WorldWideScience

Sample records for dye resin application

  1. Removal of dyes from water using crosslinked aminomethane sulfonic acid based resin.

    Science.gov (United States)

    Kaner, Damla; Saraç, Ayfer; Senkal, Bahire Filiz

    2010-08-01

    A new polymeric resin with amino sulfonic acid pendant functions has been prepared for the extraction of acidic and basic dyes from water. Beaded polymer supports were prepared by suspension polymerization of vinyl benzyl chloride (0.9 mol) and ethylene glycol dimethacrylate (0.1 mol). The resulting copolymer beads were modified with amino methane sulfonic acid. The dye adsorption capacity of the resin was found as 0.16 g dye/g resin for ramazol black and 0.15 g dye/g resin for crystal violet. The pH depending measurements and dye sorption kinetics of the resin were also investigated.

  2. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    M. Ghaemy

    2014-03-01

    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  3. 21 CFR 872.3140 - Resin applicator.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3140 Resin applicator. (a) Identification. A resin applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  4. Synthesis, Characterization and Thermal Analysis of Resins from Different Cardanol Based Dyes

    Directory of Open Access Journals (Sweden)

    Tapan K. Das

    2014-06-01

    Full Text Available Cardanol(Cashew phenol is subjected to diazotisation with Aniline and m-Toluidine to get monomers like Cardanol based dye from Aniline (CBDFA and Cardanol based dye from m-Toludine (CBDFT. Such monomers have been condensed with formaldehyde in presence of acid catalyst to form resins. The resins have been characterized by FTIR spectra and their thermal behaviour have been studied.

  5. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  6. Photobleaching effect in azo-dye containing epoxy resin films: the potentiality of carbon nanotubes as azo-dye dispensers

    Science.gov (United States)

    Díaz Costanzo, Guadalupe; Goyanes, Silvia; Ledesma, Silvia

    2015-04-01

    Azo-dye molecules may suffer from bleaching under certain illumination conditions. When this photoinduced process occurs, it generates an irreversible effect that is characterized by the loss of absorption of the dye molecule. Moreover, the well-known isomerization of azodye molecules does not occur anymore. In this work it is shown how the addition of a small amount of multi-walled carbon nanotubes (MWCNTs) helps to decrease the bleaching effect in a photosensitive guest-host azo-polymer film. Two different systems were fabricated using an epoxy resin as polymer matrix. An azo-dye, Disperse Orange 3, was used as photosensitive material in both systems and MWCNTs were added into one of them. The optical response of the polymeric systems was studied considering the degree of photoinduced birefringence. Photobleaching of the azo-dye was observed in all cases however, the effect is lower for the composite material containing 0.2 wt % MWCNTs. The weak interaction between MWCNTs and dye molecules is less favorable when the material is heated. The optical behavior of the heated composite material suggests that carbon nanotubes can be potentially used as azo dye dispensers. The results are interpreted in terms of the non-covalent interaction between azo-dye molecules and MWCNTs.

  7. The adsorption of basic dyes from aqueous solution on modified peat-resin particle.

    Science.gov (United States)

    Sun, Qingye; Yang, Linzhang

    2003-04-01

    Modified peat was prepared by mixing thoroughly raw peat with sulfuric acid, and modified peat-resin particle was obtained, by mixing modified peat with solutions of polyvinylalcohol (PVA) and formaldehyde. In this paper, the adsorption of Basic Magenta and Basic Brilliant Green onto modified peat-resin particle is examined. The adsorption isotherm showed that the adsorption of basic dyes on modified peat-resin particle deviated from the Langmuir and Freundlich equations. The pseudo-first order, pseudo-second order and intraparticle diffusion models were used to fit the experimental data. By comparing the standard deviation, it was found that the intraparticle diffusion model could be used to well describe the adsorption of two basic dyes on modified peat-resin particle. According to the change of intraparticle diffusion parameter, the adsorption processes could be divided into different stages. The kinetics experiment also indicated that initial dye concentrations, particle dose and particle size could affect the adsorption processes of basic dyes. Copyright 2002 Elsevier Science Ltd.

  8. Dye Application, Manufacture of Dye Intermediates and Dyes

    Science.gov (United States)

    Freeman, H. S.; Mock, G. N.

    It is difficult if not impossible to determine when mankind first systematically applied color to a textile substrate. The first colored fabrics were probably nonwoven felts painted in imitation of animal skins. The first dyeings were probably actually little more than stains from the juice of berries. Ancient Greek writers described painted fabrics worn by the tribes of Asia Minor. But just where did the ancient craft have its origins? Was there one original birthplace or were there a number of simultaneous beginnings around the world?

  9. Selective degradation of organic dyes by a resin modified Fe-based metal-organic framework under visible light irradiation

    Science.gov (United States)

    Araya, Tirusew; Chen, Chun-cheng; Jia, Man-ke; Johnson, David; Li, Ruiping; Huang, Ying-ping

    2017-02-01

    Metal organic frameworks (MOFs), a new class of porous crystalline materials have attracted attention because of potential applications in environmental remediation. In this work, an Fe-based MOF, FeBTC (BTC = 1,3,5-tricarboxylic acid), was successfully modified with Amberlite IRA-200 resin to yield a novel heterogeneous photocatalyst, A@FeBTC. The modification resulted in higher photocatalytic activity than FeBTC under the same conditions. After 60 min of visible light illumination (λ ≥ 420 nm) 99% of rhodamine B was degraded. The modification lowers the zeta potential, enhancing charge-based selective adsorption and subsequent photocatalytic degradation of cationic dye pollutants. The composite also improved catalyst stability and recyclability by significantly reducing loss of iron leaching. Photoluminescence studies show that introduction of the resin reduces the recombination rate of photogenerated charge carriers thereby improving the photocatalytic activity of the composite. Finally, a plausible photocatalytic reaction mechanism is proposed.

  10. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  11. Indirect composite resin materials for posterior applications.

    Science.gov (United States)

    Shellard, E; Duke, E S

    1999-12-01

    Indirect composite resin restorations were introduced a number of years ago as possible alternatives to traditional metallic or ceramic-based indirect restorations. However, the earlier formulations did not provide evidence of improvement in mechanical and physical properties over chairside-placed direct composite resin materials. Because they required more tooth structure removal than direct restorations, their use became unpopular and was abandoned by most clinicians. Over the past few years, a new class of composite resin indirect materials has surfaced in the profession. Various technologies have been suggested as reinforcement mechanisms. Fibers, matrix modifications, and an assortment of innovations have been proposed for enhancing indirect composite resin restorations. Applications are from inlay restorations all the way to multi-unit fixed prostheses. This manuscript summarizes some of the progress made in this area. When available, data is presented to provide clinicians with guidelines and indications for the use of these materials.

  12. Pharmaceutical Applications of Ion-Exchange Resins

    Science.gov (United States)

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  13. Rapid decolorization of water soluble azo-dyes by nanosized zero-valent iron immobilized on the exchange resin

    Institute of Scientific and Technical Information of China (English)

    ZHAO ZongShan; LIU JingFu; TAI Chao; ZHOU QunFang; HU JingTian; JIANG GuiBin

    2008-01-01

    Nanosized zero-valent iron (NZVI) supported on the cation exchange resin was synthesized and applied to decompose some water soluble azo dyes.The decomposition efficiency for azo dyes was evaluated by using the aqueous suspensions and parked column of this material.Batch experiments indicated that this novel material exhibited excellent degradation ability for 0,05 g·L-1 of Acid Orange 7, Acid Orange 8, Acid Orange 10, Sunset Yellow, and Methyl Orange, with decolorization ratio up to 95% in 4 min; pH value was the key factor for degradation and H+ was one of the reactants; adsorption of azo dyes onto the material existed at the beginning but reduced gradually until disappearing completely.For the packed column system, 58%~90% of azo dyes were decomposed in the 1st circle of solution passing through the column, and the adsorption onto the materials could accelerate the degradation azo dyes with the increasing reaction time.During the degradation process, Fe2+, the product of NZVI, was exchanged to the resin again and could be reduced to Fe0 by KBH4 for reusing.The 10th refreshed NZVI possessed reductive activity up to 90% of the newly systhesized NZVI.Decomposing pollutants in the aqueous solution with columns packed with NZVI immobilized on the cation exchange resin is a promising technology that can solve the reclaiming and refreshing problem of NZVI.

  14. Rapid decolorization of water soluble azo-dyes by nanosized zero-valent iron immobilized on the exchange resin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanosized zero-valent iron (NZVI) supported on the cation exchange resin was synthesized and applied to decompose some water soluble azo dyes. The decomposition efficiency for azo dyes was evaluated by using the aqueous suspensions and parked column of this material. Batch experiments indicated that this novel material exhibited excellent degradation ability for 0.05 g·L1 of Acid Orange 7, Acid Orange 8, Acid Orange 10, Sunset Yellow, and Methyl Orange, with decolorization ratio up to 95% in 4 min; pH value was the key factor for degradation and H+ was one of the reactants; adsorption of azo dyes onto the material existed at the beginning but reduced gradually until disappearing completely. For the packed column system, 58%~90% of azo dyes were decomposed in the 1st circle of solution passing through the column, and the adsorption onto the materials could accelerate the degradation azo dyes with the increasing reaction time. During the degradation process, Fe2+, the product of NZVI, was exchanged to the resin again and could be reduced to Fe0 by KBH4 for reusing. The 10th refreshed NZVI possessed reductive activity up to 90% of the newly systhesized NZVI. Decomposing pollutants in the aqueous solution with columns packed with NZVI immobilized on the cation exchange resin is a promising technology that can solve the reclaiming and refreshing problem of NZVI.

  15. Functional Dyes, and Some Hi-Tech Applications

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2009-01-01

    Full Text Available An overview of the recent developments in functional dyes, which are useful for hi-tech applications for those based on optoelectronics, such as dye sensitized solar cells, photochromic dyes and biomedical applications, such as photodynamic therapy for the treatment of cancer and fluorescent sensors is presented.

  16. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Science.gov (United States)

    2010-07-01

    ... thermosetting resins subcategory. 414.50 Section 414.50 Protection of Environment ENVIRONMENTAL PROTECTION... Thermosetting Resins § 414.50 Applicability; description of the thermosetting resins subcategory. The provisions... the products classified under SIC 28214 thermosetting resins including those resins and resin...

  17. Degradation of Textile Dyes Ponceau-S and Sudan IV Using Recently Developed Photocatalyst, Immobilized Resin Dowex-11

    Directory of Open Access Journals (Sweden)

    R. C. Meena

    2009-01-01

    Full Text Available Problem statement: In present study, we selected a model dyes Ponceau S and Sudan IV, to test a recently developed photo catalyst methylene blue immobilized resin dowex-11. Approach: This is a light-activated process that has been successfully applied to remove organic and inorganic dyes of textile industries. Results: The reactor, made of glass slides (tubes coated with a thin-film of methylene blue immobilized resin dowex-11 with the help of a suitable and non-reactive adhesive. Dye solution was continues recycles from reactor for 3 h in a recirculation mode under various conditions (with/without catalyst, with/without light radiation, variation in catalyst amount, dyes concentration, light intensities and pH. Conclusion: The ponceau S and sudan-IV, removal efficiency was evaluated using UV/Visible spectrophotometer at λmax = 514±2 nm Ponceau S and λMax = 520 nm respectively removal efficiency results (99% after 3 h at pH 9 showed that new photo catalyst, methylene blue immobilized resin dowex-11 provided a promising technology to improve the quality of effluent from textile wastewater treatment plants.

  18. Analytical applications of resins containing amide and polyamine functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Orf, Gene Michael [Iowa State Univ., Ames, IA (United States)

    1977-12-01

    A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from sea water.

  19. The Application of Tea Dyeing to Silk

    Institute of Scientific and Technical Information of China (English)

    金成嬉

    2001-01-01

    Vegetable dyes are eco-friendly throughout the full production process. A study is conducted with the purpose of assessing the properties of dye extracted from green tea, black tea and the tea tree cultivated and used in Jiang Nan area of China. The extracted dyes are applied with and without mordants on silk fabric and the dyeing properties are evaluated.

  20. FACILITATING IMAGE-ANALYSIS OF GLYCOLMETHACRYLATE EMBEDDED TISSUES WITH TISSUE-SELECTIVE AND RESIN-SELECTIVE DYES, CHOSEN BY A NUMERICAL STRUCTURE-STAINING RELATIONSHIP MODEL

    NARCIS (Netherlands)

    GERRITS, PO; HOROBIN, RW; STOKROOS, [No Value

    1993-01-01

    A method facilitating recording of macroscopic images from glycolmethacrylate (GMA) embedded tissues and tissue-free sections is described. This method used dyes that selectively stain only tissue, only resin, or both, but in contrasting colors. The dyes were selected on the basis of simple numerica

  1. µCT-3D visualization analysis of resin composite polymerization and dye penetration test of composite adaptation.

    Science.gov (United States)

    Yoshikawa, Takako; Sadr, Alireza; Tagami, Junji

    2017-08-25

    This study evaluated the effects of the light curing methods and resin composite composition on composite polymerization contraction behavior and resin composite adaptation to the cavity wall using μCT-3D visualization analysis and dye penetration test. Cylindrical cavities were restored using Clearfil tri-S Bond ND Quick adhesive and filled with Clearfil AP-X or Clearfil Photo Bright composite. The composites were cured using the conventional or the slow-start curing method. The light-cured resin composite, which had increased contrast ratio during polymerization, improved adaptation to the cavity wall using the slow-start curing method. In the μCT-3D visualization method, the slow-start curing method reduced polymerization shrinkage volume of resin composite restoration to half of that produced by the conventional curing method in the cavity with adhesive for both composites. Moreover, μCT-3D visualization method can be used to detect and analyze resin composite polymerization contraction behavior and shrinkage volume as 3D image in the cavity.

  2. Clinical applications of preheated hybrid resin composite.

    Science.gov (United States)

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  3. Application conditions for ester cured alkaline phenolic resin sand

    Institute of Scientific and Technical Information of China (English)

    Ren-he Huang; Bao-ping Zhang; Yao-ji Tang

    2016-01-01

    Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A); 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B); glycerol diacetate; dibasic ester (DBE) (i.e. low-speed ester C), were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand) and the amount of added organic ester and curing temperature were investigated. The results indicated the folowing: (1) The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2) High-speed ester A (propylene carbonate) has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3) High-speed ester A, medium-speed ester B (glycerol triacetate) and low-speed ester C (dibasic ester, i.e., DBE) should be used below 15 ºC, 35 ºC and 50 ºC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4) There should be a suitable solid content (generaly 45wt.%-65wt.% of resin), alkali content (generaly 10wt.%-15wt.% of resin) and viscosity of alkaline phenolic resin (generaly 50-300 mPa·s) in the preparation of alkaline phenolic resin. Finaly, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  4. Progress in modifications and applications of fluorescent dye probe

    Institute of Scientific and Technical Information of China (English)

    Xuening Fei; Yingchun Gu

    2009-01-01

    This review summarizes the labeling technology and applications of fluorescent dye probe in biology,especially the characteristics,modifications and applications of cyanine dyes.Based on the currently available modification methods of fluorescent dye probe,we discuss the studies of enhancing the water-solubility,improving the degree of biocompatibility and target-labeling,increasing the sensitivity and decreasing the toxicity of fluorescent dye.We also give a brief introduction on the modification method,that the fluorescent dye is directly introduced onto the cell surfaces by amine derivatives or azides to intensify the transferring information of aberrant cells.We suggest that fluorescent dye modified with chitosan oligosaccharide can obviously increase the degree of biocompatibility and targetlabeling,and decrease the degree of toxicity.

  5. Does Adhesive Resin Application Contribute to Resin Bond Durability on Etched and Silanized Feldspathic Ceramic?

    NARCIS (Netherlands)

    Passos, Sheila Pestana; Valandro, Luiz Felipe; Amaral, Regina; Ozcan, Mutlu; Bottino, Marco Antonio; Kimpara, Estevao Tomomitsu

    2008-01-01

    Purpose: To assess the effect of adhesive application and aging on the bond durability of resin cement to etched and silanized feldspathic ceramic. Materials and Methods: Twenty blocks (6.4 x 6.4 x 4.8 mm) of feldspathic ceramic (Vita VM7) were produced. The ceramic surfaces were conditioned with 10

  6. Resin transfer molding of textile preforms for aircraft structural applications

    Science.gov (United States)

    Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.

    1992-01-01

    The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.

  7. Resin-composite blocks for dental CAD/CAM applications.

    Science.gov (United States)

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials.

  8. Preparation and Application of Microencapsulated Disperse Dyes

    Institute of Scientific and Technical Information of China (English)

    罗艳; 陈水林

    2001-01-01

    Microcapsules containing disperse dyes were prepared by means of in-situ polymerization. Polyester fabrics were multiple-transfer printed and color-mix printed using those microencapsulated dyes under different process conditions. By color measurement instrument, it can be seen that the times of multiple-transfer printing are up to ten while under appropriate conditions, especially when the transfer printing time is 50 seconds and the transfer printing temperature is 180°C. On the other hand, the K/S value of each transfer printing can keep almost constant. Meanwhile, the visual effect of color- mix printing with microencapsulated disperse dyes is special in the varicolored exhibiting if compared with conventional disperse dyes.

  9. High elastic modulus nanopowder reinforced resin composites for dental applications

    Science.gov (United States)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the

  10. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane.

    Science.gov (United States)

    Yang, Cheng; Li, Li; Shi, Jialu; Long, Chao; Li, Aimin

    2015-03-02

    Strict regulations are forcing dyeing factory to upgrade existing waste treatment system. In this study, advanced treatment of dyeing secondary effluent by magnetic anion exchange resin (NDMP) was investigated and compared with ultrafiltration (UF); NDMP as a pre-treatment of reverse osmosis (RO) was also studied. NDMP resin (20 mL/L) gave higher removal of dissolved organic carbon (DOC) (83.9%) and colority (94.9%) than UF with a cut-off of 10 kDa (only 48.6% and 44.1%, respectively), showing that NDMP treatment was effective to meet the stringent discharge limit of DOC and colority. Besides, NDMP resin (20 mL/L) as a pretreatment of RO increased the permeate flux by 12.5% and reduced irreversible membrane fouling by 6.6%, but UF pretreatment did not mitigate RO membrane fouling. The results of excitation-emission matrix fluorescence spectra and resin fractions showed that NDMP had more efficient removal than UF for transphilic acid and hydrophilic fraction, such as protein-like organic matters and soluble microbial products, which contributed to a significant proportion of RO membrane fouling. In sum, NDMP resin treatment not only gave effective removal of DOC and colority of dyeing secondary effluent, but exhibited some improvement for RO membrane flux and irreversible fouling.

  11. Erythema multiforme following application of hair dye

    Directory of Open Access Journals (Sweden)

    Sankha Koley

    2012-01-01

    Full Text Available Erythema multiforme (EM is an acute mucocutaneous hypersensitivity reaction with varying degrees of blistering and ulceration. Common causes of EM are herpes simplex virus infection, mycoplasma infection, drug hypersensitivity, vaccination and drug-virus interaction. EM induced by contact dermatitis is rare. Paraphenylene diamine, a common ingredient in many hair dyes, is well known to produce allergic contact dermatitis. We report a 35-year-old lady presenting with EM following severe contact dermatitis to hair dye. So far as we know, this is the first report from India describing EM following contact dermatitis.

  12. NIR fluorescent dyes: versatile vehicles for marker and probe applications

    Science.gov (United States)

    Patonay, Gabor; Chapman, Gala; Beckford, Garfield; Henary, Maged

    2013-02-01

    The use of the NIR spectral region (650-900 nm) is advantageous due to the inherently lower background interference and the high molar absorptivities of NIR chromophores. Near-Infrared (NIR) dyes are increasingly used in the biological and medical field. The binding characteristics of NIR dyes to biomolecules are possibly controlled by several factors, including hydrophobicity, size and charge just to mention a few parameters. Binding characteristics of symmetric carbocyanines and found that the hydrophobic nature of the NIR dye is only partially responsible for the binding strength. Upon binding to biomolecules significant fluorescence enhancement can be observed for symmetrical carbocyanines. This fluorescence amplification facilitates the detection of the NIR dye and enhances its utility as NIR reporter. This manuscript discusses some probe and marker applications of such NIR fluorescent dyes. One application discussed here is the use of NIR dyes as markers. For labeling applications the fluorescence intensity of the NIR fluorescent label can significantly be increased by enclosing several dye molecules in nanoparticles. To decrease self quenching dyes that have relatively large Stokes' shift needs to be used. This is achieved by substituting meso position halogens with amino moiety. This substitution can also serve as a linker to covalently attach the dye molecule to the nanoparticle backbone. We report here on the preparation of NIR fluorescent silica nanoparticles. Silica nanoparticles that are modified with aminoreactive moieties can be used as bright fluorescent labels in bioanalytical applications. A new bioanalytical technique to detect and monitor the catalytic activity of the sulfur assimilating enzyme using NIR dyes is reported as well. In this spectroscopic bioanalytical assay a family of Fischer based n-butyl sulfonate substituted dyes that exhibit distinct variation in absorbance and fluorescence properties and strong binding to serum albumin as its

  13. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  14. LIQUID DYES'CHARACTERISTICS IN DYEING WASTE PAPER PULP AND THEIR APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Wang; gang Chen; Aimin Tang; Hongwei Zhang

    2004-01-01

    In this paper, some liquid dyes were used to dye the waste paper pulp (OCC pulp and waste cement sack paper pulp), and their dyeing characteristics were analyzed, The liquid dyes include liquid basic yellow, liquid basic blue, liquid basic red, liquid basic orange, liquid basic brown and liquid direct black. We found that, each dye had its own dyeing characteristic while dyeing the waste paper pulp.Generally different types of liquid dyes were combined to dye the waste paper pulp, which the adding process must be noticed. We also observed that a black pigment could be applied together with said liquid dyes to dye or adjust the color of the bottom sheet for the fireproof board. We could also achieve the same dyeing result through different combinations of different dyes.

  15. Preparation of liquefied wood-based resins and their application in molding material

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiu-hui; Zhao Guang-jie; Yu Li-li; Jie Shu-jun

    2007-01-01

    To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was co-condensed with formaldehyde to obtain liquefied wood-based resin. For this paper, we investigated the characterization of the resin and its application in molding material. The result shows that the basic properties of liquefied wood-based resin were satisfactory; the bonding strength of plywood prepared with liquefied Chinese fir and liquefied poplar resin can reach 1.54 and 1.00 MPa, respectively. The compression strengths of the molding material prepared with two kinds of liquefied wood resin were 73.01 and 73.58 MPa, almost the same as that of PF resin molding material. The limiting volume swelling of molding material made with liquefied Chinese resin and liquefied poplar resin were 8.5% and 8.3%, thickness swelling rates of water absorption were 3.3% and 4.2%, and the maximum weight ratios of water absorption were 25.9% and 26.2%, respectively. The soil burial test result shows that the weight loss rate of the molding materials made with liquefied Chinese resin and liquefied poplar resin were 8.3% and 9.1% and that of the PF resin molding material was 7.9%. After the soil internment test, the reduction ratio of compression strength of the two kinds of molding material achieved 16.9%and 17.7%, while that of the PF resin molding material was 15.4%. The test results of wood fungi inoculation on the three surfaces of the molding material indicate the breeding rate of molding material prepared with liquefied Chinese resin and liquefied poplar resin were at level 4 and that of PF resin molding material was at level 1 of the ISO standard.

  16. Preparation of a Novel Chitosan Based Biopolymer Dye and Application in Wood Dyeing

    Directory of Open Access Journals (Sweden)

    Xiaoqian Wang

    2016-09-01

    Full Text Available A novel chitosan-based biopolymer dye possessing antibacterial properties was synthesized by reaction of O-carboxymethyl chitosan and Acid Red GR. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FTIR, degree of substitution (DS, X-ray photoelectron spectroscopy (XPS, thermogravimetric analysis (TG, X-ray diffraction (XRD, water solubility test, antibacterial property test, and dyeing performance, including dye uptake, color difference, and fastness. Results showed that the synthesized dye was combined by –NH3+ of O-carboxymethyl chitosan and the sulfonic group of Acid Red GR. According to the comprehensive analysis of XRD and water solubility, the introduction of the carboxymethyl group and acid dye molecule changed the structure of the chitosan from compact to loose, which improved the synthesized dye’s water solubility. However, the thermal stability of the synthesized dye was decreased. The antibacterial property of the poplar wood dyed with the synthesized dye was enhanced and its antibacterial rate, specifically against Staphylococcus aureus and Escherichia coli, also increased to a rate of more than 99%. However, the dye uptake of the synthesized dye was lower than that of the original dye. Despite this, though, the dyeing effect of the synthesized dye demonstrated better water-fastness, and light-fastness than the original dye. Therefore, the novel chitosan-based biopolymer dye can be a promising product for wood dyeing.

  17. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    Science.gov (United States)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  18. Polydiacetylene/titania nanocomposites for dye-sensitized photovoltaic applications

    Science.gov (United States)

    Wang, Yanping

    This dissertation research involves the novel development of polydiacetyene/TiO2 nanocomposites for dye-sensitized photovoltaic applications. First of all, it has been determined that diacetylene can be in-situ topochemically polymerized within nanoporous TiO2 films under visible light irradiation (violet-blue). The red shift of the photopolymerization wavelength can be attributed to the photo sensitization effect of TiO 2 upon photoexcitation. When TiO2 is coated with some ruthenium dyes, the polymerization can be induced in the green-yellow region. Morphology characterization via scanning electron microscopy indicates that in the absence of dye the photosensitized polymerization occurs at the interface of TiO 2 and diacetylene. Apart from TiO2, ZnO also demonstrates the photosensitization effect on diacetylene polymerization. These realizations could have a significant impact on the optimization and application of polydiacetylene (PDA) in electronic and photonic devices. PDA has highly ordered and conjugated backbones, resulting in high charge carrier mobilities in the crystalline state. In this research, two types of carboxylated diacetylene monomers have been studied for their potential photovoltaic applications in solid-state dye-sensitized solar cells. The results show that the in-situ prepared PDA can act as a hole transporting material, but not a light sensitizer. Proof-of-concept efficiencies over 1% have been measured under simulated AM 1.5 illumination (100 mW/cm2). Some investigations toward inhibition of charge recombination have also been made but optimization is needed for better overall performance. A future breakthrough may lie in overcoming the limitations posed by parasitic absorption and long-range disorder of PDA within the nanoporous TiO2 film.

  19. Evaluation of Resin-Resin Interface in Direct Composite Restoration Repair

    Science.gov (United States)

    Stoleriu, S.; Andrian, S.; Pancu, G.; Nica, I.; Iovan, G.

    2017-06-01

    The aim of this study was to evaluate the resin-resin interface when a universal bonding agent was used in two different strategies in direct restoration repair. Two composite resins (a micro-filled hybrid and a nano-filled hybrid) as old restorations that have to be repair, a universal bonding agent and a micro-filled hybrid composite resin (different then that aged) as new material for repair were chosen for the study. Non-aged samples were used as control and aged samples were used as study groups. The universal bonding agent was applied in etch-and-rinse and in self-etch strategies. The interface between old and new composite resins was evaluated by SEM and the microleakage was assessed by scoring the dye penetration. Very good adaptation of the two different composite resins placed in direct contact in non-aged samples was recorded. No gaps or defects were visible and strong resin-resin contact was observed. After aging, enlargement of resin-resin junction were observed in most of the samples and a increased dye penetration was recorded irrespective of the strategy (etch-and-rinse or self-etch) used for bonding agent application.

  20. 40 CFR 63.5737 - How do I demonstrate compliance with the resin and gel coat application equipment cleaning...

    Science.gov (United States)

    2010-07-01

    ... the resin and gel coat application equipment cleaning standards? 63.5737 Section 63.5737 Protection of... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations § 63.5737 How do I demonstrate compliance with the resin and gel coat application equipment...

  1. The application of methacrylate resin and the derivation as restorative material of damaged tooth tissue

    Directory of Open Access Journals (Sweden)

    Adioro Soetojo

    2007-12-01

    Full Text Available The application of methacrylate resin and the derivation (composite resin and dentin bonding in clinical conservative dentistry has been widely developed. This material could be used to restore class I-V cavity with good aesthetic due to the compatible color with tooth. Composite resin adhesion hydrophobically in enamel that is due to mechanic retention in the form of resin tags which penetrates into enamel porosity. Meanwhile hydrophilic dentin bonding adhesion due to the chemical reaction between functional groups of amino collagen with carbonyl in dentin bonding forming amide binding. In addition mechanical retention in which dentin bonding penetrating into nano inter fibrilar cavity then polymerized. The success of methacrylate resin adhesion restoration is decided by enamel porosity, wetting character of resin, wetting contact angle, good etching acid, optimal humidity of tooth surface, the accuracy of dentist during filling is done etc.

  2. Study on Application of Natural Plant Dye Gardenia on Cotton Coloration and the Dyeing Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lan; SHAO Jian-zhong

    2006-01-01

    Based on the analysis of the structure and properties of gardenia, the gardenia was extracted in neutral bath. The mordant dyeing of cotton, including pre-mordant, one-bath and post-mordant were studied, and the dyeing properties such as dye K/S value and color fastness were investigated.According to the structure and property of mordants including alum, copper sulfate, iron sulfate and rare earth,the interaction mechanisms among gardenia, mordant and cotton fibers were analyzed and the processing factors affecting the mordant dyeing were discussed. As a result,gardenia showed favorable dyeing performance on cotton.The soaping color fastness and crocking fastness were improved by 0.5 - 1 grade after fixation process with the selected dye-fixing agent and optimized process conditions.The dyeing process and fixation process were optimized.

  3. Supramolecular hair dyes: a new application of cocrystallization

    DEFF Research Database (Denmark)

    Delori, Amit; Urquhart, Andrew; Oswald, Iain D. H.

    2016-01-01

    The manuscript presents the first report of hair dyes of various colors formed by cocrystallization. Unlike the most popular oxidative hair dye (OHD) products, these dyes are NH3 free and do not require H2O2 as a color developer. The importance of these new hair dyes products is further enhanced...

  4. 40 CFR 63.5734 - What standards must I meet for resin and gel coat application equipment cleaning operations?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What standards must I meet for resin... Pollutants for Boat Manufacturing Standards for Resin and Gel Coat Application Equipment Cleaning Operations § 63.5734 What standards must I meet for resin and gel coat application equipment cleaning...

  5. Selecting microbial strains from pine tree resin: biotechnological applications from a terpene world.

    Science.gov (United States)

    Vilanova, Cristina; Marín, Maria; Baixeras, Joaquín; Latorre, Amparo; Porcar, Manuel

    2014-01-01

    Resin is a chemical and physical defensive barrier secreted by many plants, especially coniferous trees, with insecticidal and antimicrobial properties. The degradation of terpenes, the main components accounting for the toxicity of resin, is highly relevant for a vast range of biotechnological processes, including bioremediation. In the present work, we used a resin-based selective medium in order to study the resin-tolerant microbial communities associated with the galls formed by the moth Retinia resinella; as well as resin from Pinus sylvestris forests, one of the largest ecosystems on Earth and a yet-unexplored source of terpene-degrading microorganisms. The taxonomic and functional diversity of the cultivated, resin-tolerant fraction of the whole microbiota were unveiled by high-throughput sequencing, which resulted in the detection of more than 40 bacterial genera among the terpene-degrading microorganisms, and a range of genes involved in the degradation of different terpene families. We further characterized through culture-based approaches and transcriptome sequencing selected microbial strains, including Pseudomonas sp., the most abundant species in both environmental resin and R. resinella resin-rich galls, and three fungal species, and experimentally confirmed their ability to degrade resin and also other terpene-based compounds and, thus, their potential use in biotechnological applications involving terpene catabolism.

  6. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-15

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  7. Synthesis of Malononitrile-Condensed Disperse Dyes and Application on Polyester and Nylon Fabrics

    Directory of Open Access Journals (Sweden)

    Yusuf Y. Lams

    2014-01-01

    Full Text Available An active methylene compound, malononitrile, was introduced into the structures of a series of disperse dyes previously prepared by coupling phloroglucinol, barbituric acid, and α and β-naphtho to 4-amino-3-nitrobenzaldehyde. The dyes were purified by recrystallization from ethanol. The purity of the dyes was examined by thin-layer chromatography (TLC and the dyes were characterized by visible absorption and Fourier transform infrared spectroscopy (FTIR. The malononitrile-condensed dyes produced deeper colours and shades with better fastness to wash, light, and perspiration on application to polyester and nylon fabrics when compared to their uncondensed analogue.

  8. Extraction, Characterization and Application of Natural Dyes from the Fresh Mangosteen (Garcinia mangostana L. Peel

    Directory of Open Access Journals (Sweden)

    Nita Kusumawati

    2017-06-01

    Full Text Available This study is conducted to explore and utilize fresh mangosteen peel as an upcoming raw material for the production of natural dyes. The extract of fresh mangosteen peel is tested on cotton fabric by using alum as mordanting agent which processed by pre mordant dyeing procedure and fixation using 3 (three different types of fixer. To obtain optimum interaction of fabric, mordant, dye and fixer, washing procedure has been performed using Turkish Red Oil (TRO before mordanting stage with varying washing time and repeated dyeing procedure with varying frequency of dyeing. As a result, the application of pre mordanting dyeing method and fixation using iron (II sulphate (FeSO4.7H2O, alum (KAI (SO42.12H2O and lime (CaO, produced very good color from  mangosteen peel dyes extract. Cotton fabric that has been through the pre-mordanting dyeing procedure using dyes extract of mangosteen peel consecutively bring green, light brown, and dark brown color each on the fixation result using iron (II sulfate, alum, and lime. Preliminary evaluation and instrumentation allows us to determine whether the application of washing time varies, the repeated frequency of immersion, and the use of different fixer compound using dyes extract with similar concentration and dyeing procedure affect the color intensity of the fabric sample.

  9. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  10. Mechanical behaviors of hyberbranched epoxy toughened bisphenol F epoxy resin for cryogenic applications

    Science.gov (United States)

    Li, Jingwen; Wu, Zhixiong; Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    Epoxy resins have been widely employed in cryogenic engineering fields. In this work, bisphenol F epoxy resin was modified by an aromatic polyester hyperbranched epoxy resin (HTDE-2). Mechanical behaviors of the modified epoxy resins in terms of tensile properties and impact property were studied at both room and cryogenic temperatures. Moreover, the toughening mechanism was discussed by fracture surface morphology analysis. The results demonstrated that, the mechanical properties of composites initially increased until reaches the maximum value with increasing the mass content of the HTDE-2, and then decreased at both room temperature (RT) and 77K. Especially, the impact strength at 77 K was improved 40.7% compared with the pure epoxy matrix when 10 wt% HTDE-2 was introduced. The findings suggest that the HTDE-2 will be an effective toughener for the brittle bisphenol F epoxy resin for cryogenic applications.

  11. Application of mixed mode resins for the purification of antibodies.

    Science.gov (United States)

    Voitl, Agnes; Müller-Späth, Thomas; Morbidelli, Massimo

    2010-09-10

    The downstream processing of monoclonal antibodies from cell culture supernatant is usually done by a number of chromatographic and non-chromatographic steps. Efforts are taken to reduce the costs associated to those steps, while maintaining a high product purity. A possibility to reach this goal is the reduction of the number of chromatographic steps using mixed mode resins that offer more than one functionality in one chromatographic step. In this work, a commercially available mixed mode resin was evaluated systematically with respect to the adsorption of proteins. The Henry coefficient, which quantifies the adsorption strength, was measured for the full working range of the stationary phase as a function of the salt concentration and the pH. The results were compared to a conventional anion exchange and a hydrophobic interaction resin. Furthermore, the resin was applied for the polishing step of an antibody from an industrial clarified cell culture supernatant.

  12. Urea-formaldehyde resins: production, application, and testing

    Science.gov (United States)

    Nuryawan, A.; Risnasari, I.; Sucipto, T.; Heri Iswanto, A.; Rosmala Dewi, R.

    2017-07-01

    Urea-formaldehyde (UF) resin, one of the most important formaldehyde resin adhesives, is a polymeric condensation product of formaldehyde with urea, and being widely used for the manufacture of wood-based composite panels, such as plywood, particleboard, and fiberboard. In spite of its benefits such as fast curing, good performance in the panels (colorless), and lower cost; formaldehyde emission (FE) originated from either UF resin itself or composite products bonded by UF resins is considered a critical drawback as it affects human health particularly in indoor environment. In order to reduce the FE, lowering formaldehyde/urea (F/U) mole ratio in the synthesis of the UF resin was done. In this study, synthesis of UF resins was carried out following the conventional alkaline-acid two-step reaction with a second addition of urea, resulting in F/U mole ratio around 1.0, namely 0.95; 1.05, and 1.15. The UF resins produced were used as binder for particleboard making. The board was manufactured in the laboratory using shaving type particle of Gmelina wood, 8% UF resin based on oven dry particle, and 1% NH4Cl (20%wt) as hardener for the resin. The target of the thickness was 10 mm and the dimension was 25 cm x 25 cm. The resulted particleboard then was evaluated the physical and the mechanical properties by Japanese Industrial Standard (JIS) A 5908 (2003). Further, the resulted particleboard also was used for the mice cage’s wall in order to mimic the real living environment. After four weeks exposure in the cages, the mice then were evaluated their mucous organs as well as their blood. The experiment results were as follows: 1) It was possible to synthesis UF resins with low F/U mole ratio; 2) However, the particleboard bonded UF resins with low F/U mole ratio showed poor properties, particularly on the thickness swelling and modulus of elasticity; 3) There was no significant differences among the mucous organs of the mice after a month exposure FE originated from

  13. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Anna, J Lakshmi; Vijayeeswarri, J; Swaminathan, G

    2009-08-01

    There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 degrees C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol-water with 80W ultrasonic power for 3h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80W as compared to MS process both using 1:1 ethanol-water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from

  14. Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells.

    Science.gov (United States)

    Dessì, Alessio; Calamante, Massimo; Mordini, Alessandro; Peruzzini, Maurizio; Sinicropi, Adalgisa; Basosi, Riccardo; Fabrizi de Biani, Fabrizia; Taddei, Maurizio; Colonna, Daniele; Di Carlo, Aldo; Reginato, Gianna; Zani, Lorenzo

    2014-11-21

    Three new thiazolo[5,4-d]thiazole-based organic dyes have been designed and synthesized for employment as DSSC sensitizers. Alternation of the electron poor thiazolothiazole unit with two propylenedioxythiophene (ProDOT) groups ensured very intense light absorption in the visible region (ε up to 9.41 × 10(4) M(-1) cm(-1) in THF solution). The dyes were particularly suitable for application in transparent and opaque thin-layer DSSCs (TiO2 thickness: 5.5-6.5 μm, efficiencies up to 7.71%), thus being good candidates for production of solar cells under simple fabrication conditions.

  15. Synthesis, characterization and application of new azo dyes derived from uracil for polyester fibre dyeing

    Science.gov (United States)

    Yazdanbakhsh, Mohamad-reza; Abbasnia, Masoumeh; Sheykhan, Mehdi; Ma'mani, Leila

    2010-08-01

    Some novel uracil derived azo compounds were synthesized by diazotization of substituted aromatic amines, amidine- and guanidine-like amines such as 2-aminopyridine and 2-aminopyrimidine, ortho-hydroxy aniline and ortho-hydroxy naphthyl amines and coupling reaction with 6-amino-1,3-dimethyluracil. Structures of the dyes were fully characterized by spectroscopic techniques (UV, 1H NMR, 13C NMR, CHN and IR). The dyes were applied to polyester, affording orange-yellow shades and the wash fastness of the dyeings was excellent.

  16. 染料预负载树脂对Cu(Ⅱ)的吸附作用特性%ADSORPTION OF Cu(H) ON DYE-PRELOADED RESIN

    Institute of Scientific and Technical Information of China (English)

    凌晨; 刘福强; 陈泰鹏; 龙超; 吴秋原; 李爱民

    2013-01-01

    通过预负载实验,研究了染料预负载超高交联吸附树脂NDA-150对Cu(Ⅱ)的作用持性.研究结果表明,NDA-150负载酸性蓝29的能力很强,但对Cu(U)吸附极弱.预负载酸性蓝29显著提高了NDA-150对Cu(Ⅱ)的吸附能力,而且随染料负载量的增加,Cu(Ⅱ)的吸附量呈阶段性的线性增长,单位增长倍率先增后降呈现两个阶段.FT-IR和XPS的表征结果显示,固相上染料分子中磺酸基、氨基及羟基参与了对Cu(Ⅱ)的吸附,这为染料预负载增强了树脂对Cu(Ⅱ)的吸附亲和力提供了直接证据.通过Ca(Ⅱ)屏蔽位点实验,表明固相中染料分子主要为Cu(Ⅱ)的吸附提供离子交换位点,此外还提供部分螯合位点.由此可见,超高交联吸附树脂NDA-150有可能同时去除废水中染料及共存重金属离子.%The influence of dye preloaded on the adsorption of Cu(Ⅱ) with hypercrosslinked polymeric resin NDA-150 was studied. Acid Blue 29 preloaded markedly enhanced the adsorption capacity of Cu(Ⅱ) on the resin. With the increase of preloading concentration, the adsorption capacity of Cu(Ⅱ) presented a periodically linear growth, while the enhancement amount contributed by per mole AB (ER) increased first and decreased afterwards. Based on the experimental results of FT-IR and XPS, the adsorption of Cu(Ⅱ) was improved by the interaction of Cu(Ⅱ) with -SOaNa, -NH2, and -OH group in the adsorbed dye molecules. The inside enhancement mechanisms were also examined by performing sites pre-shielding experiment and the results demonstrated that interactions between Cu(Ⅱ) and AB were composed of both ion exchange and coordination. NDA-15 resin can simultaneously remove dye and heavy metal ions from wastewater.

  17. New processable modified polyimide resins for adhesive and matrix applications

    Science.gov (United States)

    Landman, D.

    1985-01-01

    A broad product line of bismaleimide modified epoxy adhesives which are cured by conventional addition curing methods is described. These products fill a market need for 232 C (450 F) service adhesives which are cured in a manner similar to conventional 177 C (350 F) epoxy adhesives. The products described include film adhesives, pastes, and a primer. Subsequent development work has resulted in a new bismaleimide modified epoxy resin which uses a unique addition curing mechanism. This has resulted in products with improved thermomechanical properties compared to conventional bismaleimide epoxy resins. A film adhesive, paste, and matrix resin for composites using this new technology are described. In all cases, the products developed are heat cured by using typical epoxy cure cycles i.e., 1 hour at 177 C (350 F) followed by 2 hours postcure at 246 C (475 F).

  18. Application of living microbial cells entrapped with synthetic resin prepolymers.

    Science.gov (United States)

    Fukui, S; Tanaka, A

    1989-12-01

    Living and growing microbial cells were immobilized by entrapping in synthetic resin gels prepared from their prepolymers, and used in the production of various useful substances. The production of the desired metabolites and also both the activity and the stability of the catalytic systems were seriously affected by the physico-chemical properties of the prepolymers, and those of the resin gels subsequently formed, such as gel network, hydrophilicity-hydrophobicity balance and ionic nature, as well as by the type of bioreactors. Hydroxylation of steroids and production of antibiotics, polypeptides and other biologically active substances, and the effects of gel properties on them are discussed as examples.

  19. Preparation and degradation study of photocurable oligolactide-HA composite: a potential resin for stereolithography application.

    Science.gov (United States)

    Tanodekaew, Siriporn; Channasanon, Somruethai; Uppanan, Paweena

    2014-04-01

    The merging of stereolithography (SLA) technology to the medical field certainly benefits the manufacturing of parts, especially those patient-specific for the clinical use. This technique, however, has hardly been exploited medically due to a limited number of biodegradable resins for SLA processing. To extend application of SLA in the biomedical field, photocurable oligolactide resins were developed and examined for biodegradation and biocompatibility. The degradation was studied by monitoring the changes in weight loss, and thermal and mechanical properties of the photocured specimens in phosphate buffered saline (PBS) at 37°C. The results demonstrated that a resin composition played an important role in degradation, and the retarded degradation rate was observed for the highly crosslinked resin containing hydroxyapatite (HA). The less cytotoxic sample was also obtained from the resin with higher content of HA. These findings suggest the possible use of the developed photocurable oligolactide resins in SLA manufacturing of biodegradable implants, where their degradation behaviors can be designed by varying the resin composition.

  20. Charge-transfer dynamics at the dye-semiconductor interface of photocathodes for solar energy applications.

    Science.gov (United States)

    Black, Fiona A; Wood, Christopher J; Ngwerume, Simbarashe; Summers, Gareth H; Clark, Ian P; Towrie, Michael; Camp, Jason E; Gibson, Elizabeth A

    2017-03-13

    This article describes a comparison between the photophysical properties of two charge-transfer dyes adsorbed onto NiO via two different binding moieties. Transient spectroscopy measurements suggest that the structure of the anchoring group affects both the rate of charge recombination between the dye and NiO surface and the rate of dye regeneration by an iodide/triiodide redox couple. This is consistent with the performance of the dyes in p-type dye sensitised solar cells. A key finding was that the recombination rate differed in the presence of the redox couple. These results have important implications on the study of electron transfer at dye|semiconductor interfaces for solar energy applications.

  1. Application of fluorescent dyes for some problems of bioelectromagnetics

    Science.gov (United States)

    Babich, Danylo; Kylsky, Alexandr; Pobiedina, Valentina; Yakunov, Andrey

    2016-04-01

    Fluorescent organic dyes solutions are used for non-contact measurement of the millimeter wave absorption in liquids simulating biological tissue. There is still not any certain idea of the physical mechanism describing this process despite the widespread technology of microwave radiation in the food industry, biotechnology and medicine. For creating adequate physical model one requires an accurate command of knowledge concerning to the relation between millimeter waves and irradiated object. There were three H-bonded liquids selected as the samples with different coefficients of absorption in the millimeter range like water (strong absorption), glycerol (medium absorption) and ethylene glycol (light absorption). The measurements showed that the greatest response to the action of microwaves occurs for glycerol solutions: R6G (building-up luminescence) and RC (fading luminescence). For aqueous solutions the signal is lower due to lower quantum efficiency of luminescence, and for ethylene glycol — due to the low absorption of microwaves. In the area of exposure a local increase of temperature was estimated. For aqueous solutions of both dyes the maximum temperature increase is about 7° C caused with millimeter waves absorption, which coincides with the direct radio physical measurements and confirmed by theoretical calculations. However, for glycerol solution R6G temperature equivalent for building-up luminescence is around 9° C, and for the solution of ethylene glycol it's about 15°. It is assumed the possibility of non-thermal effect of microwaves on the different processes and substances. The application of this non-contact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  2. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors.

    NARCIS (Netherlands)

    Zee, van der F.P.; Bouwman, R.H.M.; Strik, D.P.B.T.B.; Lettinga, G.; Field, J.A.

    2001-01-01

    Azo dyes are nonspecifically reduced under anaerobic conditions but the slow rates at which reactive azo dyes are converted presents a serious problem for the application of anaerobic technology as a first stage in the complete biodegradation of these compounds. As quinones have been found to cataly

  3. Textile impregnation with thermoplastic resin - models and application

    NARCIS (Netherlands)

    Loendersloot, R.; Grouve, W.J.B.; Lamers, E.A.D.; Wijskamp, S.; Kelly, P.A.; Bickerton, S.; Lescher, P.; Govignon, Q.

    2012-01-01

    One of the key issues of the development of cost-effective thermoplastic composites for the aerospace industry is the process quality control. A complete, void free impregnation of the textile reinforcement by the thermoplastic resin is an important measure of the quality of composites. The introduc

  4. Synthesis of Calix[4]resorcinarene Based Dyes and its Application in Dyeing of Fibres

    Directory of Open Access Journals (Sweden)

    Vinod K. Jain

    2008-01-01

    Full Text Available Four new ʻupper rimʼ azocalix[4]resorcinarene have been synthesized by coupling calix[4]resorcinarene with different diazotized aromatic compounds of sulphanilic acid, anthranilic acid, o-aminophenol and p-aminobenzoic acid. The prepared compounds were characterized based on m.p., elemental analysis, FT-IR, 1H-NMR. These dyes have been used for the dyeing of textile fibres like cotton and wool. Their fastness properties such as fastness to sunlight, water, washings, and perspiration have also been studied. The synthesized dyes have been employed for computerized colour strength determination through colour matching with known standards. Their L, A*, B* values as well as the colour difference values such as ∆L, ∆A*, ∆B*, ∆C and ∆H have also been reported.

  5. Effect of hydrogen peroxide topical application on the enamel and composite resin surfaces and interface

    Directory of Open Access Journals (Sweden)

    Dutra Rodrigo

    2009-01-01

    Full Text Available Objectives: The objective of the present study was to analyze the superficial roughness and the interface between enamel and composite resin restorations after dental bleaching procedure. Materials and Methods: Black′s class V cavities were made and restored with composite resin, and the whole set, enamel-restorative material, was treated with 35% hydrogen peroxide. Seven procedures of 30 min each were performed. A profilometric assessment was carried out before and after the treatment of each sample, and roughness scores were obtained. Treated and untreated samples were analyzed under scanning electronic microscope and images of their surface were obtained. Results and Conclusion: The treatment with 35% hydrogen peroxide caused no alteration in the interface between enamel and composite resin, Tetric Ceram, fillings and the topical application of 35% hydrogen peroxide on enamel and composite resin, Tetric Ceram, caused an alteration of their surface topography, featuring a predominance of depressions after the bleaching treatment.

  6. Application of MCM-41 for dyes removal from wastewater.

    Science.gov (United States)

    Lee, Chung-Kung; Liu, Shin-Shou; Juang, Lain-Chuen; Wang, Cheng-Cai; Lin, Kuen-Song; Lyu, Meng-Du

    2007-08-25

    The adsorption of three basic dyes (Rhodamine B (RB), Crystal Violet (CV), and Methylene Green (MG)) and two acid dyes (Acid Red 1 (AR1) and Erioglaucine (EG)) onto MCM-41 was studied to examine the potential of MCM-41 for the removal of dyes from water solution. The revolution of pore structure and surface chemical characteristics of MCM-41 induced by dyes adsorption was characterized based on the analyses of XRD patterns, FTIR spectra, and nitrogen adsorption-desorption isotherms. The adsorption capacity of MCM-41 for the five dyes followed a decreasing order of RB>CV>MG>EG approximately AR1. It was experimentally concluded that if the dyes adsorption did not introduce a serious disorder on the pore structure of MCM-41 (such as RB adsorption), MCM-41 might be a good adsorbent for the removal of basic dyes from water solution. The fitness of both Langmuir and Freundlich adsorption model on describing the equilibrium isotherms of three basic dyes was examined. The suitability of both pseudo-second-order kinetic model and the intraparticle diffusion model for the description of the kinetic data was investigated, from which the adsorption mechanism was examined.

  7. Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Baviskar, P.K. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India); Zhang, J.B. [Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gupta, V.; Chand, S. [Organic and Hybrid Solar Cell, Physics of Energy Harvesting Division, Dr. K. S. Krishnan Marg, National Physical Laboratory, New Delhi 110012 (India); Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India)

    2012-01-05

    Highlights: > Synthesis of ZnO film was done at room temperature (27 deg. C). > Simple and inexpensive chemical bath deposition method was employed. > The as deposited film consists of mixed phases of hydroxide and oxide. > The post annealing was done at 200 deg. C in order to remove hydroxide phase. > Low-cost, metal free Rhodamine B dye was used for DSSC application. - Abstract: Cost effective, ruthenium metal free rhodamine B dye has been chemically adsorbed on ZnO films consisting of nanobeads to serve as a photo anode in dye sensitized solar cells. These ZnO films were chemically synthesized at room temperature (27 deg. C) on to fluorine doped tin oxide (FTO) coated glass substrates followed by annealing at 200 deg. C. These films consisting of inter connected nanobeads (20-40 nm) which are due to the agglomeration of very small size particles (3-5 nm) leading to high surface area. The film shows wurtzite structure having high crystallinity with optical direct band gap of 3.3 eV. Optical absorbance measurements for rhodamine B dye covered ZnO film revealed the good coverage in the visible region (460-590 nm) of the solar spectrum. With poly-iodide liquid as an electrolyte, device exhibits photon to electric energy conversion efficiency ({eta}) of 1.26% under AM 1.5G illumination at 100 mW/cm{sup 2}.

  8. Characteristics of triphenylamine-based dyes with multiple acceptors in application of dye-sensitized solar cells

    Science.gov (United States)

    Yang, Chien-Hsin; Chen, Han-Lung; Chuang, Yao-Yuan; Wu, Chun-Guey; Chen, Chiao-Pei; Liao, Shao-Hong; Wang, Tzong-Liu

    We report the synthesis and photophysical/electrochemical properties of triphenylamine (TPA)-based multiple electron acceptor dyes (TPAR1, TPAR2, and TPAR3) as well as their applications in dye-sensitized solar cells (DSSCs). In these dyes, the TPA group and the rhodanine-3-acetic acid play the role of the basic electron donor unit and the electron acceptor, respectively. It was found that introduction of two rhodanine-3-acetic acid groups into the TPA unit (TPAR2) exhibited better photovoltaic performance due to the increase with a red shift and broadening of the absorption spectrum. The monolayer of these TPA-based dyes was adsorbed on the surface of nanocrystalline TiO 2 mesoporous electrode with the thickness of ∼6 μm, polyethylene oxide (PEO) used as the matrix of gel electrolyte, and 4-nm thick Pt used as a counter-electrode. Photovoltaic device can be realized in a single quasi-solid-state DSSC. TPAR2-based gel DSSC had an open circuit voltage and short circuit current density of about 541 and 10.7 mA cm -2, respectively, at 1-sun.

  9. Solar efficiency of a photo catalytic nonwoven: dye removal applications

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, C.; Disdier, J.; Herrmann, J. M.; Monnet, C.; Dussaud, J.; Malato, S.; Blanco, J.

    2003-07-01

    A specially designed titania photo catalyst was prepared by coating Ahlstrom non-woven paper, used as a flexible photo catalytic support, with Millennium anatase PC50 and PC500 at different mass coatings. Several types of reactants were treated: formetanate (pesticide), Remazole (azo-dye), Amaranth (azo-dye) and Methylene Blue (model dye). Supported catalysts installed in a new solar photo reactor (STEP) were compared to the well-known CPCs working with slurries (0.5 g/L) of the same catalysts. Efficiency of both photo catalytic system was very similar for formetanate removal but not for dye degradation, for which the CPC was more efficient. Solar UV light adsorption by dyes is proposed as the reason for these results. (Author) 12 refs.

  10. Optimum Nanoporous TiO2 Film and Its Application to Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    戴松元; 王孔嘉

    2003-01-01

    Properties of TiO2 nanoporous films, which are one of the crucial technologies in dye-sensitized solar cell, are investigated. The nanocrystalline TiO2 films were prepared with the sol-gel method at different pH in precursor and treatment temperature in autoclave for their application to dye-sensitized solar cells. The thickness of the TiO2 film is very important to the transfer of photoelectron as well as adsorption of dye, it is also known as one of the source to the dark current. The results show that the TiO2 films, such as different particle sizes of TiO2, different pH in precursor and treatment temperature in autoclave, have a strong influence on the photoelectrochemical properties of the dye-sensitized solar cells. We give the optimum TiO2 film thickness and morphology for the application to dye-sensitized solar cells.

  11. Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application

    Science.gov (United States)

    Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.

    2016-05-01

    In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.

  12. Dye Painting!

    Science.gov (United States)

    Johnston, Ann

    This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This…

  13. Dye Painting!

    Science.gov (United States)

    Johnston, Ann

    This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This…

  14. Compatibility analysis of 3D printer resin for biological applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-08-30

    The salient features of microfluidics such as reduced cost, handling small sample and reagent volumes and less time required to fabricate the devices has inspired the present work. The incompatibility of three-dimensional printer resins in their native form and the method to improve their compatibility to many biological processes via surface modification are reported. The compatibility of the material to build microfluidic devices was evaluated in three different ways: (i) determining if the ultraviolet (UV) cured resin inhibits the polymerase chain reaction (PCR), i.e. testing devices for PCR compatibility; (ii) observing agglutination complex formed on the surface of the UV cured resin when anti-C-reactive protein (CRP) antibodies and CRP proteins were allowed to agglutinate; and (iii) by culturing human embryonic kidney cell line cells and testing for its attachment and viability. It is shown that only a few among four in its native form could be used for fabrication of microchannels and that had the least effect on biological molecules that could be used for PCR and protein interactions and cells, whereas the others were used after treating the surface. Importance in building lab-on-chip/micrototal analysis systems and organ-on-chip devices is found.

  15. Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    Science.gov (United States)

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.

    1997-01-01

    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.

  16. Synthesis of dye linked conducting block copolymers, dye linked conducting homopolymers and preliminary application to photovoltaics

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Hagemann, O.; Jørgensen, M.

    2004-01-01

    A synthetic approach to the synthesis of a large super molecule composed of two chemically different conducting polymer blocks with, respectively, high and low lying electronic energy levels linked through a porphyrin dye molecule is presented. The synthetic strategies to these molecular...... architectures are discussed. Finally the molecular systems are applied to make photovoltaic devices and the rather low efficiency is discussed in terms of the synthetic approach. (C) 2004 Elsevier B.V. All rights reserved....

