrichment of SWNTs for Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    F. Bonaccorso

    2010-01-01

    Full Text Available We present an overview of the recent developments in de-bundling and sorting of Single-Wall Carbon Nanotubes (SWNTs, which are useful for hi-tech applications in dye sensitized solar cells (DSSCs. Applications of SWNTs as transparent and conductive films, catalyst, and scaffold in DSSCs are also reviewed.

  16. On the applicability of dye penetrant tests on vacuum components: Allowed or forbidden?

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Michael, E-mail: Michael.schroeder@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Biedermann, Christoph; Vilbrandt, Reinhard [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2013-10-15

    Highlights: The study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. The results show, that the PT application on components for use under vacuum conditions can in general be allowed. The test surface should have a simple geometry. No gaps or holes. An efficient cleaning after PT is necessary. If PT is foreseen TIG should used as the welding procedure. PT tested components should be baked out after the cleaning in a vacuum chamber at min 150 °C. -- Abstract: The penetrant testing (PT) is a common non-destructive procedure for the testing of components and in particular of welds. With PT it is possible to detect surface imperfections (e.g. cracks) which have a special potential to lead to the failure of the component or of the weld. PT is substantially more sensitive than a purely visual examination. Because the complicated geometries of fusion experiments make the accessibility for repairs during the operation extremely difficult, very high efforts on testing with sensitive procedures, for instance with dye penetrant testing during assembly is required. In contrast to this desire for widespread penetrant testing, however, is the general fear that dye penetrant tested components or welds, which are used in the vacuum, are contaminated by the dye in such a way that they do not fulfill the cleanliness requirements for vacuum components. Therefore dye penetrant testing of such vacuum components is usually considered problematic. This study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. Recommendations are formulated concerning the PT procedure of vacuum components and the cleaning procedures for penetrant tested areas under vacuum necessary after a dye penetrant test.

  17. New ion exchange resin designs and regeneration procedures yield improved performance for various condensate polishing applications

    International Nuclear Information System (INIS)

    Najmy, S.W.

    2002-01-01

    Condensate polishing is an application with many different design and operational aspects. The past decade has brought new challenges for improved water quality with respect to both soluble and insoluble contaminants. Nonetheless, the endeavors to understand the compositional complexities of the ion exchange resin bead and the convoluted dynamics of ion exchange chemistry and chemical engineering mechanisms occurring within the mixed bed condensate polisher have brought new ideas and expectations for ion exchange resin in deep-bed condensate polishers than ever before. The new products and procedures presented here are a collaboration of a great deal of effort on the part of researchers, consultants, system engineers, station chemists, lab technicians and others. The studies discussed in this paper unequivocally demonstrate the merits of: 1. A specially designed cation resin to achieve greater than 95% insoluble iron removal efficiency, 2. A less-separable mixed resin for improved control of reactor water sulfate in BWR primary cycles, 3. Applying increased levels of regeneration chemicals and retrofitting the service vessels with re-mixing capability to improve the operation of deep-bed condensate polishers in PWR secondary cycles. (authors)

  18. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium.

    Science.gov (United States)

    Ates, Sabit Melih; Korkmaz, Fatih Mehmet; Caglar, Ipek Satıroglu; Duymus, Zeynep Yeşil; Turgut, Sedanur; Bagis, Elif Arslan

    2017-07-01

    The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey's HSD post hoc test were used to analyse the data (P < 0.05). The highest bond strength values were observed in the laser application group, while the lowest values were observed in the grinding group. Sandblasting and laser application resulted in significantly higher bond strengths than control treatment (P < 0.05). Ultrafast fiber laser treatment and sandblasting may improve the bond strength between resin cement and titanium.

  19. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Asma, E-mail: asmadr@wol.net.pk [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan); Sharif, Mehwish [School of Biological Sciences, University of the Punjab, Lahore 54590 (Pakistan); Iqbal, Muhammad [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan)

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation {>=}0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g{sup -1}. The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  20. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    International Nuclear Information System (INIS)

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-01-01

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation ≥0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g -1 . The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  1. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.

    Science.gov (United States)

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation > or = 0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g(-1). The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions. 2010 Elsevier B.V. All rights reserved.

  2. Eichrom's ABEC trademark resins: Alkaline radioactive waste treatment, radiopharmaceutical, and potential hydrometallurgical applications

    International Nuclear Information System (INIS)

    Bond, A.H.; Gula, M.J.; Chang, F.; Rogers, R.D.

    1997-01-01

    Eichrom's ABEC trademark resins selectivity extract certain anions from high ionic strength acidic, neutral, or strongly alkaline media, and solute stripping can be accomplished by eluting with water. ABEC resins are stable to pH extreme and radiolysis and operate in high ionic strength and/or alkaline solutions where anion-exchange is often ineffective. Potential applications of the ABEC materials include heavy metal and ReO 4 - separations in hydrometallurgy and purification of perrhenate iodide, and iodate in radiopharmaceutical production. Separation of 99m TcO 4 - from its 99 MoO 4 2- parent and stripping with water or physiological saline solution have been demonstrated for radiopharmaceutical applications. Removal of 99 TcO 4 - and 129 I - from alkaline tank wastes has also been successfully demonstrated. The authors will discuss the scale-up studies, process-scale testing, and market development of this new extraction material

  3. Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan-Hong; Liu, Rui-Rui [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Zhu, Kai-Li [College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000, Gansu (China); Song, Yan-Lin [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Geng, Zhi-Yuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China)

    2016-09-15

    A novel organic dye with 2D-A structure has been designed and calculated whereby density functional theory (DFT) and time-dependent density functional theory (TD-DFT) for dye-sensitized solar cells. The double-donor branched dye which was consisted of two separated light-harvesting moieties was beneficial to photocurrent generation. First, we discussed the effects of different donor chains on photoelectric performance in the dye molecule, using the DTP-B8 which was a previously reported structure as the reference. Only to conclude that the suitable length can achieve the satisfactory efficiency. Secondly, to modify and sift potential sensitizers further, three series of dyes (BC-series, CB-series and CC-series) were designed and characterized. The increased molar extinction coefficient and the red-shifted λ{sub max} was attributed to an increasing in electron conjunction. This work presented a new route to design sensitizers that provide two channels for donating more electrons and improve the final efficiency. It is expected to provide some theoretical guidance on designing and synthetizing high efficiency photosensitive dye in the future experiments. - Highlights: • A novel organic dye with 2D-A structure was designed and characterized. • The double-donor branched dye was consisted of two separated light-harvesting paths. • The double-donor branched dye was beneficial to photocurrent generation. • The molar extinction coefficient was greatly improved in this novel structure. • Four promising candidates have been screened out.

  4. Application of low-cost adsorbents for dye removal--a review.

    Science.gov (United States)

    Gupta, V K; Suhas

    2009-06-01

    Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  5. The Application of Low-Cost Adsorbent for Reactive Blue 19 Dye Removal from Aqueous Solution: Lemna Minor

    Directory of Open Access Journals (Sweden)

    Davoud Balarak

    2015-10-01

    Full Text Available Background & Aims of the Study: Due to widespread use and adverse effect of dyes, the removal of dyes from effluents is necessary. This study was aimed to remove the reactive blue 19 dye removal from aqueous solution by dried Lemna minor. Materials and Methods:  The effect of various parameters including contact time, solution pH, adsorbent dosage and dye concentration was investigated in this experimental-lab study, Also, the isotherm and kinetic studies was performed for RB19 dye adsorption process. Results: The results indicated that RB19 dye removal efficiency increases by increasing of contact time and adsorbent dosage. The equilibrium time was 75 min ad the maximum dye removal efficiency was obtained in pH=3. Also, the dye removal efficiency decreases by increasing of pH and initial concentration. It was found that the equilibrium data was best follow by Langmuier isotherm. Also, the pseudo-second-kinetic model was best applicable for RB 19 dye adsorption. Conclusion: It can be concluded that the dried Lemna minor can be considered as an effective adsorbent to remove the RB19 dye.

  6. Impairment of resin cement application on the bond strength of indirect composite restorations

    Directory of Open Access Journals (Sweden)

    Jovito Adiel SKUPIEN

    2015-01-01

    Full Text Available The aims of this study were to evaluate the effect of immediate and delayed resin cement application on the microtensile bond strength of indirect composite resin restorations and, to evaluate adhesive strategies (for regular resin cement or humidity parameters for self-adhesive resin cement. Forty-five enamel/dentin discs (0.5 mm height and 10 mm of diameter obtained from bovine teeth were divided into nine groups (n = 5. For regular cement, the variation factors were cementation technique at three levels (immediate cementation, 5 or 30 min after adhesive system application; and type of adhesive system at two levels (three- or two-step. For self-adhesive cement, the dentin moisture was the source of variation at three levels (normal, dry, or wet cementation. The specimens were submitted to microtensile bond strength (μTBS testing using a universal testing machine. Data were analyzed by ANOVA, Tukey’s test, and linear regression. Regular cement and three-step etch-and-rinse adhesive system showed the highest values of bond strength (25.21 MPa–30 min of delay. Only for this condition, three-step adhesive showed higher bond strength than the two-step adhesive. Nevertheless, the linear regression showed that irrespective of the strategy, the use of the two-step approach when compared with three-step adhesive system decreased μTBS (p < 0.001. The failure analysis showed predominant adhesive failures for all tested groups. All groups had comparable values of bond strength to bovine dentin when the same materials were used, even in suboptimal clinical conditions.

  7. Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuancheng Qin

    2012-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.

  8. Micro-shear bond strength of resin cement to dentin after application of desensitizing toothpastes.

    Science.gov (United States)

    Bavbek, Andac Barkin; Goktas, Baris; Cekic-Nagas, Isil; Egilmez, Ferhan; Ergun, Gulfem; Eskitascioglu, Gurcan

    2013-01-01

    The aim of the study was to evaluate the effect of three desensitizing toothpastes on bonding of resin cements to dentin. The occlusal surfaces of 72 maxillary third molars were ground to obtain flat dentin surfaces and then divided into three groups according to three desensitizing toothpastes used: Sensodyne Rapid Relief (GlaxoSmithKline, SmithKline Beecham Ltd., Slough, UK), Signal Sensitive Expert (Unilever Sanayi ve Ticaret Türk A.Ş., Ümraniye, İstanbul, Turkey) and Colgate Sensitive Pro-Relief (Colgate Palmolive, New York, NY). Following bonding of the resin cement (Clearfil™ SA Cement, Kuraray Co, Osaka, Japan) to dentin, the specimens were light cured for 40 s with a LED (Elipar S10, 3M Espe, St. Paul, MN). The strength measurements were accomplished with a micro-shear testing machine (Bisco, Schaumburg, IL) at a cross-head speed of 0.5 mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). ANOVA revealed that the application of desensitizing toothpastes had significant effects on bond strength of the resin cement tested to dentin (p < 0.05). Mixed failures were observed in all of the groups. The use of a desensitizing toothpaste before cementation might alter the bond strength of adhesively luted restorations.

  9. Synthesis and Application of Acid Dyes Based on 3-(4-Aminophenyl-5-benzylidene-2-substituted phenyl-3, 5-dihydroimidazol-4-one

    Directory of Open Access Journals (Sweden)

    Devang N. Wadia

    2008-01-01

    Full Text Available A series of eight novel heterocyclic based monoazo acid dyes were synthesized using various substituted imidazol-4-one as diazo component and coupled with various amino-napthol sulphonic acids. The resultant dyes were characterized using standard spectroscopic methods and then dyeing performance on wool fabric was assessed. Final results concluded that exhaustion (%E of the dyes on wool fibers increased with decreasing pH of application and that fixation (%F of the dyes on wool fibers increased with increasing pH of application and the highest total fixation efficiency was achieved at pH 5. Wash and light fastness properties of prepared dyes showed encouraging results.

  10. Incorporation of Kojic Acid-Azo Dyes on TiO2 Thin Films for Dye Sensitized Solar Cells Applications

    Directory of Open Access Journals (Sweden)

    Carolynne Zie Wei Sie

    2017-01-01

    Full Text Available Sensitization of heavy metal free organic dyes onto TiO2 thin films has gained much attention in dye sensitized solar cells (DSSCs. A series of new kojic acid based organic dyes KA1–4 were synthesized via nucleophilic substitution of azobenzene bearing different vinyl chains A1–4 with kojyl chloride 4. Azo dyes KA1–4 were characterized for photophysical properties employing absorption spectrometry and photovoltaic characteristic in TiO2 thin film. The presence of vinyl chain in A1–4 improved the photovoltaic performance from 0.20 to 0.60%. The introduction of kojic acid obtained from sago waste further increases the efficiency to 0.82–1.54%. Based on photovoltaic performance, KA4 achieved the highest solar to electrical energy conversion efficiency (η = 1.54% in the series.

  11. Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.

    Science.gov (United States)

    Gong, Honghong; Liu, Mingzhu; Zhang, Bing; Cui, Dapeng; Gao, Chunmei; Ni, Boli; Chen, Jiucun

    2011-12-01

    The aim of this study was to prepare oxidized guar gum with a simple dry method, basing on guar gum, hydrogen peroxide and a small amount of solvent. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The product was characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, scanning electron microscopy and differential scanning calorimetry. The hydrated rate of guar gum and oxidized guar gum was estimated through measuring the required time when their solutions (1%, w/v) reached the maximum viscosity. The effects of the salt concentration and pH on viscosity of the resultant product were studied. The mixed paste containing oxidized guar gum and carboxymethyl starch was prepared and its viscosity was determined by the viscometer. The rheological property of the mixed paste was appraised by the printing viscosity index. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the mixed paste could partially replace sodium alginate as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Pulsed dye laser application in ablation of vascular ectasias of the larynx: a preliminary animal study

    Science.gov (United States)

    Woo, Peak; Wang, Zhi; Perrault, Donald F., Jr.; McMillan, Kathleen; Pankratov, Michail M.

    1995-05-01

    Vascular ectasias (dilatation) and vascular lesions of the larynx are difficult to treat with exciting modalities. Varix (enlarged vessel) of the vocal folds, vocal fold hemorrhage, vascular polyp, hemangioma, intubation or contact granuloma are common problems which disturb voice. Current applications of CO2 laser and cautery often damage the delicate vocal fold cover. The 585 nm dermatologic pulsed dye laser may be an ideal substitute. Two adult canines were examined under anesthesia via microlaryngoscopy technique. Pulsed dye laser (SPTL-1a, Candela Laser Corp., Wayland, MA) energy was delivered via the micromanipulator with the 3.1-mm spot size in single pulses of 6, 8, and 10 Joules/cm2 and applied to the vessels of the vocal folds, epiglottis, and arytenoid cartilage. Endoscopic examination was carried out immediately after the treatment and at 4 weeks postoperatively. The animals were sacrificed at 3 weeks, larynges excised, and whole organ laryngeal section were prepared for histology. Pulsed dye laser thrombosed vessels of the vocal fold using 6 or 8 Joules/cm2. Vascular break and leakage occurred at 10 Joules/cm2. Follow up examination showed excellent vessel obliteration or thrombosis without scarring or injury to the overlying tissues. Histologic examination shows vascular thrombosis without inflammation and fibrosis in the vocal fold cover. Pulsed dye laser may have promise in treatment of vascular lesions of the larynx and upper airway.

  13. Application of resin in pulp technique for ion exchange separation of uranium from alkaline leachate

    International Nuclear Information System (INIS)

    Sreenivas, T.; Rajan, K.; Chakravorty, J.

    2014-01-01

    The hydrometallurgical process for the recovery of uranium from different ores uses ion exchange (IX) technique for the separation of dissolved uranium values. Conventionally, the IX process is carried out on leach solution obtained after the filtration or counter-current decantation of the leach slurries. Amongst the two types of leach pulps generated in uranium ore processing, viz acidic and alkaline, the latter one consists of predominantly fine-size pulps of higher viscosity, thus making the solid-liquid separation an arduous task. Sustained research for improvising the efficiency of various unit operations in the uranium process flowsheet have resulted in advent of new generation resins which are mechanically re-silent, posses higher exchange capacity thereby enabling separation of dissolved uranium ions from the leach pulps directly. Some of the prominent low-grade uranium ore deposits in India are hosted in acid consuming gangue matrix. These ore deposits necessitate fine grinding as well as application of alkaline leaching for the dissolution of uranium values. The leach pulps analyse 500 – 600 mg/l of U3O8 and contain total dissolved solutes (TDS) to the extent of about 50 g/l. Analysis of the characteristics of the leach pulp indicated suitability of resin-in-pulp technique for the separation of uranyl carbonate anions from the leachate. This paper describes the results of the RIP test work on alkaline leach slurry using various commercially available strong base anionic exchange resins. Parametric variation studies were conducted to establish the adsorption isotherm and sorption kinetics followed by elution of loaded uranium. Based on these results semi-continuous experiments on “carousel” mode were carried out. The results indicate superiority of gel type polystyrene based resins grafted with quaternary ammonium ion in comparison to the macro-porous resins. Semi-continuous counter-current extraction and elution tests indicated that about 98% of

  14. Effect of Resin Coating and Chlorhexidine on Microleakage of Two Resin Cements after Storage

    Directory of Open Access Journals (Sweden)

    F. Shafie

    2010-03-01

    Full Text Available Objective: Evaluating the effect of resin coating and chlorhexidine on microleakage of two resin cements after water storage.Materials and Methods: Standardized class V cavities were prepared on facial and lingual surfaces of one hundred twenty intact human molars with gingival margins placed 1mm below the cemento-enamel junction. Indirect composite inlays were fabricated and thespecimens were randomly assigned into 6 groups. In Groups 1 to 4, inlays were cemented with Panavia F2.0 cement. G1: according to the manufacturer’s instruction. G2: with light cured resin on the ED primer. G3: chlorhexidine application before priming. G4: withchlorhexidine application before priming and light cured resin on primer. G5: inlays were cemented with Nexus 2 resin cement. G6: chlorhexidine application after etching. Each group was divided into two subgroups based on the 24-hour and 6-month water storagetime. After preparation for microleakage test, the teeth were sectioned and evaluated at both margins under a 20×stereomicroscope. Dye penetration was scored using 0-3 criteria.The data was analyzed using Kruskal-Wallis and complementary Dunn tests.Results: There was significantly less leakage in G2 and G4 than the Panavia F2.0 control group at gingival margins after 6 months (P<0.05. There was no significant differences in leakage between G1 and G3 at both margins after 24 hours and 6 months storage. After 6months, G6 revealed significantly less leakage than G5 at gingival margins (P=0.033. In general, gingival margins showed more leakage than occlusal margins.Conclusion: Additionally, resin coating in self-etch (Panavia F2.0 and chlorhexidine application in etch-rinse (Nexus resin cement reduced microleakage at gingival margins after storage.

  15. Chemistry of Natural Dyes

    Indian Academy of Sciences (India)

    scientific principles, and the interaction between the dye and the dyed material is ... Dyes are classified based on their structure, source, method of application .... the right source that gives not only beautiful tones, but colourfast shades as well.

  16. Carbon Nanotubes Counter Electrode for Dye-Sensitized Solar Cells Application

    Directory of Open Access Journals (Sweden)

    Drygała A.

    2016-06-01

    Full Text Available The influence of the carbon nanotubes counter electrode deposited on the FTO glass substrates on the structure and optoelectrical properties of dye-sensitized solar cells counter electrode (CE was analysed. Carbon materials have been applied in DSSC s in order to produce low-cost solar cells with reasonable efficiency. Platinum is a preferred material for the counter electrode because of its high conductivity and catalytic activity. However, the costs of manufacturing of the platinum counter electrode limit its use to large-scale applications in solar cells. This paper presents the results of examining the structure and properties of the studied layers, defining optical properties of conductive layers and electrical properties of dye-sensitized solar cells manufactured with the use of carbon nanotubes.

  17. An application of the theory of laser to nitrogen laser pumped dye laser

    International Nuclear Information System (INIS)

    Osman, Fatima Ahmed

    1998-03-01

    In this thesis we gave a general discussion on lasers, reviewing some of their properties, types and application. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw.It was noticed that the produced radiation possesses characteristics different from those of other types of laser. This characteristics determine the tunability i.e the possibility of choosing the appropriately required wave-length of radiation for various applications.(Author)

  18. Impact of pH and application time of meta-phosphoric acid on resin-enamel and resin-dentin bonding.

    Science.gov (United States)

    Cardenas, A F M; Siqueira, F S F; Bandeca, M C; Costa, S O; Lemos, M V S; Feitora, V P; Reis, A; Loguercio, A D; Gomes, J C

    2018-02-01

    To evaluate the immediate microshear resin-enamel bond strength (μSBS) and the immediate and 6-month microtensile bond strength (μTBS) and nanoleakage (NL) of the adhesive interface performed by different pHs of 40% meta-phosphoric acid (MPA) were compared with conventional 37% ortho-phosphoric acid (OPA) under different application times. Additionally, the enamel etching patterns were evaluated and the chemical/morphological changes induced by these differents groups were evaluated. One hundred and ninety-eight extracted human molars were randomly assigned into experimental groups according to the combination of independent variables: Acid [37% ortho-phosphoric acid (OPA), 40% meta-phosphoric acid (MPA) at pHs of: 0.5, 1 and 2] and Application Time [7, 15 and 30s]. Enamel-bond specimens were prepared and tested under μSBS. Resin-dentin beams were tested under μTBS tested immediately or after 6-months of water storage. Nanoleakage was evaluated using bonded-beams of each tooth/time-period. Enamel etching pattern and chemical and ultra-morphology analyses were also performed. The μSBS (MPa) data were subjected to a two-way repeated measures ANOVA (Acid vs. Application time). For μTBS, Acid vs application time vs storage time data were subjected to three-way ANOVA and Tukey's test (α = 0.05). MPA pH 0.5 showed μTBS similar to OPA, independently of the application time on enamel (p>0.05) or dentin (p>0.05). OPA provided higher nanoleakage values than MPA (p = 0.003). Significant decreases in TBS and increases in NL were only observed for OPA after 6 months (p = 0.001). An increase in the application time resulted in a more pronounced etching pattern for MPA. Chemical analysis showed that dentin demineralized by MPA depicted peaks of brushite and octacalcium phosphate. MPA exposed less collagen than OPA. However, optimal results for MPA were dependent on pH/application time. The use of 40% meta-phosphoric acid with a pH of 0.5 is an alternative acid

  19. Synthesis and characterization of carboxymethyl potato starch and its application in reactive dye printing.

    Science.gov (United States)

    Zhang, Bing; Gong, Honghong; Lü, Shaoyu; Ni, Boli; Liu, Mingzhu; Gao, Chunmei; Huang, Yinjuan; Han, Fei

    2012-11-01

    Carboxymethyl potato starch (CMPS) was synthesized with a simple dry and multi-step method as a product of the reaction of native potato starch and monochloroacetic acid in the presence of sodium hydroxide. The influence of the molar ratio of sodium hydroxide to anhydroglucose unit, the volume of 95% (v/v) ethanol, the rotation rate of motor driven stirrer and the reaction time for degree of substitution (DS) were evaluated. The product was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). FTIR spectrometry showed new bonds at 1618 and 1424 cm⁻¹ when native starch underwent carboxymethylation. SEM pictures showed that the smooth surface of native starch particles was mostly ruptured. XRD revealed that starch crystallinity was reduced after carboxymethylation. The viscosity of the mixture paste of carboxymethyl starch and sodium alginate (SA) was measured using a rotational viscometer. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with SA. And the results indicated that the mixed paste could partially replace SA as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  1. Application of 10% Ascorbic Acid Improves Resin Shear Bond Stregth in Bleached Dentin

    Directory of Open Access Journals (Sweden)

    Kamizar Kamizar

    2014-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Restoration of the teeth immediately after bleaching with H2O2 35% is contraindicated due to the remnants of free radical that will stay inside dentin for 2-3 weeks which will compromise the adhesiveness of composite resin. Objective: The aim of this study was to evaluate the influence of 10% ascorbic acid on shear bond strength of composite placed on bleached dentin. Methods:Twenty seven samples were divided equally into three groups. Group 1: dentin was etched with 35% phosphoric acid; Group 2: dentin was bleached with 35% H2O2 followed by etching with 35% phosphoric acid; Group 3: dentin was bleached with 35% H2O2, followed by application of 10% ascorbic acid and etched with 35% phosphoric acid. All samples were then stored at 370C for 24 hours. The Universal Testing Machine was used to measure shear bond strength and the results were analyzed with Kruskal Wallis and Mann Whitney test. Results: After nine independent experiments, 10% ascorbic acid application on bleached dentin resulted in highest increased in bond stregth (56.04±11.06MPa compared to Group 2 (29.09±7.63MPa and Group 1 (25.55±2.22MPa and the difference was statistically significant (p<0.05. Conclusion: Application of 10% ascorbic acid to the bleached dentin improved the shear bond strength of resin composite.

  2. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  3. Modern industrial and pharmacological applications of indigo dye and its derivatives--a review.

    Science.gov (United States)

    Stasiak, Natalia; Kukuła-Koch, Wirginia; Głowniak, Kazimierz

    2014-01-01

    Plant sources, chemical properties, bioactivities, as well as the synthesis of indigo dye and its derivatives, are reviewed in this paper. These compounds were chosen because of their significant benefits and scope of application as both coloring agents in the textile industry and as pharmacologically active natural products. Their use in traditional chinese medicine (TCM) has directed the attention of European researchers and medical doctors alike. The preparation of indigoferous plants--Indigo naturalis is currently about to be introduced into the European Pharmacopoeia.

  4. Color measurement of methylene blue dye/clay mixtures and its application using economical methods

    Science.gov (United States)

    Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil

    2016-04-01

    Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay

  5. Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

    International Nuclear Information System (INIS)

    Troeger, K.; Darka, R. Khanpour; Neumeyer, T.; Altstaedt, V.

    2014-01-01

    This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K

  6. Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

    Energy Technology Data Exchange (ETDEWEB)

    Troeger, K., E-mail: altstaedt@uni-bayreuth.de; Darka, R. Khanpour, E-mail: altstaedt@uni-bayreuth.de; Neumeyer, T., E-mail: altstaedt@uni-bayreuth.de; Altstaedt, V., E-mail: altstaedt@uni-bayreuth.de [Polymer Engineering, University of Bayreuth, Germany and Polymer Engineering, Universitaetsstrasse 30, 95447 Bayreuth (Germany)

    2014-05-15

    This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K.

  7. Application of dye analysis in forensic fibre and textile examination: Case examples.

    Science.gov (United States)

    Schotman, Tom G; Xu, Xiaoma; Rodewijk, Nicole; van der Weerd, Jaap

    2017-09-01

    Seven cases and a quality assurance test are presented. In these cases, fibres or textiles submitted for investigation were analysed by HPLC-DAD-MS to identify the dyes present. The cases presented illustrate that it is possible to identify textile dyes in fibre traces recovered for forensic analysis. The results show that a mixture of dyes is present in all textiles investigated, except one sample that was taken from a manufacturer dye shade card. It is concluded that dye analyses improves the evidential value of forensic fibre examinations, as it becomes possible to distinguish textiles that are different in dye chemistry, but have a similar colour. In addition dye analysis makes the examination more robust, as it becomes possible to attribute colour differences between samples to identical dyes (mixed in different ratios) or to chemically different dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Organic fluorescent dye-based nanomaterials: Advances in the rational design for imaging and sensing applications.

    Science.gov (United States)

    Svechkarev, Denis; Mohs, Aaron M

    2018-02-25

    Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral property tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical, and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Application of Some Synthesized Polymeric Composite Resins for Removal of Some Metal Ions

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The ion-exchange and sorption characteristic of new polymeric composite resins, prepared by gamma radiation were experimentally studied. The composite resins shows high uptake for Co(II) and Eu(III) ions in aqueous solutions in wide range of ph. The selectivity of the resins to Co (II) or Eu (III) species in the presence of some competing ions and complexing agents (as Na + , Fe 3+ , EDTA Na 2 , etc.) was compared. Various factors that could affect the sorption behaviors of metal ions (Co (II) and Eu (III)) on the prepared polymeric composite resins were studied such as ionic strength, Contact time, volume mass ratio

  10. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    International Nuclear Information System (INIS)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N.R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-01-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or

  11. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    Science.gov (United States)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-10-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or

  12. Fluorine analysis of human dentin surrounding resin composite after fluoride application by {mu}-PIGE/PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Katsushi, E-mail: katsu@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan) and School of Dentistry, University of North Carolina, Department of Operative Dentistry, 302 Brauer, CB 7450, Chapel Hill, NC 27599-7450 (United States); Komatsu, Hisanori [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan); Yamamoto, Hiroko [Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Osaka, Suita 565-0871 (Japan); Pereira, Patricia N.R. [School of Dentistry, University of North Carolina, Department of Operative Dentistry, 302 Brauer, CB 7450, Chapel Hill, NC 27599-7450 (United States); Bedran-Russo, Ana K. [University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S. Paulina St., Chicago, IL 60612 (United States); Nomachi, Masaharu [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043 (Japan); Sato, Takahiro [TARRI, JAEA, Advanced Radiation Technology, 1233 Watanuki-machi, Gunma, Takasaki 370-1292 (Japan); Sano, Hidehiko [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan)

    2011-10-15

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission ({mu}-PIXE) and micro proton-induced gamma-ray emission ({mu}-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by {mu}-PIGE and {mu}-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F

  13. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures.

    Science.gov (United States)

    Fueki, Kenji; Ohkubo, Chikahiro; Yatabe, Masaru; Arakawa, Ichiro; Arita, Masahiro; Ino, Satoshi; Kanamori, Toshikazu; Kawai, Yasuhiko; Kawara, Misao; Komiyama, Osamu; Suzuki, Tetsuya; Nagata, Kazuhiro; Hosoki, Maki; Masumi, Shin-ichi; Yamauchi, Mutsuo; Aita, Hideki; Ono, Takahiro; Kondo, Hisatomo; Tamaki, Katsushi; Matsuka, Yoshizo; Tsukasaki, Hiroaki; Fujisawa, Masanori; Baba, Kazuyoshi; Koyano, Kiyoshi; Yatani, Hirofumi

    2014-04-01

    This position paper reviews physical and mechanical properties of thermoplastic resin used for non-metal clasp dentures, and describes feature of each thermoplastic resin in clinical application of non-metal clasp dentures and complications based on clinical experience of expert panels. Since products of thermoplastic resin have great variability in physical and mechanical properties, clinicians should utilize them with careful consideration of the specific properties of each product. In general, thermoplastic resin has lower color-stability and higher risk for fracture than polymethyl methacrylate. Additionally, the surface of thermoplastic resin becomes roughened more easily than polymethyl methacrylate. Studies related to material properties of thermoplastic resin, treatment efficacy and follow-up are insufficient to provide definitive conclusions at this time. Therefore, this position paper should be revised based on future studies and a clinical guideline should be provided. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Dye adsorbates BrPDI, BrGly, and BrAsp on anatase TiO2(001) for dye-sensitized solar cell applications

    Science.gov (United States)

    Çakır, D.; Gülseren, O.; Mete, E.; Ellialtıoǧlu, Ş.

    2009-07-01

    Using the first-principles plane-wave pseudopotential method within density functional theory, we systematically investigated the interaction of perylenediimide (PDI)-based dye compounds (BrPDI, BrGly, and BrAsp) with both unreconstructed (UR) and reconstructed (RC) anatase TiO2(001) surfaces. All dye molecules form strong chemical bonds with surface in the most favorable adsorption structures. In UR-BrGly, RC-BrGly, and RC-BrAsp cases, we have observed that highest occupied molecular orbital and lowest unoccupied molecular orbital levels of molecules appear within band gap and conduction-band region, respectively. Moreover, we have obtained a gap narrowing upon adsorption of BrPDI on the RC surface. Because of the reduction in effective band gap of surface-dye system and possibly achieving the visible-light activity, these results are valuable for photovoltaic and photocatalytic applications. We have also considered the effects of hydration of surface to the binding of BrPDI. It has been found that the binding energy drops significantly for the completely hydrated surfaces.

  15. Influence of power density and primer application on polymerization of dual-cured resin cements monitored by ultrasonic measurement.

    Science.gov (United States)

    Takubo, Chikako; Yasuda, Genta; Murayama, Ryosuke; Ogura, Yukari; Tonegawa, Motoka; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2010-08-01

    We used ultrasonic measurements to monitor the influence of power density and primer application on the polymerization reaction of dual-cured resin cements. The ultrasonic equipment comprised a pulser-receiver, transducers, and an oscilloscope. Resin cements were mixed and inserted into a transparent mould, and specimens were placed on the sample stage, onto which the primer, if used, was also applied. Power densities of 0 (no irradiation), 200, or 600 mW cm(-2) were used for curing. The transit time through the cement disk was divided by the specimen thickness to obtain the longitudinal sound velocity. When resin cements were light-irradiated, each curve displayed an initial plateau of approximately 1,500 m s(-1), which rapidly increased to a second plateau of 2,300-2,900 m s(-1). The rate of sound velocity increase was retarded when the cements were light-irradiated at lower power densities, and increased when the primer was applied. The polymerization behaviour of dual-cured resin cements was therefore shown to be affected by the power density of the curing unit and the application of self-etching primer. (c) 2010 The Authors. Journal compilation (c) 2010 Eur J Oral Sci.

  16. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    Science.gov (United States)

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  17. Applications of Blue Light-curing Acrylic Resin to Forensic Sample Preparation and Microtomy.

    Science.gov (United States)

    Groves, Ethan; Palenik, Christopher S

    2016-03-01

    This study discusses the results of an evaluation of a one-part blue light-curing acrylic resin for embedding trace evidence prior to the preparation of thin sections with a microtome. Through a comparison to several epoxy resins, the physical properties relevant to both trace evidence examination and analytical microscopy in general, including as viscosity, clarity, color, hardness, and cure speed, were explored. Finally, thin sections from paint samples embedded in this acrylic resin were evaluated to determine if, through smearing or impregnation, the resin contributed to the infrared spectra. The results of this study show that blue light-curing acrylic resins provide the desired properties of an embedding medium, generate high-quality thin sections, and can significantly simplify the preparation of paint chips, fibers and a multitude of other types of microscopic samples in the forensic trace evidence laboratory. © 2015 American Academy of Forensic Sciences.

  18. Phenolic resin-based porous carbons for adsorption and energy storage applications

    Science.gov (United States)

    Wickramaratne, Nilantha P.

    The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of

  19. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Shimin [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liu, Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-05-02

    One-dimensional (1D) titania (TiO{sub 2}) in the form of nanorods, nanowires, nanobelts and nanotubes have attracted much attention due to their unique physical, chemical and optical properties enabling extraordinary performance in biomedicine, sensors, energy storage, solar cells and photocatalysis. In this review, we mainly focus on synthetic methods for 1D TiO{sub 2} nanostructures and the applications of 1D TiO{sub 2} nanostructures in dye-sensitized solar cells (DSCs). Traditional nanoparticle-based DSCs have numerous grain boundaries and surface defects, which increase the charge recombination from photoanode to electrolyte. 1D TiO{sub 2} nanostructures can provide direct and rapid electron transport to the electron collecting electrode, indicating a promising choice for DSCs. We divide the applications of 1D TiO{sub 2} nanostructures in DSCs into four parts, that is, 1D TiO{sub 2} nanostructures only, 1D TiO{sub 2} nanostructure/nanoparticle composites, branched 1D TiO{sub 2} nanostructures, and 1D TiO{sub 2} nanostructures combined with other materials. This work will provide guidance for preparing 1D TiO{sub 2} nanostructures, and using them as photoanodes in efficient DSCs. - Graphical abstract: 1D TiO{sub 2} nanostructures which can provide direct and rapid pathways for electron transport have promising applications in dye-sensitized solar cells (DSCs). The synthetic methods and applications of 1D TiO{sub 2} nanostructures in DSCs are summarized in this review article.

  20. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaharieva, Katerina, E-mail: zaharieva@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Rives, Vicente, E-mail: vrives@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Tsvetkov, Martin, E-mail: mptsvetkov@gmail.com [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Cherkezova-Zheleva, Zara, E-mail: zzhel@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Kunev, Boris, E-mail: bkunev@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Trujillano, Raquel, E-mail: rakel@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Mitov, Ivan, E-mail: mitov@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Milanova, Maria, E-mail: nhmm@wmail.chem.uni-sofia.bg [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2015-06-15

    {sup −3} min{sup −1}) for degradation of organic dye Malachite green under UV irradiation. - Highlights: • Copper ferrites via co-precipitation, mechanochemical and/or thermal treatment. • Nano ferrites show a superparamagnetic and collective magnetic excitations nature. • The co-precipitated Cu{sub 0.25}Fe{sub 2.75}O{sub 4} posses the highest photocatalytic activity. • The amount adsorbed Malachite Green by catalyst depends on the preparation method. • The prepared copper ferrites can be applicable as cheap adsorbents and catalysts.

  1. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    International Nuclear Information System (INIS)

    Zaharieva, Katerina; Rives, Vicente; Tsvetkov, Martin; Cherkezova-Zheleva, Zara; Kunev, Boris; Trujillano, Raquel; Mitov, Ivan; Milanova, Maria

    2015-01-01

    Nanosized copper ferrite-type materials (Cu x Fe 3–x O 4 , 0 ≤ x ≤ 1) have been prepared by combination of co-precipitation and mechanochemical activation and/or thermal treatment. The crystalline structure and morphology of the obtained ferrite nanopowders have been characterized by different instrumental methods, such as Powder X-ray diffraction (PXRD), Mössbauer and FT-IR spectroscopies, specific surface area and porosity measurements, thermal analyses (Differential Thermal Analysis and Thermogravimetric Analysis) and Temperature-Programmed Reduction. The average crystallite size of copper ferrites ranged between 7.8 and 14.7 nm and show a superparamagnetic and collective magnetic excitations nature. The photocatalytic decolorization of Malachite green oxalate under different UV illumination intervals was examined using these copper ferrites as photocatalysts. The results indicate that the prepared nanostructured copper ferrites showed enhanced photocatalytic activity and amount adsorbed Malachite Green dye. The co-precipitated nanosized copper ferrite powder with a low content of copper metal ions in a magnetite host structure (Cu 0.25 Fe 2.75 O 4 ) showed an apparent pseudo-first-order rate constant 15.4 × 10 −3 min −1 and an amount adsorbed Malachite Green as model organic dye pollutant per 1 g catalyst of 33.4 ppm/g after the dark period. The results confirm that the copper ferrites can be suitable for photocatalytic treatment of wastewaters containing organic dyes. The new aspect of presented investigations is to study the influence of different degree of incorporation of copper ions into the magnetite host structure and preparation methods on the photocatalytic properties of nanosized copper ferrite materials and obtaining of potential photocatalyst (Cu 0.25 Fe 2.75 O 4 ) with higher photocatalytic activity (15.4 × 10 −3 min −1 ) than that of the standard referent Degussa P25 (12 × 10 −3 min −1 ) for degradation of organic dye

  2. Characterization and Application of Urea-Formaldehyde-Furfural Co-condensed Resins as Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Jizhi Zhang

    2014-08-01

    Full Text Available Furfural, as an organic compound derived from biomass materials, was used to partially substitute for formaldehyde in the synthesis of UF resin. Urea-formaldehyde-furfural co-condensed (UFFR resins with different substitute ratios of furfural to formaldehyde (FR/F were prepared. The effects of the FR/F substitute ratio on the performances of UFFR resins were investigated. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS and Fourier transform infrared spectroscopy (FT-IR were applied to characterize the chemical structures of UFFR resins. Plywood bonded by these resins was manufactured, and its bond strength and formaldehyde emission were measured. The results showed that the substitution of furfural in place of formaldehyde could reduce the free formaldehyde content effectively at the expense of prolongation of the curing time. The spectra of MALDI-TOF and FTIR confirmed the co-condensation of urea-formaldehyde-furfural both in uncured and cured resins. Plywood prepared under optimized parameters could yield high bond strength and low formaldehyde emission, which were 0.84 MPa and 0.23 ppm, respectively. The optimized parameters were as follows: a FR/F substitute ratio of 1/3; 1% (NH42S2O8 as the curing agent; and a hot pressing temperature of 130 °C. Hence, it is feasible to substitute partially formaldehyde by furfural to prepare UFFR resins as wood adhesives for plywood.

  3. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  4. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Soeda, Shin [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2011-02-15

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  5. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Soeda, Shin

    2011-01-01

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  6. Surface roughness of composite resin veneer after application of herbal and non-herbal toothpaste

    Science.gov (United States)

    Nuraini, S.; Herda, E.; Irawan, B.

    2017-08-01

    The aim of this study was to find out the surface roughness of composite resin veneer after brushing. In this study, 24 specimens of composite resin veneer are divided into three subgroups: brushed without toothpaste, brushed with non-herbal toothpaste, and brushed with herbal toothpaste. Brushing was performed for one set of 5,000 strokes and continued for a second set of 5,000 strokes. Roughness of composite resin veneer was determined using a Surface Roughness Tester. The results were statistically analyzed using Kruskal-Wallis nonparametric test and Post Hoc Mann-Whitney. The results indicate that the highest difference among the Ra values occurred within the subgroup that was brushed with the herbal toothpaste. In conclusion, the herbal toothpaste produced a rougher surface on composite resin veneer compared to non-herbal toothpaste.

  7. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Kalavakkam-603 110, Chennai, Tamilnadu (India)

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  8. Synthesis, characterization and applications of a new cation exchanger tamarind sulphonic acid (TSA) resin.

    Science.gov (United States)

    Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S

    2012-01-01

    A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.

  9. Application of Resin in Pulp Technique for Ion Exchange Separation of Uranium from Alkaline Leachate

    International Nuclear Information System (INIS)

    Sreenivas, T.; Rajan, K.C.; Chakravartty, J.K.

    2014-01-01

    Conclusions: • Resin-in-pulp technique was applied for purification and enrichment of uranium values from a finely ground uranium ore leach slurry of alkaline nature using strong base anion exchange resin (size 500 - 675μm). • The chemical composition of the solution phase of the alkaline leach slurry (pH 9.5) was consisting of about 40 g/L of total dissolved solutes (TDS) predominantly with Na_2CO_3 and NaHCO_3 and minor levels of Na_2SO_4. The uranium content was only 730 mg/L and d50 of solids was 34μm. • Amongst the various commercially available resins studied PFA 4740 and 4783 having quaternary ammonium ion on polystyrene crosslink with divibyl benzez (DVB) gave best performance. The maximum loading capacity achieved in the RIP studies was about 60-65 g of U_3O_8/L of wet settled resin amounting to 98% of loading. This has necessitated 4 stages of counter-current extraction with overall contact time of 100 minutes at a resin to leach slurry volume ratio of about 1:50. Practically the entire uranium values loaded on the resin were eluted using NaCl. • The RIP process was found quite efficient for uranium bearing alkaline leach slurries.

  10. Preparation of iron-deposited graphite surface for application as cathode material during electrochemical vat-dyeing process

    International Nuclear Information System (INIS)

    Anbu Kulandainathan, M.; Kiruthika, K.; Christopher, G.; Babu, K. Firoz; Muthukumaran, A.; Noel, M.

    2008-01-01

    Iron-deposited graphite surfaces were prepared, characterized and employed as cathode materials for electrochemical vat-dyeing process containing very low concentration of sodium dithionite. The electrodeposition, in presence of ammonium thiocyanate and gelatin or animal glue as binding additives, were found to give finer iron deposits for improved electrochemical dyeing application. The electrodeposits were characterized using scanning electron microscopy, electron-dispersive X-ray spectroscopy and X-ray diffraction methods, before and after electrochemical dyeing process. The electrochemical activity of the iron-deposited graphite electrodes always stored in water seems to depend on the surface-bound Fe 3+ /Fe 2+ redox species. Vat dyes like C.I. Vat Violet 1, C.I. Vat Green 1 and C.I. Vat Blue 4 could be efficiently dyed employing these above electrode materials. The colour intensity and washing fastness of the dyed fabrics were found to be equal with conventionally dyed fabrics. The electrodes could also be reused for the dyeing process

  11. Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents.