  17. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.

    Science.gov (United States)

    Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-Ichiro; Ohshima, Toshihisa

    2015-11-01

    Dye-linked D-amino acid dehydrogenases (Dye-DADHs) catalyze the dehydrogenation of free D-amino acids in the presence of an artificial electron acceptor. Although Dye-DADHs functioning in catabolism of L-alanine and as primary enzymes in electron transport chains are widely distributed in mesophilic Gram-negative bacteria, biochemical and biotechnological information on these enzymes remains scanty. This is in large part due to their instability after isolation. On the other hand, in the last decade, several novel types of Dye-DADH have been found in thermophilic bacteria and hyperthermophilic archaea, where they contribute not only to L-alanine catabolism but also to the catabolism of other amino acids, including D-arginine and L-hydroxyproline. In this minireview, we summarize recent developments in our understanding of the biochemical characteristics of Dye-DADHs and their specific application to electrochemical biosensors.

  18. Characterization of solid UV curable 3D printer resins for biological applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-12-19

    In this paper, we report a simple method to evaluate biocompatibility of solid UV cross-linked resin as a material for microfluidic devices that can be used for biological applications. We evaluated the biocompatibility of the material in two different ways (1) determining if the UV cured resin inhibits the polymerase chain reaction (PCR) and (2) observing agglutination complex formed on the surface of the UV cured resin when anti-CRP antibodies and C- reactive protein (CRP) proteins were allowed to agglutinate. Six different types of 3D printer resins were compared to test the biocompatibility. The study showed that only few among them could be used for fabrication of micro channels and that had least effect on biological molecules that could be used for PCR and protein interactions. Through these studies it is possible to estimate the curing time of various resin and their type of interaction with biomolecules. This study finds importance in on-chip tissue engineering and organ-on-chip applications.

  19. Diphonix{trademark} Resin: A review of its properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chiarizia, R.; Horwitz, E.P. [Argonne National Lab., IL (United States); Alexandratos, S.D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Gula, M.J. [Eichrom Industies, Inc., Darien, IL (United States)

    1995-12-31

    The recently developed Diphonix{trademark} resin is a new multifunctional chelating ion exchange resin containing seminally substituted diphosphonic acid ligands chemically bonded to a styrene-based polymeric matrix. Diphonix can be regarded as a dual mechanism polymer, with a sulfonic acid cation exchange group allowing for rapid access, mostly non-specific, of ions into the polymeric network, and the diphosphonic acid group responsible for specificity (recognition) for a number of metal cations. The Diphonix resin exhibits an extraordinarily strong affinity for actinides, especially in the tetra- and hexavalent oxidation states. It has potential applications in TRU and mixed waste treatment and characterization, and in the development of new procedures for rapid actinide preconcentration and separation from environmental samples. Metal uptake studies have been extended to alkaline earth cations, to transition and post transition metal species, and to metal sorption from neutral or near neutral solutions. Also the kinetic behavior of the resin has been investigated in detail. Influence of the most commonly occurring matrix constituents (Na, Ca, Al, Fe, hydrofluoric, sulfuric, oxalic and phosphoric acids) on the uptake of actinide ions has been measured. This review paper summarizes the most important results studies on the Diphonix resin and gives an overview of the applications already in existence or under development in the fields of mixed waste treatment, actinide separation procedures, treatment of radwaste from nuclear power plants, and removal of iron from copper electrowinning solutions.

  20. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies.

    Science.gov (United States)

    Yuan, Ahu; Wu, Jinhui; Tang, Xiaolei; Zhao, Lili; Xu, Feng; Hu, Yiqiao

    2013-01-01

    Near-infrared (NIR) dyes, small organic molecules that function in the NIR region, have received increasing attention in recent years as diagnostic and therapeutic agents in the field of tumor research. They have been demonstrated great successes in imaging and treating tumors both in vitro and in vivo. And their different applications in clinical practices have made rapid gains. This review primarily focuses on the progress of the application of NIR dyes in tumor imaging and therapy. In particular, advances in the use of different NIR dyes in tumor-specific imaging, photothermal, and photodynamic therapies are discussed. Limitations and prospects associated with NIR dyes in diagnostic and therapeutic application are also reviewed.

  1. Low HAP/VOC Compliant Resins for Military Applications

    Science.gov (United States)

    2011-09-01

    on lauric acid FAVE-O fatty acid vinyl ester resin system based on octanoic acid FTIR Fourier transform infrared GIC Mode 1 fracture energy...temperature and could potentially produce smog-promoting ozone as well as long-term and acute health effects. VOC/HAPs are emitted during all phases of...Viscosity ា cP at 25 °C (MOct) Unreacted epoxy FTIR *, NMR* No epoxy present None detected Correct reactant ratios NMR Methacrylate to FA ratio of 1:1

  2. Synthesis and application of amino resinous intumescent flame retardants

    Institute of Scientific and Technical Information of China (English)

    Ming GAO; Rongjie YANG

    2009-01-01

    A kind of amino resinous intumescent flame retardants (IFR) was firstly synthesized, and the structure of the main composition was determined to be a caged bicyclic macromolecule containing phosphorus. The 30% weight of IFR was added into the flexible polyurethane foam (FPUF) to get retardant FPUF which has 26.5% of the limiting oxygen index. The date of CONE show that the heat release, smoke and gas of the flame retardant FPUF are much decreased and the activation energy decreases by 54kJ-mor1. It shows that the IFR can catalyze decomposition and carbonization of FPUF.

  3. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS... (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W...

  4. Evaluation of Apical Sealing Ability of a Dentin Bonding Agent and Epoxy Resin used as Root Canal Sealer - An In Vitro Dye Leakage Study

    Directory of Open Access Journals (Sweden)

    Srinidhi Surya Raghavendra

    2012-01-01

    Full Text Available Objectives: Total obliteration of the canal space and perfect sealing of the apical foramen with an inert, dimensionally stable and biologically compatible material are the goals for successful endodontic treatment. A microscopic layer of debris is formed during bio-mechanical preparation of the canal called Smear layer. This interferes with adhesion and penetration of canal sealers and its removal is necessary. Dentin bonding agents have been studied extensively for their adhesive properties in restorative dentistry and recently as root canal sealers. Microleakage studies of their sealing abilities are few. Materials and Methods: This study evaluated sealing efficacy of a dentin bonding agent when used as root canal sealer along with AH26, an epoxy resin sealer and the effect of the smear layer on the sealing ability. 60 extracted maxillary anterior teeth were taken, sectioned at the Cemento enamel junction, cleaned and shaped with 2% K files. They were divided into 4 groups, GroupsAandBwithoutEDTApre-treatment and GroupsCandDwithEDTApre-treatment. GroupsAandCwere obturated withAH26 and Groups B and D were obturated with dentin bonding agent Polibond andAH26 with gutta percha and lateral condensation method. Apical dye penetration was measured using 2% Methylene Blue and evaluated with stereo microscope. Results were tabulated and statistical analysis done. Results: The chemically cured bonding agent Polibond used with AH26 showed significantly less apical leakage when smear layer was removed before obturation. Conclusion: Use of dentin bonding agents and resin sealers in root canal obturations achieves effective apical sealing when used with gutta percha. This improves the success of endodontic therapy.

  5. Photolysis of hexaarylbiimidazole sensitized by dyes and application in photopolymerization

    Institute of Scientific and Technical Information of China (English)

    GAO, Fang(高放); XU, Jin- Qi(徐锦棋); SONG, Xiao-You(宋晓友); LI, Li-Dong(李立东); YANG, Yong-Yuan(杨永源); FENG, Shu-Jing(冯树京)

    2000-01-01

    Kinetic studies on the near-UV photo-initiating polymerization of methylmethacrylate (MMA) sensitized by dye/hexaarylbiimidazole systems were carried out. When exposed to highpressure mercury lamp (filtered by Pyrex glass), dye/hexaarylbiimidazole system undergoes quick electron transfer and free radicals are produced. RSH, as hydrogen donor, can improve the polymerization efficiency of MMA. Comparisons of influence of different dyes and different RSH on the conversion of MMA photopolymerization were carried out. Excellent results have been obtained in photoimaging studies, e.g. a minimum exposure energy of the photosensitive systems of 8 mJ/cm2 can be reached and the resolution of presensitized printing plate was ca. 10μm.

  6. Development of vibration-damping resins for room-temperature application

    Science.gov (United States)

    Taniuchi, Mamoru; Takatsuka, Kohro; Fujiwara, Haruo; Korida, Kazuhiko

    1991-03-01

    Copolymers of vinyl acetate, n-butyl acrylate, VeoVa 10, and acrylic acid were prepared in order to develop new high vibration-damping resins for vibration-damping composite steel sheets for room-temperature application. The characteristics of the resins were affected by the properties of each monomer used. Vinyl acetate and n-butyl acrylate were known to have good vibration-damping properties around room temperatures. We found that VeoVa 10 had a pronounced effect on the lowering of the melt viscosity. Acrylic acid was added to improve the adhesion performance with steel sheets. The composite steel sheets produced using these resins exhibited a high loss factor of approximately 0.3 to 0.4 at 20 °C to 30 °C and 250 Hz. The melt viscosity was in the 5 to 20 Pa · s range at 180 °C.

  7. Studies on application of annatto (Bixa orellena L.) dye formulations in dairy products

    OpenAIRE

    Sathiya Mala, Kripanand; Prabhakara Rao, Pamidighantam; Prabhavathy, Manda Babu; Satyanarayana, Akula

    2013-01-01

    Annatto is often used to add color to dairy products such as butter, cheese, or puddings. In India usage of annatto is restricted to butter and cheese, however there are no tailor made formulations available to obtain standardized colour shades for the products. Hence a study was initiated to develop the appropriate annatto dye formulations and level of application in few dairy products (butter, cheese, paneer, biscuit cream, icing cream). Dye extracted from annatto seeds was used for the pre...

  8. Recyclable epoxy resins: An example of green approach for advanced composite applications

    Science.gov (United States)

    Cicala, Gianluca; Rosa, Daniela La; Musarra, Marco; Saccullo, Giuseppe; Banatao, Rey; Pastine, Stefan

    2016-05-01

    Automotive composite applications are increasingly growing due to demand for lightweight structures to comply to the requirements for fuel reduction. HP-RTM is gaining relevance as one of the preferred production technologies for high volume applications. The BMW i3 life module being a notable example of HP-RTM application. The key aspects of HP-RTM are the short injection times (i.e. less than 1min) and the fast curing of the thermoset resins (i.e. less than 10min). The choice of using thermosets poses relevant issues for their limited recycling options. The standard recycling solution is the incineration but, this solution poses some concerns in terms of global environmental impact. Novel solutions are presented in this work based on the use of recyclable epoxy systems. In our work the results of experimentation carried out by our group with cleavable ammines by Connora Technologies and bioepoxy resins by Entropy Resins will be discussed. The multiple uses of recycled matrices obtained treating the recyclable epoxy resins are discussed in the framework of a "cradle" to "crave" approach. Finally, Life Cycle Assessment (LCA) is used to evaluate the environmental benefits of the proposed approach.

  9. Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.

    Science.gov (United States)

    Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A

    2015-02-07

    The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 μm, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions.

  10. Application of four dyes in gene expression analyses by microarrays

    NARCIS (Netherlands)

    Staal, Y.; van Herwijnen, M.H.M.; van Schooten, F.J.; van Delft, J.H.M.

    2005-01-01

    BACKGROUND: DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. RESULTS: Following

  11. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications.

    Science.gov (United States)

    Liu, Xiaogang; Cole, Jacqueline M; Waddell, Paul G; Lin, Tze-Chia; Radia, Jignesh; Zeidler, Anita

    2012-01-12

    Coumarin derivatives are used in a wide range of applications, such as dye-sensitized solar cells (DSCs) and dye lasers, and have therefore attracted considerable research interest. In order to understand the molecular origins of their optoelectronic properties, molecular structures for 29 coumarin laser dyes are statistically analyzed. To this end, data for 25 compounds were taken from the Cambridge Structural Database and compared with data for four new crystal structures of coumarin laser dyes [Coumarin 487 (C(19)H(23)NO(2)), Coumarin 498 (C(16)H(17)NO(4)S), Coumarin 510 (C(20)H(18)N(2)O(2)), and Coumarin 525 (C(22)H(18)N(2)O(3))], which are reported herein. The competing contributions of different resonance states to the bond lengths of the 4- and 7-substituted coumarin laser dyes are computed based on the harmonic oscillator stabilization energy model. Consequently, a positive correlation between the contribution of the para-quinoidal resonance state and the UV-vis peak absorption wavelength of these coumarins is revealed. Furthermore, the perturbations of optoelectronic properties, owing to chemical substituents in these coumarin laser dyes, are analyzed: it is found that their UV-vis peak absorption and lasing wavelengths experience a red shift, as the electron-donating strength of the 7-position substituent increases and/or the electron-withdrawing strength of the 3- or 4-position substituent rises; this conclusion is corroborated by quantum-chemical calculations. It is also revealed that the closer the relevant substituents align with the direction of the intramolecular charge transfer (ICT), the larger the spectral shifts and the higher the molar extinction coefficients of coumarin laser dyes. These findings are important for understanding the ICT mechanism in coumarins. Meanwhile, all structure-property correlations revealed herein will enable knowledge-based molecular design of coumarins for dye lasers and DSC applications.

  12. Debundling and Selective Enrichment of SWNTs for Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    F. Bonaccorso

    2010-01-01

    Full Text Available We present an overview of the recent developments in de-bundling and sorting of Single-Wall Carbon Nanotubes (SWNTs, which are useful for hi-tech applications in dye sensitized solar cells (DSSCs. Applications of SWNTs as transparent and conductive films, catalyst, and scaffold in DSSCs are also reviewed.

  13. Synthesis and Application of a New Acrylic Ester Resin for Recycling SIPA from its Water Solution

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new acrylic ester polymer YWB-7 resin was prepared and characterized. The properties of YWB-7 resin were compared with those of the commercial Amberlite XAD-7, Diaion HP2MG and hypercrosslinked macroporous polymer NDA-150 resins. Both surface area and micropore area of YWB-7 resin were bigger than those of XAD-7 resin and HP2MG resin. The YWB-7 resin was successfully employed to recycle 5-sodiosulfoisophthalic acids (SIPA) from its solutions with and without methanol.

  14. An enhanced mangiferaindica for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Uno, U. E., E-mail: moses.emetere@covenantuniversity.edu.ng [Department of Physics, Federal University of Technology, Minna (Nigeria); Emetere, M. E., E-mail: uno-essang@yahoo.co.uk [Department of Physics, Covenant University, Ota (Nigeria); Fadipe, L. A. [Department of Chemistry, Federal University of Technology, Minna (Nigeria); Oluranti, Jonathan, E-mail: jonathan.oluranti@covenantuniversity.edu.ng [Department of Computer & Information Sciences, Covenant University, Ota (Nigeria)

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO{sub 2} conductive. The DSSC fabricated consist of 2.25 cm{sup 2} active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10{sup −2}, current density (Jsc)=4.07×10{sup −2}, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  15. An enhanced mangiferaindica for dye sensitized solar cell application

    Science.gov (United States)

    Uno, U. E.; Emetere, M. E.; Fadipe, L. A.; Oluranti, Jonathan

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO2 conductive. The DSSC fabricated consist of 2.25 cm2 active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10-2, current density (Jsc)=4.07×10-2, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  16. Application of solid phase microextraction on dental composite resin analysis.

    Science.gov (United States)

    Wang, Ven-Shing; Chang, Ta-Yuan; Lai, Chien-Chen; Chen, San-Yue; Huang, Long-Chen; Chao, Keh-Ping

    2012-08-15

    A direct immersion solid phase microextraction (DI-SPME) method was developed for the analysis of dentin monomers in saliva. Dentine monomers, such as triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA) and 2,2-bis-[4-(2-hydroxy-3-methacryloyloxypropoxy) phenyl]-propane (Bis-GMA), have a high molecular weight and a low vapor pressure. The polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber with a medium polarity was employed for DI-SPME, and 215 nm of detection wavelength was found to be optimum in the chromatogram of HPLC measurement. The calibration range for DI-SPME was 0.30-300 μg/mL with correlation coefficients (r) greater than 0.998 for each analyte. The DI-SPME method achieved good accuracy (recovery 96.1-101.2%) and precision (2.30-8.15% CV) for both intra- and inter-day assays of quality control samples for three target compounds. Method validation was performed on standards dissolved in blank saliva, and there was no significant difference (p>0.2) between the DI-SPME method and the liquid injection method. However, the detection limit of DI-SPME was as low as 0.03, 0.27 and 0.06 μg/mL for TEGDMA, UDMA and Bis-GMA, respectively. Real sample analyses were performed on commercial dentin products after curing for the leaching measurement. In summary, DI-SPME is a more sensitive method that requires less sample pretreatment procedures to measure the resin materials leached in saliva.

  17. An in vitro study on effect of Delmopinol application on Candida albicans adherence on heat cured denture base acrylic resin: A thorough study

    Directory of Open Access Journals (Sweden)

    Deshraj Jain

    2013-01-01

    Conclusion: Heat-cured acrylic resin shows greater reduction in adherence of Candida albicans by contamination after Delmopinol application as compared with contamination before Delmopinol application.

  18. Color stability and flexural strength of poly (methyl methacrylate) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: an in vitro study.

    Science.gov (United States)

    Gujjari, Anil K; Bhatnagar, Vishrut M; Basavaraju, Ravi M

    2013-01-01

    To evaluate the color stability and flexural strength of poly (methyl methacrylate) (PMMA) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA) (Group A), and one Protemp 4 Temporization Material (bis-acrylic composite) (Group B) were used. Disk-shaped specimens for color stability testing (n = 30 for each material) and bar-shaped specimens for flexural strength testing (n = 30 for each material) were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.

  19. New ion exchange resin designs and regeneration procedures yield improved performance for various condensate polishing applications

    Energy Technology Data Exchange (ETDEWEB)

    Najmy, S.W. [Dow Chemical Co., Midland, MI (United States)

    2002-07-01

    Condensate polishing is an application with many different design and operational aspects. The past decade has brought new challenges for improved water quality with respect to both soluble and insoluble contaminants. Nonetheless, the endeavors to understand the compositional complexities of the ion exchange resin bead and the convoluted dynamics of ion exchange chemistry and chemical engineering mechanisms occurring within the mixed bed condensate polisher have brought new ideas and expectations for ion exchange resin in deep-bed condensate polishers than ever before. The new products and procedures presented here are a collaboration of a great deal of effort on the part of researchers, consultants, system engineers, station chemists, lab technicians and others. The studies discussed in this paper unequivocally demonstrate the merits of: 1. A specially designed cation resin to achieve greater than 95% insoluble iron removal efficiency, 2. A less-separable mixed resin for improved control of reactor water sulfate in BWR primary cycles, 3. Applying increased levels of regeneration chemicals and retrofitting the service vessels with re-mixing capability to improve the operation of deep-bed condensate polishers in PWR secondary cycles. (authors)

  20. Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layers.

    Science.gov (United States)

    Trogé, Alexandre; O'Leary, Richard L; Hayward, Gordon; Pethrick, Richard A; Mullholland, Anthony J

    2010-11-01

    This paper describes the acoustic properties of a range of epoxy resins prepared by photocuring that are suitable for application in piezoelectric ultrasonic transducer matching layers. Materials, based on blends of diglycidyl ether of Bisphenol A and 1,4-cyclohexanedimethanol diglycidyl ether, are described. Furthermore, in order to vary the elastic character of the base resin, samples containing polymer microspheres or barium sulfate particles are also described. The acoustic properties of the materials are determined by a liquid coupled through transmission methodology, capable of determining the velocity and attenuation of longitudinal and shear waves propagating in an isotropic layer. Measured acoustic properties are reported which demonstrate materials with specific acoustic impedance varying in the range 0.88-6.25 MRayls. In the samples comprising blends of resin types, a linear variation in the acoustic velocities and density was observed. In the barium sulfate filled samples, acoustic impedance showed an approximately linear variation with composition, reflecting the dominance of the density variation. While such variations can be predicted by simple mixing laws, relaxation and scattering effects influence the attenuation in both the blended and filled resins. These phenomena are discussed with reference to dynamic mechanical thermal analysis and differential scanning calorimetry of the samples.

  1. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium.

    Science.gov (United States)

    Ates, Sabit Melih; Korkmaz, Fatih Mehmet; Caglar, Ipek Satıroglu; Duymus, Zeynep Yeşil; Turgut, Sedanur; Bagis, Elif Arslan

    2017-07-01

    The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey's HSD post hoc test were used to analyse the data (P < 0.05). The highest bond strength values were observed in the laser application group, while the lowest values were observed in the grinding group. Sandblasting and laser application resulted in significantly higher bond strengths than control treatment (P < 0.05). Ultrafast fiber laser treatment and sandblasting may improve the bond strength between resin cement and titanium.

  2. Novel application of low pH-dependent fluorescent dyes to examine colitis

    Directory of Open Access Journals (Sweden)

    Watanabe Osamu

    2010-01-01

    Full Text Available Abstract Background Endoscopy capable of fluorescence observation provides histological information on gastrointestinal lesions. We explored the novel application of low pH-dependent fluorescent dyes for fluorescence observation of crypt structure and inflammatory cell infiltration in the colon. Methods Low pH-dependent fluorescent dyes were applied to the colonic mucosa of normal mice for observation under fluorescence stereomicroscopy system. We also examined mouse models of colitis, which were induced by trinitrobenzenesulfonic acid, dextran sulfate sodium or interleukin-10 deficiency. Results Topical application of low pH-dependent fluorescent dyes revealed crypts as ring-shaped fluorescent stains by visualizing the mucin granules of goblet cells. Because of the minimal fluorescence intensity of the low pH-dependent fluorescent dyes in phosphate-buffered saline, it was not necessary to wash the mucosa before the fluorescence observation. 4-Nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ was quicker to achieve complete staining (three minutes than LysoSensor Green DND-153 and DND-189 (20 minutes. In each type of colitis, NBD-PZ revealed the destruction of the crypts as the disappearance of the ring-shaped fluorescent stains and the infiltration of inflammatory cells as the aggregation of punctate fluorescent stains through visualization of lysosomes. Conclusions Low pH-dependent fluorescent dyes, especially NBD-PZ, are suitable for topical application to the colonic mucosa and have characteristics that allow for the histological examination of colitis.

  3. Preparation and application of a novel magnetic anion exchange resin for selective nitrate removal

    Institute of Scientific and Technical Information of China (English)

    Yang Zhou; Chen Dong Shuang; Qing Zhou; Man Cheng Zhang; Peng Hui Li; Ai Min Li

    2012-01-01

    A novel magnetic anion exchange resin NDM-1 was prepared through suspension polymerization and then functionalized with ammonolysis and alkylating agents.Its application for selective removal of nitrate was performed in comparison with MIEX(R).The results demonstrated that NDM-1 achieved higher efficiency in nitrate removal than MIEX(R) did,with or without the existence of competing anion SO42-ascribed to its longer alkyl chains on exchange sites.Combined with the advantage of easy separation due to γ-Fe2O3 implanted,the magnetic anion exchange resin NDM-1 was considered to be superior to MIEX(R) for nitrate removal in practical application.

  4. Synthesis and characterization of PET polymer resin for your application in concrete

    OpenAIRE

    Mendivil Escalante, José M.; Gómez Soberón, José Manuel Vicente; Almaral Sánchez, Jorge Luis; Corral Higuera, Ramón; Arredondo Rea, Susana Paola; Castro Beltrán, Andrés; Cabrera Covarrubias, Francisca Guadalupe

    2015-01-01

    Due to the problem that represents the accelerated production of waste from the consumption of polyethylene terephthalate (PET), it becomes necessary to look for alternative solutions; chemical recycling is a suitable method for conversion into a material with potential application in concrete additive, such as are unsaturated polyester resins; with the above improvements, and conservation of non-renewable raw materials can reduce the environmental impact. This investi...

  5. Synthesis and characterization of PET polymer resin for your application in concrete

    OpenAIRE

    Mendivil Escalante, José M.; Gómez Soberón, José Manuel Vicente; Almaral Sánchez, Jorge Luis; Corral Higuera, Ramón; Arredondo Rea, Susana Paola; Castro Beltrán, Andrés; Cabrera Covarrubias, Francisca Guadalupe

    2014-01-01

    Due to the problem that represents the accelerated production of waste from the consumption of polyethylene terephthalate (PET), it becomes necessary to look for alternative solutions; chemical recycling is a suitable method for conversion into a material with potential application in concrete additive, such as are unsaturated polyester resins; with the above improvements, and conservation of non-renewable raw materials can reduce the environmental impact. This investigation was focused...

  6. Thermo-mechanical properties of commercially available epoxy resins for structural applications

    OpenAIRE

    2015-01-01

    Externally bonded (EB) or Near-Surface-Mounted (NSM) composite reinforcements are often bonded to a cementitious substrate by means of commercially available epoxies. These twocomponent- resins are generally ‘cold-curing’ (at room temperature), having however the ability to cure faster under elevated temperatures. One application requesting such an accelerated curing process is the gradient anchorage for strengthening of concrete structures with prestressed CFRP laminates, based o...

  7. Transition Metal Dithiolene Near-IR Dyes and Thier Applications in Liquid Crystal Devices

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, K.L.; Painter, G.; Lotito, K.; Noto, A.G.; Chang, P.

    2006-08-18

    Numerous commercial and military applications exist for guest–host liquid crystal (LC) devices operating in the near- to mid-IR region. Progress in this area has been hindered by the severe lack of near-IR dyes with good solubility in the LC host, low impact on the inherent order of the LC phase, good thermal and chemical stability, and a large absorbance maximum tunable by structural modification over a broad range of the near-IR region. Transition metal complexes based on nickel, palladium, or platinum dithiolene cores show substantial promise in meeting these requirements. In this paper, we overview our past and present activities in the design and synthesis of transition metal dithiolene dyes, show some specific applications examples for these materials as near-IR dyes in LC electro-optical devices, and present our most recent results in the computational modeling of physical and optical properties of this interesting class of organometallic optical materials.

  8. Epoxy resins.

    Science.gov (United States)

    Bray, P G

    1999-01-01

    Epoxy resins have an extraordinarily broad range of commercial applications, especially as protective surface coatings and adhesives. Epoxy resin systems include combinations of epoxy monomers, hardeners, reactive diluents, and/or a vast array of other additives. As a result, an epoxy resin system may have a number of chemical ingredients with the potential for attendant health hazards. Most, but not all, of these health hazards arise in the occupational setting. The most frequent adverse effects are irritation or allergic mechanisms involving the dermal and respiratory systems. Sensitization usually is caused by low molecular weight or short-chain compounds. This review discusses the diagnosis, treatment, and prevention of epoxy resin-related adverse health effects.

  9. Synthesis and application of monodisperse oligo(oxyethylene)-grafted polystyrene resins for solid-phase organic synthesis.

    Science.gov (United States)

    Lumpi, Daniel; Braunshier, Christian; Horkel, Ernst; Hametner, Christian; Fröhlich, Johannes

    2014-07-14

    In a preliminary investigation by our group, we found that poly(styrene-oxyethylene) graft copolymers (PS-PEG), for example, TentaGel resins, are advantageous for gel-phase (13)C NMR spectroscopy. Because of the solution-like environment provided by the PS-PEG resins, good spectral quality of the attached moiety can be achieved, which is useful for nondestructive on-resin analysis. The general drawbacks of such resins are low loading capacities and the intense signal in the spectra resulting from the PEG linker (>50 units). Here, we describe the characterization of solvent-dependent swelling and reaction kinetics on a new type of resin for solid-phase organic synthesis (SPOS) that allows an accurate monitoring by gel-phase NMR without the above disadvantages. A series of polystyrene-oligo(oxyethylene) graft copolymers containing monodisperse PEG units (n = 2-12) was synthesized. A strong correlation between the linker (PEG) length and the line widths in the (13)C gel-phase spectra was observed, with a grafted PEG chain of 8 units giving similar results in terms of reactivity and gel-phase NMR monitoring to TentaGel resin. Multistep on-resin reaction sequences were performed to prove the applicability of the resins in solid-phase organic synthesis.

  10. ULTRAMINE: a high-capacity polyethylene-imine-based polymer and its application as a scavenger resin.

    Science.gov (United States)

    Roice, Michael; Christensen, Søren F; Meldal, Morten

    2004-09-20

    The synthesis of a novel high-loading polyethylene-imine resin (ULTRAMINE) is described, and its application as a scavenger resin in various acylation reactions is demonstrated. The inverse suspension polymerization technique was used for the synthesis of well-defined spherical polymer beads. Polymer beads with different cross-linking densities were synthesized according to the degree of acryloylation of the polyethylene-imine polymer. The resin was characterized by various spectroscopic techniques. The size, shape, and morphological features of the resin were demonstrated by microscopy. The resin showed excellent swelling properties in both polar and nonpolar solvents. The chemical stability of the resin in various reagents and solvents was investigated and monitored by IR spectroscopy. The mechanical stability of the beads was determined by a single-bead compressive experiment. The ULTRAMINE beads can be used as an excellent scavenger for excess acylating reagent, as demonstrated for a variety of reactions. ULTRAMINE-red resin was derived from ULTRAMINE through exhaustive reduction of the amide carbonyl groups to yield an all-amine resin.

  11. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Asma, E-mail: asmadr@wol.net.pk [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan); Sharif, Mehwish [School of Biological Sciences, University of the Punjab, Lahore 54590 (Pakistan); Iqbal, Muhammad [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan)

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation {>=}0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g{sup -1}. The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  12. Synthetic Dye - Inorganic Salt Hybrid Colorants for Application in Thermoplastics

    Directory of Open Access Journals (Sweden)

    Hong-Wen Gao

    2011-06-01

    Full Text Available Common synthetic dyes, e.g., Weak Acid Pink Red B (APRB, C.I. 18073, Mordant Blue 9 (MB, C.I.14855 and Acid Brilliant Blue 6B (ABB6B, C.I. 42660, can be removed from water by in situ hybridization with CaCO3, BaSO4 and Ca3(PO42 and the resulting hybrids thus prepared used as plastic colorants. All the hybrids can be processed into polypropylene (PP at 200 °C with good color intensity, color brightness and homogeneous dispersion. The BaSO4-MB hybrid exhibits better migration resistance to acid and alkali, and stronger covering power than the BaSO4-MB mixture. The thermal stability and UV resistance of the Ca3(PO42-ABB6B hybrid are better than those of the Ca3(PO42-ABB6B mixture. The crystallinity of PP is enhanced by incorporation of these hybrids and the use of these hybrids as colorants in PP instead of the dyes alone is determined to be feasible.

  13. Smooth coronal surface, resin restoration and microleakage.

    Science.gov (United States)

    Yanikoğlu, F; Türkmen, C; Kartal, N; Başaran, B

    1997-09-01

    The space between the resin and the cavity walls has always become interesting to search. The aim of this study was to evaluate any differences on leakage values of Class 5 type resin restorations prepared on surrounding surfaces of the tooth crown. Ninety human teeth were prepared as Class 5 cavities on buccal, lingual, mesial and distal surfaces and were randomly divided into groups for bevelling, groove preparation and as control. The subgroups were arranged as fluoride gel and/or sealant applications. Fluoride gel was applied following the cavity preparations. Sealant was applied over composite resin restorations. Treated teeth were thermocycled and immersed into dye solution for 96 hours. The restorations were evaluated in a stereo-microscope following the sectioning. Bevelling of the cavosurfaces and/or preparation of a groove addition to cavity procedures did not make any difference on the microleakage scores of the restorations done on either surfaces statistically.

  14. Bond Strength of Composite Resin to Pulp Capping Biomaterials after Application of Three Different Bonding Systems

    Directory of Open Access Journals (Sweden)

    Zahra Jaberi-Ansari

    2013-08-01

    Full Text Available Background and aims. Bonding of composite resin filling materials to pulp protecting agents produces an adhesive joint which is important for the quality of filling as well as success of restoration. We aimed to assess the bond strength of composite resin to three pulp capping biomaterials: Pro Root mineral trioxide aggregate (PMTA, Root MTA (RMTA and calcium enriched mixture (CEM cement, using three bonding systems [a total-etch (Single Bond and two self-etch systems (Protect bond and SE Bond]. Materials and methods. Ninety acrylic molds, each containing a 6×2-mm hole, were divided into 3 groups and filled with PMTA, RMTA and CEM cements. The samples in each experimental group were then randomly divided into 3 subgroups; Single Bond, Protect Bond and SE Bond bonding systems were applied to the tested materials. Cylindrical forms of composite resin (Z100, 2×2 mm were placed onto the samples and cured. Shear bond strength values were measured for 9 subgroups using a universal testing machine. Data were analyzed using two-way ANOVA. Results. The average shear bond strengths of Z100 composite resin after application of Single Bond, Protect Bond and SE Bond systems were as follows; PMTA: 5.1±2.42, 4.56±1.96 and 4.52±1.7; RMTA: 4.71±1.77, 4.31±0.56 and 4.79±1.88; and CEM cement: 4.75±1.1, 4.54±1.59 and 4.64±1.78 MPa, respectively. The type of pulp capping material, bonding system and their interacting effects did not have a significant effect on the bond strengths of composite resin to pulp capping biomaterials. Conclusion. Within the limitations of this in vitro study, bond strength of composite resin to two types of MTA as well as CEM cement were similar following application of the total-etch or self-etch bonding systems.

  15. Bond strength of composite resin to pulp capping biomaterials after application of three different bonding systems.

    Science.gov (United States)

    Jaberi-Ansari, Zahra; Mahdilou, Maryam; Ahmadyar, Maryam; Asgary, Saeed

    2013-01-01

    Background and aims. Bonding of composite resin filling materials to pulp protecting agents produces an adhesive joint which is important for the quality of filling as well as success of restoration. We aimed to assess the bond strength of composite resin to three pulp capping biomaterials: Pro Root mineral trioxide aggregate (PMTA), Root MTA (RMTA) and calcium enriched mixture (CEM) cement, using three bonding systems [a total-etch (Single Bond) and two self-etch systems (Protect bond and SE Bond)]. Materials and methods. Ninety acrylic molds, each containing a 6×2-mm hole, were divided into 3 groups and filled with PMTA, RMTA and CEM cements. The samples in each experimental group were then randomly divided into 3 sub-groups; Single Bond, Protect Bond and SE Bond bonding systems were applied to the tested materials. Cylindrical forms of composite resin (Z100, 2×2 mm) were placed onto the samples and cured. Shear bond strength values were measured for 9 subgroups using a universal testing machine. Data were analyzed using two-way ANOVA. Results. The average shear bond strengths of Z100 composite resin after application of Single Bond, Protect Bond and SE Bond systems were as follows; PMTA: 5.1±2.42, 4.56±1.96 and 4.52±1.7; RMTA: 4.71±1.77, 4.31±0.56 and 4.79±1.88; and CEM cement: 4.75±1.1, 4.54±1.59 and 4.64±1.78 MPa, respectively. The type of pulp capping material, bonding system and their interacting effects did not have a significant effect on the bond strengths of composite resin to pulp capping biomaterials. Conclusion. Within the limitations of this in vitrostudy, bond strength of composite resin to two types of MTA as well as CEM cement were similar following application of the total-etch or self-etch bonding systems.

  16. Microfibrillated Lignocellulose Enables the Suspension-Polymerisation of Unsaturated Polyester Resin for Novel Composite Applications

    Directory of Open Access Journals (Sweden)

    Yutao Yan

    2016-07-01

    Full Text Available A new route towards embedding fibrillated cellulose in a non-polar thermoset matrix without any use of organic solvent or chemical surface modification is presented. It is shown that microfibrillated lignocellulose made from cellulose with high residual lignin content is capable of stabilising an emulsion of unsaturated polyester resin in water due to its amphiphilic surface-chemical character. Upon polymerisation of the resin, thermoset microspheres embedded in a microfibrillated cellulose network are formed. The porous network structure persists after conventional drying in an oven, yielding a mechanically stable porous material. In an application experiment, the porous material was milled into a fine powder and added to the polyester matrix of a glass fibre-reinforced composite. This resulted in a significant improvement in fracture toughness of the composite, whereas a reduction of bending strength and stiffness was observed in parallel.

  17. Recent advances in the chemistry and applications of the Diphonix resins

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Chiarizia, R. [Argonne National Lab., IL (United States). Chemistry Div.; Alexandratos, S.D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Gula, M. [Eichrom Industries, Inc., Darien, IL (United States)

    1997-10-01

    The Diphonix class of ion exchange resins is characterized by the presence of geminally substituted diphosphonic acid groups chemically bonded to a polymer matrix. Regular Diphonix contains gem-diphosphonic groups chemically bonded to a sulfonated styrene-divinylbenzene matrix. Modification of the properties of Regular Diphonix are achieved by the introduction of additional functional groups such as anion exchange groups in Diphonix-A and phenolic groups in Diphonix-CS. Diphosil has a silica matrix in which the gem-diphosphonic groups are chemically bonded to an organic polymer graft that surrounds the silica particles. Applications of the Diphonix resins range from treatment of a variety of radioactive waste to iron control in hydrometallurgy and semiconductor manufacture.

  18. Natural dye extracted from karkadah and its application in dye-sensitized solar cells: experimental and density functional theory study.

    Science.gov (United States)

    Reda, S M; Soliman, K A

    2016-02-01

    This work presents an experimental and theoretical study of cyanidin natural dye as a sensitizer for ZnO dye-sensitized solar cells. ZnO nanoparticles were prepared using ammonia and oxalic acid as a capping agent. The calculated average size of the synthesized ZnO with different capping agents was found to be 32.1 nm. Electronic properties of cyanidin and delphinidin dye were studied using density functional theory (DFT) and time-dependent DFT with a B3LYP/6-31G(d,p) level. By comparing the theoretical results with the experimental data, the cyanidin dye can be used as a sensitizer in dye-sensitized solar cells. An efficiency of 0.006% under an AM-1.5 illumination at 100  mW/cm(2) was attained. The influence of dye adsorption time on the solar cell performance is discussed.

  19. Spectral Properties of a Water-Soluble Squaraine Dye and Its Application in Cell Fluorescent Imaging

    Science.gov (United States)

    Hu, L.; Yuan, H.; Li, Q. Q.; Jin, J. C.; Chang, W. G.; Yan, Z. Q.

    2015-09-01

    A water-soluble bis-1,3,5-trihydroxybenzene squaraine dye (t-OH-SQ) with a D-π-A-π-D conjugated structure was identified and prepared. After its structure was characterized by FTIR, 1H NMR and elemental analysis, the UV-Vis absorption and fluorescent spectra of the target dye were studied in detail. The results showed that t-OH-SQ combining multi-hydroxyl groups possessed excellent optical properties changing with pH and solvents. In aqueous solution under physiological pH ~ 7-8, it had especially high near-infrared fluorescence, which might be a latent application for cell fluorescent imaging.

  20. Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan-Hong; Liu, Rui-Rui [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Zhu, Kai-Li [College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000, Gansu (China); Song, Yan-Lin [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Geng, Zhi-Yuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China)

    2016-09-15

    A novel organic dye with 2D-A structure has been designed and calculated whereby density functional theory (DFT) and time-dependent density functional theory (TD-DFT) for dye-sensitized solar cells. The double-donor branched dye which was consisted of two separated light-harvesting moieties was beneficial to photocurrent generation. First, we discussed the effects of different donor chains on photoelectric performance in the dye molecule, using the DTP-B8 which was a previously reported structure as the reference. Only to conclude that the suitable length can achieve the satisfactory efficiency. Secondly, to modify and sift potential sensitizers further, three series of dyes (BC-series, CB-series and CC-series) were designed and characterized. The increased molar extinction coefficient and the red-shifted λ{sub max} was attributed to an increasing in electron conjunction. This work presented a new route to design sensitizers that provide two channels for donating more electrons and improve the final efficiency. It is expected to provide some theoretical guidance on designing and synthetizing high efficiency photosensitive dye in the future experiments. - Highlights: • A novel organic dye with 2D-A structure was designed and characterized. • The double-donor branched dye was consisted of two separated light-harvesting paths. • The double-donor branched dye was beneficial to photocurrent generation. • The molar extinction coefficient was greatly improved in this novel structure. • Four promising candidates have been screened out.

  1. Atomistic mechanism of charge separation upon photoexcitation at the dye-semiconductor interface for photovoltaic applications.

    Science.gov (United States)

    Jiao, Yang; Ding, Zijing; Meng, Sheng

    2011-08-01

    Charge separation in excited states upon visible light absorption is a central process in photovoltaic solar cell applications. Employing state-of-the-art first principles calculations based on time-dependent density functional theory (TDDFT), we simulate electron-hole dynamics in real time and illustrate the microscopic mechanism of charge separation at the interface between organic dye molecules and oxide semiconductor surfaces in dye-sensitized solar cells. We found that electron-hole separation proceeds non-adiabatically on an ultrafast timescale <100 fs at an anthocyanin/TiO(2) interface, and it is strongly mediated by the vibrations of interface Ti-O bonds, which anchor the dye onto the TiO(2) surface. The obtained absorption spectrum and electron injection timescale agree with experimental measurements.

  2. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics.

    Science.gov (United States)

    Kondo, Tadashi; Hirohashi, Setsuo

    2006-01-01

    Proteome data combined with histopathological information provides important, novel clues for understanding cancer biology and reveals candidates for tumor markers and therapeutic targets. We have established an application of a highly sensitive fluorescent dye (CyDye DIGE Fluor saturation dye), developed for two-dimensional difference gel electrophoresis (2D-DIGE), to the labeling of proteins extracted from laser microdissected tissues. The use of the dye dramatically decreases the protein amount and, in turn, the number of cells required for 2D-DIGE; the cells obtained from a 1 mm2 area of an 8-12 microm thick tissue section generate up to 5,000 protein spots in a large-format 2D gel. This protocol allows the execution of large-scale proteomics in a more efficient, accurate and reproducible way. The protocol can be used to examine a single sample in 5 d or to examine hundreds of samples in large-scale proteomics.

  3. The application of the derivative IR-spectroscopy and HPLC-ESI-MS/MS in the analysis of archaeology resin.

    Science.gov (United States)

    Zareva, S; Kuleff, I

    2010-07-01

    The applicability of the reducing-difference procedure for the interpretation of the conventional IR-spectroscopy as successful scientific technique for the analysis of ancient and modern resins has been demonstrated. The new temperature tool for modeling of the ancient resin samples has also been shown. The experimental infrared data are supported by the hydride approach of HPLC-MS-MS with ES-ionisation. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Micro-shear bond strength of resin cement to dentin after application of desensitizing toothpastes.

    Science.gov (United States)

    Bavbek, Andac Barkin; Goktas, Baris; Cekic-Nagas, Isil; Egilmez, Ferhan; Ergun, Gulfem; Eskitascioglu, Gurcan

    2013-01-01

    The aim of the study was to evaluate the effect of three desensitizing toothpastes on bonding of resin cements to dentin. The occlusal surfaces of 72 maxillary third molars were ground to obtain flat dentin surfaces and then divided into three groups according to three desensitizing toothpastes used: Sensodyne Rapid Relief (GlaxoSmithKline, SmithKline Beecham Ltd., Slough, UK), Signal Sensitive Expert (Unilever Sanayi ve Ticaret Türk A.Ş., Ümraniye, İstanbul, Turkey) and Colgate Sensitive Pro-Relief (Colgate Palmolive, New York, NY). Following bonding of the resin cement (Clearfil™ SA Cement, Kuraray Co, Osaka, Japan) to dentin, the specimens were light cured for 40 s with a LED (Elipar S10, 3M Espe, St. Paul, MN). The strength measurements were accomplished with a micro-shear testing machine (Bisco, Schaumburg, IL) at a cross-head speed of 0.5 mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). ANOVA revealed that the application of desensitizing toothpastes had significant effects on bond strength of the resin cement tested to dentin (p < 0.05). Mixed failures were observed in all of the groups. The use of a desensitizing toothpaste before cementation might alter the bond strength of adhesively luted restorations.

  5. Cationic triangulenes and helicenes: synthesis, chemical stability, optical properties and extended applications of these unusual dyes.

    Science.gov (United States)

    Bosson, Johann; Gouin, Jérôme; Lacour, Jérôme

    2014-04-21

    Cationic triangulenes and helicenes are highly stable carbocations with planar and helical conformations respectively. These moieties are effective dyes with original absorption and emission properties. Over the last decade, they have received greater attention and are considered as valuable tools for the development of innovative applications. In this review, the synthesis of these unique compounds is presented together with their core chemical and physical properties. Representative applications spanning from surface sciences to biology and chemistry are presented.

  6. Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuancheng Qin

    2012-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.

  7. The extraction and absorption study of natural dye from Areca catechu for dye sensitized solar cell application

    Science.gov (United States)

    Najm, Asmaa Soheil; Mohamad, Abu Bakar; Ludin, Norasikin A.

    2017-05-01

    Natural dye from local plant has a potential to replace the synthetic dye due to the lower environmental impact and simple processing method. This study focus on the properties of natural dye (Betalain) from Areca catechu, extracted using different solvents, namely hexane, ethanol, acetonitrile, and methanol. Different extracting solvent were used to observe the absorption spectra by using UV-Vis absorption spectroscopy. Fourier transforms infrared (FTIR) were used to characterize the dye's active components at (4000 - 650) cm-1. From the FTIR result, the CO=OH which corresponds to the carboxylic group in betalain dye is observed. Hexane was appeared to be the best solvents according to the highest absorbance obtained from betalain. The optimum pH and temperature for extraction were also identified at pH 4.5 and 65 °C. At these conditions, the absorbance was the highest.

  8. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; Bilsel, Osman; Li, Zhanjun; Lee, Hyungseok; Zhang, Zijiao; Li, Dongsheng; Fan, Wei; Duan, Chunying; Chan, Emory M.; Lois, Carlos; Xiang, Yang; Han, Gang

    2016-01-26

    Near Infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) have recently been proposed in order to broaden the absorption range and to boost upconversion efficiency. However, implementing this strategy has been limited only to bare core UCNP structures that are faintly luminescent. Herein, we report on an approach to achieve significantly enhanced upconversion luminescence in dye-sensitized core-active shell UCNPs with a broadened absorption range via the doping of ytterbium ions in the UCNP shell in order to bridge the energy transfer from the dye to the UCNP core. As a result, we have been able to synergize the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement). The absolute quantum yield of our dye-sensitized core/active shell UCNPs at 800 nm was determined to be ~6% at 2 W/cm2, about 33 times larger than the highest value reported to date for existing 800 nm excitable UCNPs. Moreover, for the first time, by using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a wavelength that is compatible with deep tissue penetrable near the infrared wavelength at 800 nm. Finally, amphiphilic triblock copolymer, Pluronic F127 coatings permit the transfer of hydrophobic UCNPs into water, resulting in water-soluble nanoparticles with well-preserved optical property in aqueous solution. We believe that this research offers a new solution to enhance upconversion efficiency for photonic and biophotonic purposes and opens up new opportunities to use UCNPs as a NIR relay for optogenetic applications.

  9. Synthesis and Application of Acid Dyes Based on 3-(4-Aminophenyl-5-benzylidene-2-substituted phenyl-3, 5-dihydroimidazol-4-one

    Directory of Open Access Journals (Sweden)

    Devang N. Wadia

    2008-01-01

    Full Text Available A series of eight novel heterocyclic based monoazo acid dyes were synthesized using various substituted imidazol-4-one as diazo component and coupled with various amino-napthol sulphonic acids. The resultant dyes were characterized using standard spectroscopic methods and then dyeing performance on wool fabric was assessed. Final results concluded that exhaustion (%E of the dyes on wool fibers increased with decreasing pH of application and that fixation (%F of the dyes on wool fibers increased with increasing pH of application and the highest total fixation efficiency was achieved at pH 5. Wash and light fastness properties of prepared dyes showed encouraging results.

  10. Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications

    Directory of Open Access Journals (Sweden)

    Manfred Döring

    2010-08-01

    Full Text Available The recent implementation of new environmental legislations led to a change in the manufacturing of composites that has repercussions on printed wiring boards (PWB. This in turn led to alternate processing methods (e.g., lead-free soldering, which affected the required physical and chemical properties of the additives used to impart flame retardancy. This review will discuss the latest advancements in phosphorus containing flame retardants for electrical and electronic (EE applications and compare them with commercially available ones. The mechanism of degradation and flame retardancy of phosphorus flame retardants in epoxy resins will also be discussed.

  11. Novel D––A dye sensitizers of polymeric metal complexes with triphenylamine derivatives as donor for dye-sensitized solar cells: synthesis, characterization and application

    Indian Academy of Sciences (India)

    Guipeng Tang; Jun Zhou; Wei Zhang; Jiaomei Hu; Dahai Peng; Qiufang Xie; Chaofan Zhong

    2015-04-01

    Because of being the key component of dye-sensitized solar cells and acting as an important role, dye sensitizer and its synthesis and application has been extensively researched. In this paper, four novel polymeric metal complexes with D––A structure that use 4-(octyloxymethyl)-N, N-diphenylbenzenamine as donor group (D), C=N bondasa -conjugation linkage (), and transition metal complexes as an acceptor (A), were functionally designed and synthesized. All the four polymeric metal complexes exhibited some photovoltaic performance, the highest photoelectric conversion efficiency of compound P4 reached 1.09% (sc = 2.55 mA cm−2, oc = 0.61 V and FF = 70.14%) under simulate AM 1.5 G solar irradiation. A new path for the synthesis and study of the dye sensitizer was provided.

  12. Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.

    Science.gov (United States)

    Gong, Honghong; Liu, Mingzhu; Zhang, Bing; Cui, Dapeng; Gao, Chunmei; Ni, Boli; Chen, Jiucun

    2011-12-01

    The aim of this study was to prepare oxidized guar gum with a simple dry method, basing on guar gum, hydrogen peroxide and a small amount of solvent. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The product was characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, scanning electron microscopy and differential scanning calorimetry. The hydrated rate of guar gum and oxidized guar gum was estimated through measuring the required time when their solutions (1%, w/v) reached the maximum viscosity. The effects of the salt concentration and pH on viscosity of the resultant product were studied. The mixed paste containing oxidized guar gum and carboxymethyl starch was prepared and its viscosity was determined by the viscometer. The rheological property of the mixed paste was appraised by the printing viscosity index. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the mixed paste could partially replace sodium alginate as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing.

  13. Polypyridyl transition metal complexes with application in water oxidation catalysis and dye-sensitised solar cells

    OpenAIRE

    Rudd, Jennifer A.

    2012-01-01

    This thesis contains complementary synthetic and computational studies of transition metal complexes with polypyridyl ligands for use either as water oxidation catalysts or for application in dye-sensitised solar cells (DSSCs). Chapter 1 introduces the reasons for researching water splitting catalysts and describes a number of current techniques used to do so; from photoelectrochemical cells to the use of transition metal polypyridyl complexes. It also introduces three commercially avail...

  14. LIQUID DYES'CHARACTERISTICS IN DYEING WASTE PAPER PULP AND THEIR APPLICATION

    Institute of Scientific and Technical Information of China (English)

    XiaopingWang; gangChen; AiminTang; HongweiZhang

    2004-01-01

    In this paper, some liquid dyes were used to dye the waste paper pulp (OCC pulp and waste cement sack paper pulp), and their dyeing characteristics were analyzed, The liquid dyes include liquid basic yellow, liquid basic blue, liquid basic red, liquid basic orange, liquid basic brown and liquid direct black. We found that, each dye had its own dyeing characteristic while dyeing the waste paper pulp. Generally different types of liquid dyes were combined to dye the waste paper pulp, which the adding process must be noticed. We also observed that a black pigment could be applied together withsaid liquid dyes to dye or adjust the color of the bottom sheet for the fireproof board. We could also achieve the same dyeing result through different combinations of different dyes.

  15. The influence of lining techniques on the marginal seal of Class II composite resin restorations.

    Science.gov (United States)

    Blixt, M; Coli, P

    1993-03-01

    Various sealing techniques using a light-curing dental adhesive (Scotchbond 2) and bulk application of a light-curing resin-bonded ceramic were examined in 203 Class II cavities. Different pretreatment procedures and lining materials were used, and in one series resin impregnation of the contraction gap was included. The presence of gaps or leakage was disclosed either by a dye or a fluorescent resin penetration technique. In many restorations, Scotchbond 2 and a light-curing glass-ionomer lining did not prevent gap formation at the cervical wall. The gap usually occurred between the liner and the dentin, with dye penetration into the dentin. Three liners, one containing polytrifluorethylene sodium fluoride and calcium fluoride, one containing polyamide resin, and one containing calcium hydroxide, did not prevent dye penetration to the dentin at all; good dentinal protection was frequently observed, however, in cavities treated with a hydrophilic shellac film prior to placement of a polystyrene liner. The best results were observed when dentinal treatment with this lining system was followed by resin impregnation of the contraction gap after the composite resin had set.

  16. The application of nanotechnology in the improvement of dental composite resins

    Institute of Scientific and Technical Information of China (English)

    Xia Yang; Xie Haifeng; Zhang Feimin; Gu Ning

    2012-01-01

    In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the back- ground of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial properties and mechanical properties of composite resins. The results show that the use of nanotechnology and nano materials can be an effective method to improve the performance of dental composite resins in a various ways. At last, the paper also discusses the perspective about the dental composite resins.

  17. Tunable lasers for waste management photochemistry applications. [Dye lasers, excimer lasers, IR lasers

    Energy Technology Data Exchange (ETDEWEB)

    Finch, F.T. (comp.)

    1978-09-01

    A review of lasers with potential photochemical applications in waste management indicates that dye lasers, as a class, can provide tunable laser output through the visible and near-uv regions of the spectrum of most interest to photochemistry. Many variables can affect the performance of a specific dye laser, and the interactions of these variables, at the current state of the art, are complex. The recent literature on dye-laser characteristics has been reviewed and summarized, with emphasis on those parameters that most likely will affect the scaling of dye lasers in photochemical applications. Current costs are reviewed and correlated with output power. A new class of efficient uv lasers that appear to be scalable in both energy output and pulse rate, based on rare-gas halide excimers and similar molecules, is certain to find major applications in photochemistry. Because the most important developments are too recent to be adequately described in the literature or are the likely outcome of current experiments, the basic physics underlying the class of excimer lasers is described. Specific cost data are unavailable, but these new gas lasers should reflect costs similar to those of existing gas lasers, in particular, the pulsed CO/sub 2/ lasers. To complete the survey of tunable-laser characteristics, the technical characteristics of the various classes of lasers in the ir are summarized. Important developments in ir laser technology are being accelerated by isotope-separation research, but, initially at least, this portion of the spectrum is least likely to receive emphasis in waste-management-oriented photochemistry.

  18. Carbon Nanotubes Counter Electrode for Dye-Sensitized Solar Cells Application

    Directory of Open Access Journals (Sweden)

    Drygała A.

    2016-06-01

    Full Text Available The influence of the carbon nanotubes counter electrode deposited on the FTO glass substrates on the structure and optoelectrical properties of dye-sensitized solar cells counter electrode (CE was analysed. Carbon materials have been applied in DSSC s in order to produce low-cost solar cells with reasonable efficiency. Platinum is a preferred material for the counter electrode because of its high conductivity and catalytic activity. However, the costs of manufacturing of the platinum counter electrode limit its use to large-scale applications in solar cells. This paper presents the results of examining the structure and properties of the studied layers, defining optical properties of conductive layers and electrical properties of dye-sensitized solar cells manufactured with the use of carbon nanotubes.

  19. Application of resin system for sand consolidation, mud-loss control, and channel repairing

    Energy Technology Data Exchange (ETDEWEB)

    Wasnik, A.; Mete, S.; Ghosh, B. [Maharashtra Inst. of Technology (India)

    2005-11-01

    Sand production is one of the major challenges facing oil well operators. A technique for sand consolidation and channel repairing with a resin system was described along with a methodology for placing a chemical casing during or after drilling a shale zone that is prone to caving. The methodology is intended to facilitate drilling with reduced mud weight, without reducing the hole size. The resin comprises a mixture of elastomers UF, MF and a suitable plasticizer to impart flexibility and impact resistance. The resin system includes both the resin and a hardener which is a mixture of 2 mild Lewis acids to control curing time. A special additive can be used to enhance surface bonding between the sand and resin. Experiments were then performed to examine the efficiency of resin (Asmid 603) with 7 different chemicals and resin Furmel 301 with Furmel catalyst as a curing modifier. The best combination for sand consolidation and chemical casing was found to be resin Asmid 603 with 0.6 per cent o-phosphoric acid at 80 degrees C and Furmel 301 with 2.5 per cent Furmel catalyst and CFNL with 0.6 per cent o-phosphoric acid. When this combination was used, the permeability was found to be nearly zero after consolidation of resin. The newly developed resin system costs one-third that of epoxy resins. Since it is water soluble, it is also easy to handle and environmentally sound. 15 refs., 2 tabs., 6 figs.

  20. Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric.