    Science.gov (United States)

    Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi

    2017-02-01

    A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Photophysical Behavior of Modified Xanthenic Dyes Embedded into Silsesquioxane Hybrid Films: Application in Photooxidation of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Carolina V. Waiman

    2017-01-01

    Full Text Available Polymeric materials based on a bridged silsesquioxane with pendant dodecyl chains were synthesized and modified with different xanthenic dyes with the aim of developing a material with potential application in photooxidation of organic compounds. The employed dyes constitute a family of novel xanthenic chromophores with outstanding properties as singlet oxygen photosensitizers. The hybrid matrix was chosen for its enhanced properties such as flexibility and chemical resistance. The employed dyes were easily incorporated into the hybrid polymer obtaining homogeneous, transparent, and low-refractive-index materials. The polymeric films were characterized using UV-Vis absorption, fluorescence, and laser flash photolysis techniques. The ability of these materials to produce singlet oxygen was tested following the photooxidation of 9,10-dimethylanthracene which is a well-known chemical trap for singlet oxygen. High photooxidation efficiencies were observed for these materials, which present the advantage of being easily removed/collected from the solution where photooxidation takes place. While photobleaching of the incorporated dyes is commonly observed in the solution, it takes place very slowly when dyes are embedded in the hybrid matrix. These properties bode well for the potential use of these materials in novel wastewater purification strategies.

  13. Real-time piscicide tracking using Rhodamine WT dye for support of application, transport, and deactivation strategies in riverine environments

    Science.gov (United States)

    Jackson, Patrick Ryan; Lageman, Jonathan D.

    2013-01-01

    Piscicide applications in riverine environments are complicated by the advection and dispersion of the piscicide by the flowing water. Proper deactivation of the fish toxin is required outside of the treatment reach to ensure that there is minimal collateral damage to fisheries downstream or in connecting and adjacent water bodies. In urban settings and highly managed waterways, further complications arise from the influence of industrial intakes and outfalls, stormwater outfalls, lock and dam operations, and general unsteady flow conditions. These complications affect the local hydrodynamics and ultimately the transport and fate of the piscicide. This report presents two techniques using Rhodamine WT dye for real-time tracking of a piscicide plume—or any passive contaminant—in rivers and waterways in natural and urban settings. Passive contaminants are those that are present in such low concentration that there is no effect (such as buoyancy) on the fluid dynamics of the receiving water body. These methods, when combined with data logging and archiving, allow for visualization and documentation of the application and deactivation process. Real-time tracking and documentation of rotenone applications in rivers and urban waterways was accomplished by encasing the rotenone plume in a plume of Rhodamine WT dye and using vessel-mounted submersible fluorometers together with acoustic Doppler current profilers (ADCP) and global positioning system (GPS) receivers to track the dye and map the water currents responsible for advection and dispersion. In this study, two methods were used to track rotenone plumes: (1) simultaneous injection of dye with rotenone and (2) delineation of the upstream and downstream boundaries of the treatment zone with dye. All data were logged and displayed on a shipboard laptop computer, so that survey personnel provided real-time feedback about the extent of the rotenone plume to rotenone application and deactivation personnel. Further

  14. Synthesis and application of new mordent and disperse azo dyes based on 2,4-dihydroxybenzophenone

    Directory of Open Access Journals (Sweden)

    BHARAT C. DIXIT

    2007-02-01

    Full Text Available Novel mordent and disperse azo dyes were prepared by the coupling of various diazo solutions of aromatic amines with 2,4-ihydroxybenzophenone. The resultant dyes were characterized by elemental analyses as well as IR and NMR spectral studies. The UV-visible spectral data have also been iscussed in terms of structural property relationship. The dyeing assessment of all the dyeswas evaluated on wool and polyester textile fibers. The dyeing of chrome treated (i.e., chrome mordented wool and polyesters was also monitored. The results show that a better hue was obtained on mordented fibers. The results of the anti-bacterial properties of the chrome dyes revealed that the toxicity of these dyes against bacteria is fairly good.

  15. Application of thin film cellulose composite membrane for dye wastewater reuse

    KAUST Repository

    Puspasari, Tiara

    2016-09-22

    The use of low cost membranes with high salt/dye selectivity and high flux is ideal for an economic and eco-friendly treatment of dye wastewater. Here, regenerated cellulose membranes prepared from trimethylsilyl cellulose are studied for treating artificial dye effluents. In the experiments using a feed containing Congo Red and high NaCl concentration, the membrane featured impressive dye removal with zero salt rejection combined with high flux. More interestingly, the membrane reached as much as 600 LMH flux at 80 °C and 4 bar while maintaining high dye rejection close to 98%. In prolonged experiments up to 75 h the membrane exhibited good antifouling behavior with nearly 100% flux recovery. This study may provide a promising alternative of dye effluent treatment where high amounts of monovalent salts are present. © 2016

  16. NON DESTRUCTIVE APPLICATION OF RADIOACTIVE TRACER TECHNIQUE FOR CHARACTERIZATION OF INDUSTRIAL GRADE ANION EXCHANGE RESINS INDION GS-300 AND INDION-860

    Directory of Open Access Journals (Sweden)

    P.U. SINGARE

    2014-02-01

    Full Text Available The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, 131I and 82Br were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate (min−1, amount of iodide ion exchanged (mmol, initial rate of iodide ion exchange (mmol/min and log Kd were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of 40.0 °C, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins.

  17. Non Destructive Application of Radioactive Tracer Technique for Characterization of Industrial Grade Anion Exchange Resins Indio GS-300 and Indion-860

    International Nuclear Information System (INIS)

    Singare, P. U.

    2014-01-01

    The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, 131 I and 82 Br were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of 40.0 .deg. C, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins

  18. Molecular Design of Efficient Organic D-A-π -A Dye Featuring Triphenylamine as Donor Fragment for Application in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Ferdowsi, Parnian; Saygili, Yasemin; Zhang, Weiwei; Edvinson, Tomas; Kavan, Ladislav; Mokhtari, Javad; Zakeeruddin, Shaik M; Grätzel, Michael; Hagfeldt, Anders

    2018-01-23

    A metal-free organic sensitizer, suitable for the application in dye-sensitized solar cells (DSSCs), has been designed, synthesized and characterized both experimentally and theoretically. The structure of the novel donor-acceptor-π-bridge-acceptor (D-A-π-A) dye incorporates a triphenylamine (TPA) segment and 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTEBA). The triphenylamine unit is widely used as an electron donor for photosensitizers, owing to its nonplanar molecular configuration and excellent electron-donating capability, whereas 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid is used as an electron acceptor unit. The influences of I 3 - /I - , [Co(bpy) 3 ] 3+/2+ and [Cu(tmby) 2 ] 2+/+ (tmby=4,4',6,6'-tetramethyl-2,2'-bipyridine) as redox electrolytes on the DSSC device performance were also investigated. The maximal monochromatic incident photon-to-current conversion efficiency (IPCE) reached 81 % and the solar light to electrical energy conversion efficiency of devices with [Cu(tmby) 2 ] 2+/+ reached 7.15 %. The devices with [Co(bpy) 3 ] 3+/2+ and I 3 - /I - electrolytes gave efficiencies of 5.22 % and 6.14 %, respectively. The lowest device performance with a [Co(bpy) 3 ] 3+/2+ -based electrolyte is attributed to increased charge recombination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of two laccases from Trametes versicolor for application in the decolorization of dyes.

    Science.gov (United States)

    Li, Qi; Ge, Lin; Cai, Junli; Pei, Jianjun; Xie, Jingcong; Zhao, Linguo

    2014-04-01

    It has been previously demonstrated that laccases exhibit great potential for use in several industrial and environmental applications. In this paper, two laccase isoenzyme genes, lccB and lccC, were cloned and expressed in Pichia pastoris GS115. The sequence analysis indicated that the lccB and lccC genes consisted of 1,563 and 1,584 bp, and their open reading frames encoded 520 and 527 amino acids, respectively. They had 72.7% degree of identity in nucleotides and 86.7% in amino acids. The expression levels of LccB and LccC were up to 32,479 and 34,231 U/l, respectively. The recombinant laccases were purified by ultrafiltration and (NH4)2SO4 precipitation, showing a single band on SDS-PAGE, which had a molecular mass of 58 kDa. The optimal pH and temperature for LccB were 2.0 and 55°C with 2,2'-azino-bis-[3-ethylbenzthiazolinesulfonic acid (ABTS) as a substrate, whereas LccC exhibited optimal pH and temperature at 3.0 and 60°C. The apparent kinetic parameters of LccB were 0.43 mM for ABTS with a Vmax value of 51.28 U/mg, and the Km and Vmax values for LccC were 0.29 mM and 62.89 U/mg. The recombinant laccases were able to decolorize five types of dyes. Acid Violet 43 (100 g/ml) was completely decolorized by LccB or LccC (2 U/ml), and the decolorization of Reactive Blue KN-R (100 g/ml) was 91.6% by LccC (2 U/ml). Thus, the study characterizes useful laccase isoenzymes from T. versicolor that have the capability of being incorporated into the treatment of similar azo and anthraquinone dyes from dyeing industries.

  20. [Application of individual light-curing resin tray as edge plastic material in complete denture modulo].

    Science.gov (United States)

    Chai, Mei; Tang, Xuyan; Liang, Guangku

    2015-12-01

    To investigate clinical effect of individual light-curing resin tray as edge plastic material in complete denture modulo.
 A total of 30 patients with poor condition for alveolar ridge of mandible were chosen individual tray with individual light-curing resin tray for material edge shaping or traditional individual impression tray for edge shaping cream to produce complete denture. The operability, questionnaire about denture retention, comfort, mucosal cases and chewing function in the process of shaping the edge were investigated three months later after wearing dentures.
 There was no significant difference in retention, comfort, mucosa and the chewing function between the two mandibular denture impression methods. However, the patients with individual light-curing resin tray as edge shaping material felt better in the process than that in the patients with die-cream as the edge shaping material (P<0.05). Furthermore, the manipulation with individual light-curing resin tray as edge shaping material is easy for doctor.
 Although the clinical effect of Individual light-curing resin tray material as the edge shaping material is equal to that of impression cream, it saves time and human resource. Moreover, it is more acceptable for the patients and thus it can be spread in clinics.

  1. A novel application of resin in pulp in the metallurgical industry

    International Nuclear Information System (INIS)

    Fleming, C.A.; Cromberge, G.

    1985-01-01

    The results are presented of several small-scale pilot-plant investigations that demonstrate the feasibility of a resin-in-pulp process for the combined extraction of gold and uranium. Both metals are leached into an aqueous solution as anionic complexes, and, under appropriate conditions, both metal anions can be stabilized in the same solution and extracted from that solution by anion-exchange resins. Three different lead materials containing gold and uranium were tested, and several configurations for leaching and the resin-in-pulp process were examined so that the efficiency of extraction of the process could be demonsrated. The results of the various pilot-plant investigations are discussed with particular emphasis on the deportment of gold and uranium during the leaching extraction, and elution steps

  2. Application of thin film cellulose composite membrane for dye wastewater reuse

    KAUST Repository

    Puspasari, Tiara; Peinemann, Klaus-Viktor

    2016-01-01

    artificial dye effluents. In the experiments using a feed containing Congo Red and high NaCl concentration, the membrane featured impressive dye removal with zero salt rejection combined with high flux. More interestingly, the membrane reached as much as 600

  3. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection

    NARCIS (Netherlands)

    Volkova, K.D.; Kovalska, V.B.; Segers-Nolten, Gezina M.J.; Veldhuis, G.; Veldhuis, G.J.; Subramaniam, Vinod; Yarmoluk, S.M.

    2009-01-01

    We examined the practical aspects of using fluorescent mono (T-284) and trimethinecyanine (SH-516) dyes for detecting and quantifying fibrillar α-synuclein (ASN). We studied the interaction of cyanine dyes with fibrillar proteins using fluorescence spectroscopy and atomic force microscopy. The

  4. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection

    NARCIS (Netherlands)

    Volkova, Kateryna D; Kovalska, V B; Segers-Nolten, G M J; Veldhuis, G.; Subramaniam, V; Yarmoluk, S M

    We examined the practical aspects of using fluorescent mono (T-284) and trimethinecyanine (SH-516) dyes for detecting and quantifying fibrillar alpha-synuclein (ASN). We studied the interaction of cyanine dyes with fibrillar proteins using fluorescence spectroscopy and atomic force microscopy. The

  5. Safety and regulatory review of dyes commonly used as excipients in pharmaceutical and nutraceutical applications.

    Science.gov (United States)

    Pérez-Ibarbia, Leire; Majdanski, Tobias; Schubert, Stephanie; Windhab, Norbert; Schubert, Ulrich S

    2016-10-10

    Color selection is one of the key elements of building a strong brand development and product identity in the pharmaceutical industry, besides to prevent counterfeiting. Moreover, colored pharmaceutical dosage forms may increase patient compliance and therapy enhancement. Although most synthetic dyes are classified as safe, their regulations are stricter than other classes of excipients. Safety concerns have increased during the last years but the efforts to change to natural dyes seem to be not promising. Their instability problems and the development of "non-toxic" dyes is still a challenge. This review focuses specifically on the issues related to dye selection and summarizes the current regulatory status. A deep awareness of toxicological data based on the public domain, making sure the compliance of standards for regulation and safety for successful product development is provided. In addition, synthetic strategies are provided to covalently bind dyes on polymers to possibly overcome toxicity issues. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Design and Application of Electrochemical Processes for Decolorization Treatment of Nylanthrene Red dye Bearing Wastewaters

    Directory of Open Access Journals (Sweden)

    D. Marmanis

    2016-04-01

    Full Text Available The purpose of this paper is the investigation of the capability of electrochemical methods, such as electrocoagulation, electrooxidation and electro-Fenton for decolorization and degradation of synthetic aqueous solutions and actual dye house effluents containing nylanthrene red reactive dye. All electrochemical experiments with the synthetic dye solutions were conducted in electrochemical cell of volume 500 ml containing 200 mL of dye solution at concentration 50 mg/L and interelectrode distance of 1 cm. The three different electrochemical processes were analyzed, and their removal efficiencies were measured and evaluated. In addition, a flow diagram is designed for a continuously operated electrochemical process for remediation of synthetic and actual dye house effluents laden with nylanthrene dye. In the electrocoagulation process with aluminum electrodes, the colored aqueous dye solution was treated at the applied current densities of 5, 10 and 15 mA/cm2 and was quantitatively decolorized in 11, 9 and less than 6 minutes of electroprocessing time respectively. The electrooxidation process conducted with Ti/Pt and boron doped diamond (BDD electrodes, at the applied current density of 10 mA/cm2 led to the quantitative decolorization and destruction of the dye in 25 and 15 min respectively. In the electro-Fenton process with iron electrodes, supply of added hydrogen peroxide and applied current density of 10 mA/cm2, complete decolorization and degradation of the nylanthrene red dye occurred in 6 min. The actual polyamide textile dyeing effluent of same volume 200 mL with initial turbidity of 114 NTU and COD of 1755 mg/L was treated by electrocoagulation at the same applied current density of 10 mA/cm2. The turbidity was quantitatively eliminated in only 10 min, while COD was reduced by 74.5 % in 40 minutes of electrolysis time.

  7. Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

    Directory of Open Access Journals (Sweden)

    Wolfgang M. Samhaber

    2014-04-01

    Full Text Available Nanofiltration (NF is a capable method for the separation of dyes, which can support and even improve the applicability of photocatalysis in effluent-treatment processes. The membrane process usually will need a special pre-treatment to avoid precipitation and fouling on the membrane surface. Conceptually NF can be applied in the pre-treatment prior to the catalytic reactor or in connection with the reactor to separate the liquid phase from the reaction system and to recycle finely suspended catalysts and/or organic compounds. When concerning such reaction systems on a bigger scale, cost figures will prove the usefulness of those concepts. Different applications of photocatalysis on the lab-scale have been published in recent years. Membrane technology is used almost in all those processes and an overview will be given of those recently published systems that have been reported to be potentially useful for a further scale-up. NF membranes are mostly used for the more sophisticated separation step of these processes and the additional costs of the NF treatment, without any associated equipments, will be described and illustrated. The total specific costs of industrial NF treatment processes in usefully adjusted and designed plants range from 1 to 6 US$/m3 treated effluent. Combination concepts will have a good precondition for further development and upscaling, if the NF costs discussed here in detail will be, together with the costs of photocatalysis, economically acceptable.

  8. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2018-03-01

    Dye-sensitized solar cell (DSSC) is one of the alternative energy that can convert light energy into electrical energy. The component of DSSC consists of FTO substrates, TiO2, electrolyte, dye sensitizer, and counter electrode. This study aim was to determine the effect of optical properties of anthocyanin dyes on efficiency of DSSC. The dye sensitizer used can be extracted from anthocyanin pigments such as dragon fruit, black rice, and red cabbage. The red cabbage sensitizer shows lower absorbance value in the visible range (450-580 nm), than dragon fruit and black rice. The chemical structure of each dye molecules has an R group (carbonyl and hydroxyl) that forms a bond with the oxide layer. Red cabbage dye cell has the highest efficiency, 0.06% then dragon fruit and black rice, 0.02% and 0.03%.

  9. Characterization of solid UV curable 3D printer resins for biological applications

    KAUST Repository

    Sivashankar, Shilpa; Agambayev, Sumeyra; Buttner, Ulrich; Salama, Khaled N.

    2016-01-01

    to agglutinate. Six different types of 3D printer resins were compared to test the biocompatibility. The study showed that only few among them could be used for fabrication of micro channels and that had least effect on biological molecules that could be used

  10. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  11. Separation of peroxidases from Miscanthus x giganteus, their partial characterisation and application for degradation of dyes.

    Science.gov (United States)

    Dragana, Robajac; Nikola, Gligorijević; Željko, Dželetović; Gordana, Andrejić; Olgica, Nedić

    2017-11-01

    Due to wide applicative potential of peroxidases (POXs), the search for novel sources and forms, possibly with better characteristics and performances, is justified. In this study, POXs from Miscanthus x giganteus rhizomes grown in chernozem-like soil and mine tailings were examined. Higher activity of POXs in samples originating from the metal-contaminated soil was found. The quantity of acidic isoforms was much greater than basic. The rates of reactions catalysed by acidic POX isoforms decreased slightly at 50 °C, whereas stability of basic isoforms was affected at 40 °C. Concentrations of Zn, Mn and Fe were higher in rhizomes grown in mine tailings, and negatively correlated with the concentration of proteins. Basic POX isoforms effectively degraded CBB R250, while Amidoblack 10b was predominantly degraded by acidic isoforms. Thus, Miscanthus x giganteus can be used as a source of POXs which can be applied for dye decomposition and, possibly, waste water management. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study

    Science.gov (United States)

    Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E.

    2016-11-01

    Reactive dyes contain a significant portion of colorants used in yarn dying process and also in textile industry. Since the COD content is usually high in such wastewater,we conducted a hybrid electrocoagulation-fenton method to treat the wastewater. This work describes the application of the hybrid system to the removal of chemical oxygen demand and color from the wastewater in a batch reactor. Having worked with initial pH of 3,0; temperature at 30°C, molar ratio of Fe2+/H2O2 =1/10 and the mol ratio H2O2/COD = 4, we got 88.3% COD conversion and 88.5% color removal. The COD degradation process can be explained in two phases, the first phase is instantaneous reaction and the second phase is first order reaction. The kinetic constant was 0.0053 minute-1 and the rate of COD degradation was 0.0053[COD] mg/L minute.

  13. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application

    Science.gov (United States)

    Abd-Ellah, Marwa; Moghimi, Nafiseh; Zhang, Lei; Thomas, Joseph. P.; McGillivray, Donald; Srivastava, Saurabh; Leung, Kam Tong

    2016-01-01

    Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement

  14. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications

    OpenAIRE

    Massin, Julien; Bräutigam, Maximilian; Kaeffer, Nicolas; Queyriaux, Nicolas; Field, Martin J.; Schacher, Felix H.; Popp, Jürgen; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin; Artero, Vincent

    2015-01-01

    Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push–pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material template...

  15. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes

    Directory of Open Access Journals (Sweden)

    Chinnashanmugam Saravanan

    2017-09-01

    Full Text Available In this study, the synthesis and characterization of exopolysaccharide-stabilized sliver nanoparticles (AgNPs was carried out for the degradation of industrial textile dyes. Characterization of AgNPs was done using surface plasmon spectra using UV–Vis spectroscopy, X-ray diffraction (XRD and Raman spectroscopy. The morphological nature of AgNPs was determined through transmission electron microscopy (TEM, scanning electron microscopy (SEM and atomic force microscopy (AFM, which indicated that the AgNPs were spherical in shape, with an average size of 35 nm. The thermal behaviour of AgNPs revealed that it is stable up to 437.1 °C and the required energy is 808.2J/g in TGA-DTA analysis. Ability of EPS stabilized AgNPs for degradation of azo dyes such as Methyl orange (MO and Congo red (CR showed that EPS stabilized AgNPs were found to be efficient in facilitating the degradation process of industrial textile dyes. The electron transfer takes place from reducing agent to dye molecule via nanoparticles, resulting in the destruction of the dye chromophore structure. This makes EPS-AgNPs a suitable, cheap and environment friendly candidate for biodegradation of harmful textile dyes.

  16. Mixture Design and Its Application in Cement Solidification for Spent Resin

    International Nuclear Information System (INIS)

    Gan, Xueying; Lin, Meiqing; Chen, Hui

    1994-01-01

    The study is aimed to assess the usefulness of the mixture design for spent resin immobilization in cement. Although a considerable amount of research has been carried out to determine the limits for the composition of an acceptable resin-cement mixture, no efficient experimental strategy exists that explores the full properties of waste form against composition relationship. In order to gain an overall view, this report introduces the method of mixture design and mixture analysis, and describes the design of experiment of the 5-component mixture with the constraint conditions. The mathematic models of 28-day compressive strength varying with the ingredients are fitted, and the main effect and interaction effect of two ingredients are identified quantitatively along with the graphical interpretation using the response trace plot and contour plots

  17. Do water based resins find their use in radiation cure applications?

    International Nuclear Information System (INIS)

    Ravijst, J.-P.

    1995-01-01

    There is an increasing demand for UV/EB formulation without monomers. Water dilutable oligomers offer one approach to formulations of this type. Several ways to use water as a primary means of reducing oligomer viscosities are reviewed. A number of new water dilutable acrylate resins were prepared having different functionalities and properties. Depending on the structure, viscosity decreases significantly by adding water. Good reactivity, solvent and water resistance were achieved after curing

  18. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    International Nuclear Information System (INIS)

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs

  19. Application of a weak base anion exchange resin for recovery of uranium at Uravan, Colorado, U.S.A

    International Nuclear Information System (INIS)

    Gardner, N.E.; Kunin, R.

    1976-01-01

    Resin ion-exchange technology has been used to recover uranium at the Uravan, Colorado plant for over 18 years; however, since the end of U.S. Atomic Energy Commission purchase of U 3 O 8 concentrate in 1970, it has become necessary to develop techniques for upgrading the product to meet the more stringent specifications of private sales. The standard gel type quaternary ammonium anion exchange resin had been used previously. The development of the tertiary amine anion exchange resin, Amberlite XE-299, led to an experimental program of laboratory and pilot plant work to evaluate the resin on actual plant solutions. General information on ion-exchange resin structure and chemistry is discussed. Summary data of specific test work on loading the resin, various elution schemes, resin regeneration and product purity from the pilot plant tests and comments on actual plant operation using Amberlite XE-299 resin are presented. (author)

  20. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications.

    Science.gov (United States)

    Massin, Julien; Bräutigam, Maximilian; Kaeffer, Nicolas; Queyriaux, Nicolas; Field, Martin J; Schacher, Felix H; Popp, Jürgen; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin; Artero, Vincent

    2015-06-06

    Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push-pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices.

  1. Application of AzollaFiliculoides Biomass in Acid Black 1 Dye Adsorption from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zazouli

    2014-09-01

    Full Text Available Background and purpose: The textile dyes are considered as important pollutants due to the toxicity on human and environment. Therefore, the dye removal from industrial effluents is necessary. This study evaluates the ability of Azolla for the adsorption of acid black 1 (AB1 dye from aqueous solution. Materials and Methods: This was an experimental-laboratory study. The Azolla biomass was sun dried, crushed and sieved to particle sizes in the range of 1-2 mm. Then, it treated with 0.1 M HCl for 5 h, followed by washing with distilled water, and it used as an adsorbent. The effect of study parameter was investigated, and the residues AB1 concentration was measured by DR2800 spectrophotometer at in λmax = 622 nm. Results: The results indicated that the efficiency of AB1 adsorption decreased with increased initial dye concentration. It increased with increased contact time and adsorbent. The highest adsorption efficiency was occurred at pH = 2. The equilibrium data were the best fitted on Langmuir isotherm and pseudo-second-order kinetic model. Conclusion: The Azolla could present high ability in dye removal. Therefore, it can be used as inexpensive and effective adsorbent in textile effluent treatment.

  2. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    International Nuclear Information System (INIS)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-01-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough

  3. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    International Nuclear Information System (INIS)

    Rida Tajau; Nurulhuda Mohd Yunus; Mohd Hilmi Mahmood; Mek Zah Salleh; Nik Ghazali Nik Salleh

    2013-01-01

    Full-text: The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidized palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) for example EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80 %) than the palm oil based compounds (up to 70 %), where the different is around 10-15 %. The hardness property from this two type coatings can reached until 50 % at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newton's (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photo initiator give higher adhesion property and their also showed a higher glossiness property on the glass substrate compared to the coatings containing irgacure-819 photo initiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough. (author)

  4. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Ibrahim, Mohammad Izzat [Faculty of Science, University of Malaya (UM), 50603 Kuala Lumpur (Malaysia); Yunus, Nurulhuda Mohd [Faculty of Science and Technology, National University Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  5. Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria.

    Science.gov (United States)

    Bhupathiraju, V K; Hernandez, M; Landfear, D; Alvarez-Cohen, L

    1999-09-01

    The use of the redox dye 5-cyano-2,3,-ditolyl tetrazolium chloride (CTC) for evaluating the metabolic activity of aerobic bacteria has gained wide application in recent years. In this study, we examined the utility of CTC in capturing the metabolic activity of anaerobic bacteria. In addition, the factors contributing to abiotic reduction of CTC were also examined. CTC was used in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF), that targets bacterial cell wall proteins, to quantitate the active fraction of total bacterial numbers. Facultative anaerobic bacteria, including Escherichia coli grown fermentatively, and Pseudomonas chlorophis, P. fluorescens, P. stutzeri, and P. pseudoalcalegenes subsp. pseudoalcalegenes grown under nitrate-reducing conditions, actively reduced CTC during all phases of growth. Greater than 95% of these cells accumulated intracellular CTC-formazan crystals during the exponential phase. Obligate anaerobic bacteria, including Syntrophus aciditrophicus grown fermentatively, Geobacter sulfurreducens grown with fumarate as the electron acceptor, Desulfovibrio desulfuricans subsp. desulfuricans and D. halophilus grown under sulfate-reducing conditions, Methanobacterium formicicum grown on formate, H2 and CO2, and Methanobacterium thermoautotrophicum grown autotrophically on H2 and CO2 all reduced CTC to intracellular CTC-formazan crystals. The optimal CTC concentration for all organisms examined was 5 mM. Anaerobic CTC incubations were not required for quantification of anaerobically grown cells. CTC-formazan production by all cultures examined was proportional to biomass production, and CTC reduction was observed even in the absence of added nutrients. CTC was reduced by culture fluids containing ferric citrate as electron acceptor following growth of either G. metallireducens or G. sulfurreducens. Abiotic reduction of CTC was observed in the presence of ascorbic acid, cysteine hydrochloride, dithiothreitol

  6. Application of Ni-Oxide@TiO₂ Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors.

    Science.gov (United States)

    Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku

    2016-12-20

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO₂ overlayer coating.

  7. Microwave and thermal curing of an epoxy resin for microelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, K. [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Pavuluri, S.K.; Leonard, M.T.; Desmulliez, M.P.Y. [MIcroSystems Engineering Centre (MISEC), Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Arrighi, V., E-mail: v.arrighi@hw.ac.uk [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2015-09-20

    Graphical abstract: - Highlights: • Thermal and microwave curing of a commercial epoxy resin EO1080 are compared. • Microwave curing increases cure rate and does not adversely affect properties. • The curing of EO1080 is generally autocatalytic but deviates at high conversion. • Microwave radiation has a more complex effect on curing kinetics. - Abstract: Microwave curing of thermosetting polymers has a number of advantages to natural or thermal oven curing and is considered a cost-effective alternative. Here we present a detailed study of a commercially available epoxy resin, EO1080. Samples that are thermally cured are compared to curing using a recently developed modular microwave processing system. For commercial purposes it is crucial to demonstrate that microwave curing does not adversely affect the thermal and chemical properties of the material. Therefore, the kinetics of cure and various post cure properties of the resin are investigated. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) analysis shows no significant difference between the conventionally and microwave cured samples. Differential scanning calorimetry (DSC) is used to monitor the kinetics of the curing reaction, as well as determine the thermal and ageing properties of the material. As expected, the rate of curing is higher when using microwave energy and we attempt to quantify differences compared to conventional thermal curing. No change in glass transition temperature (T{sub g}) is observed. For the first time, enthalpy relaxation measurements performed on conventional and microwave cured samples are reported and these indicate similar ageing properties at any given temperature under T{sub g}.

  8. Development of a novel resin with antimicrobial properties for dental application

    Directory of Open Access Journals (Sweden)

    Denise Tornavoi de CASTRO

    2014-10-01

    Full Text Available The adhesion of biofilm on dental prostheses is a prerequisite for the occurrence of oral diseases. Objective: To assess the antimicrobial activity and the mechanical properties of an acrylic resin embedded with nanostructured silver vanadate (β-AgVO3. Material and Methods: The minimum inhibitory concentration (MIC of β-AgVO3 was studied in relation to the species Staphylococcus aureus ATCC 25923, Streptococcus mutans ATCC 25175, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The halo zone of inhibition method was performed in triplicate to determine the inhibitory effect of the modified self-curing acrylic resin Dencor Lay - Clássico®. The surface hardness and compressive strength were examined. The specimens were prepared according to the percentage of β-AgVO3 (0%-control, 0.5%, 1%, 2.5%, 5%, and 10%, with a sample size of 9x2 mm for surface hardness and antimicrobial activity tests, and 8x4 mm for the compression test. The values of the microbiologic analysis were compared and evaluated using the Kruskal-Wallis test (α=0.05; the mechanical analysis used the Shapiro-Wilk's tests, Levene's test, ANOVA (one-way, and Tukey's test (α=0.05. Results: The addition of 10% β-AgVO3 promoted antimicrobial activity against all strains. The antimicrobial effect was observed at a minimum concentration of 1% for P. aeruginosa, 2.5% for S. aureus, 5% for C. albicans, and 10% for S. mutans. Surface hardness and compressive strength increased significantly with the addition of 0.5% β-AgVO3 (p0.05. Conclusions: The incorporation of β-AgVO3 has the potential to promote antimicrobial activity in the acrylic resin. At reduced rates, it improves the mechanical properties, and, at higher rates, it does not promote changes in the control.

  9. Microwave and thermal curing of an epoxy resin for microelectronic applications

    International Nuclear Information System (INIS)

    Johnston, K.; Pavuluri, S.K.; Leonard, M.T.; Desmulliez, M.P.Y.; Arrighi, V.

    2015-01-01

    Graphical abstract: - Highlights: • Thermal and microwave curing of a commercial epoxy resin EO1080 are compared. • Microwave curing increases cure rate and does not adversely affect properties. • The curing of EO1080 is generally autocatalytic but deviates at high conversion. • Microwave radiation has a more complex effect on curing kinetics. - Abstract: Microwave curing of thermosetting polymers has a number of advantages to natural or thermal oven curing and is considered a cost-effective alternative. Here we present a detailed study of a commercially available epoxy resin, EO1080. Samples that are thermally cured are compared to curing using a recently developed modular microwave processing system. For commercial purposes it is crucial to demonstrate that microwave curing does not adversely affect the thermal and chemical properties of the material. Therefore, the kinetics of cure and various post cure properties of the resin are investigated. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) analysis shows no significant difference between the conventionally and microwave cured samples. Differential scanning calorimetry (DSC) is used to monitor the kinetics of the curing reaction, as well as determine the thermal and ageing properties of the material. As expected, the rate of curing is higher when using microwave energy and we attempt to quantify differences compared to conventional thermal curing. No change in glass transition temperature (T g ) is observed. For the first time, enthalpy relaxation measurements performed on conventional and microwave cured samples are reported and these indicate similar ageing properties at any given temperature under T g

  10. Synthesis, Characterization and Printing Application of Solvent Dyes Based on 2-Hydroxy-4-n-octyloxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2011-01-01

    Full Text Available Solvent dyes have been prepared by the coupling of diazo solution of different aromatic amines with 2-hydroxy-4-n-octyloxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-Visible spectral data have also been discussed in terms of structure property relationship. The printing of all the dyes on cotton fiber was monitored. The result shows that better hue was obtained on printing on cotton fiber and it is resulted in yellow to reddish brown colorations which showed a good fastness to light, with poor to good fastness to washing, perspiration and sublimation, however it shows poor rubbing fastness.

  11. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites

    International Nuclear Information System (INIS)

    Ahmad, Shahid Nisar; Hakeem, Saira; Alvi, Rashid Ahmed; Farooq, Khawar; Farooq, Naveed; Yasmin, Farida; Saeed, Sadaf

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were synthesized by catalytic decomposition of hydrocarbon gas using chemical vapor deposition method. Synthesis was done at different growth temperatures and catalyst ratios. These MWCNTs were dispersed in epoxy resin (E-51) and their effect on mechanical strength of epoxy nanocomposites was studied. Increase in the mechanical strength of epoxy was observed with the addition of CNTs. The surface characterization was done by using optical microscope and scanning electron microscope (SEM). Mechanical properties were determined by the general tensile strength testing method.

  12. Application of LC-MS to the analysis of dyes in objects of historical interest

    Science.gov (United States)

    Zhang, Xian; Laursen, Richard

    2009-07-01

    High-performance liquid chromatography (HPLC) with photodiode array and mass spectrometric detection permits dyes extracted from objects of historical interest or from natural plant or animal dyestuffs to be characterized on the basis of three orthogonal properties: HPLC retention time, UV-visible spectrum and molecular mass. In the present study, we have focused primarily on yellow dyes, the bulk of which are flavonoid glycosides that would be almost impossible to characterize without mass spectrometric detection. Also critical for this analysis is a method for mild extraction of the dyes from objects (e.g., textiles) without hydrolyzing the glycosidic linkages. This was accomplished using 5% formic acid in methanol, rather than the more traditional 6 M HCl. Mass spectroscopy, besides providing the molecular mass of the dye molecule, sometimes yields additional structural data based on fragmentation patterns. In addition, coeluting compounds can often be detected using extracted ion chromatography. The utility of mass spectrometry is illustrated by the analysis of historical specimens of silk that had been dyed yellow with flavonoid glycosides from Sophora japonica (pagoda tree) and curcumins from Curcuma longa (turmeric). In addition, we have used these techniques to identify the dye type, and sometimes the specific dyestuff, in a variety of objects, including a yellow varnish from a 19th century Tibetan altar and a 3000-year-old wool mortuary textiles, from Xinjiang, China. We are using HPLC with diode array and mass spectrometric detection to create a library of analyzed dyestuffs (>200 so far; mostly plants) to serve as references for identification of dyes in objects of historical interest.

  13. The application of poly(amidoamine dendrimers for modification of jute yarns: Preparation and dyeing properties

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zolriasatein

    2015-03-01

    Full Text Available In this study, poly(amidoamine (PAMAM G-2 dendrimer was used for jute yarn. Fourier transform infrared spectroscopy (FT-IR revealed that all carbonyl groups of jute fibers reacted with amino groups of polyamidoamine dendrimers. SEM observation indicated the good dispersion PAMAM dendrimers. Jute yarns pretreated with PAMAM dendrimer displayed markedly enhanced color strength with reactive dyes, even when dyeing had been carried out in the absence of electrolyte or alkali. Dendrimer-treated jute yarn showed much better light-fastness than untreated jute yarn.

  14. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.

    Science.gov (United States)

    Geiman, Irina; Leona, Marco; Lombardi, John R

    2009-07-01

    The applicability of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.

  15. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  16. Synthesis, geometry optimization, spectroscopic investigations (UV/Vis, excited states, FT-IR) and application of new azomethine dyes

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Kumar, Rakesh; Dikusar, Evgenij; Yahyaei, Hooriye; Khaleghian, Mehrnoosh

    2017-11-01

    In the present work, the quantum theoretical calculations of the molecular structures of the four new synthesized azomethine dyes such as: (E)-N-(4-butoxybenzylidene)-4-((E)-phenyldiazenyl)aniline (PAZB-6), (E)-N-(4-(benzyloxy)benzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-7), 4-((E)-4-((E)-phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8), (E)-N-(4-methoxybenzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-9) have been predicted using Density Functional Theory in the solvent Dimethylformamide. The geometries of the azomethine dyes were optimized by PBE1PBE/6-31+G* level of theory. The electronic spectra of the title compounds in the solvent DMF was carried out by TDPBE1PBE/6-31+G* method. FT-IR spectra of the title compounds are recorded and discussed. Frontier molecular orbitals, molecular electrostatic potential, electronic properties, natural charges and Natural Bond Orbital (NBO) analysis of the mentioned compounds were investigated and discussed by theoretical calculations. The azomethine dyes were synthesized after quantum chemical modeling for optical applications. A new study of anisotropy of thermal and electrical conductivity of the colored stretched PVA-films have been undertaken.

  17. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  18. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    Science.gov (United States)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-12-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  19. Radiation chemistry of anionic disazo dyes in Cellophane films applications for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, W.L.William L

    2003-06-01

    Thin transparent Cellophane films containing anionic disazo 'Direct' dyes, e.g. blue Cellophanes, have long been used as monitors of large absorbed doses of ionizing radiation (10-300 kGy) and especially for mapping electron-beam dose profiles. Examples of dyes for such purposes are variations on forms of the disazo dyes, Direct Orange, Direct Violet or Direct Blue. The films have a thickness of 25.6 {mu}m (+0.1 {mu}m) and are available in rolls of either 30 mx0.51 m or 60 mx0.76 m. Such dyed Cellophanes are typically lightfast but can readily be bleached irreversibly by ionizing radiation, as a means of dosimetry using spectrophotometry as the analytical tool. The radiation response is markedly dependent on temperature and relative humidity during irradiation. The reaction is initiated mainly by dehydrogenation and nitrosation upon electrophilic reductive attack on the dye molecule by the thermal electrons, at initial reaction rate constants in the range 10{sup 5}-10{sup 6} s{sup -1}.

  20. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.

    Science.gov (United States)

    Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li

    2015-05-01

    An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Application of a non-hazardous vital dye for cell counting with automated cell counters.

    Science.gov (United States)

    Kim, Soo In; Kim, Hyun Jeong; Lee, Ho-Jae; Lee, Kiwon; Hong, Dongpyo; Lim, Hyunchang; Cho, Keunchang; Jung, Neoncheol; Yi, Yong Weon

    2016-01-01

    Recent advances in automated cell counters enable us to count cells more easily with consistency. However, the wide use of the traditional vital dye trypan blue (TB) raises environmental and health concerns due to its potential teratogenic effects. To avoid this chemical hazard, it is of importance to introduce an alternative non-hazardous vital dye that is compatible with automated cell counters. Erythrosin B (EB) is a vital dye that is impermeable to biological membranes and is used as a food additive. Similarly to TB, EB stains only nonviable cells with disintegrated membranes. However, EB is less popular than TB and is seldom used with automated cell counters. We found that cell counting accuracy with EB was comparable to that with TB. EB was found to be an effective dye for accurate counting of cells with different viabilities across three different automated cell counters. In contrast to TB, EB was less toxic to cultured HL-60 cells during the cell counting process. These results indicate that replacing TB with EB for use with automated cell counters will significantly reduce the hazardous risk while producing comparable results. Copyright © 2015 Logos Biosystems, Inc. Published by Elsevier Inc. All rights reserved.

  2. Synthesis, Characterization, and Application of Gold Nanoparticles in Green Nanochemistry Dye-Sensitized Solar Cells

    Science.gov (United States)

    2012-06-01

    dendrimers . The NPs were found to have discrete absorption and fluorescence from the UV spectrum to near infrared. Bauer et al. (6) and McFarland et al...of TiO2 nanoparticles, and are transported to the electrode. An I - /I3 - is used as a redox couple to replenish electrons to the dye molecules

  3. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane.

    Science.gov (United States)

    Zereshki, Sina; Daraei, Parisa; Shokri, Amin

    2018-05-18

    Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Synthesis, optical and electrochemical properties of Zn-porphyrin for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kotteswaran, S.; Pandian, M. Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Chennai-603110, Tamilnadu (India)

    2016-05-23

    Zn-Porphyrin dye has been synthesized by the reaction between aldehydes and pyrrole. The dye structure was confirmed by {sup 1}H NMR, {sup 13}C NMR spectrum. The functional group of the dye molecule was confirmed by FTIR spectrum. The UV-Vis-NIR absorption spectrum of Zn-Porphyrin in DMF solution was recorded in spectrophotometer. The UV-Vis NIR spectrum of dye exhibits a strong Soret band and Q-band. Cyclic Voltammograms were obtained with three electrode systems: Pt as counter electrode, saturated calomel used as a reference electrode and glassy carbon as working electrode at a scan rate of 100 mV/s. The curves recorded the oxidation of 0.5 mM compound Zn-Porphyrin in a dichloromethane solution containing 0.1M TBAP as supporting electrolyte, reveal two successive quasi reversible redox couples with the first anodic and cathodic peak potentials of -0.2 V and -1 V. The second anodic and cathodic peak potentials are 0.82 V and 0.01 V respectively.

  5. A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption.

    Science.gov (United States)

    Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia

    2013-01-01

    The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe(3)O(4) particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g(-1) by using the first derivative method. The adsorption capacities (q(m)) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g(-1), respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.

  6. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  7. Application of membrane technologies for the treatment of textile wastewater and synthetic textile dyes

    International Nuclear Information System (INIS)

    Aouni, A.; Bes-Pia, A.; Fersi, C.; Dhahbi, M.; Cuartas-Uribe, B.; Alcaina-Miranda, M. I.

    2009-01-01

    Textile industry is characterized by using a great variety of chemicals and by large water consumption. In this way, textile effluents contains many types of dyes, detergents, solvents and salts depending on the particular textile mill processes (dyeing, printing, finishing...) and on the raw matter. For those reasons, textile industry is one of the main sources of industrial pollution, producing effluents discharges characterized by high conductivities and chemical oxygen demand (COD) values and strong colour. Process selection and operating conditions are important issues to optimize technically and economically the textile effluent treatment. This work presents the results of the laboratory-scale membrane experiments of textile industry effluents and synthetic textile dyes. Different types of Ultrafiltration (UF) and Nano filtration (NF) membranes were evaluated for permeate flux and their suitability in separating COD, colour, conductivity. Experiments demonstrated that membrane treatment is a very promising advanced treatment option for pollution control for textile industry effluents. The results of this work show that the direct ultrafiltration seems to be a realistic method in the pretreatment of the textile wastewater. In fact, NF process was successfully used to improve permeate quality of synthetic dyeing textile wastewater, but this process presented some limitations in the treatment of textile industry effluents because of membrane fouling problems. So, this process requires an efficient and appropriate technique such as ultrafiltration as a pre-treatment step for textile wastewater reuse. For direct nano filtration of synthetic textile dyes aqueous solutions, with a weak salt concentration (500 ppm), good results were obtained. More than 95 pour cent of color was removed from the treated water accompanied with a reduction of 92 pour cent of conductivity and COD. Based on the experiments; NF membranes are suitable for producing permeate of reusable

  8. Robust synthesis of epoxy resin-filled microcapsules for application to self-healing materials.

    Science.gov (United States)

    Bolimowski, Patryk A; Bond, Ian P; Wass, Duncan F

    2016-02-28

    Mechanically and thermally robust microcapsules containing diglycidyl ether bisphenol A-based epoxy resin and a high-boiling-point organic solvent were synthesized in high yield using in situ polymerization of urea and formaldehyde in an oil-in-water emulsion. Microcapsules were characterized in terms of their size and size distribution, shell surface morphology and thermal resistance to the curing cycles of commercially used epoxy polymers. The size distribution of the capsules and characteristics such as shell thickness can be controlled by the specific parameters of microencapsulation, including concentrations of reagents, stirrer speed and sonication. Selected microcapsules, and separated core and shell materials, were analysed using thermogravimetric analysis and differential scanning calorimetry. It is demonstrated that capsules lose minimal 2.5 wt% at temperatures no higher than 120°C. These microcapsules can be applied to self-healing carbon fibre composite structural materials, with preliminary results showing promising performance. © 2016 The Author(s).