    Science.gov (United States)

    Pathak, Hilor; Madamwar, Datta

    2010-03-01

    Indigo is one of the oldest dyes manufactured chemically and is mostly used in textile, food, and pharmaceutical industries. However, owing to the environmental hazards posed by the chemical production, the present scenario in the field stipulates a biosynthesis alternative for indigo production. The present study describes an indigenously isolated naphthalene-degrading strain Pseudomonas sp. HOB1 producing a blue pigment when indole was added in the growth medium. This blue pigment was analyzed by high-pressure thin-layer chromatography and other spectroscopic techniques which revealed it to be the indigo dye. Pseudomonas sp. HOB1 showed ability to produce 246 mg indigo liter(-1) of the medium. The K (m) for the enzyme naphthalene dioxygenase which is involved in indigo formation is 0.3 mM, and V (max) was as high as 50 nmol min(-1) mg dry biomass(-1). The bacterial indigo dye was further successfully applied for dyeing cotton fabrics. The high indigo productivity of Pseudomonas sp. HOB1 using naphthalene as growth substrate and its applicability on cotton fabrics, therefore, stems the probability of using this culture for commercial indigo production.

  1. Application of 10% Ascorbic Acid Improves Resin Shear Bond Stregth in Bleached Dentin

    Directory of Open Access Journals (Sweden)

    Kamizar Kamizar

    2014-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Restoration of the teeth immediately after bleaching with H2O2 35% is contraindicated due to the remnants of free radical that will stay inside dentin for 2-3 weeks which will compromise the adhesiveness of composite resin. Objective: The aim of this study was to evaluate the influence of 10% ascorbic acid on shear bond strength of composite placed on bleached dentin. Methods:Twenty seven samples were divided equally into three groups. Group 1: dentin was etched with 35% phosphoric acid; Group 2: dentin was bleached with 35% H2O2 followed by etching with 35% phosphoric acid; Group 3: dentin was bleached with 35% H2O2, followed by application of 10% ascorbic acid and etched with 35% phosphoric acid. All samples were then stored at 370C for 24 hours. The Universal Testing Machine was used to measure shear bond strength and the results were analyzed with Kruskal Wallis and Mann Whitney test. Results: After nine independent experiments, 10% ascorbic acid application on bleached dentin resulted in highest increased in bond stregth (56.04±11.06MPa compared to Group 2 (29.09±7.63MPa and Group 1 (25.55±2.22MPa and the difference was statistically significant (p<0.05. Conclusion: Application of 10% ascorbic acid to the bleached dentin improved the shear bond strength of resin composite.

  2. PVA改性PAE树脂的制备及应用%Preparation and application on hydroxyl modiifed PAE resin

    Institute of Scientific and Technical Information of China (English)

    严维博; 王建; 王志杰; 玉丽芳; 张丹

    2014-01-01

    探讨了羟基改性剂对PAE树脂的改性方式、改性剂用量,并对改性PAE树脂的增强性能进行分析。研究表明,羟基改性剂可以对PAE树脂进行改性,改性后不仅降低了PAE树脂的生产成本,还提高了PAE树脂的增干强效果。结果显示羟基改性剂对PAE树脂的末端改性优于过程改性;此时改性剂的较佳用量为15%;改性后的PAE树脂具有高的增干强性能及低的增湿强性能;当改性后的PAE树脂用量为0.5%时,与改性前相比,能够进一步提高纸张干抗张指数约7%,而降低湿抗张指数约23%,耐折度提高约13%,撕裂指数提高约25%,内结合强度提高约42%。%This paper researched on the modiifed method of PAE resin with hydroxy modiifer, discussed the dosage of modiifer, characterized modiifed PAE resin and studied the application of the modiifed PAE resin. The results showed that hydroxyl modiifer can undertake modiifcation of PAE resin, which can not only reduces the production cost of PAE resin, also improve the effect of the dry strength of PAE resin. Experimental results show that add hydroxy modiifer into the PAE resin product is the best process. Modified PAE resin has high dry strength performance and low strong wet strength performance. The better dosage of hydroxy modiifer is 15%. When modiifed PAE resin dosage was 0.5%, compared with traditional PAE resin can improve the paper dry tensile index about 7%, and reduce about 23% wet tensile index, folding resistance degree increases by about 13%, tearing index increases by about 25%, the bond strength increases by about 42%.

  3. Effects of etching and adhesive applications on the bond strength between composite resin and glass-ionomer cements

    Directory of Open Access Journals (Sweden)

    Tijen Pamir

    2012-12-01

    Full Text Available OBJECTIVE: This study determined the effects of various surface treatment modalities on the bond strength of composite resins to glass-ionomer cements. MATERIAL AND METHODS: Conventional (KetacTM Molar Quick ApplicapTM or resin-modified (PhotacTM Fil Quick AplicapTM glass-ionomer cements were prepared. Two-step etch-rinse & bond adhesive (AdperTM Single Bond 2 or single-step self-etching adhesive (AdperTM PromptTM L-PopTM was applied to the set cements. In the etch-rinse & bond group, the sample surfaces were pre-treated as follows: (1 no etching, (2 15 s of etching with 35% phosphoric acid, (3 30 s of etching, and (4 60 s of etching. Following the placement of the composite resin (FiltekTM Z250, the bond strength was measured in a universal testing machine and the data obtained were analyzed with the two-way analysis of variance (ANOVA followed by the Tukey's HSD post hoc analysis (p=0.05. Then, the fractured surfaces were examined by scanning electron microscopy. RESULTS: The bond strength of the composite resin to the conventional glass-ionomer cement was significantly lower than that to the resin-modified glass-ionomer cement (p0.05. However, a greater bond strength was obtained with 30 s of phosphoric acid application. CONCLUSIONS: The resin-modified glass-ionomer cement improved the bond strength of the composite resin to the glass-ionomer cement. Both etch-rinse & bond and self-etching adhesives may be used effectively in the lamination of glass-ionomer cements. However, an etching time of at least 30 s appears to be optimal.

  4. SYNTHESIS AND APPLICATION OF EPOXY RESIN%环氧树脂的合成与应用

    Institute of Scientific and Technical Information of China (English)

    汪多仁

    2001-01-01

    Synthetic process,production development,properties,application and consumption rospect of epoxy resin was presented in this paper.%介绍了环氧树脂的合成工艺、生产发展、性能、应用与市场前景。

  5. Synthesis and characterization of carboxymethyl potato starch and its application in reactive dye printing.

    Science.gov (United States)

    Zhang, Bing; Gong, Honghong; Lü, Shaoyu; Ni, Boli; Liu, Mingzhu; Gao, Chunmei; Huang, Yinjuan; Han, Fei

    2012-11-01

    Carboxymethyl potato starch (CMPS) was synthesized with a simple dry and multi-step method as a product of the reaction of native potato starch and monochloroacetic acid in the presence of sodium hydroxide. The influence of the molar ratio of sodium hydroxide to anhydroglucose unit, the volume of 95% (v/v) ethanol, the rotation rate of motor driven stirrer and the reaction time for degree of substitution (DS) were evaluated. The product was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). FTIR spectrometry showed new bonds at 1618 and 1424 cm⁻¹ when native starch underwent carboxymethylation. SEM pictures showed that the smooth surface of native starch particles was mostly ruptured. XRD revealed that starch crystallinity was reduced after carboxymethylation. The viscosity of the mixture paste of carboxymethyl starch and sodium alginate (SA) was measured using a rotational viscometer. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with SA. And the results indicated that the mixed paste could partially replace SA as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Boron difluoride complexes of 2‧-hydroxychalcones and curcuminoids as fluorescent dyes for photonic applications

    Science.gov (United States)

    D'Aléo, Anthony; Felouat, Abdellah; Fages, Frédéric

    2015-03-01

    The field of fluorescent boron complexes has witnessed tremendous developments in recent years. In that context, we have investigated two series of boron difluoride complexes based on 2‧-hydroxychalcone and curcuminoid ligands that represent naturally occurring pigment structures. The dyes display significantly large Stokes shift values, indicating that an ICT state is involved as lower-energy state in the singlet manifold. Remarkably they are also fluorescent in the solid-state, with emission wavelengths usually in the visible and mainly in the near infrared (NIR). It is especially intriguing that those dyes experience strong π-interactions in the crystal phase. We have observed that the formation of those highly stacked structures was not detrimental to solid-state emission and could even be exploited for the generation of efficient NIR emitters. For example, the boron complexes of curcuminoid ligands can be used to generate NIR fluorescent organic nanoparticles with large cross sections for two-photon absorption. The design of organic dyes displaying NIR emission in solution or in the solid-state remains challenging for applications in bioimaging and organic photonics. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  7. Polystyrene-type resin used for peptide synthesis: application for anion-exchange and affinity chromatography.

    Science.gov (United States)

    Carvalho, Regina S H; Ianzer, Danielle A; Malavolta, Luciana; Rodrigues, Mauricio M; Cilli, Eduardo M; Nakaie, Clovis R

    2005-03-25

    This paper deals with an unusual application for a copolymer of styrene-1% divinylbenzene bearing high amount of aminomethyl groups for anion-exchange and affinity chromatography. The so-called aminomethyl resin (AMR), to date only employed for peptide synthesis, swelled appreciably in water and was used successfully to purify negatively charged peptides. By correlating swelling degree of beads with pH of the media, it was possible to estimate that the AMR amino group pK(a) is approximately 5.5. In addition, the synthesized acetyl-(NANP)3-AMR succeeded in the affinity interaction with large antibody molecules related to malaria transmission and raised previously against this dodecapeptide sequence.

  8. Repeated applications of photodynamic therapy on Candida glabrata biofilms formed in acrylic resin polymerized.

    Science.gov (United States)

    de Figueiredo Freitas, Lírian Silva; Rossoni, Rodnei Dennis; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2017-04-01

    Previous studies have been suggested that photodynamic therapy (PDT) can be used as an adjuvant treatment for denture stomatitis. In this study, we evaluated the effects of multiple sessions of PDT on Candida glabrata biofilms in specimens of polymerized acrylic resin formed after 5 days. Subsequently, four applications of PDT were performed on biofilms in 24-h intervals (days 6-9). Also, we evaluated two types of PDT, including application of laser and methylene blue or light-emitting diode (LED) and erythrosine. The control groups were treated with physiological solution. The effects of PDT on biofilm were evaluated after the first and fourth application of PDT. The biofilm analysis was performed by counting the colony-forming units. The results showed that between the days 6 and 9, the biofilms not treated by PDT had an increase of 5.53 to 6.05 log (p = 0.0271). Regarding the treatments, after one application of PDT, the biofilms decreased from 5.53 to 0.89 log. When it was done four applications, the microbial reduction ranged from 6.05 log to 0.11 log. We observed that one application of PDT with laser or LED caused a reduction of 3.36 and 4.64 compared to the control groups, respectively (p = 0.1708). When it was done four applications of PDT, the reductions achieved were 1.57 for laser and 5.94 for LED (p = 0.0001). It was concluded that repeated applications of PDT on C. glabrata biofilms showed higher antimicrobial activity compared to single application. PDT mediated by LED and erythrosine was more efficient than the PDT mediated by laser and methylene blue.

  9. Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

    Energy Technology Data Exchange (ETDEWEB)

    Troeger, K., E-mail: altstaedt@uni-bayreuth.de; Darka, R. Khanpour, E-mail: altstaedt@uni-bayreuth.de; Neumeyer, T., E-mail: altstaedt@uni-bayreuth.de; Altstaedt, V., E-mail: altstaedt@uni-bayreuth.de [Polymer Engineering, University of Bayreuth, Germany and Polymer Engineering, Universitaetsstrasse 30, 95447 Bayreuth (Germany)

    2014-05-15

    This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K.

  10. Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

    Science.gov (United States)

    Troeger, K.; Darka, R. Khanpour; Neumeyer, T.; Altstaedt, V.

    2014-05-01

    This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K.

  11. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    Science.gov (United States)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-10-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or

  12. Fluorine analysis of human dentin surrounding resin composite after fluoride application by {mu}-PIGE/PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Katsushi, E-mail: katsu@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan) and School of Dentistry, University of North Carolina, Department of Operative Dentistry, 302 Brauer, CB 7450, Chapel Hill, NC 27599-7450 (United States); Komatsu, Hisanori [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan); Yamamoto, Hiroko [Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Osaka, Suita 565-0871 (Japan); Pereira, Patricia N.R. [School of Dentistry, University of North Carolina, Department of Operative Dentistry, 302 Brauer, CB 7450, Chapel Hill, NC 27599-7450 (United States); Bedran-Russo, Ana K. [University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S. Paulina St., Chicago, IL 60612 (United States); Nomachi, Masaharu [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043 (Japan); Sato, Takahiro [TARRI, JAEA, Advanced Radiation Technology, 1233 Watanuki-machi, Gunma, Takasaki 370-1292 (Japan); Sano, Hidehiko [Graduate School of Dental Medicine, Hokkaido University, Department of Restorative Dentistry, Kita-13, Nishi-7, Kita-ku, Hokkaido, Sapporo 060-8586 (Japan)

    2011-10-15

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission ({mu}-PIXE) and micro proton-induced gamma-ray emission ({mu}-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by {mu}-PIGE and {mu}-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F

  13. Application of Modified Red Mud for Adsorption of Acid Orange 7 (AO7 Dye from Aqueous Solution: Isotherms, Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zazouli

    2015-09-01

    Full Text Available Application of modified red mud for adsorption of Acid Orang 7 (AO7 dye from aqueous solution: Isotherms, Kinetics studies Abstract: Backgroud: Existence of color is one of the problems of industrial effluent such as textile industries. The dyes can be removed by various methods. Therefore, the aim of this study is evaluation of adsorption rate of acid orange (AO7 from aqueous solution by activated red mud. Material and method: This is an empirical lab study. Red mud was used as an absorbent to remove of acid orange 7 dye. The effect of various parameters on performance of absorbent was investigated and the isotherms and kinetics of adsorption was determined. The dye concentration was measured in wavelength of 452 nm by spectrophotometer. Results: The results showed that red mud surface area is 30 m2/g. The results showed that dye removal was highest at a solution pH 3 and a powder dose of 12 g/L. The AO7 removal percentage decreased from %98 to %55 at 60 min contact time when the concentration of dye was increased from 10 mg/L to 100 mg/L. The equilibrium data is best fitted on Langmuir isotherm and the adsorption kinetic model follows pseudo-second model. conclusion: The results of this study showed that red mud is able to adsorption of dye and can be used as effective and inexpensive absorbent to treat of textile effluent.

  14. Development and application of production technlogies for special PVC resins%PVC树脂专用品生产技术的开发与应用

    Institute of Scientific and Technical Information of China (English)

    王永杰; 白庆华

    2011-01-01

    The production, processes, types and application situations at home and abroad of some kinds of special PVC resins,such as ultra-low polymerization degree PVC resin, high apparent density PVC resin, matt PVC resin, ultra-high polymerization degree PVC resin and high impact PVC resin, were introduced.%介绍了超低聚合度PVC树脂、高表观密度PVC树脂、消光PVC树脂、超高聚合度PVC树脂及高抗冲PVC树脂等几种专用PVC树脂的国内外生产、工艺、产品型号及应用情况。

  15. Synthesis of fluorinated dimethacrylate monomer and its application in preparing Bis-GMA free dental resin.

    Science.gov (United States)

    Yin, Mei; Guo, Sen; Liu, Fang; He, Jingwei

    2015-11-01

    With the aim to reduce human exposure to Bis-phenol A derivatives, a novel fluorinated dimethacrylate monomer FUDMA was synthesized and mixed with triethyleneglycol dimethacrylate (TEGDMA) to prepare 2,2-bis[4-(2-hydroxy-3-methacryloy- loxypropyl)phenyl]propane (Bis-GMA) free dental resin system. Physicochemical properties, such as double bond conversion (DC), polymerization shrinkage (VS), water sorption (WS) and solubility (SL), flexural strength (FS) and modulus (FM), and fracture energy of FUDMA/TEGDMA resin system were investigated. Bis-GMA/TEGDMA resin system was used as a control. The results showed that, compared with Bis-GMA/TEGDMA resin system, FUDMA/TEGDMA had advantages like higher DC, lower VS, and higher fracture energy, but had no disadvantages. Therefore, FUDMA/TEGDMA resin system had better comprehensive physicochemical properties than Bis-GMA/TEGDMA resin system, and FUDMA had potential to be used as a substitute for Bis-GMA.

  16. Synthesis of Malononitrile-Condensed Disperse Dyes and Application on Polyester and Nylon Fabrics

    OpenAIRE

    2014-01-01

    An active methylene compound, malononitrile, was introduced into the structures of a series of disperse dyes previously prepared by coupling phloroglucinol, barbituric acid, and α and β-naphtho to 4-amino-3-nitrobenzaldehyde. The dyes were purified by recrystallization from ethanol. The purity of the dyes was examined by thin-layer chromatography (TLC) and the dyes were characterized by visible absorption and Fourier transform infrared spectroscopy (FTIR). The malononitrile-condensed dyes pro...

  17. Effect of various media and supplements on laccase activity and its application in dyes decolorization

    Directory of Open Access Journals (Sweden)

    Abeer, A. A. E. A.

    2013-01-01

    Full Text Available Aims: Marine-derived fungi are a potential for the search of new compounds with relevant features. Among these, theligninolytic enzymes have potential applications in a large number of fields, including the environmental and industrialsectors. This work aimed to evaluate the laccase activity of the marine-derived fungus Alternaria alternata, undervarious cultivation conditions and its application in synthetic dyes decolorization.Methodology and results: Wheat bran prepared with 40 mL sea water proportion was the most suitable substrate forlaccase production (114.06±2.24 U/mL by A. alternata, after 14 days of incubation in submerged fermentation. Laccaseproduction in static cultivation was superior to that in agitated cultures. The simple Boyd and Kohlmeyer medium withsupplementation of 2 mM CuSO4·5H2O on day 6, at an incubation period of 14 days and incubation temperature of 28±2°C under static conditions, yielded amounts of laccase (36.13±0.34 U/mL less than that obtained with submergedfermentation of wheat bran as unique substrate. Furthermore, A. alternata has high decolorization capability toward azodyes in the absence of redox mediators, 75.47% of the reactive black at 0.01% concentration, was removed after 30days of incubation. Also has good ability to decolorize the triphenylmethane dye crystal violet, at 0.01% concentration,about 69.35% of the dye was removed after 30 days.Conclusion, significance and impact of study: These unusual properties demonstrate that the marine-derived fungusAlternaria alternata has potentials in specific industrial or environmental applications.

  18. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  19. Synthesis and application of a hydrophobic hypercrosslinked polymeric resin for removing VOCs from humid gas stream

    Institute of Scientific and Technical Information of China (English)

    Peng Liu; Chao Long; Hong Ming Qian; Ying Lia; Ai Min Li; Quan Xing Zhanga

    2009-01-01

    A hydrophobic hypercrosslinked polymeric resin LC-1 was prepared and characterized.The properties of LC-1 resin were compared with those of a commercial hypercrosslinked polymer NDA-201 resin.In addition,the dynamic adsorption of trichloroethylene(TCE)onto LC.1 under dry and humid conditions at 303 K was investigated,the result shows that LC-1possesses high hydrophobic property and can remove TCE from gas stream without effect of high humidity efficiently.

  20. Color measurement of methylene blue dye/clay mixtures and its application using economical methods

    Science.gov (United States)

    Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil

    2016-04-01

    Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay

  1. Textile dye degradation using nano zero valent iron: A review.

    Science.gov (United States)

    Raman, Chandra Devi; Kanmani, S

    2016-07-15

    Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites.

  2. Application of chitin and chitosan extracted from silkworm chrysalides in the treatment of textile effluents contaminated with remazol dyes

    Directory of Open Access Journals (Sweden)

    Julliana Isabelle Simionato

    2014-09-01

    Full Text Available Chitin extracted from silkworm chrysalides was used to prepare chitosan applied in this investigation. Adsorption studies were carried out in column and in aqueous suspension with two dyes, blue remazol (RN and black remazol 5 (RB. The study showed that adsorption is better in the chitosan-packed column than in the chitin-packed one. However, the comparison of the adsorption in column and in suspension revealed better results for the latter. The plotted Langmuir isotherm did not indicate significant difference in the theoretical capacity of saturation of the monolayer (Qo for either dye. The application of the adsorption process to actual conditions was evaluated by adsorption assays of actual textile effluents. In acid pH, chitosan adsorbed the dyes responsible for the effluent coloration completely. This study showed that the use of chitosan obtained from silkworm chrysalides is a viable alternative for the immobilization of dyes in textile industry effluents.

  3. π-Conjugated Donor-Acceptor Systems as Metal-Free Sensitizers for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Zakeeruddin S. M.

    2013-03-01

    Full Text Available High extinction coefficients and easily tunable spectral properties of π- conjugated donor-acceptor dyes are of superior advantage for the design of new metalfree organic sensitizers for applications in dye-sensitized solar cells. Ultrafast transient absorption spectroscopy on the femtosecond and nanosecond time scales provided deep insights into the dependence of charge carrier dynamics in fully organic dye/TiO2 systems on i the donor-acceptor distance, ii the π-conjugation length, and iii the coupling to TiO2 by different anchoring groups. Importantly, the observed differences in charge transfer dynamics justify the variations of photovoltaic performances of the dyes as applied in solar cell devices. This leads to the conclusion that the photoconversion efficiencies strongly depend on a delicate interplay between the dyes’ building blocks, i.e. the donor, the π-conjugated spacer and the anchor/acceptor moieties, and may easily be tuned by molecular design.

  4. Simple and Specific Dual-Wavelength Excitable Dye Staining for Glycoprotein Detection in Polyacrylamide Gels and Its Application in Glycoproteomics

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Chiang

    2011-01-01

    Full Text Available In this study, a commercially available fluorescent dye, Lissamine rhodamine B sulfonyl hydrazine (LRSH, was designed to specifically stain the glycoproteins in polyacrylamide gels. Through the periodate/Schiff base mechanism, the fluorescent dye readily attaches to glycoproteins and the fluorescence can be simultaneously observed under either 305 nm or 532 nm excitation therefore, the dye-stained glycoproteins can be detected under a regular UV transilluminator or a more elegant laser-based gel scanner. The specificity and detection limit were examined using a standard protein mixture in polyacrylamide gels in this study. The application of this glycoprotein stain dye was further demonstrated using pregnancy urine samples. The fluorescent spots were further digested in gel and their identities confirmed through LC-MS/MS analysis and database searching. In addition, the N-glycosylation sites of LRSH-labeled uromodulin were readily mapped via in-gel PNGaseF deglycosylation and LC-MS/MS analysis, which indicated that this fluorescent dye labeling does not interfere with enzymatic deglycosylation. Hence, the application of this simple and specific dual-wavelength excitable dye staining in current glycoproteome research is promising.

  5. Effect of lipstick on composite resin color at different application times

    Directory of Open Access Journals (Sweden)

    Avilmar Passos Galvão

    2010-12-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate the influence of the contact of two lipsticks, one with common fixer and one with ultra fixer, on the color of a composite resin immediately, 30 min and 24 h after photoactivation. MATERIAL AND METHODS: Ninety specimens were prepared with a composite resin, Filtek-Z350. Specimens were polished and divided into 9 groups (n=10 according to time elapsed after photoactivation (A- immediately; B- 30 min; C- 24 h and the contact with lipstick (UF- lipstick with ultra fixer; F- lipstick with common fixer. The control group was represented by specimens that did not have any contact with lipstick (C- without lipstick. Color measurements of the specimens were carried out using a spectrophotometer (Easyshade - CIE L* a* b* system. For UF and F groups, the baseline color of the specimens was measured immediately before pigmentation and the lipsticks were applied dry after 1 hour. The excess lipstick was removed with absorbent paper and final color checking was performed, including the control group. Differences between the final and baseline color measurements were calculated and data were analyzed statistically by the Kruskal-Wallis test at 5%. RESULTS: The means between the differences of color values were: AUF: 16.0; AF: 12.4; AC: 1.07; BUF: 9.51; BF: 8.3; BC: 0.91; CUF: 17.7; CF: 12.41; CC: 0.82. CONCLUSION: Groups where lipstick was applied showed greater staining than the control group at the three evaluation times. The lipstick with ultra fixer stained more than the lipstick with common fixer. Time elapsed between photoactivation and contact with lipstick had a similar influence on the groups that received lipstick application.

  6. Effect of lipstick on composite resin color at different application times.

    Science.gov (United States)

    Galvão, Avilmar Passos; Jacques, Letícia Borges; Dantas, Luciana; Mathias, Paula; Mallmann, André

    2010-12-01

    The aim of this study was to evaluate the influence of the contact of two lipsticks, one with common fixer and one with ultra fixer, on the color of a composite resin immediately, 30 min and 24 h after photoactivation. Ninety specimens were prepared with a composite resin, Filtek-Z350. Specimens were polished and divided into 9 groups (n=10) according to time elapsed after photoactivation (A- immediately; B- 30 min; C- 24 h) and the contact with lipstick (UF- lipstick with ultra fixer; F- lipstick with common fixer). The control group was represented by specimens that did not have any contact with lipstick (C- without lipstick). Color measurements of the specimens were carried out using a spectrophotometer (Easyshade - CIE L* a* b* system). For UF and F groups, the baseline color of the specimens was measured immediately before pigmentation and the lipsticks were applied dry after 1 hour. The excess lipstick was removed with absorbent paper and final color checking was performed, including the control group. Differences between the final and baseline color measurements were calculated and data were analyzed statistically by the Kruskal-Wallis test at 5%. The means between the differences of color values were: AUF: 16.0; AF: 12.4; AC: 1.07; BUF: 9.51; BF: 8.3; BC: 0.91; CUF: 17.7; CF: 12.41; CC: 0.82. Groups where lipstick was applied showed greater staining than the control group at the three evaluation times. The lipstick with ultra fixer stained more than the lipstick with common fixer. Time elapsed between photoactivation and contact with lipstick had a similar influence on the groups that received lipstick application.

  7. Application of Purified Lawsone as Natural Dye on Cotton and Silk Fabric

    Directory of Open Access Journals (Sweden)

    Md. Mahabub Hasan

    2015-01-01

    Full Text Available The color which is obtained from the leaves of Henna, that is, Lawsonia inermis L., is used frequently in hair coloring. It is the chemical lawsone that is responsible for the reddish brown color. Its content makes it a substantive dye for dyeing the textile materials. This work concerns with the extraction and purification of natural dyestuff from a plant Lawsonia inermis L. and dyeing of cotton and silk fabric in exhaust dyeing method. The dye portion is isolated from the total extract by column chromatography and is evaluated by dyeing cotton and silk under different dyeing conditions. The color strength and fastness properties of the dye are undertaken by changing mordant and techniques of mordanting. The changes of colors have been noticed by using different types of mordant. The dye exhaustion percentage, wash, rubbing, and light fastness results reveal that the extract of henna can be used for coloration of cotton and silk fabric.

  8. Effect of adhesive resin application on the progression of cavitated and non-cavitated incipient carious lesions.

    Science.gov (United States)

    El-Kalla, Ibrahim H; Saudi, Hussein I A; El-Agamy, Rizk A I

    2012-06-01

    To evaluate the penetration of two different adhesive resin systems into cavitated and non-cavitated artificial carious lesions and the behavior of treated carious lesions under further acid attack. Artificial caries-like lesions were created on the proximal surface of 100 human primary molars by a demineralizing gel. The teeth were assigned to three groups according to the adhesive resin used. Group 1 (G1) was for Single Bond adhesive resin, Group 2 (G2) for Xeno V adhesive resin, and Group 3 (G3) was without any adhesive application. Each group was randomly and equally subdivided into subgroups a and b. In subgroup a, the teeth were kept with intact artificial caries-like lesion surfaces while in the subgroup b, a minute cavity was made at the center of artificial caries-like lesions using a sharp explorer. Each tooth was sectioned occluso-cervically into two halves through the center of the lesion; the sectioned surface was polished and examined under a reflected light microscope for estimating the depth of the carious lesion or penetration of the adhesive resin. All tooth halves were coated at the sectioned surface with two layers of acid resistant nail varnish and returned again to the demineralizing solution to assess the progression or arrest of the carious lesion after the second acid attack. The penetration depth of adhesive resins did not differ significantly between subgroups (P>0.05). After the second acid attack, the infiltrated carious lesions showed no lesion progression while the non-infiltrated lesions showed advanced caries progression.

  9. Synthesis and application of 2-aminothiadiazole disperse dyes for nylon fabrics

    Directory of Open Access Journals (Sweden)

    VITHAL SOMA PATEL

    2001-02-01

    Full Text Available Some disperse dyes based on 2-amino-5-mercapto-1,3,4-thiadiazole have been prepared by coupling with various N-arylacrylamides. The dyes were characterized by IR spectral studies and elemental analysis. All the dyes were applied as disperse dyes on nylon fabric. These dyes have been found to give a wide range of color shades with very good depth and levelness on fabrics. The percentage dye bath exhaustion and fixation on the fabric have been found to be very good. The dyied fabrics showed moderate to good light fastness and very good to excellent washing, rubbing, persperation and sublimation fastness properties.

  10. Synthesis and application of phenolic resin internally toughened by chain extension polymer of epoxidized soybean oil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel epoxidized soybean oil (ESO) internally toughened phenolic resin(ESO-IT-PR) with both good toughness and excellent thermal stability was prepared as the matrix resin of copper clad laminate (CCL).FTIR was adopted to investigate the molecular structure of modified phenolic resins and SEM was used to observe the micro morphology of their impacted intersections.The properties of CCLs prepared with these modified phenolic resins were studied to determine the optimal process and investigate the toughening mechanism.The main modifying mechanism is the etherification reaction between phenol hydroxyl and ESO catalyzed by triethanolamine and the chain extension polymerization between ESO and multi-amine gives the long-chain ESO epoxy grafting on the phenolic resin prepolymer,when the ESO content is 30% and the curing agent content is 7%,the ESO toughened phenolic resin possesses optimal performance.The flexible ESO epoxy shows significant toughening effect and it crosslinks with the phenolic resin to form an internally toughened network,which is the key factor for improving the solderleaching resistance of CCL prepared with this modified phenolic resin.

  11. A compact field fluorometer and its application to dye tracing in karst environments

    Science.gov (United States)

    Poulain, Amaël; Rochez, Gaëtan; Van Roy, Jean-Pierre; Dewaide, Lorraine; Hallet, Vincent; De Sadelaer, Geert

    2017-03-01

    Dye tracing is a classic technique in hydrogeology to investigate surface-water or groundwater flow characteristics, and it is useful for many applications including natural or industrial issues. The Fluo-Green field fluorometer has been successfully tested in a karst environment and is specifically suitable for in-cave karst water monitoring. Karst research often uses dyes to obtain information about groundwater flow in unexplored cave passages. The compact device, alternatively named Fluo-G, meets the requirements of cave media: small (10 × 16 × 21 cm), lightweight (0.75 kg without ballast) and simple in conception. It is easy for cavers to set up and handle compared to other sampling methods. The fluorometer records uranine, turbidity and temperature with a user-defined time-step (1 min - 1 day). Very low energy consumption allows 9,000 measurements with six AA batteries. The device was calibrated and tested in the laboratory and in field conditions in Belgian karst systems. Results are in good fit with other sampling methods: in-situ fluorometers and automatic water sampling plus laboratory analysis. Recording high quality data (breakthrough curves) in karst with in-cave monitoring is valuable to improve knowledge of karst systems. Many hydrological and hydrogeological applications can benefit from such a low-cost and compact device, and finding the best compromise between resources and quality data is essential. Several improvements are possible but preliminary field tests are very promising.

  12. A compact field fluorometer and its application to dye tracing in karst environments

    Science.gov (United States)

    Poulain, Amaël; Rochez, Gaëtan; Van Roy, Jean-Pierre; Dewaide, Lorraine; Hallet, Vincent; De Sadelaer, Geert

    2017-08-01

    Dye tracing is a classic technique in hydrogeology to investigate surface-water or groundwater flow characteristics, and it is useful for many applications including natural or industrial issues. The Fluo-Green field fluorometer has been successfully tested in a karst environment and is specifically suitable for in-cave karst water monitoring. Karst research often uses dyes to obtain information about groundwater flow in unexplored cave passages. The compact device, alternatively named Fluo-G, meets the requirements of cave media: small (10 × 16 × 21 cm), lightweight (0.75 kg without ballast) and simple in conception. It is easy for cavers to set up and handle compared to other sampling methods. The fluorometer records uranine, turbidity and temperature with a user-defined time-step (1 min - 1 day). Very low energy consumption allows 9,000 measurements with six AA batteries. The device was calibrated and tested in the laboratory and in field conditions in Belgian karst systems. Results are in good fit with other sampling methods: in-situ fluorometers and automatic water sampling plus laboratory analysis. Recording high quality data (breakthrough curves) in karst with in-cave monitoring is valuable to improve knowledge of karst systems. Many hydrological and hydrogeological applications can benefit from such a low-cost and compact device, and finding the best compromise between resources and quality data is essential. Several improvements are possible but preliminary field tests are very promising.

  13. APPLICATION OF DIRECT CONTACT TEST IN EVALUATION OF CYTOTOXICITY OF ACRYLIC DENTURE BASE RESINS

    Directory of Open Access Journals (Sweden)

    Milena Kostić

    2012-03-01

    Full Text Available The use of acrylic denture base resins is widely spread in dental practice. They belong to the group of biomaterials due to their role of morphological and functional substituent in the mouth. However, clinical practice has shown that some toxic ingredients of these materials may lead to adverse local and even systemic changes. The aim of the study was to evaluate cytotoxic effect of various denture base resins on cell culture using direct contact test. The effect of four different acrylic materials on HeLa cell structure was evaluated. Upon light microscopy analysis, MTT test was performed without previous removal of material samples. The obtained values of MTT indicate that cell proliferation is dependant on the type of acrylic denture base resins. Cold polymerization denture base resins showed mild inhibitory effect on the cell culture growth. The signs of toxicity were not observed in heat polymerization denture base resins.

  14. Phenolic resin-based porous carbons for adsorption and energy storage applications

    Science.gov (United States)

    Wickramaratne, Nilantha P.

    The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of

  15. Electron beam curing of acrylated epoxy resins for anisotropic conductive film application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Tae gyu; Lee, Inhyuk; Lee, Jungmin [Department of Physics and Institute of Nanoscience and Nanotechnology, Hanyang University, Seoul, 133-791 (Korea, Republic of); Hwang, Jinyoung; Chung, Hoeil [Department of Chemistry, Hanyang University, Seoul, 133-791 (Korea, Republic of); Shin, Kwanwoo [Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Institute of Biological Interfaces, Sogang University, Seoul 121-742 (Korea, Republic of); Seo, Young soo [Department of Nanoscience Technology, Sejong University, Seoul, 143-747 (Korea, Republic of); Kim, Jaeyong, E-mail: kimjy@hanyang.ac.kr [Department of Physics and Institute of Nanoscience and Nanotechnology, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2013-11-29

    Radiation curable acrylated epoxy oligomer was found to be an effective resin system for application to electron beams (EB) on curing of anisotropic conducting film. To study curing degree as a function of EB dosage, we irradiated bisphenol-A type acrylate epoxy oligomer samples with doses of 5 to 600 kGy of EB. To investigate the effect of a metal barrier for potential industrial application, a 3 mm thick Al plate was placed in front of the samples, and the curing parameters were compared with the ones irradiated without an Al plate. As the dosage of the EB irradiation was increased, the glass transition temperature of the sample ranged from 46.8 to 62.2 °C for the epoxy composites without placing an Al plate, and from 46.4 to 64.1 °C for their counterparts with a 3 mm thick Al plate. These results confirm that enhancement of the curing degree with increasing EB irradiation is possible even in the presence of a metal plate. The scanning electron microscope images of the fracture surfaces are presented as evidence of the morphological changes of the EB cured epoxy samples. - Highlights: ► Acrylated epoxy oligomer was cured by irradiation of the electron beam. ► Curing degree was increased with increasing dosage of the electron beam. ► Electron beam can be used for the bonding of anisotropic conducting films.

  16. Optical fiber sensors and their application in monitoring stress build-up in dental resin cements

    Science.gov (United States)

    Ottevaere, H.; Tabak, M.; Fernandez Fernandez, A.; Berghmans, F.; Thienpont, H.

    2005-09-01

    The field of optical fiber sensing is highly diverse and this diversity is perceived as a great advantage over more conventional sensors in that an optical sensor can be tailored to measure any of a myriad of physical parameters. In this paper we present a niche application for optical fiber sensors in the domain of biophotonics, namely the monitoring of stress build-up during the curing process of dental resin cements. We discuss the origin of this stress build-up and the problems it can cause when treating patients. Optical fiber sensors aim at excelling in two kind of applications: firstly to perform quality control on batch produced dental cements and measure their total material shrinkage, secondly to monitor the hardening of the cement during in-vivo measurements resulting in the dynamic measurement of the shrinkage and to control the stress in a facing based restoration. We therefore investigated two types of optical fiber sensors as alternatives to conventional measurement techniques; namely polarimetric optical fiber sensors and fiber Bragg gratings written in polarization maintaining fibers. After discussing the results obtained with both optical fiber sensors, we will conclude with a critical assessment of the suitability of the two proposed sensing configurations for multi-parameter stress monitoring.

  17. Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications.

    Science.gov (United States)

    Lee, Jung Woo; Moon, Jun Hyuk

    2015-03-12

    Multilayer structures in which the layers are both electrically and physically connected are critical to be used as high-performance electrodes for photovoltaic devices. We present the first multiscale bilayer inverse opal (IO) structures for application as electrodes in dye-sensitized solar cells (DSCs). A bilayer of a mesoscopic IO layer (70 nm pore diameter) and a top macroporous IO layer (215 nm and 250 nm pore diameters) was fabricated as the high-specific-area electrode and the light-harvesting enhancing layer, respectively. The mesoscopic IO layer exhibits a dye-adsorption density, which is approximately 4 times greater than that of the macroporous IO structure because of its small pore size. The macroporous IO layer exhibits a photonic bandgap reflection in the visible-light wavelength range. We incorporated the bilayer IO electrodes into DSCs and compared the effects of the pore sizes of the macroporous layers on the photocurrent densities of the DSCs. We observed that the bilayer IO electrode DSCs that contained a 250 nm IO layer exhibited photocurrent densities greater than those of 215 nm IO DSCs. This enhanced photocurrent density was achieved because the photonic bandgap (PBG) reflection wavelength matches the wavelength range in which the N719 dye has a small light-absorption coefficient. The fabrication of this structurally homogeneous IO bilayer allows a strong contact between the layers, and the resulting bilayer, therefore, exhibits a high photovoltaic performance. We believe that this bilayer structure provides an alternative approach to the development of optimized electrode structures for various devices.

  18. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Shimin [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liu, Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-05-02

    One-dimensional (1D) titania (TiO{sub 2}) in the form of nanorods, nanowires, nanobelts and nanotubes have attracted much attention due to their unique physical, chemical and optical properties enabling extraordinary performance in biomedicine, sensors, energy storage, solar cells and photocatalysis. In this review, we mainly focus on synthetic methods for 1D TiO{sub 2} nanostructures and the applications of 1D TiO{sub 2} nanostructures in dye-sensitized solar cells (DSCs). Traditional nanoparticle-based DSCs have numerous grain boundaries and surface defects, which increase the charge recombination from photoanode to electrolyte. 1D TiO{sub 2} nanostructures can provide direct and rapid electron transport to the electron collecting electrode, indicating a promising choice for DSCs. We divide the applications of 1D TiO{sub 2} nanostructures in DSCs into four parts, that is, 1D TiO{sub 2} nanostructures only, 1D TiO{sub 2} nanostructure/nanoparticle composites, branched 1D TiO{sub 2} nanostructures, and 1D TiO{sub 2} nanostructures combined with other materials. This work will provide guidance for preparing 1D TiO{sub 2} nanostructures, and using them as photoanodes in efficient DSCs. - Graphical abstract: 1D TiO{sub 2} nanostructures which can provide direct and rapid pathways for electron transport have promising applications in dye-sensitized solar cells (DSCs). The synthetic methods and applications of 1D TiO{sub 2} nanostructures in DSCs are summarized in this review article.

  19. Characterization and Application of Urea-Formaldehyde-Furfural Co-condensed Resins as Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Jizhi Zhang

    2014-08-01

    Full Text Available Furfural, as an organic compound derived from biomass materials, was used to partially substitute for formaldehyde in the synthesis of UF resin. Urea-formaldehyde-furfural co-condensed (UFFR resins with different substitute ratios of furfural to formaldehyde (FR/F were prepared. The effects of the FR/F substitute ratio on the performances of UFFR resins were investigated. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS and Fourier transform infrared spectroscopy (FT-IR were applied to characterize the chemical structures of UFFR resins. Plywood bonded by these resins was manufactured, and its bond strength and formaldehyde emission were measured. The results showed that the substitution of furfural in place of formaldehyde could reduce the free formaldehyde content effectively at the expense of prolongation of the curing time. The spectra of MALDI-TOF and FTIR confirmed the co-condensation of urea-formaldehyde-furfural both in uncured and cured resins. Plywood prepared under optimized parameters could yield high bond strength and low formaldehyde emission, which were 0.84 MPa and 0.23 ppm, respectively. The optimized parameters were as follows: a FR/F substitute ratio of 1/3; 1% (NH42S2O8 as the curing agent; and a hot pressing temperature of 130 °C. Hence, it is feasible to substitute partially formaldehyde by furfural to prepare UFFR resins as wood adhesives for plywood.

  20. Alkyd-amino resins based on waste PET for coating applications.

    Science.gov (United States)

    Torlakoğlu, A; Güçlü, G

    2009-01-01

    Waste polyethylene terephthalate (PET) flakes were depolymerized by using propylene glycol (PG) in the presence of zinc acetate as catalyst. Glycolysis reaction products of waste PET obtained by using PET/glycol molar ratio 1/2. Two short oil alkyd resins of high acid values (30-40mgKOH/g) were prepared from phthalic anhydride (PA), glycerin (G), coconut oil fatty acids (COFA) and glycolyzed products of waste PET (PET-based alkyd resins) or glycols (PG) (reference alkyd resins). These alkyd resins were blended with 30%, 40%, and 50% of a commercial urea-formaldehyde, melamine-formaldehyde and urea-formaldehyde/melamine-formaldehyde mixture (1/1 weight ratio) and heated at 140 degrees C. The physical and chemical properties such as drying time, hardness, abrasion resistance, adhesion strength, water resistance, alkaline resistance, acid resistance, gelation time, and thermal oxidative degradation resistance (with thermogravimetric analysis, TGA) of these alkyd-amino resins were investigated. The properties of the waste PET-based resins were found to be compatible with the properties of the reference resins.

  1. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaharieva, Katerina, E-mail: zaharieva@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Rives, Vicente, E-mail: vrives@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Tsvetkov, Martin, E-mail: mptsvetkov@gmail.com [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Cherkezova-Zheleva, Zara, E-mail: zzhel@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Kunev, Boris, E-mail: bkunev@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Trujillano, Raquel, E-mail: rakel@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Mitov, Ivan, E-mail: mitov@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Milanova, Maria, E-mail: nhmm@wmail.chem.uni-sofia.bg [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2015-06-15

    {sup −3} min{sup −1}) for degradation of organic dye Malachite green under UV irradiation. - Highlights: • Copper ferrites via co-precipitation, mechanochemical and/or thermal treatment. • Nano ferrites show a superparamagnetic and collective magnetic excitations nature. • The co-precipitated Cu{sub 0.25}Fe{sub 2.75}O{sub 4} posses the highest photocatalytic activity. • The amount adsorbed Malachite Green by catalyst depends on the preparation method. • The prepared copper ferrites can be applicable as cheap adsorbents and catalysts.

  2. Fabrication and Characterization of Dye-Sensitized Solar Cells for Greenhouse Application

    Directory of Open Access Journals (Sweden)

    Jeum-Jong Kim

    2014-01-01

    Full Text Available We have developed dye-sensitized solar cells using novel sensitizers with enhanced transmittance of red (625–675 nm and blue (425–475 nm wavebands to control the illumination condition in the greenhouse. Novel ruthenium bipyridyl sensitizers with general formulas (Me3PhN4[Ru(dcbpy2(NCS2] (JJ-7 and (Me3BnN4[Ru(dcbpy2(NCS2] (JJ-9 have been synthesized and demonstrated as efficient sensitizers in dye-sensitized solar cells for greenhouse application. Under standard AM 1.5 sunlight, the solar cell of JJ-7 using a liquid-based electrolyte exhibits a short-circuit photocurrent density of 8.49 mA/cm2, an open-circuit voltage of 0.83 V, and a fill factor of 0.71, corresponding to an overall conversion efficiency of 4.96% on 5 μm TiO2 film. The transmittance of JJ-7 and JJ-9 shows 62.0% and 61.0% at 660 nm and 18.0% and 15.0% at 440 nm for cultivation on 5 μm TiO2 film, respectively.

  3. Application of response surface analysis for biodegradation of azo reactive textile dye using Aspergillus foetidus.

    Science.gov (United States)

    Sharma, Praveen; Singh, Lakhvinder

    2012-06-01

    This paper reports the application of experimental design methodology for the optimization of decolourization of azo reactive textile dye Remazol Red RR and reduction of chemical oxygen demand (COD) using fungal isolate Aspergillus foetidus. Response surface methodology (RSM), involving central composite design matrix in three most important input variables; temperature, pH and initial dye concentration was employed. A total of 20 experiments were conducted in the study towards the construction of a quadratic model. This demonstrated the benefits of approach in achieving excellent predictions, while minimizing the number of experiments required. Very high regression coefficient between the variables and the responses indicated excellent evaluation of experimental data. Under optimized conditions fungal isolate was capable to decolourize Remazol Red RR up to 86.21% and COD reduction up to 55.43% was achieved during the experimental setup. Enzymatic activity indicated excellent outcome under the optimal process conditions. The experimental values agreed with the predicted ones, indicating suitability of the model and success of RSM approach in optimizing the process.

  4. Templated preparation of porous magnetic microspheres and their application in removal of cationic dyes from wastewater.

    Science.gov (United States)

    Liu, Qingquan; Wang, Li; Xiao, Anguo; Gao, Jingming; Ding, Wenbing; Yu, Haojie; Huo, Jia; Ericson, Mårten

    2010-09-15

    Porous magnetic microspheres with large particle size (350-450 microm) were prepared with sulfonated macroporous polydivinylbenzene as a template. The preparation process included ferrous ion exchange and following oxidation by hydrogen peroxide. The results showed that the weight fraction of magnetic nanoparticles exceeded 20 wt% in microspheres after the preparation process was repeated three times. X-ray diffraction profiles indicated that the crystalline phase of as-formed magnetic nanoparticles was magnetite (Fe(3)O(4)). TEM images revealed rod-like magnetite crystal after the first oxidation cycle, however, the crystal morphologies were transferred into random shape after more oxidation cycles. The applicability of porous magnetic microspheres for removal of cationic dyes from water was also explored. The results exhibited that basic fuchsin and methyl violet could be quickly removed from water with high efficiency. More importantly, the magnetic microspheres could be easily regenerated and repeatedly employed for wastewater treatment. Therefore, a novel methodology was provided for fast removal cationic dyes from wastewater. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments.

    Science.gov (United States)

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention.

  6. Synthesis of new N-alkylsulfonamide-containing phenylazopyrazolone dyes and their application to unmodified polypropylene fiber

    Institute of Scientific and Technical Information of China (English)

    Zhi Hua Cui; Shu Fen Zhang; Jin Zong Yang

    2007-01-01

    Three new N-alkylsulfonamide-containing phenylazopyrazolone dyes have been synthesized by reaction of sulfonyl chloride intermediates with different saturated aliphatic amines and their molecular structures were confirmed by FTIR, 1H NMR and MS.The dyes were applied to unmodified polypropylene fabric. These dyes showed high exhaustion as well as higher levels of fastness to washing, sublimation and rubbing compared with C.I. Disperse Yellow 16. The results showed the N-alkylsulfonamidecontaining dyes were suitable for dyeing unmodified PP fiber and exhibited good color depth and fastness properties.

  7. Surface roughness of composite resin veneer after application of herbal and non-herbal toothpaste

    Science.gov (United States)

    Nuraini, S.; Herda, E.; Irawan, B.

    2017-08-01

    The aim of this study was to find out the surface roughness of composite resin veneer after brushing. In this study, 24 specimens of composite resin veneer are divided into three subgroups: brushed without toothpaste, brushed with non-herbal toothpaste, and brushed with herbal toothpaste. Brushing was performed for one set of 5,000 strokes and continued for a second set of 5,000 strokes. Roughness of composite resin veneer was determined using a Surface Roughness Tester. The results were statistically analyzed using Kruskal-Wallis nonparametric test and Post Hoc Mann-Whitney. The results indicate that the highest difference among the Ra values occurred within the subgroup that was brushed with the herbal toothpaste. In conclusion, the herbal toothpaste produced a rougher surface on composite resin veneer compared to non-herbal toothpaste.

  8. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Soeda, Shin [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2011-02-15

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  9. Non Destructive Application of Radioactive Tracer Technique for Characterization of Industrial Grade Anion Exchange Resins Indio GS-300 and Indion-860

    Energy Technology Data Exchange (ETDEWEB)

    Singare, P. U. [Bhavan' s College, Mumbai (India)

    2014-02-15

    The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, {sup 131}I and {sup 82}Br were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate (min{sup -1}), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K{sub d} were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of 40.0 .deg. C, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins.

  10. APPLICATION OF DIRECT CONTACT TEST IN EVALUATION OF CYTOTOXICITY OF ACRYLIC DENTURE BASE RESINS

    OpenAIRE

    Milena Kostić; Stevo Najman; Jelena Najdanović; Nebojša Krunić; Ivan Kostić

    2012-01-01

    The use of acrylic denture base resins is widely spread in dental practice. They belong to the group of biomaterials due to their role of morphological and functional substituent in the mouth. However, clinical practice has shown that some toxic ingredients of these materials may lead to adverse local and even systemic changes. The aim of the study was to evaluate cytotoxic effect of various denture base resins on cell culture using direct contact test. The effect of four different acrylic...

  11. Synthesis and characterization of new dimethacrylate monomer and its application in dental resin.

    Science.gov (United States)

    He, Jingwei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2013-01-01

    In this study, a dimethacrylate monomer, 1,4-Bis[2-(4-(2'-hydroxy-3'-methacryloyloxy-propoxy)phenyl)-2propyl]benzene (BMPPB) was synthesized to replace 2,2-bis[4-(2'-hydroxyl-3'-methacryloyloxy-propoxy)phenyl]propane (Bis-GMA) as one component of dental restorative materials. The structure of BMPPB and its intermediate product 1,4-bis[2-(4-(oxiranylmethoxy)phenyl)-2propyl]benzene (BOPPB) were confirmed by Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance spectroscopy ((1)H-NMR), and elemental analysis. In order to evaluate the possibility of replacing Bis-GMA with BMPPB in dental resin, double bond conversion (DC), polymerization shrinkage, contact angle, water sorption (WS) and solubility (SL), and flexural strength (FS) and modulus of BMPPB/tri(ethylene glycol)dimethacrylate (TEGDMA) (50/50 wt) resin system and Bis-GMA/BMPPB/TEGDMA (25/25/50 wt) resin system were studied. Commercially used Bis-GMA/TEGDMA (50/50 wt) dental resin system was used as reference. The results showed that BMPPB-contained copolymer had higher DC, higher WS and SL than the copolymer that only contained Bis-GMA (p0.05). BMPPB/TEGDMA resin system had lower polymerization shrinkage, higher FS and modulus (p0.05) between Bis-GMA/BMPPB/TEGDMA resin system and Bis-GMA/TEGDMA resin system. Before and after water immersion, both FS and modulus of every copolymer did not change significantly (p>0.05). Therefore, BMPPB had potential to be used to replace Bis-GMA as base resin in dental restorative materials, but many studies should be undertaken further.

  12. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Kalavakkam-603 110, Chennai, Tamilnadu (India)

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  13. A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications

    Science.gov (United States)

    Lee, Yuh-Lang; Shen, Yu-Jen; Yang, Yu-Min

    2008-11-01

    Graphite and TiO2 nanoparticles are used as fillers to prepare a polymer gel electrolyte (PGE) based on I-/I3- and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) for dye-sensitized solar cell (DSSC) applications. Graphite nanoparticles (GNP) were proved to be a more efficient filler than TiO2 in enhancing the charge conductivity of the PGE, decreasing the activation energy for charge transport and inhibiting the charge recombination at the TiO2/electrolyte interface. The energy conversion efficiency of a DSSC fabricated using a PGE containing 0.25 wt% of GNP can be increased from 4.69% (without filler) to 6.04%, close to that of a liquid system obtained in this work.

  14. Application of silver nanoparticles synthesized from Raphanus sativus for catalytic degradation of organic dyes

    Directory of Open Access Journals (Sweden)

    Singh Tej

    2016-01-01

    Full Text Available Biosynthesis of metal nanoparticles is gaining more importance owing to its simplicity, economical, sustainable route of synthesis of nanoparticles and ecofriendliness. Based on the search to improve and protect the environment by decreasing the use of toxic chemicals and eliminating biological risks in biomedical applications, the present article reports an environment friendly and unexploited methods for biofabrication of silver nanoparticles (AgNPs using Raphanus sativus leaf extract. The synthesized AgNPs were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM. The absorption spectrum of the dark brown color silver colloids showed a single and prominent peak at 431nm, indicating the presence of AgNPs. Further, catalytic degradation of methylene blue (organic dye by using AgNPs was measured spectrophotometrically. The results revealed that biosynthesized AgNPs was found to be impressive in degrading methylene blue and can be used in water purification systems.

  15. Studies on application of annatto (Bixa orellena L.) dye formulations in dairy products.

    Science.gov (United States)

    Sathiya Mala, Kripanand; Prabhakara Rao, Pamidighantam; Prabhavathy, Manda Babu; Satyanarayana, Akula

    2015-02-01

    Annatto is often used to add color to dairy products such as butter, cheese, or puddings. In India usage of annatto is restricted to butter and cheese, however there are no tailor made formulations available to obtain standardized colour shades for the products. Hence a study was initiated to develop the appropriate annatto dye formulations and level of application in few dairy products (butter, cheese, paneer, biscuit cream, icing cream). Dye extracted from annatto seeds was used for the preparation of water soluble potassium carbonate formulation (nor-bixin, 11.24 %), oil soluble formulation (1.35 % bixin) and an oil/water soluble propylene glycol formulation (PG formulation, 1.31 % bixin). Lovibond tintometer colour units of the commercial butter, cheese and biscuit cream samples were measured for standardizing the colour concentration in the experimental products. The present study evaluates the application and stability of these formulations in butter, cheese, paneer, biscuit cream, icing cream. The products were evaluated for stability of colour and bixin during storage period. The oil/water soluble propylene glycol formulation was found to be tailor-made for all the dairy products studied though the standardized levels varied between 3.75 and 5.0 mg/kg for butter, 3.75 mg/kg for cheese, 5.0-400 mg/kg for biscuit cream, 12.25 and 25 mg/kg for paneer, 5.0-500 mg/kg for icing cream. Increasing concentration in the range of 30-500 mg/kg yielded products with light cream to orange shades, useful for decorating cakes. The average recovery of bixin from the products immediately after processing was 90-98 %. Significant changes (P ≤ 0.05) were noticed in the colour units and recovery of bixin in all the products during storage of 6 months.

  16. Real-time piscicide tracking using Rhodamine WT dye for support of application, transport, and deactivation strategies in riverine environments

    Science.gov (United States)

    Jackson, Patrick Ryan; Lageman, Jonathan D.

    2013-01-01

    Piscicide applications in riverine environments are complicated by the advection and dispersion of the piscicide by the flowing water. Proper deactivation of the fish toxin is required outside of the treatment reach to ensure that there is minimal collateral damage to fisheries downstream or in connecting and adjacent water bodies. In urban settings and highly managed waterways, further complications arise from the influence of industrial intakes and outfalls, stormwater outfalls, lock and dam operations, and general unsteady flow conditions. These complications affect the local hydrodynamics and ultimately the transport and fate of the piscicide. This report presents two techniques using Rhodamine WT dye for real-time tracking of a piscicide plume—or any passive contaminant—in rivers and waterways in natural and urban settings. Passive contaminants are those that are present in such low concentration that there is no effect (such as buoyancy) on the fluid dynamics of the receiving water body. These methods, when combined with data logging and archiving, allow for visualization and documentation of the application and deactivation process. Real-time tracking and documentation of rotenone applications in rivers and urban waterways was accomplished by encasing the rotenone plume in a plume of Rhodamine WT dye and using vessel-mounted submersible fluorometers together with acoustic Doppler current profilers (ADCP) and global positioning system (GPS) receivers to track the dye and map the water currents responsible for advection and dispersion. In this study, two methods were used to track rotenone plumes: (1) simultaneous injection of dye with rotenone and (2) delineation of the upstream and downstream boundaries of the treatment zone with dye. All data were logged and displayed on a shipboard laptop computer, so that survey personnel provided real-time feedback about the extent of the rotenone plume to rotenone application and deactivation personnel. Further

  17. 渗透树脂的临床应用进展%Progress in clinical application of resin penetration

    Institute of Scientific and Technical Information of China (English)

    徐云龙; 周洲; 于金华

    2016-01-01

    渗透树脂材料是近年来出现的牙科修复材料,因其具有微创、无痛、美学效果好、渗透性能佳等优点,正在临床工作中广泛运用。该文就渗透树脂在早期龋、釉质白斑及其联合运用方面进行综述。%The resin infiltration is an important dental restorative material in endodontic practice. This approach is minimally invasive, painless, aesthetic, and permeable. Therefore, it is widely used in clinic. In this paper, the resin infiltration in treating ini⁃tial enamel caries and enamel white spots and the combination application with other approaches are extensively reviewed.

  18. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review.

    Science.gov (United States)

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Salamatinia, Babak; Abdullah, Ahmad Zuhairi; Ibrahim, Mahamad Hakimi; Tan, Kok Bing; Gholami, Zahra; Amouzgar, Parisa

    2014-11-26

    Chitosan based adsorbents have received a lot of attention for adsorption of dyes. Various modifications of this polysaccharide have been investigated to improve the adsorption properties as well as mechanical and physical characteristics of chitosan. This review paper discusses major research topics related to chitosan and its derivatives for application in the removal of dyes from water. Modification of chitosan changes the original properties of this material so that it can be more suitable for adsorption of different types of dye. Many chitosan derivatives have been obtained through chemical and physical modifications of raw chitosan that include cross-linking, grafting and impregnation of the chitosan backbone. Better understanding of these varieties and their affinity toward different types of dye can help future research to be properly oriented to address knowledge gaps in this area. This review provides better opportunity for researchers to better explore the potential of chitosan-derived adsorbents for removal of a great variety of dyes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents.

    Science.gov (United States)

    Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi

    2017-02-01

    A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Qm) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Qm for both AR4 (98mgg(-1)) and DR23 (112mgg(-1)) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness.

  20. Photophysical Behavior of Modified Xanthenic Dyes Embedded into Silsesquioxane Hybrid Films: Application in Photooxidation of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Carolina V. Waiman

    2017-01-01

    Full Text Available Polymeric materials based on a bridged silsesquioxane with pendant dodecyl chains were synthesized and modified with different xanthenic dyes with the aim of developing a material with potential application in photooxidation of organic compounds. The employed dyes constitute a family of novel xanthenic chromophores with outstanding properties as singlet oxygen photosensitizers. The hybrid matrix was chosen for its enhanced properties such as flexibility and chemical resistance. The employed dyes were easily incorporated into the hybrid polymer obtaining homogeneous, transparent, and low-refractive-index materials. The polymeric films were characterized using UV-Vis absorption, fluorescence, and laser flash photolysis techniques. The ability of these materials to produce singlet oxygen was tested following the photooxidation of 9,10-dimethylanthracene which is a well-known chemical trap for singlet oxygen. High photooxidation efficiencies were observed for these materials, which present the advantage of being easily removed/collected from the solution where photooxidation takes place. While photobleaching of the incorporated dyes is commonly observed in the solution, it takes place very slowly when dyes are embedded in the hybrid matrix. These properties bode well for the potential use of these materials in novel wastewater purification strategies.

  1. Investigation of citric acid-glycerol based pH-sensitive biopolymeric hydrogels for dye removal applications: A green approach.

    Science.gov (United States)

    Franklin, D S; Guhanathan, S

    2015-11-01

    Hydrogels are three dimensional polymeric structure with segments of hydrophilic groups. The special structure of hydrogels facilitates the diffusion of solutes into the interior network and possess numerous ionic and non-ionic functional groups, which can absorb or trap ionic dyes from waste water. The present investigation was devoted to the synthesis of a series of citric acid and glycerol based pH sensitive biopolymeric hydrogels using a solventless green approach via condensation polymerization in the presence of acidic medium. The formations of hydrogels were confirmed using various spectral investigations viz., FT-IR, (1)H and (13)C NMR. The thermal properties of various hydrogels have been studied using TGA, DTA and DSC analysis. The rationalized relationship was noticed with increasing of pH from 4.0 to 10.0. The surface morphologies of hydrogels were analyzed using SEM technique which was well supported from the results of swelling studies. Methylene blue has been selected as a cationic dye for its removal from various environmental sources using pH-sensitive biopolymeric hydrogels. The results of dye removal revealed that glycerol based biopolymeric hydrogels have shown an excellent dye removal capacity. Hence, the synthesized pH sensitive biopolymeric hydrogels have an adaptability with pH tuned properties might have greater potential opening in various environmental applications viz., metal ion removal, agrochemical release, purification of water, dye removal etc.

  2. A linewidth-narrowed and frequency-stabilized dye laser for application in laser cooling of molecules.

    Science.gov (United States)

    Dai, D P; Xia, Y; Yin, Y N; Yang, X X; Fang, Y F; Li, X J; Yin, J P

    2014-11-17

    We demonstrate a robust and versatile solution for locking the continuous-wave dye laser for applications in laser cooling of molecules which need linewidth-narrowed and frequency-stabilized lasers. The dye laser is first stabilized with respect to a reference cavity by Pound-Drever-Hall (PDH) technique which results in a single frequency with the linewidth 200 kHz and short-term stabilization, by stabilizing the length of the reference cavity to a stabilized helium-neon laser we simultaneously transfer the ± 2 MHz absolute frequency stability of the helium-neon laser to the dye laser with long-term stabilization. This allows the dye laser to be frequency chirped with the maximum 60 GHz scan range while its frequency remains locked. It also offers the advantages of locking at arbitrary dye laser frequencies, having a larger locking capture range and frequency scanning range to be implemented via software. This laser has been developed for the purpose of laser cooling a molecular magnesium fluoride beam.

  3. Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kui [ORNL; Leona, Marco [ORNL; Yan, Fei [ORNL; Wabuyele, Musundi B [ORNL; Vo Dinh, Tuan [ORNL

    2006-04-01

    Surface-enhanced Raman scattering (SERS) was investigated for applications in the analysis of anthraquinone dyes used in works of art. Two SERS procedures were developed and evaluated with three frequently used anthraquinone dyes, alizarin, carminic acid and lac dye. The first procedure involves coating a layer of silver nanoparticles directly on pieces of filter paper stained with the dyes of interest by thermal evaporation to induce SERS effect. In the second procedure, a SERS-active Ag-Al{sub 2}O{sub 3} substrate was prepared by spin-coating an alumina-nanoparticle layer onto a glass slide to provide the nanostructure of the substrate, followed by thermally evaporating a layer of silver nanoparticles on top of the alumina layer. Aliquots of dye solutions were delivered onto this substrate to be analyzed. Intense SERS spectra characteristic of alizarin, carminic acid and lac dye were obtained using both SERS procedures. The effects of two parameters, the concentration of the alumina suspension and the thickness of the silver nanoparticle layer on the performance of the Ag-Al{sub 2}O{sub 3} substrate were examined with alizarin as the model compound. Comparative studies were conducted between the Ag-Al{sub 2}O{sub 3} substrate and the SERS substrate prepared using Tollens reaction. The Ag-Al{sub 2}O{sub 3} substrate was shown to offer larger enhancement and improved reproducibility than the Tollens substrates. Finally, the potential applicability of the Ag-Al{sub 2}O{sub 3} substrate for the analysis of real artifact objects was illustrated by the identification of alizarin extracted from a small piece of textile dyed using traditional methods and materials. The limit of detection for alizarin was estimated to be 7 x 10{sup -15} g from tests performed on solutions of known concentration.

  4. 茜草染料在古代欧洲的使用%Application of madder dyes in ancient Europe

    Institute of Scientific and Technical Information of China (English)

    吴曼琳; 杨小明

    2016-01-01

    Madder is a common natural organic dye which could be traced back to ancient Egypt before Christ. It is one of most common red dyes in ancient Europe. Based on the ancient textile remains from north Europe and other historical materials, this paper started the material object discovered in archaeological process, elaborated the application history of madder in ancient Europe, introduced different kinds of madder dyes and dye making methods, and settled the dye techniques that were used during prehistoric times. The research result shows that the application history of madder in Europe in early Iron Age, and the dye techniques was not changed much until the 18th century.%茜草是一种常见的天然有机染料,最早的使用可以追溯回公元前的古埃及,同时它也是古代欧洲最为常用的红色染料之一。文章从考古发现的实物出发,根据现存的北欧铁器时代早期的纺织品及其他文物资料,对茜草在欧洲使用历史进行了梳理和阐述。介绍了古代欧洲常用茜草的种类和其染料制作的方法,并对古代文物和古籍中记载的茜草染色方法进行解释和解读。分析认为,茜草至少在铁器时代早期就已经开始在欧洲被广泛使用,且其染色的方法一直沿用至18世纪,并未有太大改变。

  5. Application of thin film cellulose composite membrane for dye wastewater reuse

    KAUST Repository

    Puspasari, Tiara

    2016-09-22

    The use of low cost membranes with high salt/dye selectivity and high flux is ideal for an economic and eco-friendly treatment of dye wastewater. Here, regenerated cellulose membranes prepared from trimethylsilyl cellulose are studied for treating artificial dye effluents. In the experiments using a feed containing Congo Red and high NaCl concentration, the membrane featured impressive dye removal with zero salt rejection combined with high flux. More interestingly, the membrane reached as much as 600 LMH flux at 80 °C and 4 bar while maintaining high dye rejection close to 98%. In prolonged experiments up to 75 h the membrane exhibited good antifouling behavior with nearly 100% flux recovery. This study may provide a promising alternative of dye effluent treatment where high amounts of monovalent salts are present. © 2016

  6. Dye visualization near a three-dimensional stagnation point: application to the vortex breakdown bubble

    DEFF Research Database (Denmark)

    Brøns, Morten; Thompson, M. C.; Hourigan, K.

    2009-01-01

    , and consequently its open nature, can be explained by the very small imperfections that are present in any experimental rig. Distinct from this, here it is shown that even for a perfectly axisymmetric flow and breakdown bubble, the combined effect of dye diffusion and the inevitable small errors in the dye......An analytical model, based on the Fokker-Planck equation, is constructed of the dye visualization expected near a three-dimensional stagnation point in a swirling fluid flow. The model is found to predict dye traces that oscillate in density and position in the meridional plane in which swirling...... of the rig. Thus, when interpreting dye-visualization patterns in steady flow, even if axisymmetric flow can be achieved, it is important to take into account the relative diffusivity of the dye and the accuracy of its injection....

  7. Synthesis and application of new mordent and disperse azo dyes based on 2,4-dihydroxybenzophenone

    Directory of Open Access Journals (Sweden)

    BHARAT C. DIXIT

    2007-02-01

    Full Text Available Novel mordent and disperse azo dyes were prepared by the coupling of various diazo solutions of aromatic amines with 2,4-ihydroxybenzophenone. The resultant dyes were characterized by elemental analyses as well as IR and NMR spectral studies. The UV-visible spectral data have also been iscussed in terms of structural property relationship. The dyeing assessment of all the dyeswas evaluated on wool and polyester textile fibers. The dyeing of chrome treated (i.e., chrome mordented wool and polyesters was also monitored. The results show that a better hue was obtained on mordented fibers. The results of the anti-bacterial properties of the chrome dyes revealed that the toxicity of these dyes against bacteria is fairly good.

  8. Synthesis of antibacterial methacrylate monomer derived from thiazole and its application in dental resin.

    Science.gov (United States)

    Luo, Weixun; Huang, Qiting; Liu, Fang; Lin, Zhengmei; He, Jingwei

    2015-09-01

    A non-quaternary ammonium antibacterial methacrylate monomer MEMT derived from thiazole was synthesized and applied into UDMA/TEGDMA dental resin with a series of mass fraction (10 wt%, 20 wt%, and 30 wt%). Double bond conversion, polymerization shrinkage, water sorption, solubility, flexural strength and modulus, and antibacterial activity of MEMT containing resin formulations were investigated with UDMA/TEGDMA as control resin. The results showed that MEMT containing dental resin had higher double bond conversion than control resin. Compared with control polymer, all MEMT containing polymer had comparable or lower polymerization shrinkage, water sorption and solubility, except for the polymer with 30 wt% of MEMT which had higher water sorption and solubility than control polymer. The MEMT had no influence on flexural strength and modulus before water immersion, but all MEMT containing polymers had lower flexural strength and modulus than control polymer after water immersion. The MEMT could endow dental polymer with obvious antibacterial activity by immobilizing MEMT into the polymeric network.

  9. Tailoring of novolac resins for photoresist applications using a two-step synthesis procedure

    Science.gov (United States)

    Baehr, Guenther; Westerwelle, Ulrich; Gruetzner, Gabi

    1997-07-01

    In this paper we report the development of novolak resins suitable for the formulation of positive and negative acting photoresists, which beneficially can be applied in micro- electronical-mechanical systems (MEMS). Based on an extensive screening program, selected properties of the novolaks have been optimized. Special emphasis has been laid on high chemical stability in strongly alkaline systems. The type of the phenolic compounds as well as the arrangement of the phenol moieties within the polymer chain has shown great influence on the resin properties and the performance of the resulting photoresists. The novolak resins have been prepared in laboratory scale and pilot scale using an optimized known two-step synthetic procedure. This procedure ensures for novolaks with reduced polydispersivities and allows the reproduction of the resin quality within a narrow tolerance interval. According to this synthetic procedure novolaks with particular arrangements of the phenolic moieties have been prepared. Novolak resins with alternating and semi-alternating structures have been shown to form a new polymeric matrix for the preparation of special positive and negative tone photoresists. These formulations meet the high requirements of electroplating processes with respect to the accuracy of the structural transformation, layer thickness and metal deposition conditions.

  10. Synthesis and Application of Azo Disperse Reactive Dyes derived from p-Aminobenzaldehyde

    Directory of Open Access Journals (Sweden)

    Iyabo Fasansi

    2017-05-01

    Full Text Available Disperse reactive dyes were synthesized by diazotizing p-aminobenzaldehyde and coupling with different substituted pyridones and 2-naphthol. The dyeing performance of the dyes was assessed on polyester, nylon, cotton and wool fabrics. The dyes obtained gave various shades of yellow with good depth, brightness and leveling properties on the fabrics. The dyed fabric showed fairly good to very good light fastness and very good to excellent fastness to washing, hot pressing and rubbing. The dyebath exhaustion on the polyester, nylon, wool and cotton fabrics was found to be very good and fixation on wool was better than on cotton fabric.

  11. Application of Vat Green 1 dye on gamma ray treated cellulosic fabric

    Science.gov (United States)

    Bhatti, Ijaz Ahmad; Adeel, Shahid; Taj, Hina

    2014-09-01

    For the present study, Vat Green 1 dye has been selected for dyeing gamma irradiated cellulosic fabric. The dyeing variables such as dyeing temperature, dyeing time and dyeing pH were optimized. Concentrations of sodium hydrosulphite for reduction process and hydrogen peroxide for oxidation process were also optimized. After evaluation of dyed fabrics in a CIE Lab system using Spectraflash SF-650 it has been found that 6 kGy is the effective absorbed dose for improvement in dyeing behaviour of cellulosic fabric. Good colour strength has been obtained by dyeing optimal irradiated fabric (6 kGy, IC) at 75 °C for 1 h. by employing dyeing solution of pH 11. It has also been found that gamma ray treatment has reduced the necessary quantity of reducing (NaHSO3) and oxidizing agents (H2O2). The rating results after implementation of suggested standard methods of ISO for colourfastness showed that using irradiated textiles, the fastness to light, washing and rubbing has been significantly improved.

  12. 高吸水性树脂的合成与应用%Systhesis and applications of the superabsorbent resins

    Institute of Scientific and Technical Information of China (English)

    陈卫星; 石玉

    2001-01-01

    综述了丙烯酸型高吸水性树脂的制备方法,如溶液法、反相悬浮法及反相乳液法等.简述了利用Flory-Huggins理论和溶液的热力学理论研究大分子结构及吸水机理的关系,并对丙烯酸型高吸水性树脂的应用及今后的发展做了简要评说.%The methods for preparation of superabsorbent resins, such as solution polymerization, inverse-phase suspension polymerization and inverse-phase emulsion polymerization were reviewed in this papper. The relationships between water-absorbing mechanism of superabsorbent resins and macromolecular structure were studied by thermodynamic theory of Flory-Huggins and thermodynamic theory of solution according to the references. The development and applications of those resins were also forecasted at the end of the paper.

  13. Effect of lipstick on composite resin color at different application times

    OpenAIRE

    Galvão,Avilmar Passos; Jacques,Letícia Borges; Dantas,Luciana; Mathias, Paula; Mallmann, André

    2010-01-01

    p.566-571 OBJECTIVES: The aim of this study was to evaluate the influence of the contact of two lipsticks, one with common fixer and one with ultra fixer, on the color of a composite resin immediately, 30 min and 24 h after photoactivation. MATERIAL AND METHODS: Ninety specimens were prepared with a composite resin, Filtek-Z350. Specimens were polished and divided into 9 groups (n=10) according to time elapsed after photoactivation (A- immediately; B- 30 min; C- 24 h) and the contact wi...

  14. Effect of lipstick on composite resin color at different application times

    OpenAIRE

    Avilmar Passos Galvão; Letícia Borges Jacques; Luciana Dantas; Paula Mathias; André Mallmann

    2010-01-01

    OBJECTIVES: The aim of this study was to evaluate the influence of the contact of two lipsticks, one with common fixer and one with ultra fixer, on the color of a composite resin immediately, 30 min and 24 h after photoactivation. MATERIAL AND METHODS: Ninety specimens were prepared with a composite resin, Filtek-Z350. Specimens were polished and divided into 9 groups (n=10) according to time elapsed after photoactivation (A- immediately; B- 30 min; C- 24 h) and the contact with lipstick (UF-...

  15. Partial amination of cationic exchange resins and its application in the hydration of butene

    Institute of Scientific and Technical Information of China (English)

    Deren Fang; Wanzhong Ren; Hongying Lü; Hongtao Yang

    2012-01-01

    In this work,the amination of sulfonated polystyrene resin with alkyl secondary amine is investigated.The catalytic activities of the modified resins are determined through the hydration of 1-butene.The optimum chain length and the best range of amination rate are determined.It is found that the single-pass conversion of 1-butene was raised 2% on average,and the relative activity was increased over 30% after modification.A hypothesis about the enhancement of catalytic activities by the inclusion of alkyl chain to wrap up the butene molecule is proposed.

  16. Density Functional Theory (DFT Study of Coumarin-based Dyes Adsorbed on TiO2 Nanoclusters—Applications to Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mihai A. Gîrţu

    2013-06-01

    Full Text Available Coumarin-based dyes have been successfully used in dye-sensitized solar cells, leading to photovoltaic conversion efficiencies of up to about 8%. Given the need to better understand the behavior of the dye adsorbed on the TiO2 nanoparticle, we report results of density functional theory (DFT and time-dependent DFT (TD-DFT studies of several coumarin-based dyes, as well as complex systems consisting of the dye bound to a TiO2 cluster. We provide the electronic structure and simulated UV-Vis spectra of the dyes alone and adsorbed to the cluster and discuss the matching with the solar spectrum. We display the energy level diagrams and the electron density of the key molecular orbitals and analyze the electron transfer from the dye to the oxide. Finally, we compare our theoretical results with the experimental data available and discuss the key issues that influence the device performance.

  17. Investigation of electrochemical degradation and application of e-paper dyes in organic solvents

    Institute of Scientific and Technical Information of China (English)

    Luhai LI; Ming WANG; Yi FANG; Shunan QIAO

    2009-01-01

    To avoid environmental pollution due to organic dye solutions, the electrophoresis and degradation of dye in organic solvents such as alcohol were investigated. Many dyes were tested in the Indium tin oxide (ITO) electrode driving cell, and about 15 dyes moved under voltage driving. Both the curves of ultraviolet-visible (UV-Vis) and infrared (IR) spectra of the electrophoresis samples showed that the metal complexes Red 04 and Acid Black 1 were degradable in alcohol solution by electrochemical reaction. The cyclic volt-ampere curves of the samples from the electrochemical working station proved that electrochemical reactions took place. Based on the analysis of UV-Vis and IR spectra, the electrochemical degradation products of azo and metal complex azo dyes at lower voltage driving (1-5 V) in organic solvents are oxidized azobenzene, not hydrazine, which was found in the electrochemical degradation of dye water solutions. When the ITO electrode is modified by a polyimide (PI) film to a thickness less than 4 μm, the electrochemical degradation of the dye in alcohol solution will not appear in the cyclic volt-ampere curves. A dye electrophoresis in organic solution flexible prototype e-paper display was formed and the display picture is shown.

  18. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection

    NARCIS (Netherlands)

    Volkova, K.D.; Kovalska, V.B.; Segers-Nolten, Gezina M.J.; Veldhuis, G.; Veldhuis, G.J.; Subramaniam, Vinod; Yarmoluk, S.M.

    2009-01-01

    We examined the practical aspects of using fluorescent mono (T-284) and trimethinecyanine (SH-516) dyes for detecting and quantifying fibrillar α-synuclein (ASN). We studied the interaction of cyanine dyes with fibrillar proteins using fluorescence spectroscopy and atomic force microscopy. The comme

  19. Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents.

    Science.gov (United States)

    Samhaber, Wolfgang M; Nguyen, Minh Tan

    2014-01-01

    Nanofiltration (NF) is a capable method for the separation of dyes, which can support and even improve the applicability of photocatalysis in effluent-treatment processes. The membrane process usually will need a special pre-treatment to avoid precipitation and fouling on the membrane surface. Conceptually NF can be applied in the pre-treatment prior to the catalytic reactor or in connection with the reactor to separate the liquid phase from the reaction system and to recycle finely suspended catalysts and/or organic compounds. When concerning such reaction systems on a bigger scale, cost figures will prove the usefulness of those concepts. Different applications of photocatalysis on the lab-scale have been published in recent years. Membrane technology is used almost in all those processes and an overview will be given of those recently published systems that have been reported to be potentially useful for a further scale-up. NF membranes are mostly used for the more sophisticated separation step of these processes and the additional costs of the NF treatment, without any associated equipments, will be described and illustrated. The total specific costs of industrial NF treatment processes in usefully adjusted and designed plants range from 1 to 6 US$/m(3) treated effluent. Combination concepts will have a good precondition for further development and upscaling, if the NF costs discussed here in detail will be, together with the costs of photocatalysis, economically acceptable.

  20. Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

    Directory of Open Access Journals (Sweden)

    Wolfgang M. Samhaber

    2014-04-01

    Full Text Available Nanofiltration (NF is a capable method for the separation of dyes, which can support and even improve the applicability of photocatalysis in effluent-treatment processes. The membrane process usually will need a special pre-treatment to avoid precipitation and fouling on the membrane surface. Conceptually NF can be applied in the pre-treatment prior to the catalytic reactor or in connection with the reactor to separate the liquid phase from the reaction system and to recycle finely suspended catalysts and/or organic compounds. When concerning such reaction systems on a bigger scale, cost figures will prove the usefulness of those concepts. Different applications of photocatalysis on the lab-scale have been published in recent years. Membrane technology is used almost in all those processes and an overview will be given of those recently published systems that have been reported to be potentially useful for a further scale-up. NF membranes are mostly used for the more sophisticated separation step of these processes and the additional costs of the NF treatment, without any associated equipments, will be described and illustrated. The total specific costs of industrial NF treatment processes in usefully adjusted and designed plants range from 1 to 6 US$/m3 treated effluent. Combination concepts will have a good precondition for further development and upscaling, if the NF costs discussed here in detail will be, together with the costs of photocatalysis, economically acceptable.

  1. Safety and regulatory review of dyes commonly used as excipients in pharmaceutical and nutraceutical applications.

    Science.gov (United States)

    Pérez-Ibarbia, Leire; Majdanski, Tobias; Schubert, Stephanie; Windhab, Norbert; Schubert, Ulrich S

    2016-10-10

    Color selection is one of the key elements of building a strong brand development and product identity in the pharmaceutical industry, besides to prevent counterfeiting. Moreover, colored pharmaceutical dosage forms may increase patient compliance and therapy enhancement. Although most synthetic dyes are classified as safe, their regulations are stricter than other classes of excipients. Safety concerns have increased during the last years but the efforts to change to natural dyes seem to be not promising. Their instability problems and the development of "non-toxic" dyes is still a challenge. This review focuses specifically on the issues related to dye selection and summarizes the current regulatory status. A deep awareness of toxicological data based on the public domain, making sure the compliance of standards for regulation and safety for successful product development is provided. In addition, synthetic strategies are provided to covalently bind dyes on polymers to possibly overcome toxicity issues. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Preparation of cationic waste paper and its application in poisonous dye removal.

    Science.gov (United States)

    Yang, Fan; Song, Xiaojie; Yan, Lifeng

    2013-01-01

    Cationic paper was prepared by reaction of paper with 2,3-epoxypropyltrimethylammonium chloride in aqueous suspension, and tested as low-cost adsorbent for wastewater treatment. The experimental results revealed that anionic dyes (Acid Orange 7, Acid Red 18, and Acid Blue 92) were adsorbed on the cationic paper nicely. The maximum amount of dye Acid Orange 7 adsorbed on cationic paper was 337.2 mg/g in experimental conditions. The effects of initial dye concentration, temperature, and initial pH of dye solution on adsorption capacity of cationic paper were studied. The pseudo-first-order and pseudo-second-order kinetic models were applied to describe the kinetic data. The Freundlich and Langmuir adsorption models were used to describe adsorption equilibrium. The thermodynamic data indicated that the adsorption process of dye on cationic paper occurred spontaneously.

  3. Low-Hazardous Air Pollutant (HAP)/Volatile Organic Compound (VOC) - Compliant Resins for Military Applications

    Science.gov (United States)

    2012-07-01

    47 Table 10. FTIR criteria for MFA and low-HAP resins...evaporate at substantial rates at room temperature (RT) and could potentially produce smog-promoting ozone , as well as long-term and acute health effects...spectroscopy ( FTIR ) and size exclusion chromatography (SEC), show that VE monomers with narrow molecular weight distributions and bimodal blends of

  4. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin

    Science.gov (United States)

    Polyepoxide cardanol glycidyl ether (PECGE), a novel cardanol derivative, was synthesized and used as reactive diluent for petroleum-based epoxy resin in this work. The synthetic condition was first optimized, and the resultant PECGE diluent was characterized using Fourier transform infrared spectro...

  5. Application of mixture design to optimize cementation of simulated spent radioactive ion exchange resins

    Institute of Scientific and Technical Information of China (English)

    GAN Xue-Ying; BAO Liang-Jin; LIN Mei-Qiong; James D.NAVRATIL

    2005-01-01

    The aim of this study was to assess the usefulness of a mixture design for spent resin immobilization in cement as well as to examine the cement-slag-ash system for spent resin solidification. Eighteen distinct combinations, consisting of Portland cement, blast furnace slag, fly ash, organic ion exchange resins and water, were selected by a mixture design computer procedure to compose representative experiment points. The measured properties of solidified forms resulting from the combinations included 28-day compressive strength, 42-day immersion strength,42-day immersion weight and slump. These data were fit to a mathematic model with the aid of Scheffe quadratic polynomial, and the effects of each ingredient on the measured properties were identified through an analysis of the response trace plots and contour plots. Utilization of an optimality function singled out an optimal combination comprising water=0.16(wt/wt), slag=0.21, ash=0.10, cement=0.27 and resin=0.26 from which the resulting response was 1 1MPa for the 28-day strength, 110mm for the slump and 5.4% for the 42-day increase in strength.

  6. Cation exchange resin immobilized bimetallic nickel-iron nanoparticles to facilitate their application in pollutants degradation.

    Science.gov (United States)

    Ni, Shou-Qing; Yang, Ning

    2014-04-15

    Nanoscale zerovalent iron (nZVI) usually suffers from reduction of reactivity by aggregation, difficulty of assembling, environmental release and health concerns. Furthermore, data are lacking on the effect of cheap nickel on debromination of decabromodiphenyl ether (DBDE) by immobilized nZVI in aqueous system. In this study, strong acid polystyrene cation-exchange resins with particle diameter from 0.4 to 0.6 mm were utilized as matrices to immobilize bimetallic nickel-iron nanoparticles in order to minimize aggregation and environmental leakage risks of nZVI and to enhance their reactivity. Elemental distribution mapping showed that iron particles distributed uniformly on the surface of the resin and nickel particles were dispersed homogeneously into Fe phase. The reaction rate of resin-bound nZVI is about 55% higher than that of dispersed nZVI. The immobilized bimetallic nanoparticles with 9.69% Ni had the highest debromination percent (96%) and reaction rate (0.493 1/h). The existence of Ni significantly improved the debromination rate, due to the surface coverage of catalytic metal on the reductive metal and the formation of a galvanic cell. The environmental dominant congeners, such as BDE 154, 153, 100, 99 and 47, were produced during the process. Outstanding reactive performance, along with magnetic separation assured that resin-bound bimetallic nickel-iron nanoparticles are promising material that can be utilized to remediate a wide variety of pollutants contaminated sites including polybrominated diphenyl ethers. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Design and Application of Electrochemical Processes for Decolorization Treatment of Nylanthrene Red dye Bearing Wastewaters

    Directory of Open Access Journals (Sweden)

    D. Marmanis

    2016-04-01

    Full Text Available The purpose of this paper is the investigation of the capability of electrochemical methods, such as electrocoagulation, electrooxidation and electro-Fenton for decolorization and degradation of synthetic aqueous solutions and actual dye house effluents containing nylanthrene red reactive dye. All electrochemical experiments with the synthetic dye solutions were conducted in electrochemical cell of volume 500 ml containing 200 mL of dye solution at concentration 50 mg/L and interelectrode distance of 1 cm. The three different electrochemical processes were analyzed, and their removal efficiencies were measured and evaluated. In addition, a flow diagram is designed for a continuously operated electrochemical process for remediation of synthetic and actual dye house effluents laden with nylanthrene dye. In the electrocoagulation process with aluminum electrodes, the colored aqueous dye solution was treated at the applied current densities of 5, 10 and 15 mA/cm2 and was quantitatively decolorized in 11, 9 and less than 6 minutes of electroprocessing time respectively. The electrooxidation process conducted with Ti/Pt and boron doped diamond (BDD electrodes, at the applied current density of 10 mA/cm2 led to the quantitative decolorization and destruction of the dye in 25 and 15 min respectively. In the electro-Fenton process with iron electrodes, supply of added hydrogen peroxide and applied current density of 10 mA/cm2, complete decolorization and degradation of the nylanthrene red dye occurred in 6 min. The actual polyamide textile dyeing effluent of same volume 200 mL with initial turbidity of 114 NTU and COD of 1755 mg/L was treated by electrocoagulation at the same applied current density of 10 mA/cm2. The turbidity was quantitatively eliminated in only 10 min, while COD was reduced by 74.5 % in 40 minutes of electrolysis time.

  8. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application.

    Science.gov (United States)

    Ai, Miao; Du, Zhiyun; Zhu, Siqi; Geng, Hongjuan; Zhang, Xu; Cai, Qing; Yang, Xiaoping

    2017-01-01

    The object is to find a functional one-dimensional nanofibrous filler for composite resin, which is able to provide both efficient reinforcement and high antibacterial activity. Hydroxyapatite (HA) nanowires were synthesized via hydrothermal technique using calcium oleate as the precursor. Polydopamine (PDA)-coated HA (HA-PDA) nanowires were prepared by soaking HA nanowires in dopamine (DA) aqueous solution. Silver nanoparticles (AgNPs)-laden HA (HA-PDA-Ag) nanowires were prepared via reduction reaction by adding silver nitrate and glucose into HA-PDA suspensions in DI water. The resulted HA-PDA-Ag nanowires were then mixed into Bis-GMA/TEGDMA (50/50, w/w) at 4-10wt.%, thermal-cured, and submitted to characterizations including mechanical properties, interfacial adhesion between filler and resin matrix, distribution of HA nanowires and AgNPs, as well as silver ion release, cytotoxicity and antibacterial activity. HA-PDA-Ag nanowires were readily obtained and the loading amounts of AgNPs could be controlled by adjusting the feeding doses of silver nitrate and HA-PDA nanowires. Benefiting from the PDA surface layer, HA-PDA-Ag nanowires could disperse well in composite resin and form good interfacial adhesion with the resin matrix. In comparison with neat resin, significant increases in flexural strength and modulus of cured composites were achieved at the addition amounts of HA-PDA-Ag nanowires being 6-8wt.%. The distribution of AgNPs was homogeneous throughout the resin matrix in all designs, which endowed the composites with high antibacterial activity against streptococcus mutans. Continuous silver ion release from composites was detected, however, it was determined the composites would have insignificant cytotoxicity based on the proliferation of L929 fibroblasts in extracts of HA-PDA-Ag nanowires. The finding proved that HA-PDA-Ag nanowires could serve as functional nanofillers for composite resins, which should help much in developing materials for satisfactory

  9. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects.

  10. Cost effective facile synthesis of TiO2 nanograins for flexible DSSC application using rose bengal dye

    Science.gov (United States)

    Jambure, Supriya Bapurao; Gund, Girish Sambhaji; Dubal, Deepak Prakash; Shinde, Sujata Sureshrao; Lokhande, Chandrakant Dnyandev

    2014-09-01

    Synthesis of titanium dioxide (TiO2) nanograins using economical successive ionic layer adsorption and reaction (SILAR) method has been carried out. TiO2 thin films are studied for their structural, compositional, optical and morphological properties. A layer by layer process leads to the formation of 2.4 μm thick nanocrystalline TiO2 film. The heat treated TiO2 thin films are hydrophilic in nature with contact angle of 67°. The interconnected nanograins are employed for dye sensitized solar cells (DSSC) using inexpensive Rose Bengal (RB) dye. RB dye sensitization resulted into shifting of absorption peak from UV to visible region. The photoresponce of the dye sensitized solar cell is evaluated in the polyiodide electrolyte (0.1 M KI + 0.01 M I2) at 40 mWcm-2 illumination intensity. The TiO2 nanograins accompanied with RB sensitizer showed the conversion efficiency ( η) of 0.89%. These results depict the strong assurance of TiO2 nanograins for DSSC application.

  11. Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye

    Science.gov (United States)

    Rajabi, Hamid Reza; Arjmand, Hooman; Hoseini, S. Jafar; Nasrabadi, Hasan

    2015-11-01

    The object of this study was to evaluate the removal efficiency of sunset yellow (SY) anionic dye from aqueous solutions by using new surface modified iron oxide magnetic nanoparticles (MNPs). Pure Fe3O4 MNPs were synthesized and then functionalized by aminopropyltriethoxysilane (APTES), through a chemical precipitation method. Characterization of the prepared MNP adsorbents was performed by furrier transform infrared (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). According to XRD and TEM results, average size of the magnetic Fe3O4/APTES NPs was estimated to be around 12 nm. The prepared magnetic adsorbent can be well dispersed in the water and easily separated magnetically from the medium after loaded with adsorbate. In the adsorption process, the effect of main experimental parameters such as pH of dye solution, initial concentration of SY dye, reaction time, and amount of MNP adsorbent on the removal of SY were studied and optimized. The small amount of this adsorbent (10 mg) is applicable for the removal of high concentrations of SY dye in reasonable time (17 min), at pH 3.1. Additionally, the adsorption studies show that the Langmuir model is a suitable model to explain the experimental data with high correlation coefficient.

  12. Application of titanate nanotubes for dyes adsorptive removal from aqueous solution.

    Science.gov (United States)

    Lee, Chung-Kung; Liu, Shin-Shou; Juang, Lain-Chuen; Wang, Cheng-Cai; Lyu, Meng-Du; Hung, Shui-Hung

    2007-09-30

    The potential of adsorptive removal of basic dyes with titanate nanotubes (TNTs) and acid dyes with surfactant (hexadecyltrimethylammonium (HDTMA) chloride)-modified TNTs were investigated. TNTs were prepared via a hydrothermal method and subsequently washed with HCl aqueous solutions of different concentrations. The prepared TNTs were then mediated by the HDTMA ions through the cation exchange process. Effects of acid washing and HDTMA-modified process on the revolution of microstructure and surface chemistry characteristics of TNTs were characterized with XRD, nitrogen adsorption-desorption isotherms, and FTIR. The adsorption capacities of two basic dyes (two acid dyes) on TNTs (their HDTMA-modified version) at initial dye concentration of 2000 mg/L were measured. It was experimentally concluded that if the amount of Na(+) in the TNTs was not very low, the TNTs and their HDTMA-modified version might be a good adsorbent for the removal of basic and acid dyes from aqueous solution through the cation and anion exchange mechanism, respectively. The adsorption capacity for basic and acid dyes could reach 380 and 400 mg/g, respectively.

  13. Rose bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application

    Indian Academy of Sciences (India)

    SUHAIL A A R SAYYED; NIYAMAT I BEEDRI; VISHAL S KADAM; HABIB M PATHAN

    2016-10-01

    For efficient charge injection and transportation, wide bandgap nanostructured metal oxide semiconductors with dye adsorption surface and higher electron mobility are essential properties for photoanode in dyesensitizedsolar cells (DSSCs). TiO$_2$-based DSSCs are well established and so far have demonstrated maximum power conversion efficiency when sensitized with ruthenium-based dyes. Quest for new materials and/or methods is continuous process in scientific investigation, for getting desired comparative results. The conduction band (CB) position of CeO$_2$ photoanode lies below lowest unoccupied molecular orbital level (LUMO) of rose bengal (RB) dye.Due to this, faster electron transfer from LUMO level of RB dye to CB of CeO$_2$ is facilitated. Recombination rate of electrons is less in CeO$_2$ photoanode than that of TiO$_2$ photoanode. Hence, the lifetime of electrons is more in CeO$_2$ photoanode. Therefore, we have replaced TiO$_2$ by ceria (CeO$_2$) and expensive ruthenium-based dye by a low cost RB dye. In this study, we have synthesized CeO$_2$ nanoparticles. X-ray diffraction (XRD) analysis confirms the formation of CeO$_2$ with particle size $\\sim$7 nm by Scherrer formula. The bandgap of 2.93 eV is calculated using UV–visibleabsorption data. The scanning electron microscopy (SEM) images show formation of porous structure of photoanode, which is useful for dye adsorption. The energy dispersive spectroscopy is in confirmation with XRD results,confirming the presence of Ce and O in the ratio of 1:2. UV–visible absorption under diffused reflectance spectra of dye-loaded photoanode confirms the successful dye loading. UV–visible transmission spectrum of CeO2 photoanodeconfirms the transparency of photoanode in visible region. The electrochemical impedance spectroscopy analysis confirms less recombination rate and more electron lifetime in RB-sensitized CeO$_2$ than TiO$_2$ photoanode.We foundthat CeO$_2$ also showed with considerable difference between

  14. Application for Natural Dyes in Textile Ecological Health Care Dyeing%天然染料在纺织品生态保健染色中的应用

    Institute of Scientific and Technical Information of China (English)

    蔡成琴; 苏静; 张瑞萍

    2012-01-01

    本文介绍了天然染料的分类、结构和颜色特征,分析了国内外天然染料的染色方法和保健功能,指出了天然染料染色目前存在的问题和解决思路。%In this article, the classification, structure and color characteristics of the natural dyes were introduced; the dyeing methods and health functions of natural dyes at home and abroad were analyzed; the problems and solutions for natural dyeing now were also described.

  15. Planar amine-based dye features the rigidified O-bridged dithiophene π-spacer: A potential high-efficiency sensitizer for dye-sensitized solar cells application

    Science.gov (United States)

    Li, Wei; Bai, Fu-Quan; Chen, Jie; Wang, Jian; Zhang, Hong-Xing

    2015-02-01

    This work reports a systematically theoretical study concerning the design of D-π-A organic dyes for DSSC. Two elaborate strategies, namely the rigidity of dithiophene and introduction of strong electron rich/deficient moieties, are proposed. By using the state-of-the-art theoretical calculations, the general influences of fastening atoms (C, N, and O) for π-spacer rigidification in planar amine-based organic dyes are firstly investigated and elucidated. The properties of isolated dye, dye/(TiO2)38, and dye-I2 interaction are discussed in detail. The results show that, compared with the P2T dye containing dithiophene π-spacer, its three counterparts with rigidified dithiophene π-spacers would present the improved absorption properties. We further demonstrate that incorporation of O-bridged dithiophene moiety into the π-spacer was promising to challenge the photoelectric conversion efficiency 8.29% of P2T. Furthermore, benzothiadiazole (BTD) and 3,4-ethylenedioxythiophene (EDOT) moieties are the well-known π-skeletons that can effectively tune the electronic structure properties and the light-harvesting ability. Subsequently, a series of dyes are designed through introducing the BTD and EDOT groups into π-spacer. The calculated results reveal that the dye with the incorporation of EDOT moiety would be more beneficial for photocurrent and photovoltage performance. The current theoretical studies are expected to be very relevant for the molecular design of D-π-A organic dyes in DSSC.

  16. Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study

    Science.gov (United States)

    Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E.

    2016-11-01

    Reactive dyes contain a significant portion of colorants used in yarn dying process and also in textile industry. Since the COD content is usually high in such wastewater,we conducted a hybrid electrocoagulation-fenton method to treat the wastewater. This work describes the application of the hybrid system to the removal of chemical oxygen demand and color from the wastewater in a batch reactor. Having worked with initial pH of 3,0; temperature at 30°C, molar ratio of Fe2+/H2O2 =1/10 and the mol ratio H2O2/COD = 4, we got 88.3% COD conversion and 88.5% color removal. The COD degradation process can be explained in two phases, the first phase is instantaneous reaction and the second phase is first order reaction. The kinetic constant was 0.0053 minute-1 and the rate of COD degradation was 0.0053[COD] mg/L minute.

  17. Industrial application of Raman spectroscopy for control and optimization of vinyl acetate resin polymerization.

    Science.gov (United States)

    Frauendorfer, Eric; Hergeth, Wolf-Dieter

    2017-01-01

    Monitoring and control of resin polymerizations is essential for high process safety, high product quality, and competitive production costs. Vinyl acetate resins created by bulk and solution polymerization usually have a high molecular weight and viscosity, making sample extraction for analysis a cumbersome process. In-process analytical methods, like Raman spectroscopy, enable not only the measurement of monomer and polymer composition during the reaction without complex mathematical calibrations but also the determination of final product properties. The latter is also possible in conjunction with other process data like temperatures and feed rates and with a multivariate approach. An overview of challenges, necessary considerations, and results is given. Graphical abstract Prediction of product quality parameter viscosity using online-Raman spectroscopy data vs. reference data (Hoeppler viscosity measured in the lab after sample extraction) using partial least squares modelling.

  18. Effect of desensitizer application on shear bond strength of composite resin to bleached enamel

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2013-01-01

    Full Text Available Objective: Tooth sensitivity is common after vital tooth bleaching. The aim of this study is to evaluate the effect of a desensitizing agent on shear bond strength of composite resin to bleached enamel; and determine whether a delay of one or two weeks in bonding procedure is sufficient subsequent to bleaching/desensitizer regimen. Materials and Methods: Buccal enamel surfaces of ninety-six human sound molars were prepared and divided into eight groups. The surfaces of specimens in Group 1 as negative control group were bonded by composite resin using the single bond adhesive. Specimens in Groups 2-4 were bleached with an at-home bleaching agent (Daywhite ACP. Relief ACP desensitizing gel alone was applied in Group 5. In Groups 6-8, specimens were bleached same as in Group 2 and relief ACP desensitizing gel was applied same as inGroup 5 subsequent to each bleaching session. Composite cylinders were bonded after 24 h, 7 days and 14 days in Groups 2-4, respectively, and also in Groups 6-8, respectively. The shear bond strengths of the cylinders were tested and data was analyzed using two-way ANOVA and Tukey test (α = 0.05. Results: The results showed that bleaching and bleaching/desensitizer regimens significantly reduced the bond strength of composite resin to enamel. However, desensitizer alone did not reduce bond strength. No statistically significant differences were found between bleaching and bleaching/desensitizer regarding bond strength. Conclusion: Bleaching or bleaching/desensitizer treatment significantly decreases bond strength of composite resin to enamel. In both regimens, adhesive bonding is recommended after two weeks.

  19. Application of FTA Method to Reliability Analysis of Vacuum Resin Shot Dosing Equipment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Faults of vacuum resin shot dosing equipment are studied systematically and the fault tree of the system is constructed by using the fault tree analysis(FTA) method. Then the qualitative and quantitative analysis of the tree is carried out, respectively, and according to the results of the analysis, the measures to improve the system are worked out and implemented. As a result, the reliability of the equipment is enhanced greatly.

  20. The Application of Functionalized Pillared Porous Phosphate Heterostructures for the Removal of Textile Dyes from Wastewater

    Directory of Open Access Journals (Sweden)

    José Jiménez-Jiménez

    2017-09-01

    Full Text Available A synthesized functionalized pillared porous phosphate heterostructure (PPH, surface functionalized phenyl group, has been used to remove the dye Acid Blue 113 from wastewater. X-ray photoemission spectroscopy XPS and X-ray diffraction (XRD were used to study its structure. The specific surface area of this was 498 m2/g. The adsorption capacities of PPH and phenyl surface functionalized (Φ-PPH were 0.0400 and 0.0967 mmol/g, respectively, with a dye concentration of 10−5 M when well fitted with SIPS and Langmuir isotherms respectively (pH 6.5, 25 °C. The incorporation of the dye to the adsorbent material was monitored by the S content of the dye. It is suggested as an alternative for Acid Blue 113 remediation.

  1. Application of Acid Dyestuffs with Different Molecule Structure in Combined Dyeing and Finishing of Cotton Fabric

    Institute of Scientific and Technical Information of China (English)

    DONG Yong-chun

    2005-01-01

    Simultaneous dyeing and durable press finishing of cotton fabrics with acid dyes bearing the different molecule structure and durable press finishing agent (DP agent abbr. ) based on modified DMDHEU were investigated by using the pad-dry-cure process. Some factors affecting the process, such as structure of acid dyes, DP agent, catalysts and curing temperature were discussed. The dyed and finished fabrics were evaluated with respect to color strength, fixation, crease recovery angle, breaking strength and fastness properties. The results indicate that structure of acid dyes has a striking effect on the color strength of dyed and finished cotton fabric. The color strength and dry crease recovery angle of dyed and finished cotton fabric increases, whereas breaking strength decreases with increasing concentration of DP agent. It is necessary for ammonium nitrate to serve as catalyst. It is found that relatively satisfactory properties of dyed and finished cotton fabric can be obtained with appropriate adjustment of treating conditions.

  2. Radiation preparation of PVA/CMC copolymers and their application in removal of dyes

    Energy Technology Data Exchange (ETDEWEB)

    Taleb, Manal F. Abou, E-mail: abutalib_m@yahoo.com [National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, P.O. Box 29, Cairo 11371 (Egypt); El-Mohdy, H. L. Abd; El-Rehim, H. A. Abd [National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, P.O. Box 29, Cairo 11371 (Egypt)

    2009-08-30

    Copolymer hydrogels composed of poly(vinyl alcohol) (PVA) and carboxymethyl cellulose (CMC) was prepared by using electron beam irradiation as crosslinking agent. The copolymers were characterized by FTIR and the physical properties such as gelation. The thermal behavior and swelling properties of the prepared hydrogels were investigated as a function of PVA/CMC composition. The factors effecting adsorption capacity of acid, reactive and direct dyes onto PVA/CMC hydrogel, such as CMC content, pH value of the dye solution, initial concentration and adsorption temperature for dyes were investigated. Thermodynamic study indicated that the values the negative values of {Delta}H suggested that the adsorption process is exothermic. The value of {Delta}H (38.81 kJ/mol) suggested that the electrostatic interaction is the dominant mechanism for the adsorption of dyes on hydrogel.

  3. Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir; Arjmand, Hooman; Hoseini, S. Jafar; Nasrabadi, Hasan

    2015-11-15

    The object of this study was to evaluate the removal efficiency of sunset yellow (SY) anionic dye from aqueous solutions by using new surface modified iron oxide magnetic nanoparticles (MNPs). Pure Fe{sub 3}O{sub 4} MNPs were synthesized and then functionalized by aminopropyltriethoxysilane (APTES), through a chemical precipitation method. Characterization of the prepared MNP adsorbents was performed by furrier transform infrared (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). According to XRD and TEM results, average size of the magnetic Fe{sub 3}O{sub 4}/APTES NPs was estimated to be around 12 nm. The prepared magnetic adsorbent can be well dispersed in the water and easily separated magnetically from the medium after loaded with adsorbate. In the adsorption process, the effect of main experimental parameters such as pH of dye solution, initial concentration of SY dye, reaction time, and amount of MNP adsorbent on the removal of SY were studied and optimized. The small amount of this adsorbent (10 mg) is applicable for the removal of high concentrations of SY dye in reasonable time (17 min), at pH 3.1. Additionally, the adsorption studies show that the Langmuir model is a suitable model to explain the experimental data with high correlation coefficient. - Highlights: • Synthesis of nano-sized modified iron oxide magnetic particles. • Characterization of the modified MNPs by XRD, TEM, VSM, FT-IR techniques. • Design of experiments for removal of SY dye using MNPs. • Adsorption isotherm and kinetic investigation of the reaction.

  4. Interfaces in Dye-Sensitized Oxide / Hole-Conductor Heterojunctions for Solar Cell Applications

    OpenAIRE

    Johansson, Erik

    2006-01-01

    Nanoporous dye-sensitized solar cells (DSSC) are promising devices for solar to electric energy conversion. In this thesis photoelectron spectroscopy (PES), x-ray absorption spectroscopy (XAS) and photovoltaic measurements are used for studies of the key interfaces in the DSSC. Photovoltaic properties of new combinations of TiO2/dye/hole-conductor heterojunctions were demonstrated and their interfacial structures were studied. Three different types of hole-conductor materials were investigate...

  5. Preparation of sludge-based activated carbon and its application in dye wastewater treatment.

    Science.gov (United States)

    Wang, Xiaoning; Zhu, Nanwen; Yin, Bingkui

    2008-05-01

    A novel activation process was adopted to produce highly porous activated carbon from cyclic activated sludge in secondary precipitator in municipal wastewater treatment plant for dye removal from colored wastewater. The physical properties of activated carbon produced with the activation of 3M KOH solution in the atmosphere of steam were investigated. Adsorption removal of a dye, Acid Brilliant Scarlet GR, from aqueous solution onto the sludge-based activated carbon was studied under varying conditions of adsorption time, initial concentration, carbon dosage and pH. Adsorption equilibrium was obtained in 15 min for the dye initial concentration of 300 mg/L. Initial pH of solution had an insignificant impact on the dye removal. Results indicated that 99.7% coloration and 99.6% total organic carbon (TOC) were removed after 15 min adsorption in the synthetic solution of Acid Brilliant Scarlet GR with initial concentration of 300 mg/L of the dye and 20 g/L activated carbon. The Langmuir and Freundlich equilibrium isotherm models fitted the adsorption data well with R(2)=0.996 and 0.912, respectively. Accordingly, it is concluded that the procedure of developing activated carbon used in this study could be effective and practical for utilizing in dye wastewater treatment.

  6. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Ibrahim, Mohammad Izzat [Faculty of Science, University of Malaya (UM), 50603 Kuala Lumpur (Malaysia); Yunus, Nurulhuda Mohd [Faculty of Science and Technology, National University Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  7. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Science.gov (United States)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  8. Dry PMR-15 Resin Powders

    Science.gov (United States)

    Vannucci, Raymond D.; Roberts, Gary D.

    1988-01-01

    Shelf lives of PMR-15 polymides lengthened. Procedure involves quenching of monomer reactions by vacuum drying of PRM-15 resin solutions at 70 to 90 degree F immediately after preparation of solutions. Absence of solvent eliminates formation of higher esters and reduces formation of imides to negligible level. Provides fully-formulated dry PMR-15 resin powder readily dissolvable in solvent at room temperature immediately before use. Resins used in variety of aerospace, aeronautical, and commercial applications.

  9. Study on the preparation and application of carboxyl modified PAE resin%羧基改性 PAE 树脂的制备及应用研究

    Institute of Scientific and Technical Information of China (English)

    王建; 严维博; 王志杰; 玉丽芳; 宋建伟

    2013-01-01

    This paper researched on the modified method of PAE resin with carboxyl modifi-er ,discussed the dosage of modifier ,characterized modified PAE resin and studied the appli-cation of the modified PAE resin .The results showed that carboxyl modifier can undertake modification of PAE resin ,and also improve the effect of the dry strength of PAE resin .Ex-perimental results show that add carboxyl modifier into the PAE resin product is the best process .Modified PAE resin has high dry strength performance and low strong wet strength performance .The better dosage of carboxyl modifier is 9% .When modified PAE resin dosage was 0 .5% ,compared with traditional PAE resin can improve the paper dry tensile index a-bout 11% ,and reduce about 8% wet tensile index ,folding resistance degree increases by a-bout 17% , tearing index increases by about 27% , the bond strength increases by about 47% .The results of this research had a strong reference value on the modified PAE resin study ,exploitation and application .%探讨了羧基改性剂对PAE树脂的改性方式、改性剂用量,并对改性PAE树脂进行表征,研究了改性PAE树脂的应用效果.结果表明羧基改性剂可以对PAE树脂进行改性,且改性后提高了PAE树脂的增干强效果.实验结果显示:羧基改性剂对PAE树脂的末端改性优于过程改性;末端改性时,羧基改性剂的较佳引入量为9%;当末端改性后的PAE树脂用量为0.5%时,与改性前相比,能够使纸张干抗张指数提高约11%,湿抗张指数降低约8%,耐折度提高约17%,撕裂指数提高约27%,内结合强度提高约47%.另外,在PAE树脂成品中引入羧基改性剂改性,有利于PAE树脂成本的降低,也有利于损纸的回收.

  10. Amaranth dye in the evaluation of bleaching of cerium (IV) by antioxidants: application in food and medicinal plants.

    Science.gov (United States)

    Nagaraja, Padmarajaiah; Aradhana, Narayanan; Suma, Anandamurthy; Chamaraja, Nelligere Arkeswaraiah; Shivakumar, Anantharaman; Ramya, Kolar Venkatachala

    2012-09-01

    A simple, low-cost, sensitive, and diversely applicable spectrophotometric method for the determination of total antioxidant capacity of several medicinal plants and food has been developed. The method is based on the bleaching of cerium (IV) by antioxidants and dye in slightly acid medium at room temperature. The unbleached dye, imparting pink color to the solution, is measured at λ(max) 530 nm which is directly proportional to the antioxidant concentration. The method is reproducible, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds were correlated with those found by reference method such as ABTS. The recommended method was applied for the determination of total antioxidant capacity of medicinal and food samples. The performance of the recommended method was evaluated in terms of Student's t-test and variance ratio F-test, which indicated the significance of proposed method over the reference method.

  11. Amaranth dye in the evaluation of bleaching of cerium (IV) by antioxidants: Application in food and medicinal plants

    Science.gov (United States)

    Nagaraja, Padmarajaiah; Aradhana, Narayanan; Suma, Anandamurthy; Chamaraja, Nelligere Arkeswaraiah; Shivakumar, Anantharaman; Ramya, Kolar Venkatachala

    A simple, low-cost, sensitive, and diversely applicable spectrophotometric method for the determination of total antioxidant capacity of several medicinal plants and food has been developed. The method is based on the bleaching of cerium (IV) by antioxidants and dye in slightly acid medium at room temperature. The unbleached dye, imparting pink color to the solution, is measured at λmax 530 nm which is directly proportional to the antioxidant concentration. The method is reproducible, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds were correlated with those found by reference method such as ABTS. The recommended method was applied for the determination of total antioxidant capacity of medicinal and food samples. The performance of the recommended method was evaluated in terms of Student's t-test and variance ratio F-test, which indicated the significance of proposed method over the reference method.

  12. A novel reactive resin for embedding biological tissue

    Science.gov (United States)

    Zhou, Hongfu; Liu, Xiuli; Gang, Yadong; Lv, Xiaohua; Zeng, Shaoqun

    2017-02-01

    We developed a novel reactive embedding resin that crosslinking with the biological tissue via the reaction of epoxy group and amino group, which improves its compatibility with biological tissue and can be good to preserve endogenous fluorescent protein and dyes.

  13. Development of a novel resin with antimicrobial properties for dental application

    Directory of Open Access Journals (Sweden)

    Denise Tornavoi de CASTRO

    2014-10-01

    Full Text Available The adhesion of biofilm on dental prostheses is a prerequisite for the occurrence of oral diseases. Objective: To assess the antimicrobial activity and the mechanical properties of an acrylic resin embedded with nanostructured silver vanadate (β-AgVO3. Material and Methods: The minimum inhibitory concentration (MIC of β-AgVO3 was studied in relation to the species Staphylococcus aureus ATCC 25923, Streptococcus mutans ATCC 25175, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The halo zone of inhibition method was performed in triplicate to determine the inhibitory effect of the modified self-curing acrylic resin Dencor Lay - Clássico®. The surface hardness and compressive strength were examined. The specimens were prepared according to the percentage of β-AgVO3 (0%-control, 0.5%, 1%, 2.5%, 5%, and 10%, with a sample size of 9x2 mm for surface hardness and antimicrobial activity tests, and 8x4 mm for the compression test. The values of the microbiologic analysis were compared and evaluated using the Kruskal-Wallis test (α=0.05; the mechanical analysis used the Shapiro-Wilk's tests, Levene's test, ANOVA (one-way, and Tukey's test (α=0.05. Results: The addition of 10% β-AgVO3 promoted antimicrobial activity against all strains. The antimicrobial effect was observed at a minimum concentration of 1% for P. aeruginosa, 2.5% for S. aureus, 5% for C. albicans, and 10% for S. mutans. Surface hardness and compressive strength increased significantly with the addition of 0.5% β-AgVO3 (p0.05. Conclusions: The incorporation of β-AgVO3 has the potential to promote antimicrobial activity in the acrylic resin. At reduced rates, it improves the mechanical properties, and, at higher rates, it does not promote changes in the control.