  9. Bond Strength of Resin Composite to Dentin with Different Adhesive Systems: Influence of Relative Humidity and Application Time.

    Science.gov (United States)

    Amsler, Fabienne; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-06-01

    To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.

  10. Dyes for displays

    Science.gov (United States)

    Claussen, U.

    1984-01-01

    The improvement of contrast and visibility of LCD by two different means was undertaken. The two methods are: (1) development of fluorescent dyes to increase the visibility of fluorescent activated displays (FLAD); and (2) development of dichroic dyes to increase the contrast of displays. This work was done in close cooperation with the electronic industry, where the newly synthesized dyes were tested. The targets for the chemical synthesis were selected with the help of computer model calculations. A marketable range of dyes was developed. Since the interest of the electronic industries concerning FLAD was low, the investigations were stopped. Dichroic dyes, especially black mixtures with good light fastness, order parameter, and solubility in nematic phases were developed. The application of these dyes is restricted to indoor use because of an increase of viscosity below -10 C. Applications on a technical scale, e.g., for the automotive industry, will be possible if the displays work at temperatures down to -40 C. This problem requires a complex optimization of the dye/nematic phase system.

  11. Growth of TiO2-ZrO2 Binary Oxide Electrode for Dye Sensitized Solar Cell Application

    International Nuclear Information System (INIS)

    Than Than Win; Aye Myint Myat Kywe; Shwe Yee Win; Honey Thaw; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    TiO2-ZrO2 fine binary oxide was prepared by mechanochemical milling process to be homogeneous binary oxide powder. TiO2-ZrO2 paste was deposited on microscopic glass slide by rolling. It was immersed in the henna solution and annealed at 100C for 2h. It was deposited onto another glass slide and used as counter electrode (second electrode). Two glass slides were offset and two binder clips were used to hold the electrodes together. Photovoltaic properties of TiO2-ZrO2 cell were measured and it was expected to utilize the dye sensitized solar cells application.

  12. The differences of saliva pH before and after application of Bis-GMA resin based-pit and fissure sealant

    Directory of Open Access Journals (Sweden)

    Ayub Irmadani Anwar

    2016-06-01

    Full Text Available Pit and fissure sealant applications is one way to prevent caries. One of the effective ingredient as a pit and fissure sealant is a Bis-GMA resin. One of the active components  of  Bis-GMA  resin  is  sodium  fluoride,  which is capable  of releasing fluoride ions to the tooth surface and able to improve the repair and remineralization process through the replacement  of  calcium and phosphate ions found in saliva to increase the pH of saliva. This study was to determine the effect of pit and fissure sealant applications made from Bis-GMA resin to pH of saliva in children aged 6-12 years. The study design is pre and post test with control group design. Saliva samples were derived from 15 pediatric patients has met the criteria. The pH of saliva were taken before and after the application of pit and fissure sealant made from Bis-GMA and measured with pH meter. This study used a non-parametric test, the Wilcoxon Signed Rank test. The results of this study are also supported by the results of statistical tests showed p-: 0.005 (p<0.05 value, which means that there are significant differences in pH of saliva before and after the application of pit and fissure sealant made from Bis-GMA resin.

  13. Application of ionizing radiation on industry waste treatment I. radiolysis of standard reactive dye Cibacron violet

    International Nuclear Information System (INIS)

    Winarti Andayani; Agustin Sumartono

    1999-01-01

    The effect of aeration, irradiation dose and pH on radiation degradation of reactive dye cibacron violet 2r in aqueous solution have been studied. Observation was done on the absorption spectrum before and after irradiation at various conditions. The percentage of degraded sample was analyzed by using HPLC with UV detector. The percentage of degradation was higher by aeration during irradiation. It suggest that oxygen is important for degradation of the dye molecule. Irradiation at neutral pH is preferred to obtain maximum degradation, since pH may affect the reactivity of the radicals produced by the radiolysis of water molecules. One of the degradation product that could be detected was oxalic acid. (author)

  14. Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes

    International Nuclear Information System (INIS)

    Prado, Alexandre G.S.; Costa, Leonardo L.

    2009-01-01

    The nanotubes of titania were synthesized in a hydrothermal system and characterized by scanning electronic microscopy (SEM), FT-IR, FT-Raman, and surface charge density by surface area analyzer. These nanomaterials were applied to photocatalyse malachite green dye degradation. Photodegradation capacity of TiO 2 nanotubes was compared to TiO 2 anatase photoactivity. Malachite dye was completely degraded in 75 and 105 min of reaction photocatalysed by TiO 2 nanotubes and TiO 2 anatase, respectively. Catalysts displayed high photodegradation activity at pH 4. TiO 2 nanotubes were easily recycled whereas the reuse of TiO 2 anatase was not effective. Nanotubes maintained 80% of their activity after 10 catalytic cycles and TiO 2 anatase presented only 8% of its activity after 10 cycles.

  15. Dye visualization near a three-dimensional stagnation point: application to the vortex breakdown bubble

    DEFF Research Database (Denmark)

    Brøns, Morten; Thompson, M. C.; Hourigan, K.

    2009-01-01

    flows are typically visualized. Predictions based on the model are made for the steady vortex breakdown bubble in a torsionally driven cylinder and compared with computational fluid dynamics predictions and experimental observations. Previous experimental observations using tracer visualization...... techniques have suggested that even for low-Reynolds-number flows, the steady vortex breakdown bubble in a torsionally driven cylinder is not axisymmetric and has an inflow/outflow asymmetry at its tail. Recent numerical and theoretical studies show that the asymmetry of the vortex breakdown bubble......, and consequently its open nature, can be explained by the very small imperfections that are present in any experimental rig. Distinct from this, here it is shown that even for a perfectly axisymmetric flow and breakdown bubble, the combined effect of dye diffusion and the inevitable small errors in the dye...

  16. The Application of Electrospun Titania Nanofibers in Dye-sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Zukal, Arnošt; Trčková-Baraková, J.; Chandiran, A. K.; Nazeeruddin, M. K.; Grätzel, M.; Kavan, Ladislav

    2013-01-01

    Roč. 67, č. 3 (2013), s. 149-154 ISSN 0009-4293 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA ČR GA203/08/0604 Institutional support: RVO:61388955 Keywords : dye-sensitized solar cells * electrospinning * titanium dioxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.091, year: 2013

  17. Application of graphene-based nanostructures in dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Yum, J. H.; Graetzel, M.

    2013-01-01

    Roč. 250, č. 12 (2013), s. 2643-2648 ISSN 0370-1972 R&D Projects: GA ČR GA13-07724S; GA ČR GA13-31783S Grant - others:European Commission CORDIS(XE) FP7-ENERGY-2010-FET, projekt 256617 Institutional support: RVO:61388955 Keywords : counter electrode * dye-sensitized solar cells * electrocatalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.605, year: 2013

  18. The application of electrospun titania nanofibers in dye-sensitized solar cells.

    Science.gov (United States)

    Krysova, Hana; Zukal, Arnost; Trckova-Barakova, Jana; Chandiran, Aravind Kumar; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Kavan, Ladislav

    2013-01-01

    Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated.

  19. Coomassie Brilliant Blue G-250 Dye: An Application for Forensic Fingerprint Analysis.

    Science.gov (United States)

    Brunelle, Erica; Le, Anh Minh; Huynh, Crystal; Wingfield, Kelly; Halámková, Lenka; Agudelo, Juliana; Halámek, Jan

    2017-04-04

    The Bradford reagent, comprised of the Coomassie Brilliant Blue G-250 dye, methanol, and phosphoric acid, has been traditionally used for quantifying proteins. Use of this reagent in the Bradford assay relies on the binding of the Coomassie Blue G-250 dye to proteins. However, the ability of the dye to react with a small group of amino acids (arginine, histidine, lysine, phenylalanine, tyrosine, and tryptophan) makes it a viable chemical assay for fingerprint analysis in order to identify the biological sex of the fingerprint originator. It is recognized that the identification of biological sex has been readily accomplished using two other methods; however, both of those systems are reliant upon a large group of amino acids, 23 to be precise. The Bradford assay, described here, was developed specifically to aid in the transition from targeting large groups of amino acids, as demonstrated in the previous studies, to targeting only a single amino acid without compromising the intensity of the response and/or the ability to differentiate between two attributes. In this work, we aim to differentiate between female fingerprints and male fingerprints.

  20. The structure optimization of gas-phase surface discharge and its application for dye degradation

    Science.gov (United States)

    Ying, CAO; Jie, LI; Nan, JIANG; Yan, WU; Kefeng, SHANG; Na, LU

    2018-05-01

    A gas-phase surface discharge (GSD) was employed to optimize the discharge reactor structure and investigate the dye degradation. A dye mixture of methylene blue, acid orange and methyl orange was used as a model pollutant. The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48, screw pitch between a high-voltage electrode of 9.7 mm, high-voltage electrode wire diameter of 0.8 mm, dielectric tube thickness of 2.0 mm and tube inner diameter of 16.13 mm presented a better ozone (O3) generation efficiency. Furthermore, a larger screw pitch and smaller wire diameter enhanced the O3 generation. After the dye mixture degradation by the optimized GSD system, 73.21% and 50.74% of the chemical oxygen demand (COD) and total organic carbon removal rate were achieved within 20 min, respectively, and the biochemical oxygen demand (BOD) and biodegradability (BOD/COD) improved.

  1. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    Science.gov (United States)

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A

  2. Direct thermal dyes

    Science.gov (United States)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  3. Effect of chlorhexidine application on the bond strength of resin core to axial dentin in endodontic cavity

    Directory of Open Access Journals (Sweden)

    Yun-Hee Kim

    2012-11-01

    Full Text Available Objectives This study evaluated the influence of chlorhexidine (CHX on the microtensile bonds strength (µTBS of resin core with two adhesive systems to dentin in endodontic cavities. Materials and Methods Flat dentinal surfaces in 40 molar endodontic cavities were treated with self-etch adhesive system, Contax (DMG and total-etch adhesive system, Adper Single Bond 2 (3M ESPE after the following surface treatments: (1 Priming only (Contax, (2 CHX for 15 sec + rinsing + priming (Contax, (3 Etching with priming (Adper Single Bond 2, (4 Etching + CHX for 15 sec + rinsing + priming (Adper Single Bond 2. Resin composite build-ups were made with LuxaCore (DMG using a bulk method and polymerized for 40 sec. For each condition, half of specimens were submitted to µTBS after 24 hr storage and half of them were submitted to thermocycling of 10,000 cycles between 5℃ and 55℃ before testing. The data were analyzed using ANOVA and independent t-test at a significance level of 95%. Results CHX pre-treatment did not affect the bond strength of specimens tested at the immediate testing period, regardless of dentin surface treatments. However, after 10,000 thermocycling, all groups showed reduced bond strength. The amount of reduction was greater in groups without CHX treatments than groups with CHX treatment. These characteristics were the same in both self-etch adhesive system and total-etch adhesive system. Conclusions 2% CHX application for 15 sec proved to alleviate the decrease of bond strength of dentin bonding systems. No significant difference was shown in µTBS between total-etching system and self-etching system.

  4. SIMPLE METHOD TO PRODUCE NANOPOROUS CARBON FOR VARIOUS APPLICATIONS BY PYROLYSIS OF SPECIALLY SYNTHESIZED PHENOLIC RESIN

    Directory of Open Access Journals (Sweden)

    Imam Prasetyo

    2013-08-01

    Full Text Available Nanoporous carbon materials, a unique and useful material, have been widely used in many technologies such as separation processes, catalysis, energy storage, gas storage, energy conversion, etc. due to its high specific surface area and tunable porosity. In this research, nanoporous carbons were prepared using simple and innovative approach based on structural array of phenolic resin polymer without activation during carbonization process. The effect of phenolic reactant type and composition on pore structure and carbon surface morphologies was studied. Nanoporous carbon derived from resorcinol formaldehyde (RF and from resorcinol phenol formaldehyde (RPF polymers was suitable for electrode material supercapacitor and CO2 capture medium. RF-derived and RPF-derived carbons provide electrode material supercapacitor with specific capacitance up to 246 F/g, whereas carbonized RPF exhibited CO2 uptake of 10.63 mmol/g (at 3.5 MPa 298 K. Nanoporous carbon derived from resorcinol para-tert-butyl phenol formaldehyde (RTBPF polymer exhibited attractive characteristics as methane storage media with methane uptake capacity as high as 8.98 mmol/g (at 3.5 MPa 298 K.

  5. Merger of waste of lead in polyester resin for application of protection barriers

    International Nuclear Information System (INIS)

    Barros, Frieda Saicla; Paredes, Ramon Siguifredo Cortes

    2010-01-01

    This paper's main objective is the use of powdered lead waste obtained from the recycling of batteries embedded in polyester resin to be used as a protective barrier in environments subject to radiation. The aim is to enable a more economical procedure which is faster and more practical for use in walls where it is necessary to use protective barrier. This justification is reinforced having in sight the use of byproducts generated by industries, recycling them and using them as components in the development of barriers against ionizing radiation. In this study, we observed the morphological and physical-chemical properties of isolated and associated materials and performance analysis of the composite with respect to the attenuation properties for gamma rays, by means of experimental tests. For mixtures with 40% of waste lead, value referenced in mass, we obtained satisfactory results on the screen. Thus, we were able to combine the good performance of the composite with the reduction of environmental liabilities, in view of the recycling process of lead. (author)

  6. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  7. Effect of sonic application mode on the resin-dentin bond strength and dentin permeability of self-etching systems.

    Science.gov (United States)

    Mena-Serrano, Alexandra; Costa, Thays Regina Ferreira da; Patzlaff, Rafael Tiago; Loguercio, Alessandro Dourado; Reis, Alessandra

    2014-10-01

    To compare manual and sonic adhesive application modes in terms of the permeability and microtensile bond strength of a self-etching adhesive applied in the one-step or two-step protocol. Self-etching All Bond SE (Bisco) was applied as a one- or a two-step adhesive under manual or sonic vibration modes on flat occlusal dentin surfaces of 64 human molars. Half of the teeth were used to measure the hydraulic conductance of dentin at 200 cm H₂O hydrostatic pressure for 5 min immediately after the adhesive application. In the other half, composite buildups (Opallis) were constructed incrementally to create resin-dentin sticks with a cross-sectional area of 0.8 mm² to be tested in tension (0.5 mm/min) immediately after restoration placement. Data were analyzed using a two-way ANOVA and Tukey's test (α = 0.05). The fluid conductance of dentin was significantly reduced by the sonic vibration mode for both adhesives, but no effect on the bond strength values was observed for either adhesive. The sonic application mode at an oscillating frequency of 170 Hz can reduce the fluid conductance of the one- and two-step All Bond SE adhesive when applied on dentin.

  8. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  9. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B [Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo (Russian Federation)

    2004-02-28

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  10. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    International Nuclear Information System (INIS)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B

    2004-01-01

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  11. Clinical application of removable partial dentures using thermoplastic resin-part I: definition and indication of non-metal clasp dentures.

    Science.gov (United States)

    Fueki, Kenji; Ohkubo, Chikahiro; Yatabe, Masaru; Arakawa, Ichiro; Arita, Masahiro; Ino, Satoshi; Kanamori, Toshikazu; Kawai, Yasuhiko; Kawara, Misao; Komiyama, Osamu; Suzuki, Tetsuya; Nagata, Kazuhiro; Hosoki, Maki; Masumi, Shin-Ichi; Yamauchi, Mutsuo; Aita, Hideki; Ono, Takahiro; Kondo, Hisatomo; Tamaki, Katsushi; Matsuka, Yoshizo; Tsukasaki, Hiroaki; Fujisawa, Masanori; Baba, Kazuyoshi; Koyano, Kiyoshi; Yatani, Hirofumi

    2014-01-01

    This position paper proposes a definition and naming standard for removable partial dentures (RPDs) using thermoplastic resin, and presents a guideline for clinical application. A panel of 14 experts having broad experience with clinical application of RPDs using thermoplastic resin was selected from members of the Japan Prosthodontic Society. At a meeting of the panel, "non-metal clasp denture" was referred as the generic name of RPDs with retentive elements (resin clasps) made of thermoplastic resin. The panel classified non-metal clasp dentures into two types: one with a flexible structure that lacks a metal framework and the other having a rigid structure that includes a metal framework. According to current prosthetic principles, flexible non-metal clasp dentures are not recommended as definitive dentures, except for limited cases such as patients with a metal allergy. Rigid non-metal clasp dentures are recommended in cases where patients will not accept metal clasps for esthetic reasons. Non-metal clasp dentures should follow the same design principles as conventional RPDs using metal clasps. Copyright © 2013 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Smectite clays of Serbia and their application in adsorption of organic dyes

    Science.gov (United States)

    Milošević, Maja; Logar, Mihovil

    2014-05-01

    Colorants and dyes are currently available in over a 100.000 different species and several biggest industries are using them daily in their manufacture processes (textile, cosmetics, food industry, etc.). Since colorants are easily dissoluble in water they pass through filter membranes without further decomposing and in that manner they end up in the environment. The main goal of this work is to apply certain methods in determining the suitability of individual clay in adsorbing and removing colorants from polluted waters. For this study we have chosen four different raw clays from three regions in Serbia: Svrljig (B), Bogovina (Bo) and Slatina-Ub (C and V) and as colorant - methylene blue dye (MB (MERCK, for analytical purposes)). Experiments where carried out to determine the sample structure (XRD and IR), grain size (granulometry), cationic exchange capacity (CEC via spectrophotometry using MB) and adsorption capabilities (spectrophotometry and fluorimetry using MB). XRD and IR data are showing that the samples are smectite clays where samples B i Bo are mainly montmorillonite while C and V are montmorillonite-illite clays. Granulometric distribution results indicate that samples B i Bo have smaller grain size, less that 1μ (over 60%) whereas the samples C and V are more coarse grained (40% over 20μ). This grain distribution is affecting their specific surface area in the manner that those coarse grained samples have smaller specific surface area. Cationic exchange capacity determined with methylene blue indicate that montmorillonite samples have larger CEC (B = 37 meq/100g, Bo = 50 meq/100g) and montmorillonite-illite samples smaller CEC (V = 5 meq/100g, V = 3 meq/100g). Fluorimetry measurement results gave us a clear distinction between those with higher and smaller adsorption capability. Montmorillonite samples (B and Bo) with higher CEC values and smaller grain size are adsorbing large amounts of methylene blue witch is visible by absence of fluorimetric

  13. Characterization of ion exchange resins for nuclear power plants: Application and validation of a dedicated model

    International Nuclear Information System (INIS)

    Mabrouk, A.

    2012-01-01

    In pressurized water reactor, ion exchange resins (IER) are used in systems purification. In this thesis, a qualitative study has been performed to predict the behavior of IER while used in nuclear plants conditions. Then, we searched to characterize the IER behavior in column through a quantitative study using analytical solutions. But these solutions worked only for particular cases. In order to find a general solution, we used a new numerical solution: OPTIPUR. To validate this general solution and get a better understanding of the kinetic in column, we performed an experimental study to characterize the resistance to mass transfer in column and to study the sensibility on the parameters influencing this phenomenon. This study is based on the characterization of the initial leakage (initial pollutant concentration at the column outlet). We tested numerous parameters on the initial leakage. We understood the importance of the superficial velocity and indeed of the hydrodynamic conditions on the initial leakage. These numerous results about initial leakage were modeled with an empirical correlation of Dwivedi and Upadhyay in order to validate it. Then, we modeled our results with the two options of OPTIPUR software: option Mass Transfer Coefficient (MTC) and Nernst-Planck (NP). These options encircle experimental results. The MTC option of OPTIPUR gives lower results while those obtained with the NP option are higher than the experimental results. We observed also that only the NP option was valid for a ternary exchange. We proposed solutions to get a better fit with the results obtained with OPTIPUR. We performed other simulations to check the prediction abilities of the software for longer experiments (until the IER saturation). The tendencies were those expected. The OPTIPUR software showed is accuracy and robustness to study column kinetic. (author)

  14. Titanium dioxide nanoparticles biosynthesis for dye sensitized solar cells application: review

    CSIR Research Space (South Africa)

    Mbonyiryivuze, A

    2015-08-01

    Full Text Available has been made by Professor Michael Grätzel and co-workers at the Swiss Federal Institute of Technology (EPFL). They have developed a state solid version of DSSC called perovskite-sensitized solar cells that is fabricated by a sequential deposition.... Gao, M. K. Nazzeeruddin and M. Gratzel, “Sequential deposition as route to high performance perovskite-sensitized solar cells.” Nature, vol. 499, pp. 316-319, 2013. [21] K. H. a. H. Arakawa, Dye-sensitized solar cells, Tsukuba, Japan: National...

  15. Highly transparent and conducting boron doped zinc oxide films for window of Dye Sensitized Solar Cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod, E-mail: vinod.phy@gmail.com [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Department of Physics, Gurukula Kangri University, Haridwar 249404 (India); Singh, R.G. [Department of Electronic Science, Maharaja Agrasen College University of Delhi, New Delhi 110096 (India); Singh, Fouran [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Purohit, L.P. [Department of Physics, Gurukula Kangri University, Haridwar 249404 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Synthesis of Boron doped ZnO (ZnO:B) films. Black-Right-Pointing-Pointer Minimum of resistivity is observed to be 7.9 Multiplication-Sign 10{sup -4} {Omega} cm. Black-Right-Pointing-Pointer Maximum transmittance {approx}91% for 450 Degree-Sign C annealed films. Black-Right-Pointing-Pointer Applicable for window materials in Dye Sensitized Solar Cell. - Abstract: Highly transparent and conducting boron doped zinc oxide (ZnO:B) films grown by sol-gel method are reported. The annealing temperature is varied from 350 to 550 Degree-Sign C and doping concentration of boron is kept fixed for 0.6 at.% for all the films. At low temperature the stress in the films is compressive, which becomes tensile for the films annealed at higher temperature. A minimum resistivity of 7.9 Multiplication-Sign 10{sup -4} {Omega} cm and maximum transmittance of {approx}91% are observed for the film annealed at 450 Degree-Sign C. This could be attributed to minimum stress of films, which is further evident by the evolution of A{sub 1} and defect related Raman modes without any shifting in its position. Such kind of highly transparent and conducting ZnO:B thin film could be used as window material in Dye Sensitized Solar Cell (DSSC).

  16. P(MMA-EMA Random Copolymer Electrolytes Incorporating Sodium Iodide for Potential Application in a Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Nurul Akmaliah Dzulkurnain

    2015-02-01

    Full Text Available Polymer electrolytes based on 90 wt% of methyl methacrylate and 10 wt% of ethyl methacrylate (90MMA-co-10EMA incorporating different weight ratios of sodium iodide were prepared using the solution casting method. The complexation between salt and copolymer host has been investigated using Fourier transform infrared spectroscopy. The ionic conductivity and thermal stability of the electrolytes were measured using impedance spectroscopy and differential scanning calorimetry, respectively. Scanning electron microscopy was used to study the morphology of the polymer electrolytes. The ionic conductivity and glass transition temperature increased up to 20 wt% of sodium iodide (5.19 × 10−6 S·cm−1 and decreased with the further addition of salt concentration, because of the crosslinked effect. The morphology behavior of the highest conducting sample also showed smaller pores compared to the other concentration. The total ionic transference number proved that this system was mainly due to ions, and the electrochemical stability window was up to 2.5 V, which is suitable for a dye-sensitized solar cell application. This sample was then tested in a dye-sensitized solar cell and exhibited an efficiency of 0.62%.

  17. Application of RBF neural network improved by peak density function in intelligent color matching of wood dyeing

    International Nuclear Information System (INIS)

    Guan, Xuemei; Zhu, Yuren; Song, Wenlong

    2016-01-01

    According to the characteristics of wood dyeing, we propose a predictive model of pigment formula for wood dyeing based on Radial Basis Function (RBF) neural network. In practical application, however, it is found that the number of neurons in the hidden layer of RBF neural network is difficult to determine. In general, we need to test several times according to experience and prior knowledge, which is lack of a strict design procedure on theoretical basis. And we also don’t know whether the RBF neural network is convergent. This paper proposes a peak density function to determine the number of neurons in the hidden layer. In contrast to existing approaches, the centers and the widths of the radial basis function are initialized by extracting the features of samples. So the uncertainty caused by random number when initializing the training parameters and the topology of RBF neural network is eliminated. The average relative error of the original RBF neural network is 1.55% in 158 epochs. However, the average relative error of the RBF neural network which is improved by peak density function is only 0.62% in 50 epochs. Therefore, the convergence rate and approximation precision of the RBF neural network are improved significantly.

  18. Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122

    International Nuclear Information System (INIS)

    Santana, Mario H.P.; Da Silva, Leonardo M.; Freitas, Admildo C.; Boodts, Julien F.C.; Fernandes, Karla C.; De Faria, Luiz A.

    2009-01-01

    Aqueous solutions containing the commercial azo dye Reactive Orange 122 (RO122) were ozonated in acid and alkaline conditions. Ozone was electrochemically generated using a laboratory-made electrochemical reactor and applied using semi-batch conditions and a column bubble reactor. A constant ozone application rate of 0.25 g h -1 was used throughout. Color removal and degradation efficiency were evaluated as function of ozonation time, pH and initial dye concentration by means of discoloration kinetics and COD-TOC removal. Experimental findings revealed that pH affects both discoloration kinetics and COD-TOC removal. A single pseudo-first-order kinetic rate constant, k obs , for discoloration was found for ozonation carried out in alkaline solutions, contrary to acidic solutions where k obs depends on ozonation time. COD-TOC removal supports degradation of RO122 is more pronounced for alkaline conditions. Evaluation of the oxidation feasibility by means of the COD/TOC ratio indicates that the ozonation process in both acid and alkaline conditions leads to a reduction in recalcitrance of the soluble organic matter

  19. Dye-based coatings for hydrophobic valves and their application to polymer labs-on-a-chip

    Science.gov (United States)

    Riegger, L.; Mielnik, M. M.; Gulliksen, A.; Mark, D.; Steigert, J.; Lutz, S.; Clad, M.; Zengerle, R.; Koltay, P.; Hoffmann, J.

    2010-04-01

    We provide a method for the selective surface patterning of microfluidic chips with hydrophobic fluoropolymers which is demonstrated by the fabrication of hydrophobic valves via dispensing. It enables efficient optical quality control for the surface patterning thus permitting the low-cost production of highly reproducible hydrophobic valves. Specifically, different dyes for fluoropolymers enabling visual quality control (QC) are investigated, and two fluoropolymer-solvent-dye solutions based on fluorescent quantum dots (QD) and carbon black (CB) are presented in detail. The latter creates superhydrophobic surfaces on arbitrary substrates, e.g. chips made from cyclic olefin copolymer (COC, water contact angle = 157.9°), provides good visibility for the visual QC in polymer labs-on-a-chip and increases the burst pressures of the hydrophobic valves. Finally, an application is presented which aims at the on-chip amplification of mRNA based on defined flow control by hydrophobic valves is presented. Here, the optimization based on QC in combination with the Teflon-CB coating improves the burst pressure reproducibility from 14.5% down to 6.1% compared to Teflon-coated valves.

  20. Process optimization for the application of carbon from plantain peels in dye abstraction

    Directory of Open Access Journals (Sweden)

    E. Inam

    2017-01-01

    Full Text Available Activated carbon obtained from plantain peels was applied to the optimization of the adsorption process parameters for abstraction of colour from simulated dye effluent. The activated carbon was prepared and characterized using nitrogen adsorption, X-ray diffractometry (XRD and Fourier transform infrared spectroscopy (FTIR. Equilibrium isotherms were modelled using the Langmuir, Freundlich, Dubinin–Radushkevich and Temkin models; the Temkin and Dubinin–Radushkevich models provided the best fit for the sorption process, with a correlation coefficient greater than 0.95. The D–R model suggested a chemical process. The pseudo second-order kinetic model agreed well for fitting experimental data with the calculated adsorption capacity, qe, (46.5 mg/g, which was reasonably close to the experimental value (47.3 mg/g. Optimization of the process parameters was achieved using response surface methodology (RSM – Box–Behnken design, where factors considered are represented on three levels: (−1, (0 and (+1 for high, mean and low levels, respectively. ANOVA fits a quadratic model with prob > F less than 0.05 (<0.0001 at 95% confidence level. From this modelling, significant factors for dye removal have been identified.

  1. Solution processable titanium dioxide precursor and nanoparticulated ink: application in Dye Sensitized Solar Cells.

    Science.gov (United States)

    Bosch-Jimenez, Pau; Yu, Youhai; Lira-Cantu, Mónica; Domingo, Concepción; Ayllón, José A

    2014-02-15

    Colloidal TiO2 anatase nanoparticles of 4-8 nm diameter capped with 3,6,9-trioxadecanoic acid (TODA) were synthesized at low temperature using water and ethanol as the solvents. ATR-FTIR and (1)H NMR characterization showed the capping acid capability of stabilizing the TiO2 nanoparticles through labile hydrogen bonds. The presence of the capping ligand permitted the further preparation of homogeneous and stable colloidal dispersions of the TiO2 powder in aqueous media. Moreover, after solvent evaporation, the ligand could be easily eliminated by soft treatments, such as UV irradiation or low-temperature thermal annealing. These properties have been used in this work to fabricate mesoporous TiO2 electrodes, which can be applied as photoanodes in Dye Sensitized Solar Cells (DSSCs). For the preparation of the electrodes, the as-synthesized mesoporous TiO2 nanoparticles were mixed with commercial TiO2 (Degussa P25) and deposited on FTO substrates by using the doctor blade technique. A mixture of water and ethanol was used as the solvent. A soft thermal treatment at 140 °C for 2h eliminated the organic compound and produced a sintered mesoporous layer of 6 μm thickness. The photovoltaic performance of the DSSCs applying these electrodes sensitized with the N3 dye resulted in 5.6% power conversion efficiency. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Triphenylamine based benzimidazole and benzothiazole: Synthesis and applications in fluorescent chemosensors and laser dyes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Bin, E-mail: libinteacher@163.com [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, Liming; Guan, Yunlong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2014-01-15

    Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. The TPA-benzimidazole chemosensor was tested for a number of metal ions and found to exhibit binding affinity for Fe{sup 3+} and Hg{sup 2+} in acetonitrile, and the fluorescence quenching was achieved through a PET process. The appearance of an isosbestic point in absorption titrations and Job's plot analysis supported 1:1 stoichiometries for Fe{sup 3+} and Hg{sup 2+} ions. Laser experiments showed that under transversal pumping with a Q-switched Nd:YAG (355 nm) laser in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) at 436 nm. -- Highlights: • Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. • The TPA-benzimidazole exhibits binding affinity for Fe{sup 3+} and Hg{sup 2+} in acetonitrile and the fluorescence quenching was achieved through a PET process. • Under transversal pumping at 355 nm in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) in 436 nm.

  3. Solar efficiency of a new deposited titania photocatalyst. Chlorophenol, pesticide and dye removal applications

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, Chantal; Disdier, Jean; Maldonado, Manuel I.; Herrmann, Jean-Marie [Laboratoire D' Application de la Chimie a l' Environnement LACE (UMR 5634), Universite Claude Bernard Lyon I, Bat Jules Raulin, 69622 Villeurbanne Cedex (France); Monnet, Christine; Dussaud, Joseph [AHLSTROM Research and Services, ZI de l' Abbaye, 38780 Pont-Eveque (France); Malato, Sixto; Blanco, Julian [Plataforma Solar de Almeria-CIEMAT, Ctra. Senes Km. 4, 04200 Tabernas, Almeria (Spain)

    2003-11-10

    A specially designed titania photocatalyst was prepared by coating Ahlstrom non-woven paper, used as a flexible photocatalytic support, with Millennium PC500 anatase. At the same time, a new solar photoreactor (STEP) was designed based on the multi-step cascade falling-film principle to ensure good exposure to sunlight and good oxygenation of the effluent to be treated. Several types of reactants were treated: 4-chlorophenol as a model organic pollutant; formetanate, a widely used pesticide in horticulture; a mixture of pesticides used in vineyards; and indigo carmine (IC) and Congo red (CR), which are complex multifunctional dye molecules. Each reaction was performed simultaneously in a solar CPC slurry photoreactor and in the STEP photoreactor under identical solar exposure to better evaluate and validate the results obtained. The STEP solar reactor was found to be as efficient as the CPC for 4-chlorophenol and formetanate total degradation. In contrast, both dyes required longer treatment in STEP experiments. This new system, in which the final tedious filtration can actually be avoided, constitutes a good alternative to slurries.

  4. Triphenylamine based benzimidazole and benzothiazole: Synthesis and applications in fluorescent chemosensors and laser dyes

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Bin; Zhang, Liming; Guan, Yunlong

    2014-01-01

    Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. The TPA-benzimidazole chemosensor was tested for a number of metal ions and found to exhibit binding affinity for Fe 3+ and Hg 2+ in acetonitrile, and the fluorescence quenching was achieved through a PET process. The appearance of an isosbestic point in absorption titrations and Job's plot analysis supported 1:1 stoichiometries for Fe 3+ and Hg 2+ ions. Laser experiments showed that under transversal pumping with a Q-switched Nd:YAG (355 nm) laser in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) at 436 nm. -- Highlights: • Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. • The TPA-benzimidazole exhibits binding affinity for Fe 3+ and Hg 2+ in acetonitrile and the fluorescence quenching was achieved through a PET process. • Under transversal pumping at 355 nm in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) in 436 nm

  5. The application of sensitizers from red frangipani flowers and star gooseberry leaves in dye-sensitized solar cells

    Science.gov (United States)

    Almaz Dhafina, Wan; Salleh, Hasiah; Zalani Daud, Muhamad; Ali, Nora’aini

    2018-05-01

    Nowadays natural based dyes for dye-sensitized solar cells (DSSCs) have been in research field attention due to its advantages over other type of dyes such as low-cost, low-toxicity, completely biodegradable and abundance of resources. Natural dyes can be produced via the simple extraction method of pigments from plant parts such as flower, fruits, leaves, tuber etc. In this feature article, the natural dyes which composed of anthocyanin pigment from red frangipani flowers and chlorophyll from star gooseberry leaves were applied in zinc oxide, (ZnO) based-DSSC. The ZnO photoanode of the DSSCs sample were sensitized in each dye with different duration. It was observed that DSSCs which has chlorophyll pigment as dye had better performance with power conversion efficiency (PCE) of 0.007%.

  6. Molecular Design of Efficient Organic D-A-pi-A Dye Featuring Triphenylamine as Donor Fragment for Application in Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Ferdowsi, P.; Saygili, Y.; Zhang, W.; Edvinson, T.; Kavan, Ladislav; Mokhtari, J.; Zakeerudin, S. M.; Grätzel, M.; Hagfeldt, A.

    2018-01-01

    Roč. 11, č. 2 (2018), s. 494-502 ISSN 1864-5631 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : Dye-Sensitized Solar Cells * Electrolytes * Donor-acceptor systems Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 7.226, year: 2016

  7. Study of nanostructured clay's application in photoactivated restorative resins, used in dentistry

    International Nuclear Information System (INIS)

    Campos, Luiza Melo de Paiva

    2012-01-01

    The problem caused by polymerization shrinkage is critical, because the resin must remain closely in the tooth cavity while gaining rigidity and decrease its dimensions. Forcing the restorative material to distance or to separate the walls of the cavity, the resulting disruption would lead to microleakage, responsible for other problems such as secondary caries, postoperative soreness and may even cause pulpal changes. This process induces the volumetric change of the compound, given by the union of radicals in the formation of the macromolecule (polymer), causing a decrease in volume. This study aimed to develop new experimental composites through the addition of nano components clay minerals in a polymer matrix-based BisGMA / TEGDMA, to evaluate the possibility of a different dimensional behavior during the polymerization. Were used in this study, experimental composites added nanoparticle clay MMT Cloisite 10A (at concentrations of 50, 55, 60, 65 and 70 wt%) and Cloisite 30B (at concentrations of 50, 55, 60 and 65 wt%), which were then compared with the performance of the experimental composites added with micro-particles of silanized silica hybrid Aerosil OX-50 (at concentrations of 50, 60, 65 and 70 wt%). Was used the methods of characterization: Scanning Electron Microscopy (SEM), Thermal-Mechanical Analysis (TMA), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Absorption Spectroscopy in the Region of the Infrared (FTIR), X-ray Diffraction (XRD), Micro Hardness Knoop, Holographic Interferometry Technique (HIT), Digital Holography (DH), Correlation Image (CI) and Thermography. It was observed that the experimental composites with nanoparticles added clay Cloisite 10A and Cloisite 30B, performed better on tests that measured the polymerization shrinkage (TMA, HIT/HD/IC) and the micro hardness (Knoop), in relation to composites added with Silica Aerosil OX-50. These results may be related to the interaction polymer/clay and the nano

  8. Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC

    International Nuclear Information System (INIS)

    Singare, P.U.

    2015-01-01

    Radio isotopic tracer technique as one of the versatile nondestructive technique is employed to evaluate the performance of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC. The evaluation was made on the basis of ion-isotopic exchange reaction kinetics by using 131 I and 82 Br radioactive tracer isotopes. It was observed that for both the resins, the values of specific reaction rate (min -1 ), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) were calculated to be lower for bromide ion-isotopic exchange reaction than that for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction under identical experimental conditions of 30.0 C, 1.000 g of ion exchange resins and 0.001 mol/L labeled iodide ion solution, the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were calculated as 0.377, 0.212, 0.080 and 15.5 respectively for Dowex SBR LC resin, which was higher than 0.215, 0.144, 0.031 and 14.1 respectively as that obtained for Tulsion A23 resins. Also at a constant temperature of 30.0 C, as the concentration of labeled iodide ion solution increases from 0.001 mol/L to 0.004 mol/L, the percentage of iodide ions exchanged increases from 84.75 % to 90.20 % for Dowex SBR LC resins which was higher than increases from 57.66 % to 62.38 % obtained for Tulsion A23 resins. The identical trend was observed for the two resins during bromide ion-isotopic exchange reaction. The overall results indicate superior performance of Dowex SBR LC over Tulsion A23 resins under identical experimental conditions.

  9. The effect of continuous application of MDP-containing primer and luting resin cement on bond strength to tribochemical silica-coated Y-TZP.

    Science.gov (United States)

    Lim, Myung-Jin; Yu, Mi-Kyung; Lee, Kwang-Won

    2018-05-01

    This study investigated the effect of continuous application of 10-methacryloyloxydecyldihydrogen phosphate (MDP)-containing primer and luting resin cement on bond strength to tribochemical silica-coated yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Forty bovine teeth and Y-TZP specimens were prepared. The dentin specimens were embedded in molds, with one side of the dentin exposed for cementation with the zirconia specimen. The Y-TZP specimen was prepared in the form of a cylinder with a diameter of 3 mm and a height of 10 mm. The bonding surface of the Y-TZP specimen was sandblasted with silica-coated aluminium oxide particles. The forty tribochemical silica-coated Y-TZP specimens were cemented to the bovine dentin (4 groups; n = 10) with either an MDP-free primer or an MDP-containing primer and either an MDP-free resin cement or an MDP-containing resin cement. After a shear bond strength (SBS) test, the data were analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The group with MDP-free primer and resin cement showed significantly lower SBS values than the MDP-containing groups ( p Y-TZP was the best choice among the alternatives tested in this study.

  10. The resin-in-pulp process and its application to ores from Brosses ''BRS 10''; Le procede resin in pulp et son application aux minerais des Brosses ''BRS 10''

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M

    1959-03-01

    The resin-in-pulp process is a technical variant of the recovery process of uranium in dilute solution by means of ion exchanger resins. An anion resin, XE 123, of a well-defined grain size is placed in direct contact with the pulp produced by sulfuric acid attack on ore with a low uranium content. This process is of particular value in the treatment of pulps that cannot be filtered or decanted, such as those obtained with ore from Brosses. The preparation of the pulp, the elution of the uranium, and its fixation, as well as the various factors encountered in these operations, are discussed. (author) [French] Le procede ''resin in pulp'' est une variante technique du procede de recuperation de l'uranium en solution diluee par les resines echangeuses d'ions. Une resine anionique, la 'XE 123' a granulometrie bien determinee, est mise en contact direct avec la pulpe provenant de l'attaque a l'acide sulfurique d'un minerai d'uranium a faible teneur. Ce procede est particulierement interessant dans le cas de pulpes infiltrables ou indecantables, telles que celles obtenues dans l'attaque du minerai des Brosses. La preparation de la pulpe, la fixation et l'elution de l'uranium, ainsi que les facteurs intervenant dans ces diverses operations sont etudies dans le present rapport. (auteur)

  11. Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye.

    Directory of Open Access Journals (Sweden)

    Xing Qin

    Full Text Available Manganese peroxidase (MnP is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B, anthraquinone dye (Remazol Brilliant Blue R, indigo dye (Indigo Carmine and triphenylmethane dye (Methyl Green as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology.

  12. Structurally Simple and Easily Accessible Perylenes for Dye-Sensitized Solar Cells Applicable to Both 1 Sun and Dim-Light Environments.

    Science.gov (United States)

    Chou, Hsien-Hsin; Liu, Yu-Chieh; Fang, Guanjie; Cao, Qiao-Kai; Wei, Tzu-Chien; Yeh, Chen-Yu

    2017-11-01

    The need for low-cost and highly efficient dyes for dye-sensitized solar cells under both the sunlight and dim light environments is growing. We have devised GJ-series push-pull organic dyes which require only four synthesis steps. These dyes feature a linear molecular structure of donor-perylene-ethynylene-arylcarboxylic acid, where donor represents N,N-diarylamino group and arylcarboxylic groups represent benzoic, thienocarboxylic, 2-cyano-3-phenylacrylic, 2-cyano-3-thienoacrylic, and 4-benzo[c][1,2,5]thiadiazol-4-yl-benzoic groups. In this study, we demonstrated that a dye without tedious and time-consuming synthesis efforts can perform efficiently. Under the illumination of AM1.5G simulated sunlight, the benzothiadiazole-benzoic-containing GJ-BP dye shows the best power conversion efficiency (PCE) of 6.16% with V OC of 0.70 V and J SC of 11.88 mA cm -2 using liquid iodide-based electrolyte. It also shows high performance in converting light of 6000 lx light intensity, that is, incident power of ca. 1.75 mW cm -2 , to power output of 0.28 mW cm -2 which equals a PCE of 15.79%. Interestingly, the benzoic-containing dye GJ-P with a simple molecular structure has comparable performance in generating power output of 0.26 mW cm -2 (PCE of 15.01%) under the same condition and is potentially viable toward future application.

  13. Charge transfer in graphene oxide-dye system for photonic applications

    International Nuclear Information System (INIS)

    Bongu, Sudhakara Reddy; Bisht, Prem B.; Thu, Tran V.; Sandhu, Adarsh

    2014-01-01

    The fluorescence of a standard dye Rhodamine 6G (R6G) in solution decreases on addition of reduced graphene oxide (rGO). The absorption spectra and lifetime measurements confirm that no excited-state but a ground-state complex formation is responsible for this effect. For silver decorated rGO (Ag-rGO), the quenching efficiency and ground state complex formation process is small. Z-scan measurements have been done to study the optical nonlinearity at 532 nm under ps time scale. Remarkable reduction in the saturable absorption (SA) effect of R6G indicates no nonlinear contribution from the ground state complex. The results have been explained with varying charge transfer rates and non-fluorescence nature of the complex

  14. One-step electrochemically-codeposited polyaniline-platinum for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiangkaew, Anongnad; Keothongkham, Khamsone; Maiaugree, Wasan; Jarernboon, Wirat [Khon Kaen University, Khon Kaen (Thailand); Kamwanna, Teerasak; Pimanpang, Samuk; Amornkitbamrung, Vittaya [Khon Kaen University, Khon Kaen (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen (Thailand)

    2014-05-15

    Platinum, polyaniline and composite polyaniline-platinum films were coated on conductive glass by using electrochemical deposition. They were then used as dye-sensitized solar cell counter electrodes. The efficiencies of platinum, polyaniline and composite polyaniline-platinum cells were 2.47, 4.47 and 6.62%, respectively. The improvement of composite polyaniline-platinum solar cell efficiency over pure polyaniline and platinum cells is because of an increase in the film's catalytic activity and a decrease in charge-transfer resistance between its counter electrode and electrolyte, as observed by using cyclic voltammogram and electrochemical impedance spectroscopy measurements, respectively. Co-deposition of polyaniline and Pt catalysts was confirmed by the presence of Pt and N peaks in the X-ray photoelectron spectroscopy spectrum.

  15. Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications

    Directory of Open Access Journals (Sweden)

    Umar Ahmad

    2009-01-01

    Full Text Available Abstract Dye-sensitized solar cells (DSSCs were fabricated by using well-crystallized ZnO nanocombs directly grown onto the fluorine-doped tin oxide (FTO via noncatalytic thermal evaporation process. The thin films of as-grown ZnO nanocombs were used as photoanode materials to fabricate the DSSCs, which exhibited an overall light to electricity conversion efficiency of 0.68% with a fill factor of 34%, short-circuit current of 3.14 mA/cm2, and open-circuit voltage of 0.671 V. To the best of our knowledge, this is first report in which thin film of ZnO nanocombs was used as photoanode materials to fabricate the DSSCs.

  16. Application of Spent Li-Ion Batteries Cathode in Methylene Blue Dye Discoloration

    Directory of Open Access Journals (Sweden)

    Eric M. Garcia

    2017-01-01

    Full Text Available This paper aims to present the mechanism study of methylene blue (MB discoloration using spent Li-ion battery cathode tape and hydrogen peroxide. The recycled cathode used in this work is composed of 72% of LiCoO2, 18% of carbon, and 10% of Al. The value found for surface area is 8.9 m2/g and the ZCP value occurs in pH = 2.95. Different from what is proposed in the literature, the most likely mechanism of methylene blue discoloration is the oxidation/delitiation of LiCoO2 and the reduction of H2O2 forming OH∙. Thus, in this paper, an important and promising alternative for discoloration of textile industry dyes using spent Li-ion battery cathode is presented.

  17. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Ana L. R. L. Zimbardi

    2016-05-01

    Full Text Available Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1 was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w milled corncob, 0.8% (w/w NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1, the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate. Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate (ABTS were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE. ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB, remazol brilliant blue R and reactive blue 4 (RB4, at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.

  18. Synthesis of azo pyridone dyes

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2011-01-01

    Full Text Available Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were used rapidly since 1970 in inks for the heat-transfer printing of polyester. The main synthetic route for the preparation of azo dyes is coupling reaction between an aromatic diazo compound and a coupling component. Of all dyes manufactured, about 60% are produced by this reaction. Arylazo pyridone dyes can be prepared from pyridone moiety as a coupling component, where substituent can be on nitrogen, and diazonim salts which can be derived from different substituted anilines or other heterocyclic derivatives. In addition, arylazo dyes containing pyridone ring can be prepared from arylazo diketones or arylazo ketoesters (obtained by coupling β-diketones or β-ketoesters with diazonim salts by condensation with cyanoacetamide. Disazo dyes can be prepared by tetrazotizing a dianiline and coupling it with a pyridone or by diazotizing aniline and coupling it with a dipyridone. Trisazo dyes can be also prepared by diazotizing of aniline and coupling it with a tripyridone or by hexazotizing a trianiline and coupling it with a pyridone. The main goal of this paper is to give a brief review on the synthesis of arylazo pyridone dyes due to the lack of such reviews. In addition, some properties of arylazo pyridone dyes as light fastness and azo-hydrazon tautomerism are disccused.

  19. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.

    Science.gov (United States)

    Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang

    2014-12-10

    Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).

  20. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins. [Patent application

    Science.gov (United States)

    Rinde, J.A.; Newey, H.A.

    Primary diamines are prepared for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and preimpregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses a room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  1. Application of nanoemulsions in the regeneration of adsorbent polymeric resins; Emprego de nanoemulsoes na regeneracao de resinas polimericas adsorvedoras

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Josane A.; Queiros, Yure G.C.; Vieira, Helida V.P.; Lucas, Elizabete F.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas. Lab. de Macromoleculas e Coloides na Industria de Petroleo], e-mails: josaneacosta@yahoo.com.br, yuregomes@ima.ufrj.br, elucas@ima.ufrj.br, celias@ima.ufrj.br

    2011-07-01

    In this work, the solbrax/water/polyoxyethylene nanoemulsions were produced under high pressure homogenizer (HPH). These systems presented droplets diameter ranging between 7 to 30 nm. The nanoemulsions were used in regeneration of a polymeric resin, which has been used in treatment of oily water. This resin was contaminated with different kinds of oils. The nanoemulsions presented high cleaning efficiency, above of 90% and its performance was higher than equivalent micellar systems. (author)

  2. Biogenic glutamic acid-based resin: Its synthesis and application in the removal of cobalt(II)

    International Nuclear Information System (INIS)

    Jamiu, Zakariyah A.; Saleh, Tawfik A.; Ali, Shaikh A.

    2017-01-01

    Highlights: • A novel resin embedded with metal chelating glutamic acid was synthesized. • The biogenic amino acid residues imparted remarkable efficacy to remove Co(II). • The resin showed excellent ability to remove various metals from wastewater. - Abstract: Inexpensive biogenic glutamic acid has been utilized to synthesize a cross-linked dianionic polyelectrolyte (CDAP) containing metal chelating ligands. Cycloterpolymerization, using azoisobutyronitrile as an initiator, of N,N-diallylglutamic acid hydrochloride, sulfur dioxide and a cross-linker afforded a pH-responsive cross-linked polyzwitterionic acid (CPZA) which upon basification with NaOH was converted into CDAP. The new resin, characterized by a multitude of spectroscopic techniques as well as Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET) analyses, was evaluated for the removal of Co(II) as a model case under different conditions. The adsorption capacity of 137 mg g"−"1 does indeed make the resin as one of the most effective sorbents in recent times. The resin leverages its cheap natural source and ease of regeneration in combination with its high and fast uptake capacities to offer a great promise for wastewater treatment. The resin has demonstrated remarkable efficiency in removing toxic metal ions including arsenic from a wastewater sample.

  3. Biogenic glutamic acid-based resin: Its synthesis and application in the removal of cobalt(II)

    Energy Technology Data Exchange (ETDEWEB)

    Jamiu, Zakariyah A.; Saleh, Tawfik A.; Ali, Shaikh A., E-mail: shaikh@kfupm.edu.sa

    2017-04-05

    Highlights: • A novel resin embedded with metal chelating glutamic acid was synthesized. • The biogenic amino acid residues imparted remarkable efficacy to remove Co(II). • The resin showed excellent ability to remove various metals from wastewater. - Abstract: Inexpensive biogenic glutamic acid has been utilized to synthesize a cross-linked dianionic polyelectrolyte (CDAP) containing metal chelating ligands. Cycloterpolymerization, using azoisobutyronitrile as an initiator, of N,N-diallylglutamic acid hydrochloride, sulfur dioxide and a cross-linker afforded a pH-responsive cross-linked polyzwitterionic acid (CPZA) which upon basification with NaOH was converted into CDAP. The new resin, characterized by a multitude of spectroscopic techniques as well as Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET) analyses, was evaluated for the removal of Co(II) as a model case under different conditions. The adsorption capacity of 137 mg g{sup −1} does indeed make the resin as one of the most effective sorbents in recent times. The resin leverages its cheap natural source and ease of regeneration in combination with its high and fast uptake capacities to offer a great promise for wastewater treatment. The resin has demonstrated remarkable efficiency in removing toxic metal ions including arsenic from a wastewater sample.

  4. Quirks of dye nomenclature. 1. Evans blue.

    Science.gov (United States)

    Cooksey, C J

    2014-02-01

    The history, origin, identity, chemistry and use of Evans blue dye are described along with the first application to staining by Herbert McLean Evans in 1914. In the 1930s, the dye was marketed under the name, Evans blue dye, which was profoundly more acceptable than the ponderous chemical name.

  5. Use of dyes in cariology.

    Science.gov (United States)

    van de Rijke, J W

    1991-04-01

    The property of dyes to enhance contrast by their colour can be used in clinical dentistry and in investigations in vitro or in vivo. They have been used for indication of affected dental tissues, improvement of diagnostic methods, enhancement of patient awareness and information about specific processes. The development of particular dye systems, aimed at clinical application, is often laborious because of toxic effects, lack of specificity, irreversible staining or difficulties with removal of the dye. Clinically used dyes are often visually observed, which means a qualitative assessment of the staining, while quantification of the staining, if performed at all, is confined mostly to laboratory experiments. In this paper the application of dyes, arranged according to their specific purpose in cariology, is discussed, and a brief historical overview is given of the development of two particular dye applications for which commercial dye systems are now available. If certain requirements are met, dyes can be of great help in detection and quantification when used with several diagnostic methods.

  6. Preparation of dye waste-barium sulfate hybrid adsorbent and application in organic wastewater treatment.

    Science.gov (United States)

    Hu, Zhang-Jun; Xiao, Yan; Zhao, Dan-Hua; Shen, Yu-Lin; Gao, Hong-Wen

    2010-03-15

    A new hybrid material was developed by the template-free hybridization of weak acidic pink red B (APRB, C.I. 18073) with BaSO(4). The composition and structure of the material were determined and characterized. In contrast to conventional sorbents, the hybrid material has a specific surface area of 0.89 m(2)/g, but it contains lots of negative charges and lipophilic groups as the basis of specific adsorption. The efficient removal of cationic dyes and persistent organic pollutants (POPs) indicates that it has an improved adsorption capacity and selectivity with a short removal time less than 2 min; while the hybrid sorbents fit the Langmuir isotherm model, and follow the octanol-water partition law. Instead of using APRB reagent, an APRB-producing wastewater was reused to prepare the cost-effective sorbent, and the equilibrium adsorption capacities of which reached 222 and 160 mg/g for EV and BPR, respectively. The sorbents was then used to treat three wastewater samples with satisfactory results of over 97% decolonization and 88% COD-decreasing. In addition, the hybrid sorbent was regenerated from sludge over five cycles, and its adsorption capacity was not appreciably changed. This work has developed a simple and eco-friendly method for synthesizing a practical and efficient sorbent. (c) 2009 Elsevier B.V. All rights reserved.

  7. Facile synthesis of silver nanoparticles and their application in dye degradation

    International Nuclear Information System (INIS)

    Joseph, Siby; Mathew, Beena

    2015-01-01

    Graphical abstract: - Highlights: • This synthetic method uses the novel reducing agent hexamine. • The method is simple, fast and environment friendly. • This is a cost-effective method as all materials used are inexpensive and readily available. • The method provides highly stable spherical silver nanoparticles. • The nanoparticles show outstanding catalytic activity in the degradation of organic dyes. - Abstract: The present article reports a simple, facile and eco-friendly method based on microwave irradiation for the synthesis of silver nanoparticles in aqueous medium using starch as stabilizing agent and a new reducing agent namely hexamine. The silver nanoparticles were characterized by UV–vis, FTIR, XRD and HR-TEM analysis. UV–vis spectroscopic studies provided sufficient evidences for the formation of nanoparticles. The role of starch in the synthesis and stabilization of the nanoparticles was obtained from FTIR studies. The XRD and HR-TEM investigations clearly demonstrated the crystalline nature of the nanoparticles. From the TEM images, the silver nanoparticles were found to be spherical and of nearly uniform size with an average diameter of 18.2 ± 0.97 nm. The nanoparticles showed excellent catalytic activity in the degradation of methyl orange and rhodamine B by NaBH 4

  8. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.

    Science.gov (United States)

    Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U

    2016-03-01

    Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Sarker, Subrata; Nath, Narayan Chandra Deb [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Choi, Seung-Woo [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Ahammad, A.J. Saleh [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Lee, Jae-Joon, E-mail: jjlee@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Kim, Whan-Gi, E-mail: wgkim@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of)

    2010-01-25

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  10. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Seo, Dong-Wan; Sarker, Subrata; Nath, Narayan Chandra Deb; Choi, Seung-Woo; Ahammad, A.J. Saleh; Lee, Jae-Joon; Kim, Whan-Gi

    2010-01-01

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  11. Facile synthesis of silver nanoparticles and their application in dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Siby, E-mail: sibyjoseph4@gmail.com [Department of Chemistry, St. George' s College, Aruvithura, Kottayam 686122, Kerala (India); Mathew, Beena, E-mail: beenamscs@gmail.com [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India)

    2015-05-15

    Graphical abstract: - Highlights: • This synthetic method uses the novel reducing agent hexamine. • The method is simple, fast and environment friendly. • This is a cost-effective method as all materials used are inexpensive and readily available. • The method provides highly stable spherical silver nanoparticles. • The nanoparticles show outstanding catalytic activity in the degradation of organic dyes. - Abstract: The present article reports a simple, facile and eco-friendly method based on microwave irradiation for the synthesis of silver nanoparticles in aqueous medium using starch as stabilizing agent and a new reducing agent namely hexamine. The silver nanoparticles were characterized by UV–vis, FTIR, XRD and HR-TEM analysis. UV–vis spectroscopic studies provided sufficient evidences for the formation of nanoparticles. The role of starch in the synthesis and stabilization of the nanoparticles was obtained from FTIR studies. The XRD and HR-TEM investigations clearly demonstrated the crystalline nature of the nanoparticles. From the TEM images, the silver nanoparticles were found to be spherical and of nearly uniform size with an average diameter of 18.2 ± 0.97 nm. The nanoparticles showed excellent catalytic activity in the degradation of methyl orange and rhodamine B by NaBH{sub 4}.

  12. Microwave assisted synthesis of ZnO nanoparticles for lighting and dye removal application

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijays_phy@rediffmail.com [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Gohain, M. [Department of Chemistry, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Som, S.; Kumar, Vinod [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Bezuindenhoudt, B.C.B. [Department of Chemistry, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Swart, Hendrik C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2016-01-01

    In this study, we report on the synthesis of ZnO nanoparticles (NPs) via the microwave-assisted technique. The as-synthesized ZnO nanoparticles were annealed at 500 °C for three hours. The ZnO NPs were characterized by X-ray diffraction (XRD) and scanning electron microscopic techniques. XRD results confirmed the formation of as-synthesized ZnO powder oriented along the (101) direction. The Kubelka–Munk function has been employed to determine the band gap of the ZnO powder. ZnO powder has been studied by photoluminescence (PL) before and after annealing to identify the emission of defects in the visible range. The intensity of the PL emission has decreased after annealing. The synthesized ZnO samples were also studied for methyl orange dye removal from waste water. It has been found that the as-synthesized ZnO shows better adsorption behaviour as compared to the annealed sample.

  13. Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions.

    Science.gov (United States)

    Asfaram, Arash; Ghaedi, Mehrorang; Ghezelbash, Gholam Reza; Pepe, Francesco

    2017-05-01

    Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL -1 initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R 2 values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R 2 =0.9997 for CV and R 2 =0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg -1 in single component and 46.4 and 50.0mgg -1 for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents-dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic. Copyright © 2017. Published by Elsevier Inc.

  14. Synthesis, characterization and applications of some novel mordent and heterocyclic disperse dyes on polyester and wool fibers

    Directory of Open Access Journals (Sweden)

    Hitendra Mangubhai Patel

    2012-10-01

    Full Text Available The novel mordent and disperse heterocyclic dyes were prepared by coupling of various diazo solution of aromatic amines with 1-[(2-butyl-2,3-dihydrobenzofuran-3-yl]-1-(4-hydroxyphenylmethanone. The resultant mordent and disperse heterocyclic dyes were characterized by elemental analyses, IR and 1H-NMR and 13C-NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structural property relationship. The dyeing assessment of all the mordent and disperse heterocyclic dyes was evaluated on wool and polyester textile fibers. The results of antibacterial studies of chrome pretreated fabrics revealed that the toxicity of mordented dyes against Escherichia coli, Staphylococcus aureus, Salmonella typhi, Bacillus subtilis bacteria was fairly good.

  15. A study by non-isothermal thermal methods of spruce wood bark materialss after their application for dye removal

    Directory of Open Access Journals (Sweden)

    VIORICA DULMAN

    2005-11-01

    Full Text Available This paper deals with a study of some materials obtained from spruce bark (Picea abies, Romania, after retention of some dyes frequently used in dyeing processes in the textile industry and waste water treatment. These materials obtained by dye retention exhibit a particular thermal behavior which is different from that of the blank sample (spruce bark. The characteristic temperatures, weight losses, the residue remaining after thermo-oxidative degradation, as well as the activation energies of the significant thermo-destruction stages, estimated from non-isothermal thermogravimetric data, together with the thermal quantities calculated from DTAdata support the conclusion presented in a previous study on dye retention from aqueous solution. The obtained results made evident that, under optimal retention conditions, spruce bark shows the highest retention capacity for the Basic Blue dye, followed by Direct Brown 95 and Direct Brown 2.

  16. Experience with esthetic reconstruction of complex facial soft tissue trauma: application of the pulsed dye laser.

    Science.gov (United States)

    Ebrahimi, Ali; Kazemi, Hossein Mohammad; Nejadsarvari, Nasrin

    2014-08-01

    Facial soft tissue injury can be one of the most challenging cases presenting to the plastic surgeon. The life quality and self-esteem of the patients with facial injury may be compromised temporarily or permanently. Immediate reconstruction of most defects leads to better restoration of form and function as well as early rehabilitation. The aim of this study was to present our experience in management of facial soft tissue injuries from different causes. We prospectively studied patients treated by plastic surgeons from 2010 to 2012 suffering from different types of blunt or sharp (penetrating) facial soft tissue injuries to the different areas of the face. All soft tissue injuries were treated primarily. Photography from all patients before, during, and after surgical reconstruction was performed and the results were collected. We used early pulsed dye laser (PDL) post-operatively. In our study, 63 patients including 18 (28.5%) women and 45 (71.5%) men aged 8-70 years (mean 47 years) underwent facial reconstruction due to soft tissue trauma in different parts of the face. Sharp wounds were seen in 15 (23%) patients and blunt trauma lacerations were seen in 52 (77%) patients. Overall, 65% of facial injuries were repaired primary and the remainder were reconstructed with local flaps or skin graft from adjacent tissues. Postoperative PDL therapy done two weeks following surgery for all scars yielded good results in our cases. Analysis of the injury including location, size, and depth of penetration as well as presence of associated injuries can aid in the formulation of a proper surgical plan. We recommend PDL in the early post operation period (two weeks) after suture removal for better aesthetic results.

  17. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes

    International Nuclear Information System (INIS)

    Xu Chao; Cao Lixin; Su Ge; Liu Wei; Liu Hui; Yu Yaqin; Qu Xiaofei

    2010-01-01

    ZnO/Cu 2 O compound photocatalysts were prepared by 'soak-deoxidize-air oxidation' with different concentrations of Cu 2+ (0.125, 0.25, 0.5, 1, 1.5 and 2 mol/L). The prepared ZnO/Cu 2 O samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), UV-vis diffuse reflectance spectrometer, and photochemical reaction instrument. The results show that ZnO was hexagonal wurtzite structure and the crystallinity had no change with the increase of Cu 2+ concentration. Cu 2 O belonged to cubic structure and the crystallinity increased with the increase of Cu 2+ concentration. ZnO were rods and bulks which had diameter of about 300-400 nm, some small round Cu 2 O particles which had a diameter of about 50 nm adhered to these rods and bulks. In the compounds the mole ratio of Cu 2 O to ZnO was 0.017, 0.025, 0.076, 0.137, 0.138, and 0.136, respectively. An absorbance in the visible light region between 400 and 610 nm was seen and the reflection rate became less with the mole ratio of Cu 2 O to ZnO increasing. The photocatalytic activities of ZnO/Cu 2 O compound were evaluated using a basic organic dye, methyl orange (MO). It was found that, compared with pure ZnO, the photocatalytic properties of ZnO/Cu 2 O compound were improved greatly and some compounds were better than pure Cu 2 O.

  18. Modification of circuit module of dye-sensitized solar cells (DSSC) for solar windows applications

    Science.gov (United States)

    Hastuti, S. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This research has been conducted to obtain a modification of circuit producing the best efficiency of solar window modules as an alternative energy for daily usage. Solar window module was constructed by DSSC cells. In the previous research, solar window was created by a single cell of DSSC. Because it had small size, it could not be applied in the manufacture of solar window. Fabrication of solar window required a larger size of DSSC cell. Therefore, in the next research, a module of solar window was fabricated by connecting few cells of DSSC. It was done by using external electrical circuit method which was modified in the formation of series circuit and parallel circuit. Its fabrication used six cells of DSSC with the size of each cell was 1 cm × 9 cm. DSSC cells were sandwich structures constructed by an active layer of TiO2 as the working electrode, electrolyte solution, dye, and carbon layer. Characterization of module was started one by one, from one cell, two cells, three cells, until six cells of a module. It was conducted to recognize the increasing efficiency value as the larger surface area given. The efficiency of solar window module with series circuit was 0.06%, while using parallel circuit was 0.006%. Module with series circuit generated the higher voltage as the larger surface area. Meanwhile, module through parallel circuit tended to produce the constant voltage as the larger surface area. It was caused by the influence of resistance within the cable in each module. Module with circuit parallel used a longer cable than module with series circuit, so that its resistance increased. Therefore, module with parallel circuit generated voltage that tended to be constant and resulted small efficiency compared to the module with series circuit. It could be concluded that series external circuit was the best modification which could produce the higher efficiency.

  19. Performance evaluation of anion exchange resins Purolite NRW-5050 and Duolite A-611 by application of radioisotopic techniques

    International Nuclear Information System (INIS)

    Singare, P.U.

    2014-01-01

    Radioanalytical techniques using 131 I and 82 Br as tracer isotopes were applied to study the kinetics of iodide and bromide ion-isotopic exchange reactions taking place between the external labeled ionic solution and the resin surface. The results indicate low values of specific reaction rate (min -1 ), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) for bromide ion-isotopic exchange reaction as compared to that obtained for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction performed at 35.0 C, 1 000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution, the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.340, 0.394, 0.134 and 20.2 respectively for Purolite NRW-5050 resin, which was higher than the respective values of 0.216, 0.290, 0.063 and 18.2 as that obtained by using Duolite A-611. The results of present investigation indicate that during the two ion-isotopic exchange reactions, for both the resins, there exists a strong positive linear correlation between amount of ions exchanged and concentration of ionic solution; and strong negative correlation between amount of ions exchanged and temperature of exchanging medium. From the results it appears that as compared to Duolite A-611 resins, Purolite NRW-5050 resins shows superior performance under identical experimental conditions.

  20. Chemometrics applications in biotechnology processes: predicting column integrity and impurity clearance during reuse of chromatography resin.

    Science.gov (United States)

    Rathore, Anurag S; Mittal, Shachi; Lute, Scott; Brorson, Kurt

    2012-01-01

    Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost-effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  1. Analytical characterization of a loading resin containing chlorophosphonazo I and its application to the enrichment of trace uranium

    International Nuclear Information System (INIS)

    Tang Fulong; Mao Xueqin

    1986-01-01

    A loading resin containing chlorophosphonazo I was prepared. The analytical properties of this resin for uranium were studied by the batch and column methods. In case EDTA is used as a masking agent, this method can be successfully applied to the separation and enrichment of trace uranium in wastewater from mining. The uranium adsorbed can be eluted with 1.5N HCl, and determined using the arsenazo III at pH 2 by spectrophotometry. The result obtained agrees well with that of the conventional method

  2. EDF specifications on nuclear grade resins

    International Nuclear Information System (INIS)

    Mascarenhas, Darren; Gressier, Frederic; Taunier, Stephane; Le-Calvar, Marc; Ranchoux, Gilles; Marteau, Herve; Labed, Veronique

    2012-09-01

    Ion exchange resins are widely used across EDF, especially within the nuclear division for the purification of water. Important applications include primary circuit, secondary circuit and effluent treatment, which require high quality nuclear grade resins to retain the dissolved species, some of which may be radioactive. There is a need for more and more efficient purification in order to decrease worker dose during maintenance but also to decrease volumes of radioactive resin waste. Resin performance is subject to several forms of degradation, including physical, chemical, thermal and radioactive, therefore appropriate resin properties have to be selected to reduce such effects. Work has been done with research institutes, manufacturers and on EDF sites to select these properties, create specifications and to continuously improve on these specifications. An interesting example of research regarding resin performance is the resin degradation under irradiation. Resins used in the CVCS circuit of EDF nuclear power plants are subject to irradiation over their lifetime. A study was carried out on the effects of total integrated doses of 0.1, 1 and 10 MGy on typically used EDF mixed bed resins in a 'mini-CVCS' apparatus to simultaneously test actual primary circuit fluid. The tests confirmed that the resins still perform efficiently after a typical CVCS radiation dose. Certain resins also need additional specifications in order to maintain the integrity of the particular circuits they are used in. Recently, EDF has updated its requirements on these high purity nuclear grade resins, produced generic doctrines for all products and materials used on site which include resins of all grades, and as a result have also updated a guide on recommended resin usage for the French fleet of reactors. An overview of the evolutions will be presented. (authors)

  3. Effects of blood contamination on resin-resin bond strength.

    Science.gov (United States)

    Eiriksson, Sigurdur O; Pereira, Patricia N R; Swift, Edward J; Heymann, Harald O; Sigurdsson, Asgeir

    2004-02-01

    Incremental placement and curing of resin composites has been recommended. However, this requires longer operating time, and therefore, increased risk of contamination. The purpose of this study was to evaluate the effects of blood contamination on microtensile bond strengths (microTBS) between resin interfaces and to determine the best decontamination method to re-establish the original resin-resin bond strength. The top surfaces of 64, 4-mm composite blocks (Z-250, Renew, APX, Pertac II) were untreated as the control, or were treated as follows: blood applied and dried on the surface (Treatment 1), blood applied, rinsed, dried (Treatment 2), blood applied, rinsed, and an adhesive applied (Single Bond, One-Step, Clearfil SE, Prompt L-Pop) (Treatment 3). Fresh composite was applied and light-cured in 2-mm increments. After 24 h storage in water, the specimens were sectioned into 0.7-mm thick slabs, trimmed to a cross-sectional area of 1 mm(2), and loaded to failure at a crosshead speed of 1 mm/min using an Instron universal testing machine. Data were analyzed using two-way ANOVA and Fisher's PLSD test (pcontamination resulted in resin-resin bond strengths of only 1.0-13.1 MPa. Rinsing raised bond strengths to over 40 MPa for each material. Use of an adhesive further increased bond strengths except for Pertac II. Rinsing blood from contaminated surfaces increases the resin-resin bond strength significantly and the application of an appropriate adhesive increases the bond strength to control levels.

  4. Caries-preventive effect of a one-time application of composite resin and glass ionomer sealants after 5 years.

    NARCIS (Netherlands)

    Beiruti, N.; Frencken, J.E.F.M.; Hof, M.A. van 't; Taifour, D.; Palenstein Helderman, W.H. van

    2006-01-01

    The aim of the present trial was to (1) compare the caries-preventive effect of glass ionomer sealants, placed according to the atraumatic restorative treatment (ART) procedure, with composite resin sealants over time and (2) investigate the caries-preventive effect after complete disappearance of

  5. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  6. Photoelectrochemical studies of dye-sensitized solar cells using organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Marinado, Tannia

    2009-10-15

    The dye-sensitized solar cell (DSC) is a promising efficient low-cost molecular photovoltaic device. One of the key components in DSCs is the dye, as it is responsible for the capture of sunlight. State-of-the-art DSC devices, based on ruthenium dyes, show record efficiencies of 10-12 %. During the last decade, metal-free organic dyes have been extensively explored as sensitizers for DSC application. The use of organic dyes is particularly attractive as it enables easy structural modifications, due to fairly short synthetic routes and reduced material cost. Novel dye should in addition to the light-harvesting properties also be compatible with the DSC components. In this thesis, a series of new organic dyes are investigated, both when integrated in the DSC device and as individual components. The evaluation methods consisted of different electrochemical and photoelectrochemical techniques. Whereas the light-harvesting properties of the dyes were fairly easily improved, the behavior of the dye integrated in the DSC showed less predictable photovoltaic results. The dye series studied in Papers II and IV revealed that their dye energetics limited vital electron-transfer processes, the dye regeneration (Paper II) and injection quantum yield (Paper IV). Further, in Papers III-VI, it was observed that different dye structures seemed to alter the interfacial electron recombination with the electrolyte. In addition to the dye structure sterics, some organic dyes appear to enhance the interfacial recombination, possibly due to specific dye-redox acceptor interaction (Paper V). The impact of dye sterical modifications versus the use of coadsorbent was explored in Paper VI. The dye layer properties in the presence and absence of various coadsorbents were further investigated in Paper VII. The core of this thesis is the identification of the processes and properties limiting the performance of the DSC device, aiming at an overall understanding of the compatibility between the

  7. Immobilization of spent resin with epoxy resin

    International Nuclear Information System (INIS)

    Gultom, O.; Suryanto; Sayogo; Ramdan

    1997-01-01

    immobilization of spent resin using epoxy resin has been conducted. The spent resin was mixtured with epoxy resin in variation of concentration, i.e., 30, 40, 50, 60, 70 weight percent of spent resin. The mixture were pour into the plastic tube, with a diameter of 40 mm and height of 40 mm. The density, compressive strength and leaching rate were respectively measured by quanta chrome, paul weber apparatus and gamma spectrometer. The results showed that the increasing of waste concentration would be decreased the compressive strength, and increased density by immobilized waste. The leaching rate of 137 Cs from waste product was not detected in experiment (author)

  8. Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Hsien Li

    2016-04-01

    Full Text Available Considering the increasing global demand for energy and the harmful ecological impact of conventional energy sources, it is obvious that development of clean and renewable energy is a necessity. Since the Sun is our only external energy source, harnessing its energy, which is clean, non-hazardous and infinite, satisfies the main objectives of all alternative energy strategies. With attractive features, i.e., good performance, low-cost potential, simple processibility, a wide range of applications from portable power generation to power-windows, photoelectrochemical solar cells like dye-sensitized solar cells (DSCs represent one of the promising methods for future large-scale power production directly from sunlight. While the sensitization of n-type semiconductors (n-SC has been intensively studied, the use of p-type semiconductor (p-SC, e.g., the sensitization of wide bandgap p-SC and hole transport materials with p-SC have also been attracting great attention. Recently, it has been proved that the p-type inorganic semiconductor as a charge selective material or a charge transport material in organometallic lead halide perovskite solar cells (PSCs shows a significant impact on solar cell performance. Therefore the study of p-type semiconductors is important to rationally design efficient DSCs and PSCs. In this review, recent published works on p-type DSCs and PSCs incorporated with an inorganic p-type semiconductor and our perspectives on this topic are discussed.

  9. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  10. A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing

    Science.gov (United States)

    Park, Hong Key; Shin, Mikyung; Kim, Bongkyun; Park, Jin Woo; Lee, Haeshin

    2018-04-01

    Herein, a new polymeric resin for stereolithography (SLA) three-dimensional printing (SLA-3DP) is reported. An ultraviolet (UV) or visible (VIS) light source is critical for SLA printing technology. UV light can be used to manufacture 3D objects in SLA-3DP, but there are significant occupational safety and health issues (particularly for eyes). These issues prevent the widespread use of SLA-3DP at home or in the office. Through the use of VIS light, the safety and health issues can largely be solved, but only non-transparent 3D objects can be manufactured, which prevents the application of 3DP to the production of various common transparent consumer products. For these reasons, we developed a VIS light-curable yet visibly transparent resin for SLA-3DP, which also retains UV curability. The key was to identify the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (DPTBP). DPTBP was originally designed as a UV photoinitiator, but we found that VIS light irradiation is sufficient to split DPTBP and generate radicals due to its slight VIS light absorption up to 420 nm. The cured resin displays high transparency and beautiful transparent colors by incorporating various dyes; additionally, its mechanical properties are superior to those of commercial resins (Arario 410) and photoinitiators (Irgacure 2959).

  11. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes

    Directory of Open Access Journals (Sweden)

    Hatem E. Gaffer

    2015-12-01

    Full Text Available The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1–3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4–6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl-thiazole dyes 7–9 was then prepared by diazo coupling of thiazole derivatives 4–6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.

  12. The use of vitamins as tracer dyes for laser-induced fluorescence in liquid flow applications

    Science.gov (United States)

    Zähringer, Katharina

    2014-04-01

    Tracers commonly used in experimental flow studies are mostly nocuous to the environment and human health. Particularly, in large flow installations, this can become a problem. In this study, a solution of this problem is presented, based on using water-soluble vitamins. Five of them are examined here for their applicability in flow studies. Vitamins B2 and B6 turned out to be the most promising candidates, and the dependency of their fluorescence intensity on parameters like concentration, laser energy, temperature, and pH are determined for two commonly used laser excitation wavelengths (532, 355 nm). Two examples of application in a static mixer and a spray flow are shown and demonstrate the applicability of the vitamin tracers.

  13. Comparative study of resin sealant and resin modified glass ionomer as pit and fissure sealant

    Directory of Open Access Journals (Sweden)

    Shirin Malek

    2017-02-01

    Full Text Available The purpose of the present study was to compare the marginal integrity of resin modified glass ionomer cement with that of resin sealant, in vitro. Forty artificial pit and fissure cavities were prepared in occlusal surface of extracted premolar teeth by using ¼ round carbide bur. Cavities were condensed with artificial organic debris followed by cleaning with prophylaxis pumice brush and paste and then separated into two treatment groups. In Group A, 15 fissure cavities were sealed by resin sealant and in Group B, 15 fissure cavities were sealed by resin modified glass ionomer sealant. These specimens were subjected to thermo-cycling followed by dye penetration test. The remaining 5 cavities from each group were analyzed for debris score by the SEM. The results of the microleakage test showed that the efficacy of preventing microleakage of samples sealed by resin modified glass ionomer sealant was higher than the samples sealed by resin sealant. However, no significant differences were found. It can be concluded that use of resin modified glass ionomer sealant is a good alternative for sealing pits and fissures.

  14. Efficiency of Nb-Doped ZnO Nanoparticles Electrode for Dye-Sensitized Solar Cells Application

    Science.gov (United States)

    Anuntahirunrat, Jirapat; Sung, Youl-Moon; Pooyodying, Pattarapon

    2017-09-01

    The technological of Dye-sensitized solar cells (DSSCs) had been improved for several years. Due to its simplicity and low cost materials with belonging to the part of thin films solar cells. DSSCs have numerous advantages and benefits among the other types of solar cells. Many of the DSSC devices had use organic chemical that produce by specific method to use as thin film electrodes. The organic chemical that widely use to establish thin film electrodes are Zinc Oxide (ZnO), Titanium Dioxide (TiO2) and many other chemical substances. Zinc oxide (ZnO) nanoparticles had been used in DSSCs applications as thin film electrodes. Nanoparticles are a part of nanomaterials that are defined as a single particles 1-100 nm in diameter. From a few year ZnO widely used in DSSC applications because of its optical, electrical and many others properties. In particular, the unique properties and utility of ZnO structure. However the efficiency of ZnO nanoparticles based solar cells can be improved by doped various foreign impurity to change the structures and properties. Niobium (Nb) had been use as a dopant of metal oxide thin films. Using specification method to doped the ZnO nanoparticles thin film can improved the efficiencies of DSSCs. The efficiencies of Nb-doped ZnO can be compared by doping 0 at wt% to 5 at wt% in ZnO nanoparticles thin films that prepared by the spin coating method. The thin film electrodes doped with 3 at wt% represent a maximum efficiencies with the lowest resistivity of 8.95×10-4 Ω·cm.

  15. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  16. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  17. Development of AlGaN-based deep-ultraviolet (DUV) LEDs focusing on the fluorine resin encapsulation and the prospect of the practical applications

    Science.gov (United States)

    Hirano, Akira; Nagasawa, Yosuke; Ippommatsu, Masamichi; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-09-01

    AlGaN-based LEDs are expected to be useful for sterilization, deodorization, photochemical applications such as UV curing and UV printing, medical applications such as phototherapy, and sensing. Today, it has become clear that efficient AlGaN-based LED dies are producible between 355 and 250 nm with an external quantum efficiency (EQE) of 3% on flat sapphire. These dies were realized on flat sapphire without using a special technique, i.e., reduction in threading dislocation density or light extraction enhancement techniques such as the use of a photonic crystal or a patterned sapphire substrate. Despite the limited light extraction efficiency of about 8% owing to light absorption at a thick p-GaN contact layer, high EQEs of approximately 6% has been reproducible between 300 and 280 nm without using special techniques. Moreover, an EQE of 3.9% has been shown at 271 nm, despite the smaller current injection efficiency (CIE). The high EQEs are thought to correspond to the high internal quantum efficiency (IQE), indicating a small room for improving IQE. Accordingly, resin encapsulation on a simple submount is strongly desired. Recently, we have succeeded in demonstrating fluorine resin encapsulation on a ceramic sheet (chip-on-board, COB) that is massproducible. Furthermore, the molecular structure of a resin with a durability of more than 10,000 h is explained in this paper from the photochemical viewpoint. Thus, the key technologies of AlGaN-based DUV-LEDs having an EQE of 10% within a reasonable production cost have been established. The achieved efficiency makes AlGaN-based DUVLEDs comparable to high-pressure mercury lamps.

  18. High Molar Extinction Coefficient Ru(II-Mixed Ligand Polypyridyl Complexes for Dye Sensitized Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Malapaka Chandrasekharam

    2011-01-01

    Full Text Available Two new ruthenium(II mixed ligand terpyridine complexes, “Ru(Htcterpy(NCS(L1 (N(C4H94, mLBD1” and Ru(Htcterpy(NCS(L2(N(C4H94, mLBD2 were synthesized and fully characterized by UV-Vis, emission, cyclic voltammogram, and other spectroscopic means, and the structures of the compounds are confirmed by 1H-NMR, ESI-MASS, and FT-IR spectroscopes. The influence of the substitution of L1 and L2 on solar-to-electrical energy conversion efficiency (η of dye-sensitized solar cells (DSSCs was evaluated relative to reference black dye. The dyes showed molar extinction coefficients of 17600 M−1 cm−1 for mLBD1 and 21300 M−1 cm−1 for mLBD2 both at λ maximum of 512 nm, while black dye has shown 8660 M−1 cm−1 at λ maximum of 615 nm. The monochromatic incident photon-to-collected electron conversion efficiencies of 60.71% and 75.89% were obtained for mLBD1 and mLBD2 dyes, respectively. The energy conversion efficiencies of mLBD1 and mLBD2 dyes are 3.15% (SC=11.86 mA/cm2, OC=613 mV, ff=0.4337 and 3.36% (SC=12.71 mA/cm2, OC=655 mV, ff=0.4042, respectively, measured at the AM1.5G conditions, the reference black dye-sensitized solar cell, fabricated and evaluated under identical conditions exhibited η-value of 2.69% (SC=10.95 mA/cm2, OC=655 mV, ff=0.3750.

  19. Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane.

    Science.gov (United States)

    Ibrahim, G P Syed; Isloor, Arun M; Inamuddin; Asiri, Abdullah M; Ismail, Norafiqah; Ismail, Ahmed Fauzi; Ashraf, Ghulam Md

    2017-11-21

    In this work, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N'-methylene bis(acrylamide) (MBAAm) as cross-linker are used for the synthesis of nanoparticles. As  far as our knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles via DPP. The newly synthesized nanoparticles were further employed for the surface modification of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane exhibited the improved permeability (56 L/ m 2 h bar) and dye removal (>98% of Reactive Black 5 and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared membrane can have potential application in textile and industrial wastewater treatment.

  20. BODIPYs for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Klfout, Hafsah; Stewart, Adam; Elkhalifa, Mahmoud; He, Hongshan

    2017-11-22

    BODIPY, abbreviation of boron-dipyrromethene, is one class of robust organic molecules that has been used widely in bioimaging, sensing, and logic gate design. Recently, BODIPY dyes have been explored for dye-sensitized solar cells (DSCs). Studies demonstrate their potential as light absorbers for the conversion of solar energy to electricity. However, their photovoltaic performance is inferior to many other dyes, including porphyrin dyes. In this review, several synthetic strategies of BODIPY dyes for DSCs and their further functionalization are described. The photophysical properties of dye molecules and their photovoltaic performances in DSCs are summarized. We aim to provide readers a clear picture of the field and expect to shed light on the next generation of BODIPY dyes for their applications in solar energy conversion.

  1. Ga-modified nanostructured Zn O: characterization and application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Agnaldo S.; Davolos, Marian R.; Antonio, Selma G.; Paiva-Santos, Carlos O. [Universidade Estadual Paulista (IQ/UNESP), Araraquara, SP (Brazil). Inst. de Quimica], e-mails: aagnaldo@iq.unesp.br, cdavolos@iq.unesp.br, selma_ga@yahoo.com.br, cpaiva@iq.unesp.br; Nogueira, Ana F. [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica], e-mail: anaflavia@iqm.unicamp.br; Masaki, Naruhiko; Yanagida, Shozo [Osaka University, Suita (Japan). Center for Advanced Science and Innovation], e-mails: nmasaki@ casi.osaka-u.ac.jp, s-yanagi@wc4.so-net.ne.jp

    2007-07-01

    Zn O has received great attention in many applications due to its electronic and optical properties. We report on the preparation of Zn O and gallium-containing Zn O (Zn O:Ga) nanoparticles by the precipitation method. The nanoparticles have the wurtzite structure and a high crystallinity. Gallium ions are present as Ga{sup 3+}, as evidenced by the binding energies through XPS. Porosity and surface area of the powder increased under increasing gallium level, explained by the smaller particle size of Zn O:Ga samples compared with Zn O. The estimated optical band gap of Zn O was 3.2 eV, comparable to Zn O:Ga. (author)

  2. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    Science.gov (United States)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  3. Development of new near-infrared and leuco-dye optical systems for forensic and crime fighting applications

    Science.gov (United States)

    Patonay, Gabor; Strekowski, Lucjan; Salon, Jozef; Medou-Ovono, Martial; Krutak, James J.; Leggitt, Jeffrey; Seubert, Heather; Craig, Rhonda

    2004-12-01

    New chemistry for leuco fluorescin and leuco rhodamine for latent bloodstain and fingerprint detection has been developed in our laboratories. The use of these leuco dyes results in excellent contrast for several hours. The FBI's Evidence Response Team and DNA I unit collaborated with Georgia State University to validate the new fluorescin chemistry for use in the field. In addition, several new NIR dyes have been developed in our laboratories that can be used to detect different chemical residues, e.g., pepper spray, latent fingerprint, latent blood, metal ions, or other trace evidence during crime scene investigations. Proof of principle experiments showed that NIR dyes reacting with such residues can be activated with appropriately filtered semiconductor lasers and LEDs to emit NIR fluorescence that can be observed using optimally filtered night vision intensifiers or pocket scopes, digital cameras, CCD and CMOS cameras, or other NIR detection systems. The main advantage of NIR detection is that the color of the background has very little influence on detection and that there are very few materials that would interfere by exhibiting NIR fluorescence. The use of pocket scopes permits sensitive and convenient detection. Once the residues are located, digital images of the fluorescence can be recorded and samples obtained for further analyses. NIR dyes do not interfere with subsequent follow-up or confirmation methods such as DNA or LC/MS analysis. Near-infrared absorbing dyes will be summarized along with detection mechanisms.

  4. Synthesis and Application of Iron Oxide/Silica Gel Nanocomposite for Removal of Sulfur Dyes from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Naser Tavassoli

    2017-03-01

    Full Text Available Background & Aims of the Study: water pollution by synthetic organic dyes is mainly regarded as environmental and ecological critical issues worldwide. In this research, magnetite iron oxide/silica gel nanocomposite (termed as Fe3O4/SG was synthesized chemically and then used as an effective adsorbent for removal of sulfur dyes from aqueous solution. Materials and Methods: The various parameters such as pH, sorbent dosage, initial dye concentration, contact time and dye solution temperature were investigated in a batch system. The equilibrium data were analyzed by Langmuir and Freundlich isotherm models. Results: The experimental data fit well with pseudo-second-order kinetic model (R2≥0.998 and conformed better to Langmuir isotherm model (R2≥0.997. The maximum adsorption capacity for Fe3O4/SG obtained from the Langmuir model was 11.1mg/g. Evaluation of thermodynamic parameters proved that the adsorption process was normally feasible, spontaneous and exothermic. Conclusion: It can be concluded that the Fe3O4/SG can be considered as a cost-effective and an environmental friendly adsorbent for efficient removal of sulfur dyes from aqueous solutions.