  14. Synthesis of sulphonated mesoporous phenolic resins and their application in esterification and asymmetric aldol reactions

    Energy Technology Data Exchange (ETDEWEB)

    Muylaert, Ilke [Department of Inorganic and Physical Chemistry, Ghent University, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Krijgslaan 281-S3, 9000 Ghent (Belgium); Verberckmoes, An, E-mail: an.verberckmoes@hogent.be [Department of Inorganic and Physical Chemistry, Ghent University, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Krijgslaan 281-S3, 9000 Ghent (Belgium); Associated Faculty of Applied Engineering Sciences, University College Ghent, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Spileers, Jeremy [Associated Faculty of Applied Engineering Sciences, University College Ghent, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Demuynck, Anneleen; Peng, Li; De Clippel, Filip; Sels, Bert [Katholieke Universiteit Leuven, Centre for Surface Chemistry and Catalysis (COK), Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Van Der Voort, Pascal, E-mail: pascal.vandervoort@ugent.be [Department of Inorganic and Physical Chemistry, Ghent University, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Krijgslaan 281-S3, 9000 Ghent (Belgium)

    2013-02-15

    Mesoporous phenolic resins were functionalized with sulphonic acid groups by four different types of sulphonation procedures: (i) direct sulphonation on the aromatic ring, (ii) alkyl sulphonation of the aromatic ring, and functionalizations of the phenolic hydroxyl surface by using an aryl silane, 2-(4-chlorosulphonylphenyl)ethyl trichlorosilane (iii) or a propyl silane, 3-mercaptopropyltrimethoxysilane (iv). The highest acidity loadings were obtained through direct sulphonation with fuming sulphuric acid (1.90 mmol H{sup +} g{sup −1}) or chlorosulphonic acid (1.31 mmol H{sup +} g{sup −1}) and these materials showed the highest conversion (97+ %) in Fischer esterification of acetic acid with propanol. However, the alkyl sulphonic groups, obtained through sulphonation procedure (ii) showed the highest stability in terms of maintenance of their acidity after use in consecutive catalytic runs or leaching treatments. This was demonstrated both through evaluation of the regenerated catalysts in a consecutive esterification run and during a leaching resistance test in aqueous medium. Moreover, the developed sulphonated mesoporous phenolic resins are presented as novel support for the non-covalent immobilization of an L-phenylalanine derived chiral diamine organocatalyst for asymmetric aldol reactions. The immobilization is established by an acid–base interaction between the sulphonic acid group and the amine function. The acidity and in particular the electronic withdrawing environment of the sulphonic acid groups influence enormously the catalytic performance of the non-covalent immobilized chiral diamine catalyst (aromatic > aliphatic). - Highlights: ► Different types of sulphonation procedures for mesoporous phenolic resins. ► Influence of acidity and electronic withdrawing environment. ► Novel support for non-covalent immobilization of chiral diamine catalyst. ► Catalytic performance in esterification and asymmetric aldol condensation. ► Demonstration

  15. Microwave and thermal curing of an epoxy resin for microelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, K. [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Pavuluri, S.K.; Leonard, M.T.; Desmulliez, M.P.Y. [MIcroSystems Engineering Centre (MISEC), Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Arrighi, V., E-mail: v.arrighi@hw.ac.uk [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2015-09-20

    Graphical abstract: - Highlights: • Thermal and microwave curing of a commercial epoxy resin EO1080 are compared. • Microwave curing increases cure rate and does not adversely affect properties. • The curing of EO1080 is generally autocatalytic but deviates at high conversion. • Microwave radiation has a more complex effect on curing kinetics. - Abstract: Microwave curing of thermosetting polymers has a number of advantages to natural or thermal oven curing and is considered a cost-effective alternative. Here we present a detailed study of a commercially available epoxy resin, EO1080. Samples that are thermally cured are compared to curing using a recently developed modular microwave processing system. For commercial purposes it is crucial to demonstrate that microwave curing does not adversely affect the thermal and chemical properties of the material. Therefore, the kinetics of cure and various post cure properties of the resin are investigated. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) analysis shows no significant difference between the conventionally and microwave cured samples. Differential scanning calorimetry (DSC) is used to monitor the kinetics of the curing reaction, as well as determine the thermal and ageing properties of the material. As expected, the rate of curing is higher when using microwave energy and we attempt to quantify differences compared to conventional thermal curing. No change in glass transition temperature (T{sub g}) is observed. For the first time, enthalpy relaxation measurements performed on conventional and microwave cured samples are reported and these indicate similar ageing properties at any given temperature under T{sub g}.

  16. Imprint Lithography at Room Temperature with Novolak Resin and Its Application

    Institute of Scientific and Technical Information of China (English)

    T.Numai

    2007-01-01

    1 Results Imprint lithography[1] has attracted considerable attention from the viewpoint of low cost fabrication,because light exposure systems are not required. Up to now,polymethylmethacrylate (PMMA) films and hard molds were often used in imprint lithography.In this paper,we report on the successful demonstration of imprint lithography using novolak resin (OFPR-800),which is more suitable than PMMA for dry etching,and a soft mold such as a soft polyester sheet,which has a two-dimensional (2D) square ...

  17. Application of dithiocarbamate-modified starch for dyes removal from aqueous solutions.

    Science.gov (United States)

    Cheng, Rumei; Xiang, Bo; Li, Yijiu; Zhang, Mingzhen

    2011-04-15

    The present study shows that the dithiocarbamate-modified starch (DTCS) is a commercially promising sorbent for the removal of anionic dyes from aqueous solutions. It is more effective than activated carbon for this purpose. At the appropriate solution pH of 4, kinetic studies indicate that the sorption of the dyes tends to follow pseudo-first-order equation. The sorption equilibrium is best described by the Langmuir-Freundlich isotherm model at 298 K. The capacities for individual dyes follow the sequence acid orange 7 > acid orange 10 > acid red 18 > acid black 1 > acid green 25, which is consistent with the inverse order of molecular size. The negative enthalpy change for the adsorption process confirms the exothermic nature of adsorption, and a free energy change confirms the spontaneity of the process. The FT-IR spectra and thermogravimetric analyses verify the sorption based on starch-NH(2)(+)CSSH⋯(-)O(3)S-dye electrostatic attraction. The DTCS can be regenerated from the dye loaded DTCS in a weak basic solution containing sodium sulfate. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Superiority of D-A-D over D-A type of organic dyes for the application in dye-sensitized solar cell

    Science.gov (United States)

    Biswas, Santu; Pramanik, Anup; Ahmed, Tasnim; Sahoo, Suman Kalyan; Sarkar, Pranab

    2016-04-01

    We study the optoelectronic properties of some recently synthesized D-A-D chromophores which are susceptible for superior intramolecular charge transfer (ICT) property. Our first principle calculations reveal that, the chromophores have enhanced charge transfer probability in the excited state in comparison to their corresponding ground states indicating faster electron injection at the interface of dye-semiconductor composites. We compute the photovoltaic properties of the dyes with and without substitution and way out a root for optimizing the device performance. Finally, dye-TiO2 QD composite systems are studied as a model for realistic photovoltaic device.

  19. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.

    Science.gov (United States)

    Geiman, Irina; Leona, Marco; Lombardi, John R

    2009-07-01

    The applicability of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.

  20. Structural and spectral properties of 4-phenoxyphthalonitrile dye sensitizer for solar cell applications

    Indian Academy of Sciences (India)

    P M Anbarasan; K Vasudevan; P Senthil Kumar; A Prakasam; M Geetha; K Lalithambigai

    2012-04-01

    The geometries, electronic structures, polarizabilities and hyperpolarizabilities of organic dye sensitizer 4-phenoxyphthalonitrile was studied based on ab initio HF and density functional theory (DFT) using the hybrid functional B3LYP. Ultraviolet–visible (UV–Vis) spectrum was investigated by time dependent DFT (TDDFT). Features of the electronic absorption spectrum in the visible and near-UV regions were assigned based on TD-DFT calculations. The absorption bands were assigned to → * transitions. Calculated results suggest that the three excited states with the lowest excited energies in 4-phenoxyphthalonitrile was due to photo-induced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer 4-phenoxyphthalonitrile was due to an electron injection process from excited dye to the semiconductor’s conduction band. The role of phenoxy group in 4-phenoxyphthalonitrile in geometries, electronic structures and spectral properties were analysed.

  1. Synthesis, Characterization and Printing Application of Solvent Dyes Based on 2-Hydroxy-4-n-octyloxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2011-01-01

    Full Text Available Solvent dyes have been prepared by the coupling of diazo solution of different aromatic amines with 2-hydroxy-4-n-octyloxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-Visible spectral data have also been discussed in terms of structure property relationship. The printing of all the dyes on cotton fiber was monitored. The result shows that better hue was obtained on printing on cotton fiber and it is resulted in yellow to reddish brown colorations which showed a good fastness to light, with poor to good fastness to washing, perspiration and sublimation, however it shows poor rubbing fastness.

  2. Application of CBZ dimer, C343 and SQ dye as photosensitizers for pn-tandem DSCs

    Science.gov (United States)

    Lee, Yong Hyi; Park, Ji Young; Thogiti, Suresh; Cheruku, Rajesh; Kim, Jae Hong

    2016-07-01

    A pn-tandem dye-sensitized solar cell ( pn-DSC) was prepared with three different sensitized dyes CBZ Dimer (CBZD), C343, and SQ in two different compartments of the n-type or p-type cells. The constructed tandem solar cell was exhibited considerable improvement in experimental pn-DSCs parameters, open-circuit voltage, short-circuit current, fill factor, etc. These results were achieved under air mass 1.5 illumination with three different sensitized dyes in the upper and lower compartment of the pn-DSCs. These results demonstrate a complementary absorption among the two photoelectrodes in the pn-DSCs is a good approach to the efficient and low cost pn-DSCs. [Figure not available: see fulltext.

  3. Application of LC-MS to the analysis of dyes in objects of historical interest

    Science.gov (United States)

    Zhang, Xian; Laursen, Richard

    2009-07-01

    High-performance liquid chromatography (HPLC) with photodiode array and mass spectrometric detection permits dyes extracted from objects of historical interest or from natural plant or animal dyestuffs to be characterized on the basis of three orthogonal properties: HPLC retention time, UV-visible spectrum and molecular mass. In the present study, we have focused primarily on yellow dyes, the bulk of which are flavonoid glycosides that would be almost impossible to characterize without mass spectrometric detection. Also critical for this analysis is a method for mild extraction of the dyes from objects (e.g., textiles) without hydrolyzing the glycosidic linkages. This was accomplished using 5% formic acid in methanol, rather than the more traditional 6 M HCl. Mass spectroscopy, besides providing the molecular mass of the dye molecule, sometimes yields additional structural data based on fragmentation patterns. In addition, coeluting compounds can often be detected using extracted ion chromatography. The utility of mass spectrometry is illustrated by the analysis of historical specimens of silk that had been dyed yellow with flavonoid glycosides from Sophora japonica (pagoda tree) and curcumins from Curcuma longa (turmeric). In addition, we have used these techniques to identify the dye type, and sometimes the specific dyestuff, in a variety of objects, including a yellow varnish from a 19th century Tibetan altar and a 3000-year-old wool mortuary textiles, from Xinjiang, China. We are using HPLC with diode array and mass spectrometric detection to create a library of analyzed dyestuffs (>200 so far; mostly plants) to serve as references for identification of dyes in objects of historical interest.

  4. Metal octacarboxyphthalocyanines on multiwalled carbon nanotubes for dye solar cells application: Synthesis and characterisation

    CSIR Research Space (South Africa)

    Mphahlele, N

    2011-11-01

    Full Text Available HOOC HOOC N M N NCS NCS COOH HOOC COOH Ru N N N HOOC N NCS NCS HOOC COOH Ru N N N COO- +TBA TBA+ -OOC a b ? Main components ? light driven process N3 dye N719 dye Metal octacarboxyphthalocyanines The use of MPC... N HOOC HOOC N N N COOH COOH N N COOH COOH N HOOC HOOC N M H2N H2N 1 3 Spectroscopic evaluation 300 400 500 600 700 800 Wavelength, nm A b so rb an ce , a. u ZnOCPc SiOCPc GaOCPc 693 689 687 300 500 700...

  5. The application of poly(amidoamine dendrimers for modification of jute yarns: Preparation and dyeing properties

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zolriasatein

    2015-03-01

    Full Text Available In this study, poly(amidoamine (PAMAM G-2 dendrimer was used for jute yarn. Fourier transform infrared spectroscopy (FT-IR revealed that all carbonyl groups of jute fibers reacted with amino groups of polyamidoamine dendrimers. SEM observation indicated the good dispersion PAMAM dendrimers. Jute yarns pretreated with PAMAM dendrimer displayed markedly enhanced color strength with reactive dyes, even when dyeing had been carried out in the absence of electrolyte or alkali. Dendrimer-treated jute yarn showed much better light-fastness than untreated jute yarn.

  6. Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal.

    Science.gov (United States)

    Fan, Lulu; Luo, Chuannan; Sun, Min; Qiu, Huamin; Li, Xiangjun

    2013-03-01

    Magnetic β-cyclodextrin-chitosan/graphene oxide materials (MCCG) were fabricated through a facile chemical route and their application as excellent adsorbents for dye removal were also demonstrated. The characteristics results of FTIR, SEM, TEM and XRD showed that MCCG was successfully prepared. The results showed that, benefiting from the surface property of graphene oxide, hydrophobicity of β-cyclodextrin, the abundant amino and hydroxyl functional groups of chitosan, and from the magnetic property of Fe(3)O(4), the adsorbent possesses quite a good and versatile adsorption capacity to the dye under investigation, and can be easily and rapidly extracted from water by magnetic attraction. Most importantly, the adsorbent can be easily and efficiently regenerated for reuse with hardly any compromise of the adsorption capacity. The adsorption kinetics, isotherms and thermodynamics were investigated to indicate that the kinetics and equilibrium adsorptions were well-described by pseudo-second-order kinetic and Langmuir isotherm model, respectively. The thermodynamic parameters suggested that the adsorption process was spontaneous and endothermic in nature. The inherent advantages of the nano-structured adsorbent, such as adsorption capacity, easy, handy operation, rapid extraction, and regeneration, may pave a new, efficient and sustainable way towards highly-efficient dye pollutant removal in water and wastewater treatment.

  7. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    Science.gov (United States)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-08-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  8. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  9. Layer-by-layer fabrication of supramolecular dyes on TiO2 surfaces for optoelectronic applications

    Science.gov (United States)

    Kong, Xiaoqing; Maguire, Shawn; Lye, Diane; Weck, Marcus; Lee, Stephanie

    We present a modular layer-by-layer approach based on metal coordination chemistry to assemble supramolecular dyes exhibiting increased absorption in the visible range on electrode surfaces. Specifically, palladiated bis-pincer complexes (Pd-BPCs) were employed as linkers between pyridyl-terminated organic molecules via dative bonding. By alternately immersing mesoporous TiO2-coated glass substrates in solutions containing dissolved zinc porphyin (ZnP) and Pd-BPCs, supramolecular dyes were assembled layer-by-layer on the TiO2 surfaces. UV-visible absorption spectra of these assembled structures revealed a linear increase in the Soret and Q bands of ZnP after each immersion of the substrate in the ZnP solution. Coordination of the ZnP layers with Pd-BPC resulted in a slight red shift (organic molecules in specific layers of the supramolecular assemblies. By assembling unique organic dyes that absorb different wavelengths of light, we expect to expand light absorption across the visible region of the solar spectrum for solar cell applications.

  10. [Tattooing dyes].

    Science.gov (United States)

    Lehmann, G; Pierchalla, P

    1988-01-01

    Nine different tattoo dyes were analysed by various tests. Mixtures of organic dyes and inorganic filler were found; the inorganic filler consisted mainly of titanium dioxide (TiO2). Heavy metals, e.g. mercury, cadmium, or chrome as the common components of the traditional tattoo dyes, are capable of evoking unwanted skin reactions, but were not detected. Tattoo dyes are not officially controlled, and thus it is not known which substances-in addition to those identified by us-are presently used to produce ornamental tattoos. However, our results suggest that classic dyes have been superceded by newer, mainly synthetic dyes.

  11. Achievement of over 1.4 V photovoltage in a dye-sensitized solar cell by the application of a silyl-anchor coumarin dye

    OpenAIRE

    Kenji Kakiage; Hiroyuki Osada; Yohei Aoyama; Toru Yano; Keiji Oya; Shinji Iwamoto; Jun-ichi Fujisawa; Minoru Hanaya

    2016-01-01

    A dye-sensitized solar cell (DSSC) fabricated by using a novel silyl-anchor coumarin dye with alkyl-chain substitutes, a Br3 −/Br− redox electrolyte solution containing water, and a Mg2+-doped anatase-TiO2 electrode with twofold surface modification by MgO and Al2O3 exhibited an open-circuit photovoltage over 1.4 V, demonstrating the possibility of DSSCs as practical photovoltaic devices.

  12. Achievement of over 1.4 V photovoltage in a dye-sensitized solar cell by the application of a silyl-anchor coumarin dye

    Science.gov (United States)

    Kakiage, Kenji; Osada, Hiroyuki; Aoyama, Yohei; Yano, Toru; Oya, Keiji; Iwamoto, Shinji; Fujisawa, Jun-Ichi; Hanaya, Minoru

    2016-10-01

    A dye-sensitized solar cell (DSSC) fabricated by using a novel silyl-anchor coumarin dye with alkyl-chain substitutes, a Br3‑/Br‑ redox electrolyte solution containing water, and a Mg2+-doped anatase-TiO2 electrode with twofold surface modification by MgO and Al2O3 exhibited an open-circuit photovoltage over 1.4 V, demonstrating the possibility of DSSCs as practical photovoltaic devices.

  13. Application of Resins on the Treatment of Waters Polluted by Heavy Metals%树脂在重金属水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    鲁雪梅; 熊鹰; 张广之

    2012-01-01

    A review on the research progress of resins in the treatment of heavy metal contaminating waters was carried out, in which the properties and applications of both ion exchange resins and adsorption resins were elaborately discussed. In addition, the research prospects concerning current problems were also proposed.%对树脂在重金属水处理中的研究进展进行了综述,分别阐述了离子交换树脂和吸附树脂的性质、特点及在重金属水处理中的应用现状,并针对目前研究现状中存在的问题提出了研究展望.

  14. Synthesis, optical and electrochemical properties of Zn-porphyrin for dye sensitized solar cell applications

    Science.gov (United States)

    Kotteswaran, S.; Pandian, M. Senthil; Ramasamy, P.

    2016-05-01

    Zn-Porphyrin dye has been synthesized by the reaction between aldehydes and pyrrole. The dye structure was confirmed by 1H NMR, 13C NMR spectrum. The functional group of the dye molecule was confirmed by FTIR spectrum. The UV-Vis-NIR absorption spectrum of Zn-Porphyrin in DMF solution was recorded in spectrophotometer. The UV-Vis NIR spectrum of dye exhibits a strong Soret band and Q-band. Cyclic Voltammograms were obtained with three electrode systems: Pt as counter electrode, saturated calomel used as a reference electrode and glassy carbon as working electrode at a scan rate of 100 mV/s. The curves recorded the oxidation of 0.5 mM compound Zn-Porphyrin in a dichloromethane solution containing 0.1M TBAP as supporting electrolyte, reveal two successive quasi reversible redox couples with the first anodic and cathodic peak potentials of -0.2 V and -1 V. The second anodic and cathodic peak potentials are 0.82 V and 0.01 V respectively.

  15. Preparation and application of nano-TiO catalyst in dye ...

    African Journals Online (AJOL)

    2005-04-15

    Apr 15, 2005 ... strated that the improvement of colour removal of Co(10%)/TiO2 compared with pure TiO2 ... electrode has been used to degrade 4-chlorophenol and dyes ..... National Natural Science foundation (20377028) and the SJTU.

  16. Ultra-Wideband Multi-Dye-Sensitized Upconverting Nanoparticles for Information Security Application.

    Science.gov (United States)

    Lee, Jongha; Yoo, Byeongjun; Lee, Hakyong; Cha, Gi Doo; Lee, Hee-Su; Cho, Youngho; Kim, Sang Yeon; Seo, Hyunseon; Lee, Woongchan; Son, Donghee; Kang, Myungjoo; Kim, Hyung Min; Park, Yong Il; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-01-01

    Multi-dye-sensitized upconverting nanoparticles (UCNPs), which harvest photons of wide wavelength range (450-975 nm) are designed and synthesized. The UCNPs embedded in a photo-acid generating layer are integrated on destructible nonvolatile resistive memory device. Upon illumination of light, the system permanently erases stored data, achieving enhanced information security.

  17. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.

    Science.gov (United States)

    Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li

    2015-05-01

    An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely.

  18. Thiolsulfonate functionalized polystyrene resin: preparation and application in the isolation and identification of electrophilic mutagens

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new approach for isolation and identification of elecrtophilic mutagens from complex matrix was developed. Thiosulfonic anion was immobilized onto polystyrene beads and used as separation media. Potassium polystyryl-thiosulfonate, prepared from polystyryl-sulfonyl chloride and KHS, was observed to selectively react with model electrophilic mutagens such as alkyl halides, α-chloroketones and α-chloroesters to produce polystyryl-thiosulfonic esters. After separation from other nonreactive organic compounds, the beads then reacted with ethanethiol to produce unsymmetrical ethyl disulfides which are easily detected by GC/MS. For one mutagenic compound, only one unsymmetrical disulfide was found to contain its structure part. Thus, the structure of the parent mutagens could be deduced from that of the unsymmetrical disulfides. The degree of functionalization of the potassium polystyryl-thiosulfonate resin was 1.11 mmol/g. Its reactivity is discussed and its recycling method is reported here.

  19. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  20. [Study on retention of veneering materials to the facing crown made of hard-type resin. Application etching to Ni-Cr alloys].

    Science.gov (United States)

    Ichikawa, M

    1989-01-01

    In order to enhance adhesiveness between the resin and the metal in the facing crown made of hard-type resin, the bead application method has been widely utilized. A short-coming of this method is that the metal part of the facing must be made thicker for bead application. If, however, a retention is made beneath the surface of the metal part, the facing metal can be made thinner. The author studied the adhesiveness of metal to resin by producing pitting corrosion on the surface of four different kinds of Ni-Cr alloys, etching the surface with strong acid under various conditions, and compared the adhesiveness and failure conditions with those of the beaded specimens. The results were as follows: 1) The degree of corrosion of the surface of specimens was positively correlated with the duration of etching. However, the degree of corrosion differed depending on the kinds of etching solutions and specimen alloys. 2) In terms of adhesiveness, some of the etching groups were stronger than the beaded groups and some were weaker, depending on the kinds of alloys and etching conditions. 3) Condition of failure at the joint surface: in the beaded groups cohesive failure was the most prevalent type. In the etching groups, compound failure was the most prevalent. There was a positive correlation between adhesive strength and the amount of residual resin: the more residual resin, the greater the adhesive strength. 1) Electron microscopic observations: on the surface of specimens of the etching groups pitted roughness was observed, and the resin material was tightly attached to the metal surface. However, reciprocal diffusion of the elements from both materials was not indicated, nor was there any evidence of chemical bonding.

  1. Determination of 2,5-toluylenediamine (2,5-TDA) and aromatic amines in urine after personal application of hair dyes: kinetics and doses.

    Science.gov (United States)

    Schettgen, Thomas; Heinrich, K; Kraus, T; Gube, Monika

    2011-02-01

    The personal use of hair dye products is currently under discussion due to the potentially increased risk of bladder cancer among long-time users described in epidemiological literature. In order to investigate the dermal absorption of aromatic diamines as well as aromatic amines possibly present as contaminants in hair dye formulations, we conducted a biomonitoring study under real-life conditions and calculated kinetics and doses for the urinary excretion. Urine samples of two female subjects were collected for a time period of 48 h after personal application of a hair dye cream and analysed for aromatic diamines as well as o-toluidine and 4-aminobiphenyl using highly specific GC/MS-methods. 2,5-Toluylenediamine (2,5-TDA) as active ingredient of hair dyes is rapidly absorbed dermally. After a distribution phase of 12 h, 2,5-TDA is excreted with a half-time of 8 h. Excretion was 90% complete within 24 h after application. The doses of 2,5-TDA excreted within 48 h were 700 μg for application of a brown-reddish hair dye cream and 1.5 mg for the application of a brown-black hair dye cream. Urinary 4-aminobiphenyl as well as contaminations with other aromatic diamines were not detectable in our study. Due to the artifactual formation of o-toluidine in the presence of high concentrations of urinary 2,5-TDA, our results could not prove an increased internal exposure of humans to carcinogenic amines after personal application of hair dyes.

  2. Synthesis of azo pyridone dyes

    OpenAIRE

    Mijin Dušan Ž.; Ušćumlić Gordana S.; Valentić Nataša V.; Marinković Aleksandar D.

    2011-01-01

    Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments) have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were use...

  3. Synthesis of a novel dithiooxamide-formaldehyde resin and its application to the adsorption and separation of silver ions.

    Science.gov (United States)

    Celik, Zeliyha; Gülfen, Mustafa; Aydin, Ali Osman

    2010-02-15

    In this study, a new chelating resin of dithiooxamide (rubeanic acid)-formaldehyde (DTOF) has been synthesized by the reaction of dithiooxamide and formaldehyde. Also a well-known chelating resin of thiourea (thiooxamide)-formaldehyde (TUF) has been prepared by the reaction of thiourea and formaldehyde. DTOF and TUF chelating resins were used in the adsorption, separation and concentration of silver ions by batch and column techniques. These resins were characterized using FTIR and elemental analysis. It was found that DTOF resin has silver adsorption capacity of 3333.3 mg g(-1) or 30.86 mmolg g(-1) and TUF resin has the capacity of 1428.6 mg g(-1) or 13.22 mmol g(-1). DTOF resin showed more affinity to silver ions according to Cu(II), Zn(II), Ni(II) and Co(II) base metal ions than TUF resin. It was also demonstrated that DTOF resin can be used in the separation and concentration of silver ions.

  4. Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site.

    Science.gov (United States)

    Stucker, Valerie; Ranville, James; Newman, Mark; Peacock, Aaron; Cho, Jaehyun; Hatfield, Kirk

    2011-10-15

    Laboratory tests and a field validation experiment were performed to evaluate anion exchange resins for uranium sorption and desorption in order to develop a uranium passive flux meter (PFM). The mass of uranium sorbed to the resin and corresponding masses of alcohol tracers eluted over the duration of groundwater installation are then used to determine the groundwater and uranium contaminant fluxes. Laboratory based batch experiments were performed using Purolite A500, Dowex 21K and 21K XLT, Lewatit S6328 A resins and silver impregnated activated carbon to examine uranium sorption and extraction for each material. The Dowex resins had the highest uranium sorption, followed by Lewatit, Purolite and the activated carbon. Recoveries from all ion exchange resins were in the range of 94-99% for aqueous uranium in the environmentally relevant concentration range studied (0.01-200 ppb). Due to the lower price and well-characterized tracer capacity, Lewatit S6328 A was used for field-testing of PFMs at the DOE UMTRA site in Rifle, CO. The effect on the flux measurements of extractant (nitric acid)/resin ratio, and uranium loading were investigated. Higher cumulative uranium fluxes (as seen with concentrations>1 ug U/gram resin) yielded more homogeneous resin samples versus lower cumulative fluxes (uranium. Resin homogenization and larger volume extractions yield reproducible results for all levels of uranium fluxes. Although PFM design can be improved to measure flux and groundwater flow direction, the current methodology can be applied to uranium transport studies.

  5. Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption

    Institute of Scientific and Technical Information of China (English)

    Chitra Jeyaraj Pandian; Rameshthangam Palanivel; Solairaj Dhananasekaran

    2015-01-01

    Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The phys-iochemical properties of green synthesized nickel nanoparticles (NiGs) were characterized by UV–Vis spectroscopy (UV–Vis), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). NiGs were used as adsorbent for the removal of dyes such as crystal violet (CV), eosin Y (EY), orange I (OR) and anionic pol utant nitrate (NO3−), sulfate (SO42−) from aqueous solution. Adsorption capacity of NiGs was examined in batch modes at different pH, contact time, NiG dosage, initial dye and pol utant concentration. The adsorption process was pH dependent and the adsorption capacity increased with increase in contact time and with that of NiG dosage, whereas the adsorption capacity decreased at higher con-centrations of dyes and pol utants. Maximum percentage removal of dyes and pol utants were observed at 40, 20, 30, 10 and 10 mg·L−1 initial concentration of CV, EY, OR, NO3−and SO42−respectively. The maximum adsorption capacities in Langmuir isotherm were found to be 0.454, 0.615, 0.273, 0.795 and 0.645 mg·g−1 at pH 8, 3, 3, 7 and 7 for CV, EY, OR, NO3−and SO42−respectively. The higher coefficients of correlation in Langmuir isotherm sug-gested monolayer adsorption. The mean energies (E), 2.23, 3.53, 2.50, 5.00 and 3.16 kJ·mol−1 for CV, EY, OR, NO3−and SO42−respectively, calculated from the Dubinin–Radushkevich isotherm showed physical adsorption of adsor-bate onto NiGs. Adsorption kinetics data was better fitted to pseudo-second-order kinetics with R2 N 0.870 for al dyes and pol utants. NiGs were found to be an effective adsorbent for the removal of dyes and pol utants from aque-ous solution and can be applied to treat textile and tannery effluents.

  6. Effect of chlorhexidine application on the bond strength of resin core to axial dentin in endodontic cavity.

    Science.gov (United States)

    Kim, Yun-Hee; Shin, Dong-Hoon

    2012-11-01

    This study evaluated the influence of chlorhexidine (CHX) on the microtensile bonds strength (µTBS) of resin core with two adhesive systems to dentin in endodontic cavities. Flat dentinal surfaces in 40 molar endodontic cavities were treated with self-etch adhesive system, Contax (DMG) and total-etch adhesive system, Adper Single Bond 2 (3M ESPE) after the following surface treatments: (1) Priming only (Contax), (2) CHX for 15 sec + rinsing + priming (Contax), (3) Etching with priming (Adper Single Bond 2), (4) Etching + CHX for 15 sec + rinsing + priming (Adper Single Bond 2). Resin composite build-ups were made with LuxaCore (DMG) using a bulk method and polymerized for 40 sec. For each condition, half of specimens were submitted to µTBS after 24 hr storage and half of them were submitted to thermocycling of 10,000 cycles between 5℃ and 55℃ before testing. The data were analyzed using ANOVA and independent t-test at a significance level of 95%. CHX pre-treatment did not affect the bond strength of specimens tested at the immediate testing period, regardless of dentin surface treatments. However, after 10,000 thermocycling, all groups showed reduced bond strength. The amount of reduction was greater in groups without CHX treatments than groups with CHX treatment. These characteristics were the same in both self-etch adhesive system and total-etch adhesive system. 2% CHX application for 15 sec proved to alleviate the decrease of bond strength of dentin bonding systems. No significant difference was shown in µTBS between total-etching system and self-etching system.

  7. Solar efficiency of a new deposited titania photocatalyst: Pesticide and dye removal applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Dinh An, C.; Dussaud, J.; Guillard, C.; Disdier, J.; Malato, S.; Herrmann, J.M.

    2002-07-01

    A specially designed titania catalyst was prepared by coating Ahlstrom nonwoven paper with Millennium PC 500 anatase which was therefore used as a flexible photocatalytic support. Simultaneously, a new solar photoreactor (STEP) has been designed based on the multistep cascade falling film principle to ensure good exposure to sunlight and good oxygenation of the effluent to be treated. Four reactants were treated: 4-chlorophenol as a basic organic pollutant model, formetanate as a widely used pesticide, indigo carmine and congo res as complex multifunctional dye molecules. Each reaction was performed simultaneously in a slurry solar CPC photoreactor to better evaluate and validate the results obtained in the STEP reactor under identical solar exposure. The STEP solar reactor was found as efficient as the CPC for 4-chlorophenol and formetanate total degradation. By contrast, both dyes required longer treatment in STEP experiments. This new system constitutes a good alternative to slurries, whose final filtration is actually eliminated. (Author) 21 refs.

  8. Microwave assisted synthesis of zinc stannate nanocubes for dye sensitized solar cell application

    Science.gov (United States)

    Jayabal, P.; Sasirekha, V.; Mayandi, J.; Ramakrishnan, V.

    2014-11-01

    The ternary complex oxide Zn2SnO4 (ZS) has become more essential because of its photonic energy conversion, tremendous stability and higher electron mobility compared to the binary counterparts. The ZS nanocubes were prepared by simple microwave assisted route. The cubic spinel structured ZS was confirmed by X-ray diffraction (XRD) and micro-Raman techniques. Scanning electron micrograph revealed the formation of nanocubes with size of ∼90 nm. The Dye Sensitized Solar Cells (DSSCs) were fabricated using the synthesized ZS as photoanode and low cost organic dyes such as Rose Bengal (RB), Eosin Yellow (EY) and Fluorescein sodium salt (FY) as sensitizers to study their light conversion efficiencies. The DSSCs exhibited power conversion efficiency (PCE) of 0.64%, 0.05% and 0.02% for RB, EY and FY sensitized films, respectively.

  9. Application of Polyaniline Nano Composite for the Adsorption of Acid Dye from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    J.Raffiea Baseri

    2012-01-01

    Full Text Available In this research, Polyaniline coated sawdust (Polyaniline nano composite was synthesized via direct chemical polymerization and used as an adsorbent for the removal of acid dye (Acid Violet 49 from aqueous solutions. The effect of some important parameters such as pH, initial concentration of dye, contact time and temperature on the removal efficiency was investigated in batch adsorption system. The adsorption capacity of PAC was high (96.84 % at a pH of 3-4. The experimental data fitted well for pseudo second order model. Langmuir model is more appropriate to explain the nature of adsorption with high correlation coefficient. The Energy of activation from arrehenius plot suggested that the adsorption of AV49 onto PAC involves physisorption mechanism.

  10. Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Hajira Tahir

    2016-09-01

    Thermodynamic parameters ΔG°, ΔH° and ΔS° were also evaluated. The values of ΔG° show spontaneous behavior of the system. The modified bagasse C-SB shows about 89% removal, due to the formation of new modified surface and enhancement in its surface area. It could be employed as a low-cost alternative method for the removal of dyes and purification of textile effluents.

  11. Immobilization of a Pleurotus ostreatus Laccase Mixture on Perlite and Its Application to Dye Decolourisation

    OpenAIRE

    Cinzia Pezzella; Maria Elena Russo; Antonio Marzocchella; Piero Salatino; Giovanni Sannia

    2014-01-01

    In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of ...

  12. Application of the Organic Photosensitizers Bearing Two Carboxylic Acid Groups to Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-Hua; YAO Yi-Shan; LI Chao; WANG Wei-Bo; CHENG Xue-Xin; WANG Xue-Song; ZHANG Bao-Wen

    2008-01-01

    Three electron donor-n bridge-electron acceptor(D-π-A)organic dyes bearing two carboxylic acid groups were applied to dye-sensitized solar cells(DSSC)as sensitizers,in Which one triphenylamine or modified triphenylamine and two rhodanine-3-acetic acid fragments act as D and A.respectively.It was found that the introduction of t-butyl or methoxy group in the triphenylamine subunit could lead to more efficient photoinduced intramolecular charge transfer,thus improving the overall photoelectric conversion efficiency of the resultant DSSC.Under global AM 1.5 solar irradiation(73 mW·cm-2),the dye molecule based on methoxy-substituted triphenylamine achieved the best photovoltaic performance:a short circuit photocurrent density(Jsc)of 12.63 mA·cm-2,an open circuit voltage(Voc)of 0.55 V,a fill factor(FF)of 0.62,corresponding to an overall efficiency(η)of 5.9%.

  13. Integration of photocatalysis and biological treatment for azo dye removal--application to AR183.

    Science.gov (United States)

    Chebli, Derradji; Fourcade, Florence; Brosillon, Stephan; Nacef, Saci; Amrane, Abdeltif

    2011-04-01

    The feasibility of coupling photocatalysis with biological treatment to treat effluents containing azo dyes was examined in this work. With this aim, the degradation of Acid Red 183 was investigated. The very low biodegradability of AR183 was confirmed beforehand by measuring the biological oxygen demand (BOD5). Photocatalysis experiments were carried out in a closed-loop step photoreactor. The reactor walls were covered by TiO2 catalyst coated on non-woven paper, and the effluent flowed over the photocatalyst as a thin falling film. The removal of the dye was 82.7% after 4 h, and a quasi-complete decolorization (98.5%) was obtained for 10 h of irradiation (initial concentration 100 mg L(-1)). The decrease in concentration followed pseudo-first-order kinetics, with a constant k of 0.47 h(-1). Mineralization and oxidation yields were 80% and 75%, respectively, after 10 h of pretreatment. Therefore, even if target compound oxidation occurs (COD removal), indicating a modification to the chemical structure, the concomitant high mineralization was not in favour of subsequent microbial growth. The BOD5 measurement confirmed the non-biodegradability of the irradiated solution, which remained toxic since the EC50 decreased from 35 to 3 mg L(-1). The proposed integrated process appeared, therefore, to be not relevant for the treatment of AR183. However, this result should be confirmed for other azo dyes.

  14. The application of electrospun titania nanofibers in dye-sensitized solar cells.

    Science.gov (United States)

    Krysova, Hana; Zukal, Arnost; Trckova-Barakova, Jana; Chandiran, Aravind Kumar; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Kavan, Ladislav

    2013-01-01

    Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated.

  15. Preparation and Application of Titanate Nanotubes on Dye Degradation from Aqueous Media by UV Irradiation

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2015-01-01

    Full Text Available Titanate nanotubes were synthesized by a hydrothermal method using commercial TiO2 powder and then used as a photocatalyst. The titanate nanotubes were synthesized by varying the hydrothermal temperature from 110°C to 180°C. The morphological changes and phase transformation of the TiO2 nanotubes were analyzed by X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The particles’ scattering behavior was investigated by Raman studies, and the surface area of the nanotubes was determined by a Brunauer, Emmett, and Teller (BET analysis. Comparative studies show that the surface area of nanotubes increases with increasing temperature up to 130°C. The catalytic behavior of the synthesized nanotubes was also studied. The as-prepared titanate nanotubes were applied to methylene blue (MB, an organic dye degradation in aqueous media by UV irradiation. Approximately 99% of the dye was removed from the aqueous media using 2 g/L titanate nanotube when the initial dye concentration was 9 mg/L. The total irradiation time was 2 h.

  16. Coomassie Brilliant Blue G-250 Dye: An Application for Forensic Fingerprint Analysis.

    Science.gov (United States)

    Brunelle, Erica; Le, Anh Minh; Huynh, Crystal; Wingfield, Kelly; Halámková, Lenka; Agudelo, Juliana; Halámek, Jan

    2017-04-04

    The Bradford reagent, comprised of the Coomassie Brilliant Blue G-250 dye, methanol, and phosphoric acid, has been traditionally used for quantifying proteins. Use of this reagent in the Bradford assay relies on the binding of the Coomassie Blue G-250 dye to proteins. However, the ability of the dye to react with a small group of amino acids (arginine, histidine, lysine, phenylalanine, tyrosine, and tryptophan) makes it a viable chemical assay for fingerprint analysis in order to identify the biological sex of the fingerprint originator. It is recognized that the identification of biological sex has been readily accomplished using two other methods; however, both of those systems are reliant upon a large group of amino acids, 23 to be precise. The Bradford assay, described here, was developed specifically to aid in the transition from targeting large groups of amino acids, as demonstrated in the previous studies, to targeting only a single amino acid without compromising the intensity of the response and/or the ability to differentiate between two attributes. In this work, we aim to differentiate between female fingerprints and male fingerprints.

  17. New Amphiphilic Polypyridyl Ruthenium(Ⅱ) Sensitizer and Its Application in Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    KONG Fan-Tai; DAI Song-Yuan; WANG Kong-Jia

    2007-01-01

    Amphiphilic polypyridyl ruthenium(Ⅱ) complex cis-di(isothiocyanato)(4,4'-di-tert-butyl-2,2'-bipyridyl)(4,4'-dicarboxy-2,2'-bipyridyl)ruthenium(Ⅱ) (K005) has been synthesized and characterized by cyclic voltammetry, 1H NMR, UV-Vis, and FT-IR spectroscopies. The sensitizer sensitizes TiO2 over a notably broad spectral range due to its intense metal-to-ligand charge-transfer (MLCT) bands at 537 and 418 nm. The photophysical and photochemical studies of K005 were contrasted with those of cis-Ru(dcbpy)2(NCS)2, known as the N3 dye, and the amphiphilic ruthenium(Ⅱ) dye Z907. A reversible couple at E1/2=0.725 V vs. saturated calomel electrode (SCE) with a separation of 0.08 V between the anodic and cathodic peaks, was observed due to the RuⅡ/Ⅲ couple by cyclic voltammetry.Furthermore, this amphiphilic ruthenium complex was successfully used as sensitizers for dye-sensitized solar cells with the efficiency of 3.72% at the 100 mW·cm-2 irradiance of air mass 1.5 simulated sunlight without optimization of TiO2 films and the electrolyte.

  18. Expanded graphite—Phenolic resin composites based double layer microwave absorber for X-band applications

    Science.gov (United States)

    Gogoi, Jyoti Prasad; Bhattacharyya, Nidhi Saxena

    2014-11-01

    In this investigation, double layer microwave absorbers are designed and developed with paired combination of 5 wt. %, 7 wt. %, 8 wt. %, and 10 wt. % expanded graphite-novolac phenolic resin (EG-NPR) composites, in the frequency range of 8.2-12.4 GHz. The thickness and compositional combination of the two layers constituting the absorber are optimized to achieve minimum value of reflection loss (dB) and a broad microwave absorption bandwidth. Double layer combinations showing -25 dB absorption bandwidth >2 GHz and -30 dB absorption bandwidth >1 GHz are chosen for fabrication. The total thickness of the fabricated double layer microwave absorber is varied from 3 mm to 3.4 mm. Absorption bandwidths at -10 dB, -20 dB, -25 dB and -30 dB are determined for the fabricated structure. The maximum -25 dB and -30 dB absorption bandwidth of 2.47 GHz and 1.77 GHz, respectively, are observed for the double layer structure with (5 wt. %-8 wt. %) EG-NPR composites with total thickness of 3.2 mm, while -10 dB bandwidth covers the entire X-band range.

  19. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    Science.gov (United States)

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A

  20. Synthesis of a novel tertiary amine containing urethane dimethacrylate monomer (UDMTA) and its application in dental resin.

    Science.gov (United States)

    Liu, Dongliang; Liu, Fang; He, Jingwei; Lassila, Lippo V J; Vallittu, Pekka K

    2013-06-01

    A novel tertiary amine containing urethane dimethacrylate monomer UDMTA was synthesized with the aim of replacing Bis-GMA as one component of dental restorative materials. The structure of UDMTA was confirmed by FT-IR and (1)H-NMR spectra. UDMTA was incorporated into Bis-GMA/TEGDMA (50 wt%/50 wt%) resin system to replace Bis-GMA partly and totally. Double bond conversion, polymerization volumetric shrinkage, water sorption and solubility, flexural strength and modulus of UDMTA containing resin formulations were studied with neat Bis-GMA/TEGDMA resin formulation as a reference. Results showed that UDMTA could be used as a coinitiator in photocurable dental resin, UDMTA containing resin had higher double bond conversion and lower polymerization shrinkage than that of Bis-GMA/TEGDMA resin, and the UDMTA containing copolymer had higher flexural strength and flexural modulus than Bis-GMA/TEGDMA copolymer. When UDMTA was used to replace more than 25 wt% of Bis-GMA, the obtained copolymer had higher water sorption and solubility. The optimized resin composition is by replacing 25 wt% of Bis-GMA in Bis-GMA/TEGDMA (50/50 by wt%), for the prepared resin had the best comprehensive properties.

  1. Dye Aggregation in Ink Jet

    Institute of Scientific and Technical Information of China (English)

    Thomas Paul; Sarfraz Hussain

    2004-01-01

    Dye aggregation has long been recognised as a key factor in performance, and this is no less so in ink jet applications. The aggregation state was shown to be important in many different areas ranging from the use of dyes in photodynamic therapies all the way to colorants for dying of fabrics. Therefore different methods to investigate dye association qualitatively and quantitatively were developed. A simple procedure to study aggregation could be a useful tool to characterise dyes for ink jet printing. It is critically reviewed the methods used to study dye aggregation, and discussed some of the main conclusions. This will be illustrated by examples of ink jet dye aggregation and its study in aqueous and ink systems. The results are used to correlate the solution behaviour of dyes with their print performance.

  2. Development of a composite resin disclosing agent based on the understanding of tooth staining mechanisms.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Light, Nathan; Amin, Wala M; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2014-06-01

    To characterize the surface composition of dental enamel and composite resin, assess the ability of dyes with different affinities to stain these surfaces, and use this information to develop a disclosing agent that stains composite resin more than dental enamel. One hundred and ten sound extracted teeth were collected and 60 discs of composite resin, 9 mm diameter and 3 mm thick, were prepared. X-ray photoelectron spectroscopy (XPS) was employed to determine the elemental composition on the different surfaces. A tooth shade spectrophotometer was used to assess the change in shade after staining the surfaces with different dyes. XPS analysis revealed that surfaces of both outer dental enamel and composite resin contained relatively high amounts of carbon, specifically hydrocarbons. Both dental enamel and composite surfaces were stainable with the hydrophobic dye (pcomposite resin was stained more than the dental enamel (pcomposite resin might explain their high affinity to be stained by food and beverages containing hydrophobic molecules. The composite resin is more stainable by hydrophobic dyes than dental enamel. We used this information to develop an agent for disclosing composite resins that could be used to visualize composite resins that need to be removed. Removal of composite resin can be problematic, time consuming and stressful to the dental practitioner. A composite disclosing agent would help the dental practitioner identify the composite resin and facilitate its removal without damaging the adjacent healthy tooth tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Highly stable chemisorption of dyes with pyridyl anchors over TiO2: application in dye-sensitized photoelectrochemical water reduction in aqueous media.

    Science.gov (United States)

    Takijiri, Kohei; Morita, Kohei; Nakazono, Takashi; Sakai, Ken; Ozawa, Hironobu

    2017-03-09

    A polypyridyl ruthenium sensitizer possessing pyridyl anchors (Ru-py) forms much stronger chemical linkages to TiO2 surfaces compared to the conventional carboxylate and phosphonate ones. A highly stable dye-sensitized photoelectrochemical cell for water reduction is successfully demonstrated using this technique.

  4. Shear bond strength of composite resin to dentin after application of cavity disinfectants - SEM study

    Directory of Open Access Journals (Sweden)

    Vivek Sharma

    2011-01-01

    Full Text Available Aim: The aim was to evaluate the effect of different cavity disinfectants on dentin bond strengths of composite resin applied with two different adhesive systems. Materials and Methods: Two-hundred mandibular molars were sectioned parallel to the occlusal surface to expose dentin in the midcoronal one-third. The dentinal surfaces were polished with waterproof-polishing papers. The specimens were randomly divided into five groups of 40 teeth each as follows: group 1(control -- specimens were not treated with any cavity disinfectants. Groups 2--5 (experimental groups -- dentin surfaces were treated with the following cavity disinfectants, respectively; 2% chlorhexidine solution, 0.1% benzalkonium chloride-based disinfectant, 1% chlorhexidine gel, and an iodine potassium iodide/copper sulfate-based disinfectant. The specimens were then randomly divided into two subgroups including 20 teeth each to evaluate the effect of different bonding systems. Dentin bonding systems were applied to the dentin surfaces and the composite buildups were done. After the specimens were stored in an incubator for 24 hours, the shear bond strength was measured at a crosshead speed of 1 mm/min. The specimens were then statistically analyzed. Statistical Analysis Used: One way analysis of variance and Tukey-HSD tests were used. Results: There was no significant difference between chlorhexidine gel and control groups regardless of the type of the bonding agent used (P>0.05. On the other hand, pretreatment with benzalkonium chloride-based, iodine potassium iodide/copper sulfate-based disinfectants or chlorhexidine solutions had a negative effect on the shear bond strength of self-etching bonding systems. Conclusions: The findings of this study suggest that when benzalkonium chloride-based, iodine potassium iodide/copper sulfate-based disinfectants or chlorhexidine solutions are used as a cavity disinfectant, an etch-and-rinse bonding system should be preferred.

  5. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian;

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  6. Smectite clays of Serbia and their application in adsorption of organic dyes

    Science.gov (United States)

    Milošević, Maja; Logar, Mihovil

    2014-05-01

    Colorants and dyes are currently available in over a 100.000 different species and several biggest industries are using them daily in their manufacture processes (textile, cosmetics, food industry, etc.). Since colorants are easily dissoluble in water they pass through filter membranes without further decomposing and in that manner they end up in the environment. The main goal of this work is to apply certain methods in determining the suitability of individual clay in adsorbing and removing colorants from polluted waters. For this study we have chosen four different raw clays from three regions in Serbia: Svrljig (B), Bogovina (Bo) and Slatina-Ub (C and V) and as colorant - methylene blue dye (MB (MERCK, for analytical purposes)). Experiments where carried out to determine the sample structure (XRD and IR), grain size (granulometry), cationic exchange capacity (CEC via spectrophotometry using MB) and adsorption capabilities (spectrophotometry and fluorimetry using MB). XRD and IR data are showing that the samples are smectite clays where samples B i Bo are mainly montmorillonite while C and V are montmorillonite-illite clays. Granulometric distribution results indicate that samples B i Bo have smaller grain size, less that 1μ (over 60%) whereas the samples C and V are more coarse grained (40% over 20μ). This grain distribution is affecting their specific surface area in the manner that those coarse grained samples have smaller specific surface area. Cationic exchange capacity determined with methylene blue indicate that montmorillonite samples have larger CEC (B = 37 meq/100g, Bo = 50 meq/100g) and montmorillonite-illite samples smaller CEC (V = 5 meq/100g, V = 3 meq/100g). Fluorimetry measurement results gave us a clear distinction between those with higher and smaller adsorption capability. Montmorillonite samples (B and Bo) with higher CEC values and smaller grain size are adsorbing large amounts of methylene blue witch is visible by absence of fluorimetric

  7. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates.

    Science.gov (United States)

    Berlier, Judith E; Rothe, Anca; Buller, Gayle; Bradford, Jolene; Gray, Diane R; Filanoski, Brian J; Telford, William G; Yue, Stephen; Liu, Jixiang; Cheung, Ching-Ying; Chang, Wesley; Hirsch, James D; Beechem, Joseph M; Haugland, Rosaria P; Haugland, Richard P

    2003-12-01

    Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were compared with spectrally similar protein conjugates of the Cy3, Cy5, Cy5.5, Cy7, DY-630, DY-635, DY-680, and Atto 565 dyes. As N-hydroxysuccinimidyl ester dyes, the Alexa Fluor 555 dye was similar to the Cy3 dye, and the Alexa Fluor 647 dye was similar to the Cy5 dye with respect to absorption maxima, emission maxima, Stokes shifts, and extinction coefficients. However, both Alexa Fluor dyes were significantly more resistant to photobleaching than were their Cy dye counterparts. Absorption spectra of protein conjugates prepared from these dyes showed prominent blue-shifted shoulder peaks for conjugates of the Cy dyes but only minor shoulder peaks for conjugates of the Alexa Fluor dyes. The anomalous peaks, previously observed for protein conjugates of the Cy5 dye, are presumably due to the formation of dye aggregates. Absorption of light by the dye aggregates does not result in fluorescence, thereby diminishing the fluorescence of the conjugates. The Alexa Fluor 555 and the Alexa Fluor 647 dyes in protein conjugates exhibited significantly less of this self-quenching, and therefore the protein conjugates of Alexa Fluor dyes were significantly more fluorescent than those of the Cy dyes, especially at high degrees of labeling. The results from our flow cytometry, immunocytochemistry, and immunohistochemistry experiments demonstrate that protein-conjugated, long-wavelength Alexa Fluor dyes have advantages compared to the Cy dyes and other long-wavelength dyes in typical fluorescence-based cell labeling applications.

  8. Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal

    Institute of Scientific and Technical Information of China (English)

    Carolyn Palma; Lucia Lloret; Antonio Puen; Maira Tobar; Elsa Contreras

    2016-01-01

    Adsorption processes have received special attention for contaminants removal thanks to their capability to gen-erate effluents with high quality as well as their simple design. In the current work, the agro-waste residue avo-cado peel is proposed to be used as alternative to conventional activated carbons whose use is sometimes restricted to high costs, upgraded by their exhausting after long term operations. The carbonization procedure was optimized and analyzed through factorial design and response surface methodology by evaluating temper-ature (400–900 °C) and time (30–90 min) effects:optimal conditions were found at 900 °C and 65 min, gener-ating an adsorbent with 87.52 m2·g−1 of BET surface area, a mesopore volume of 74%and a zero point charge at 8.6. The feasibility of the carbonaceous material was proved for the removal of a variety of dyes by investigating substrate (10–50 mg·L−1) and solid (0.5–20 g·L−1) concentration effects and statistical significance:complete removal of Naphthol Blue Black and Reactive Black 5 was reached under optimal conditions (10 mg·L−1 and 20 g·L−1 of dye and solid, respectively), while Basic Blue 41 was eliminated by using 13.4 g·L−1 of the adsorbent. Overal , dyes removal by adsorption on carbonized avocado peel is presented as a promising technology due to the low cost and easy availability of the precursor, as well as the straightforward generation, the satisfactory char-acteristics and the proved adsorption capacity of the adsorbent.

  9. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal.

    Science.gov (United States)

    Kacan, Erdal

    2016-01-15

    The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution.

  10. 天然染料的应用性能及发展趋势%Application Performance of Natural Dye and Its Development Trends

    Institute of Scientific and Technical Information of China (English)

    吴赞敏

    2014-01-01

    本文综述了天然染料的分类及其特点,从化学结构的角度分析了主要天然染料的应用性能,介绍了天然染料的商品化技术,并总结了目前存在的问题及其应用前景。%In this paper, classification and characteristics of natural dyes were reviewed. The application performance of main natural dyes was analyzed from the perspective of their chemical structure. Two commercialization techniques of natural dyes were introduced, and the existing problems and its application prospects were also summarized.

  11. SYNTHESIS OF HYDROPHILIC ZnS NANOCRYSTALS AND THEIR APPLICATION IN PHOTOCATALYTIC DEGRADATION OF DYE POLLUTANTS

    Institute of Scientific and Technical Information of China (English)

    Junping Li; Yao Xu; Yong Liu; Dong Wu; Yuhan Sun

    2004-01-01

    Hydrophilic ZnS nanocrystals with narrow size distribution were synthesized via homogeneous precipitation using EDTA as stabilizer. The as-synthesized products were characterized with XRD, TEM, HRTEM and UV-Vis spectrum. UV-Vis spectra showed that ZnS nanocrystals exhibited strong quantum-confined effect with a blue shift in the band gap of light absorbance. The photocatalytic activity of these nanocrystals was also investigated for the liquid phase photocatalytic degradation of Basic Violet 5BN (BV5) dye under UV irradiation. It was found that the ZnS nanocrystals had good catalytic activity for photodegradation of BV5.

  12. P(MMA-EMA Random Copolymer Electrolytes Incorporating Sodium Iodide for Potential Application in a Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Nurul Akmaliah Dzulkurnain

    2015-02-01

    Full Text Available Polymer electrolytes based on 90 wt% of methyl methacrylate and 10 wt% of ethyl methacrylate (90MMA-co-10EMA incorporating different weight ratios of sodium iodide were prepared using the solution casting method. The complexation between salt and copolymer host has been investigated using Fourier transform infrared spectroscopy. The ionic conductivity and thermal stability of the electrolytes were measured using impedance spectroscopy and differential scanning calorimetry, respectively. Scanning electron microscopy was used to study the morphology of the polymer electrolytes. The ionic conductivity and glass transition temperature increased up to 20 wt% of sodium iodide (5.19 × 10−6 S·cm−1 and decreased with the further addition of salt concentration, because of the crosslinked effect. The morphology behavior of the highest conducting sample also showed smaller pores compared to the other concentration. The total ionic transference number proved that this system was mainly due to ions, and the electrochemical stability window was up to 2.5 V, which is suitable for a dye-sensitized solar cell application. This sample was then tested in a dye-sensitized solar cell and exhibited an efficiency of 0.62%.