  5. Nano-dyeing

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2016-01-01

    Full Text Available Dyeing nanofibers is a frontier of both modern textile engineering and nanotechnology. This paper suggest a feasible method for dyeing nanofibers with a natural red (Roselle Calyx by bubble electrospinning. Reactive dye (Red S3B and acid dye (Red 2B were also used in the experiment for comparison. The dyeing process was finished during the spinning process.

  6. Development of radiation-curable resin based on natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Dahlan; Harun, Abdul Ghani [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    A new radiation curable resin based on natural rubber has been developed. The resin was based on the reaction between low molecular weight epoxidised natural rubber and acrylic acid. When formulated with reactive monomers and photoinitiator, it solidified upon irradiation with UV light. The resin may find applications in coating for cellulosic-based substrates and pressure-sensitive adhesive.

  7. Development of radiation-curable resin based on natural rubber

    International Nuclear Information System (INIS)

    Dahlan Mohd; Abdul Ghani Harun

    1993-01-01

    A new radiation curable resin based on natural rubber has been developed. The resin was based on the reaction between low molecular weight epoxidised natural rubber and acrylic acid. When formulated with reactive monomers and photoinitiator, it solidified upon irradiation with UV light. The resin may find applications in coating for cellulosic-based substrates and pressure-sensitive adhesive

  8. Bio-based thermosetting epoxy foam: Tannic acid valorization toward dye-decontaminating and thermo-protecting applications.

    Science.gov (United States)

    Esmaeili, N; Salimi, A; Zohuriaan-Mehr, M J; Vafayan, M; Meyer, W

    2018-05-23

    Bio-resourced thermosetting epoxy foam was synthesized from tannic acid toward two different applications e.g., dye-decontaminating and thermo-insulating. Epoxidized tannic acid (ETA) foam was produced without using of organic volatile compounds or flammable foaming gases. The foam density, thermal conductivity and closed-cell content were studied. Besides, TGA showed high char yield (49% in N 2 and 48.3% in air) at 600 °C accompanied by high LOI (37.1 in N 2 and 36.8 in air). The high thermo-stability and intumescent char yield along with low thermal conductivity recommends the foam suitability for being used as an insulating material. Additionally, sorption of methylene blue onto ETA foam was kinetically investigated. The study of contact time, ionic strength, solution pH, initial sorbate concentration and desorption revealed the dependency of the sorption process to pH and initial sorbate concentration. The experimental data fitted well with the Langmuir isotherm (R 2  = 0.997), yielding maximum sorption capacity of 36.25 mg/g (ETA foam = 0.05 g, pH = 7, MB concentration = 50 ppm, Volume = 25 mL). The kinetic data verified that MB sorption could be represented by the pseudo second-order model. Overall, the ETA foam can be introduced as a candidate for removing cationic pollutants, thermal insulator, and self-extinguishing/intumescent materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    Directory of Open Access Journals (Sweden)

    Seungwon Lee

    2016-12-01

    Full Text Available Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue degradation under ultraviolet (UV and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating.

  10. Application of zein-modified magnetite nanoparticles in dispersive magnetic micro-solid-phase extraction of synthetic food dyes in foodstuffs.

    Science.gov (United States)

    Jangju, Azam; Farhadi, Khalil; Hatami, Mehdi; Amani, Samireh; Esma-Ali, Farzan; Moshkabadi, Aisan; Hajilari, Fatemeh

    2017-03-01

    A simple method for the simultaneous and trace analysis of four synthetic food azo dyes including carmoisine, ponceau 4R, sunset yellow, and allura red from some foodstuff samples was developed by combining dispersive μ-solid-phase extraction and high-performance liquid chromatography with diode array detection. Zein-modified magnetic Fe 3 O 4 nanoparticles were prepared and used for μ-solid-phase extraction of trace amounts of mentioned food dyes. The prepared modified magnetic nanoparticles were characterized by scanning electron microscopy and FTIR spectroscopy. The factors affecting the extraction of the target analytes such as pH, amount of sorbent, extraction time, type and volume of the desorption eluent, and desorption time were investigated. Under the optimized conditions, the method provided good repeatability with relative standard deviations lower than 5.8% (n = 9). Limit of detection values ranged between 0.3 and 0.9 ng/mL with relatively high enrichment factors (224-441). Comparing the obtained results indicated that Fe 3 O 4 nanoparticles modified by zein biopolymer show better analytical application than bare magnetic nanoparticles. The proposed method was also applied for the determination of target synthetic food dyes in foodstuff samples such as carbonated beverage, snack, and candy samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO4) nanoparticles and its application in photocatalytic degradation of direct blue dye

    International Nuclear Information System (INIS)

    Mohamed, R.M.; Harraz, F.A.; Mkhalid, I.A.

    2012-01-01

    Graphical abstract: XRD patterns of YVO 4 nanopowders prepared at different hydrothermal times; where Y 1 = 4 h, Y 2 = 8 h, Y 3 = 12 h and Y 4 = 24 h. Highlights: ► Size control of Yttrium Orthovanadate. ► Hydrothermal synthesis. ► Removal of direct blue dye. - Abstract: Sized-controlled YVO 4 nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer–Emmett–Teller (BET)), and ultraviolet–visible spectroscopy (UV–vis) measurements. The results showed that the size of as-synthesized YVO 4 nanoparticles was in the range of 11–40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO 4 nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO 4 photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO 4 nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  12. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO{sub 4}) nanoparticles and its application in photocatalytic degradation of direct blue dye

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, R.M., E-mail: redama123@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Harraz, F.A. [Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Mkhalid, I.A. [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-08-15

    Graphical abstract: XRD patterns of YVO{sub 4} nanopowders prepared at different hydrothermal times; where Y{sub 1} = 4 h, Y{sub 2} = 8 h, Y{sub 3} = 12 h and Y{sub 4} = 24 h. Highlights: Black-Right-Pointing-Pointer Size control of Yttrium Orthovanadate. Black-Right-Pointing-Pointer Hydrothermal synthesis. Black-Right-Pointing-Pointer Removal of direct blue dye. - Abstract: Sized-controlled YVO{sub 4} nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer-Emmett-Teller (BET)), and ultraviolet-visible spectroscopy (UV-vis) measurements. The results showed that the size of as-synthesized YVO{sub 4} nanoparticles was in the range of 11-40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO{sub 4} nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO{sub 4} photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO{sub 4} nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  13. Dye sensitized solar cell applications of CdTiO{sub 3}–TiO{sub 2} composite thin films deposited from single molecular complex

    Energy Technology Data Exchange (ETDEWEB)

    Ehsan, Muhammad Ali [Nanotechnology and Catalysis Centre (NANOCAT), University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Khaledi, Hamid [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Pandikumar, Alagarsamy; Huang, Nay Ming [Department of Physics, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Arifin, Zainudin [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2015-10-15

    A heterobimetallic complex [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO{sub 3}–TiO{sub 2} composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO{sub 3}–TiO{sub 2} composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application. - Graphical abstarct: Microspherical designed CdTiO{sub 3}–TiO{sub 2} composite oxides photoanode film has been fabricated from single source precursor [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF via aerosol assisted chemical vapor deposition technique for dye sensitized solar cell application. - Highlights: • Synthesis and characterization of a heterobimetallic Cd–Ti complex. • Fabrication of CdTiO{sub 3}–TiO{sub 2} thin film photoelectrode. • Application as dye sensitized photoanode for solar application.

  14. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  15. Electrodeposited Nanoporous versus Nanoparticulate ZnO Films of Similar Roughness for Dye-Sensitized Solar Cell Applications

    Czech Academy of Sciences Publication Activity Database

    Guerin, V. M.; Magne, C.; Pauporté, T.; Le Bahers, T.; Rathouský, Jiří

    2010-01-01

    Roč. 2, č. 12 (2010), s. 3677-3685 ISSN 1944-8244 Institutional research plan: CEZ:AV0Z40400503 Keywords : ZnO * dye sensitized solar cells * electrodeposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.925, year: 2010

  16. Immobilization of horseradish peroxidase onto kaolin by glutaraldehyde method and its application in decolorization of anthraquinone dye

    Directory of Open Access Journals (Sweden)

    Šekuljica Nataša Ž.

    2016-01-01

    Full Text Available The problem of environmental pollution day by day becomes more worrisome, primarily due to the large amounts of wastewater contaminated with various harmful organic compounds, discharged into the environment untreated or partially clean. Feasibility of use of horseradish peroxidase (Amoracia rusticana in the synthetic dyes decolorization was approved by many researchers. Among a number of supports used for the immobilization, it was found that natural clay, kaolin has excellent features which are a precondition for obtaining biocatalysts with the excellent performances. For this reason, a horseradish peroxidase was immobilized onto kaolin using glutaraldehyde as a cross-linking agent. Obtained biocatalyst was applied in the decolorization of anthraquinone dye C. I. Acid Violet 109. Under determined optimal conditions (pH 4.0, hydrogen peroxide concentration 0.6 mM, dye concentration 30 mg L-1, temperature 24ºC around 76 % of dye decolorization was achieved. Reusability study showed that resulting biocatalyst was possible to apply four times in the desired reaction with relatively high decolorization percentage. [Projekat Ministarstva nauke Republike Srbije, br. III-46010 i br. 172013

  17. Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Pietro Calandra

    2010-01-01

    Full Text Available We review the most advanced methods for the fabrication of cathodes for dye-sensitized solar cells employing nanostructured materials. The attention is focused on metal nanoparticles and nanostructured carbon, among which nanotubes and graphene, whose good catalytic properties make them ideal for the development of counter electrode substrates, transparent conducting oxide, and advanced catalyst materials.

  18. Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes.

    Science.gov (United States)

    Liu, Cong; You, Yanting; Zhao, Ruofei; Sun, Di; Zhang, Peng; Jiang, Jihong; Zhu, Aihua; Liu, Weijie

    2017-11-01

    Dye dispersion and the interaction efficiency between azoreductases and dye molecules are rate-limiting steps for the decolorization of azo dyes. In this study, a biosurfactant-producing strain, Pseudomonas taiwanensis L1011, was isolated from crude oil. To increase the yield of the biosurfactant BS-L1011 from P. taiwanensis L1011, culture conditions were optimized including temperature, initial pH, carbon source, nitrogen source and C/N ratio. A maximum yield of 1.12g/L of BS-L1011 was obtained using D-mannitol as carbon source and yeast extract/urea as compound nitrogen source with C/N ratio of 10/4, pH 7.0 and 28°C. BS-L1011 exhibited a low critical micelle concentration (CMC) of 10.5mg/L and was able to reduce the surface tension of water to 25.8±0.1 mN/m. BS-L1011 was stable over a wide range of temperatures, pH values and salt concentrations. The biosurfactant is reported for the first time to accelerate chemical decolorization of Congo red by sodium hypochlorite, and biological decolorization of Amaranth by Bacillus circulans BWL1061, thus showing a potential in the treatment of dyeing wastewater. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Quasi Two-Dimensional Dye-Sensitized In 2 O 3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications

    KAUST Repository

    Mottram, Alexander D.; Lin, Yen-Hung; Pattanasattayavong, Pichaya; Zhao, Kui; Amassian, Aram; Anthopoulos, Thomas D.

    2016-01-01

    of the light absorbing organic dye D102. The resulting transistors exhibit a preferential color photoresponse centered in the wavelength region of ∼500 nm with a maximum photosensitivity of ∼106 and a responsivity value of up to 2 × 103 A/W. The high

  20. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments

    Directory of Open Access Journals (Sweden)

    Adilson Yoshio Furuse

    2007-12-01

    Full Text Available The purpose of this study was to investigate the effect of different surface treatments on shear bond strength of saliva-contaminated resin-resin interfaces. Flat resin surfaces were fabricated. In the control group, no contamination or surface treatment was performed. The resin surfaces of the experimental groups were contaminated with saliva and air-dried, and then submitted to: (G1 rinsing with water and drying; (G2 application of an adhesive system; (G3 rinsing and drying, abrasion with finishing disks, etching and application of adhesive system; (G4 rinsing and drying, etching, application of silane and adhesive system. Resin cylinders were placed over the treated surfaces. The specimens were stored in water or ethanol. Shear bond strength tests were performed and the mode of failure was evaluated. Data were submitted to two-way ANOVA and Dunnett T3 test. Contamination of resin-resin interfaces with saliva significantly reduced shear strength, especially after prolonged storage (p<0.05. Similar values to the original bond strength were obtained after abrasion and application of adhesive (G3 or etching and application of silane and adhesive (G4. If contamination occurs, a surface treatment is required to guarantee an adequate interaction between the resin increments.

  1. Effect of gingival fluid on marginal adaptation of Class II resin-based composite restorations.

    Science.gov (United States)

    Spahr, A; Schön, F; Haller, B

    2000-10-01

    To evaluate in vitro the marginal quality of Class II composite restorations at the gingival enamel margins as affected by contamination of the cavities with gingival fluid (GF) during different steps of resin bonding procedures. 70 Class II cavities were prepared in extracted human molars and restored with composite using a multi-component bonding system (OptiBond FL/Herculite XRV; OPTI) or a single-bottle adhesive (Syntac Sprint/Tetric Ceram; SYN). The cavities were contaminated with human GF: C1 after acid etching, C2 after application of the primer (OPTI) or light-curing of the primer-adhesive (SYN), and C3 after light-curing of the resin adhesive (OPTI). Uncontaminated cavities were used as the control (C0). The restored teeth were subjected to thermocycling (TC) and replicated for SEM analysis of marginal gap formation. Microleakage at the gingival margins was determined by dye penetration with basic fuchsin. non-parametric tests (Kruskal-Wallis test, Mann-Whitney test with Bonferroni correction). In both bonding systems, contamination with GF after acid etching (C1) did not impair the marginal quality; the mean percentages of continuous margin/mean depths of dye penetration were: OPTI: C0: 88.5%/0.10 mm, C1: 95.6%/0.04 mm; SYN: C0: 90.9%/0.08 mm, C1: 97.0%/0.05 mm. Marginal adaptation was adversely affected when GF contamination was performed after

  2. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis.

    Science.gov (United States)

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-09-01

    Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.

  3. Electrodialytic decontamination of spent ion exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.

    1982-01-01

    Development of a novel electrodialytic decontamination process for the selective removal of radioactive Cs from spent ion exchange resins containing large amounts of Li is described. The process involves passage of a dc electric current through a bed of the spent ion exchange resin in a specially designed electrodialytic cell. The radiocesium so removed from a volume of the spent resin is concentrated onto a much smaller volume of a Cs selective sorbent to achieve a significant radioactive waste volume reduction. Technical feasibility of the electrodialytic resin decontamination process has been demonstrated on a bench scale with a batch of simulated spent ion exchange resin and using potassium cobalt ferrocyanide as the Cs selective sorbent. A volume reduction factor between 10 and 17 has been estimated. The process appears to be economically attractive. Improvements in process economics can be expected from optimization of the process. Other possible applications of the EDRD process have been identified

  4. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  5. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications.

    Science.gov (United States)

    Belov, Vladimir N; Mitronova, Gyuzel Yu; Bossi, Mariano L; Boyarskiy, Vadim P; Hebisch, Elke; Geisler, Claudia; Kolmakov, Kirill; Wurm, Christian A; Willig, Katrin I; Hell, Stefan W

    2014-10-06

    Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as "hidden" markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2-diazo-1-indanone group can be irreversibly photoactivated, either by irradiation with UV- or violet light (one-photon process), or by exposure to intense red light (λ∼750 nm; two-photon mode). All dyes possess a very small 2-diazoketone caging group incorporated into the 2-diazo-1-indanone residue with a quaternary carbon atom (C-3) and a spiro-9H-xanthene fragment. Initially they are non-colored (pale yellow), non-fluorescent, and absorb at λ=330-350 nm (molar extinction coefficient (ε)≈10(4)  M(-1)  cm(-1)) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511-633 and 525-653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε=3-8×10(4)  M(-1)  cm(-1) and fluorescence quantum yields (ϕ)=40-85% in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water-soluble caged red-emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino-reactive N-hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375-420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3-6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (ϕ=20-38%). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10-40% of the non-fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible

  6. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-01-01

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed

  7. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-15

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  8. Combined cation-exchange and solid phase extraction for the selective separation and preconcentration of zinc, copper, cadmium, mercury and cobalt among others using azo-dye functionalized resin.

    Science.gov (United States)

    Chatterjee, Mousumi; Srivastava, Bhavya; Barman, Milan K; Mandal, Bhabatosh

    2016-04-01

    A facile synthesis of an ion exchange material (FSG-PAN) has been achieved by functionalizing silica gel with an azo-dye. Its composition and structure are well assessed by systematic analysis. Extractor possesses high BET surface area (617.794m(2)g(-1)), exchange capacity and break-through capacity (BTC) (Q0 Zn(II): 225; Cd(II): 918; Hg(II): 384, Cu(II): 269 and Co(II): 388μMg(-1)). The sorption process was endothermic (+ΔH), entropy-gaining (+ΔS) and spontaneous (-ΔG) in nature. Preconcentration factor has been optimized at 172(Zn(II)); 157.2(Cd(II)); 193.6(Hg(II)); 176(Cu(II)); 172.4(Co(II)). Density functional theory calculation has been performed to analyze the sorption pathway. BTC (μMg(-1)) of FSG-PAN was found to be the product of its frontier orbitals and state of sorbed metal ion species, x (at x=1, mononuclear and x>1, a polynuclear species; i.e., BTC=[amount of HOMO]×x). FSG-PAN is used for the selective separation and preconcentration of Zn(II), Cd(II), Hg(II), Cu(II),Co(II) from large volume sample (800mL) of low concentration (0.017-0.40mML(-1)) in presence of foreign ions (50-300mML(-1)) at optimum conditions (pH: 7.0±1.5, flow rate: 2.5mLmin(-1), temperature: 27°C, equilibration-time: 5min). The method was found to be effective for real samples also. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Emission and Mechanical Evaluations of Vinyl-Ester Resin Systems

    National Research Council Canada - National Science Library

    Sands, James

    2003-01-01

    Vinyl-ester resins (VE) are frequently used in liquid molding of composite materials for several applications including naval and army structures, commercial boat manufacturing, and building construction...

  10. Evaluation of ferrocyanide anion exchange resins regarding the uptake of Cs+ ions and their regeneration

    International Nuclear Information System (INIS)

    Won, Hui Jun; Mooon, Jei Kwon; Jung, Chong Hun; Chung, Won Yang

    2008-01-01

    Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake Cs + ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the Cs + ion of the surrogate soil decontamination solution, and resin- KCoFC showed the best Cs + ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the Cs + ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the Fe 2+ ion in the reduction step could also be reduced by adding the K + ion

  11. Two-Sided Surface Oxidized Cellulose Membranes Modified with PEI: Preparation, Characterization and Application for Dyes Removal

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-09-01

    Full Text Available Porous regenerated cellulose (RC membranes were prepared with cotton linter pulp as a raw material. These membranes were first oxidized on both sides by a modified (2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO oxidation system using a controlled oxidation reaction technique. Then, the oxidized RC membranes were functionalized with polyethylenimine (PEI via the glutaraldehyde crosslinking method to obtain bifunctional (carboxyl and amino porous RC membranes, as revealed by Fourier transform infrared spectroscopy (FT-IR, elemental analysis and zeta potential measurement. The scanning electron microscopy (SEM and the tests of the mechanical properties and permeability characteristics of modified RC membranes demonstrated that the porous structure and certain mechanical properties could be retained. The adsorption performance of the modified membranes towards dyes was subsequently investigated. The modified membranes displayed good adsorption capacities, rapid adsorption equilibrium and removal efficiencies towards both anionic (xylenol orange (XO and cationic (methylene blue (MB dyes, making them suitable bioadsorbents for wastewater treatment.

  12. Organized Mesoporous TiO2 Films Stabilized by Phosphorus: Application for Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Procházka, Jan; Zukal, Arnošt; Yum, J. H.; Kavan, Ladislav; Graetzel, M.

    2010-01-01

    Roč. 157, č. 1 (2010), H99-H103 ISSN 0013-4651 R&D Projects: GA MŠk LC510; GA MŠk OC09048; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40400503 Keywords : annealing * anodes * mesoporous materials * dyes Subject RIV: CG - Electrochemistry Impact factor: 2.420, year: 2010

  13. TiO2 Nanowire Networks Prepared by Titanium Corrosion and Their Application to Bendable Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Saera Jin

    2017-10-01

    Full Text Available TiO2 nanowire networks were prepared, using the corrosion of Ti foils in alkaline (potassium hydroxide, KOH solution at different temperatures, and then a further ion-exchange process. The prepared nanostructures were characterized by field emission scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The wet corroded foils were utilized as the photoanodes of bendable dye-sensitized solar cells (DSSCs, which exhibited a power conversion efficiency of 1.11% under back illumination.

  14. TiO₂ Nanowire Networks Prepared by Titanium Corrosion and Their Application to Bendable Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Jin, Saera; Shin, Eunhye; Hong, Jongin

    2017-10-12

    TiO₂ nanowire networks were prepared, using the corrosion of Ti foils in alkaline (potassium hydroxide, KOH) solution at different temperatures, and then a further ion-exchange process. The prepared nanostructures were characterized by field emission scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The wet corroded foils were utilized as the photoanodes of bendable dye-sensitized solar cells (DSSCs), which exhibited a power conversion efficiency of 1.11% under back illumination.

  15. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (I): Pretreatment of cationic triphenylmethane dyes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Li, Zhaoyong; Kang, Juan; Wang, Xiaoyan; Zhang, Yukui; Fang, Jiande [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-02-11

    Graphical abstract: - Highlights: • Millimetric s-Fe{sup 0} particles effectively reduce BG, MG, CV, and EV dyes. • s-Fe{sup 0} displays similar contaminant removal efficiency compared to nZVI. • s-Fe{sup 0} shows greater economic advantages than nZVI, iron powder, and iron scurf. • The reductive mechanism of BG over s-Fe{sup 0} under US condition is elucidated. - Abstract: To investigate the removal capability of millimetric zero valent iron (mmZVI), sponge iron (s-Fe{sup 0}) particles were characterized with XRD, XPS, TEM, HRSEM and EDS techniques. Moreover, the roles of particle size, catalyst dosage, dye concentration, mixing conditions (e.g. ultrasound (US), stirring or shaking), and regeneration treatment were studied with the removal of cationic triphenylmethane dyes. Notably, the reduction process was also revealed as compared to nanoscale zero valent iron (nZVI), microscale iron power, and iron scurf. Furthermore, the reductive mechanism was exemplified with brilliant green. The results demonstrated that (1) the synergetic effect between US and s-Fe{sup 0} greatly enhanced the removal of dyes, (2) the dosage of preferred s-Fe{sup 0} (1–3 mm) particles was optimized as 30.0 g/L; (3) reuse cycles of s-Fe{sup 0} catalyst were enhanced with the assistance of diluted HCl solution; (4) the main degradation routes included the cleavage of conjugated structure reactions, N-de-ethylation reactions, hydroxylation reactions, the removal of benzene ring reactions, and opening ring reactions. Accordingly, the pretreatment of aqueous solution over s-Fe{sup 0} was hypothesized to achieve mainly through direct reduction reaction by electron transfer and indirect reductive reactions by the highly activated hydrogen atom. Additionally, decoration with noble metals was utilized to reveal the reaction mechanism.

  16. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  17. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization.

    Science.gov (United States)

    Akpinar, Merve; Ozturk Urek, Raziye

    2017-06-01

    Lignocellulosic wastes are generally produced in huge amounts worldwide. Peach waste of these obtained from fruit juice industry was utilized as the substrate for laccase production by Pleurotus eryngii under solid state bioprocessing (SSB). Its chemical composition was determined and this bioprocess was carried out under stationary conditions at 28 °C. The effects of different compounds; copper, iron, Tween 80, ammonium nitrate and manganese, and their variable concentrations on laccase production were investigated in detail. The optimum production of laccase (43,761.33 ± 3845 U L -1 ) was achieved on the day of 20 by employing peach waste of 5.0 g and 70 µM Cu 2+ , 18 µM Fe 2+ , 0.025% (v/v) Tween 80, 4.0 g L -1 ammonium nitrate, 750 µM Mn 2+ as the inducers. The dye decolorization also researched to determine the degrading capability of laccase produced from peach culture under the above-mentioned conditions. Within this scope of the study, methyl orange, tartrazine, reactive red 2 and reactive black dyes were treated with this enzyme. The highest decolorization was performed with methyl orange as 43 ± 2.8% after 5 min of treatment when compared to other dyes. Up to now, this is the first report on the induction of laccase production by P. eryngii under SSB using peach waste as the substrate.

  18. Development of an eco-protocol for seaweed chlorophylls extraction and possible applications in dye sensitized solar cells

    International Nuclear Information System (INIS)

    Armeli Minicante, S; Ambrosi, E; Back, M; Barichello, J; Cattaruzza, E; Gonella, F; Scantamburlo, E; Trave, E

    2016-01-01

    Seaweeds are a reserve of natural dyes (chlorophylls a , b and c ), characterized by low cost and easy supply, without potential environmental load in terms of land subtraction, and also complying with the requirements of an efficient waste management policy. In particular, the brown seaweed Undaria pinnatifida is a species largely present in the Venice Lagoon area, and for it a removal strategy is actually mandatory. In this paper, we set-up an eco-protocol for the best extraction and preparation procedures of the pigment, with the aim of finding an easy and affordable method for chlorophyll c extraction, exploring at the same time the possibility of using these algae within local sustainable management integrated strategies, among which the possible use of chlorophylls as a dye source in dye sensitized solar cells (DSSCs) is investigated. Experimental results suggest that the developed protocols are useful to optimize the chlorophyll c extraction, as shown by optical absorption spectroscopy measurements. The DSSCs built with the chlorophyll extracted by the proposed eco-protocol exhibit solar energy conversion efficiencies are similar to those obtained following extraction protocols with larger environmental impacts. (paper)

  19. Removal of Malachite Green Dye from Aqueous Solution Using Multi-Walled Carbon Nano tubes: An Application of Experimental Design

    International Nuclear Information System (INIS)

    Siti Aminah Zulkepli; Md Pauzi Abdullah; Md Pauzi Abdullah; Wan Mohd Afiq Wan Mohd Khalik

    2016-01-01

    An experimental design methodology was performed in the optimization of removal of malachite green dye by multi-walled carbon nano tubes. A Central Composite Design (25) was chosen to develop a mathematical model and determine the optimum condition for adsorption of malachite green by carbon nano tubes. Five experimental factors, namely initial dye concentration, mass of adsorbent, pH, contact time and agitation speed were studied. Maximum adsorption of malachite green was achieved at the suggested optimum conditions: initial dye concentration (20 ppm), weight of adsorbent (0.03 g), pH solution (7) contact time (17 min) and agitation speed (150 strokes per min). The experimental value of adsorption by multi-walled carbon nano tubes were found to be in good agreement with the predicted value (R"2 = 0.922).The experimental equilibrium data were best fitted to isotherm model (Langmuir) and kinetic model (pseudo second-order) respectively. Maximum adsorption by carbon nano tubes at monolayer for malachite green was obtained at 112.36 mg/ g while kinetic rate constant was calculated to be 0.0017 g mg"-"1 min"-"1. (author)

  20. Production of Ligninolytic Enzymes by White-Rot Fungus Datronia sp. KAPI0039 and Their Application for Reactive Dye Removal

    Directory of Open Access Journals (Sweden)

    Pilanee Vaithanomsat

    2010-01-01

    Full Text Available This study focused on decolorization of 2 reactive dyes; Reactive Blue 19 (RBBR and Reactive Black 5 (RB5, by selected white-rot fungus Datronia sp. KAPI0039. The effects of reactive dye concentration, fungal inoculum size as well as pH were studied. Samples were periodically collected for the measurement of color unit, Laccase (Lac, Manganese Peroxidase (MnP, and Lignin Peroxidase (LiP activity. Eighty-six percent of 1,000 mg L−1 RBBR decolorization was achieved by 2% (w/v Datronia sp. KAPI0039 at pH 5. The highest Lac activity (759.81 UL−1 was detected in the optimal condition. For RB5, Datronia sp. KAPI0039 efficiently performed (88.01% decolorization at 2% (w/v fungal inoculum size for the reduction of 600 mg L−1 RB5 under pH 5. The highest Lac activity (178.57 UL−1 was detected, whereas the activity of MnP and LiP was absent during this hour. The result, therefore, indicated that Datronia sp. KAPI0039 was obviously able to breakdown both reactive dyes, and Lac was considered as a major lignin-degradation enzyme in this reaction.

  1. Quasi Two-Dimensional Dye-Sensitized In 2 O 3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications

    KAUST Repository

    Mottram, Alexander D.

    2016-02-10

    © 2016 American Chemical Society. We report the development of dye-sensitized thin-film phototransistors consisting of an ultrathin layer (<10 nm) of indium oxide (In2O3) the surface of which is functionalized with a self-assembled monolayer of the light absorbing organic dye D102. The resulting transistors exhibit a preferential color photoresponse centered in the wavelength region of ∼500 nm with a maximum photosensitivity of ∼106 and a responsivity value of up to 2 × 103 A/W. The high photoresponse is attributed to internal signal gain and more precisely to charge carriers generated upon photoexcitation of the D102 dye which lead to the generation of free electrons in the semiconducting layer and to the high photoresponse measured. Due to the small amount of absorption of visible photons, the hybrid In2O3/D102 bilayer channel appears transparent with an average optical transmission of >92% in the wavelength range 400-700 nm. Importantly, the phototransistors are processed from solution-phase at temperatures below 200 °C hence making the technology compatible with inexpensive and temperature sensitive flexible substrate materials such as plastic.

  2. Al2O3 doping of TiO2 electrodes and applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-01-01

    Dye-sensitized solar cells (DSSCs) have been intensively studied since their discovery in 1991. DSSCs have been extensively researched over the past decades as cheaper alternatives to silicon solar cells due to their high energy-conversion efficiency and their low production cost. However, some problems need to be solved in order to enhance the efficiency of DSSCs. In particular, the electron recombination that occurs due to the contact between the transparent conductive oxide (TCO) and a redox electrolyte is one of the main limiting factors of efficiency. In this work, we report for the first time the improvement of the photovoltaic characteristics of DSSCs by doping TiO 2 with Al 2 O 3 . DSSCs were constructed using composite particles of Al 2 O 3 -doped TiO 2 and TiO 2 nanoparticles. The DSSCs using Al 2 O 3 showed the maximum conversion efficiency of 6.29% due to effective electron transport. DSSCs based on Al 2 O 3 -doped TiO 2 films showed better photovoltaic performance than cells fabricated with only TiO 2 nanoparticles. This result is attributed to the prevention of electron recombination between electrons in the TiO 2 conduction band with holes in the dye or the electrolyte. There mechanism is suggested based on impedance results, which indicated improved electron transport at the TiO 2 /dye/electrolyte interface.

  3. Application of potato (Solanum tuberosum plant wastes for the removal of methylene blue and malachite green dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2016-09-01

    Full Text Available Dye pollutants from the textile, paper, and leather industries are important sources of environmental contamination. In the present study an agricultural waste from potato plant (potato stem powder, PSP and potato leaves powder, PLP was used as an adsorbent for removal of the methylene blue (MB and malachite green (MG dyes from aqueous solution. The adsorbent materials were characterized by scanning electron microscope (SEM and Fourier transform infrared (FTIR spectroscopy. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pHpzc, ionic strength, adsorbent dose, contact time, initial dyes concentration and temperature. The kinetics of adsorption was studied by applying the pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-second order model better represented the adsorption kinetics and the mechanism was controlled by surface adsorption and intraparticle diffusion. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as change in enthalpy (ΔH°, entropy (ΔS° and Gibb’s free energy (ΔG° of adsorption systems were also determined and evaluated.

  4. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  5. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-01-01

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L -1 ( -1 , the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  7. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  8. Characteristics of Alcian-blue Dye Adsorption of Natural Biofilm Matrix

    Science.gov (United States)

    Kurniawan, A.; Yamamoto, T.; Sukandar; Guntur

    2018-01-01

    In this study, natural biofilm matrices formed on stones have been used for the adsorption of Alcian blue dye. Alcian blue is a member of polyvalent basic dyes that largely used from laboratory until industrial dying purposes. The adsorption of the dye onto the biofilm matrix has been carried out at different experimental conditions such as adsorption isotherm and kinetic of adsorption. The electric charge properties of biofilm matrix and its changes related to the adsorption of Alcian blue have been also investigated. Moreover, the results of Alcian blue adsorption to the biofilm were compared to those onto the acidic and neutral resin. The kinetics of adsorption result showed that the adsorption of the Alcian blue dye reached to a maximum adsorption amount within 60 minutes. The adsorption amount of Alcian blue to biofilm increased monotonously, and the maximum adsorption amount was greater compared to the resins. On the contrary, Alcian blue did not attach to the neutral resin having no electric charge. It seems that Alcian blue attached to the acidic resins due to electrostatic attractive force, and the same seems to be the case for adsorption of Alcian blue to biofilm. The adsorption of Alcian blue to the biofilm and acidic resins fitted to Langmuir type indicates that the binding of Alcian blue to the biofilm and acidic resins occurred in a monolayer like form. The maximum adsorption amount of Alcian blue on the biofilm (0.24 mmol/dry-g) was greater than those of acidic resin (0.025 mmol/dry-g). This indicates that the biofilm has many more sites for Alcian blue attachment than acidic resins. According to the result of this study, the biofilm matrix can be a good adsorbent for dye such as Alcian blue or other dyes that causing hazards in nature.

  9. In-situ fabrication of halloysite nanotubes/silica nano hybrid and its application in unsaturated polyester resin

    Science.gov (United States)

    Lin, Jing; Zhong, Bangchao; Jia, Zhixin; Hu, Dechao; Ding, Yong; Luo, Yuanfang; Jia, Demin

    2017-06-01

    Silica nanoparticles was in-situ grown on the surface of halloysite nanotubes (HNTs) by a facile one-step approach to prepare a unique nano-structured hybrid (HNTs-g-Silica). The structure, morphology and composition of HNTs-g-Silica were investigated. It was confirmed that silica nanoparticles with the diameter of 10-20 nm were chemically grafted through Sisbnd O bonds and uniformly dispersed onto the surface of HNTs, leading to the formation of nano-protrusions on the nanotube surface. Due to the significantly improved interface strength between HNTs-g-Silica and polymer matrix, HNTs-g-Silica effectively toughened unsaturated polyester resin (UPE) and endowed UPE with superior thermal stability compared to HNTs. Based on the unique hybrid architecture and the improved properties of UPE nanocomposites, it is envisioned that HNTs-g-Silica may be a promising filler for more high performance and functional polymers composites and the fabrication method may have implications in the synthesis of nano hybrid materials.

  10. Preparation of wheat straw based superabsorbent resins and their applications as adsorbents for ammonium and phosphate removal.

    Science.gov (United States)

    Liu, Jia; Su, Yuan; Li, Qian; Yue, Qinyan; Gao, Baoyu

    2013-09-01

    A novel wheat straw cellulose-g-poly (potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) was prepared by graft copolymerization. The structure and performance of the WSC-g-PKA/PVA semi-IPNs SAR was studied and compared with those of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) SAR. The effects of various experimental parameters such as solution pH, concentration, contact time and ion strength on NH4(+) and PO4(3-) removal from solutions were investigated. Equilibrium isotherm data of adsorption of both NH4(+) and PO4(3-) were well fitted to the Freundlich model. Kinetic analysis showed that the pseudo-second-order kinetic model was more suitable for describing the whole adsorption process of NH4(+) and PO4(3-) on SARs. Overall, WSC-g-PKA/PVA semi-IPNs SAR showed better properties in comparison with WSC-g-PKA SAR and it could be considered as one efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  12. [Application of single-retainer all-ceramic resin-bonded fixed partial denture in replacing single anterior tooth].

    Science.gov (United States)

    Lili, Yang; Debiao, Du; Ruoyu, Ning; Deying, Chen; Junling, Wu

    2017-08-01

    Objective In this study, we aimed to evaluate the clinical effect of single-retainer all-ceramic resin-bonded fixed partial denture (RBFPD) on the single anterior tooth loss patients. Methods A total of 20 single-retainer all-ceramic RBFPD
were fabricated and evaluated in a two-year follow-up observation. The restorations were examined on the basis of the American Public Health Association (APHA) criteria. Results A total of 20 single-retainer all-ceramic RBFPD achieved class A evaluation after a six-month follow-up observation. One single-retainer all-ceramic RBFPD was classified as class B for secondary caries after a one-year follow-up observation. After a two-year follow-up observation, one single-retainer all-ceramic RBFPD was classified as class B because of secondary caries, and one single-retainer all-ceramic RBFPD was classified as class B because of fracture. Conclusion Single-retainer all-ceramic RBFPD is a promising and optional method in replacing single anterior tooth.

  13. Ag-Decorated Fe3O4@SiO2 Nanorods: Synthesis, Characterization, and Applications in Degradation of Organic Dyes

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-01-01

    Full Text Available Well-dispersed Ag nanoparticles (NPs are successfully decorated on Fe3O4@SiO2 nanorods (NRs via a facile step-by-step strategy. This method involves coating α-Fe2O3 NRs with uniform silica layer, reduction in 10% H2/Ar atmosphere at 450°C to obtain Fe3O4@SiO2 NRs, and then depositing Ag NPs on the surface of Fe3O4@SiO2 NRs through a sonochemical step. It was found that the as-prepared Ag-decorated magnetic Fe3O4@SiO2 NRs (Ag-MNRs exhibited a higher catalytic efficiency than bare Ag NPs in the degradation of organic dye and could be easily recovered by convenient magnetic separation, which show great application potential for environmental protection applications.

  14. Synthesis of Potato Starch-Acrylic-Acid Hydrogels by Gamma Radiation and Their Application in Dye Adsorption

    Directory of Open Access Journals (Sweden)

    Md. Murshed Bhuyan

    2016-01-01

    Full Text Available Several kinds of acrylic-acid-grafted-starch (starch/AAc hydrogels were prepared at room temperature (27°C by applying 5, 10, 15, 20, and 25 kGy of gamma radiation to 15% AAc aqueous solutions containing 5, 7.5, and 15% of starch. With increment of the radiation dose, gel fraction became higher and attained the maximum (96.5% at 15 kGy, above which the fraction got lowered. On the other hand, the gel fraction monotonically increased with the starch content. Swelling ratios were lower for the starch/AAc hydrogels prepared with higher gamma-ray doses and so with larger starch contents. Significant promotions of the swelling ratios were demonstrated by hydrolysis with NaOH: 13632±10% for 15 kGy radiation-dosed [5% starch/15% AAc] hydrogel, while the maximum swelling ratio was ~200% for those without the treatment. The authors further investigated the availability of the starch/AAc hydrogel as an adsorbent recovering dye waste from the industrial effluents by adopting methylene blue as a model material; the hydrogels showed high dye-capturing coefficients which increase with the starch ratio. The optimum dye adsorption was found to be 576 mg per g of the hydrogel having 7.5 starch and 15% AAc composition. Two kinetic models, (i pseudo-first-order and (ii pseudo-second-order kinetic models, were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.

  15. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    Science.gov (United States)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  16. Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell

    International Nuclear Information System (INIS)

    Rudhziah, S.; Ahmad, A.; Ahmad, I.; Mohamed, N.S.

    2015-01-01

    In this work, carboxymethyl kappa-carrageenan was used as the principle host for developing new biopolymer electrolytes based on the blend of carboxymethyl kappa-carrageenan/carboxymethyl cellulose. The blending of carboxymethyl cellulose into carboxymethyl kappa-carragenan was found to be a promising strategy to improve the material properties such as conductive properties. The electrolyte samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, ionic transference number measurement and linear sweep voltammetry in order to investigate their structural, thermal and electrochemical properties. Impedance study showed that the ionic conductivity increased with the increment of ammonium iodide concentration. The highest room temperature ionic conductivity achieved was 2.41 × 10 −3 S cm −1 at 30 wt% of the salt. The increment of conductivity was due to the increase of formation of transient cross-linking between the carboxymethyl kappa-carrageenan/carboxymethyl cellulose chains and the doping salt as indicated the T g trend. The conductivity was also attributed by the increase in the number of charge carriers in the biopolymer electrolytes system. The interactions between polymers and salt were confirmed by FTIR study. The transference number measurements showed that the conductivity was predominantly ionic. Temperature dependent conductivity study showed that conductivity increased with the reciprocal of temperature. The conductivity-temperature plots suggested that the conductivity obeyed the Vogel–Tammann–Fulcher relation and the activation energy for the best conducting sample was 0.010 eV. This system was used for the fabrication of dye sensitized solar cells, FTO/TiO 2 -dye/CMKC/CMCE-NH 4 I + I 2 /Pt. The fabricated cell showed response under light intensity of 100 mW cm −2 with efficiency of 0.13% indicating that the blend biopolymer

  17. Polyvinyl chloride resin

    International Nuclear Information System (INIS)

    Kim, Hong Jae

    1976-06-01

    This book contains polyvinyl chloride resin industry with present condition such as plastic industry and polyvinyl chloride in the world and Japan, manufacture of polyvinyl chloride resin ; suspension polymerization and solution polymerization, extruding, injection process, hollow molding vinyl record, vacuum forming, polymer powders process, vinyl chloride varnish, vinyl chloride latex, safety and construction on vinyl chloride. Each chapter has descriptions on of process and kinds of polyvinyl chloride resin.

  18. Synthesis and characterization of porous structured ZnO thin film for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M. [School of Physics, Alagappa University, Karaikudi – 630 003 (India); Dharuman, V. [Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi – 630 003 (India)

    2016-05-23

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  19. Photopolymerizable silicone monomers, oligomers, and resins

    International Nuclear Information System (INIS)

    Jacobine, A.F.; Nakos, S.T.

    1992-01-01

    The purpose of this chapter is to acquaint the general photopolymer researcher with the historical development of the chemistry and technology of photopolymerizable silicone monomers, fluids, and resins. The current status of research in these areas is assessed. The focus of this chapter is not only on the polymer chemistry and application of this technology, but also on important aspects of the synthetic chemistry involved in the preparation of UV-curable silicone monomers, oligomers, and resins. 236 refs., 6 tabs

  20. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    Verschueren, K.; Balwant Kaur

    1999-01-01

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  1. Facile method for synthesis of TiO{sub 2} film and its application in high efficiency dye sensitized-solar cell (DSSC)

    Energy Technology Data Exchange (ETDEWEB)

    Widiyandari, Hendri, E-mail: h.widiyandari@undip.ac.id; Gunawan, S. K.V.; Suseno, Jatmiko Endro [Department of Physics, Diponegoro University, Jl. Prof. H. Soedarto SH, Semarang, Central Java 50275 (Indonesia); Purwanto, Agus [Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia); Diharjo, Kuncoro [Department of Mechanical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia)

    2014-02-24

    Dye-sensitized solar cells (DSSC) is a device which converts a solar energy to electrical energy. Different with semiconductor thin film based solar cell, DSSC utilize the sensitized-dye to absorb the photon and semiconductor such as titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) as a working electrode photoanode. In this report, the preparation of TiO{sub 2} film using a facile method of spray deposition and its application in DSSC have been presented. TiO{sub 2} photoanode was synthesized by growing the droplet of titanium tetraisopropoxide diluted in acid solution on the substrate of conductive glass flourine-doped tin oxide (FTO) with variation of precursor volume. DSSC was assemblied by sandwiching both of photoanode electrode and platinum counter electrode subsequently filling the area between these electrodes with triodine/iodine electrolite solution as redox pairs. The characterization of the as prepared DSSC using solar simulator (AM 1.5G, 100 mW/cm{sup 2}) and I-V source meter Keithley 2400 showed that the performance of DSSC was affected by the precursor volume.. The overall conversion efficiency of DSSC using the optimum TiO{sub 2} film was about 1.97% with the open circuit voltage (V{sub oc}) of 0.73 V, short circuit current density (J{sub sc}) of 4.61 mA and fill factor (FF) of 0.58.

  2. Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Christian Dunkel

    2014-04-01

    Full Text Available Well-ordered 3D mesoporous indium tin oxide (ITO films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs. Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene-b-poly(ethylene oxide block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs.

  3. Controlled synthesis of ZnO branched nanorod arrays by hierarchical solution growth and application in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Fang Xiaoming; Peng Lihua; Shang Xiaoying; Zhang Zhengguo

    2011-01-01

    We demonstrate the controlled synthesis of ZnO branched nanorod arrays on fluorine-doped SnO 2 -coated glass substrates by the hierarchical solution growth method. In the secondary growth, the concentration of Zn(NO 3 ) 2 /hexamethylenetetramine plays an important role in controlling the morphology of the branched nanorod arrays, besides that of diaminopropane used as a structure-directing agent to induce the growth of branches. The population density and morphology of the branched nanorod arrays depend on those of the nanorod arrays obtained from the primary growth, which can be modulated though the concentration of Zn(NO 3 ) 2 /hexamethylenetetramine in the primary growth solution. The dye-sensitized ZnO branched nanorod arrays exhibit much stronger optical absorption as compared with its corresponding primary nanorod arrays, suggesting that the addition of the branches improves light harvesting. The dye-sensitized solar cell based on the optimized ZnO branched nanorod array reaches a conversion efficiency of 1.66% under the light radiation of 1000 W/m 2 . The branched nanorod arrays can also be applied in other application fields of ZnO.

  4. Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Dunkel, Christian; von Graberg, Till; Smarsly, Bernd M.; Oekermann, Torsten; Wark, Michael

    2014-01-01

    Well-ordered 3D mesoporous indium tin oxide (ITO) films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO) on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs). Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene)-b-poly(ethylene oxide) block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs. PMID:28788618

  5. An investigation of the applicability of the new ion exchange resin, Reillex{trademark}-HPQ, in ATW separations. Milestone 4, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, K.R.; Ball, J.; Grissom, M.; Williamson, M.; Cobb, S.; Young, D.; Wu, Yen-Yuan J.

    1993-09-07

    The investigations with the anion exchange resin Reillex{trademark}-HPQ is continuing along several different paths. The topics of current investigations that are reported here are: The sorption behavior of chromium(VI) on Reillex{trademark}-HPQ from nitric acid solutions and from sodium hydroxide/sodium nitrate solutions; sorption behavior of F{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Cl{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Br{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; and the Honors thesis by one of the students is attached as Appendix II (on ion exchange properties of a new macroperous resin using bromide as the model ion in aqueous nitrate solutions).

  6. Design of Epoxy based Resin Composites for Automotive Applications: A Case Study on IC Engine Valve Guide

    Science.gov (United States)

    Sidhu, J. S.; Lathkar, G. S.; Sharma, S. B.

    2018-01-01

    The present attempt in this project is to reduce the vibrations, temperature due to friction, noise and weight of I C engine valve guide by replacing conventional metal valve guide with composite valve guide. Composite materials have been used in automotive components because of their properties such as low weight, high specific stiffness, corrosion resistance, ability to produce complex shapes, high specific strength and good impact energy absorption etc. The Internal combustion engine valve guides are the parts that support the valves in the cylinder head, besides this it keeps lubricating oil from getting sucked into the combustion chamber past the intake valve stem, it keeps exhaust gases from getting into the crankcase past the exhaust valve stem and it also keeps the valve face in perfect alignment with the valve seat. A valve guide test rig is indigenously fabricated. Valve guides are manufactured using the developed composite material (Resin ARL-136, Hardener AH-126 and 4 vol% WS2), on a CNC lathe. The performance of the developed composite guide under varied conditions of speeds, that is, fixed change in rpm and modulated changes in rpm is assessed. Noise, temperature and vibrations are measured. The experimental data revealed that contribution of composite guide in respect of acceleration, velocity and displacement components of vibration is not substantial. A substantial reduction in noise levels is seen. As far as temperature rise due to friction is concerned maximum components fail at elevated temperatures, with composite guides the temperature generated due to friction at higher speeds is less, a considerable weight reduction is also observed.

  7. Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS Resin Powder with Application to ABS Processing Safety

    Directory of Open Access Journals (Sweden)

    Jenq-Renn Chen

    2010-08-01

    Full Text Available Oxidative degradation of commercial grade ABS (Acrylonitrile-butadiene-styrene resin powders was studied by thermal analysis. The instabilities of ABS containing different polybutadiene (PB contents with respect to temperature were studied by Differential Scanning Calorimeter (DSC. Thermograms of isothermal test and dynamic scanning were performed. Three exothermic peaks were observed and related to auto-oxidation, degradation and oxidative decomposition, respectively. Onset temperature of the auto-oxidation was determined to be around 193 °C. However, threshold temperature of oxidation was found to be as low as 140 °C by DSC isothermal testing. Another scan of the powder after degeneration in air showed an onset temperature of 127 °C. Reactive hazards of ABS powders were verified to be the exothermic oxidation of unsaturated PB domains, not the SAN (poly(styrene-acrylonitrile matrix. Heat of oxidation was first determined to be 2,800 ± 40 J per gram of ABS or 4,720 ± 20 J per gram of PB. Thermal hazards of processing ABS powder are assessed by adiabatic temperature rise at process conditions. IR spectroscopy associated with heat of oxidation verified the oxidative mechanism, and these evidences excluded the heat source from the degradation of SAN. A specially prepared powder of ABS without adding anti-oxidant was analyzed by DSC for comparing the exothermic behaviors. Exothermic onset temperatures were determined to be 120 °C and 80 °C by dynamic scanning and isothermal test, respectively. The assessment successfully explained fires and explosions in an ABS powder dryer and an ABS extruder.

  8. Low temperature carving of ZnO nanorods into nanotubes for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan Nayeri, Fatemeh, E-mail: F.d.nayeri@ut.ac.ir; Kolahdouz, Mohammadreza; Asl-Soleimani, Ebrahim; Mohajerzadeh, S.

    2015-06-05

    Highlights: • Large scale arrays of highly oriented ZnO NTs have been fabricated and investigated. • The DSSCs made of these 2.5 μm NRs and NTs resulted in conversion efficiencies of 0.34% and 0.9%, respectively. • EIS measurements have demonstrated that the NTs could acquire a higher electron lifetime compared to NRs. • Twofold electron lifetime electron accompanied by half electron transport time for ZnO NTs compared to NRs. - Abstract: High aspect ratio zinc oxide (ZnO) nanotubes (NT) were synthesized based on a two-steps approach. In the first step, ZnO nanorod (NR) arrays were prepared by chemical bath deposition from an aqueous of zinc nitrate. In the second step, the cores of ZnO NRs were carved selectively in a KCl solution, resulting in the formation of a tubular structure. The influence of KCL concentration, temperature, and immersion time on the ZnO NT formation process was completely characterized and investigated. 12.5 μm NRs and NTs have been utilized to manufacture dye-sensitized solar cells (DSSCs) and as a result, conversion efficiencies of 1.06% and 2.87% were obtained, respectively. Electrochemical impedance spectroscopy measurements have demonstrated that the NTs could acquire a higher electron lifetime compared to NRs which causes a faster electron collection. The overall improvement in NT-based DSSC performance demonstrates a new approach to enhance the efficiency of dye-sensitized solar cells.

  9. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q.Z. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shi, J.F., E-mail: shijf@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Wang, L.L.; Li, Y.J.; Zhong, L.W. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Xu, G., E-mail: xugang@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China)

    2016-07-01

    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO{sub 2}/Na{sub 2}O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO{sub 2}/Na{sub 2}O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  10. Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes

    International Nuclear Information System (INIS)

    Chang, Peter R.; Zheng Pengwu; Liu Baoxiang; Anderson, Debbie P.; Yu Jiugao; Ma Xiaofei

    2011-01-01

    Soluble starch-functionalized multiwall carbon nanotube composites (MWCNT-starch) were prepared to improve the hydrophilicity and biocompatibility of MWCNTs. Characterization of the MWCNT-starch by Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM) and thermogravimetric analysis (TG), showed that the starch component (about 14.3 wt%) was covalently grafted onto the surface of MWCNT. MWCNT-starch-iron oxide composites, intended for use as adsorbents for the removal of dyes from aqueous solutions, were prepared by synthesizing iron oxide nanoparticles at the surface of MWCNT-starch. Starch acts as a template for growth of iron oxide nanoparticles which are uniformly dispersed on the surface of the MWCNT-starch. MWCNT-starch-iron oxide exhibits superparamagnetic properties with a saturation magnetization (23.15 emu/g) and better adsorption for anionic methyl orange (MO) and cationic methylene blue (MB) dyes than MWCNT-iron oxide.

  11. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huang, Q.Z.; Shi, J.F.; Wang, L.L.; Li, Y.J.; Zhong, L.W.; Xu, G.

    2016-01-01

    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO_2/Na_2O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO_2/Na_2O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  12. Characterization of poly methyl methaacrylate and reduced graphene oxide composite for application as electrolyte in dye sensitized solar cells

    Science.gov (United States)

    Shrivatsav, Roshan; Mahalingam, Vignesh; Lakshmi Narayanan, E. R.; Naveen Balaji, N.; Balu, Murali; Krishna Prasad, R.; Kumaresan, Duraisamy

    2018-04-01

    Quasi-solid state iodide/triiodide redox electrolyte containing reduced graphene oxide and poly (methyl methaacrylate) (RGO-PMMA) composites for the fabrication of more durable, high performance dye sensitized solar cells are prepared. The morphological analysis of prepared RGO-PMMA composites showed formation of spherical like morphologies of RGO dispersed PMMA particles with their macroscopic inter-particle networks having voids. The x ray diffraction and electrical conductivity studies showed the addition of 1 wt% of filler RGO into amorphous PMMA matrix increased the electrical conductivity of the polymer composite about three orders of magnitude from 10‑7 and 10‑4 S cm‑1. Further, the photovoltaic current-voltage analysis of DSSCs with different RGO-PMMA composite based iodide/triiodide redox electrolytes showed the highest power conversion efficiency of 5.38% and the fill factor 0.63 for 2% RGO-PMMA electrolyte. The EIS analysis showed an increased recombination resistance (Rct2) at TiO2 electrode/dye/electrolyte interface due to the better electrical conductivity of RGO with good ionic conductivity in 2% RGO-PMMA composite based redox electrolyte boosted the generation of a high current density and fill factor in their DSSCs.

  13. Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution

    Directory of Open Access Journals (Sweden)

    Muhammad Khairud Dahri

    2015-12-01

    Full Text Available This study investigated the potential of Casuarina equisetifolia needle (CEN on the removal of two important dyes, methylene blue (MB and malachite green (MG, by batch adsorption experiments. Characterisation of CEN’s functional groups was done using Fourier Transform infrared spectroscopy while elemental analysis was carried out using CHNS analysis and X-ray fluorescence. The experiments were carried out by varying the adsorbent dosage, pH, ionic strength, contact time and initial dye concentration. The pseudo-second-order kinetics model best represented the experimental data for both CEN-MB and CEN-MG systems. The Weber–Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limited step for both adsorbates, while the Boyd model suggested both systems could be controlled by film diffusion. The Langmuir, Freundlich and Dubinin–Radushkevich isotherm models were used for describing the adsorption process. Of these, the Langmuir model best represented both adsorbents systems (CEN-MB and CEN-MG giving maximum adsorption capacity (qm of 110.8 and 77.6 mg g−1, respectively, at 25 °C. Thermodynamics studies showed that both adsorption systems are spontaneous and endothermic.

  14. Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Xu Chunhui; Li Jing; Wang Xianbao; Wang Jingchao; Wan Li; Li Yuanyao; Zhang Min; Shang Xiaopeng; Yang Yingkui

    2012-01-01

    Highlights: ► Hemin functionalized reduced graphene oxide (hemin–RGO) materials were synthesized by microwave irradiation. ► Hemin–RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone. ► Hemin–RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity. - Abstract: This work reports a facile and rapid method assisted by microwave irradiation for the synthesis of hemin functionalized reduced graphene oxide (hemin–RGO) materials. Our investigation confirmed that the hemin molecules were covalently grafted to the surface of graphene by the amidation reaction of the -NH 2 groups on the edges of ethylenediamine functionalized graphene oxide with the -COOH groups of hemin. Hemin–RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone after more than one month, indicating that hemin can effectively improve the dispersion and solubility of RGO in the solvent. Hemin–RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity for I 3 − to I − reduction compared with RGO.

  15. Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chunhui; Li Jing [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang Xianbao, E-mail: wangxb68@yahoo.com.cn [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); Wang Jingchao; Wan Li; Li Yuanyao; Zhang Min; Shang Xiaopeng; Yang Yingkui [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hemin functionalized reduced graphene oxide (hemin-RGO) materials were synthesized by microwave irradiation. Black-Right-Pointing-Pointer Hemin-RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone. Black-Right-Pointing-Pointer Hemin-RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity. - Abstract: This work reports a facile and rapid method assisted by microwave irradiation for the synthesis of hemin functionalized reduced graphene oxide (hemin-RGO) materials. Our investigation confirmed that the hemin molecules were covalently grafted to the surface of graphene by the amidation reaction of the -NH{sub 2} groups on the edges of ethylenediamine functionalized graphene oxide with the -COOH groups of hemin. Hemin-RGO exhibits a homogeneous dispersion in water, dimethylformamide, and acetone after more than one month, indicating that hemin can effectively improve the dispersion and solubility of RGO in the solvent. Hemin-RGO was used as a counter electrode in dye-sensitized solar cells and exhibited preferable electrocatalytic activity for I{sub 3}{sup -} to I{sup -} reduction compared with RGO.

  16. A potential application of sludge-based catalysts for the anaerobic bio-decolorization of tartrazine dye.

    Science.gov (United States)

    Athalathil, Sunil; Fortuny, Agusti; Font, Josep; Stüber, Frank; Bengoa, Christophe; Fabregat, Azael

    2015-01-01

    Two highly efficient (K2CO3/sludge carbon and ZnCl2/sludge carbon) solids were prepared by chemical addition following carbonization at 800 °C and were tested for anaerobic reduction of tartrazine dye in a continuous upflow packed-bed biological reactor, and their performance was compared to that of commercial activated carbon (CAC). The chemical and structural information of the solids was subjected to various characterizations in order to understand the mechanism for anaerobic decolorization, and efficiency for SBCZN800 and SBCPC800 materials was 87% and 74%, respectively, at a short space time (τ) of 2.0 min. A first-order kinetic model fitted the experimental points and kinetic constants of 0.40, 0.92 and 1.46 min(-1) were obtained for SBCZN800, SBCPC800 and CAC, respectively. The experimental results revealed that performance of solids in the anaerobic reduction of tartrazine dye can depend on several factors including chemical agents, carbonization, microbial population, chemical groups and surface chemistry. The Langmuir and Freundlich models are successfully described in the batch adsorption data. Based on these observations, a cost-effective sludge-based catalyst can be produced from harmful sewage sludge for the treatment of industrial effluents.

  17. Safety evaluation of cation-exchange resins

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.

    1977-08-01

    Results are presented of a study to evaluate whether sufficient information is available to establish conservative limits for the safe use of cation-exchange resins in separating radionuclides and, if not, to recommend what new data should be acquired. The study was also an attempt to identify in-line analytical techniques for the evaluation of resin degradation during radionuclide processing. The report is based upon a review of the published literature and upon discussions with many people engaged in the use of these resins. It was concluded that the chief hazard in the use of cation-exchange resins for separating radionuclides is a thermal explosion if nitric acid or other strong oxidants are present in the process solution. Thermal explosions can be avoided by limiting process parameters so that the rates of heat and gas generation in the system do not exceed the rates for their transfer to the surroundings. Such parameters include temperature, oxidant concentration, the amounts of possible catalysts, the radiation dose absorbed by the resin and the diameter of the resin column. Current information is not sufficient to define safe upper limits for these parameters. They can be evaluated, however, from equations derived from the Frank-Kamenetskii theory of thermal explosions provided the heat capacities, thermal conductivities and rates of heat evolution in the relevant resin-oxidant mixtures are known. It is recommended that such measurements be made and the appropriate limits be evaluated. A list of additional safety precautions are also presented to aid in the application of these limits and to provide additional margins of safety. In-line evaluation of resin degradation to assess its safety hazard is considered impractical. Rather, it is recommended that the resin be removed from use before it has received the limiting radiation dose, evaluated as described above

  18. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    Science.gov (United States)

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  19. Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Sonik, E-mail: sonikbhatia@gmail.com [Department of Physics, Kanya Maha Vidyalaya, Vidyalaya Marg, Jalandhar, 144004 (India); Verma, Neha [Department of Physics, Kanya Maha Vidyalaya, Vidyalaya Marg, Jalandhar, 144004 (India); Bedi, R.K. [Satyam Institute of Engineering and Technology, Amritsar, 143107, Punjab (India)

    2017-06-15

    Highlights: • Tin doped ZnO nanoparticles were synthesized by simple combustion method and doctor blade technique. • Different concentrations of Sn (0.5 at. wt%, 1.0 at. wt%, 2.0 at. wt%, 3.0 at. wt%) were used as dopants. • 2.0% of Sn-doped ZnO nanoparticles exhibiting complete photodegradation of DR-31 dye under UV irradiation. Photocatalytic activities for all the samples were observed in 60 min. • The sensing performance showed 5% volume of ethanol and acetone and gases could be detected with sensitivity of 86.80% and 84.40% respectively. - Abstract: Nowadays, tremendous increase in environmental issue is an alarming threat to the ecosystem. This paper reports, rapid synthesis and characterization for tin doped ZnO nanoparticles prepared by simple combustion method and doctor blade technique. The prepared nanoparticles were characterized by several techniques in terms of their morphological, structural, compositional, optical, photocatalytic and gas sensing properties. These detailed characterization confirmed that all the synthesized nanoparticles are well crystalline and having good optoelectronic properties. Herein, different concentrations of Sn (0.5 at. wt%, 1.0 at. wt%, 2.0 at. wt%, 3.0 at. wt%) were used as dopants (SZ1–SZ4). The morphology of synthesized technique confirmed that the petal-shaped nanoparticles has high surface area and are well crystalline. In order to develop smart and functional nano-device, the prepared powder was coated on glass substrate by doctor blade technique and fabricated device was sensed for ethanol and acetone gas at different operating temperatures (300–500{sup °}C). It is noteworthy that morphology of the nanoparticles of the sensitive layer is maintained after different concentration of Sn. High sensitivity is the main cause of high surface area and tin doping. PL intensity near 598 nm of SZ3 is greater than other Sn-doped ZnO which indicates more oxygen vacancies of SZ3 is responsible for enhanced gas

  20. Study and application of new chelating resin to recovery uranium from in-situ leach solution with high content saline chloride ion

    International Nuclear Information System (INIS)

    Zhang Jianguo; Qiu Yueshuang; Feng Yu; Deng Huidong; Zhao Chaoya

    2014-01-01

    Research on the adsorption and elution property of D814 chelating resin was carried out aiming at the difficult separation of uranium from high content saline chloride ion in situ leach liquor and the adsorption mechanism is also discussed. Influence factors such as contact time, pH value, Ca"2"+, Mg"2"+ and Cl"- concentration etc. to the resin adsorption were studied. Experimental results show that adsorption rate is lowly which need 6h to arrive at the adsorption equilibrium. The resin adsorption uranium pH in the solution is from l.33 to 9. When total salinity is over 20 g/L, calcium ion, and magnesium ion is about 3 g/L, there are no big influence on resin adsorption capacity. The resin has good chloride ion resistance. When chloride ion is over 60 g/L, it is no influence on resin adsorption uranium. Column experiment results indicate that ratio of saturation volume to break-through point volume is l.82, resin saturation uranium capacity is 40.5 mg. U/_g_(_∓_)_R. When elution volume bed number is 23, the eluted solution uranium concentration is below 80 mg/L. The elution rate of the uranium is 96.2%. (authors)

  1. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices

    Energy Technology Data Exchange (ETDEWEB)

    Han Jingbin; Fan Fengru; Xu Chen; Lin Shisheng; Wang Zhonglin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Wei Min; Duan Xue, E-mail: zhong.wang@mse.gatech.edu, E-mail: weimin@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-10-08

    High-density vertically aligned ZnO nanotube arrays were fabricated on FTO substrates by a simple and facile chemical etching process from electrodeposited ZnO nanorods. The nanotube formation was rationalized in terms of selective dissolution of the (001) polar face. The morphology of the nanotubes can be readily controlled by electrodeposition parameters for the nanorod precursor. By employing the 5.1 {mu}m-length nanotubes as the photoanode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.18% was achieved. Furthermore, we show that the DSSC unit can serve as a robust power source to drive a humidity sensor, with a potential for self-powered devices.

  2. Green synthesis of Pd NPs from Pimpinella tirupatiensis plant extract and their application in photocatalytic activity dye degradation

    Science.gov (United States)

    Narasaiah, Palajonna; Mandal, Badal Kumar; Sarada, N. C.

    2017-11-01

    The present report the synthesis of palladium nanoparticles through the green method route offers few advantages over the common chemical and physical procedures, as it is an easy and fast, eco-friendly and does not involve any costly chemicals as well as hazardous chemicals. In this study, we reported synthesis of Pd NPs by using the Pimpinella tirupatiensis plant Extract (PTPE). The synthesized Pd NPs was characterization using different technique such as UV-Visible for the formation of Pd NPs. FT-IR spectroscopy was performed to detect the bio-active molecules liable for reduction and capping of biogenic Pd NPs. Crystallinity of Pd NPs conformed by powder - XRD. In the present study performed photo catalytic activity of synthesized Pd NPs using organic dye such as Congo red (CR). Hence, this study concludes the PTPE aqueous extract produced Pd NPs can be act as promising material for the degradation of organic pollutants.

  3. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices

    KAUST Repository

    Han, Jingbin

    2010-09-10

    Abstract High-density vertically aligned ZnO nanotube arrays were fabricated on FTO substrates by a simple and facile chemical etching process from electrodeposited ZnO nanorods. The nanotube formation was rationalized in terms of selective dissolution of the (001) polar face. The morphology of the nanotubes can be readily controlled by electrodeposition parameters for the nanorod precursor. By employing the 5.1 μm-length nanotubes as the photoanode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.18% was achieved. Furthermore, we show that the DSSC unit can serve as a robust power source to drive a humidity sensor, with a potential for self-powered devices. © 2010 IOP Publishing Ltd.

  4. Fluorescein isothiocyanate and rhodamine B dye encapsulated mesoporous SiO2 for applications of blue LED excited white LED

    Science.gov (United States)

    Das, Sourav; Manam, J.

    2018-05-01

    In this work, the fluorescein isothiocyanate (FITC) and rhodamine B (RhB) dyes were encapsulated in mesoporous silica nanoparticles (MSNp). The MSNp-FITC-RhB nanohybrids phosphor showed a dichromatic PL emission at green region and orange region when excited at 460 nm. A Forster Resonance Energy Transfer (FRET) was observed from FITC to RhB. The materials were further characterized by XRD, FTIR, TEM, and temperature dependent photoluminescence. The CIE coordinates were tuned from greenish yellow to the orange region and quantum yield was reached 52.04% based on FRET. So by combining the MSNp-FITC-RhB nanohybrids phosphor with the blue LED chip, the white light emission with flexible Color Correlated Temperature and improved Color Rendering Index can be obtained.

  5. Synthesis of nanostructured CuInS{sub 2} thin films and their application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu; Zhuang, Mixue; Liu, Zhen; Wei, Aixiang [Guangdong University of Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangzhou (China); Luo, Fazhi [Guangdong University of Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangzhou (China); The Fifth Electronics Research Institute of Ministry of Industry and Information Technology, Guangzhou (China); Liu, Jun [Guangdong University of Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangzhou (China); Zhejiang University, State Key Lab of Silicon Materials, Hangzhou (China)

    2016-03-15

    CuInS{sub 2} (CIS) nanostructure thin films were successfully synthesized on FTO conductive glass substrates by solvothermal method. It is found that the surface morphology and microstructure of CIS thin films can be tailored by simply adjusting the concentration of oxalic acid. CIS nanostructure films with texture of ''nanosheet array'' and ''flower-like microsphere'' were obtained and used as Pt-free counter electrode for dye-sensitized solar cells (DSSCs). The nanosheet array CIS was found to have a better electrocatalytic activity than the flower-like microsphere one. DSSCs based on nanosheet array CIS thin film counter electrode show conversion efficiency of 3.33 %, which is comparable to the Pt-catalyzed DSSCs. The easy synthesis, low cost, morphology tunable and excellent electrocatalytic property may make the CuInS{sub 2} nanostructure competitive as counter electrode in DSSCs. (orig.)

  6. Optimisation of the recovery of carotenoids from tomato processing wastes: application on textile dyeing and assessment of its antioxidant activity.

    Science.gov (United States)

    Baaka, Noureddine; El Ksibi, Imen; Mhenni, Mohamed Farouk

    2017-01-01

    The present study has been focused on the extraction of natural pigments from tomato industry waste. At first, different solvents and solvents mixture were compared to determine which one is the best for extracting carotenoids compounds from tomato by-products. A mixture of hexane and acetone gave the highest carotenoids extraction yield among the others examined. The extraction conditions were optimised using a five-level-five-factor central composite design. Under optimal conditions, solvent solid ratio 90, hexane percentage in the solvent mixture 60, extraction duration 50, number of extractions 4 and extraction temperature 35 °C, the yield of carotenoids was 80.7 μg/g. The coloured extract of tomato by-products was applied on textile fabrics to investigate the dyeing characteristics and antioxidant activities. The results indicate that extract can be applied on textile fabrics (wool, silk and polyamide) to produce coloured clothing with acceptable antioxidant properties.

  7. Water-soluble Microwave-exfoliated Graphene Nanosheet/Platinum Nanoparticle Composite and Its Application in Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Zhai, Peng; Chang, Ya-Huei; Huang, Yu-Ting; Wei, Tzu-Chien; Su, Haijun; Feng, Shien-Ping

    2014-01-01

    In this paper, a facile and scalable aqueous process including mild oxidative intercalation, microwave exfoliation, ultrasonication, drying and Ar-annealing is developed to synthesize the water-soluble microwave-exfoliated graphene (MEG)/platinum nanoparticles (PtNPs) composite, which has a relative low defect level and can be readily dispersed in deionized water without adding surfactants. This low cost synthesis method is applicable in many systems, such as supercapacitors, thermal storage, lithium battery and Dye-sensitized solar cells (DSSCs). An efficiency of 6.69% for the MEG/PtNPs composite deposited on ITO PEN as flexible counter electrode (CE) for DSSCs has been obtained, higher than the control device made by PVP-Pt as flexible CE

  8. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    CSIR Research Space (South Africa)

    Zongo, S

    2015-06-01

    Full Text Available Natural dyes with highly delocalized p-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended p-electron delocalization is one of the most attractive dyes...

  9. Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mou Jixia [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang Weiguang, E-mail: wgzhang@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Fan Jun; Deng Hong [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Chen Wei [Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-21

    Research highlights: >Although there are many available methods to fabricate ZnO nanostructures, we report here a simple and generalized method to prepare ZnO nanocrystallites from zinc acetates by tuning the volume ratio between water and ethylene glycol. In comparison, this synthetic method is of relatively low cost and is able to readily scaled-up for industrial production. In particular, the ZnO nanostructures were used as active photoanodes after incorporation in sandwich-type dye-sensitized solar cells (DSSCs). The overall solar-to-electric energy conversion efficiencies obtained under air mass (AM) 1.5 conditions, were 1.93% using ZnO nanobullets, while the efficiency was raised up to 3.64% using ZnO nanoflakes. - Abstract: In this paper we reported a successful synthesis of ZnO nanobullets/nanoflakes by a simple hydro/solvothermal method employing a mixture of water/ethylene glycol as the solvent, and zinc acetate as the zinc source. The final products were characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Raman scattering and photofluorescence spectra of the products were also investigated. ZnO with both nanobullets and nanoflakes nanostructures had been comparably studied as active photoanodes in dye-sensitized solar cell (DSSC) system, and the overall light-to-energy conversion efficiency of 1.93% has been achieved for nanobullets based DSSC, while that for ZnO nanoflakes based DSSC has been raised up to 3.64%.

  10. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shibu; Wei Wei; Chen Xiangnan [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Jiang Man, E-mail: jiangman1021@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Zhou Zuowan, E-mail: zwzhou@at-c.net [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China)

    2012-06-15

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: Black-Right-Pointing-Pointer PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. Black-Right-Pointing-Pointer Photoelectric conversion efficiency after hybridization was enhanced by 60%. Black-Right-Pointing-Pointer PANI hybridizing ZnO nanograss induced a rapid charge separation.

  11. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    International Nuclear Information System (INIS)

    Zhu Shibu; Wei Wei; Chen Xiangnan; Jiang Man; Zhou Zuowan

    2012-01-01

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: ► PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. ► Photoelectric conversion efficiency after hybridization was enhanced by 60%. ► PANI hybridizing ZnO nanograss induced a rapid charge separation.

  12. Application of Chlorophyll as Sensitizer for ZnS Photoanode in a Dye-Sensitized Solar Cell (DSSC)

    Science.gov (United States)

    Panda, B. B.; Mahapatra, P. K.; Ghosh, M. K.

    2018-03-01

    Zinc sulphide thin films have been synthesized by the electrodeposition method onto stainless steel substrate followed by dipping in acetone solution of chlorophyll in different time intervals to form photosensitised thin films. The photoelectrochemical parameters of the films have been studied using the photoelectrochemical cell having the cell configuration as follows {{photoelectrode/NaOH}}({1{{M}}} ) + {{S}}({1{{M}}} ) + {{N}}{{{a}}_2}{{S}}({1{{M}}} ){{/C}} ({{{graphite}}} ) . The photoelectrochemical characterization of the semiconductor film and dye-sensitised films has been carried out by measuring current-voltage (I-V) in the dark, power output and photoresponse. The study proves that the conductivity of both ZnS film and dye-sensitised ZnS films are n-type. The power output curves illustrate that open circuit voltage (V oc) and short circuit current (I sc) increase from 0.210 V to 0.312 V and from 0.297 mA to 0.533 mA, respectively. The fill factor initially decreases from 0.299 to 0.213 and then increases to 0.297 irregularly whereas efficiency increases from 0.047% to 0.123%. The UV-Vis absorbance spectrum of chlorophyll in acetone shows the presence of chlorophyll. The structural morphology of the ZnS thin films has also been analysed by using x-ray diffraction technique (XRD) and a scanning electron microscope (SEM). The XRD pattern shows the formation of nanocrystalline ZnS thin films of size 65 nm and the SEM images confirm the formation of fibrous film of ZnS. The energy diffraction analysis of x-ray confirms the formation of ZnS thin films.

  13. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community.

    Science.gov (United States)

    Pan, Fei; Yu, Yang; Xu, Aihua; Xia, Dongsheng; Sun, Youmin; Cai, Zhengqing; Liu, Wen; Fu, Jie

    2017-10-15

    The potential and mechanism of synthesized magnetic octahedral molecular sieve (Fe 3 O 4 @OMS-2) nanoparticles in enhancing the aerobic microbial ability of sequencing batch reactor (SBR) for treating dye wastewater have been revealed in this study. The addition of Fe 3 O 4 @OMS-2 of 0.25g/L enhanced the decolorization of SBRs with an operation cycle of 24h by more than 20%. The 16S rRNA gene high-throughput sequencing indicated Fe 3 O 4 @OMS-2 increased the microbial richness and diversity of SBRs, and more importantly, promoted the potential dye-degrading bacteria. After a series of enriching and screening, four bacterial strains with the considerable decolorizing ability were isolated from SBRs, designating Alcaligenes faecalis FP-G1, Bacillus aryabhattai FP-F1, Escherichia fergusonii FP-D1 and Rhodococcus ruber FP-E1, respectively. The growth and decolorization of these pure strains were promoted in the presence of Fe 3 O 4 @OMS-2, which agrees with the result of high-throughput sequencing. Monitoring dissolved Fe/Mn ions and investigating the change of oxidation states of Fe/Mn species discovered OMS-2 composition played the critical role in modulating the microbial community. The significant enhancement of Mn-oxidizing/-reducing bacteria suggested microbial Mn redox may be the key action mechanism of Fe 3 O 4 @OMS-2, which can provide numerous benefits for the microbial community and decolorization of SBRs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.

    Science.gov (United States)

    Wang, Hong-Yan; Gao, Hong-Wen

    2009-05-01

    Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. On the basis of the chemical coprecipitation of calcium oxalate (CaC(2)O(4)), bromopyrogallol red (BPR) was embedded during the growing of CaC(2)O(4) particles. The ternary C(2)O(4) (2-)-BPR-Ca(2+) sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. The saturation number of BPR binding to CaC(2)O(4) reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 x 10(5) M(-1). Over 80% of the sorbent particles are between 0.7 and 1.02 microm, formed by the aggregation of the global CaC(2)O(4)/BPR inclusion grains of 30-50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC(2)O(4)/BPR inclusion material adsorbed EV over two times more

  15. Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications

    Science.gov (United States)

    Heimböckel, Ruben; Kraas, Sebastian; Hoffmann, Frank; Fröba, Michael

    2018-01-01

    A series of porous carbon samples were prepared by combining a semi-carbonization process of acidic polymerized phenol-formaldehyde resins and a following chemical activation with KOH used in different ratios to increase specific surface area, micropore content and pore sizes of the carbons which is favourable for supercapacitor applications. Samples were characterized by nitrogen physisorption, powder X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results show that the amount of KOH, combined with the semi-carbonization step had a remarkable effect on the specific surface area (up to SBET: 3595 m2 g-1 and SDFT: 2551 m2 g-1), pore volume (0.60-2.62 cm3 g-1) and pore sizes (up to 3.5 nm). The carbons were tested as electrode materials for electrochemical double layer capacitors (EDLC) in a two electrode setup with tetraethylammonium tetrafluoroborate in acetonitrile as electrolyte. The prepared carbon material with the largest surface area, pore volume and pore sizes exhibits a high specific capacitance of 145.1 F g-1 at a current density of 1 A g-1. With a high specific energy of 31 W h kg-1 at a power density of 33028 W kg-1 and a short time relaxation constant of 0.29 s, the carbon showed high power capability as an EDLC electrode material.

  16. Application of neutron activation techniques and x-ray energy dispersion spectrometry, in analysis of metallic traces adsorbed by chelex-100 resin

    International Nuclear Information System (INIS)

    Fernandes, Jair C.; Amaral, Angela M.; Magalhaes, Jesus C.; Pereira, Jose S.J.; Silva, Juliana B. da; Auler, Lucia M.L.A.

    2000-01-01

    In this work, the authors have investigated optimal conditions of adsorption for several ion metallic groups (cations of heavy metals and transition metals, oxyanions metallics and metalloids and cations of rare earths), as traces (ppb), withdrawn and in mixture of groups, by chelex-100 resin. The experiments have been developed by bath techniques in ammonium acetate tamponade solution 40 mM pH 5,52 content 0,5 g of chelex-100 resin. After magnetic agitation for two hours, resins were dried and submitted to X-ray energy dispersion spectrometry, x-ray fluorescence spectrometry and neutron activation analysis. The results have demonstrated that chelex-100 resin adsorb quantitatively transition element groups and rare earth groups in two cases (withdrawn and simultaneously adsorption)

  17. A New Nano Silica Gel Supported by Thionyl Chloride as a Solid Acid for the Efficient Diazotization of Aniline Derivatives: Application and Synthesis of Azo Dyes

    Directory of Open Access Journals (Sweden)

    Mohammad Mirjalili

    2012-01-01

    Full Text Available A new nano silicagel supported by thionyl chloride as a solid acid was synthesized and used as a increasing the production yield of dye to affect the efficient diazotization of arylamines. The diazonium salts thus obtained were coupled, using standard experimental procedures, to anilines and naphthols to afford the requisite azo dyes in good yield. The diazotization and subsequent azo-coupling generated the related azo dyes at low temperature in short reaction times with a simple experimental procedure.

  18. Physico-chemical study of the thermal degradation of ions exchange resins of nuclear origin: research of conditions to limit the pollution transfer, application to electric cables

    International Nuclear Information System (INIS)

    Antonetti, P.

    1999-01-01

    The ions exchange resins are one solid form of radioactive wastes. They are found mainly during the demineralization operations of the water from reactors cooling systems. This study aims to determine the conditions of a thermal processing leading to the production of a smaller residue, containing the whole activity. A protocol is proposed and validated on resins allowing a decrease of the volume of 63% for 99,93% of the activity. (A.L.B.)

  19. Handling sticky resin by stingless bees (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    Markus Gastauer

    2011-06-01

    Full Text Available For their nest defense, stingless bees (Meliponini collect plant resins which they stick on intruders like ants or cleptobiotic robber bees causing their immobilization. The aim of this article is to identify all parts of stingless bee workers contacting these sticky resins. Of special interest are those body parts with anti-adhesive properties to resin, where it can be removed without residues. For that, extensive behavioral observations during foraging flight, handling and application of the resin have been carried out. When handling the resin, all tarsi touch the resin while walking above it. For transportation from plants to the nest during foraging flight, the resin is packed to the corbicula via tarsi and basitarsi of front and middle legs. Once stuck to the resin or after the corbicula had been unloaded, the bee's legs have to be cleaned thoroughly. Only the tips of the mandibles, that form, cut and apply the sticky resin, seem to have at least temporarily resin-rejecting properties.

  20. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  1. Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO2 surface for dye-sensitized solar cell applications.

    Science.gov (United States)

    Prajongtat, Pongthep; Suramitr, Songwut; Nokbin, Somkiat; Nakajima, Koichi; Mitsuke, Koichiro; Hannongbua, Supa

    2017-09-01

    Structural and electronic properties of eight isolated azo dyes (ArNNAr', where Ar and Ar' denote the aryl groups containing benzene and naphthalene skeletons, respectively) were investigated by density functional theory (DFT) based on the B3LYP/6-31G(d,p) and TD-B3LYP/6-311G(d,p) methods The effect of methanol solvent on the structural and electronic properties of the azo dyes was elucidated by employing a polarizable continuum model (PCM). Then, the azo dyes adsorbed onto the anatase TiO 2 (101) slab surface through a carboxyl group. The geometries and electronic structures of the adsorption complexes were determined using periodic DFT based on the PWC/DNP method. The calculated adsorption energies indicate that the adsorbed dyes preferentially take configuration of the bidentate bridging rather than chelating or monodentate ester-type geometries. Furthermore, the azo compounds having two carboxyl groups are coordinated to the TiO 2 surface more preferentially through the carboxyl group connecting to the benzene skeleton than through that connecting to the naphthalene skeleton. The dihedral angles (Φ B-N ) between the benzene- and naphthalene-skeleton moieties are smaller than 10° for the adsorbed azo compounds containing one carboxyl group. In contrast, Φ B-N > 30° are obtained for the adsorbed azo compounds containing two carboxyl groups. The almost planar conformations of the former appear to strengthen both π-electrons conjugation and electronic coupling between low-lying unoccupied molecular orbitals of the azo dyes and the conduction band of TiO 2 . On the other hand, such coupling is very weak for the latter, leading to a shift of the Fermi level of TiO 2 in the lower-energy direction. The obtained results are useful to the design and synthesize novel azo-dye-based molecules that give rise to higher photovoltaic performances of the dye-sensitized solar cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Studies on the use of power ultrasound in leather dyeing.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2003-03-01

    Uses of power ultrasound for acceleration/performing the chemical as well as physical processes are gaining importance. In conventional leather processing, the diffusion of chemicals through the pores of the skin/hide is achieved by the mechanical agitation caused by the paddle or drumming action. In this work, the use of power ultrasound in the dyeing of leather has been studied with the aim to improve the exhaustion of dye for a given processing time, to reduce the dyeing time and to improve the quality of dyed leather. The effect of power ultrasound in the dyeing of full chrome cow crust leather in a stationary condition is compared with dyeing in the absence of ultrasound as a control experiment both in a stationary as well as conventional drumming condition. An ultrasonic cleaner (150 W and 33 kHz) was used for the experiments. Actual power dissipated into the system was calculated from the calorimetric measurement. Experiments were carried out with variation in type of dye, amount of dye offer, temperature and time. The results show that there is a significant improvement in the percentage exhaustion of dye due to the presence of ultrasound, when compared to dyeing in absence of ultrasound. Experiments on equilibrium dye uptake carried out with or without ultrasound suggest that ultrasound help to improve the kinetics of leather dyeing. The results indicate that leathers dyed in presence of ultrasound have higher colour values, better dye penetration and fastness properties compared to control leathers. The physical testing results show that strength properties of the dyed leathers are not affected due to the application of ultrasound under the given process conditions. Apparent diffusion coefficient during the initial stage of dyeing process, both in presence and in absence of ultrasound was calculated. The values show that ultrasound helps in improving the apparent diffusion coefficient more for the difficult dyeing conditions such as in the case of metal

  3. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  4. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Bakhshayesh, A.M.; Mohammadi, M.R.

    2013-01-01

    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO 2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO 2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film had nanostructured and porous morphology containing uniform spherical particles with diameter about 2.5 μm. The spherical particles were made of small nanoparticles with average grain size of 60 nm improving light scattering and dye loading of the DSSC. Moreover, atomic force microscope (AFM) analysis verified that the roughness mean square of prepared electrode was low, enhancing electron transport to the counter electrode. Photovoltaic measurements showed that solar cell made of polymeric gel process had higher photovoltaic performance than that made of conventional paste. An enhancement of power conversion efficiency from 4.54%, for conventional paste, to 6.21%, for polymeric gel process, was achieved. Electrochemical impedance spectroscopy (EIS) study showed that the recombination process in solar cell made of polymeric gel process was slower than that in solar cell made of conventional paste. The presented strategy would open up new insight into fabrication of low-cost TiO 2 DSSCs with high power conversion efficiency

  5. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    Science.gov (United States)

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xinze [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biological Science, Yili Normal University, Yining 835000, (China); Xu Lin, E-mail: linxu@nenu.edu.cn [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Xu Bingbing; Li Fengyan [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2011-05-15

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO{sub 3}){sub 2}, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 {mu}A cm{sup -2}, a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  7. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    International Nuclear Information System (INIS)

    Luo Xinze; Xu Lin; Xu Bingbing; Li Fengyan

    2011-01-01

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO 3 ) 2 , TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm -2 , a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  8. Sodium fluoride-assisted modulation of anodized TiO₂ nanotube for dye-sensitized solar cells application.

    Science.gov (United States)

    Yun, Jung-Ho; Ng, Yun Hau; Ye, Changhui; Mozer, Attila J; Wallace, Gordon G; Amal, Rose

    2011-05-01

    This work reports the use of sodium fluoride (in ethylene glycol electrolyte) as the replacement of hydrofluoric acid and ammonium fluoride to fabricate long and perpendicularly well-aligned TiO₂ nanotube (TNT) (up to 21 μm) using anodization. Anodizing duration, applied voltage and electrolyte composition influenced the geometry and surface morphologies of TNT. The growth mechanism of TNT is interpreted by analyzing the current transient profile and the total charge density generated during anodization. The system with low water content (2 wt %) yielded a membrane-like mesoporous TiO₂ film, whereas high anodizing voltage (70 V) resulted in the unstable film of TNT arrays. An optimized condition using 5 wt % water content and 60 V of anodizing voltage gave a stable array of nanotube with controllable length and pore diameter. Upon photoexcitation, TNTs synthesized under this condition exhibited a slower charge recombination rate as nanotube length increased. When made into cis-diisothiocyanato-bis(2,2̀-bipyridyl-4,4̀-dicarboxylato) ruthenium(II) bis (tetrabutyl-ammonium)(N719) dye-sensitized solar cells, good device efficiency at 3.33 % based on the optimized TNT arrays was achieved with longer electron time compared with most mesoporous TiO₂ films.