  13. Thiourea incorporated poly(ethylene oxide) as transparent gel polymer electrolyte for dye sensitized solar cell applications

    Science.gov (United States)

    Pavithra, Nagaraj; Velayutham, David; Sorrentino, Andrea; Anandan, Sambandam

    2017-06-01

    A new series of transparent gel polymer electrolytes are prepared by adding various weight percent of thiourea coupled with poly(ethylene oxide) for the application of dye-sensitized solar cells. Coupling of thiourea in the presence of iodine undergoes dimerization reaction to produce formamidine disulfide. Fourier Transform Infrared spectroscopy shows that the interactions of thiourea and formamidine disulfide with electronegative ether linkage of poly(ethylene oxide) results in conformational changes of gel polymer electrolytes. Electrochemical impedance spectroscopy and linear sweep voltammetry experiments reveal an increment in ionic conductivity and tri-iodide diffusion coefficient, for thiourea modified gel polymer electrolytes. Finally, the prepared electrolytes are used as a redox mediator in dye-sensitized solar cells and the photovoltaic properties were studied. Apart from transparency, the gel polymer electrolytes with thiorurea show higher photovoltaic properties compared to bare gel polymer electrolyte and a maximum photocurrent efficiency of 7.17% is achieved for gel polymer electrolyte containing 1 wt% of thiourea with a short circuit current of 11.79 mA cm-2 and open circuit voltage of 834 mV. Finally, under rear illumination, almost 90% efficiency is retained upon compared to front illumination.

  14. Self-assembled molecular p/n junctions for applications in dye-sensitized solar energy conversion.

    Science.gov (United States)

    Farnum, Byron H; Wee, Kyung-Ryang; Meyer, Thomas J

    2016-09-01

    The achievement of long-lived photoinduced redox separation lifetimes has long been a central goal of molecular-based solar energy conversion strategies. The longer the redox-separation lifetime, the more time available for useful work to be extracted from the absorbed photon energy. Here we describe a novel strategy for dye-sensitized solar energy applications in which redox-separated lifetimes on the order of milliseconds to seconds can be achieved based on a simple toolkit of molecular components. Specifically, molecular chromophores (C), electron acceptors (A) and electron donors (D) were self-assembled on the surfaces of mesoporous, transparent conducting indium tin oxide nanoparticle (nanoITO) electrodes to prepare both photoanode (nanoITO|-A-C-D) and photocathode (nanoITO|-D-C-A) assemblies. Nanosecond transient-absorption and steady-state photolysis measurements show that the electrodes function microscopically as molecular analogues of semiconductor p/n junctions. These results point to a new chemical strategy for dye-sensitized solar energy conversion based on molecular excited states and electron acceptors/donors on the surfaces of transparent conducting oxide nanoparticle electrodes.

  15. Application of Cu3InSnSe5 Heteronanostructures as Counter Electrodes for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Lou, Yue; Zhao, Wenjie; Li, Chunguang; Huang, He; Bai, Tianyu; Chen, Cailing; Liang, Chen; Shi, Zhan; Zhang, Dong; Chen, Xiao-Bo; Feng, Shouhua

    2017-05-31

    In this research, we reported the synthesis of quaternary Cu3InSnSe5 nanoparticles with uniform size distribution and morphology for the first time through delicate controls over the chemical reaction kinetics. On the basis of the preparation strategy of Cu3InSnSe5 nanoparticles, Pt-Cu3InSnSe5 and Au-Cu3InSnSe5 heteronanostructures were designed and yielded using a simple and efficient seed growth method. These two heteronanostructures remained monodispersed without presence of any Cu3InSnSe5 nanocrystal impurities. To explore their application potentials for dye-sensitized solar cells, counter electrodes consisting of individual Cu3InSnSe5, Pt-Cu3InSnSe5, or Au-Cu3InSnSe5 constituents were fabricated. Current density-voltage (J-V) characteristics evaluation reveals that Cu3InSnSe5 nanoparticles, Pt-Cu3InSnSe5 and Au-Cu3InSnSe5 heterostructured nanoparticles display a comparative power conversion efficiency (PCE) of 5.8%, 7.6%, and 6.5% to that of a Pt-based counter electrode (7.9%), respectively. As such, we believe that the reported preparation strategy could provide new insights to the design and manufacture of counter electrode materials with controlled structure, morphology, and optimized power conversion efficiency for dye-sensitized solar cells.

  16. Sono-assisted preparation of magnetic ferroferric oxide/graphene oxide nanoparticles and application on dye removal☆

    Institute of Scientific and Technical Information of China (English)

    Guodong Jiang; Qing Chang; Fufu Yang; Xiaoyun Hu; Heqing Tang

    2015-01-01

    A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles (Fe3O4/GO MNPs). The hysteresis loop of Fe3O4/GO MNPs demonstrated that the sample was typical of superparamagnetic material. The samples were characterized by transmission electron microscope, and it is found that the particles are of small size. The Fe3O4/GO MNPs were further used as an adsorbent to remove Rhodamine B. The effects of initial pH of the solution, the dosage of adsorbent, temperature, contact time and the presence of interfering dyes on adsorption performance were investigated as well. The adsorption equilibrium and kinetics data were fitted well with the Freundlich isotherm and the pseudo-second-order kinetic model respectively. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption of Rhodamine B. And the adsorption process was endothermic in nature. Furthermore, the magnetic composite with a high adsorption capacity of Rhodamine B could be effectively and simply separated using an external magnetic field. And the used particles could be regenerated and recycled easily. The magnetic composite could find potential applications for the removal of dye pollutants.

  17. Enhanced Performance of Magnetic Graphene Oxide-Immobilized Laccase and Its Application for the Decolorization of Dyes

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2017-02-01

    Full Text Available In this study, magnetic graphene oxide (MGO nanomaterials were synthesized based on covalent binding of amino Fe3O4 nanoparticles onto the graphene oxide (GO, and the prepared MGO was successfully applied as support for the immobilization of laccase. The MGO-laccase was characterized by transmission electron microscopy (TEM and a vibrating sample magnetometer (VSM. Compared with free laccase, the MGO-laccase exhibited better pH and thermal stabilities. The optimum pH and temperature were confirmed as pH 3.0 and 35 °C. Moreover, the MGO-laccase exhibited sufficient magnetic response and satisfied reusability after being retained by magnetic separation. The MGO-laccase maintained 59.8% activity after ten uses. MGO-laccase were finally utilized in the decolorization of dye solutions and the decolorization rate of crystal violet (CV, malachite green (MG, and brilliant green (BG reached 94.7% of CV, 95.6% of MG, and 91.4% of BG respectively. The experimental results indicated the MGO-laccase nanomaterials had a good catalysis ability to decolorize dyes in aqueous solution. Compared with the free enzyme, the employment of MGO as enzyme immobilization support could efficiently enhance the availability and facilitate the application of laccase.

  18. Investigation of Neutron Radiation Effects on Polyclonal Antibodies (IgG) and Fluorescein Dye for Astrobiological Applications

    Science.gov (United States)

    Le Postollec, A.; Coussot, G.; Baqué, M.; Incerti, S.; Desvignes, I.; Moretto, P.; Dobrijevic, M.; Vandenabeele-Trambouze, O.

    2009-09-01

    Detecting life in the Solar System is one of the great challenges of new upcoming space missions. Biochips have been proposed as a way to detect organic matter on extraterrestrial objects. A biochip is a miniaturized device composed of biologically sensitive systems, such as antibodies, which are immobilized on a slide. In the case of in situ measurements, the main concern is to ensure the survival of the antibodies under space radiation. Our recent computing simulation of cosmic ray interactions with the martian environment shows that neutrons are one of the dominant species at soil level. Therefore, we have chosen, in a first approach, to study antibody resistance to neutrons by performing irradiation experiments at the Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine (AIFIRA) platform, a French ion beam facility at the Centre d'Etudes Nucléaires de Bordeaux-Gradignan in Bordeaux. Antibodies and fluorescent dyes, freeze-dried and in buffer solution, were irradiated with 0.6 MeV and 6 MeV neutrons. Sample analyses demonstrated that, in the conditions tested, antibody recognition capability and fluorescence dye intensity are not affected by the neutrons.

  19. [Epoxy resin systems and contact dermatitis].

    Science.gov (United States)

    Pietranek, Jolanta Eliza

    2007-01-01

    Contact dermatitis is the major chronic skin disease that represents a global health problem. Its prevalence has been significant increasing in the latest decades. Contact dermatitis substantially alters the social life of patients and affects their work productivity. Epoxy resin systems are a frequent cause of occupational allergic contact dermatitis. Epoxy resins have an extremely wide range of commercial applications. Epoxy resin systems include combinations of epoxy monomers, hardeners, reactive diluents, and/or a vast array of other additives. In occupational settings, sensitization occurs not only to resins, but also to hardeners and reactive diluents. In this article adverse effects of epoxy resin systems are discussed.

  20. Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC

    Energy Technology Data Exchange (ETDEWEB)

    Singare, P.U. [Bhavan' s College, Mumbai (India). Dept. of Chemistry

    2015-12-15

    Radio isotopic tracer technique as one of the versatile nondestructive technique is employed to evaluate the performance of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC. The evaluation was made on the basis of ion-isotopic exchange reaction kinetics by using {sup 131}I and {sup 82}Br radioactive tracer isotopes. It was observed that for both the resins, the values of specific reaction rate (min{sup -1}), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) were calculated to be lower for bromide ion-isotopic exchange reaction than that for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction under identical experimental conditions of 30.0 C, 1.000 g of ion exchange resins and 0.001 mol/L labeled iodide ion solution, the values of specific reaction rate (min{sup -1}), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K{sub d} were calculated as 0.377, 0.212, 0.080 and 15.5 respectively for Dowex SBR LC resin, which was higher than 0.215, 0.144, 0.031 and 14.1 respectively as that obtained for Tulsion A23 resins. Also at a constant temperature of 30.0 C, as the concentration of labeled iodide ion solution increases from 0.001 mol/L to 0.004 mol/L, the percentage of iodide ions exchanged increases from 84.75 % to 90.20 % for Dowex SBR LC resins which was higher than increases from 57.66 % to 62.38 % obtained for Tulsion A23 resins. The identical trend was observed for the two resins during bromide ion-isotopic exchange reaction. The overall results indicate superior performance of Dowex SBR LC over Tulsion A23 resins under identical experimental conditions.

  1. Solar efficiency of a new deposited titania photocatalyst. Chlorophenol, pesticide and dye removal applications

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, Chantal; Disdier, Jean; Maldonado, Manuel I.; Herrmann, Jean-Marie [Laboratoire D' Application de la Chimie a l' Environnement LACE (UMR 5634), Universite Claude Bernard Lyon I, Bat Jules Raulin, 69622 Villeurbanne Cedex (France); Monnet, Christine; Dussaud, Joseph [AHLSTROM Research and Services, ZI de l' Abbaye, 38780 Pont-Eveque (France); Malato, Sixto; Blanco, Julian [Plataforma Solar de Almeria-CIEMAT, Ctra. Senes Km. 4, 04200 Tabernas, Almeria (Spain)

    2003-11-10

    A specially designed titania photocatalyst was prepared by coating Ahlstrom non-woven paper, used as a flexible photocatalytic support, with Millennium PC500 anatase. At the same time, a new solar photoreactor (STEP) was designed based on the multi-step cascade falling-film principle to ensure good exposure to sunlight and good oxygenation of the effluent to be treated. Several types of reactants were treated: 4-chlorophenol as a model organic pollutant; formetanate, a widely used pesticide in horticulture; a mixture of pesticides used in vineyards; and indigo carmine (IC) and Congo red (CR), which are complex multifunctional dye molecules. Each reaction was performed simultaneously in a solar CPC slurry photoreactor and in the STEP photoreactor under identical solar exposure to better evaluate and validate the results obtained. The STEP solar reactor was found to be as efficient as the CPC for 4-chlorophenol and formetanate total degradation. In contrast, both dyes required longer treatment in STEP experiments. This new system, in which the final tedious filtration can actually be avoided, constitutes a good alternative to slurries.

  2. Carbazole-based sensitizers for potential application to dye sensitized solar cells

    Indian Academy of Sciences (India)

    Naresh Duvva; Ravi Kumar Kanaparthi; Jaipal Kandhadi; Gabriele Marotta; Paolo Salvatori; Filippo De Angelis; Lingamallu Giribabu

    2015-03-01

    Two push-pull molecules employing carbazole and alkyl thiophene (CAR-THIOHX) or carbazole and triphenylamine (CAR-TPA) as donor moieties, with the cyanoacrylic group as the acceptor, have been designed and synthesized by simple organic transformations. Photophysical and electrochemical studies revealed the potential of these two systems in dye sensitized solar cells (DSSC). Under standard irradiation conditions, CAR-TPA and CAR-THIOHX exhibited 2.12 and 1.83% of overall power conversion efficiencies respectively. The moderate photovoltaic efficiency of the sensitizers has been attributed to the poor light absorption of the sensitizers in the visible region. Density functional theory (DFT) calculations have shown a strong intramolecular charge transfer character, with the HOMOs of both the sensitizers exclusively localized on the corresponding donor moieties and LUMOs on the cyanoacrylic acid acceptor. On the other hand, the calculated high dihedral angle between the carbazole donor and the phenyl bridge for these sensitizers impedes the conjugation along the dyes backbone, and thus leads to less extended and intense absorption spectra in the visible region.

  3. Solution processable titanium dioxide precursor and nanoparticulated ink: application in Dye Sensitized Solar Cells.

    Science.gov (United States)

    Bosch-Jimenez, Pau; Yu, Youhai; Lira-Cantu, Mónica; Domingo, Concepción; Ayllón, José A

    2014-02-15

    Colloidal TiO2 anatase nanoparticles of 4-8 nm diameter capped with 3,6,9-trioxadecanoic acid (TODA) were synthesized at low temperature using water and ethanol as the solvents. ATR-FTIR and (1)H NMR characterization showed the capping acid capability of stabilizing the TiO2 nanoparticles through labile hydrogen bonds. The presence of the capping ligand permitted the further preparation of homogeneous and stable colloidal dispersions of the TiO2 powder in aqueous media. Moreover, after solvent evaporation, the ligand could be easily eliminated by soft treatments, such as UV irradiation or low-temperature thermal annealing. These properties have been used in this work to fabricate mesoporous TiO2 electrodes, which can be applied as photoanodes in Dye Sensitized Solar Cells (DSSCs). For the preparation of the electrodes, the as-synthesized mesoporous TiO2 nanoparticles were mixed with commercial TiO2 (Degussa P25) and deposited on FTO substrates by using the doctor blade technique. A mixture of water and ethanol was used as the solvent. A soft thermal treatment at 140 °C for 2h eliminated the organic compound and produced a sintered mesoporous layer of 6 μm thickness. The photovoltaic performance of the DSSCs applying these electrodes sensitized with the N3 dye resulted in 5.6% power conversion efficiency. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Synthetic dye--inorganic salt hybrid colorants for application in thermoplastics.

    Science.gov (United States)

    Wei, Yan-Ping; Li, Tian; Gao, Hong-Wen

    2011-06-17

    Common synthetic dyes, e.g., Weak Acid Pink Red B (APRB, C.I. 18073), Mordant Blue 9 (MB, C.I.14855) and Acid Brilliant Blue 6B (ABB6B, C.I. 42660), can be removed from water by in situ hybridization with CaCO(3), BaSO(4) and Ca(3)(PO(4))(2) and the resulting hybrids thus prepared used as plastic colorants. All the hybrids can be processed into polypropylene (PP) at 200 °C with good color intensity, color brightness and homogeneous dispersion. The BaSO(4)-MB hybrid exhibits better migration resistance to acid and alkali, and stronger covering power than the BaSO(4)-MB mixture. The thermal stability and UV resistance of the Ca(3)(PO(4))(2)-ABB6B hybrid are better than those of the Ca(3)(PO(4))(2)-ABB6B mixture. The crystallinity of PP is enhanced by incorporation of these hybrids and the use of these hybrids as colorants in PP instead of the dyes alone is determined to be feasible.

  5. Triphenylamine based benzimidazole and benzothiazole: Synthesis and applications in fluorescent chemosensors and laser dyes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Bin, E-mail: libinteacher@163.com [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, Liming; Guan, Yunlong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2014-01-15

    Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. The TPA-benzimidazole chemosensor was tested for a number of metal ions and found to exhibit binding affinity for Fe{sup 3+} and Hg{sup 2+} in acetonitrile, and the fluorescence quenching was achieved through a PET process. The appearance of an isosbestic point in absorption titrations and Job's plot analysis supported 1:1 stoichiometries for Fe{sup 3+} and Hg{sup 2+} ions. Laser experiments showed that under transversal pumping with a Q-switched Nd:YAG (355 nm) laser in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) at 436 nm. -- Highlights: • Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. • The TPA-benzimidazole exhibits binding affinity for Fe{sup 3+} and Hg{sup 2+} in acetonitrile and the fluorescence quenching was achieved through a PET process. • Under transversal pumping at 355 nm in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) in 436 nm.

  6. The Current Situation of Natural Dyestuff and its Application in Leather Dyeing%天然染料的发展现状及其在皮革染色中的应用

    Institute of Scientific and Technical Information of China (English)

    简未平; 王全杰

    2012-01-01

    With the increasing attention of the concept of environmental protection, to recognize and exploit the natural dye has become the development trend of leather dyes. In this paper the dyeing mechanism of natural dyes and their research and application situation were reviewed. Some commonly used leather natural dyes were also introduced. Finally the application prospect of the natural dye in leather was pointed out.%随着环保概念的深入人心,重新认识与开发天然染料已成为皮革染料研究的发展趋势。本文综述了天然染料的染色机理及其研究与应用现状,介绍了当前制革常用的天然染料,并对天然染料在皮革染色中的应用提出了建议。

  7. 水性环氧树脂涂料研究与应用进展%Research Progress and Application on Waterborne Epoxy Resin Coating

    Institute of Scientific and Technical Information of China (English)

    牛凯辉; 宋伟强; 谢宝粘; 吴龙超

    2015-01-01

    The methods for preparation of waterborne epoxy resin were systematically introduced, including mechanism methods, phase inversion technique, curing agent emulsification method and chemistry modification technique, and all of them were discussed. With epoxy groups, hydroxyl group and other active groups on the molecular chain, epoxy resin could be composited with other resins to improve the comprehensive performance of waterborne epoxy resin coatings. The commonly used methods of modification had polyurethane modification, polyacrylate modification, phosphate modification, silicone modification and nanoparticles modification. The main application fields of waterborne epoxy resin coating were also given. Finally, the development prospects were predicted.%系统地介绍了环氧树脂水性化技术,包括机械法、相反转法、固化剂乳化法及化学改性法,并对各方法进行了评论。环氧树脂分子链上带有环氧基、羟基等活泼基团,可以与其它树脂复合使用,提高水性环氧树脂涂料的综合性能,常用方法有聚氨酯改性、聚丙烯酸酯改性、磷酸酯改性、有机硅改性以及纳米粒子改性。介绍了水性环氧树脂涂料的主要应用领域,并对其发展前景进行了展望。

  8. Comparative evaluation of microleakage between bulk esthetic materials versus resin-modified glass ionomer to restore Class II cavities in primary molars.

    Science.gov (United States)

    Gopinath, Vellore Kannan

    2017-01-01

    The aim of the study was to assess the microleakage of one high-viscosity conventional glass ionomer cement (GIC) and a bulk-fill composite resin, in comparison to a resin-modified GIC in Class II restorations in primary molars. Standardized Class II slot cavity preparations were prepared in exfoliating primary molars. Teeth were restored using one of the three materials tested (n = 10): SonicFill bulk-fill composite resin (SF), EQUIA Fil conventional reinforced GIC (EQF), and Vitremer resin-reinforced GIC (VT). The restorations were then subjected to thermocycling procedure (×2000 5°C-55°C 10 s/min) and soaked in 1% neutralized fuchsin solution (pH: 7.4) for 24 h at 37°C. Teeth were sectioned longitudinally in a mesiodistal direction under continuous cooling into three slabs of 1 mm thickness and studied under a stereomicroscope for dye penetration. Data were evaluated by one-way analysis of variance and the Tukey's multiple comparison test employing 95% (α = 0.05). EQF and SF showed significantly lower microleakage scores and percentage of dye penetration (%RL) when compared to VT resin-reinforced GIC (P < 0.001). SF and EQF produced the minimum microleakage when compared to VT in Class II restorations on primary molars. Fewer application procedures and reduction in treatment time in SF and EQF systems proved advantageous in pediatric dentistry.

  9. Comparative evaluation of microleakage between bulk esthetic materials versus resin-modified glass ionomer to restore Class II cavities in primary molars

    Directory of Open Access Journals (Sweden)

    Vellore Kannan Gopinath

    2017-01-01

    Full Text Available Aim: The aim of the study was to assess the microleakage of one high-viscosity conventional glass ionomer cement (GIC and a bulk-fill composite resin, in comparison to a resin-modified GIC in Class II restorations in primary molars. Materials and Method: Standardized Class II slot cavity preparations were prepared in exfoliating primary molars. Teeth were restored using one of the three materials tested (n = 10: SonicFill bulk-fill composite resin (SF, EQUIA Fil conventional reinforced GIC (EQF, and Vitremer resin-reinforced GIC (VT. The restorations were then subjected to thermocycling procedure (×2000 5°C–55°C 10 s/min and soaked in 1% neutralized fuchsin solution (pH: 7.4 for 24 h at 37°C. Teeth were sectioned longitudinally in a mesiodistal direction under continuous cooling into three slabs of 1 mm thickness and studied under a stereomicroscope for dye penetration. Statistical Analysis: Data were evaluated by one-way analysis of variance and the Tukey's multiple comparison test employing 95% (α = 0.05. Results: EQF and SF showed significantly lower microleakage scores and percentage of dye penetration (%RL when compared to VT resin-reinforced GIC (P < 0.001. Conclusion: SF and EQF produced the minimum microleakage when compared to VT in Class II restorations on primary molars. Fewer application procedures and reduction in treatment time in SF and EQF systems proved advantageous in pediatric dentistry.

  10. Epoxy Resins Modified with Vegetable Oils

    Institute of Scientific and Technical Information of China (English)

    P.Czub

    2007-01-01

    1 Results The application of modified natural oils, nontoxic, biodegradable and renewable materials, for the modification and the synthesis of epoxy resins were presented. Firstly, the application of epoxidized vegetable oils (soybean, rapeseed, linseed and sunflower):as reactive diluents for epoxy resins was proposed and studied[1-2]. Viscosity reducing ability of epoxidized oils was tested in the compositions with Bisphenol A based low-molecular-weight epoxy resins. The rheological behaviour of the mi...

  11. Cobalt Ions Improve the Strength of Epoxy Resins

    Science.gov (United States)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  12. Investigation of electrodeposited cobalt sulphide counter electrodes and their application in next-generation dye sensitized solar cells featuring organic dyes and cobalt-based redox electrolytes

    Science.gov (United States)

    Swami, Sanjay Kumar; Chaturvedi, Neha; Kumar, Anuj; Kapoor, Raman; Dutta, Viresh; Frey, Julien; Moehl, Thomas; Grätzel, Michael; Mathew, Simon; Nazeeruddin, Mohammad Khaja

    2015-02-01

    Cobalt sulphide (CoS) films are potentiodynamically deposited on fluorine-doped tin oxide (FTO) coated glass substrates employing one, three and five sweep cycles (CoS-I, CoS-III and CoS-V respectively). Analysis of the CoS-III film by impedance spectroscopy reveals a lower charge transfer resistance (RCT) than that measured for Pt CE (0.75 Ω cm-2 and 0.85 Ω cm-2, respectively). The CoS films are used as counter electrodes (CE) in dye-sensitized solar cells (DSSCs) featuring the combination of a high absorption coefficient organic dye (C218) and the cobalt-based redox electrolyte [Co(bpy)3]2/3+. DSSCs fabricated with the CoS-III CE yield the highest short-circuit current density (JSC) of 12.84 mA cm-2, open circuit voltage (VOC) of 805 mV and overall power conversion efficiency (PCE) of 6.72% under AM 1.5G illumination (100 mW cm-2). These values are comparable to the performance of an analogous cell fabricated with the Pt CE (PCE = 6.94%). Owing to relative lower cost (due to the inherit earth abundance of Co) and non-toxicity, CoS can be considered as a promising alternative to the more expensive Pt as a CE material for next-generation DSSCs that utilize organic dyes and cobalt-based redox electrolytes.

  13. Synthesis, properties and applications of interacting blends of acrylated novalac epoxy resin based poly(ester-amides and vinyl ester

    Directory of Open Access Journals (Sweden)

    Pragnesh N. Dave

    2016-09-01

    Full Text Available Epoxy resin based unsaturated poly(ester-amide resins (UPEAs were prepared by the reported method. These UPEAs were then treated with acryloyl chloride to afford acrylated UPEAs resin (i.e. AUPEAs. Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapor pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC. Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA.

  14. Method for the stabilization and immobilization of enzymatic extracts and its application to the decolorization of textile dyes.

    Science.gov (United States)

    Vásquez, Carlos; Anderson, David; Oyarzún, Muriel; Carvajal, Andrea; Palma, Carolyn

    2014-10-01

    Peroxidases from Pleurotus eryngii have been investigated for their ability to degrade recalcitrant, phenolic pollutants. The use of crude enzymatic extracts can reduce the high costs associated with enzyme purification, and enzyme immobilization can enhance enzyme stability and recovery. The present study tests the effectiveness of various conditions for crude enzyme stabilization in polyethylene glycol and glycine solutions, and immobilization on monofunctional and heterofunctional agarose solid supports. Glycine at 0.5 M at 4 °C and pH 4 was most effective stabilization agent for the crude enzymatic extracts, and enzyme immobilization efficiency was greatest for heterofunctional supports. MANA-glyoxyl heterofunctional supports were demonstrated to have the greatest enhancement of decolorization (1.3-fold) and velocity of substrate consumption (fivefold). Therefore, the application of crude enzymatic extracts to industrial processes, such as dye decolorization, represents a cost-effective alternative to purified enzymes.

  15. Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye.

    Science.gov (United States)

    Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang

    2014-01-01

    Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology.

  16. Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye.

    Directory of Open Access Journals (Sweden)

    Xing Qin

    Full Text Available Manganese peroxidase (MnP is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B, anthraquinone dye (Remazol Brilliant Blue R, indigo dye (Indigo Carmine and triphenylmethane dye (Methyl Green as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology.

  17. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins. [Patent application

    Science.gov (United States)

    Rinde, J.A.; Newey, H.A.

    Primary diamines are prepared for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and preimpregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses a room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  18. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    OpenAIRE

    Okuyama, Katsushi; Komatsu, Hisanori; YAMAMOTO, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-01-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system; however, demineralization also introduce...

  19. Application of nanoemulsions in the regeneration of adsorbent polymeric resins; Emprego de nanoemulsoes na regeneracao de resinas polimericas adsorvedoras

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Josane A.; Queiros, Yure G.C.; Vieira, Helida V.P.; Lucas, Elizabete F.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas. Lab. de Macromoleculas e Coloides na Industria de Petroleo], e-mails: josaneacosta@yahoo.com.br, yuregomes@ima.ufrj.br, elucas@ima.ufrj.br, celias@ima.ufrj.br

    2011-07-01

    In this work, the solbrax/water/polyoxyethylene nanoemulsions were produced under high pressure homogenizer (HPH). These systems presented droplets diameter ranging between 7 to 30 nm. The nanoemulsions were used in regeneration of a polymeric resin, which has been used in treatment of oily water. This resin was contaminated with different kinds of oils. The nanoemulsions presented high cleaning efficiency, above of 90% and its performance was higher than equivalent micellar systems. (author)

  20. Biogenic glutamic acid-based resin: Its synthesis and application in the removal of cobalt(II)

    Energy Technology Data Exchange (ETDEWEB)

    Jamiu, Zakariyah A.; Saleh, Tawfik A.; Ali, Shaikh A., E-mail: shaikh@kfupm.edu.sa

    2017-04-05

    Highlights: • A novel resin embedded with metal chelating glutamic acid was synthesized. • The biogenic amino acid residues imparted remarkable efficacy to remove Co(II). • The resin showed excellent ability to remove various metals from wastewater. - Abstract: Inexpensive biogenic glutamic acid has been utilized to synthesize a cross-linked dianionic polyelectrolyte (CDAP) containing metal chelating ligands. Cycloterpolymerization, using azoisobutyronitrile as an initiator, of N,N-diallylglutamic acid hydrochloride, sulfur dioxide and a cross-linker afforded a pH-responsive cross-linked polyzwitterionic acid (CPZA) which upon basification with NaOH was converted into CDAP. The new resin, characterized by a multitude of spectroscopic techniques as well as Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET) analyses, was evaluated for the removal of Co(II) as a model case under different conditions. The adsorption capacity of 137 mg g{sup −1} does indeed make the resin as one of the most effective sorbents in recent times. The resin leverages its cheap natural source and ease of regeneration in combination with its high and fast uptake capacities to offer a great promise for wastewater treatment. The resin has demonstrated remarkable efficiency in removing toxic metal ions including arsenic from a wastewater sample.

  1. Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions: application to the separation of metallic ions.

    Science.gov (United States)

    Amara, Mourad; Kerdjoudj, Hacène

    2003-07-27

    A commercial cation exchange resin Amberlite 200 has been modified after immersion in solutions of polyethyleneimine (PEI). The kinetic of fixation of the metallic ions have been determined. The modification of the surface of the resin deals with a change in the order of the affinities of the resins towards cations. The retention is the function of the formation and the stability of the complex. The conditions of modification (pH, PEI concentration and time of immersion) have been examined and the modification was confirmed by the determination of the exchange capacities, the distribution coefficient (P) and the selectivity factors (S). The obtained results revealed the effect of PEI on the exchange properties of the resin. The pH range selected (6-8) permitted a good adherence of PEI onto the resin surface. The quantity of the adsorbed PEI was increased by raising the initial concentration and the immersion period. The exchange capacity for copper ion passed from 2.6 mmol g(-1), in the case of unmodified resin, to 3.9 mmol g(-1) for the modified one.

  2. Organic-Ruthenium(II Polypyridyl Complex Based Sensitizer for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Lingamallu Giribabu

    2011-01-01

    Full Text Available A new high molar extinction coefficient organic-ruthenium(II polypyridyl complex sensitizer (RD-Cou that contains 2,2,6,6-tetramethyl-9-thiophene-2-yl-2,3,5,6,6a,11c-hexahydro1H,4H-11oxa-3a-aza-benzoanthracene-10-one as extended -conjugation of ancillary bipyridine ligand, 4,4-dicaboxy-2,26,2-bipyridine, and a thiocyanate ligand in its molecular structure has been synthesized and completely characterized by CHN, Mass, 1H-NMR, UV-Vis, and fluorescence spectroscopies as well as cyclic voltammetry. The new sensitizer was tested in dye-sensitized solar cells using a durable redox electrolyte and compared its performance to that of standard sensitizer Z-907.

  3. Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications

    Directory of Open Access Journals (Sweden)

    Umar Ahmad

    2009-01-01

    Full Text Available Abstract Dye-sensitized solar cells (DSSCs were fabricated by using well-crystallized ZnO nanocombs directly grown onto the fluorine-doped tin oxide (FTO via noncatalytic thermal evaporation process. The thin films of as-grown ZnO nanocombs were used as photoanode materials to fabricate the DSSCs, which exhibited an overall light to electricity conversion efficiency of 0.68% with a fill factor of 34%, short-circuit current of 3.14 mA/cm2, and open-circuit voltage of 0.671 V. To the best of our knowledge, this is first report in which thin film of ZnO nanocombs was used as photoanode materials to fabricate the DSSCs.

  4. Application of Y(2)O(3):Er(3+) nanorods in dye-sensitized solar cells.

    Science.gov (United States)

    Wang, Jiangli; Wu, Jihuai; Lin, Jianming; Huang, Miaoliang; Huang, Yunfang; Lan, Zhang; Xiao, Yaoming; Yue, Gentian; Yin, Shu; Sato, Tsugio

    2012-07-01

    Y(2)O(3):Er(3+) nanorods are synthesized by means of a hydrothermal method and then introduced into a TiO(2) electrode in a dye-sensitized solar cell (DSSC). Y(2)O(3):Er(3+) improves infrared light harvest via up-conversion luminescence and increases the photocurrent of the DSSC. The rare earth ions improve the energy level of the TiO(2) electrode through a doping effect and thus increase the photovoltage. The light scattering is ameliorated by the one-dimensional nanorod structure. The DSSC containing Y(2)O(3):Er(3+) (5 wt%) in the doping layer achieves a light-to-electric energy conversion efficiency of 7.0%, which is an increase of 19.9% compared to the DSSC lacking of Y(2)O(3):Er(3+).

  5. Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation.

    Science.gov (United States)

    Pezzella, Cinzia; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero; Sannia, Giovanni

    2014-01-01

    In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena.

  6. Immobilization of a Pleurotus ostreatus Laccase Mixture on Perlite and Its Application to Dye Decolourisation

    Directory of Open Access Journals (Sweden)

    Cinzia Pezzella

    2014-01-01

    Full Text Available In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena.

  7. Preparation of ZnO Nanospheres and Their Applications in Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Zhe; WU Li-Hui; LIU Yan-Ping; XIE Er-Qing; YAN De; CHEN Jiang-Tao

    2009-01-01

    ZnO nanospheres are synthesized by a two-step self-assembly method.X-ray diffraction pattern and Raman scattering spectra measurements show that all the samples present a typical wurtzite structure.A regular sphere shape is inspected by field emission scanning electron microscope and transmission electron microscope for the samples.It is shown that the as-synthesized ZnO nanosphere is composed of numbers of primary particles with size of around 10 nm.A possible growth mechanism for the two-step self-assembly ZnO nanosphere is proposed.After applying the ZnO nanospheres to dye-sensitized solar cells (DSSCs),a 117% increase of the overall light to electricity conversion efficiency η is observed compared with that of the ZnO nanoparticles based DSSCs.Associated with the UV-vis results,light scattering is assigned to the great improvement of η.

  8. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved.

  9. ZnO hierarchical nanostructures and application on high-efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yingsong [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); MFAL-TJ, Motorola (China) Electronics Ltd, Tianjin 300457 (China); Sun Jing; Xie Yang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Jim [MFAL-TJ, Motorola (China) Electronics Ltd, Tianjin 300457 (China); Wang Hongli [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Du Xiwen, E-mail: xwdu@tju.edu.c [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-02-15

    Uniform hierarchical ZnO nanostructures are synthesized on a large scale based on a solution approach at low temperature. The primary ZnO hexagonal prisms are firstly produced by the reaction of Zn(NO{sub 3}){sub 2} with hexamethylenetetramine, and then ZnO branches grow on the primary prisms by using ethylenediamine molecules as an evocator. The morphology of the hierarchical nanostructure can be controlled conveniently by adjusting the molar ratio of [EDA]/[Zn{sup 2+}]. The hierarchical structure provides an effective pathway for carrier transport as well as larger surface area for dye adsorption, when ZnO hierarchical nanostructures serve as photoanode materials, the solar cells show higher conversion efficiency than that of primary ZnO nanowires.

  10. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Ana L. R. L. Zimbardi

    2016-05-01

    Full Text Available Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1 was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w milled corncob, 0.8% (w/w NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1, the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate. Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate (ABTS were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE. ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB, remazol brilliant blue R and reactive blue 4 (RB4, at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.

  11. The entrapment of organic dyes into sol gel matrix: Experimental results and modeling for photonic applications

    Science.gov (United States)

    Costa, Sheila C. S.; Gester, Rodrigo M.; Guimarães, Jeconias R.; Amazonas, Jarlesson G.; Nero, Jordan Del; Silva, Sidicleia B. C.; Galembeck, Andre

    2008-05-01

    To better understand the electronic absorption spectra in the UV-vis region of the methyl red (MR) dye in its anionic, isoelectronic and zwitterionic forms in aqueous solution, high level sequential-Monte Carlo/quantum mechanics (s-MC/QM) methodology was performed and compared to experimental measurements. The theoretical procedure consists in treating the solute-solvent system separately using classical MC simulations to build the MR aqueous solution and then, the MC structures are treated by quantum approaches. Thus, the solvent effects were investigated including on the INDO/CI-S calculations initially the micro and further the first hydration shells. As we excepted the absorption spectra are characterized by a strong band placed in the region of lowest energies. To the basic form we computed shoulders at 434.33 ± 0.09 and 436.34 ± 0.56 nm corresponding to the micro and first hydration shells, respectively. Our experimental measurements display this shoulder at 431 nm. Under acidic forms (isoelectronic and zwitterionic), we computed the red shift in relation to the basic compound. To the isoelectronic structure we found the absorption maximum located at 485.80 ± 0.34 and 480.66 ± 0.67 nm to the micro and first shells, respectively. The experimental prediction of 513 nm is in good agreement with theoretical result. Finally the zwitterionic form we did not obtain a micro layer, therefore we used only the first shell. Our theoretical results are converged to 502.13 ± 0.79 nm in good concordance with the experimental confirmation of 511 nm. These samples were optically transparent, hard and resistant to dye leaching and to chemical attacks, being promising materials to be used in optical devices.

  12. 丙烯酸锌树脂的产业化及应用研究%Research on the Industrialization and Application of Zinc Acrylate Resin

    Institute of Scientific and Technical Information of China (English)

    孙祖信; 黄雪平

    2014-01-01

    介绍了无锡自抛光9188丙烯酸锌树脂的合成工艺和主要性能指标,以及以9188树脂为基料的无锡自抛光防污涂料的基础配方、性能检测及实船应用情况等。%The synthetic process and main performance index of tin-free self-polishing 9188 zinc acrylate resin were introduced. The basic formulation,performance tests and practical application on ships of tin-free self-polishing antifouling coatings based on 9188 resin were reviewed.

  13. Efficient and Convenient Route for the Synthesis of Some New Antipyrinyl Monoazo Dyes: Application to Polyester Fibers and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Ahmed A. Fadda

    2013-01-01

    Full Text Available Nine variously substituted azo dye derivatives 2–10 of antipyrine were prepared. The effects of the nature and orientation of the substituents on the color and dyeing properties of these dyes for polyester fibers were evaluated. The newly synthesized compounds were characterized on the basis of elemental analyses and spectral data. On the other hand, the investigated dyes were applied to polyester fabrics and showed good light, washing, heat, and acid perspiration fastness. The remarkable degree of brightness after washings is indicative of the good penetration and the excellent affinity of these dyes for the fabric. The results in general revealed the efficiency of the prepared compounds as new monoazo disperse dyes. The newly synthesized compounds were screened for their antioxidant and cytotoxic activity against Vitamin C and 5-fluorouracil, respectively. The data showed clearly that most of the compounds exhibited good antioxidant and cytotoxic activities.

  14. Synthesis of a Novel Phosphorus-Containing Flame Retardant Curing Agent and Its Application in Epoxy Resins.

    Science.gov (United States)

    Zhang, Hongkun; Xu, Miaojun; Li, Bin

    2016-03-01

    A novel phosphorus-containing compound diphenyl-(2,5-dihydroxyphenyl)-phosphine oxide defined as DPDHPPO was synthesized and used as flame retardant and curing agent for epoxy resins (EP). The chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 1H, 13C and 31P nuclear magnetic resonance. The flame retardant properties, combusting performances and thermal degradation behaviors of the cured epoxy resins were investigated by limiting oxygen index (LOI), vertical burning tests (UL-94), cone calorimeter and thermogravimetric analysis (TGA) tests. The morphologies and chemical compositions of char residues for cured epoxy resins were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The water resistant properties were evaluated by putting the samples into distilled water at 70 degrees C for 168 h. The results revealed that the EP/40 wt% DPDHPPO/60 wt% PDA thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 31.9%. The cone tests results revealed that the incorporation of DPDHPPO efficiently reduced the combustion parameters of epoxy resins thermosets, such as heat release rate (HRR), total heat release (THR) and so on. The TGA results indicated that the introduction of DPDHPPO promoted epoxy resins matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield and thermal stability at high temperature. The morphological structures and analysis of XPS of char residues revealed that DPDHPPO benefited to the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resins materials surface during combustion. After water resistance tests, EP/40 wt% DPDHPPO/60 wt% PDA thermosets still remained excellent flame retardancy, the moisture absorption of epoxy resins thermosets decreased with the increase of DPDHPPO contents in the thermosets due to the existing

  15. Synthesis, characterization and application of ion exchange resin as a slow-release fertilizer for wheat cultivation in space

    Science.gov (United States)

    Li, Bowei; Dong, Chen; Chu, Zhengpei; Zhang, Weizhe; Wang, Minjuan; Liu, Hong; Xie, Beizhen

    2016-10-01

    In addition to the bio-regenerative air revitalization, water recycling and waste management systems and their associated challenges, enhancing the crop yield with less fertilizer input for sustainable food production in space is also a challenge that needs to be overcome. The purpose of this study is to investigate the feasibility of applying ion exchange resin as a slow-release fertilizer for wheat cultivation in space. Strong-acid cationic exchange resins and weak-base anion exchange resins soaked in 1X, 5X, 10X and 15X Hoagland nutrient solutions, respectively, were used as fertilizers in clinoptilolite to cultivate wheat plants, and the morphological and physiological characteristics of the wheat plants were studied and compared with that of the wheat planted in vermiculite and nutrient solutions. The results showed that more ions were attached on the surface of the ion exchange resins as the solution concentration increased. After 14 days, the fresh weight of wheat planted in the ion exchange resin-clinoptilolite (IER-clinoptilolite) treated with 10X and 15X solutions were 190% and 192% higher than that of wheat planted in nutrient solution with the same concentration. Chlorophyll content of wheat plants cultivated in the two kinds of solid medium is significantly higher than that of liquid cultivation. The lowest peroxidase (POD) activity and malondialdehyde (MDA) contents of wheat plants cultivated in the IER-clinoptilolite appeared on the 14th day. According to all the experimental data, it's promising to produce slow-release nutrient fertilizer by using strong-acid cationic exchange resins and weak-base anion exchange resins for wheat cultivation in space.

  16. Synthesis of azo pyridone dyes

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2011-01-01

    Full Text Available Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were used rapidly since 1970 in inks for the heat-transfer printing of polyester. The main synthetic route for the preparation of azo dyes is coupling reaction between an aromatic diazo compound and a coupling component. Of all dyes manufactured, about 60% are produced by this reaction. Arylazo pyridone dyes can be prepared from pyridone moiety as a coupling component, where substituent can be on nitrogen, and diazonim salts which can be derived from different substituted anilines or other heterocyclic derivatives. In addition, arylazo dyes containing pyridone ring can be prepared from arylazo diketones or arylazo ketoesters (obtained by coupling β-diketones or β-ketoesters with diazonim salts by condensation with cyanoacetamide. Disazo dyes can be prepared by tetrazotizing a dianiline and coupling it with a pyridone or by diazotizing aniline and coupling it with a dipyridone. Trisazo dyes can be also prepared by diazotizing of aniline and coupling it with a tripyridone or by hexazotizing a trianiline and coupling it with a pyridone. The main goal of this paper is to give a brief review on the synthesis of arylazo pyridone dyes due to the lack of such reviews. In addition, some properties of arylazo pyridone dyes as light fastness and azo-hydrazon tautomerism are disccused.

  17. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    Science.gov (United States)

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample.

  18. Application of Solar Irradiation / K2S2O8 Photochemical Oxidation Process for the Removal of Reactive Blue 19 Dye fromAqueous Solutions

    Directory of Open Access Journals (Sweden)

    M Abootoraby

    2010-07-01

    Full Text Available "n "n "nBackgroundandObjectives: Dyes are organic compoundswith complex structures,which due to toxicity, carcinogenicity and nonbiodegredabity, this type of pollutants is one of the most important pollutants of the environment. The goal of this researchwas to study the feasibility of the application of solar irradiation in presence of potassium persulfate (K2S2O8 for the removal of Reactive blue19 (RB19 from synthetic wastewater."nMaterials andMethods: This researchwas carried out in laboratory scalewith using of 200ml volume of batchphotoreactor.The effectsofoperatingparameters suchas concentrationofK2S2O8,pH,photoexposure time and preliminary concentrations of dye on decolorization have been evaluated.Different concentrations of pollutant inwastewaterwere prepared by solution of variousmasses of RB19 on tapwater. The reactors were exposedwith natural solar irradiation as aUVAsource from11 amto 14 pm.Themaximumabsorbtion wave length of this dye (!max was determined by spectrophotometer (Unico, 2100. The measurement of dye concentrations was determined with using of standard curve and its best line equation"nResults:Analysis of absorbtion spectra showed that the !max of RB19 is 592 nm. The average intensity of the UVA irradiated from solar system was 54.6 µW/Cm2. The results of decolorization process showed that 38.2%of this dye can be removed within 3 hr in the presence of potassium persulfate and decreasing of pH leads to the elevation of dye removal efficiency. Based on these findings, the efficiency of dye removal with 3h photoexposure time and pH ranges of 4,6 and 8 were found to be 98.2 88.5 and 78.5%, respectively.Also, the results showed that increasing of K2S2O8 dosage leads to elevation of dye removal efficiency in 3h photoexposure time and K2S2O8 dosages within 1-5mmol/L, with the removal efficiency of 75,86,92,95 and 98.5%, respectively.Analysis of data indicates that the kinetic of the removal of RB19 with this process is a first

  19. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    OpenAIRE

    Seungwon Lee; Jisuk Lee; Kyusuk Nam; Weon Gyu Shin; Youngku Sohn

    2016-01-01

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscop...

  20. STUDY ON SYNTHESIS OF PVC SERIES OF MACROPOROUS SULFORIC RESINS AND THEIR APPLICATIONS IN CATALYTIC ESTERIFICATION AND WATER TREATMENT

    Institute of Scientific and Technical Information of China (English)

    LIYanfeng; FULiandi; 等

    1999-01-01

    The PVC serves of macroporous sulfonic cation-exchange resins were prepared by the sulfonation of a macroporous PVC bead with concentrated sulfonic acid or chlorosulfonic acid.the resulting sulfonic resin was employed in the investigation of catalytic esterification and solftening of water,The results show that the yields of esters reach 60.0-84.4% according as different fatty acids and alcohols,the refractive indexes of esters obtained resemble those reported in the references basically,meanwhile,345L softened water which holds ≤0.06mmol/L hardness would be prepared by 1 L wet sulfonic resin reusing for 4 times.The resulting sulfonic resins would have 1.6-2.0or 2.5-3.0mmol/g exchange capacity by using concentrated sulfonic acid or chlorosulfonic acid as sulfonating agent,respectively,The sulfonic resin has a macroporous structure taking the morphology with agglomerates of minutely spherical gel particles as characteristic.

  1. Use of Pistacia terebinthus resin as immobilization support for Lactobacillus casei cells and application in selected dairy products.

    Science.gov (United States)

    Schoina, Vasiliki; Terpou, Antonia; Angelika-Ioanna, Gialleli; Koutinas, Athanasios; Kanellaki, Maria; Bosnea, Loulouda

    2015-09-01

    Resin from Pistacia terebinthus tree was used for the immobilization of L. casei ATCC 393 cells. The encapsulated L. casei cells biocatalysts were added as adjuncts during yogurt production at 45 °C and probiotic viability was assessed during storage at 4 °C. For comparison reasons yogurt with free L. casei cells were prepared. The effect of encapsulated bacteria as adjuncts in yogurt on pH, lactic acid, lactose and other physicochemical parameters were studied for 60 storage days at 4 °C. Samples were also tested for the microbiological and organoleptic characteristics during storage at 4 °C. Encapsulation matrix seems to sustain the viability of embedded L. casei cells at levels more than 7 logcfug(-1) after 60 days of storage at 4 °C. Furthermore, the absence of pathogens such as Salmonella, Staphylococci, Enterobacteriaceae and coliforms in the produced yogurts is noteworthy where spoilage microorganisms such as yeasts and molds seem to affect yogurt quality only in absence of Pistacia terebinthus resin. The effect of the resin on production of aroma-related compounds responsible for yogurt flavor was also studied using the solid phase microextraction gas chromatography/mass spectrometry technique. Alpha and beta- pinene were the major aroma compounds detected in produced yogurts (over 60 % of total aromatic compounds detected). Yogurts with immobilized cells on P.terebintus resin had a fine aroma and taste characteristic of the resin.

  2. Textile dyeing by dyestuffs of natural origin

    Directory of Open Access Journals (Sweden)

    Šmelcerović Miodrag

    2006-01-01

    Full Text Available The textile industry is one of the biggest industrial consumers of water especially dye houses which utilize synthetic dyes and other chemicals. Natural dyes are generally environmental friendly and have many advantages over synthetic dyes with respect to production and application. In recent years, there has been an interest in the application of these dyes due to their bio-degradability and higher compatibility with the environment. A review of previous work in the field of applying dyestuffs of natural source as possible textile dyes is given. From an ecological viewpoint, the substitution of chemical dyes by 'natural products' in textile dyeing may be feasible and may represent not only a strategy to reduce risks and pollutants, but also an opportunity for new markets and new businesses which can develop from the inclusion of ecology in trade policy.

  3. Host–guest composite materials of dyes loaded zeolite LTL for antenna applications

    Energy Technology Data Exchange (ETDEWEB)

    Insuwan, W. [Rajamangala University of Technology Isan Surin Campus, Facculty of Agriculture and Technology, Surin 32000 (Thailand); Jungsuttiwong, S. [Center for Organic Electronic and Alternative Energy, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Rangsriwatananon, K., E-mail: kunwadee@sut.ac.th [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2015-05-15

    This research work directly focuses on a new feasible light harvesting antenna material constructed with Acridine hydrochloride (Ac)/Acriflavine hydrochloride (AF), as donor/acceptor for energy transfer, loaded on a round shape zeolite LTL (K-LTL and H-LTL). The energy transfer was monitored by absorption and fluorescence spectra while the calculated Förster distance (R{sub DA}) and Quenching efficiency (%Q) of Ac/AF on K-LTL and H-LTL varied between 22.0 Å to 19.6 Å and 71.4% to 65.5%, respectively. Also, it was found that the microenvironment of a solid host such as K-LTL and H-LTL has significantly influenced the fluorescence spectra of Ac/AF on H-LTL approximately 50 nm longer than that on K-LTL. - Highlights: • New antenna materials have been performed using dyes loaded on zeolite LTL. • Light emission takes place from acriflavine hydrochloride (AF) due to fluorescence resonance energy transfer (FRET). • The microenvironment of zeolite LTL has significantly influenced the fluorescence spectra.

  4. Microwave assisted synthesis of ZnO nanoparticles for lighting and dye removal application

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijays_phy@rediffmail.com [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Gohain, M. [Department of Chemistry, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Som, S.; Kumar, Vinod [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Bezuindenhoudt, B.C.B. [Department of Chemistry, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Swart, Hendrik C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2016-01-01

    In this study, we report on the synthesis of ZnO nanoparticles (NPs) via the microwave-assisted technique. The as-synthesized ZnO nanoparticles were annealed at 500 °C for three hours. The ZnO NPs were characterized by X-ray diffraction (XRD) and scanning electron microscopic techniques. XRD results confirmed the formation of as-synthesized ZnO powder oriented along the (101) direction. The Kubelka–Munk function has been employed to determine the band gap of the ZnO powder. ZnO powder has been studied by photoluminescence (PL) before and after annealing to identify the emission of defects in the visible range. The intensity of the PL emission has decreased after annealing. The synthesized ZnO samples were also studied for methyl orange dye removal from waste water. It has been found that the as-synthesized ZnO shows better adsorption behaviour as compared to the annealed sample.

  5. Facile synthesis of silver nanoparticles and their application in dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Siby, E-mail: sibyjoseph4@gmail.com [Department of Chemistry, St. George' s College, Aruvithura, Kottayam 686122, Kerala (India); Mathew, Beena, E-mail: beenamscs@gmail.com [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India)

    2015-05-15

    Graphical abstract: - Highlights: • This synthetic method uses the novel reducing agent hexamine. • The method is simple, fast and environment friendly. • This is a cost-effective method as all materials used are inexpensive and readily available. • The method provides highly stable spherical silver nanoparticles. • The nanoparticles show outstanding catalytic activity in the degradation of organic dyes. - Abstract: The present article reports a simple, facile and eco-friendly method based on microwave irradiation for the synthesis of silver nanoparticles in aqueous medium using starch as stabilizing agent and a new reducing agent namely hexamine. The silver nanoparticles were characterized by UV–vis, FTIR, XRD and HR-TEM analysis. UV–vis spectroscopic studies provided sufficient evidences for the formation of nanoparticles. The role of starch in the synthesis and stabilization of the nanoparticles was obtained from FTIR studies. The XRD and HR-TEM investigations clearly demonstrated the crystalline nature of the nanoparticles. From the TEM images, the silver nanoparticles were found to be spherical and of nearly uniform size with an average diameter of 18.2 ± 0.97 nm. The nanoparticles showed excellent catalytic activity in the degradation of methyl orange and rhodamine B by NaBH{sub 4}.

  6. Current chemical concepts of acids and bases and their application to anionic ("acid") and cationic ("basic") dyes.

    Science.gov (United States)

    Puchtler, H; Meloan, S N; Spencer, M

    1985-01-01

    In biomedical studies, dyes are divided into "acid" and "basic" dyes. This classification cannot be reconciled with current chemical definitions of acids and bases. Brönsted-Lowry acids are compounds that can donate protons; bases are proton acceptors. The definition of acids and bases is independent of the electric charge, i.e. acids and bases can be neutral, anionic or cationic. Reactions between acids and bases result in formation of new acid-base pairs. Lewis acids and bases do not depend on a particular element, but are characterized by their electronic configurations. Lewis bases are electron donors; Lewis acids are electron acceptors. This classification is also unrelated to the electric charge. Lewis acids and bases interact by formation of coordinate covalent bonds. In histochemistry and histology, dyes containing -SO3-, -COO- and/or -O- groups are classified as "acid" dyes. However, such compounds are electron pair donors and hence Brönsted-Lowry and Lewis anionic bases. Dyes carrying a positive charge are termed "basic" dyes. Chemically, many cationic dyes are Lewis acids because they can add a base, e.g. OH-, acetate, halides. The hypothesis that transformation of -NH2 into ammonium groups imparts "basic" properties to dyes is untenable; ammonium groups are proton donors and hence acids. Furthermore, conversion of an amino into an ammonium group blocks a lone electron pair and the color of the dye changes drastically, e.g. from violet to green and yellow. It appears therefore highly unlikely that ammonium groups are responsible for binding of cationic ("basic") dyes. In histochemistry, it is usually not of critical importance whether anionic or cationic dyes are chemically acids or bases.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. 树脂基复合材料在欧美机车汽车制造业的应用%Application of resin composite materials to railway train and automobile manufacturing industry in Europe and U.S.A

    Institute of Scientific and Technical Information of China (English)

    翁睿; 祝颖丹

    2001-01-01

    The properties of resin composite materials are introduced.Application and development of resin composite materials to railway train and automobile industry in Europe and U.S.A are summarized.%介绍了树脂基复合材料的性能特点,并对其在欧美机车、汽车制造业的应用和发展进行了综述。

  8. Performance evaluation of anion exchange resins Purolite NRW-5050 and Duolite A-611 by application of radioisotopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Singare, P.U. [Bhavan' s College, Mumbai (India). Dept. of Chemistry

    2014-12-15

    Radioanalytical techniques using {sup 131}I and {sup 82}Br as tracer isotopes were applied to study the kinetics of iodide and bromide ion-isotopic exchange reactions taking place between the external labeled ionic solution and the resin surface. The results indicate low values of specific reaction rate (min{sup -1}), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) for bromide ion-isotopic exchange reaction as compared to that obtained for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction performed at 35.0 C, 1 000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution, the values of specific reaction rate (min{sup -1}), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K{sub d} were 0.340, 0.394, 0.134 and 20.2 respectively for Purolite NRW-5050 resin, which was higher than the respective values of 0.216, 0.290, 0.063 and 18.2 as that obtained by using Duolite A-611. The results of present investigation indicate that during the two ion-isotopic exchange reactions, for both the resins, there exists a strong positive linear correlation between amount of ions exchanged and concentration of ionic solution; and strong negative correlation between amount of ions exchanged and temperature of exchanging medium. From the results it appears that as compared to Duolite A-611 resins, Purolite NRW-5050 resins shows superior performance under identical experimental conditions.

  9. 环氧树脂固化动力学的研究及应用%RESEARCH OF EPOXY RESIN CURING KINETICS AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    李恒; 王德海; 钱夏庆

    2013-01-01

    Differential scanning calorimetry (DSC)analysis including isothermal and non-isothermal method is an effective way to study epoxy resin curing kinetics.The present review intends to summarize the recent progress in the research of epoxy resin curing kinetics via DSC analysis (model fitting and model free method).The application of epoxy resin curing kinetics in different systems is described.Finally,the paper prospects the future of kinetic studies.%等温和非等温DSC是研究环氧树脂固化动力学的有效方法,本文综述了采用DSC法研究环氧树脂固化动力学方法(模型拟合法和非模型法)的研究进展,介绍了环氧树脂动力学研究在不同环氧树脂体系中的应用,并展望了动力学研究的发展方向.