  9. Sequestration Resins for Accelerating Removal of Radioactive Contaminants

    International Nuclear Information System (INIS)

    Frattini, Paul-L.; Wells, Daniel-M.; Garcia, Susan-E.; Richard, Kohlmann; Asay, Roger; Yengoyan, Leon

    2012-09-01

    The Electric Power Research Institute (EPRI) is developing sequestration resins that can be used in the treatment of nuclear plant water streams for the enhanced removal of ionic cobalt. EPRI is focusing on three key areas of success: 1. Plant safety. The resins that are synthesized must be fully tested to determine that no leachable species or decomposition products (in the event of a resin bed failure) would be introduced to the plant. 2. Acceptable system performance. The resins are currently being synthesized in a powdered form for use in the reactor water clean-up and fuel pool clean-up systems that utilize pre-coatable filter elements. The resins must have effective flocking behavior; uniform application over the underlay resin and efficient removal from the septa elements after use. Bead type resins are also under development. 3. Enhanced cobalt removal. The resins are expected to out-perform the currently used ion exchange resins in the removal of ionic cobalt. During nuclear plant maintenance or refueling outages, current ion exchange resins may require several days to reduce concentrations of cobalt (for example, radio-cobalt 60 Co and 58 Co) and other activated corrosion products to safe levels in reactor coolant streams. This performance limitation often delays key maintenance activities. EPRI's resins are expected to provide at least a three-fold increase in removal capacity in light water reactor coolants. These resins also offer the potential for higher overall removal efficiencies reducing occupational exposures and waste management costs. This paper addresses issues from the range of novel resin development for radio-cobalt removal from synthesis at the bench-top level through scale-up to demonstration of use in an actual operating nuclear power plant. (authors)

  10. Quirks of dye nomenclature. 5. Rhodamines.

    Science.gov (United States)

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.

  11. Hypersensitivity to contrast media and dyes.

    Science.gov (United States)

    Brockow, Knut; Sánchez-Borges, Mario

    2014-08-01

    This article updates current knowledge on hypersensitivity reactions to diagnostic contrast media and dyes. After application of a single iodinated radiocontrast medium (RCM), gadolinium-based contrast medium, fluorescein, or a blue dye, a hypersensitivity reaction is not a common finding; however, because of the high and still increasing frequency of those procedures, patients who have experienced severe reactions are nevertheless frequently encountered in allergy departments. Evidence on allergologic testing and management is best for iodinated RCM, limited for blue dyes, and insufficient for fluorescein. Skin tests can be helpful in the diagnosis of patients with hypersensitivity reactions to these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Chemical tools: epoxic resins; Herramientas quimicas: resinas epoxidicas

    Energy Technology Data Exchange (ETDEWEB)

    Paz, S.; Pazos, M.; Prendes, P.

    1998-10-01

    Epoxy resins are very useful products for different applications in different fields. Due to the fact that they are a highly versatile products they can be considered as chemical tools. However the epoxy resins must be correctly formulated in order to obtain the final properties. In this article an easy and reliable method to optimise the energy formulation is presented. (Author)

  13. Resin-Bonded Bridges in vitro and in vivo

    NARCIS (Netherlands)

    Veen, Johannes Hilbrandt van der

    1988-01-01

    In this thesis in vitro and in vivo studies on the clinical application of resin-bonded bridges are described and discussed. The development of different types of resin-bonded bridges is described in chapter 1. The bridges are often made by boding a cast metal retainer fitted with and artificial

  14. Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties

    Science.gov (United States)

    Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn

    2018-01-01

    Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.

  15. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    Science.gov (United States)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  16. DYEING COTTON WITH EISENIA BICYCLIS AS NATURAL DYE USING DIFFERENT BIOMORDANTS

    Directory of Open Access Journals (Sweden)

    BONET Mª Ángeles

    2015-05-01

    Full Text Available Natural dyes are known for their use in coloring of food substrate, leather as well as natural protein fibers like wool, silk and cotton as major areas of application since pre-historic times. Nowadays, there has been revival of the growing interest on the application of natural dyes on natural fibers due to worldwide environmental consciousness. Some researchers focus their studies on the improvement of these dyes using mordants. Most works use metallic mordants like aluminum or iron are used, but some of them are hazardous. In this work we used a biomordant to solve environmental problems caused by metallic mordants. The effects of chitosan weight molecular in mordanting on the dyeing characteristics and the UV protection property were examined in this study. Chitosan mordanted Eisenia Bicyclis dyed cotton showed better dyeing characteristic and higher UV protection property compared with undyed cotton fabric. To analyze the differences of the dyeing, reflection spectrophotometer was used, evaluating the results of CIELAB color difference values and the strength color (in terms of K/S value. We conclude that the type of chitosan used affect the dyeing efficiency and the UV protection, showing different behavior between dye sample using chitosan with low or medium molecular weight.

  17. Deposition of SiOx thin films on Y-TZP by reactive magnetron sputtering: influence of plasma parameters on the adhesion properties between Y-TZP and resin cement for application in dental prosthesis

    Directory of Open Access Journals (Sweden)

    José Renato Calvacanti de Queiroz

    2011-01-01

    Full Text Available In this paper SiOx thin films were deposited on Y-TZP ceramics by reactive magnetron sputtering technique in order to improve the adhesion properties between Y-TZP and resin cement for applications in dental prosthesis. For fixed cathode voltage, target current, working pressure and target-to-substrate distance, SiOx thin films were deposited at different oxygen concentrations in the Ar+O2 plasma forming gas. After deposition processes, SiOx thin films were characterized by profilometry, energy dispersive spectroscopy (EDS, optical microscopy and scanning electron microscopy (SEM. Adhesion properties between Y-TZP and resin cement were evaluated by shear testing. Results indicate that films deposited at 20%O2 increased the bond strength to (32.8 ± 5.4 MPa. This value has not been achieved by traditional methods.

  18. Preparation and characterization of core-shell electrodes for application in gel electrolyte-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Avellaneda, Cesar O.; Goncalves, Agnaldo D.; Benedetti, Joao E.; Nogueira, Ana F.

    2010-01-01

    Core-shell electrodes based on TiO 2 covered with different oxides were prepared and characterized. These electrodes were applied in gel electrolyte-based dye-sensitized solar cells (DSSC). The TiO 2 electrodes were prepared from TiO 2 powder (P25 Degussa) and coated with thin layers of Al 2 O 3 , MgO, Nb 2 O 5 , and SrTiO 3 prepared by the sol-gel method. The core-shell electrodes were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy measurements. J-V curves in the dark and under standard AM 1.5 conditions and photovoltage decay measurements under open-circuit conditions were carried out in order to evaluate the influence of the oxide layer on the charge recombination dynamics and on the device's performance. The results indicated an improvement in the conversion efficiency as a result of an increase in the open circuit voltage. The photovoltage decay curves under open-circuit conditions showed that the core-shell electrodes provide longer electron lifetime values compared to uncoated TiO 2 electrodes, corroborating with a minimization in the recombination losses at the nanoparticle surface/electrolyte interface. This is the first time that a study has been applied to DSSC based on gel polymer electrolyte. The optimum performance was achieved by solar cells based on TiO 2 /MgO core-shell electrodes: fill factor of ∼0.60, short-circuit current density J sc of 12 mA cm -2 , open-circuit voltage V oc of 0.78 V and overall energy conversion efficiency of ∼5% (under illumination of 100 mW cm -2 ).

  19. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Mokhtari, H.; Jobelin, I. [CEA Marcoule, Nucl Energy Div, RadioChem and Proc Dept, Actinides Chem and Convers Lab, F-30207 Bagnols Sur Ceze (France); Ramiere, I. [Fuel Simulat Lab, Fuel Study Dept, F-13108 St Paul Les Durance (France)

    2010-07-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  20. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    International Nuclear Information System (INIS)

    Picart, S.; Mokhtari, H.; Jobelin, I.; Ramiere, I.

    2010-01-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  1. Interplay between transparency and efficiency in dye sensitized solar cells.

    Science.gov (United States)

    Tagliaferro, Roberto; Colonna, Daniele; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2013-02-11

    In this paper we analyze the interplay between transparency and efficiency in dye sensitized solar cells by varying fabrication parameters such as the thickness of the nano-crystalline TiO(2) layer, the dye loading and the dye type. Both transparency and efficiency show a saturation trend when plotted versus dye loading. By introducing the transparency-efficiency plot, we show that the relation between transparency and efficiency is linear and is almost independent on the TiO(2) thickness for a certain thickness range. On the contrary, the relation between transparency and efficiency depends strongly on the type of the dye. Moreover, we show that co-sensitization techniques can be effectively used to access regions of the transparency-efficiency space that are forbidden for single dye sensitization. The relation found between transparency and efficiency (T&E) can be the general guide for optimization of Dye Solar Cells in building integration applications.

  2. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    Science.gov (United States)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  3. Marginal integrity of low-shrinkage and methacrylate-based composite resins: Effect of three different hemostatic agents

    Science.gov (United States)

    Khoroushi, Maryam; Sahraneshin-Samani, Mahsa

    2016-01-01

    Background Moisture control is very important in restorative procedures in dentistry. Use of hemostatic agents helps control moisture; however, they might result in changes on enamel and dentin surfaces, affecting composite resin bond quality. The aim of this in vitro study was to evaluate the marginal microleakage of two different composite resins with the use of three different hemostatic agents. Material and Methods Standardized Class V cavities were prepared on the buccal and lingual surfaces of 48 premolars with cervical margins 1 mm apical to the cementoenamel junction (CEJ). The samples were randomly divided into 8 groups. In groups 1 to 4, an etch-and-rinse adhesive (Adper Single Bond) was applied as the bonding system, followed by exposure to different hemostatic agent: group 1: no hemostatic agent (control); group 2: ViscoStat; group 3: ViscoStat Clear; and group 4: trichloracetic acid, as hemostatic agents. The cavities were restored with Z-250 composite resin. In group 5 to 8 Silorane System Adhesive (Filtek P90 Adhesive) was applied as a bonding agent, followed by exposure to different hemostatic agents in a manner similar to that in groups 1to 4. The cavities were restored with Filtek P90, a low-shrinkage composite resin. The samples in each group were evaluated for dye penetration under a stereomicroscope at ×36 after 24 hours and a 500-round thermocycling procedure at enamel and dentin margins. Statistical analysis was carried out using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results Z-250 composite resin exhibited significantly higher dentin microleakage scores compared to Filtek P90 (P = 0.004). Trichloracetic acid increased dentin microleakage with Filtek P90 (P=0.033). Conclusions Under the limitations of this in vitro study, application of hemostatic agents did not affect microleakage of the two tested composite resins except for trichloracetic acid that increased marginal microleakage when used with Filtek P90. Key words

  4. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    Energy Technology Data Exchange (ETDEWEB)

    Vacchi, Francine Inforcato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil); Ormond, Alexandra B.; Freeman, Harold S. [Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Zocolo, Guilherme Juliao; Zanoni, Maria Valnice Boldrin [Departamento de Quimica Analitica, Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Quimica de Araraquara, Araraquara, SP 14801-970 (Brazil); Umbuzeiro, Gisela, E-mail: giselau@ft.unicamp.br [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil)

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: Black-Right-Pointing-Pointer Aqueous solutions of Disperse Red 1 were treated with chlorine. Black-Right-Pointing-Pointer The chlorination products of Disperse Red 1 were identified using LC-ESI-MS/MS. Black-Right-Pointing-Pointer Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. Black-Right-Pointing-Pointer The chlorinated dye was more mutagenic

  5. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    International Nuclear Information System (INIS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-01-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO 2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO 2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO 2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively. (paper)

  6. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    International Nuclear Information System (INIS)

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B.; Freeman, Harold S.; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC–ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: ► Aqueous solutions of Disperse Red 1 were treated with chlorine. ► The chlorination products of Disperse Red 1 were identified using LC–ESI-MS/MS. ► Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. ► The chlorinated dye was more mutagenic than the dye itself. ► Chlorination should be avoided in effluents containing azo-dyes.

  7. WATERLESS DYEING [REVIEW

    Directory of Open Access Journals (Sweden)

    DEVRENT Nalan

    2015-05-01

    Full Text Available The textile industry is believed to be one of the biggest consumers of water. Water consumption and exhaustion in dyeing textile materials in conventional methods is an important environmental problem. The cost of waste water treatment will cause a prominent problem in the future as it does today. Increasing consideration of ecologic consequences of industrial processes as well as legislation enforcing the avoidance of environmental problems have caused a reorientation of thinking and promoted projects for replacement of conventional technologies. One of these new technologies is dyeing in supercritical fluids. Dyeing with supercritical carbon dioxide is a favourable concept considering the value of water as a natural resource and the cost of waste water treatment. This dyeing method offers many advantages over conventional aqueous dyeing: During this dyeing process no water is used, therefore there is no waste water problem, no other chemicals are required; the carbon dioxide can be recycled; the dystuff which is not adsorbed on the substrate can be collected and reused; The necessary energy consumption in this process is relatively lower than is needed to heat water in conventional methods of dyeing. Due to unnecessary of drying process, it helps to save both energy and time; and dyeing cycle is shorter compared with traditional methods. In addition carbon dioxide is non-toxic and non-flammable. Supercritical fluid, supercritical dyeing, disperse dyestuffs, solid-fluid equilibrium

  8. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  9. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Samarghandi Mohammad

    2012-11-01

    Full Text Available Abstract Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99 and Langmuir (r2>0.99 isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99 and intra-particle diffusion (r2>0.98 models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively.

  10. Application of Acidic Treated Pumice as an Adsorbent for the Removal of Azo Dye from Aqueous Solutions:kinetic, Equilibrium and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Saied Bashiri

    2012-11-01

    Full Text Available Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as anefficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal ofAR14 and AR18 followed Freundlich (r2>0.99 and Langmuir (r2>0.99 isotherm models.Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99 and intra-particle diffusion (r2>0.98 models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer.Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89 % regeneration for AR14 and AR18,respectively.

  11. Environmental impact analysis of batik natural dyes using life cycle assessment

    Science.gov (United States)

    Rinawati, Dyah Ika; Sari, Diana Puspita; Purwanggono, Bambang; Hermawan, Andy Tri

    2017-11-01

    The use of natural dyes for batik dyeing is fewer than synthetic dyes because of its limitations in the application such complexity in manufacture and usage. For ease of use, natural dyes need to be processed into instant products. Extract of natural dyes are generally produced in liquid form that are less practical in long-term use. Dye powder obtained by drying the liquid extract using spray dryer. Production process of liquid natural dye is simpler and require less energy but need more energy for transporting. It is important to know which type of natural dyes should be produced based on their environmental impact. This research aim to compare environmental impact between liquid and powder natural dyes and also to find relative contribution of different stage in life cycle to total environmental impact. The appropriate method to analyze and compare the environmental impacts of powder and liquid natural dyes is Life Cycle Assessment (LCA). The "cradle to grave" approach used to assess environmental impact of powder and liquid natural dyes of Jalawe rind throughout production process of natural dyes, distribution and use of natural dyes for coloring batik. Results of this research show that powder natural dyes has lower environmental impacts than liquid natural dyes. It was found that distribution, mordanting and packaging of liquid dyes have big contribution to environmental impact.

  12. A review of the development of resins for use in hydrometallurgy

    International Nuclear Information System (INIS)

    Green, B.R.

    1985-01-01

    Commercial resins, including cation exchangers, anion exchangers, and complexing resins, that may be suitable for use in the extraction of metals are reviewed. Areas where further research is required are considered, and potential applications that are of particular interest to the Council for Mineral Technology (Mintek), involving the recovery of uranium, gold, and the base metals, are described. Commercial resins and experimental resins developed at Mintek are evaluated, and the results are reviewed

  13. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    Science.gov (United States)

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-07

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications.

  14. Polymerization of novel methacrylated anthraquinone dyes

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-02-01

    Full Text Available A new series of polymerizable methacrylated anthraquinone dyes has been synthesized by nucleophilic aromatic substitution reactions and subsequent methacrylation. Thereby, green 5,8-bis(4-(2-methacryloxyethylphenylamino-1,4-dihydroxyanthraquinone (2, blue 1,4-bis(4-((2-methacryloxyethyloxyphenylaminoanthraquinone (6 and red 1-((2-methacryloxy-1,1-dimethylethylaminoanthraquinone (12, as well as 1-((1,3-dimethacryloxy-2-methylpropan-2-ylaminoanthraquinone (15 were obtained. By mixing of these brilliant dyes in different ratios and concentrations, a broad color spectrum can be generated. After methacrylation, the monomeric dyes can be covalently emplaced into several copolymers. Due to two polymerizable functionalities, they can act as cross-linking agents. Thus, diffusion out of the polymer can be avoided, which increases the physiological compatibility and makes the dyes promising compounds for medical applications, such as iris implants.

  15. Preparation of a Counter Electrode with P-Type NiO and Its Applications in Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Chuen-Shii Chou

    2010-01-01

    Full Text Available This study investigates the applicability of a counter electrode with a P-type semiconductor oxide (such as NiO on a dye-sensitized solar cell (DSSC. The counter electrode is fabricated by depositing an NiO film on top of a Pt film, which has been deposited on a Fluorine-doped tin oxide (FTO glass using an ion-sputtering coater (or E-beam evaporator, using a simple spin coating method. This study also examines the effect of the average thickness of TiO2 film deposited on a working electrode upon the power conversion efficiency of a DSSC. This study shows that the power conversion efficiency of a DSSC with a Pt(E/NiO counter electrode (4.28% substantially exceeds that of a conventional DSSC with a Pt(E counter electrode (3.16% on which a Pt film was deposited using an E-beam evaporator. This result is attributed to the fact that the NiO film coated on the Pt(E counter electrode improves the electrocatalytic activity of the counter electrode.

  16. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation.

    Science.gov (United States)

    Francis, Sijo; Joseph, Siby; Koshy, Ebey P; Mathew, Beena

    2017-07-01

    Plant-derived nanomaterials opened a green approach in solving the current environment issues. Present study focused on rapid microwave-assisted synthesis and applications of gold and silver nanoparticles mediated by aqueous leaf extract of Mussaenda glabrata. The synthesized nanoparticles were characterized by UV-vis, FT-IR, powder XRD, energy-dispersive X-ray spectroscopy (EDX), transmission electron (TEM), and atomic force microscopic techniques (AFM). FCC crystal structure of both nanoparticles was confirmed by peaks corresponding to (111), (200), (220), and (311) planes in XRD spectra and bright circular spots in SAED pattern. IC 50 values shown by gold and silver nanoparticles (44.1 ± 0.82 and 57.92 ± 1.33 μg/mL) reflected their high free radical scavenging potential. The synthesized gold and silver nanoparticles revealed their potency to inhibit pathogenic microorganisms Bacillus pumilus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Penicillium chrysogenum. Anthropogenic pollutants rhodamine B and methyl orange were effectively degraded from aquatic environment and waste water sewages of dye industries using the prepared nanocatalysts. The catalytic capacities of the synthesized nanoparticles were also exploited in the reduction of 4-nitrophenol. Graphical abstract.

  17. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye.

    Science.gov (United States)

    Ruan, Chang-Qing; Strømme, Maria; Lindh, Jonas

    2018-02-01

    Micrometer sized 2,3-dialdehyde cellulose (DAC) beads were produced via a recently developed method relying on periodate oxidation of Cladophora nanocellulose. The produced dialdehyde groups and pristine hydroxyl groups provided the DAC beads with a vast potential for further functionalization. The sensitivity of the DAC beads to alkaline conditions, however, limits their possible functionalization and applications. Hence, alkaline-stable and porous cellulose beads were prepared via a reductive amination crosslinking reaction between 2,3-dialdehyde cellulose beads and chitosan. The produced materials were thoroughly characterized with different methods. The reaction conditions, including the amount of chitosan used, conditions for reductive amination, reaction temperature and time, were investigated and the maintained morphology of the beads after exposure to 1M NaOH (aq.) was verified with SEM. Different washing and drying procedures were used and the results were studied by SEM and BET analysis. Furthermore, FTIR, TGA, EDX, XPS, DLS and elemental analysis were performed to characterize the properties of the prepared beads. Finally, the alkaline-stable porous chitosan cross-linked 2,3-dialdehyde cellulose beads were applied as adsorbent for the dye Congo red. The crosslinked beads displayed fast and high adsorption capacity at pH 2 and good desorption properties at pH 12, providing a promising sorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Characterization of Polyimide Matrix Resins and Prepregs

    Science.gov (United States)

    Maximovich, M. G.; Galeos, R. M.

    1985-01-01

    Graphite/polyimide composite materials are attractive candidates for a wide range of aerospace applications. They have many of the virtues of graphite/epoxies, i.e., high specific strengths and stiffness, and also outstanding thermal/oxidative stability. Yet they are not widely used in the aerospace industry due to problems of procesability. By their nature, modern addition polyimide (PI) resins and prepregs are more complex than epoxies; the key to processing lies in characterizing and understanding the materials. Chemical and rheological characterizations are carried out on several addition polyimide resins and graphite reinforced prepregs, including those based on PMR-15, LARC 160 (AP 22), LARC 160 (Curithane 103) and V378A. The use of a high range torque transducer with a Rheometrics mechanical spectrometer allows rheological data to be generated on prepreg materials as well as neat resins. The use of prepreg samples instead of neat resins eliminates the need for preimidization of the samples and the data correlates well with processing behavior found in the shop. Rheological characterization of the resins and prepregs finds significant differences not readily detected by conventional chemical characterization techniques.

  19. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also

  20. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  1. Extraction of dye

    African Journals Online (AJOL)

    Dyes of natural origins are great for color appreciation as any variation in the concentration of dye, mordant, type of water, soil and climate give variations in ... Grey scale and blue dyed silk were used for color fastness rating. ..... Down to Earth.

  2. Adsorption Properties of PVA/PAA/clay Composite Hydrogel Synthesized by Gamma Radiation and its Application in Removal of Crystal Violet Dye from Its Aqueous Solution

    International Nuclear Information System (INIS)

    Kamal, H.; El-Sayed, A. Hegazy; Mohamed, M.M.; Sabaa, M.W.; El-Dessouky, M.M.

    2014-01-01

    Copolymer hydrogels composed of Poly vinyl alcohol (PVA) and Poly acrylic acid (PAA) were prepared by γ-irradiation in the presence of N,N’ methylene bis acrylamide (MBAM) as crosslinking agent or bentonite clay. The copolymers were characterized by FTIR and SEM. The dye adsorption experiments for Crystal Violet dye (CV) were carried out by using bath procedure. UV-visible absorption spectroscopy was used to determine the adsorption behavior. The effect of different copolymer composition, clay concentration, ph, contact time, adsorbent dose, initial dye concentration, and adsorption temperature were investigated to obtain the best experimental conditions. The adsorption equilibrium was attained after about 24h. of contact time. It was found that the adsorption process was correlated with Freundlich isotherm equation. Kinetic and thermodynamic studies of CV dye onto the prepared hydrogels were also evaluated

  3. Study of application properties of novel trisazo hetero bi-functional reactive dyes based on j-acid derivatives for cotton

    International Nuclear Information System (INIS)

    Mokhtari, Javad; Akbarzadeh, A; Phillips, D A S; Taylor, J A

    2009-01-01

    Three novel trisazo hetero bi-functional reactive dyes based on J-acid derivatives were prepared using the diazonium salt of [4-(4-sulphophenylazo-)-2,5-dimethylazobenzene-2-sulphonic acid] and a hetero bi-functional coupling component, derived from 1-hydroxy-6-aminonapthalene-3-sulphonic acid (J-acid), 1-hydroxy-6- methylaminonapthalene-3-sulphonic acid (methyl J-acid), and 1-hydroxy-6-aminonaphthalene-3,5-disulphonic acid (sulpho J-acid). On balance, the dye derived from sulpho J-acid displayed the most attractive set of technical properties, building up and fixing more efficiently than those derived from J-acid and methyl J-acid. In addition, the sulpho J-acid based dye offered better migration and, therefore, level dyeing and ease of wash off. (author)

  4. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S. Assiyeh Alizadeh; Leiknes, TorOve

    2016-01-01

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY

  5. Phytoremediation in education: textile dye teaching experiments.

    Science.gov (United States)

    Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E

    2009-07-01

    Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students.

  6. Design and synthesis of BODIPY sensitizers with long alkyl chains tethered to N-carbazole and their application for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheema, Hammad [Polymer and Color Chemistry Program, North Carolina State University, Raleigh, NC, 27695 (United States); Younts, Robert; Gautam, Bhoj; Gundogdu, Kenan [Physics Department, North Carolina State University, Raleigh, NC, 27695 (United States); El-Shafei, Ahmed, E-mail: Ahmed_El-Shafei@ncsu.edu [Polymer and Color Chemistry Program, North Carolina State University, Raleigh, NC, 27695 (United States)

    2016-12-01

    In this study, three boron dipyrromethenes (BODIPY) dyes with extended conjugation and electron donating carbazole groups with different alkyl chain lengths tethered to N-carbazole were synthesized and characterized for dye-sensitized solar cells. The goal was to study the effect of different alkyl chain lengths on dye aggregation at TiO{sub 2} surface. The proposed molecular strategy resulted in BODIPY dyes which showed interesting electronic absorption and fluorescence properties. It was observed that intramolecular energy transfer decreases with the increase in alkyl chain length possibly due to induced changes in molecular geometry caused by long alkyl chains. Additionally, interface analysis by impedance spectroscopy in comparison to N719 sensitized TiO{sub 2} solar cell showed significant charge transport related losses (Nyquist plot) most likely due to impedance resulted from aggregated BODIPY dye on TiO{sub 2} surface. Femtosecond transient absorption studies showed the loss of excited electrons by recombination with oxidized ground state of the sensitizers. - Highlights: • BODIPY dyes with carbazole electron donating groups are characterized. • Photophysics is discussed based on transient and steady state spectroscopy results. • Impedance spectroscopy found huge charge transport related losses on TiO{sub 2.}.

  7. Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal

    Directory of Open Access Journals (Sweden)

    Rachid Elmoubarki

    2017-07-01

    Full Text Available In this study, Mg/Fe and Ni/Fe layered double hydroxides (LDHs with molar ratio (M2+/Fe3+ of 3 and intercalated with carbonate ions were synthesized by co-precipitation method. The as-synthesized materials and their calcined products (CLDHs were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermo-gravimetric and differential thermal analyses (TGA–DTA, transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDX, inductively coupled plasma (ICP and elemental chemical analysis CHNSO. The materials were used as adsorbents for the removal availability of textile dyes from aqueous solution. Methylene blue (MB and malachite green (MG, representative of cationic dyes, and methyl orange (MO representative of anionic dyes were used as model molecules. Adsorption experiments were carried out under different parameters such as contact time, temperature, initial dyes concentration and solution pH. Experimental results indicate that CLDHs had much higher adsorption capacities compared to LDHs. Adsorption kinetic data fitted well the pseudo-second order kinetic model. The process was spontaneous, endothermic for cationic dyes and exothermic for the anionic dye. Equilibrium sorption data fitted the Langmuir model instead of Freundlich model.

  8. Design and synthesis of BODIPY sensitizers with long alkyl chains tethered to N-carbazole and their application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Cheema, Hammad; Younts, Robert; Gautam, Bhoj; Gundogdu, Kenan; El-Shafei, Ahmed

    2016-01-01

    In this study, three boron dipyrromethenes (BODIPY) dyes with extended conjugation and electron donating carbazole groups with different alkyl chain lengths tethered to N-carbazole were synthesized and characterized for dye-sensitized solar cells. The goal was to study the effect of different alkyl chain lengths on dye aggregation at TiO_2 surface. The proposed molecular strategy resulted in BODIPY dyes which showed interesting electronic absorption and fluorescence properties. It was observed that intramolecular energy transfer decreases with the increase in alkyl chain length possibly due to induced changes in molecular geometry caused by long alkyl chains. Additionally, interface analysis by impedance spectroscopy in comparison to N719 sensitized TiO_2 solar cell showed significant charge transport related losses (Nyquist plot) most likely due to impedance resulted from aggregated BODIPY dye on TiO_2 surface. Femtosecond transient absorption studies showed the loss of excited electrons by recombination with oxidized ground state of the sensitizers. - Highlights: • BODIPY dyes with carbazole electron donating groups are characterized. • Photophysics is discussed based on transient and steady state spectroscopy results. • Impedance spectroscopy found huge charge transport related losses on TiO_2_.

  9. Treatment of Simulated Soil Decontamination Waste Solution by Ferrocyanide-Anion Exchange Resin Beads

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Kim, Min Gil; Kim, Gye Nam; Jung, Chung Hun; Park, Jin Ho; Oh, Won Zin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-03-15

    Preparation of ferrocyanide-anion exchange resin and adsorption test of the prepared resin on the Cs{sup -} ion were performed. Adsorption capability of the prepared resin on the Cs{sup -} ion in the simulated citric acid based soil decontamination waste solution was 4 times greater than that of the commercial cation exchange resin. Adsorption equilibrium of the prepared resin on the Cs{sup -} ion reached within 360 minutes. Adsorption capability on the Cs{sup -} ion became to decrease above the necessary Co{sup 2-} ion concentration in the experimental range. Recycling test of the spent ion exchange resin by the successive application of hydrogen peroxide and hydrazine was also performed. It was found that desorption of Cs{sup -} ion from the resin occurred to satisfy the electroneutrality condition without any degradation of the resin.

  10. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    Science.gov (United States)

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  11. COMPARATIVE STUDY OF TWO DYEING METHODS USING REACTIVE DYE

    Directory of Open Access Journals (Sweden)

    HINOJOSA Belén

    2016-05-01

    Full Text Available Environment preservation is a common worry not only for people but for companies as well. Industry is more and more concern about the necessity of developing new and more respectful processes. Dye is one of the most important processes in the textile industry but it is also considered as no too safe regarding environment issues. This process uses large amounts of water and generates big volumes of wastewater. Following this issue, new regulations and laws emerge to control the waste generated. This leads to the companies and increased costs in terms of wastewater treatments and high water consumption. In this research we compare two systems on garment finishing application, the conventional bath process and the new Ecofinish system that is able to save water and product. To compare these processes, we carried out a reactive dyeing using both systems in order to determine the quality differences in the final product. For this purpose, the samples have been tested to washing and rubbing fastness, according to UNE EN ISO 105 C10 and UNE- EN ISO 105 X12 standards, respectively. This study confirms that this system achieves water savings and reduces the wastewater produced, getting a good dyeing. This process can be considered as an alternative to the conventional one.

  12. Radiation curable epoxy resin

    International Nuclear Information System (INIS)

    Najvar, D.J.

    1978-01-01

    A carboxyl containing polymer is either prepared in the presence of a polyepoxide or reacted with a polyepoxide. The polymer has sufficient acid groups to react with only about 1 to 10 percent of the epoxide (oxirane) groups. The remaining epoxide groups are reacted with an unsaturated monocarboxylic acid such as acrylic or methacrylic acid to form a radiation curable resin

  13. Attribute based selection of thermoplastic resin for vacuum infusion process

    DEFF Research Database (Denmark)

    Prabhakaran, R.T. Durai; Lystrup, Aage; Løgstrup Andersen, Tom

    2011-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...

  14. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    Science.gov (United States)

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  15. Ion Exchange Temperature Testing with SRF Resin - 12088

    Energy Technology Data Exchange (ETDEWEB)

    Russell, R.L.; Rinehart, D.E.; Brown, G.N.; Peterson, R.A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2012-07-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy's Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing Cs-137. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50 deg. C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow at elevated temperature (45 deg., 50 deg., 55 deg., 60 deg., 65 deg., 75 deg. C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45 deg. C. Above 60 deg. C the resin appears to not load at all. It was observed that the resin disintegrated at 75 deg. C until not much was left and partially disintegrated at 65 deg. C, which caused the column to plug in both tests after ∼336 hours. The results indicate that WTP will lose resin loading capacity if the ion exchange process is performed above 25 deg. C, and the resin will disintegrate above 65 deg. C. Therefore, WTP will have a restricted operating range of temperatures to perform the ion exchange process with this resin. PNNL and WTP are currently evaluating the operating limits of the resin in further detail. Aging in 0.5 M HNO{sub 3} also caused the resin to lose capacity above 25 deg. C and to completely dissolve at 55 deg. C. Again, WTP will have a restricted operating range of temperatures when eluting the resin with nitric acid in order to maintain resin loading capacity and avoid disintegration of the resin

  16. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    Energy Technology Data Exchange (ETDEWEB)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  17. Bituminous solidification, disposal, transport and burial of spent ion-exchange resins. Part of a coordinated programme on treatment of spent ion exchange resins

    International Nuclear Information System (INIS)

    Mozes, G.; Kristof, M.

    1983-07-01

    The project dealing with the incorporation of spent ion-exchange resins into bitumen was performed within the Agency coordinated research programme on treatment of spent ion-exchange resins. Physical and chemical properties of commercial ion-exchange resins, bitumens and bituminized resins were studied. It was shown that bitumen with low oil content and with a softening point of 60-70 deg. C are applicable for the incorporation of resins. The final waste form is allowed to contain maximum 50% resin. The comprehensive study of the biological resistance of B-30 bitumen was performed. That showed that any bacteriological attack can be regarded as generally insignificant. A continuously operating technology was realized on a semi-plant scale. The best operating conditions of this technology were determined. On the basis of the experience gained from the experiments a design of the bituminization plant of 50m 3 dry resin/year treatment capacity was proposed

  18. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao F. Trencher; Santos, Robinson A. dos; Ferraz, Caue de M.; Oliveira, Adriano S.; Velo, Alexandre F.; Mesquita, Carlos H. de; Hamada, Margarida M., E-mail: mmhamada@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Disch, Christian; Fiederle, Michael [Albert-Ludwigs Universität Freiburg - UniFreibrug, Freiburg Materials Research Center - FMF, Freiburg (Germany)

    2015-07-01

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI{sub 2} semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  19. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  20. Isotopic exchange between 232Th and 234Th using ion exchange resins and its application for the radiochemical separation of thorium and europium

    International Nuclear Information System (INIS)

    Sepulveda Munita, C.J.A.; Atalla, L.T.

    1980-01-01

    The determination of thorium via the measurement of 233 Th activity (obtained by irradiating natural thorium with neutrons) may suffer the interference of various radioisotopes which may be also formed during irradiation, if their parent isotopes are present in the sample. Taking into account this possibility, another technique was chosen for the determination of thorium, based on isotopic exchange associated with ionic exchange. Conditions for the isotopic exchange between 234 Th in solution and 232 Th in the resin were optimized. It was verified that the behaviour of 233 Th and 234 Th is the same regarding isotopic exchange with 232 Th. 234 Th was chosen for the experiments since it has a longer half-life (24.1 days) than 233 Th (22.3 min), thus facilitating the performance of the work. As the major objective of this work is to separate thorium and europium isotopes, the behaviour of 152-154 Eu was studied in the same system used for thorium, envisaging a minimum retention of these radioisotopes in the resin. In order to establish the best conditions for separating 234-Th and 152/154-Eu, the following parameters were considered: the thorium concentration in the solution; the hydrochloric acid concentration in solution; the concentration of other elements in solution; the degree of cross-linking of the resin; the flow rate of the solution through the column. The other elements added to the elutant solution were: uranium, molybdenum, lanthanum, europium, ytterbium, bromine, cobalt, barium, manganese, indium, cesium and selenium. Europium was added so to dilute the 152/154-Eu tracer and avoid the retention of the latter in the resin. The other elements were added because they give rise to radioisotopes which interfere in the activation analysis of thorium when 233-Th activity is used and, the separation of these elements from thorium will also be subsequently studied by the method used in the present work. (C.L.B.) [pt

  1. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch., E-mail: kerschbaum@ikv.rwth-aachen.de; Kerschbaum, M., E-mail: kerschbaum@ikv.rwth-aachen.de; Küsters, K., E-mail: kerschbaum@ikv.rwth-aachen.de [Institute of Plastics Processing at RWTH Aachen University (IKV), Pontstrasse 49, 52064 Aachen (Germany)

    2014-05-15

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  2. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Kerschbaum, M.; Küsters, K.

    2014-01-01

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization

  3. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Science.gov (United States)

    Hopmann, Ch.; Kerschbaum, M.; Küsters, K.

    2014-05-01

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  4. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    Science.gov (United States)

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

  5. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.

    Science.gov (United States)

    Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D

    2007-01-01

    Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.

  6. Electronic optimization of heteroleptic Ru(II) bipyridine complexes by remote substituents: synthesis, characterization, and application to dye-sensitized solar cells.

    Science.gov (United States)

    Han, Won-Sik; Han, Jung-Kyu; Kim, Hyun-Young; Choi, Mi Jin; Kang, Yong-Soo; Pac, Chyongjin; Kang, Sang Ook

    2011-04-18

    We prepared a series of new heteroleptic ruthenium(II) complexes, Ru(NCS)(2)LL' (3a-3e), where L is 4,4'-di(hydroxycarbonyl)-2,2'-bipyridine and L' is 4,4'-di(p-X-phenyl)-2,2'-pyridine (X = CN (a), F (b), H (c), OMe (d), and NMe(2) (e)), in an attempt to explore the structure-activity relationships in their photophysical and electrochemical behavior and in their performance in dye-sensitized solar cells (DSSCs). When substituent X is changed from electron-donating NMe(2) to electron-withdrawing CN, the absorption and emission maxima reveal systematic bathochromic shifts. The redox potentials of these dyes are also significantly influenced by X. The electronic properties of the dyes were theoretically analyzed using density functional theory calculations; the results show good correlations with the experimental results. The solar-cell performance of DSSCs based on dye-grafted nanocrystalline TiO(2) using 3a-3e and standard N3 (bis[(4,4'-carboxy-2,2'-bipyridine)(thiocyanato)]ruthenium(II)) were compared, revealing substantial dependences on the dye structures, particularly on the remote substituent X. The 3d-based device showed the best performance: η = 8.30%, J(SC) = 16.0 mA·cm(-2), V(OC) = 717 mV, and ff = 0.72. These values are better than N3-based device.

  7. Effects of Topical Fluoride on the Marginal Microleakage of Composite Resin and Resin-Modified Glass Ionomer Restorations in Primary Molars: An In-vitro Study

    Directory of Open Access Journals (Sweden)

    Fatemeh Mir

    2017-12-01

    Full Text Available Introduction: Topical fluoride may deteriorate dental restorations. The present study aimed to evaluate the effects of topical fluoride on the marginal microleakage of composite resin and resin-modified glass ionomer (RMGI restorations in primary molars. Materials and Methods: In this experimental study, 60 primary molars were randomly divided into six groups of 10 based on the type of the restoration materials and before/after the application of fluoride gel, including FC (fluoride + composite, CF (composite + fluoride, C (composite, FG (fluoride + RMGI, GF (RMGI + fluoride, and G (RMGI. Class V cavities were prepared on the buccal surface, so that the gingival margins were located in cementum. After storing, thermocycling, and immersing the specimens in basic fuchsin, they were sectioned buccolingually and evaluated in terms of dye penetration. Data analysis was performed in SPSS version 18 using Kruskal-Wallis and Mann-Whitney U test at the significance level of 0.05. Results: No significant difference was observed between the three composite groups in terms of microleakage (P>0.05. In the RMGI groups, GF showed a significantly higher microleakage compared to G (P=0.029. However, no significant difference was observed between the other groups in this regard (P>0.05. Moreover, comparison of composite and RMGI groups (matched in terms of fluoride application indicated that microleakage was significantly higher in FG than FC (P=0.024, as well as in GF than CF (P=0.002. However, no significant difference was observed between groups C and G in this regard (P=0.268. Conclusion: According to the results, the marginal seal of composite restorations in the primary molars were not affected by the acidic fluoride gel. On the other hand, applying the acidic fluoride gel was associated with a higher microleakage in the cavities restored with RMGI.

  8. A Note on the Dyeing of Wool Fabrics Using Natural Dyes Extracted from Rotten Wood-Inhabiting Fungi

    Directory of Open Access Journals (Sweden)

    Vicente A. Hernández

    2018-02-01

    Full Text Available Fungal isolates obtained from rotten wood samples were identified and selected by their ability to produce fungal dyes in liquid media. Fungal isolates produced natural extracellular dyes with colors ranging from red to orange, yellow and purple. Dyes from two of these fungi, Talaromyces australis (red and Penicillium murcianum (yellow, were extracted and used to dye wool samples in a Data Color Ahiba IR Pro-Trade (model Top Speed II machine. The protein nature of wool interacted well with the fungal dyes producing colors suitable for textile applications when used to a concentration of 0.1 g·L−1. Results on color fastness when washing confirmed the affinity of the dyes with wool as the dyed samples kept their color in acceptable ranges after washing, without the implementation of mordanting pretreatments or the use of fixing agents.

  9. Influence of lithium and boron ions on calcium sulfo-aluminate cement hydration: application for the conditioning of boron ion exchange resins

    International Nuclear Information System (INIS)

    Dhoury, Melanie

    2015-01-01

    In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one. In this PhD study, the potential of calcium sulfo-aluminate cements (CSAC) to solidify/stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye-elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study. Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye-elimite is strongly slowed

  10. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    Science.gov (United States)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  11. 3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy

    OpenAIRE

    Mahmood, Uzma; Rashid, Sitara; Ali, S. Ishrat; Parveen, Rasheeda; ul-Haq, Zaheer; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang

    2011-01-01

    Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are ?reactive dyes? because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called ...

  12. Recycling of negative electrodes from spent Ni-Cd batteries as CdO with nanoparticle sizes and its application in remediation of azo dye

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, T.F.M.; Santana, I.L.; Moura, M.N.; Ferreira, S.A.D.; Lelis, M.F.F.; Freitas, M.B.J.G., E-mail: marcosbj@hotmail.com

    2017-07-01

    In this study, negative electrodes from spent Ni-Cd batteries were recycled as CdCO{sub 3}, which was thermally treated to produce synthetized, nanostructured CdO. There is interest in CdO because of its energy band gap, high electrical conductivity and selective catalytic properties. CdO was characterized in this study by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The XRD pattern showed CdO peaks in a crystalline cubic phase, and the average crystallite diameter was 22.21 nm. TEM micrographs showed the formation of clusters containing nanostructures. We also tested the efficiency of CdO catalytic activity in degrading Reactive Black 5 (RB5) dye. Degradation was conducted in conditions of pH = 4.0, pH = 5.97 and pH = 8.0. The degradation efficiency was, respectively, 65.42%, 61.80% and 67.01% after 480 min of reaction. The determining step in the reaction mechanism for dye degradation was the formation of the radical ion OH·. Therefore, the degradation exhibited a first-order reaction. The catalytic activity of CdO and the rate constant values were independent of the pH of the solution. This work presents potential solutions for two environmental problems: recycling Cd and dye degradation. - Graphical abstract: Recycling of spent Ni-Cd batteries as CdO nanoparticles. - Highlights: • This work presents solutions for Cd recycling and dye degradation. • Anodes of Ni-Cd batteries were recycled as CdO with nanometer-sized particles. • CdO presents catalytic activity in the degradation of reactive black dye. • Decoloration of reactive black dye exhibits first-order reaction. • The rate constant values are independent of the pH solution.

  13. Quantum dynamical simulation of photoinduced electron transfer processes in dye-semiconductor systems: theory and application to coumarin 343 at TiO₂.

    Science.gov (United States)

    Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael

    2015-04-10

    A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.

  14. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications.

    OpenAIRE

    Belov, V.; Mitronova, G.; Bossi, M.; Boyarski, V.; Hebisch, E.; Geisler, C.; Kolmakov, K.; Wurm, C.; Willig, K.; Hell, S.

    2014-01-01

    Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as “hidden” markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2-diazo-1-indanone group can be irreversibly photoactivated, either by irradiation with UV- or violet light (one-photon process), or by exposure to intense red light (λ∼750 nm; two-photon mode). All dyes possess a very small 2-diazoketone caging group incorporated into the 2-diazo-1-indanone residue with...