  10. 溴碳树脂在防火涂料中的应用与发展%Application and Development of Bromine Carbon Resin Fire-retardant Coatings

    Institute of Scientific and Technical Information of China (English)

    吴纯.; 杨保平; 崔锦峰; 郭军红; 李军

    2012-01-01

    This paper reviews the achievements of the fire-retardant coatings research and utilization from the aspect of binder resins, introduces the application of bromine carbon resin in steel structure fire-retardant coatings, finishing fire-retardant coatings, fire- retardant anticorrosive floor coatings and water-borne environment-friendly fire-retardant coatings in details, and basing the actual situation of our country, gives the use prospect of the bromine carbon resin.%综述了近年来从基体树脂入手,在防火涂料的研究与应用中的成果,详细介绍了溴碳树脂在钢结构建筑防火涂料、饰面型防火涂料、防火防腐地坪涂料及水性环保型防火涂料中的应用情况,并结合我国的实际情况对溴碳树脂的应用前景进行了展望。

  11. Review: Resin Composite Filling

    OpenAIRE

    Desmond Ng; Jimmy C. M. Hsiao; Keith C. T. Tong; Harry Kim; Yanjie Mai; Keith H. S. Chan

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin ...

  12. Chemometrics applications in biotechnology processes: predicting column integrity and impurity clearance during reuse of chromatography resin.

    Science.gov (United States)

    Rathore, Anurag S; Mittal, Shachi; Lute, Scott; Brorson, Kurt

    2012-01-01

    Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost-effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance.

  13. Synthesis and application of water-soluble, photoswitchable cyanine dyes for bioorthogonal labeling of cell-surface carbohydrates.

    Science.gov (United States)

    Mertsch, Alexander; Letschert, Sebastian; Memmel, Elisabeth; Sauer, Markus; Seibel, Jürgen

    2016-09-01

    The synthesis of cyanine dyes addressing absorption wavelengths at 550 and 648 nm is reported. Alkyne functionalized dyes were used for bioorthogonal click reactions by labeling of metabolically incorporated sugar-azides on the surface of living neuroblastoma cells, which were applied to direct stochastic optical reconstruction microscopy (dSTORM) for the visualization of cell-surface glycans in the nm-range.

  14. Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells

    Science.gov (United States)

    Al-Alwani, Mahmoud A. M.; Ludin, Norasikin A.; Mohamad, Abu Bakar; Kadhum, Abd. Amir H.; Sopian, Kamaruzzaman

    2017-05-01

    Current study employs mixture of chlorophyll-anthocyanin dye extracted from leaves of Cordyline fruticosa as new sensitizers for dye-sensitized solar cell (DSSCs), as well as betalains dye obtained from fruit of Hylocereus polyrhizus. Among ten pigments solvents, the ethanol and methanol extracts revealed higher absorption spectra of pigments extracted from C. fruticosa and H. polyrhizus respectively. A major effect of temperature increase was studied to increase the extraction yield. The results indicated that extraction temperature between 70 and 80 °C exhibited a high dye concentration of each plant than other temperatures. The optimal temperature was around 80 °C and there was a sharp decrease of dye concentration at temperatures higher than this temperature. According to experimental results, the conversion efficiency of DSSC fabricated by mixture of chlorophyll and anthocyanin dyes from C. fruticosa leaves is 0.5% with short-circuit current (Isc) of 1.3 mA/cm- 2, open-circuit voltage (Voc) of 0.62 V and fill factor (FF) of 60.16%. The higher photoelectric conversion efficiency of the DSSC prepared from the extract of H. polyrhizus was 0.16%, with Voc of 0.5 V, Isc of 0.4 mA/cm- 2 and FF of 79.16%. The DSSC based betalain dye extracted from fruit of H. polyrhizus shows higher maximum IPCE of 44% than that of the DSSCs sensitized with mixed chlorophyll-anthocyanin dye from C. fruticosa (42%).

  15. Optical microring resonators constructed from organic dye nanofibers and their application to miniaturized channel drop/add filters.

    Science.gov (United States)

    Takazawa, Ken; Inoue, Jun-ichi; Mitsuishi, Kazutaka

    2013-07-10

    We fabricated micrometer-scale optical ring resonators by micromanipulation of thiacyanine (TC) dye nanofibers that propagate exciton polaritons (EPs) along the fiber axis. High mechanical flexibility of the nanofibers and a low bending loss property of EP propagation enabled the fabrication of microring resonators with an average radius (r(ave)) as small as 1.6 μm. The performances of the fabricated resonators (r(ave) = 1.6-8.9 μm) were investigated by spatially resolved microscopy techniques. The Q-factors and finesses were evaluated as Q ≈ 300-3500 and F ≈ 2-12. On the basis of the r(ave)-dependence of resonator performances, we revealed the origin of losses in the resonators. To demonstrate the applicability of the microring resonators to photonic devices, we fabricated a channel drop filter that comprises a ring resonator (r(ave) = 3.9 μm) and an I/O bus channel nanofiber. The device exhibited high extinction ratios (4-6 dB) for its micrometer-scale dimensions. Moreover, we successfully fabricated a channel add filter comprising a ring resonator (r(ave) = 4.3 μm) and two I/O bus channel nanofibers. Our results demonstrated a remarkable potential for the application of TC nanofibers to miniaturized photonic circuit devices.

  16. A study by non-isothermal thermal methods of spruce wood bark materialss after their application for dye removal

    Directory of Open Access Journals (Sweden)

    VIORICA DULMAN

    2005-11-01

    Full Text Available This paper deals with a study of some materials obtained from spruce bark (Picea abies, Romania, after retention of some dyes frequently used in dyeing processes in the textile industry and waste water treatment. These materials obtained by dye retention exhibit a particular thermal behavior which is different from that of the blank sample (spruce bark. The characteristic temperatures, weight losses, the residue remaining after thermo-oxidative degradation, as well as the activation energies of the significant thermo-destruction stages, estimated from non-isothermal thermogravimetric data, together with the thermal quantities calculated from DTAdata support the conclusion presented in a previous study on dye retention from aqueous solution. The obtained results made evident that, under optimal retention conditions, spruce bark shows the highest retention capacity for the Basic Blue dye, followed by Direct Brown 95 and Direct Brown 2.

  17. Synthesis, characterization and applications of some novel mordent and heterocyclic disperse dyes on polyester and wool fibers

    Directory of Open Access Journals (Sweden)

    Hitendra Mangubhai Patel

    2012-10-01

    Full Text Available The novel mordent and disperse heterocyclic dyes were prepared by coupling of various diazo solution of aromatic amines with 1-[(2-butyl-2,3-dihydrobenzofuran-3-yl]-1-(4-hydroxyphenylmethanone. The resultant mordent and disperse heterocyclic dyes were characterized by elemental analyses, IR and 1H-NMR and 13C-NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structural property relationship. The dyeing assessment of all the mordent and disperse heterocyclic dyes was evaluated on wool and polyester textile fibers. The results of antibacterial studies of chrome pretreated fabrics revealed that the toxicity of mordented dyes against Escherichia coli, Staphylococcus aureus, Salmonella typhi, Bacillus subtilis bacteria was fairly good.

  18. Nickel tetraphenylporphyrin doping into ZnO nanoparticles for flexible dye-sensitized solar cell application

    Science.gov (United States)

    Shamimul Haque Choudhury, Mohammad; Kato, Shinya; Kishi, Naoki; Soga, Tetsuo

    2017-04-01

    In this study, we report on ZnO-based flexible dye-sensitized solar cells (DSCs) doped with different concentrations of 5,10,15,20-tetraphenyl-21H,23H-porphyrin nickel(II) (NiTPP). The photoelectrodes were prepared by blade coating, followed by a hot-compression technique. The effects of NiTPP doping on the surface morphology, structural, optical, and photovoltaic properties were studied. The surface morphology was observed by scanning electron microscopy (SEM), which confirmed the presence of NiTPP particles and also some aggregated particles visible at higher doping concentrations. The structural properties were examined by X-ray diffraction analysis and Raman spectroscopy, which confirmed the hexagonal wurtzite ZnO structure. The crystallite size of the ZnO nanoparticles (NPs) increased while the lattice strain decreased with increasing NiTPP doping concentration. The increment in the crystallite size might have induced light scattering inside the film to some extent. Optical absorption spectra showed the broadening of the spectrum in the lower-wavelength region, and a new absorption peak appeared (at 422 nm) as an effect of NiTPP doping. The red and blue shifts were observed for that peak as an effect of various doping concentrations. The Raman study of the films showed that there is no significant changes in the ZnO or NiTPP crystallite structure because of the NiTPP doping at different concentrations. Photocurrent-voltage (I-V) analysis showed that the 0.7%-NiTPP-doped cell attained the highest light-to-electric conversion efficiency of 2.7% in this investigation, which was about 42% higher than that of a non-NiTPP-doped cell.

  19. Modification of circuit module of dye-sensitized solar cells (DSSC) for solar windows applications

    Science.gov (United States)

    Hastuti, S. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This research has been conducted to obtain a modification of circuit producing the best efficiency of solar window modules as an alternative energy for daily usage. Solar window module was constructed by DSSC cells. In the previous research, solar window was created by a single cell of DSSC. Because it had small size, it could not be applied in the manufacture of solar window. Fabrication of solar window required a larger size of DSSC cell. Therefore, in the next research, a module of solar window was fabricated by connecting few cells of DSSC. It was done by using external electrical circuit method which was modified in the formation of series circuit and parallel circuit. Its fabrication used six cells of DSSC with the size of each cell was 1 cm × 9 cm. DSSC cells were sandwich structures constructed by an active layer of TiO2 as the working electrode, electrolyte solution, dye, and carbon layer. Characterization of module was started one by one, from one cell, two cells, three cells, until six cells of a module. It was conducted to recognize the increasing efficiency value as the larger surface area given. The efficiency of solar window module with series circuit was 0.06%, while using parallel circuit was 0.006%. Module with series circuit generated the higher voltage as the larger surface area. Meanwhile, module through parallel circuit tended to produce the constant voltage as the larger surface area. It was caused by the influence of resistance within the cable in each module. Module with circuit parallel used a longer cable than module with series circuit, so that its resistance increased. Therefore, module with parallel circuit generated voltage that tended to be constant and resulted small efficiency compared to the module with series circuit. It could be concluded that series external circuit was the best modification which could produce the higher efficiency.

  20. Experience With Esthetic Reconstruction of Complex Facial Soft Tissue Trauma; Application of the Pulsed Dye Laser

    Directory of Open Access Journals (Sweden)

    Ebrahimi

    2014-08-01

    Full Text Available Background Facial soft tissue injury can be one of the most challenging cases presenting to the plastic surgeon. The life quality and self-esteem of the patients with facial injury may be compromised temporarily or permanently. Immediate reconstruction of most defects leads to better restoration of form and function as well as early rehabilitation. Objectives The aim of this study was to present our experience in management of facial soft tissue injuries from different causes. Patients and Methods We prospectively studied patients treated by plastic surgeons from 2010 to 2012 suffering from different types of blunt or sharp (penetrating facial soft tissue injuries to the different areas of the face. All soft tissue injuries were treated primarily. Photography from all patients before, during, and after surgical reconstruction was performed and the results were collected. We used early pulsed dye laser (PDL post-operatively. Results In our study, 63 patients including 18 (28.5% women and 45 (71.5% men aged 8-70 years (mean 47 years underwent facial reconstruction due to soft tissue trauma in different parts of the face. Sharp wounds were seen in 15 (23% patients and blunt trauma lacerations were seen in 52 (77% patients. Overall, 65% of facial injuries were repaired primary and the remainder were reconstructed with local flaps or skin graft from adjacent tissues. Postoperative PDL therapy done two weeks following surgery for all scars yielded good results in our cases. Conclusions Analysis of the injury including location, size, and depth of penetration as well as presence of associated injuries can aid in the formulation of a proper surgical plan. We recommend PDL in the early post operation period (two weeks after suture removal for better aesthetic results.

  1. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  2. Syntheses of silsesquioxane (POSS)-based inorganic/organic hybrid and the application in reinforcement for an epoxy resin.

    Science.gov (United States)

    Ni, Caihua; Ni, Guifeng; Zhang, Liping; Mi, Jiaquan; Yao, Bolong; Zhu, Changping

    2011-10-01

    A new inorganic/organic hybrid material containing silsesquioxane was prepared by the reaction of caged octa (aminopropyl silsesquioxane) (POSS-NH(2)) with n-butyl glycidyl ether (nBGE) and 1,4-butanediol diglycidyl ether (BDGE). The copolymers of POSS, nBGE, and BDGE could be obtained with varied feed ratio of POSS-NH(2), nBGE, and BDGE in the preparation. The hybrid material was added into an epoxy resin (E51) for enhancing the toughening and thermal properties of the epoxy resin. The results showed that the toughening and the thermal properties of the cured epoxy resin were greatly improved by the addition of the hybrid. The enhancement was ascribed to nano-scale effect of the POSS structure and the formation of anchor structure in the cured network. The investigation of kinetics for the curing process of the hybrid-modified epoxy resin revealed that two kinds of curing reactions occurred in different temperature ranges. They were attributed to the reactions between amino groups of the curing agent with epoxy groups of E51 and with residue epoxy groups in the hybrid. The reacting activation energies were calculated based on Kissinger's and Flynn-Wall-Ozawa's methods, respectively.

  3. Effect of gamma-irradiation on the colorimetric properties of epoxy-resin films: Potential use in dosimetric application

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, F., E-mail: ali_hosni2001@yahoo.fr [Unité de Recherche Maîtrise des Techniques Nucléaires à Caractère Pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); Academie Militaire de Fondouk Jedid, 8012 Nabeul (Tunisia); Farah, K. [Unité de Recherche Maîtrise des Techniques Nucléaires à Caractère Pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); Institut Supérieur du Transport et de la Logistique, 12 Rue Abdallah Ibn Ezzoubeier 40000, Université de Sousse (Tunisia); Kaouach, H. [Institut National de Recherche Scientifique et Technique, B.P. 95, Hammam-Lif 2050 (Tunisia); Louati, A. [Academie Militaire de Fondouk Jedid, 8012 Nabeul (Tunisia); Chtourou, R. [Institut National de Recherche Scientifique et Technique, B.P. 95, Hammam-Lif 2050 (Tunisia); Hamzaoui, A.H. [Laboratoire de Valorisation des Matériaux Utiles, Centre National de Recherche en Sciences des Matériaux, Technopôle de Borj Cedria, B.P. 95, Hammam-Lif 2050 (Tunisia)

    2013-09-15

    The present paper reports the results of the colorimetric study of gamma-irradiated epoxy-resin films. Epoxy-resin samples were irradiated by gamma-rays with doses varying from 1 to 50 kGy. Color changes of epoxy-resin were observed and studied by the measurements of the variation of the L{sup ∗}, a{sup ∗}, b{sup ∗} as function of dose and post-irradiation time. Where L{sup ∗} is a measure of the magnitude of brightness from black to white, parameter a{sup ∗} describe the relative amounts of red and green, and parameter b{sup ∗} describes the relative amounts of yellow and blue color. Color changes (ΔE) were also calculated. They indicated a marked dependence of the absorbed doses showing the optical activation of the color centers. It was found that color changes (ΔE) due to absorbed dose increase from 6 to 50. Color change showed a low variability which did not exceed 3% for the measurements carried out between 1 and 72 h. The obtained results revealed that epoxy-resin films can be used as a new routine dosimeter or irradiation indicator in dose range 1–50 kGy.

  4. Surface finishing of resin-modified glass ionomer.

    Science.gov (United States)

    Liporoni, Priscila; Paulillo, Luis Alexandre; Cury, Jaime Aparecido; Dos Santos Dias, Carlos Tadeu; Paradella, Thais Cachute

    2003-01-01

    This study utilized spectrophotometry to evaluate in vitro superficial dye deposition on resin-modified glass ionomer, following different surface finishing and polishing treatments. Materials that were photocured adjacent to the mylar strip produced the surfaces with the lowest mean after superficial staining. A restorative technique without excesses resulted in a smoother surface and prolonged the life of the restoration. The resin-modified glass ionomers tested offer adequate clinical performance.

  5. A Brief Review on Environmental Application of Boron Doped Diamond Electrodes as a New Way for Electrochemical Incineration of Synthetic Dyes

    Directory of Open Access Journals (Sweden)

    J. M. Peralta-Hernández

    2012-01-01

    Full Text Available The present study was stimulated by an authoritative review on decontamination of wastewaters containing synthetic organic dyes by electrochemical methods published in Martínez-Huitle and Brillas (2009. As reviewed by the authors, there have been significant efforts on investigating the decontamination of wastewaters containing synthetic dyes by electrochemical methods, and currently, more studies are being published. A high number of electrodes have been tested in this method, including boron doped diamond (BDD anodes. In this context, many papers have demonstrated that the use of a BDD thin film in electrochemical oxidation provides total mineralization with high current efficiency of different organics in real wastewaters. And this synthetic material deposited on several supports has been recently applied to dyestuff treatment. Although, in the last two years, more reports have been published treating electrochemically synthetic dyes wastewaters using BDD, there are few reports on the use of electrooxidation processes to degrade real textile effluents. The aim of this paper is to summarize and discuss the most important and recent results available in the literature about the application of BDD electrodes for removing azo dyes in synthetic and real wastewaters.

  6. Effects of sandblasting, H2SO4/HCl etching, and phosphate primer application on bond strength of veneering resin composite to commercially pure titanium grade 4

    OpenAIRE

    Egoshi, Takafumi; Taira, Yohsuke; Soeno, Kohyoh; SAWASE Takashi

    2013-01-01

    This study investigated the effects of surface treatments on the bond strength of a resin composite to a commercially pure titanium. The bonding surfaces of all titanium specimens were ground with 1,000-grit silicon carbide paper and then subjected to one or more of these surface treatments: sandblasting with alumina (sand), etching with 45wt% H2SO4 and 15wt% HCl (SH-etchant) at 70°C for 10 min, and/or phosphate primer (MDP-primer) application. Specimens not subjected to any surface treatment...

  7. Advanced resin systems for graphite epoxy composites

    Science.gov (United States)

    Gilwee, W. J.; Jayarajan, A.

    1980-01-01

    The value of resin/carbon fiber composites as lightweight structures for aircraft and other vehicle applications is dependent on many properties: environmental stability, strength, toughness, resistance to burning, smoke produced when burning, raw material costs, and complexity of processing. A number of woven carbon fiber and epoxy resin composites were made. The epoxy resin was commercially available tetraglycidylmethylene dianiline. In addition, composites were made using epoxy resin modified with amine and carboxyl terminated butadiene acrylonitrile copolymer. Strength and toughness in flexure as well as oxygen index flammability and NBS smoke chamber tests of the composites are reported.

  8. Synthesis of Azoxy Dyes and Their Copper Complexes and Their Application on Polyvinyl Alcohol (PVA) Polarizing Film

    Institute of Scientific and Technical Information of China (English)

    LI Ke-bin; HE Jin-xin

    2008-01-01

    Azoxy dyes and their copper complexes with maximum dichroism in the spectrum range from 550 nm to 700 nm were synthesized and used to prepare polyvinyl alcohol (PVA) polarizing films.These films showed excellent polarizing ability.In addition, a neutral gray polarizing film was prepared by mixing synthesized dichromatic dyes with other dyes.The obtained polarizable film for gray shade was little pervious to light over the visible radiation wavelength region, ranging from 400 nm to 700 nm at cross state, and excellent in the polarizing activities and stable to moisture and heat.

  9. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  10. Dye-Sensitized Nanostructured Crystalline Mesoporous Tin-doped Indium Oxide Films with Tunable Thickness for Photoelectrochemical Applications.

    Science.gov (United States)

    Hamd, W; Chavarot-Kerlidou, M; Fize, J; Muller, G; Leyris, A; Matheron, M; Courtin, E; Fontecave, M; Sanchez, C; Artero, V; Laberty-Robert, C

    2013-01-01

    A simple route towards nanostructured mesoporous Indium-Tin Oxide (templated nano-ITO) electrodes exhibiting both high conductivities and optimized bicontinuous pore-solid network is reported. The ITO films are first produced as an X-ray-amorphous, high surface area material, by adapting recently established template-directed sol-gel methods using Sn(IV) and In(III) salts. Carefully controlled temperature/atmosphere treatments convert the as-synthesized ITO films into nano-crystalline coatings with the cubic bixbyite structure. Specially, a multi-layered synthesis was successfully undertaken for tuning the film thickness. In order to evaluate the performances of templated nano-ITO as an electrode substrate for photoelectrochemical applications, photoelectrodes were prepared by covalent grafting of a redox-active dye, the complex [Ru(bpy)2(4,4'-(CH2PO3H2)2-bpy)]Cl21 (bpy=bipyridine). Surface coverage was shown to increase with the film thickness, from 0.7 × 10(-9) mol.cm(-2) (one layer, 45 nm) to 3.5 × 10(-9) mol.cm(-2) (ten layers, 470 nm), the latter value being ~ 100 times larger than that for commercially available planar ITO. In the presence of an electron mediator, photocurrents up to 50 μA.cm(-2) have been measured under visible light irradiation, demonstrating the potential of this new templated nano-ITO preparation for the construction of efficient photoelectrochemical devices.

  11. Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Hsien Li

    2016-04-01

    Full Text Available Considering the increasing global demand for energy and the harmful ecological impact of conventional energy sources, it is obvious that development of clean and renewable energy is a necessity. Since the Sun is our only external energy source, harnessing its energy, which is clean, non-hazardous and infinite, satisfies the main objectives of all alternative energy strategies. With attractive features, i.e., good performance, low-cost potential, simple processibility, a wide range of applications from portable power generation to power-windows, photoelectrochemical solar cells like dye-sensitized solar cells (DSCs represent one of the promising methods for future large-scale power production directly from sunlight. While the sensitization of n-type semiconductors (n-SC has been intensively studied, the use of p-type semiconductor (p-SC, e.g., the sensitization of wide bandgap p-SC and hole transport materials with p-SC have also been attracting great attention. Recently, it has been proved that the p-type inorganic semiconductor as a charge selective material or a charge transport material in organometallic lead halide perovskite solar cells (PSCs shows a significant impact on solar cell performance. Therefore the study of p-type semiconductors is important to rationally design efficient DSCs and PSCs. In this review, recent published works on p-type DSCs and PSCs incorporated with an inorganic p-type semiconductor and our perspectives on this topic are discussed.

  12. SYNTHESIS OF Fe2O3-MONTMORILLONITE AND ITS APPLICATION AS A PHOTOCATALYST FOR DEGRADATION OF CONGO RED DYE

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2010-06-01

    Full Text Available The preparation of Fe2O3-montmorillonite and it's application as a catalyst for congo red dye photodegradation has been carried out. Fe2O3-montmorillonite was prepared by mixing the iron complexes pillaring agent and montmorillonite. The product was calcined at 250 oC for 5 hours. Montmorillonite and calcined product was analyzed by X-ray diffractometry (X-RD, infrared spectrophotometry (FTIR, gas  sorption analyser, X-ray fluorescense (X-RF and UV/Vis diffuse reflectance spektrophotometry (UV-DRS. Fe2O3-montmorilonite then was used as a catalyst on congo red dye photodegrdation by UV-illuminating a mixture of 50 mg Fe2O3-montmorillonite and 25 mL congo red 10­-4M at 365 nm at various illuminating times. Adsorption of congo red on Fe2O3-montmorillonite and montmorillonite was also performed as a comparison. Result of X-RD analysis showed that the 001 reflection of  Fe2O3-montmorillonite was not  detected that probably indicating the formation of house of card stucture and this result was supported also by the analysis result of distribution of pores and SEM photography result. Results of the XRF analysis showed that iron content increased  from 5.21 % (w/w in montmorillonite to 25.12 % (w/w in Fe2O3-montmorillonite. UV- DRS analysis showed the increament of band gap energy from 3.69 eV in the iron oxide bulk to 3.8 eV in Fe2O3-montmorillonite. Specific surface area of the montmorillonite also increased significantly from 69,71 m2/g to 126,49 m2/g and total pores volume increased from 50.70x10-3 mL/Å/g  to 107.89x10-3 mL/Å/g, respectively. Photodegradation of congo red using Fe2O3-montmorillonite caused the decreament of congo red concentration up to 90.22 %  on UV illumination for 60 minutes. Adsorption of congo red on Fe2O3-montmorillonite reached 84.4% and on  montmorillonite was 75.15 %.   Keywords: photodegradation, congo red, Fe2O3-montmorillonite, UV light

  13. The effect of Er,Cr:YSGG laser application on the micropush-out bond strength of fiber posts to resin core material.

    Science.gov (United States)

    Kurtulmus-Yilmaz, Sevcan; Cengiz, Esra; Ozan, Oguz; Ramoglu, Serhat; Yilmaz, Hasan Guney

    2014-10-01

    The aim of this study was to compare the effects of erbium, chromium: yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser application to different surface treatments on the micropush-out bond strengths between glass and quartz fiber posts and composite resin core material. Different types of lasers have been used as an alternative to airborne particle abrasion and other surface treatment methods to enhance the bond strength of dental materials. However, there is no study regarding the use of Er,Cr:YSGG laser as a surface treatment method for fiber posts in order to improve the bond strength. Ninety-six quartz and 96 glass fiber posts with a coronal diameter of 1.8 mm were randomly divided into eight groups according the surface treatments applied. Gr 1 (control, no surface treatment), Gr 2 (sandblasting with 50 μm Al2O3), Gr 3 (9 % hydrofluoric acid for 1 min), Gr 4 (24% H2O2 for 1 min), Gr 5 (CH2Cl2 for 1 min), Gr 6 (1 W), Gr 7 (1.5 W), and Gr 8 (2 W) Er,Cr:YSGG laser irradiation. The resin core material was applied to each group, and then 1 mm thick discs (n=12) were obtained for the micropush-out test. Data were statistically analyzed. For the quartz fiber post group, all surface treatments showed significantly higher micropush-out bond strengths than the control group (pstrength between the post and core material. However, the hydroflouric acid group showed the lowest bond strength values. The type of post and surface treatment might affect the bond strength between fiber posts and resin core material; 1 W and 1.5 W Er,Cr:YSGG laser application improved adhesion at the post/core interface.

  14. Dentine sealing provided by smear layer/smear plugs vs. adhesive resins/resin tags.

    Science.gov (United States)

    Carrilho, Marcela R; Tay, Franklin R; Sword, Jeremy; Donnelly, Adam M; Agee, Kelli A; Nishitani, Yoshihiro; Sadek, Fernanda T; Carvalho, Ricardo M; Pashley, David H

    2007-08-01

    The aim of this study was to evaluate the ability of five experimental resins, which ranged from hydrophobic to hydrophilic blends, to seal acid-etched dentine saturated with water or ethanol. The experimental resins (R1, R2, R3, R4, and R5) were evaluated as neat bonding agents (100% resin) or as solutions solvated with absolute ethanol (70% resin/30% ethanol). Fluid conductance was measured at 20 cm H(2)O hydrostatic pressure after sound dentine surfaces were: (i) covered with a smear layer; (ii) acid-etched; or (iii) bonded with neat or solvated resins, which were applied to acid-etched dentine saturated with water or ethanol. In general, the fluid conductance of resin-bonded dentine was significantly higher than that of smear layer-covered dentine. However, when the most hydrophobic neat resins (R1 and R2) were applied to acid-etched dentine saturated with ethanol, the fluid conductance was as low as that produced by smear layers. The fluid conductance of resin-bonded dentine saturated with ethanol was significantly lower than for resin bonded to water-saturated dentine, except for resin R4. Application of more hydrophobic resins may provide better sealing of acid-etched dentine if the substrate is saturated with ethanol instead of with water.

  15. 稀土在亚麻织物活性染料染色中的应用%Application of Rare Earth in Dyeing of Reactive Dyes of Linen Fabric

    Institute of Scientific and Technical Information of China (English)

    张绍萍

    2012-01-01

    This paper aims at explore the principle of accelerating in rare earth in dyeing of reactive dyes of linen fabric,and introduces the dyeing of linen fabric with reactive dyes of rare earth accelerating agent.%探究稀土在亚麻织物活性染料染色中的促染原理,介绍亚麻织物稀土促染活性染料的染色工艺。

  16. Comparative study of resin sealant and resin modified glass ionomer as pit and fissure sealant

    Directory of Open Access Journals (Sweden)

    Shirin Malek

    2017-02-01

    Full Text Available The purpose of the present study was to compare the marginal integrity of resin modified glass ionomer cement with that of resin sealant, in vitro. Forty artificial pit and fissure cavities were prepared in occlusal surface of extracted premolar teeth by using ¼ round carbide bur. Cavities were condensed with artificial organic debris followed by cleaning with prophylaxis pumice brush and paste and then separated into two treatment groups. In Group A, 15 fissure cavities were sealed by resin sealant and in Group B, 15 fissure cavities were sealed by resin modified glass ionomer sealant. These specimens were subjected to thermo-cycling followed by dye penetration test. The remaining 5 cavities from each group were analyzed for debris score by the SEM. The results of the microleakage test showed that the efficacy of preventing microleakage of samples sealed by resin modified glass ionomer sealant was higher than the samples sealed by resin sealant. However, no significant differences were found. It can be concluded that use of resin modified glass ionomer sealant is a good alternative for sealing pits and fissures.

  17. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes.

    Science.gov (United States)

    Gaffer, Hatem E; Khalifa, Mohamed E

    2015-12-09

    The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1-3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4-6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl)-thiazole dyes 7-9 was then prepared by diazo coupling of thiazole derivatives 4-6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.

  18. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes

    Directory of Open Access Journals (Sweden)

    Hatem E. Gaffer

    2015-12-01

    Full Text Available The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1–3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4–6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl-thiazole dyes 7–9 was then prepared by diazo coupling of thiazole derivatives 4–6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.

  19. Luminescent Properties of Arylpolyene Organic Dyes and Cross-Conjugated Ketones Promising for Quantum Optics and Nanophotonics Applications

    Directory of Open Access Journals (Sweden)

    Naumova N. L.

    2015-01-01

    Full Text Available The spectral-luminescent properties of some dyes of substituted arylpolyenes and cross-conjugated ketones class in Shpolsky matrices, promising for using in solving quantum optics and nanophotonics, were studied.

  20. From Polymeric Nanoparticles to Dye-containing Photonic Crystals:Synthesis,Self-assembling,Optical Features, Possible Applications

    Institute of Scientific and Technical Information of China (English)

    A.V.Yakimansky; A.Yu.Menshikova; N.N.Shevchenko; A.G.Bazhenova; S.K.Sazonov; A.I.Vedernikov; S.P.Gromov; V.A.Sazhnikov; M.V.Alfimov

    2007-01-01

    1 Results Self-assembling of monodisperse polymeric nanoparticles is a perspective method of obtaining photonic crystalline materials for optoelectronics,telecommunication industry and optosensorics.For tuning optical characteristics of photonic crystals it is advisable to functionalize nanoparticles by dyes absorbing or emitting light in the vicinity of the photonic band gap,which position depends on the nanoparticle diameter.To prepare monodisperse nanoparticles with the dye-functionalyzed surface emu...

  1. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  2. Application of XAD-resin based passive air samplers to assess local (roadside) and regional patterns of persistent organic pollutants.

    Science.gov (United States)

    Barthel, Paul; Thuens, Sabine; Shunthirasingham, Chubashini; Westgate, John N; Wania, Frank; Radke, Michael

    2012-07-01

    We used XAD-resin based passive air samplers (PAS) to measure atmospheric levels of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) at five ombrotrophic bogs in Eastern Canada. The aims of our study were to investigate the influence of local roads on contaminant levels in the bogs, to derive the regional pattern of atmospheric concentrations, and to assess the uncertainties of the method. Expanded uncertainties based on the duplicate PAS deployed at 24 sites were good for the PAHs, while the deployment period of approx. 100 days was too short to yield acceptable uncertainties for PCBs. The regional PAH distribution was in good agreement with the calculated source proximity of the sampled bogs. We conclude that XAD-resin based PAS deployed for comparatively short periods are well suited for measuring atmospheric concentrations of volatile PAHs, while in remote regions longer deployment is necessary for less volatile PAHs and for PCBs.

  3. Synthesis of porous chitosan-polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye.

    Science.gov (United States)

    Kannusamy, Pandiselvi; Sivalingam, Thambidurai

    2013-08-01

    For the first time, chitosan-polyaniline/ZnO hybrids were prepared through a polymerization of aniline hydrochloride in the presence of ZnCl2 and chitosan. The hybrid materials were characterized by FT-IR, BET, SEM, UV-vis spectra and XRD analysis. From the BET and SEM micrographs, the introduction of ZnO nanoparticles into chitosan-polyaniline hybrid could obviously increase the porosity due to good possibility for dye adsorption. Adsorption experiments were carried out as a function of contact time, concentration of dye, adsorbent dosage and pH using reactive orange 16 as a model pollutant. The adsorption equilibrium data were fitted well to the Langmuir isotherm equation, with maximum adsorption capacity value was found to be 476.2mgg(-1). Adsorption kinetics was best described by the pseudo-second-order model agreed well with the experimental data and good correlation (R(2)>0.999). Photocatalytic degradation of dye under UV irradiation at pH 5.8 has also been examined. FT-IR spectrum clearly indicates that before adsorption of hybrid showed the functional groups of chitosan and polyaniline, whereas the dye adsorbed hybrid only present the dye molecules and ZnO. Based on the results of present investigation, the introduction of ZnCl2 into chitosan-polyaniline hybrid will enhance the adsorption of reactive dyes and photocatalytic degradation.

  4. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  5. Effects of sandblasting, H2SO4/HCl etching, and phosphate primer application on bond strength of veneering resin composite to commercially pure titanium grade 4.

    Science.gov (United States)

    Egoshi, Takafumi; Taira, Yohsuke; Soeno, Kohyoh; Sawase, Takashi

    2013-01-01

    This study investigated the effects of surface treatments on the bond strength of a resin composite to a commercially pure titanium. The bonding surfaces of all titanium specimens were ground with 1,000-grit silicon carbide paper and then subjected to one or more of these surface treatments: sandblasting with alumina (sand), etching with 45wt% H2SO4 and 15wt% HCl (SH-etchant) at 70°C for 10 min, and/or phosphate primer (MDP-primer) application. Specimens not subjected to any surface treatment were used as controls. After resin composite veneer placement and 24-h water immersion, the shear bond strengths of the specimens in descending order were: sand/SH-etchant/MDP-primer, sand/SH-etchant/no primer, no sand/SH-etchant/MDP-primer, sand/no etch/MDP-primer, no sand/SH-etchant/no primer, sand/no etch/no primer, no sand/no etch/MDP-primer, no sand/no etch/no primer. Scanning electron microscope observations revealed that sandblasting and SH-etchant created many micro- and nanoscale cavities on the titanium surface. Results showed that a combined use of sandblasting, SH-etchant, and MDP-primer application had a cooperative effect on titanium bonding.

  6. The development and application of attapulgite clay in textile dyeing and printing%凹凸棒粘土及其在纺织印染中的应用

    Institute of Scientific and Technical Information of China (English)

    王玉环; 王改侠; 李敏; 王建庆

    2011-01-01

    介绍了凹凸棒粘土的基本结构和特性(吸附特性、流变性、可塑性、离子交换能力、催化性、填充性、化学特性)、各种改性方法(热处理法、酸化法、偶联剂处理法、阳离子表面活性剂处理法、超声波分散法、微波处理法)及在不同领域的应用情况,叙述了凹凸棒粘土在纺织印染行业(涂料、高分子材料、纺织印染加工、印染废水处理)中的应用.%The basic structure of attapulgite clay, characteristics (adsorption character, theological property,plasticity, ion exchange capacity, catalytic capability, filling property and chemical characteristics), modification methods (treatment process, acidification method, coupling finish, cationic surfactant treatment, ultrasonic dispersion and microwave treatment) and the application in different fields were mainly introducesd.The application of attapulgite clay in the textile dyeing and printing industry (pigment, polymers, textile dyeing and printing and dyeing wastewater treatment) was described.

  7. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    Science.gov (United States)

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-12-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10-3 S cm-1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm-2, 610 mV and 69.1%, respectively.

  8. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid.

    Science.gov (United States)

    Khanmirzaei, Mohammad Hassan; Ramesh, S; Ramesh, K

    2015-12-11

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10(-3) S cm(-1) is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm(-2), 610 mV and 69.1%, respectively.

  9. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence(TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization(TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  10. Near IR two photon absorption of cyanines dyes: application to optical power limiting at telecommunication wavelengths

    Science.gov (United States)

    Bouit, Pierre-Antoine; Wetzel, Guillaume; Feneyrou, Patrick; Bretonnière, Yann; Kamada, Kenji; Maury, Olivier; Andraud, Chantal

    2008-02-01

    The design and synthesis of symmetrical and unsymmetrical heptamethine cyanines is reported. These chromophores present significant two-photon cross section in the 1400-1600 nm spectral range. In addition, they display optical power limiting (OPL) properties. OPL curves were interpreted on the basis of two-photon absorption (2PA) followed by excited state absorption (ESA). Finally, these molecules present several relevant properties (nonlinear absorption properties, two-step gram scale synthesis, high solubility, good thermal stability), which could lead to numerous practical applications in material science (solid state optical limiting, signal processing) or in biology (imaging).

  11. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    HU RenTao; LU LiangFei; RUAN BanFeng; WANG Peng; ZHANG MingLiang; ZHOU HongPing; LI ShengLi; WU JieYing; TIAN YuPeng

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence (TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization (TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  12. Application of novel copolymer-TiO(2) membranes for some textile dyes adsorptive removal from aqueous solution and photocatalytic decolorization.

    Science.gov (United States)

    Essawy, Amr A; Ali, A El-Hag; Abdel-Mottaleb, M S A

    2008-09-15

    Novel low density polyethylene-grafted-poly(4-vinylpyridine-co-acrylamide) (LDPE-g-P(4-VP/AAm)) films were prepared by means of gamma-radiation-induced graft copolymerization as support for photocatalytic application. Nanometer-sized TiO(2) particles were immobilized to the grafted LDPE via dip coating technique. The efficiency of immobilized photocatalyst is tested on two target pollutants (textile azo dyes: Remazol red RB-133 (RR RB 133) and reactive blue 2 (RB2)). The efficient photocatalytic ability as reflected in determined photobleaching rate of both dyes was observed and is comparable to that for the non-supported TiO(2) used in a typical slurry photoreactor. The LDPE-g-(4-VP/AAm) copolymers supported TiO(2) photocatalyst has the practical advantages of easy separation and removal from the polluted environment. It could be a viable technique for the safe disposal of textile wastewater into the water streams.

  13. High Molar Extinction Coefficient Ru(II-Mixed Ligand Polypyridyl Complexes for Dye Sensitized Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Malapaka Chandrasekharam

    2011-01-01

    Full Text Available Two new ruthenium(II mixed ligand terpyridine complexes, “Ru(Htcterpy(NCS(L1 (N(C4H94, mLBD1” and Ru(Htcterpy(NCS(L2(N(C4H94, mLBD2 were synthesized and fully characterized by UV-Vis, emission, cyclic voltammogram, and other spectroscopic means, and the structures of the compounds are confirmed by 1H-NMR, ESI-MASS, and FT-IR spectroscopes. The influence of the substitution of L1 and L2 on solar-to-electrical energy conversion efficiency (η of dye-sensitized solar cells (DSSCs was evaluated relative to reference black dye. The dyes showed molar extinction coefficients of 17600 M−1 cm−1 for mLBD1 and 21300 M−1 cm−1 for mLBD2 both at λ maximum of 512 nm, while black dye has shown 8660 M−1 cm−1 at λ maximum of 615 nm. The monochromatic incident photon-to-collected electron conversion efficiencies of 60.71% and 75.89% were obtained for mLBD1 and mLBD2 dyes, respectively. The energy conversion efficiencies of mLBD1 and mLBD2 dyes are 3.15% (SC=11.86 mA/cm2, OC=613 mV, ff=0.4337 and 3.36% (SC=12.71 mA/cm2, OC=655 mV, ff=0.4042, respectively, measured at the AM1.5G conditions, the reference black dye-sensitized solar cell, fabricated and evaluated under identical conditions exhibited η-value of 2.69% (SC=10.95 mA/cm2, OC=655 mV, ff=0.3750.

  14. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    Directory of Open Access Journals (Sweden)

    Seungwon Lee

    2016-12-01

    Full Text Available Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue degradation under ultraviolet (UV and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating.

  15. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions.

    Science.gov (United States)

    Reddy, D Harikishore Kumar; Lee, Seung-Mok

    2013-12-01

    Magnetic chitosan composites (MCCs) are a novel material that exhibits good sorption behavior toward various toxic pollutants in aqueous solution. These magnetic composites have a fast adsorption rate and high adsorption efficiency, efficient to remove various pollutants and they are easy to recover and reuse. These features highlight the suitability of MCCs for the treatment of water polluted with metal and organic materials. This review outlines the preparation of MCCs as well as methods to characterize these materials using FTIR, XRD, TGA and other microscopy-based techniques. Additionally, an overview of recent developments and applications of MCCs for metal and organic pollutant removal is discussed in detail. Based on current research and existing materials, some new and futuristic approaches in this fascinating area are also discussed. The main objective of this review is to provide up-to-date information about the most important features of MCCs and to show their advantages as adsorbents in the treatment of polluted aqueous solutions.

  16. Ga-modified nanostructured Zn O: characterization and application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Agnaldo S.; Davolos, Marian R.; Antonio, Selma G.; Paiva-Santos, Carlos O. [Universidade Estadual Paulista (IQ/UNESP), Araraquara, SP (Brazil). Inst. de Quimica], e-mails: aagnaldo@iq.unesp.br, cdavolos@iq.unesp.br, selma_ga@yahoo.com.br, cpaiva@iq.unesp.br; Nogueira, Ana F. [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica], e-mail: anaflavia@iqm.unicamp.br; Masaki, Naruhiko; Yanagida, Shozo [Osaka University, Suita (Japan). Center for Advanced Science and Innovation], e-mails: nmasaki@ casi.osaka-u.ac.jp, s-yanagi@wc4.so-net.ne.jp

    2007-07-01

    Zn O has received great attention in many applications due to its electronic and optical properties. We report on the preparation of Zn O and gallium-containing Zn O (Zn O:Ga) nanoparticles by the precipitation method. The nanoparticles have the wurtzite structure and a high crystallinity. Gallium ions are present as Ga{sup 3+}, as evidenced by the binding energies through XPS. Porosity and surface area of the powder increased under increasing gallium level, explained by the smaller particle size of Zn O:Ga samples compared with Zn O. The estimated optical band gap of Zn O was 3.2 eV, comparable to Zn O:Ga. (author)

  17. Functionalization of nanomaterials by non-thermal large area atmospheric pressure plasmas: application to flexible dye-sensitized solar cells

    Science.gov (United States)

    Jung, Heesoo; Park, Jaeyoung; Yoo, Eun Sang; Han, Gill-Sang; Jung, Hyun Suk; Ko, Min Jae; Park, Sanghoo; Choe, Wonho

    2013-08-01

    A key challenge to the industrial application of nanotechnology is the development of fabrication processes for functional devices based on nanomaterials which can be scaled up for mass production. In this report, we disclose the results of non-thermal radio-frequency (rf) atmospheric pressure plasma (APP) based deposition of TiO2 nanoparticles on a flexible substrate for the fabrication of dye-sensitized solar cells (DSSCs). Operating at 190 °C without a vacuum enclosure, the APP method can avoid thermal damage and vacuum compatibility restrictions and utilize roll-to-roll processing over a large area. The various analyses of the TiO2 films demonstrate that superior film properties can be obtained by the non-thermal APP method when compared with the thermal sintering process operating at 450 °C. The crystallinity of the anatase TiO2 nanoparticles is significantly improved without thermal agglomeration, while the surface defects such as Ti3+ ions are eliminated, thus providing efficient charge collecting properties for solar cells. Finally, we successfully fabricated a flexible DSSC with an energy conversion efficiency of 4.2% using a transparent plastic substrate. This work demonstrates the potential of non-thermal APP technology in the area of device-level, nano-enabled material manufacturing.A key challenge to the industrial application of nanotechnology is the development of fabrication processes for functional devices based on nanomaterials which can be scaled up for mass production. In this report, we disclose the results of non-thermal radio-frequency (rf) atmospheric pressure plasma (APP) based deposition of TiO2 nanoparticles on a flexible substrate for the fabrication of dye-sensitized solar cells (DSSCs). Operating at 190 °C without a vacuum enclosure, the APP method can avoid thermal damage and vacuum compatibility restrictions and utilize roll-to-roll processing over a large area. The various analyses of the TiO2 films demonstrate that superior film

  18. Development of new near-infrared and leuco-dye optical systems for forensic and crime fighting applications

    Science.gov (United States)

    Patonay, Gabor; Strekowski, Lucjan; Salon, Jozef; Medou-Ovono, Martial; Krutak, James J.; Leggitt, Jeffrey; Seubert, Heather; Craig, Rhonda

    2004-12-01

    New chemistry for leuco fluorescin and leuco rhodamine for latent bloodstain and fingerprint detection has been developed in our laboratories. The use of these leuco dyes results in excellent contrast for several hours. The FBI's Evidence Response Team and DNA I unit collaborated with Georgia State University to validate the new fluorescin chemistry for use in the field. In addition, several new NIR dyes have been developed in our laboratories that can be used to detect different chemical residues, e.g., pepper spray, latent fingerprint, latent blood, metal ions, or other trace evidence during crime scene investigations. Proof of principle experiments showed that NIR dyes reacting with such residues can be activated with appropriately filtered semiconductor lasers and LEDs to emit NIR fluorescence that can be observed using optimally filtered night vision intensifiers or pocket scopes, digital cameras, CCD and CMOS cameras, or other NIR detection systems. The main advantage of NIR detection is that the color of the background has very little influence on detection and that there are very few materials that would interfere by exhibiting NIR fluorescence. The use of pocket scopes permits sensitive and convenient detection. Once the residues are located, digital images of the fluorescence can be recorded and samples obtained for further analyses. NIR dyes do not interfere with subsequent follow-up or confirmation methods such as DNA or LC/MS analysis. Near-infrared absorbing dyes will be summarized along with detection mechanisms.

  19. Waterless Textile Dyeing

    OpenAIRE

    Odabaşoğlu, Hakkı Yasin; AVİNÇ, Osman Ozan; Arzu YAVAŞ

    2013-01-01

    Supercritical carbon dioxide (scCO), having liquid-like densities, hereby provides hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can lead to shorter dyeing durations compared to conventional water dyeing process. Supercritical carbon dioxide dyeing, a novel dyeing process, is an anhydrous dyeing and this process involves the use of less energy and chemicals than conventional water dyeing processes resulting in a potential of up to 50% low...

  20. Physical and optical properties of DCJTB dye for OLED display applications: Experimental and theoretical investigation

    Science.gov (United States)

    Kurban, Mustafa; Gündüz, Bayram

    2017-06-01

    In this study, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) was achieved using the experimental and theoretical studies. The electronic, optical and spectroscopic properties of DCJTB molecule were first investigated by performing experimental both solution and thin film techniques and then theoretical calculations. Theoretical results showed that one intense electronic transition is 505.26 nm a quite reasonable and agreement with the measured experimental data 505.00 and 503 nm with solution technique and film technique, respectively. Experimental and simple models were also taken into consideration to calculate the optical refractive index (n) of DCJTB molecule. The structural and electronic properties were next calculated using density functional theory (DFT) with B3LYP/6-311G (d, p) basis set. UV, FT-IR spectra characteristics and the electronic properties, such as frontier orbitals, and band gap energy (Eg) of DCJTB were also recorded time-dependent (TD) DFT approach. The theoretical Eg value were found to be 2.269 eV which is consistent with experimental results obtained from solution technique for THF solvent (2.155 eV) and literature (2.16 eV). The results herein obtained reveal that solution is simple, cost-efficient and safe for optoelectronic applications when compared with film technique.

  1. Application of immobilized laccase in dye decolorization%固定化漆酶在染料脱色中的应用

    Institute of Scientific and Technical Information of China (English)

    历娜; 栗君; 卢磊; 王靖瑶; 王天女; 李国富; 徐腾飞; 赵敏

    2014-01-01

    In order to obtain a good decolorization efficiency of dye wastewater, we fixed spore laccase from Bacillus amyloliquefaciens LC03 in seaweed acid calcium gel and determined its optimum temperature and pH and its operational stability.Then we studied the decolorization of four single dyes,including remazol brilliant blue R(RBBR),reactive black 5,indigo carmine and crystal violet, and investigated the effects of immobilized laccase-mediators with laccase mediators added on single dye to stimulate dye wastewater.Experiments showed that the optimum temperature was 65 ℃,the opti-mum pH was 6.2 and after 10 cycles of operation the immobilized enzyme remained over 80% of its initial activity. The immobilized pellets had a significant effect on decolorization of CV and more than 80% of CV was decolorized after 1 hour,while it also played some role in the decolorization of other three single dyes. Laccase mediators had a promoting effect on the decolorization of dyes especially on the IC,RBBR and RB5 and with the mediators concentration rising,the rate of decolorization increased. The immobilized pellets enhanced laccase repeated utilization ratio and increased the sta-bility of laccase. And under the acid, alkaline, and neutral conditions, immobilizod laccase mediators had a good decol-orizing effect on single dye and simulated dye wastewater which indicating potential application of this immobilized lacca-se-mediators in dye wastewater treatment.%为了使解淀粉芽孢杆菌LC03的芽孢漆酶对染料废水有更好的脱色作用,将其固定于海藻酸钙的凝胶中,测定其最适温度和最适pH及操作稳定性,并对RBBR、靛红( IC)、活性黑( RB5)、结晶紫( CV)等4种单染料进行脱色;通过加入漆酶介体,研究固定化漆酶-介体系统对单染料及模拟染料废水脱色的影响。结果表明:固定化漆酶最适温度65℃,最适pH为6.2,重复利用10次酶活还在80%以上;固定化小球对

  2. Review: Resin Composite Filling

    Science.gov (United States)

    Chan, Keith H. S.; Mai, Yanjie; Kim, Harry; Tong, Keith C. T.; Ng, Desmond; Hsiao, Jimmy C. M.

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  3. Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes.

    Science.gov (United States)

    Ghodake, Gajanan S; Kalme, Satish D; Jadhav, Jyoti P; Govindwar, Sanjay P

    2009-01-01

    Lignin peroxidase was purified (72-fold) from Acinetobacter calcoaceticus NCIM 2890. The purified lignin peroxidase (55-65 kDa) showed dimeric nature. The maximum enzyme activity was observed at pH 1.0, between a broad temperature range of 50 and 70 degrees C, at H2O2 concentration (40 mM) and the substrate concentration (n-propanol, 100 mM). Purified lignin peroxidase was able to oxidize a variety of substrates including Mn2+, tryptophan, mimosine, L-Dopa, hydroquinone, xylidine, n-propanol, veratryl alcohol, and ten textile dyes of various groups indicating as a versatile peroxidase. Most of the dyes decolorized up to 90%. Tryptophan stabilizes the lignin peroxidase activity during decolorization of dyes.

  4. Fluorescent TiO2 powders prepared using a new perylene diimide dye: applications in latent fingermark detection.

    Science.gov (United States)

    Choi, Mi Jung; Smoother, Tanya; Martin, Aiden A; McDonagh, Andrew M; Maynard, Philip J; Lennard, Chris; Roux, Claude

    2007-12-20

    A new, highly fluorescent dye was synthesised using oleylamine combined with a perylene dianhydride compound. The new dye was characterised by 1H NMR, UV-vis spectroscopy and fluorescence spectroscopy as well as quantum yield. The dye was absorbed onto titanium dioxide nanoparticles for use as a fingerprint detection powder. The new fluorescent powder was applied to latent fingermarks deposited onto different non-porous surfaces and compared with commercial fluorescent powders. The powder exhibits strong fluorescence at 650-700 nm under excitation at 505 nm. On glass surfaces, the new powder gave images showing tertiary-level detail of the fingermark ridges with almost no background development. Compared with current magnetic fluorescent powders, the new powder was slightly weaker in fluorescence intensity but produced significantly less background development, resulting in good contrast between the fingermark and the substrate.

  5. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    Science.gov (United States)

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW).

  6. Preparation of a Phosphor/TiO2 nanoparticle composite layer for applications in dye-sensitized solar cells

    Science.gov (United States)

    Shin, Seong Gwan; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-08-01

    The conversion luminescence of a phosphor from the ultraviolet region to the visible region can enhance the light harvesting in dye-sensitized solar cells (DSSCs), because many dyes can only absorb visible light. To explore the influence of phosphor additives on the conversion efficiency of DSSC, we introduce the nanocrystalline YAG:Eu phosphors into TiO2 photoelectrodes. The photoluminescence measurement showed that a broad solar spectrum including the ultraviolet region could be reabsorbed by the dye N-719 via conversion luminescence due to the phosphor. With the introduction of the phosphor, both the photocurrent and the photovoltage of the DSSC could be improved due to the enhanced light harvesting and the elevated energy levels of the oxides. With the optimal concentration of phosphor doping in the electrode, the cells light-to-electricity conversion efficiency could be improved by a factor of 1.14 compared to that for a cell without phosphor doping.

  7. Preparation of a phosphor/TiO{sub 2} nanoparticle composite layer for applications in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Gwan; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook [Gachon University, Seongnam (Korea, Republic of)

    2014-08-15

    The conversion luminescence of a phosphor from the ultraviolet region to the visible region can enhance the light harvesting in dye-sensitized solar cells (DSSCs), because many dyes can only absorb visible light. To explore the influence of phosphor additives on the conversion efficiency of DSSC, we introduce the nanocrystalline YAG:Eu phosphors into TiO{sub 2} photoelectrodes. The photoluminescence measurement showed that a broad solar spectrum including the ultraviolet region could be reabsorbed by the dye N-719 via conversion luminescence due to the phosphor. With the introduction of the phosphor, both the photocurrent and the photovoltage of the DSSC could be improved due to the enhanced light harvesting and the elevated energy levels of the oxides. With the optimal concentration of phosphor doping in the electrode, the cells light-to-electricity conversion efficiency could be improved by a factor of 1.14 compared to that for a cell without phosphor doping.

  8. Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications: enhanced light absorption and ultrafast electron injection.

    Science.gov (United States)

    Meng, Sheng; Ren, Jun; Kaxiras, Efthimios

    2008-10-01

    We investigate the electronic coupling between a TiO2 nanowire and a natural dye sensitizer, using state-of-the-art time-dependent first-principles calculations. The model dye molecule, cyanidin, is deprotonated into the quinonoidal form upon adsorption on the wire surface. This results in its highest occupied molecular orbital (HOMO) being located in the middle of the TiO2 bandgap and its lowest unoccupied molecular orbital (LUMO) being close to the TiO2 conduction band minimum (CBM), leading to greatly enhanced visible light absorption with two prominent peaks at 480 and 650 nm. We find that excited electrons are injected into the TiO2 conduction band within a time scale of 50 fs with negligible electron-hole recombination and energy dissipation, even though the dye LUMO is located 0.1-0.3 eV lower than the CBM of the TiO2 nanowire.

  9. Application of epoxy resin to a solid-foam pelvic model: creating a dry-erase pelvis.

    Science.gov (United States)

    Weaver, Michael J; Brubacher, Jacob W; Vrahas, Mark S

    2014-11-01

    The value of preoperative planning and templating has been well-established in fracture surgery. We have found that using 3-dimensional (3-D) models in preoperative planning aids in the understanding of anatomy, fracture-reduction techniques, and fixation methods, particularly in pelvic and acetabular fractures. To facilitate the correction of errors and reuse for future cases, we coat pelvic models with dry-erase epoxy resin. Fracture lines and planned implants are drawn onto the models with dry-erase markers. The creation of 3-D planning tools is useful in understanding the anatomy of pelvic and acetabular fractures.

  10. 40 CFR 63.5728 - What standards must I meet for closed molding resin operations?

    Science.gov (United States)

    2010-07-01

    ... molding resin operations? 63.5728 Section 63.5728 Protection of Environment ENVIRONMENTAL PROTECTION... Standards for Closed Molding Resin Operations § 63.5728 What standards must I meet for closed molding resin operations? (a) If a resin application operation meets the definition of closed molding specified in §...

  11. Application of TiO2 nanotubes in dye-sensitised solar cells for improved charge transport

    CSIR Research Space (South Africa)

    Cummings, F

    2010-09-01

    Full Text Available their operation • 20 years onwards and big strides have been made, however head2right Efficiency of best manufactured DSCs ~ 11% mark and 7% for DSC panels Dye-sensitised Solar Cells • Relatively inexpensive – Made in non-vacuum setting – Simple... in dye- sensitised solar cells for improved charge transport Franscious Cummings Energy and Processes Materials Science and Manufacturing © CSIR 2010 Slide 1 Rhodes Workshop 7 – 8 September 2010 circle6 Background circle6 Problem Statement...

  12. Dye sensitized solar cell applications of CdTiO{sub 3}–TiO{sub 2} composite thin films deposited from single molecular complex

    Energy Technology Data Exchange (ETDEWEB)

    Ehsan, Muhammad Ali [Nanotechnology and Catalysis Centre (NANOCAT), University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Khaledi, Hamid [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Pandikumar, Alagarsamy; Huang, Nay Ming [Department of Physics, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Arifin, Zainudin [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2015-10-15

    A heterobimetallic complex [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO{sub 3}–TiO{sub 2} composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO{sub 3}–TiO{sub 2} composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application. - Graphical abstarct: Microspherical designed CdTiO{sub 3}–TiO{sub 2} composite oxides photoanode film has been fabricated from single source precursor [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF via aerosol assisted chemical vapor deposition technique for dye sensitized solar cell application. - Highlights: • Synthesis and characterization of a heterobimetallic Cd–Ti complex. • Fabrication of CdTiO{sub 3}–TiO{sub 2} thin film photoelectrode. • Application as dye sensitized photoanode for solar application.