  15. Embedding in thermosetting resins

    International Nuclear Information System (INIS)

    Buzonniere, A. de

    1985-01-01

    Medium activity waste coming either from nuclear power plants in operation such as evaporator concentrates, spent resins, filter cartridges or the dismantling of installations are embedded in order to obtain a product suitable for long term disposal. Embedding in thermosetting resins (polyester or epoxy) is one among currently used techniques; it is being developed by the CEA (Commissariat a l'Energie Atomique) and Technicatome (subsidiary of CEA and EDF). The process is easy to operate and yields excellent results particularly as far as volume reduction and radioelement containment (cesium particularly) are concerned. The process has already been in operation in four stationary plants for several years. Extension of the process to mobile units has been completed by Technicatome in collaboration with the CEA [fr

  16. Paramagnetic epoxy resin

    Directory of Open Access Journals (Sweden)

    E. C. Vazquez Barreiro

    2017-01-01

    Full Text Available This work illustrates that macrocycles can be used as crosslinking agents for curing epoxy resins, provided that they have appropriate organic functionalities. As macrocycles can complex metal ions in their structure, this curing reaction allows for the introduction of that metal ion into the resin network. As a result, some characteristic physical properties of the metallomacrocycle could be transferred to the new material. The bisphenol A diglycidyl ether (BADGE, n = 0 and hemin (a protoporphyrin IX containing the Fe(III ion, and an additional chloride ligand have been chosen. The new material has been characterized by differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, Fourier Transform Infrared (FT-IR, Nuclear Magnetic Resonance (NMR, Transmission Electron Microscopy (TEM, and magnetic susceptibility measurements. Fe(III remains in the high-spin state during the curing process and, consequently, the final material exhibits the magnetic characteristics of hemin. The loss of the chlorine atom ligand during the cure of the resin allows that Fe(III can act as Lewis acid, catalyzing the crosslinking reactions. At high BADGE n = 0/hemin ratios, the formation of ether and ester bonds occurs simultaneously during the process.

  17. Dye-sensitized solar cells with natural dyes extracted from achiote seeds

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ortiz, N.M.; Vazquez-Maldonado, I.A.; Azamar-Barrios, J.A.; Oskam, G. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida, Yuc. 97310 (Mexico); Perez-Espadas, A.R.; Mena-Rejon, G.J. [Laboratorio de Quimica Organica de Investigacion, Facultad de Quimica, Universidad Autonoma de Yucatan, Merida, Yuc. 97150 (Mexico)

    2010-01-15

    We have explored the application of natural dyes extracted from the seeds of the achiote shrub (Bixa orellana L.) in dye-sensitized solar cells (DSCs). The main pigments are bixin and norbixin, which were obtained by separation and purification from the dark-red extract (annatto). The dyes were characterized using {sup 1}H-NMR, FTIR spectroscopy, and UV-Vis spectrophotometry. Solar cells were prepared using TiO{sub 2} and ZnO nanostructured, mesoporous films and the annatto, bixin, and norbixin as sensitizers. The best results were obtained with bixin-sensitized TiO{sub 2} solar cells with efficiencies of up to 0.53%, illustrating the importance of purification of dyes from natural extracts. (author)

  18. Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.

    Science.gov (United States)

    Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob

    2017-06-12

    A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO 3 - and NO 2 - in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg 2+ , Ca 2+ , and Ba 2+ from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.

  19. Separation of metal ions using an o-hydroxypropiophenoxime resin

    International Nuclear Information System (INIS)

    King, J.N.

    1977-12-01

    A chelating ion-exchange resin incorporating an o-hydroxypropiophenoxime functional group onto an XAD-4 polymer matrix has been synthesized. This resin has been used for the separation and quantitative determination of both copper and molybdenum by high-speed liquid chromatography. Iron, uranium, citrate, and fluoride were found to interfere in the determination of copper. Of the ions tested, none were found to interfere with the determination of molybdenum. Several NBS Standard samples were successfully analyzed for copper and molybdenum. The new method is both accurate and fast. Most samples can be analyzed in less than ten minutes. Bis(2-hydroxyethyl) dithiocarbamate was shown to be superior to PAR as a color-forming reagent for the continuous spectrophotometric detection of copper. Thiolactic acid was shown to be adaptable to the continuous spectrophotometric detection of molybdenum. Both dyes gave linear responses when peak height was plotted against micrograms of metal

  20. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  1. 4-META opaque resin--a new resin strongly adhesive to nickel-chromium alloy.

    Science.gov (United States)

    Tanaka, T; Nagata, K; Takeyama, M; Atsuta, M; Nakabayashi, N; Masuhara, E

    1981-09-01

    1) A new adhesive opaque resin containing a reactive monomer, 4-methacryloxy-ethyl trimellitate anhydride (4-META), was prepared, and its application to thermosetting acrylic resin veneer crowns was studied. 2) The 4-META opaque resin was applied to a variety of nickel-chromium dental alloy specimens which had undergone different treatment, and endurance tests were conducted to evaluate the durability of adhesion. 3) Stable adhesion against water penetration was achieved with metal surfaces first etched with HCl and then oxidized with HNO3. A bond strength of 250 kg/cm2 was maintained even after immersion in water at 37 degrees C for 30 wk or at 80 degrees C for ten wk. Furthermore, this value did not decrease even after the specimens were subjected to 500 thermal cycles. 4) The 4-META opaque resin studied can eliminate the necessity for retention devices on metal castings. 5) The smooth 4-META opaque resin should have no adverse effects on gingivae.

  2. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram

    2013-08-01

    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  3. Application of central composite face-centered design and response surface methodology for the optimization of electro-Fenton decolorization of Azure B dye.

    Science.gov (United States)

    Rosales, E; Sanromán, M A; Pazos, M

    2012-06-01

    The aim of this work was to improve the ability of electro-Fenton technique for the remediation of wastewater contaminated with synthetic dyes using a model azo dye such as Azure B. Batch experiments were conducted to study the effects of main parameters, such as dye concentration, electrode surface area, treatment time, and voltage. In this study, central composite face-centered experimental design matrix and response surface methodology were applied to design the experiments and evaluate the interactive effects of the four studied parameters. A total of 30 experimental runs were set, and the kinetic data were analyzed using first- and second-order models. The experimental data fitted to the empirical second-order model of a suitable degree for the maximum decolorization of Azure B by electro-Fenton treatment. ANOVA analysis showed high coefficient of determination value (R(2) = 0.9835) and reasonable second-order regression prediction. Pareto analysis suggests that the variables, time, and voltage produce the largest effect on the decolorization rate. Optimum conditions suggested by the second-order polynomial regression model for attaining maximum decolorization were dye concentration 4.83 mg/L, electrode surface area 15 cm(2), voltage 14.19 V, and treatment time of 34.58 min.

  4. Characterization of pore-expanded amino-functionalized mesoporous silicas directly synthesized with dimethyldecylamine and its application for decolorization of sulphonated azo dyes

    International Nuclear Information System (INIS)

    Yang Hong; Feng Qiyan

    2010-01-01

    With dimethyldecylamine (DMDA) as the expander, a new kind of pore-expanded amino-functionalized mesoporous silicas (PEAFMS) was directly synthesized under mild alkali condition. The characteristics of PEAFMS sample demonstrated that the presence of DMDA markedly augmented the average pore diameter (19.04 nm) and strongly enhanced its decolorization ability. Subsequently, acid mordant dark yellow GG (YGG) and reactive red violet X-2R (RVX) were chosen to assess its adsorption capacity for sulphonated azo dyes. The effect of initial pH was investigated and the decolorization mechanism was illuminated. Three isotherms were conducted and the goodness of fit increased as the following order: Freundlich < Langmuir < Redlich-Peterson. The maximum adsorption capacities of YGG and RVX onto PEAFMS were 1.967 and 0.957 mmol/g, respectively. Adsorption kinetic processes were better predicted by the pseudo-second-order rate equation than the pseudo-first-order one. Adsorption thermodynamic results suggested that the adsorption behavior of both dyes onto PEAFMS was spontaneous with the chemical nature. In addition, the regeneration of PEAFMS was proved to be feasible using NaOH as the strippant. After five cycles, PEAFMS still possessed a favorable adsorption capacity for dyes. It is safely concluded that PEAFMS could be a potential adsorbent for the dye removal from wastewater.

  5. Influence of ɣ and ultrasonic irradiations on the physicochemical properties of CeO2-Fe2O3-Al2O3 for textile dyes removal applications

    Science.gov (United States)

    Ibrahim, Marwa M.; El-Molla, Sahar A.; Ismail, Sahar A.

    2018-04-01

    In this study highly effective adsorbent ternary mixed oxide CeO2-Fe2O3-Al2O3 was prepared by precipitation method. Various methods used to treat the mixed hydroxide like calcination, ultrasonic, hydrothermal and ɣ radiation with different doses to obtain the ternary mixed oxide. XRD, TEM, EDX, FTIR and SBET are used to study the physicochemical properties of nanoparticles. The CFAH and CFAɣ0.8 have the different morphologies and high surface area. Batch adsorption experiments were performed to remove anionic Remazol Red RB-133 dye. The experimental data showed that The CFAH and CFAɣ0.8 have high adsorption rate for removing of dye. The removal of dye is enhanced by ultrasonic radiation and high temperature. The adsorption process was fitted well for pseudo second order kinetics and followed the Freundlich isotherm model. In addition to, Thermodynamic results of adsorption process displayed that, the adsorption of dye on adsorbent was spontaneous, endothermic and chemisorptions process.

  6. Application of non-thermal plasma reactor for degradation and detoxification of high concentrations of dye Reactive Black 5 in water

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2016-01-01

    Full Text Available Degradation and detoxification efficiency of high concentrations of commercially available reactive textile dye Reactive Black 5 solution (40, 80, 200, 500, 1000 mg L-1, were studied. Advanced oxidation processes in water falling film based dielectric barrier discharge as a non-thermal plasma reactor were used. For the first time, this reactor was used for the treatment of high concentrations of organic pollutants such as reactive textile dye Reactive Black 5 in water. Solution of the dye is treated by plasma as thin water solution film that is constantly regenerated. Basically, the reactor works as a continuous flow reactor and the electrical discharge itself takes place at the gas-liquid interphase. The dye solution was recirculated through the reactor with an applied energy density of 0-374 kJ L-1. Decolorization efficiency (% was monitored by UV-VIS spectrophotometric technique. Samples were taken after every recirculation (~ 22 kJ L-1 and decolorization percent was measured after 5 min and 24 h of plasma treatment. The efficiency of degradation (i.e. mineralization and possible degradation products were also tracked by determination of the chemical oxygen demand (COD and by ion chromatography (IC. Initial toxicity and toxicity of solutions after the treatment were studied with Artemia salina test organisms. Efficiency of decolorization decreased with the increase of the dye concentration. Complete decolorization, high mineralization and non-toxicity of the solution (<10 % were acomplished after plasma treatment using energy density of 242 kJ L-1, while the initial concentrations of Reactive Black 5 were 40 and 80 mg L-1. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 171034

  7. Development of new and improved polymer matrix resin systems, phase 1

    Science.gov (United States)

    Hsu, M. S.

    1983-01-01

    Vinystilbazole (vinylstryrylpyridine) and vinylpolystyrulpyridine were prepared for the purpose of modifying bismaleimide composite resins. Cure studies of resins systems were investigated by differential scanning calorimetry. The vinylstyrylpyridine-modified bismaleimide composite resins were found to have lower cure and gel temperatures, and shorter cure times than the corresponding unmodified composite resins. The resin systems were reinforced with commercially avialable satin-weave carbon cloth. Prepregs were fabricated by solvent or hot melt techniques. Thermal stability, flammability, moisture absorption, and mechanical properties of the composites (such as flexural strength, modulus, tensile and short beam shear strength) were determined. Composite laminates showed substantial improvements in both processability and mechanical properties compared to he bismaleimide control systems. The vinylstyrylpyridine modified bismaleimide resins can be used as advanced matrix resins for graphite secondary structures where ease of processing, fireworthiness, and high temperature stability are required for aerospace applications.

  8. Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors

    Directory of Open Access Journals (Sweden)

    Akimasa Tsujimoto

    2018-05-01

    Full Text Available Summary: The application of resin composites in dentistry has become increasingly widespread due to the increased aesthetic demands of patients, improvements in the formulation of resin composites, and the ability of these materials to bond to tooth structures, together with concerns about dental amalgam fillings. As resistance to wear is an important factor in determining the clinical success of resin composite restoratives, this review article defines what constitutes wear and describes the major underlying phenomena involved in this process. Insights are further included on both in vivo and in vitro tests used to determine the wear resistance of resin composite and the relationships between these tests. The discussion focuses on factors that contribute to the wear of resin composite. Finally, future perspectives are included on both clinical and laboratory tests and on the development of resin composite restorations. Keywords: Resin composites, Wear resistance, Wear testing

  9. Contact allergy to epoxy resin

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil

    2012-01-01

    Background. Epoxy resin monomers are strong skin sensitizers that are widely used in industrial sectors. In Denmark, the law stipulates that workers must undergo a course on safe handling of epoxy resins prior to occupational exposure, but the effectiveness of this initiative is largely unknown...... in an educational programme. Conclusion. The 1% prevalence of epoxy resin contact allergy is equivalent to reports from other countries. The high occurrence of epoxy resin exposure at work, and the limited use of protective measures, indicate that reinforcement of the law is required....

  10. Synthesis and electrical characterization of low-temperature thermal-cured epoxy resin/functionalized silica hybrid-thin films for application as gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Moonkyong, E-mail: nmk@keri.re.kr [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); System on Chip Chemical Process Research Center, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 (Korea, Republic of); Kang, Young Taec [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Department of Polymer Science and Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of); Kim, Sang Cheol [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Kim, Eun Dong [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of)

    2013-07-31

    Thermal-cured hybrid materials were synthesized from homogenous hybrid sols of epoxy resins and organoalkoxysilane-functionalized silica. The chemical structures of raw materials and obtained hybrid materials were characterized using Fourier transform infrared spectroscopy. The thermal resistance of the hybrids was enhanced by hybridization. The interaction between epoxy matrix and the silica particles, which caused hydrogen bonding and van der Waals force was strengthened by organoalkoxysilane. The degradation temperature of the hybrids was improved by approximately 30 °C over that of the parent epoxy material. The hybrid materials were formed into uniformly coated thin films of about 50 nm-thick using a spin coater. An optimum mixing ratio was used to form smooth-surfaced hybrid films. The electrical property of the hybrid film was characterized, and the leakage current was found to be well below 10{sup −6} A cm{sup −2}. - Highlights: • Preparation of thermal-curable hybrid materials using epoxy resin and silica. • The thermal stability was enhanced through hybridization. • The insulation property of hybrid film was investigated as gate dielectrics.

  11. Discharge of viscous UV-curable resin droplets by screen printing for UV nanoimprint lithography

    Science.gov (United States)

    Tanabe, Akira; Uehara, Takuya; Nagase, Kazuro; Ikedo, Hiroaki; Hiroshiba, Nobuya; Nakamura, Takahiro; Nakagawa, Masaru

    2016-06-01

    We demonstrated a coating method of screen printing for discharging droplets of a high-viscosity resin on a substrate for ultraviolet (UV) nanoimprint lithography (NIL). Compared with a spin-coated resin film on a silicon substrate, discharged resin droplets on a silicon substrate were effective in terms of the uniformity of residual layer thickness (RLT) in contact with a mold with various pattern densities. Fluorescence microscope observations with a fluorescent-dye-containing UV-curable resin enabled the evaluation of the shapes of resin droplets discharged on a substrate surface. Widely used screen mesh plates composed of a stainless mesh covered with a patterned emulsion film caused defects of undischarged parts, whereas defects-free resin droplets with a narrow size distribution were discharged by mesh-free plates prepared with laser ablation. The pitch-to-diameter ratio in the configuration of 10-µm-diameter holes needs to be larger than 2.5 times for printing a resin having a viscosity of 12,800 mPa s.

  12. Processable polyimide adhesive and matrix composite resin

    Science.gov (United States)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  13. Formation of physical-gel redox electrolytes through self-assembly of discotic liquid crystals: Applications in dye sensitized solar cells

    International Nuclear Information System (INIS)

    Khan, Ammar A.; Kamarudin, Muhammad A.; Qasim, Malik M.; Wilkinson, Timothy D.

    2017-01-01

    The self-assembly of small molecules into ordered structures is of significant interest in electronic applications due to simpler device fabrication and better performance. Here we present work on the development of self-assembled fibrous networks of thermotropic triphenylene discotic liquid crystals, where 2,3,6,7,10,11-Hexakishexyloxytriphenylene (HAT6) is studied. The formation of interconnected molecular fibres in acetonitrile-based solvents facilitates thermally-reversible physical-gel (non-covalent) preparation, with the HAT6 network providing mechanical support and containment of the solvent. Furthermore, gel formation is also achieved using an acetonitrile-based iodide/tri-iodide redox liquid electrolyte, and the resulting gel mixture is utilised as an electrolyte in dye-sensitized solar cells (DSSCs). Our results show that it is indeed possible to achieve in situ gel formation in DSSCs, allowing for easy cell fabrication and electrolyte filling. In addition, the gel phase is found to increase device lifetime by limiting solvent evaporation. Differential scanning calorimetry (DSC) and polarising optical microscopy (POM) are used to study gel formation, and it is identified that the thermally reversible gels are stable up to working temperatures of 40 °C. It is found that DSSCs filled with gel electrolyte exhibit longer electron lifetime in the TiO 2 photo-anode (≈8.4 ms in the liquid electrolyte to ≈11.4 ms in the gel electrolytes), most likely due to electron screening from the electrolyte by HAT6. Current-Voltage (I–V) and electrochemical impedance spectroscopy (EIS) are used to study the effect of gel formation on conductivity and electrochemical properties, and it is found that confinement of the liquid electrolyte into a gel phase does not significantly reduce ionic conductivity, a problem common with solid-state polymer electrolytes. A 3.8 mM HAT6 gel electrolyte DSSC exhibited a PCE of 6.19% vs. a 5.86% liquid electrolyte reference. Extended

  14. Saturated Resin Ectopic Regeneration by Non-Thermal Dielectric Barrier Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chunjing Hao

    2017-11-01

    Full Text Available Textile dyes are some of the most refractory organic compounds in the environment due to their complex and various structure. An integrated resin adsorption/Dielectric Barrier Discharge (DBD plasma regeneration was proposed to treat the indigo carmine solution. It is the first time to report ectopic regeneration of the saturated resins by non-thermal Dielectric Barrier Discharge. The adsorption/desorption efficiency, surface functional groups, structural properties, regeneration efficiency, and the intermediate products between gas and liquid phase before and after treatment were investigated. The results showed that DBD plasma could maintain the efficient adsorption performance of resins while degrading the indigo carmine adsorbed by resins. The degradation rate of indigo carmine reached 88% and the regeneration efficiency (RE can be maintained above 85% after multi-successive regeneration cycles. The indigo carmine contaminants were decomposed by a variety of reactive radicals leading to fracture of exocyclic C=C bond, which could cause decoloration of dye solution. Based on above results, a possible degradation pathway for the indigo carmine by resin adsorption/DBD plasma treatment was proposed.

  15. Quirks of dye nomenclature. 6. Malachite green.

    Science.gov (United States)

    Cooksey, C J

    2016-08-01

    Malachite green was discovered independently by two researchers in Germany in the 19(th) century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.

  16. ANALYSIS OF VENTING OF A RESIN SLURRY

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  17. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  18. Resin regenerating device in condensate desalting system

    International Nuclear Information System (INIS)

    Sato, Yoshiaki; Igarashi, Hiroo; Oosumi, Katsumi; Nishimura, Yusaku; Ebara, Katsuya; Shindo, Norikazu.

    1984-01-01

    Purpose: To improve the accuracy in the separation of anionic and cationic exchange resins. Constitution: Resins transferred from a condensate desalting column are charged in a cationic exchange resin column. The temperature of water for separating and transferring the resins is measured by a temperature detector disposed in a purified water injection line, and water is adjusted to a suitable flow rate for the separation and transfer of the resins by an automatic flow rate control valve, and then is injected. The resins are separated into cationic exchange resins and anionic exchange resins, in which only the anionic exchange resins are transferred, through an anionic exchange transfer line, into an anionic exchange resin column. By controlling the flow rate depending on the temperature of the injected water, the developing rate of the resin layer is made constant to enable separation and transfer of the resins at high accuracy. (Seki, T.)

  19. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  20. Scaling up manufacturing of ZnO thin layers for application in flexible dye-sensitized solar cells; Aufskalierung der Herstellung von ZnO-Duennschichten fuer die Anwendung in flexiblen farbstoffsensibilisierten Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Florian

    2012-10-19

    Flexible solar cells possess good future prospects for versatile mobile applications and can provide an important environmental benefit. One of the technologies permitting flexible solar cells is that of dye-sensitized solar cells. Among other advantages the fabrication of these organic-inorganic hybrid solar cells promises to be inexpensive in comparison to other technologies. Nanoparticular TiO{sub 2} is used predominantly as the semiconducting photoanode material; however its preparation route contains a tempering step at about 450 C, which impedes the use of flexible plastic substrates - at least with the method established for dye-sensitized solar cells. An alternative to TiO{sub 2} is ZnO, which can be fabricated for example in an electrochemical process at temperatures of only 70 C in the form of porous quasicrystalline layers. To create porosity the dye eosin Y is used as structure-directing agent. In the context of this study layers prepared by this method were compared to ZnO layers prepared by screen printing. This was performed on glass based substrates. Better conversion efficiency has been determined for dye-sensitized solar cells based on electrochemical deposited layers, while other results indicated advantages for the screen printed layers. As the morphologies of the available screen printed layers proved to be unfavourable and poorly comparable, a concluding statement on the suitability of the different types of layers was eventually not possible. Furthermore a technical simple and inexpensive method for the platinum coating of plastic substrates, which are used as counter electrodes, was tried to be determined. However, layers prepared by technically relatively complex sputtering exhibited by far better properties than layers prepared by electrochemical deposition or by chemical reduction of platinum salts. Thus, the targeted objective has not been reached. The central scope of this study was the development of an electrochemical deposition setup

  1. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  2. Resonance Raman and UV-visible spectroscopy of black dyes on textiles.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Smith, John R Lindsay; Moore, John N

    2010-10-10

    Resonance Raman and UV-visible diffuse reflectance spectra were recorded from samples of cotton, viscose, polyester, nylon, and acrylic textile swatches dyed black with one of seven single dyes, a mixture of two dyes, or one of seven mixtures of three dyes. The samples generally gave characteristic Raman spectra of the dyes, demonstrating that the technique is applicable for the forensic analysis of dyed black textiles. Survey studies of the widely used dye Reactive Black 5 show that essentially the same Raman spectrum is obtained on bulk sampling from the dye in solution, on viscose, on cotton at different uptakes, and on microscope sampling from the dye in cotton threads and single fibres. The effects of laser irradiation on the Raman bands and emission backgrounds from textile samples with and without dye are also reported. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  4. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  5. Local Delivery of Fluorescent Dye For Fiber-Optics Confocal Microscopy of the Living Heart

    Directory of Open Access Journals (Sweden)

    Chao eHuang

    2014-09-01

    Full Text Available Fiber-optics confocal microscopy (FCM is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release versus foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  6. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  7. Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Guo Wei; Shen Yihua; Boschloo, Gerrit; Hagfeldt, Anders; Ma Tingli

    2011-01-01

    Highlights: → Three different types of nanocrystalline N-doped TiO 2 synthesized by several nitrogen dopants. → N-doped DSCs achieves a high conversion efficiency of 8.32%. → Ammonia acts as good nitrogen dopants. → Enhanced photocurrent of ca. 36% in N-doped DSCs. → Less charge are needed to get a high open-circuit voltage in N-doped films. - Abstract: Three different types of nanocrystalline, N-doped TiO 2 electrodes were synthesized using several nitrogen dopants through wet methods. The obtained nanocrystalline, N-doped TiO 2 electrodes possessed different crystallite sizes, surface areas, and N-doping amounts. Characterizations were performed to reveal the nitrogen-doping processes for the wet methods using ammonia, urea, and triethylamine as the nitrogen dopants. Additionally, a high conversion efficiency of 8.32% was achieved by the dye-sensitized solar cells, based on the N-doped TiO 2 electrodes. For instance, in comparison with the commercial P25 (5.76%) and pure anatase TiO 2 electrodes (7.14%), significant improvements (44% and 17%, respectively) in the efficiencies were obtained. The findings also indicated that the ammonia nitrogen dopant was more efficient than other two nitrogen dopants. The electron transports, electron lifetimes, and charge recombination in the dye-sensitized N-doped TiO 2 solar cells also differed from those in the pure TiO 2 -based dye-sensitized solar cells (DSCs). Specifically, an enhanced photocurrent of ca. 36% in N-doped DSCs resulted from the synergistic effects of the high dye uptake and the efficient electron transport. Moreover, the relationship between charge and voltage revealed that less charge was needed to get a high open-circuit voltage in the N-doping films.

  8. Microwave assisted biosynthesis of rice shaped ZnO nanoparticles using Amorphophallus konjac tuber extract and its application in dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Naresh Kumar P.

    2017-02-01

    Full Text Available Rice shaped ZnO nanoparticles have been synthesized for the first time by a biological process using Amorphophallus konjac tuber extract and used as a photoanode in a dye sensitized solar cell. The glucomannan present in aqueous tuber extract acted as a reducing agent in the synthesis process, further it also acted as a template which modified and controlled the shape of the nanoparticles. The synthesized nanoparticles were dried by microwave irradiation followed by annealing at 400 °C. The FESEM and TEM images confirmed that the synthesized ZnO nanoparticles had rice shaped morphology. Furthermore, the X-ray diffraction studies revealed that the prepared ZnO nanoparticles exhibited wurtzite phase with average particle size of 17.9 nm. The UV-Vis spectroscopy studies confirmed the value of band gap energy of biosynthesized ZnO nanoparticles as 3.11 eV. The photoelectrodes for dye sensitized solar cells were prepared with the biosynthesized ZnO nanoparticles using doctor blade method. The photoelectrode was sensitized using the fruit extract of Terminalia catappa, flower extracts of Callistemon citrinus and leaf extracts of Euphorbia pulcherrima. The dye sensitized solar cells were fabricated using the sensitized photoelectrode and their open circuit voltages and short circuit current densities were found to be in the range of 0.45 V to 0.55 V and 5.6 mA/cm2 to 6.8 mA/cm2, respectively. Thus, the photovoltaic performances of all the natural dye sensitized ZnO solar cells show better conversion efficiencies due to the morphology and preparation technique.

  9. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  10. Fluorescent nanohybrids based on asymmetrical cyanine dyes decorated carbon nanotubes

    OpenAIRE

    Çavuşlar, Özge; Cavuslar, Ozge

    2015-01-01

    In this thesis, we focused on imparting new optical properties to carbon nanotubes (CNTs) to allow their optical detection and visualization in biomedical applications. We investigated the interactions of CNTs and DNA wrapped CNTs with asymmetrical cyanine dye molecules to study the applicability of resulting hybrid materials to fluorescent based systems. When CNTs interacted with asymmetrical cyanine dyes, they constructed a light absorbing nanoarray. However, the fluorescence emission of th...

  11. Modeling the Residual Stresses in Reactive Resins-Based Materials: a Case Study of Photo-Sensitive Composites for Dental Applications

    International Nuclear Information System (INIS)

    Grassia, Luigi; D'Amore, Alberto

    2010-01-01

    Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactive systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.

  12. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  13. Chemoviscosity modeling for thermosetting resins

    Science.gov (United States)

    Tiwari, S. N.; Hou, T. H.; Bai, J. M.

    1985-01-01

    A chemoviscosity model, which describes viscosity rise profiles accurately under various cure cycles, and correlates viscosity data to the changes of physical properties associated with structural transformations of the thermosetting resin system during cure, was established. Work completed on chemoviscosity modeling for thermosetting resins is reported.

  14. Cure shrinkage in casting resins

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J. Brock [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  15. Phase separated thermotropic layers based on UV cured acrylate resins. Effect of material formulation on overheating protection properties and application in a solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Katharina [Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben (Austria); Wallner, Gernot M. [Institute of Materials Science and Testing of Plastics, University of Leoben, Franz-Josef Strasse 18, 8700 Leoben (Austria); Hausner, Robert [AEE - Institut fuer Nachhaltige Technologien (AEE-INTEC), Feldgasse 19, 8200 Gleisdorf (Austria)

    2009-09-15

    This paper focuses on the effect of material composition on the overheating protection properties of thermotropic systems with fixed domains for solar thermal collectors. Numerous functional layers were prepared by a variation of base resin (polyester-, epoxy- or urethane-acrylate) and of thermotropic additives (non-polar and polar waxes) as well as by additive concentration (5 and 7 wt%). A detailed investigation of optical properties, switching temperature and switching process was performed applying UV/Vis/NIR spectroscopy. Thermal transitions of both the thermotropic layers and the additives used were determined by Differential Scanning Calorimetry (DSC). The capability of the produced thermotropic layers to reduce stagnation temperatures in an all-polymeric flat plate collector was evaluated by theoretical modeling. The thermotropic layers showed a hemispheric solar transmittance between 76% and 87% in clear state. Above the switching threshold this transmittance changed by 1-16% to values between 62% and 85%. The layers exhibited switching temperatures between 33 and 80 C. The transition is fully completed within a temperature frame of 10-25 C. Resin types with higher glass transition temperatures were detected to benefit the reduction of the hemispheric solar transmittance above the switching threshold. This reduction was also found to increase with increasing molecular weight of the non-polar additive types. The comparison of the switching performance with the thermal transitions of the additives revealed a good correlation. Theoretical modeling showed that by the use of selected thermotropic layers in the glazing the maximum absorber temperatures can be limited to temperatures below 130 C. (author)

  16. Comparison of the shear bond strength of self-adhesive resin cements to enamel and dentin with different protocol of application.

    Science.gov (United States)

    Moghaddas, Mohammad Javad; Hossainipour, Zahra; Majidinia, Sara; Ojrati, Najmeh

    2017-08-01

    The aim of the present study was to determine the shear bond strength of self-adhesive resin cements to enamel and dentin with and without surface treatments, and compare them with conventional resin cement as the control group. In this experimental study, buccal and lingual surface of the thirty sound human premolars were polished in order to obtain a flat surface of enamel (E) in buccal, and dentin (D) in lingual. Sixty feldspathic ceramic blocks (2×3×3 mm) were prepared and randomly divided into six groups (n=10). Each block was cemented to the prepared surface (30 enamel and 30 dentin surface) according to different protocol: E1 and D1; RelyX ARC as control group, E2, D2; RelyX Unicem, E3, D3; acid etching +RelyX Unicem. The specimens were termocycled and subjected to shear forces by a universal testing machine at a cross head speed of 0.5 mm/min. The mode of fracture were evaluated by stereomicroscope. Data were analyzed with descriptive statistical methods using SPSS version 15. One-way ANOVA, and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at α=0.05. Statistical analysis showed no significant differences within the enamel subgroups, but there were significant differences within the dentinal subgroups, and statistically significant differences were found between the groups D1and D3 (p=0.02). Comparison between similar enamel and dentinal subgroups showed that there was a significant difference just between the subgroups E3 and D3 (p=0.01). Elective etching of enamel did not lead to significant increase in the shear bond strength of RelyX Unicem in comparison to RelyX ARC. On the other hand, elective etching of dentin reduces the bond strength of RelyX Unicem with the dentin.

  17. Surface modification of porous nanocrystalline TiO2 films for dye-sensitized solar cell application by various gas plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Yoon, Chang-Ho; Kim, Kang-Jin; Lee, Yeonhee

    2007-01-01

    Titanium dioxide (TiO 2 ) film for dye-sensitized solar cells (DSSCs) has surface defects such as oxygen vacancies created during the annealing process. The authors used a plasma treatment technique to reduce defects on TiO 2 surfaces. They investigated the influence of different gas plasma treatments of TiO 2 film on the photoelectric performance of DSSC. Short-circuit photocurrent density (J sc ), open-circuit photovoltage (V oc ), and the amount of adsorbed dye for DSSCs were measured. As a result, the solar-to-electricity conversion efficiencies of the O 2 - and N 2 -treated cells increased by 15%-20% compared to untreated cells. On the other hand, solar energy conversion efficiency of CF 4 -plasma treated cells decreased drastically. The increased amount of adsorbed dye on the TiO 2 film was measured by time-of-flight secondary ion mass spectrometry. TiO 2 surfaces modified by plasma treatment were characterized using analytical instruments such as x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure

  18. Synthesis, characterisation of polyaniline-Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye

    Science.gov (United States)

    Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.

    2016-04-01

    The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.

  19. Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Saelim, Ni-on; Magaraphan, Rathanawan; Sreethawong, Thammanoon

    2011-01-01

    Highlights: → Natural dye from red cabbage was successfully employed in DSSC. → A fast sol-gel method to produce TiO 2 /clay thin film was proposed. → The sol-gel-prepared TiO 2 /clay was applied as the scattering layer on top of TiO 2 electrode. → Thicker sol-gel-prepared TiO 2 /clay electrode showed higher DSSC efficiency. - Abstract: The sol-gel TiO 2 /purified natural clay electrodes having Ti:Si molar ratios of 95:5 and 90:10 were initially prepared, sensitized with natural red cabbage dye, and compared to the sol-gel TiO 2 electrode in terms of physicochemical characteristics and solar cell efficiency. The results showed that the increase in purified Na-bentonite content greatly increased the specific surface area and total pore volume of the prepared sol-gel TiO 2 /purified Na-bentonite composites because the clay platelets prevented TiO 2 particle agglomeration. The sol-gel TiO 2 /5 mol% Si purified Na-bentonite and sol-gel TiO 2 /10 mol% Si purified Na-bentonite composites could increase the film thickness of solar cells without cracking when they were coated as a scattering layer on the TiO 2 semiconductor-based film, leading to increasing the efficiency of the natural dye-sensitized solar cells in this work.

  20. A novel adsorbent obtained by inserting carbon nanotubes into cavities of diatomite and applications for organic dye elimination from contaminated water.

    Science.gov (United States)

    Yu, Hongwen; Fugetsu, Bunshi

    2010-05-15

    A novel approach is described for establishing adsorbents for elimination of water-soluble organic dyes by using multi-walled carbon nanotubes (MWCNTs) as the adsorptive sites. Agglomerates of MWCNTs were dispersed into individual tubes (dispersed-MWCNTs) using sodium n-dodecyl itaconate mixed with 3-(N,N-dimethylmyristylammonio)-propanesulfonate as the dispersants. The resultant dispersed-MWCNTs were inserted into cavities of diatomite to form composites of diatomite/MWCNTs. These composites were finally immobilized onto the cell walls of flexible polyurethane foams (PUF) through an in situ PUF formation process to produce the foam-like CNT-based adsorbent. Ethidium bromide, acridine orange, methylene blue, eosin B, and eosin Y were chosen to represent typical water-soluble organic dyes for studying the adsorptive capabilities of the foam-like CNT-based adsorbent. For comparisons, adsorptive experiments were also carried out by using agglomerates of the sole MWCNTs as adsorbents. The foam-like CNT-based adsorbents were found to have higher adsorptive capacities than the CNT agglomerates for all five dyes; in addition, they are macro-sized, durable, flexible, hydrophilic and easy to use. Adsorption isotherms plotted based on the Langmuir equation gave linear results, suggesting that the foam-like CNT-based adsorbent functioned in the Langmuir adsorption manner. The foam-like CNT-based adsorbents are reusable after regeneration with aqueous ethanol solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. The result of synthesis analysis of the powder TiO{sub 2}/ZnO as a layer of electrodes for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Retnaningsih, Lilis, E-mail: lilisretna@gmail.com; Muliani, Lia [Research Center for Electronics and Telecommunications Indonesian Institute of Sciences (PPET-LIPI) Kampus LIPI, Jl. Sangkuriang, Bandung 40135 (Indonesia)

    2016-04-19

    This study has been conducted synthesis of TiO{sub 2} nanoparticle powders and ZnO nanoparticle powder into a paste to be in this research, dye-sensitive solar cells (DSSC) was produced by TiO{sub 2} nanopowder and ZnO nanopowder synthesis to make paste that is applied as electrode. This electrode works based on photon absorbed by dye and transferred to different composition of TiO{sub 2}/ ZnO particle. Properties of DSSC are affected by fabrication method, parameter and dimension of TiO{sub 2} / ZnO nanoparticles, technique and composition of TiO{sub 2} / ZnO paste preparation is important to get the higher performance of DSSC. Doctor blade is a method for electrode coating on glass substrate. The electrode was immersed into dye solution of Z907 and ethanol. From the experiment, the effect of TiO{sub 2} and ZnO nanopowder mixture for electrode was investigated. XRD characterization show anatase and rutile phase, which sintered TiO{sub 2}/ZnO has intensity more than 11,000. SEM characterization shows the composition of 20% TiO{sub 2} / 80% ZnO has better porosity. Higher efficiency that is investigated by I-V measurement using Sun Simulator.

  2. Fabrication of a large-area, flexible micro-pyramid PET film SERS substrate and its application in the detection of dye in herbal tea

    Science.gov (United States)

    Liu, Xi; Huang, Meizhen; Chen, Jie; Kong, Lili; Wang, Keihui

    2018-05-01

    A simple method, based on a roll-to-roll ultraviolet micro-pyramid imprinting technique and a nanoparticle self-assembling process in aqueous solution, to fabricate a large-area, flexible surface-enhanced Raman scattering (SERS) polyethylene glycol terephthalate substrate is proposed. The SERS substrate is demonstrated to be of high sensitivity. The detection concentration of Rhodamine 6G (R6G) measured by a portable Raman spectrometer is down to 10-9 mol l-1. The relative standard deviation values of different spots and different substrates are less than 13%. In addition, the feasibility for rapid detection of dye in herbal tea based on this SERS substrate and a portable Raman spectrometer is investigated. Three industrial dyes are employed to simulate the dyeing process. It is presented that R6G of 4.8× {{10}-7} g ml-1, malachite green of 10-6 g ml-1 and Auramine O of 10-6 g ml-1 in herbal tea could be detected rapidly. The experimental results imply that this method could be potentially applied in the field of dyed herbal tea detection.

  3. The effect of surface sealants with different filler content on microleakage of Class V resin composite restorations.

    Science.gov (United States)

    Hepdeniz, Ozge Kam; Temel, Ugur Burak; Ugurlu, Muhittin; Koskan, Ozgur

    2016-01-01

    Microleakage is still one of the most cited reasons for failure of resin composite restorations. Alternative methods to prevent microleakage have been investigated increasingly. The aim of this study is to evaluate the microleakage in Class V resin composite restorations with or without application of surface sealants with different filler content. Ninety-six cavities were prepared on the buccal and lingual surfaces with the coronal margins located in enamel and the cervical margins located in dentin. The cavities restored with an adhesive system (Clearfil SE Bond, Kuraray, Tokyo, Japan) and resin composite (Clearfil Majesty ES-2, Kuraray, Tokyo, Japan). Teeth were stored in distilled water for 24 h and separated into four groups according to the surface sealants (Control, Fortify, Fortify Plus, and G-Coat Plus). The teeth were thermocycled (500 cycles, 5-55° C), immersed in basic fuchsine, sectioned, and analyzed for dye penetration using stereomicroscope. The data were submitted to statistical analysis by Kruskal-Wallis and Bonferroni-Dunn test. The results of the study indicated that there was minimum leakage at the enamel margins of all groups. Bonferroni-Dunn tests revealed that Fortify and GC-Coat groups showed significantly less leakage than the Control group and the Fortify Plus group at dentin margins in lingual surfaces (P < 0.05). The all surface sealants used in this study eliminated microleakage at enamel margins. Moreover, unfilled or nanofilled surface sealants were the most effective in decreasing the degree of marginal microleakage at dentin margins. However, viscosity and penetrability of the sealants could be considered for sealing ability besides composition.

  4. Chelating ion exchange with macroreticular hydroxamic acid resins

    International Nuclear Information System (INIS)

    Phillips, R.J.

    1980-01-01

    The synthesis, reactions, and analytical applications of hydroxamic acids, including chelating resins with this functional group, are reviewed. A procedure for attaching N-phenyl hydroxamic acid groups to Amberlite XAD-4 is described. The extraction of 20 metal ions from 2 M hydrochloric acid by this resin is discussed. Conditions for the quantitative extraction and back-extraction of 9 ions are reported. Results are compared with work on solvent extraction with N-phenylbenzohydroxamic acid. Procedures for attaching N-methyl and N-unsubstituted hydroxamic acid groups to Amberlite XAD-4 are described. The N-phenyl, N-methyl, and N-unsubstituted hydroxamic acid resins are compared with respect to metal-ion complexation. The scope of applications for hydroxamic acid resins is investigated by studying the extraction of 19 metal ions as a function of pH. The resins are especially suitable for the extraction of zirconium(IV), titanium(IV), and uranium(IV) from strongly acidic solution. Aluminum(III) is separated from calcium and phosphate by extraction at pH 4. The use of the resins for the purification of reagents, concentration of trace constituents, and chromatographic separation is demonstrated

  5. OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION

    Directory of Open Access Journals (Sweden)

    MIRALLES Verónica

    2017-05-01

    Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.

  6. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    Science.gov (United States)

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  7. Intermolecular energy transfer in binary systems of dye polymers

    Science.gov (United States)

    Liu, Lin-I.; Barashkov, Nikolay N.; Palsule, Chintamani P.; Gangopadhyay, Shubhra; Borst, Walter L.

    2000-10-01

    We present results and physical interpretations for the energy transfer mechanisms in two-component dye polymer systems. The data consist of fluorescence emission spectra and decays. Two dyes were embedded in an epoxypolymer base, and only they participated in the energy transfer. Following pulsed laser excitation of the donor dye, energy transfer took place to the accept dye. The possible transfer paths considered here were nonradiative and radiative transfer. The latter involves two steps, emission and absorption of a photon, and therefore is relatively slow, while nonradiative transfer is a fast single step resulting from direct Coulomb interactions. A predominantly nonradiative transfer is desirable for applications, for instance in wavelength shifters in high energy particle detection. We studied the concentration effects of the dyes on the energy transfer and obtained the relative quantum efficiencies of various wavelength shifters from the fluorescence emission spectra. For low acceptor concentrations, radiative transfer was found to dominate, while nonradiative transfer became dominant at increasing dye concentrations. The fluorescence decays were analyzed with a sum-of-exponentials method and with Förster kinetics. The sum of exponential model yielded mean decay times of the dye polymers useful for a general classification. The decay times decreased as desired with increasing acceptor concentration. The samples, in which nonradiative energy transfer dominated, were analyzed with Förster kinetics. As a result, the natural decay times of the donor and acceptor dyes and the critical radii for nonradiative energy transfer were obtained from a global best fit.

  8. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  9. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  10. (MTT) dye reduction assay.

    African Journals Online (AJOL)

    to inhibit proliferation of HeLa cells was determined using the 3443- dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) dye reduction assay. Extracts from roots of Agathisanthemum bojeri, Synaptolepis kirkii and Zanha africana and the leaf extract of Physalis peruviana at a concentration of 10 pg/ml inhibited cell ...

  11. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  12. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye

    International Nuclear Information System (INIS)

    Solano, Aline Maria Sales; Martínez-Huitle, Carlos Alberto; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif

    2016-01-01

    Highlights: • Degradation of Reactive Blue 15 solution at pH 3.0 by electrochemical oxidation, electro-Fenton and photoelectro-Fenton. • Hard destruction of the dye and its products by BDD(·OH) and much more rapidly by ·OH. • 94% mineralization by the most powerful photoelectro-Fenton at 66.7 mA cm"−"2, with acetic acid accumulation. • 25 aromatics and heteroaromatics, 30 hydroxylated derivatives and 4 carboxylic acids as products. • Release of Cl"−, SO_4"2"− and pre-eminently NO_3"− during dye mineralization. - Abstract: The degradation of the copper-phthalocyanine dye Reactive Blue 15 dye in sulfate medium has been comparatively studied by electrochemical oxidation with electrogenerated H_2O_2 (EO-H_2O_2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments with 100 cm"3 solutions of 0.203 mmol dm"−"3 dye were performed with a stirred tank reactor containing a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H_2O_2 production. Experimental conditions of pH 3.0 and 0.50 mmol dm"−"3 Fe"2"+ as catalyst were found optimal for the EF process by the predominant oxidation with hydroxyl radicals formed in the bulk from Fenton’s reaction between added Fe"2"+ and generated H_2O_2. The kinetics of Reactive Blue 15 abatement was followed by reversed-phase HPLC and always obeyed a pseudo-first-order reaction. The decolorization rate in EO-H_2O_2 was much lower than dye decay due to the formation of large quantities of colored intermediates under the action of hydroxyl radicals generated at the BDD anode from water oxidation. In contrast, the color and dye removals were much more rapid in EF and PEF by the most efficient oxidation of hydroxyl radicals produced from Fenton’s reaction. PEF was the most powerful treatment owing to the photolytic action of UVA irradiation, yielding 94% mineralization after 360 min at 66.7 mA cm"−"2. The effect of current density over the performance of all methods was examined. LC