  13. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO{sub 4}) nanoparticles and its application in photocatalytic degradation of direct blue dye

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, R.M., E-mail: redama123@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Harraz, F.A. [Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Mkhalid, I.A. [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-08-15

    Graphical abstract: XRD patterns of YVO{sub 4} nanopowders prepared at different hydrothermal times; where Y{sub 1} = 4 h, Y{sub 2} = 8 h, Y{sub 3} = 12 h and Y{sub 4} = 24 h. Highlights: Black-Right-Pointing-Pointer Size control of Yttrium Orthovanadate. Black-Right-Pointing-Pointer Hydrothermal synthesis. Black-Right-Pointing-Pointer Removal of direct blue dye. - Abstract: Sized-controlled YVO{sub 4} nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer-Emmett-Teller (BET)), and ultraviolet-visible spectroscopy (UV-vis) measurements. The results showed that the size of as-synthesized YVO{sub 4} nanoparticles was in the range of 11-40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO{sub 4} nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO{sub 4} photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO{sub 4} nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  14. Distribution coefficients of 60 elements on TODGA resin: application to Ca, Lu, Hf, U and Th isotope geochemistry.

    Science.gov (United States)

    Pourmand, Ali; Dauphas, Nicolas

    2010-05-15

    Batch equilibration experiments are conducted to measure the distribution coefficients (K(d)) of a large number of elements in nitric, nitric plus hydrofluoric, and hydrochloric acids on Eichrom TODGA extraction chromatography resin. The K(d)s are used to devise a multi-element extraction scheme for high-precision elemental and isotopic analyses of Ca, Hf, Lu, Th and U in geological materials, using high-purity lithium metaborate (LiBO(2)) flux fusion that allows rapid digestion of even the most refractory materials. The fusion melt, dissolved in nitric acid, is directly loaded to a TODGA cartridge on a vacuum chamber for elemental separation. An Ln-Spec cartridge is used in tandem with TODGA for Lu purification. The entire procedure, from flux digestion to preparation for isotopic analysis, can be completed in a day. The accuracy of the proposed technique is tested by measuring the concentrations of Ca (standard bracketing), Hf, Lu, Th and U (isotope dilution), and the isotopic composition of Hf in geostandards (USNM3529, BCR-2, BHVO-1, AGV-1 and AGV-2). All measurements are in excellent agreement with recommended literature values, demonstrating the effectiveness of the proposed analytical procedure and the versatility of TODGA resin.

  15. A new synthesis, characterization and application chelating resin for determination of some trace metals in honey samples by FAAS.

    Science.gov (United States)

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-07-15

    In this study, we developed a simple and rapid solid phase extraction (SPE) method for the separation/preconcentration and determination of some trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly [2-(4-methoxyphenylamino)-2-oxoethyl methacrylate-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid] (MPAEMA-co-DVB-co-AMPS), was synthesized and characterized. This chelating resin was used as a new adsorbent material for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) ions. The parameters influential on the determination of this trace metals were examined. Under the optimum conditions, the detection limits (DL) of the method for trace metals were found to be (3s) in the range of 0.9-2.2 μg L(-1) (n=21), the preconcentration factor was calculated as 200 and the relative standard deviation was obtained achieved as ⩽2% for n=11. The method was performed for the determination of trace metals in some honey samples and standard reference materials. Copyright © 2016. Published by Elsevier Ltd.

  16. Application of DMT residue to phenolic resin modification%DMT残渣用于酚醛树脂改性

    Institute of Scientific and Technical Information of China (English)

    杨本庆; 常桂兰; 杨林

    2015-01-01

    用制取苯二甲酸二甲酯( DMT)时副产蒸馏残渣(合并氧化酯化法蒸渣),添加于酚醛树脂中,进行改性。实验表明,在适当的添加量下,能使原酚醛树脂及其制品的性能指标要好得多,即废物得到利用、成本得到降低。%The byProduct distillation residues when PreParation dimethyl terePhthalate( DMT)( combination oxida﹣tive esterification steam residue)was added to Phenolic resin to modify. The exPeriment results showed that under the aPProPriate addition amount,the Performence indexes of the original Phenolic resin and its Products were better. The waste is utilized and the cost is reduced.

  17. Glass Reinforcement of Various Epoxy Resins-Polyurea Systems

    Science.gov (United States)

    Joshi, Medha; Jauhari, Smita

    2012-07-01

    Polyureas (PUs) were prepared by the polycondensation reaction of disperse dyes containing -NH2 group and toluene 2, 4-diisocyanate. The disperse dyes have been prepared by coupling of various 2-diazobenzothiazoles with 1,3-benzenediamine. All the PUs were characterized by elemental analysis, spectral studies, number average molecular weight ( {overline{{Mn}} } ), and thermogravimetry. Further reaction of PUs was carried out with an epoxy resin (i.e., DGEBA). The curing study of prepared resins was monitored by differential scanning calorimeter (DSC). Based on DSC, thermograms glass fiber-reinforced composites have been laminated and characterized by chemical, mechanical, and electrical properties. The unreinforced cured resins were subjected to thermogravimetric analysis (TGA). The laminated composites showed excellent resistance properties against chemicals and good mechanical and electrical properties.

  18. Quasi Two-Dimensional Dye-Sensitized In2O3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications.

    Science.gov (United States)

    Mottram, Alexander D; Lin, Yen-Hung; Pattanasattayavong, Pichaya; Zhao, Kui; Amassian, Aram; Anthopoulos, Thomas D

    2016-02-01

    We report the development of dye-sensitized thin-film phototransistors consisting of an ultrathin layer (92% in the wavelength range 400-700 nm. Importantly, the phototransistors are processed from solution-phase at temperatures below 200 °C hence making the technology compatible with inexpensive and temperature sensitive flexible substrate materials such as plastic.

  19. Application of Near-IR Absorption Porphyrin Dyes Derived from Click Chemistry as Third-Order Nonlinear Optical Materials.

    Science.gov (United States)

    Mi, Yongsheng; Liang, Pengxia; Yang, Zhou; Wang, Dong; Cao, Hui; He, Wanli; Yang, Huai; Yu, Lian

    2016-02-01

    Recently, third-order nonlinear properties of porphyrins and porphyrin polymers and coordination compounds have been extensively studied in relation to their use in photomedicine and molecular photonics. A new functionalized porphyrin dye containing electron-rich alkynes was synthesized and further modified by formal [2+2] click reactions with click reagents tetracyanoethylene (TCNE) and 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ). The photophysical properties of these porphyrin dyes, as well as the click reaction, were studied by UV/Vis spectroscopy. In particular, third-order nonlinear optical properties of the dyes, which showed typical d-π-A structures, were characterized by Z-scan techniques. In addition, the self-assembly properties were investigated through the phase-exchange method, and highly organized morphologies were observed by scanning electron microscopy (SEM). The effects of the click post-functionalization on the properties of the porphyrins were studied, and these functionalized porphyrin dyes represent an interesting set of candidates for optoelectronic device components.

  20. Application of Near‐IR Absorption Porphyrin Dyes Derived from Click Chemistry as Third‐Order Nonlinear Optical Materials

    Science.gov (United States)

    Mi, Yongsheng; Liang, Pengxia; Cao, Hui; He, Wanli

    2015-01-01

    Abstract Recently, third‐order nonlinear properties of porphyrins and porphyrin polymers and coordination compounds have been extensively studied in relation to their use in photomedicine and molecular photonics. A new functionalized porphyrin dye containing electron‐rich alkynes was synthesized and further modified by formal [2+2] click reactions with click reagents tetracyanoethylene (TCNE) and 7, 7, 8, 8‐tetracyanoquinodimethane (TCNQ). The photophysical properties of these porphyrin dyes, as well as the click reaction, were studied by UV/Vis spectroscopy. In particular, third‐order nonlinear optical properties of the dyes, which showed typical d‐π‐A structures, were characterized by Z‐scan techniques. In addition, the self‐assembly properties were investigated through the phase‐exchange method, and highly organized morphologies were observed by scanning electron microscopy (SEM). The effects of the click post‐functionalization on the properties of the porphyrins were studied, and these functionalized porphyrin dyes represent an interesting set of candidates for optoelectronic device components. PMID:27308215

  1. Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Pietro Calandra

    2010-01-01

    Full Text Available We review the most advanced methods for the fabrication of cathodes for dye-sensitized solar cells employing nanostructured materials. The attention is focused on metal nanoparticles and nanostructured carbon, among which nanotubes and graphene, whose good catalytic properties make them ideal for the development of counter electrode substrates, transparent conducting oxide, and advanced catalyst materials.

  2. Combination of a fluorescent dye and a Zn-S cluster and its biological application as a stain for bacteria.

    Science.gov (United States)

    Xie, Jingli; Cao, Siyu; Good, David; Wei, Mingqian; Ren, Xiaoming

    2010-02-15

    An ionic-pair charge-transfer salt [C(15)H(16)N(3)](+)[Zn(8)S(SC(6)H(5))(15).H(2)O](-) (1) featuring a fluorescent dye and a wurtzite-like octanuclear Zn-S cluster shows high stability when staining bacteria Escherichia coli, Salmonella typhimurium, and Clostridium novyi NT.

  3. Preparation, Characterization and Application of Mg(OH2-PAM Inorganic-Organic Composite Polymer in Removing Reactive Dye

    Directory of Open Access Journals (Sweden)

    Khai Ern Lee

    2012-01-01

    Full Text Available In this study, a series of inorganic-organic composite polymer was prepared. Magnesium hydroxide and polyacrylamide was composed in a composite matrix to prepare Mg(OH2-PAM (MHPAM inorganic-organic composite polymer. The characteristics of MHPAM inorganic-organic composite polymer was investigated in terms of chemical, physical, physical, thermal and morphological properties through FT-IR, conductivity, intrinsic viscosity, TGA and TEM, respectively. Results showed that the properties of MHPAM composite polymers varied with the compositions in the composite polymers. Different compositions of MHPAM inorganic-organic composite polymers were applied in removing reactive dye from aqueous solution. MHPAM inorganic-organic composite polymer with Mg(OH2 : PAM ratio of 90 : 10 gave the best dye removal (% where it was able to remove 98% of reactive dye at pH 11.00 with a dosage of 500 mg/L. Kinetics study was carried out using different dye concentration and it was found that the experimental data fitted the pseudo-second-order model better compared to pseudo-first-order model.

  4. Preparation and adsorption properties of macroporous tannin resins

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-ping; Du Jie; Liu Jian

    2006-01-01

    In this paper, a new kind of adsorption resin with multi-phenolic hydroxyl was created by immobilizing black wattle bark tannins to chloromethyl polystyrene resin. Its adsorption capacity to cation dye was tested. With an orthogonal test the optimal conditions of synthesis were determined: the concentration of sodium hydroxide solution 1.0 mol·L-1; the reaction time is one hour and the mass concentration of tannins 5%. With single factorial experiment the optimal conditions of adsorption were confirmed: a solidified pH of 5.0; an adsorption temperature of 25℃ and a cation dye concentration of 100 mg·L-1. The adsorption for cation dye can be similar to Langmuir isotherms.

  5. EPOXY RESIN AND CURING AGENT THAT APPLICABLE TO AMORPHOUS STATOR CORE%适用于非晶电机定子铁心的环氧树脂及其固化剂

    Institute of Scientific and Technical Information of China (English)

    黄书林; 李山红; 余军; 张广强; 王立军

    2011-01-01

    Development of epoxy resin and curing agent that applicable to amorphous stator core was systematically described. The current characterization and examination methods for cured epoxy resin were summarized. The properties of amorphous stator core were introduced.%系统介绍了可适合于非晶电机定子铁心粘结工艺的环氧树脂(EP)及其固化剂的研究进展,并总结了目前几种对EP体系的表征和测试方法,介绍了非晶电机定子铁心的性能.

  6. Performance And Application Prospects Of The Melamine Resin Foam%三聚氰胺树脂泡沫的性能及应用前景

    Institute of Scientific and Technical Information of China (English)

    赵大学

    2014-01-01

    三聚氰胺树脂泡沫是一种具有高开孔率、三维网状结构的新型泡沫材料,其具有低密度、优异的阻燃性、杰出的吸音性能和良好的隔热保温性能。介绍了三聚氰胺泡沫的各种性能,总结了国内外三聚氰胺树脂及其发泡材料的应用,并对三聚氰胺树脂泡沫的应用前景进行了展望。%Melamine resin foam is a new material with excellent properties. Describes the various properties of melamine foam, and summarizes the application of melamine foam materials at home and abroad.

  7. Structurally Rigid 9-Amino-benzo[c]cinnoliniums Make Up a Class of Compact and Large Stokes-Shift Fluorescent Dyes for Cell-Based Imaging Applications.

    Science.gov (United States)

    Shen, Yanming; Shang, Zhihao; Yang, Yanhong; Zhu, Shaojia; Qian, Xuhong; Shi, Ping; Zheng, Jing; Yang, Youjun

    2015-06-05

    Classic fluorescent dyes, such as coumarin, naphthalimide, fluorescein, BODIPY, rhodamine, and cyanines, are cornerstones of various spectroscopic and microscopic methods, which hold a prominent position in biological studies. We recently found that 9-amino-benzo[c]cinnoliniums make up a novel group of fluorophores that can be used in biological studies. They are featured with a succinct conjugative push-pull backbone, a broad absorption band, and a large Stokes shift. They are potentially useful as a small-molecule alternative to R-phycoerythrin to pair with fluorescein in multiplexing applications.

  8. Expanded graphite/Novolac phenolic resin composite as single layer electromagnetic wave absorber for x-band applications

    Science.gov (United States)

    Gogoi, Jyoti P.; Bhattacharyya, Nidhi Saxena

    2013-01-01

    Expanded graphite/novolac phenolic resin (EG/NPR) composites are developed as dielectric absorbers with 4mm thickness and its microwave absorption ability studied in the frequency range 8.4 to 12.4 GHz. A high reflection loss ~ -43 dB is observed at 12.4 GHz for 5 wt. % EG/NPR composites. With the increase in EG concentration in the composite the reflection loss decreases and the absorption peak shifts towards lower frequency. 7 wt. %, 8 wt. % and 10 wt. % composites shows a 10dB absorption bandwidth of order of 1GHz. Light weight EG/NPR composite shows potential to be used as cost-effective broadband microwave absorber over the X-band.

  9. A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains.

    Science.gov (United States)

    Bathaie, S Z; Farajzade, A; Hoshyar, R

    2014-08-01

    The perennial flowering plant, saffron crocus (Crocus sativus L.), is the source of the most expensive spice in the world. The dried stigmas of saffron flowers are the source of a natural dye, saffron, which has been used from ancient times for dyeing silk and fabric rugs, and for painting; it also has been used for cooking and in medicine. The yellow compounds present in the dye include crocins, which are 20-carbon water soluble glycosyl derivatives of the carotenoid, crocetin, and the dicarboxylic acid itself. We review the chemistry of these compounds and discuss various applications of saffron as a natural dye. We review in particular the use of saffron or its constituents in histopathologic techniques.

  10. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-15

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  11. Rose Bengal sensitized bilayered photoanode of nano-crystalline TiO2-CeO2 for dye-sensitized solar cell application

    Science.gov (United States)

    Sayyed, Suhail A. A. R.; Beedri, Niyamat I.; Kadam, Vishal S.; Pathan, Habib M.

    2016-08-01

    The present work deals with the study of TiO2-CeO2 bilayered photoanode with low-cost Rose Bengal (RB) dye as sensitizer for dye-sensitized solar cell application. The recombination reactions are reduced in bilayered TiO2-CeO2 photoanode as compared to the single-layered CeO2 photoanode. Once the electrons get transferred from lowest unoccupied molecular orbital level of RB dye to the conduction band (CB) of TiO2, then the possibilities of recombination of electrons with oxidized dye molecules or oxidized redox couple are reduced. This is because the CB position of CeO2 is higher than that of TiO2, which blocks the path of electrons. The electrochemical impedance spectroscopy (EIS) analysis shows negative shift in frequency for bilayered TiO2-CeO2 photoanode as compared to CeO2 photoanode. Hence, in bilayered photoanode lifetime of electrons is more than in single-layered photoanode, confirming reduction in recombination reactions. The X-ray diffraction patterns confirm both anatase TiO2 and CeO2 with crystalline size using Scherrer formula as 24 and 10 nm, respectively. The scanning electron microscopy images of photoanode show the porous structure useful for dye adsorption. The presence of Ti and Ce is confirmed by electron diffraction studies. The band gap values for TiO2 and CeO2 were calculated as 3.20 and 3.11 eV, respectively, using diffused reflectance spectroscopy. The bilayered TiO2-CeO2 photoanode showed open-circuit voltage ( V OC) ~500 mV and short-circuit photocurrent density ( J SC) ~0.29 mA/cm2 with fill factor (FF) ~62.17 %. There is increase in V OC and J SC values by 66.67 and 38.10 %, respectively, compared to RB-sensitized CeO2 photoanode.

  12. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications.

    Science.gov (United States)

    Belov, Vladimir N; Mitronova, Gyuzel Yu; Bossi, Mariano L; Boyarskiy, Vadim P; Hebisch, Elke; Geisler, Claudia; Kolmakov, Kirill; Wurm, Christian A; Willig, Katrin I; Hell, Stefan W

    2014-10-06

    Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as "hidden" markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2-diazo-1-indanone group can be irreversibly photoactivated, either by irradiation with UV- or violet light (one-photon process), or by exposure to intense red light (λ∼750 nm; two-photon mode). All dyes possess a very small 2-diazoketone caging group incorporated into the 2-diazo-1-indanone residue with a quaternary carbon atom (C-3) and a spiro-9H-xanthene fragment. Initially they are non-colored (pale yellow), non-fluorescent, and absorb at λ=330-350 nm (molar extinction coefficient (ε)≈10(4)  M(-1)  cm(-1)) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511-633 and 525-653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε=3-8×10(4)  M(-1)  cm(-1) and fluorescence quantum yields (ϕ)=40-85% in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water-soluble caged red-emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino-reactive N-hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375-420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3-6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (ϕ=20-38%). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10-40% of the non-fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible

  13. The application of fluorinated aromatic dimethacrylates to experimental light-cured radiopaque composite resin, containing barium-borosilicate glass filler--a progress in nonwaterdegradable properties.

    Science.gov (United States)

    Tanaka, J; Inoue, K; Masamura, H; Matsumura, K; Nakai, H; Inoue, K

    1993-06-01

    This study investigated the durability, especially the nonwaterdegradable qualities, of experimental light-cured composite resin containing barium-borosilicate glass filler. For this purpose, Bis-GMA, a typical component of base monomer in conventional composite resin, was replaced by Bis-GMA-F which is water-repellent. After over 20,000 thermal cycles, the composite resin containing Bis-GMA retained only 60 approximately 70% of its initial compressive, diametral tensile, flexural strength and flexural elastic modulus. However, the experimental composite resin containing Bis-GMA-F as a resin matrix showed no loss of compressive, diametral tensile strength or flexural elastic modulus, although flexural strength showed some deterioration. It was considered that the difference between Bis-GMA-F and Bis-GMA, as resin matrix, caused variation in the characteristics of water sorption.

  14. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  15. Dye sensitized solar cells.

    Science.gov (United States)

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  16. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  17. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment.

    Science.gov (United States)

    Shin, D H; Shin, W S; Kim, Y H; Han, Myung Ho; Choi, S J

    2006-01-01

    A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.

  19. Sea grass like arranged TiO2 nanorods sensitized by natural dyes for solar cell applications

    Science.gov (United States)

    Akila, Y.; Muthukumarasamy, N.; Agilan, S.; Senthilarasu, S.; Velauthapillai, Dhayalan

    2016-08-01

    Rutile-phase seagrass-like-arranged TiO2 nanorods have been synthesized by low-temperature template-free hydrothermal method. These TiO2 nanorods have been sensitized by flowers of Sesbania grandiflora, leaves of Camellia sinensis and roots of Rubia tinctorum. The sensitized TiO2 nanorods-based films have been used as photoanode in natural dye-sensitized solar cells. The films were photoelectrochemically active, and the fabricated solar cells had short-circuit photocurrent density (JSC) lying in the range of 3.7-4.7mAcm-2. The efficiency of the fabricated natural dye-sensitized solar cells was found to lie in the range of 0.6-1.036 %, respectively

  20. Gel polymer electrolyte based on LiBOB and PAN for the application in dye-sensitized solar cells

    Science.gov (United States)

    Arof, A. K.; Jun, H. K.; Sim, L. N.; Kufian, M. Z.; Sahraoui, B.

    2013-11-01

    Dye-sensitized solar cells (DSSCs) have been fabricated using metal complex N3 dye coupled with LiBOB and PAN-based gel polymer electrolyte (GPE). Conductivity of the GPE at room temperature was 1.2 × 10-2 S cm-1. The deconvoluted vibration spectra at different temperatures between 1000 and 970 cm-1 show the existence of ion pairs and free ions. Overall efficiency and fill factor of the DSSC with LiBOB-BMII-PAN-I2 GPE system is 0.65% and 48% respectively. The cell with LiBOB-BMII-PAN-I2 GPE system appears to be stable under varied light intensity attributed to the presence of redox couple mediator in the GPE. Impedance measurements show that the DSSC with LiBOB-BMII-PAN-I2 GPE has longer electron lifetime which suggests a lower electron recombination rate.

  1. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization.

    Science.gov (United States)

    Niladevi, K N; Prema, P

    2008-07-01

    The process parameters influencing the production of extracellular laccases by Streptomyces psammoticus MTCC 7334 were optimized in submerged fermentation. Coffee pulp and yeast extract were the best substrate and nitrogen source respectively for laccase production by this strain. The optimization studies revealed that the laccase yield was maximum at pH 7.5 and temperature 32 degrees C. Salinity of the medium was also observed to be influencing the enzyme production. An agitation rate of 175 rpm and 15% inoculum were the other optimized conditions for maximum laccase yield (5.9 U/mL). Pyrogallol and para-anisidine proved to be the best inducers for laccase production by this strain and the enzyme yield was enhanced by 50% with these inducers. S. psammoticus was able to decolourize various industrial dyes at different rates and 80% decolourization of Remazol Brilliant Blue R (RBBR) was observed after 10 days of incubation in dye based medium.

  2. Two-Sided Surface Oxidized Cellulose Membranes Modified with PEI: Preparation, Characterization and Application for Dyes Removal

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-09-01

    Full Text Available Porous regenerated cellulose (RC membranes were prepared with cotton linter pulp as a raw material. These membranes were first oxidized on both sides by a modified (2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO oxidation system using a controlled oxidation reaction technique. Then, the oxidized RC membranes were functionalized with polyethylenimine (PEI via the glutaraldehyde crosslinking method to obtain bifunctional (carboxyl and amino porous RC membranes, as revealed by Fourier transform infrared spectroscopy (FT-IR, elemental analysis and zeta potential measurement. The scanning electron microscopy (SEM and the tests of the mechanical properties and permeability characteristics of modified RC membranes demonstrated that the porous structure and certain mechanical properties could be retained. The adsorption performance of the modified membranes towards dyes was subsequently investigated. The modified membranes displayed good adsorption capacities, rapid adsorption equilibrium and removal efficiencies towards both anionic (xylenol orange (XO and cationic (methylene blue (MB dyes, making them suitable bioadsorbents for wastewater treatment.

  3. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  4. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (I): Pretreatment of cationic triphenylmethane dyes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Li, Zhaoyong; Kang, Juan; Wang, Xiaoyan; Zhang, Yukui; Fang, Jiande [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-02-11

    Graphical abstract: - Highlights: • Millimetric s-Fe{sup 0} particles effectively reduce BG, MG, CV, and EV dyes. • s-Fe{sup 0} displays similar contaminant removal efficiency compared to nZVI. • s-Fe{sup 0} shows greater economic advantages than nZVI, iron powder, and iron scurf. • The reductive mechanism of BG over s-Fe{sup 0} under US condition is elucidated. - Abstract: To investigate the removal capability of millimetric zero valent iron (mmZVI), sponge iron (s-Fe{sup 0}) particles were characterized with XRD, XPS, TEM, HRSEM and EDS techniques. Moreover, the roles of particle size, catalyst dosage, dye concentration, mixing conditions (e.g. ultrasound (US), stirring or shaking), and regeneration treatment were studied with the removal of cationic triphenylmethane dyes. Notably, the reduction process was also revealed as compared to nanoscale zero valent iron (nZVI), microscale iron power, and iron scurf. Furthermore, the reductive mechanism was exemplified with brilliant green. The results demonstrated that (1) the synergetic effect between US and s-Fe{sup 0} greatly enhanced the removal of dyes, (2) the dosage of preferred s-Fe{sup 0} (1–3 mm) particles was optimized as 30.0 g/L; (3) reuse cycles of s-Fe{sup 0} catalyst were enhanced with the assistance of diluted HCl solution; (4) the main degradation routes included the cleavage of conjugated structure reactions, N-de-ethylation reactions, hydroxylation reactions, the removal of benzene ring reactions, and opening ring reactions. Accordingly, the pretreatment of aqueous solution over s-Fe{sup 0} was hypothesized to achieve mainly through direct reduction reaction by electron transfer and indirect reductive reactions by the highly activated hydrogen atom. Additionally, decoration with noble metals was utilized to reveal the reaction mechanism.

  5. Guanidinium Iodides-based Ionic Liquids: Synthesis and Application for Dye-sensitized Solar Cells(DSSCs)

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ren-feng; WU Mao-cheng; DUAN Hai-feng; ZHANG Yu; WEI Xiao; LUO Xu-yang; LIN Ying-jie

    2009-01-01

    A series of guanidinium ionic liquids(GILs) was designed, synthesized, and used as electrolytes for dye-sensitized solar celIs(DSSCs). The effect of electrolytes containing GILs on the photovoltaic performance of DSSCs was investigated. It is demonstrated that these GILs are promising for being used as electrolytes for DSSCs and a conversion efficiency of 4.1% can be obtained under AM 1.5 sun light irradiation.

  6. Structure Property Relationships of Biobased Epoxy Resins

    Science.gov (United States)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  7. Application of potato (Solanum tuberosum plant wastes for the removal of methylene blue and malachite green dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2016-09-01

    Full Text Available Dye pollutants from the textile, paper, and leather industries are important sources of environmental contamination. In the present study an agricultural waste from potato plant (potato stem powder, PSP and potato leaves powder, PLP was used as an adsorbent for removal of the methylene blue (MB and malachite green (MG dyes from aqueous solution. The adsorbent materials were characterized by scanning electron microscope (SEM and Fourier transform infrared (FTIR spectroscopy. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pHpzc, ionic strength, adsorbent dose, contact time, initial dyes concentration and temperature. The kinetics of adsorption was studied by applying the pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-second order model better represented the adsorption kinetics and the mechanism was controlled by surface adsorption and intraparticle diffusion. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as change in enthalpy (ΔH°, entropy (ΔS° and Gibb’s free energy (ΔG° of adsorption systems were also determined and evaluated.

  8. Quasi Two-Dimensional Dye-Sensitized In 2 O 3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications

    KAUST Repository

    Mottram, Alexander D.

    2016-02-10

    © 2016 American Chemical Society. We report the development of dye-sensitized thin-film phototransistors consisting of an ultrathin layer (<10 nm) of indium oxide (In2O3) the surface of which is functionalized with a self-assembled monolayer of the light absorbing organic dye D102. The resulting transistors exhibit a preferential color photoresponse centered in the wavelength region of ∼500 nm with a maximum photosensitivity of ∼106 and a responsivity value of up to 2 × 103 A/W. The high photoresponse is attributed to internal signal gain and more precisely to charge carriers generated upon photoexcitation of the D102 dye which lead to the generation of free electrons in the semiconducting layer and to the high photoresponse measured. Due to the small amount of absorption of visible photons, the hybrid In2O3/D102 bilayer channel appears transparent with an average optical transmission of >92% in the wavelength range 400-700 nm. Importantly, the phototransistors are processed from solution-phase at temperatures below 200 °C hence making the technology compatible with inexpensive and temperature sensitive flexible substrate materials such as plastic.

  9. Electrodeposition of NiO films from various solvent electrolytic solutions for dye sensitized solar cell application

    Science.gov (United States)

    Koussi-Daoud, S.; Pellegrin, Y.; Odobel, F.; Viana, B.; Pauporté, T.

    2017-02-01

    We have investigated the preparation of NiO layers by cathodic electrodeposition in various organic-based solvents, namely ethanol, dimethyl sulfoxide (DMSO), DMSO/2 vol.% H2O and DMSO/25 vol.% H2O mixtures. The layers were formed from the electrochemical reduction of nickel nitrate precursor. We show that, depending on the solvent used, various nickel compounds were deposited. In the case of ethanol, a transparent precursor layer was obtained that was transformed into NiO after an annealing treatment at 300°C. For DMSO and DMSO with 2 volume % of H2O, adherent, well-covering, mesoporous and rather thick NiO layers were obtained after an annealing treatment at 450°C. These layers, after growth, contained nickel oxide or hydroxide, metallic nickel and DMSO. The solvent acted as a blowing agent, being included in the deposit and giving rise to a mesoporous film after its elimination by thermal annealing. These porous layers of p-type oxide have been successfully sensitized by a push-pull dye (P1 dye) and showed photocurrent generation and an open circuit voltage (Voc) up to 167 mV in p-type dye-sensitized solar cells (p-DSSCs). For DMSO with 25 volume % of H2O, the deposited layers contained more metallic nickel and were dense even after annealing. They were unsuitable in p-DSSCs.

  10. Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water.

    Science.gov (United States)

    Omidvar, Afshan; Jaleh, Babak; Nasrollahzadeh, Mahmoud

    2017-06-15

    A GO/Pd nanocomposite has been successfully synthesized applying a simple method via immobilizing Pd on the surface of the graphene oxide (GO). The GO/Pd nanocomposite was characterized by X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) spectroscopy, Raman, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) techniques. The surface morphology of Pd NPs was viewed by TEM, the particles are spherical with an average particle size of 11nm. The catalytic activity of the GO/Pd nanocomposite is excellent for the degradation of organic dyes such as Congo red (CR), methylene blue (MB) and methyl orange (MO) in the presence of NaBH4 in aqueous media at room temperature. For the first time, the degradation of CR, MB and MO was reported using GO/Pd nanocomposite as a heterogeneous catalyst. The excellent catalytic effect for the degradation of dyes was monitored by UV-visible spectroscopy at regular time intervals. When GO/Pd nanocomposite was added into the solution containing dye and NaBH4, the intensity of the strong absorption peak gradually decreased and the whole peak disappeared. It followed the pseudo-first order reaction and time of the reduction reactions is short. In addition, the catalyst can be recovered and reused up to multiple runs without any marked loss in its catalytic activity.

  11. Facile synthesis of PbWO4: Applications in photoluminescence and photocatalytic degradation of organic dyes under visible light

    Science.gov (United States)

    Saraf, Rohit; Shivakumara, C.; Behera, Sukanti; Nagabhushana, H.; Dhananjaya, N.

    2015-02-01

    Stolzite polymorph of PbWO4 catalyst was prepared by the facile room temperature precipitation method. Structural parameters were refined by the Rietveld analysis using powder X-ray data. PbWO4 was crystallized in the scheelite-type tetragonal structure with space group I41/a (No. 88). Field emission scanning electron microscopy revealed leaf like morphology. Photoluminescence spectra exhibit broad blue emission (425 nm) under the excitation of 356 nm. The photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange dyes were measured under visible illumination. The 100% dye degradation was observed for MB and RhB dyes within 60 and 105 min. The rate constant was found to be in the decreasing order of MB > RhB > MO which followed the 1st order kinetic mechanism. Therefore, PbWO4 can be a potential candidate for blue component in white LEDs and also acts as a catalyst for the treatment of toxic and non-biodegradable organic pollutants in water.

  12. A novel carboxyethyltin functionalized sandwich-type germanotungstate: synthesis, crystal structure, photosensitivity, and application in dye-sensitized solar cells.

    Science.gov (United States)

    Sang, Xiaojing; Li, Jiansheng; Zhang, Lancui; Wang, Zanjiao; Chen, Weilin; Zhu, Zaiming; Su, Zhongmin; Wang, Enbo

    2014-05-28

    A novel sandwich-type germanotungstate [C(NH2)3]10[Mn2{Sn(CH2)2COOH}2(B-α-GeW9O34)2]·8H2O (1) represents the first single crystalline polyoxometalate (POM) functionalized by open chain carboxyethyltin, which was designed and synthesized in aqueous solution and applied to a dye-sensitized solar cell (DSSC) for the first time. Its photosensitivity was explored through a fluorescence spectrum (FL), surface photovoltage spectrum (SPV), electrochemical method, and solid diffuse spectrum. 1 displays the primary features of sensitizers in DSSCs, and the efficiency of the solar cell is 0.22%. Delightedly, when 1 was employed to assemble a cosensitized solar cell configuration by preparing a 1-doped TiO2 electrode and additionally adsorbing N719 dyes, a considerably improved efficiency was achieved through increasing spectral absorption and accelerating electron transport, which is 19.4% higher than that of single N719 sensitization. This result opens up a new way to position different dyes on a single TiO2 film for cosensitization.

  13. Development of an eco-protocol for seaweed chlorophylls extraction and possible applications in dye sensitized solar cells

    Science.gov (United States)

    Armeli Minicante, S.; Ambrosi, E.; Back, M.; Barichello, J.; Cattaruzza, E.; Gonella, F.; Scantamburlo, E.; Trave, E.

    2016-07-01

    Seaweeds are a reserve of natural dyes (chlorophylls a, b and c), characterized by low cost and easy supply, without potential environmental load in terms of land subtraction, and also complying with the requirements of an efficient waste management policy. In particular, the brown seaweed Undaria pinnatifida is a species largely present in the Venice Lagoon area, and for it a removal strategy is actually mandatory. In this paper, we set-up an eco-protocol for the best extraction and preparation procedures of the pigment, with the aim of finding an easy and affordable method for chlorophyll c extraction, exploring at the same time the possibility of using these algae within local sustainable management integrated strategies, among which the possible use of chlorophylls as a dye source in dye sensitized solar cells (DSSCs) is investigated. Experimental results suggest that the developed protocols are useful to optimize the chlorophyll c extraction, as shown by optical absorption spectroscopy measurements. The DSSCs built with the chlorophyll extracted by the proposed eco-protocol exhibit solar energy conversion efficiencies are similar to those obtained following extraction protocols with larger environmental impacts.

  14. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    Science.gov (United States)

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  15. Facile synthesis of PbWO4: applications in photoluminescence and photocatalytic degradation of organic dyes under visible light.

    Science.gov (United States)

    Saraf, Rohit; Shivakumara, C; Behera, Sukanti; Nagabhushana, H; Dhananjaya, N

    2015-02-05

    Stolzite polymorph of PbWO4 catalyst was prepared by the facile room temperature precipitation method. Structural parameters were refined by the Rietveld analysis using powder X-ray data. PbWO4 was crystallized in the scheelite-type tetragonal structure with space group I41/a (No. 88). Field emission scanning electron microscopy revealed leaf like morphology. Photoluminescence spectra exhibit broad blue emission (425 nm) under the excitation of 356 nm. The photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange dyes were measured under visible illumination. The 100% dye degradation was observed for MB and RhB dyes within 60 and 105 min. The rate constant was found to be in the decreasing order of MB>RhB>MO which followed the 1st order kinetic mechanism. Therefore, PbWO4 can be a potential candidate for blue component in white LEDs and also acts as a catalyst for the treatment of toxic and non-biodegradable organic pollutants in water.

  16. VALORIZATION AND CHARACTERIZATION OF WOOD OF THE JUJUBE SHELL: APPLICATION TO THE REMOVAL OF CATIONIC DYE FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    N. EL MESSAOUDI

    2017-02-01

    Full Text Available In the present study, the powder of jujube shell (raw and modified was tested for removing crystal violet (CVfrom aqueous solution. The biosorbents were characterized by FTIR, SEM and pHZPC analysis.The biosorption behavior was studied in batch experiments such as biosorbent mass, contact time, temperature, initial dye pH, biosorbent particles size and initial dye concentration. The removal efficiency of crystal violet attained 95.84% and 98.16 %, using 0.2g of raw jujube shell (JS of and 0.1g of modified jujube shell with sodium hydroxide (NMJS, respectively. The obtained results indicate the endothermic nature of biosorption and that the biosorption system studied belongs to the second-order kinetic model. Equilibrium data of the biosorption process fitted very well to Langmuir model. The maximum biosorption monolayer capacities of crystal violet on raw and modified jujube shell were found to be 59.84 mg/g and 288.18 mg/g at 50°C, respectively. Thus, the raw jujube shell treatment with base is very effective and greatly improves the dye adsorption capacity.

  17. Production of Ligninolytic Enzymes by White-Rot Fungus Datronia sp. KAPI0039 and Their Application for Reactive Dye Removal

    Directory of Open Access Journals (Sweden)

    Pilanee Vaithanomsat

    2010-01-01

    Full Text Available This study focused on decolorization of 2 reactive dyes; Reactive Blue 19 (RBBR and Reactive Black 5 (RB5, by selected white-rot fungus Datronia sp. KAPI0039. The effects of reactive dye concentration, fungal inoculum size as well as pH were studied. Samples were periodically collected for the measurement of color unit, Laccase (Lac, Manganese Peroxidase (MnP, and Lignin Peroxidase (LiP activity. Eighty-six percent of 1,000 mg L−1 RBBR decolorization was achieved by 2% (w/v Datronia sp. KAPI0039 at pH 5. The highest Lac activity (759.81 UL−1 was detected in the optimal condition. For RB5, Datronia sp. KAPI0039 efficiently performed (88.01% decolorization at 2% (w/v fungal inoculum size for the reduction of 600 mg L−1 RB5 under pH 5. The highest Lac activity (178.57 UL−1 was detected, whereas the activity of MnP and LiP was absent during this hour. The result, therefore, indicated that Datronia sp. KAPI0039 was obviously able to breakdown both reactive dyes, and Lac was considered as a major lignin-degradation enzyme in this reaction.

  18. Detail study on ac-dc magnetic and dye absorption properties of Fe3O4 hollow spheres for biological and industrial application.

    Science.gov (United States)

    Sarkar, Debasish; Mandal, Kalyan; Mandal, Madhuri

    2014-03-01

    Here solvo-thermal technique has been used to synthesize hollow-nanospheres of magnetite. We have shown that PVP plays an important role to control the particle size and also helps the particles to take the shape of hollow spheres. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM were performed to confirm the hollow type spherical particles formation and their shape and sizes were also investigated. The detail ac-dc magnetic measurements give an idea about the application of these nano spheres for hyperthermia therapy and spontaneous dye adsorption properties (Gibbs free energy deltaG0 = -0.526 kJ/mol for Eosin and -1.832 kJ/mol for MB) of these particles indicate its use in dye manufacturing company. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, arsenic and heavy metal removal by adsorption technique, magnetic separation etc.

  19. Present Status & Application of Non -Aqueous Dispersion Resins%非水分散体树脂技术的现状及应用

    Institute of Scientific and Technical Information of China (English)

    丁帮勇; 穆颖; 袁兴; 郭华进

    2011-01-01

    Non- aqueous dispersion resins use aliphatic hydrocarbon compounds as dispersion medium.As we know, the photochemical activity of aliphatic hydrocarbon compound is lower compared to aromatic hydrocarbon compound ,thus non- aqueous dispersion resins is a kind of environmentally friendly materials.And because it also has swelling and rheological properties, and easily be modified surface chemicaly, which have been widely used in many fields. This article described several non - aqueous dispersion preparation methods, including polymer synthesis and conversion processes, etc. and especially introduced diffirent varieties of dispersion stabilizers and typical applications of non - aqueous materials.%非水分散体材料主要采用脂肪烃类溶剂作为分散介质,这类溶剂与芳烃类溶剂相比,具有较低的光化学活性,因而非水分散体材料属于一种环境友好型材料;且非水分散体材料具有特殊的溶胀及流变性能,并且很容易进行表面的化学改性,因而在很多领域得到广泛应用.本文介绍了非水分散体材料的几种制备方法,包括高分子合成法、转化法等,特别对分散稳定剂和分散相的形式和非水分散体的应用做了重点介绍.

  20. Solvent-free fluidic organic dye lasers.

    Science.gov (United States)

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  1. STAINING SECTIONS OF WATER-MISCIBLE RESINS .1. EFFECTS OF THE MOLECULAR-SIZE OF THE STAIN, AND OF RESIN CROSS-LINKING, ON THE STAINING OF GLYCOL METHACRYLATE EMBEDDED TISSUES

    NARCIS (Netherlands)

    GERRITS, PO; HOROBIN, RW; WRIGHT, DJ

    1990-01-01

    Penetration of hydrophilic acid and basic dyes into sections cut from glycol methacrylate (GMA)-embedded tissues was studied; as were the effects on such staining of superficial coatings of thin layers of GMA. Dye size was a major factor in controlling penetration of resin and staining of tissues. '

  2. STAINING SECTIONS OF WATER-MISCIBLE RESINS .1. EFFECTS OF THE MOLECULAR-SIZE OF THE STAIN, AND OF RESIN CROSS-LINKING, ON THE STAINING OF GLYCOL METHACRYLATE EMBEDDED TISSUES

    NARCIS (Netherlands)

    GERRITS, PO; HOROBIN, RW; WRIGHT, DJ

    1990-01-01

    Penetration of hydrophilic acid and basic dyes into sections cut from glycol methacrylate (GMA)-embedded tissues was studied; as were the effects on such staining of superficial coatings of thin layers of GMA. Dye size was a major factor in controlling penetration of resin and staining of tissues. '

  3. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  4. 滚塑专用树脂MLPE-8060的工业化开发及应用%Development and Application of LLDPE Special Resin MLPE-8060 for Rotational Moulding

    Institute of Scientific and Technical Information of China (English)

    谭捷

    2013-01-01

    A kind of linear low density polyethylene(LLDPE) special resin for rotational moulding was developed and produced with gas phase fluid-bed polyethylene process in a LLDPE plant. The property tests and application of the special resin, denoted as grade MLPE-8060, was performed. The stable production and the precise control of melt flow rate and density of MLPE-8060 was realized in the mode of condensation operation. The results show that: the special resin can stand comparison with the level of its imported counterparts, especially in tensile fracture stress and charpy impact strength. The special resin can use as the modified base resin,and the formability and weatherability of special resin can meet the requirements of the manufacturers.%在线型全密度聚乙烯装置上开发和生产了滚望专用树脂MLPE-8060,并对工业化产品进行了性能测试及加工应用.MLPE-8060在冷凝态模式操作下实现稳定生产以及熔体流动速率、密度等指标的精确控制.结果表明:MLPE-8060的各项性能指标达到进口专用树脂水平,具有较高的拉伸断裂应力及冲击强度;其加工成型性,耐侯性等都能满足厂家要求,作为改性基础树脂也能满足使用要求.

  5. Accurate simulation of optical properties in dyes.

    Science.gov (United States)

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo

    2009-02-17

    Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them.

  6. Supramolecular assemblies based on glycoconjugated dyes

    NARCIS (Netherlands)

    Schmidt, Bettina

    2016-01-01

    Supramolecular assemblies of glycoconjugated dyes can be tailored with properties that make them attractive for use in biomedical applications. For example, when assemblies of glycoconjugated dyes are displaying carbohydrates on their periphery in a polyvalent manner, these assemblies can be used to

  7. Thermomechanical properties and fracture of resin-bonded-sand cores - Experimental study and application in aluminium foundry

    Science.gov (United States)

    Menet, Claire; Reynaud, Pascal; Fantozzi, Gilbert; Thibault, Delphine; Laforêt, Adrien

    2017-06-01

    Sand cores are used to produce internal cavities of metallic cast parts with complex shapes like automotive cylinder heads. Foundry cores are granular materials made of sand grains aggregated with binder bridges. In the cold box coring process, the binder is a polyurethane resin. It is noteworthy that during the casting of the liquid metal, the polymer binder is seriously damaged. This kind of materials has been poorly investigated so far. This study aims for a better understanding of the mechanical behaviour and fracture of cores subjected to various loads and thermal ageing. Particularly, the focus is on the decoring step, which consists in removing the sand by hammering and vibration of the metallic part after casting. This major project, generated from the collaboration of the aluminum casting company Montupet, and two laboratories Centre des Matériaux (CdM) and MATEIS, includes both experimental and numerical activities in order to model the decoring step of cylinder heads based on empiric data. Here, the experimental part of the work is presented.

  8. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  9. Application of supercritical water to decompose brominated epoxy resin and environmental friendly recovery of metals from waste memory module.

    Science.gov (United States)

    Li, Kuo; Xu, Zhenming

    2015-02-03

    Waste Memory Modules (WMMs), a particular kind of waste printed circuit board (WPCB), contain a high amount of brominated epoxy resin (BER), which may bring a series of environmental and health problems. On the other hand, metals like gold and copper are very valuable and are important to recover from WMMs. In the present study, an effective and environmental friendly method using supercritical water (SCW) to decompose BER and recover metals from WMMs was developed instead of hydrometallurgy or pyrometallurgy simultaneously. Experiments were conducted under external-catalyst-free conditions with temperatures ranging from 350 to 550 °C, pressures from 25 to 40 MPa, and reaction times from 120 to 360 min in a semibatch-type reactor. The results showed that BER could be quickly and efficiently decomposed under SCW condition, and the mechanism was possibly free radical reaction. After the SCW treatments, the glass fibers and metal foils in the solid residue could be easily liberated and recovered, respectively. The metal recovery rate reached 99.80%. The optimal parameters were determined as 495 °C, 33 MPa, and 305 min on the basis of response surface methodology (RSM). This study provides an efficient and environmental friendly approach for WMMs recycling compared with electrolysis, pyrometallurgy, and hydrometallurgy.

  10. Synthesis of Nanoporous TiO2 and Its Potential Applicability for Dye-Sensitized Solar Cell Using Antocyanine Black Rice

    Directory of Open Access Journals (Sweden)

    Brian Yuliarto

    2010-01-01

    Full Text Available Nanoporous mesostructure TiO2 powders were synthesized by sol-gel method, with TiCl4 as a precursor in methanol solution. The Pluronic PE 6200 of block copolymer was used as the pores template. It was found from XRD measurements, both at 400∘C and 450∘C calcination temperatures, that the sol-gel technique yielded the nanoporous TiO2 with anatase phase. Based on N2 adsorption characterization using BET method, the TiO2 samples have surface area of 108 m2/g and 88 m2/g for calcination temperatures of 400∘C and of 450∘C, respectively. From small-angle neutron scattering (SANS patterns, TiO2 samples were observed to have nanoporous structures with pore sizes between 22–24 nm. The TiO2 also have order degree which depends on the calcination temperature. The potential applicability of the resulting TiO2 is confirmed for dye-sensitized solar cell (DSSC, composed of nanoporous anatase TiO2 and natural dye from antocyanine black rice. UV-Vis measurement of dye extracted from the black rice indicated that the antocyanine chelate can propagate into the TiO2 nanoporous network. The short circuit photocurrent density (Jsc under 100 mWcm−2 reached 1.287 mAcm−2 with open circuit photovoltage (Voc of 550 mV and the fill factor of 33.4%. The results show that the hybrid organic-inorganic structures are very attractive for future low-cost devices.

  11. Ag-Decorated Fe3O4@SiO2 Nanorods: Synthesis, Characterization, and Applications in Degradation of Organic Dyes

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-01-01

    Full Text Available Well-dispersed Ag nanoparticles (NPs are successfully decorated on Fe3O4@SiO2 nanorods (NRs via a facile step-by-step strategy. This method involves coating α-Fe2O3 NRs with uniform silica layer, reduction in 10% H2/Ar atmosphere at 450°C to obtain Fe3O4@SiO2 NRs, and then depositing Ag NPs on the surface of Fe3O4@SiO2 NRs through a sonochemical step. It was found that the as-prepared Ag-decorated magnetic Fe3O4@SiO2 NRs (Ag-MNRs exhibited a higher catalytic efficiency than bare Ag NPs in the degradation of organic dye and could be easily recovered by convenient magnetic separation, which show great application potential for environmental protection applications.

  12. Optical study of dye-containing fluorinated polyimide thin films

    Science.gov (United States)

    Quaranta, A.; Carturan, S.; Maggioni, G.; Della Mea, G.; Ischia, M.; Campostrini, R.

    Thin films of dye-containing fluorinated polyimide have been obtained by adding the dye powder to the polyamic acid resin and by spin coating the resulting solution on silica and silicon substrates. 6FDA (4,4'-hexafluoroisopropylidene diphthalic anhydride) and DAB (diaminobenzophenone) have been used as precursor monomers and rhodamine B as dye. The influence of the rhodamine-B molecule on the completeness of the imidization process has been studied by coupled thermogravimetric and mass-spectrometric analyses (TG-MS) of pure and doped polyamic acid resin and by FT-IR analysis of samples before and after curing. Optical emission, excitation and absorption spectra have been collected in order to study spectroscopic and aggregation characteristics of rhodamine as a function of the deposition parameters.

  13. Synthesis and Characterizations of Melamine-Based Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-09-01

    Full Text Available A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I or by adding a silane derivative (resin II. The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials.

  14. Synthesis and characterizations of melamine-based epoxy resins.

    Science.gov (United States)

    Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele

    2013-09-05

    A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials.

  15. High hydroscopicity resin and its application inpetroleum industry%高吸水性树脂及其在石油工业的应用

    Institute of Scientific and Technical Information of China (English)

    郑延成; 周爱莲

    2001-01-01

    高分子吸水树脂因分子量大、结构复杂多样等,具有超强吸水性能。文中分析了淀粉类吸水树脂、纤维类和合成类吸水树脂的机理及性能。用于石油工业可作为堵水调剖、管线密封、原油成品油脱水、污水处理等。%For molecular weight of high molecular injectivity resin is high and structure is complex, its hydroscopicity is very strong. The paper analyses the mechanism and performances of starch injectivity resin. fibre injectivity resin and synthetic injectivity resin. These resins may be used in water shutoff profile control, sealing pipe line, dewatering of oil product and crude oil, and sewage disposal etc. in petroleum industry.

  16. Wear behaviour of epoxy resin filled with hard powders

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Minutolo, F. Capece; Carrino, L.; Durante, M.; Langella, A.

    2016-10-01

    The development of high performance materials based on epoxy resin finds a growing number of applications in which high wear resistance is required. One major drawback in many of these applications is the relatively poor wear resistance of the epoxy resin. Therefore, in order to investigate on the possibility of increasing wear resistance of thermoset polymers filled with hard powders, sliding tests are carried out by means of a pin on disc apparatus. In particular, composite resins, constituted by an epoxy resin filled with different contents and sizes of Silicon Carbide powder, are analyzed; the wear resistance, in terms of volume loss, is measured for different abrasive counterfaces and loads.

  17. The Progress of Research and Application for Melamine Resin foam%三聚氰胺树脂泡沫塑料的研究应用进展

    Institute of Scientific and Technical Information of China (English)

    刘平飞

    2012-01-01

    三聚氰胺甲醛泡沫塑料是一种具有良好阻燃、吸音、安全性能的新型材料。介绍了三聚氰胺甲醛树脂的基本合成工艺、以及其泡沫塑料的制备工艺。叙述了三聚氰胺泡沫塑料的国内外研究进展。展望了三聚氰胺甲醛泡沫塑料在建筑、消防和工业领域所具有的广泛应用前景,对其潜在的应用范围进行初步探讨。%Melamine formaldehyde foam is a new type of material, which has many good properties, such as fire - retardant, sound absorption and safety. Described the basic synthetic process of melamine - formaldehyde resin, and its foam preparation process. Introduced the domestic and abroad researches on modification of the melamine foam in detail. Described and forecasted the wide applications of melamine -formaldehyde foam in construction, fire -fighting and industrial fields. Its potential applications were also discussed.

  18. Synthesis of Potato Starch-Acrylic-Acid Hydrogels by Gamma Radiation and Their Application in Dye Adsorption

    Directory of Open Access Journals (Sweden)

    Md. Murshed Bhuyan

    2016-01-01

    Full Text Available Several kinds of acrylic-acid-grafted-starch (starch/AAc hydrogels were prepared at room temperature (27°C by applying 5, 10, 15, 20, and 25 kGy of gamma radiation to 15% AAc aqueous solutions containing 5, 7.5, and 15% of starch. With increment of the radiation dose, gel fraction became higher and attained the maximum (96.5% at 15 kGy, above which the fraction got lowered. On the other hand, the gel fraction monotonically increased with the starch content. Swelling ratios were lower for the starch/AAc hydrogels prepared with higher gamma-ray doses and so with larger starch contents. Significant promotions of the swelling ratios were demonstrated by hydrolysis with NaOH: 13632±10% for 15 kGy radiation-dosed [5% starch/15% AAc] hydrogel, while the maximum swelling ratio was ~200% for those without the treatment. The authors further investigated the availability of the starch/AAc hydrogel as an adsorbent recovering dye waste from the industrial effluents by adopting methylene blue as a model material; the hydrogels showed high dye-capturing coefficients which increase with the starch ratio. The optimum dye adsorption was found to be 576 mg per g of the hydrogel having 7.5 starch and 15% AAc composition. Two kinetic models, (i pseudo-first-order and (ii pseudo-second-order kinetic models, were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.

  19. Growth of TiO2 nanofibers on FTO substrates and their application in dye-sensitized solar cells

    Science.gov (United States)

    Suryana, R.; Rahmawati, L. R.; Triyana, K.

    2016-11-01

    Growth of TiO2 nanofibers on fluorine-doped tin oxide (FTO) substrates have been performed using electrospinning method. Homogenous TiO2 solution as nanofibers material was prepared with titanium tetraisopropoxide (TTIP), ethanol, acetic acid and polyvinyl pyrrolidone (PVP) which was stirred for 24 h. TiO2 solution was loaded into the syringe pump. Electrospun voltage was operated under 15 kV with optimum distance between syringe tip and collector was 15 cm. FTO substrates were attached on the collector surface. Electrospinning coating time was varied at 15 min, 30 min, 45 min, and 60 min. Then TiO2 nanofibers layer was annealed at temperature of 450° C for 3 h. X-ray diffraction spectrum of TiO2 nanofibers showed major anatase peaks at 25.3°, 48.0° and 37.8° correlating crystal orientation of (101), (200), and (004), respectively while only one rutile peak at 27.5°(110). TiO2 nanofibers diameter was measured using atomic force microscopy (AFM). TiO2 nanofibers have diameter in range of 100-1000 nm. The obtained-TiO2 nanofibers were applied in dye-sensitized solar cell (DSSC) with beta-carotene as dye, carbon as catalyst, and I-/I3- redox couple as electrolyte. DSSC performance was analyzed from I-V characterization. Growth of TiO2 nanofibers at electrospinning time for 45 min has highest efficiency that is 0.016%. It is considered that TiO2 nanofibers at electrospinning time for 45 min can produce optimum thickness so that it is speculated many dyes adsorb on the nanofiber surfaces and many electrons diffuse toward the electrodes.

  20. 植酸钠在双蛋白纤维活性染料染色中的应用%Application of sodium phytate in dyeing of double protein fibers with reactive dyes

    Institute of Scientific and Technical Information of China (English)

    曹机良; 孟春丽; 赵思梦

    2014-01-01

    采用植酸钠作为双蛋白纤维(大豆蛋白/酪素蛋白/聚乙烯醇)活性染料染色促染和固色助剂,探讨了植酸钠用量、氯化钠用量、植酸钠加入方式、染色时间、染色温度对染色效果的影响,比较了植酸钠染色工艺和常规染色工艺对染色效果的影响,测试了染色纤维的牢度。研究结果表明,植酸钠可在染色初始阶段一次投入,但用量较多,为100 g/L左右;也可采用10 g/L氯化钠和10 g/L植酸钠的混合物作为活性染料染色的促染和固色碱剂,植酸钠加入方式为在始染时加入1/3,升温至60℃,加入剩余的2/3,60℃保温60 min,染色织物的染色效果及染色牢度与常规染色工艺接近。%Sodium phytate was used as an accelerant and fixing agent for reactive dyeing of double pro-tein fibers. The influences of sodium phytate concentration, dosage of sodium chloride, input mode, dyeing temperature and time on dyeing performance were investigated. The influence of sodium phytate dyeing meth-od on dyeing performance was compared with conventional reactive dyeing method. The color fastness of dyed fibers was also tested. The results showed that sodium phytate could be added once at the initial stage of dyeing, however, the dosage of sodium phytate was more and reached up to 100 g/L. The method of addi-tion of sodium chloride 10 g/L and sodium phytate 10 g/L to the dyeing system also be used, the optimal addi-tion method for sodium phytate was input 1/3 at the beginning and then the dye bath was heated up to 60 ℃, and the other 2/3 of sodium phytate was input and the dye bath was held at 60 ℃ for 60 min. The dyed fab-rics were found to have the same K/S value and color fastness with the conventional reactive dyeing method.