WorldWideScience

Sample records for dye reactive red

  1. Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution

    International Nuclear Information System (INIS)

    Paul, Jhimli; Rawat, K.P.; Sarma, K.S.S.; Sabharwal, S.

    2011-01-01

    The decoloration and degradation of aqueous solution of the reactive azo dye viz. Reactive Red-120 (RR-120) was carried out by electron beam irradiation. The change in decoloration percentage, removal of chemical oxygen demand (COD) and total organic carbon (TOC), solution pH and five-day biochemical oxygen demand (BOD 5 ) were investigated with respect to the applied dose. However, the concentration of the dye in the solution showed a great influence on all these observables. During the radiolysis process, it was found that the decoloration of dye was caused by the destruction of the chromophore group of the dye molecule, whereas COD and TOC removal were depended on the extent of mineralization of the dye. The decrease in pH during the radiolysis process indicated the fragmentation of the large dye molecule into smaller organic components mostly like smaller organic acids. The BOD 5 /COD ratio of the unirradiated dye solution was in the range of 0.1-0.2, which could be classified as non-biodegradable wastewater. However, the BOD 5 /COD ratio increased upon irradiation and it indicated the transformation of non-biodegradable dye solution into biodegradable solution. This study showed that electron beam irradiation could be a promising method for treatment of textile wastewater containing RR-120 dye.

  2. Application of Electrocoagulation Process for Reactive Red 198 Dye Removal from the Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2014-04-01

    Full Text Available Abstract Background and purpose:The main objectives of this research were to evaluating the application of electrocoagulation process for 198 dye from the aqueous phase and determining the optimum operating conditions to the dye removal using aluminum and iron electrodes. Materials and Methods:The present study was conducted in bench-scale. The spectrophotometer DR 5000 was used to determine the dye concentration. The effects of pH, retention time, voltage, dye concentration on the efficiency of electrocoagulation process were investigated. Data were analyzed in SPSS for Windows 16.0 using Pearson’scorrelation coefficient to analyze the relationship between these parameters. Results:The results showed that the optimal conditions for reactive red 198 (RR-198 dye removal from the aqueous solution are pH of 11, the voltage of 32 V, the initial dye concentration of 10 ppm, and the reaction time of 40 min. Pearson correlation analysis showed that there is a significant relationship between voltage and the reaction time with the removal efficiencies (P< 0.01. Conclusion:It was revealed that the removal efficiency of dye was directly proportional to the voltage and reaction time, but inversely proportional to the initial dye concentration. In conclusion, electrocoagulation process using two-fold iron and aluminum electrodes is an appropriate method for reducing the RR-198 dye in the aqueous phase.

  3. Toxicity Reduction of Reactive Red Dye-238 Using Advanced Oxidation Process by Solar Energy

    Directory of Open Access Journals (Sweden)

    Riyad Al-Anbari

    2017-09-01

    Full Text Available Decolorization of red azo dye (Cibacron Red FN-R from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 and 80 % respectively. It can be concluded, from these experiments, that the using of ZnO as a photocatalysis was exhibited as economical and efficient treatment method to remove reactive red dye-238 from aqueous solution.

  4. Regeneration of carbon nanotubes exhausted with dye reactive red 3BS using microwave irradiation

    International Nuclear Information System (INIS)

    Wang Jun; Peng Xianjia; Luan Zhaokun; Zhao Changwei

    2010-01-01

    Carbon nanotubes (CNTs) exhausted with dye reactive red 3BS were regenerated by microwave irradiation under N 2 atmosphere. High regeneration efficiency was achieved and the regeneration efficiency reached 92.8% after four cycles regeneration. The decrease in adsorption capacity was suggested to be due to the deposition of decomposition residues in CNT pores, which blocked the carbon porosity and decreased the specific surface area.

  5. Biodecolorization of the azo dye Reactive Red 2 by a halotolerant enrichment culture.

    Science.gov (United States)

    Beydilli, M Inan; Pavlostathis, Spyros G

    2007-11-01

    The decolorization of the azo dye Reactive Red 2 (RR2) under anoxic conditions was investigated using a mesophilic (35 degrees C) halotolerant enrichment culture capable of growth at 100 g/L sodium chloride (NaCl). Batch decolorization assays were conducted with the unacclimated halotolerant culture, and dye decolorization kinetics were determined as a function of the initial dye, biomass, carbon source, and an externally added oxidation-reduction mediator (anthraquinone-2,6-disulphonic acid) concentrations. The maximum biomass-normalized RR2 decolorization rate by the halotolerant enrichment culture under batch, anoxic incubation conditions was 26.8 mg dye/mg VSSxd. Although RR2 decolorization was inhibited at RR2 concentrations equal to and higher than 300 mg/L, the halotolerant culture achieved a 156-fold higher RR2 decolorization rate compared with a previously reported, biomass-normalized RR2 decolorization rate by a mixed mesophilic (35 degrees C) methanogenic culture in the absence of NaCl. Decolorization kinetics at inhibitory RR2 levels were described based on the Haldane model (Haldane, 1965). Five repetitive dyeing/decolorization cycles performed using the halotolerant culture and the same RR2 dyebath solution demonstrated the feasibility of biological renovation and reuse of commercial-strength spent reactive azo dyebaths.

  6. Adsorption of Reactive Red Dye from Wastewater Using Modified Citrulluscolosynthis Ash

    Directory of Open Access Journals (Sweden)

    Mohammadreza Rezaei Kahkha

    2016-07-01

    Full Text Available Dye-bearing wastes pose serious risks to and leave harmful effects on the environment. Increasing wastewater color intensity leads to reduced light reaching the aquatic environment, which adversely affects the life and growth of aquatic plants and invertebrates. Among the many methods available for dye removal from wastewater, membrane separation, oxidation, coagulation, and anaerobic treatment are more common but they are all costly and involve complex processes. Biosorption, in contrast, enjoys both ease of application and simple design so that it is widely used for removing dyes, heavy metals, and phenolic compounds from both water and wastewater. In this paper, the ability of citrulluscolosynthis ash as a bioadsorbent for the removal of reactive red dye is investigated for the first time. Sodium hydroxide is also used to modify the plant ash surface which expectedly enhances its dye removal efficiency. Measurements and removal levels are determined using a UV-vis spectrophotometer. Finally, the effects of pH, adsorbent dosage, dye concentration, and reaction time on dye removal efficiency are also explored. Results show that the optimum conditions to achieve maximum dye removal are as follows: A pH level of 2, an adsorbant dosage of 1.75 g l-1, an initial concentration equal to 90 mg L-1, and A reaction time of 70 min. Adsorption isotherm is found to obey the Ferundlich isotherm. Also, an adsorption capacity of 36 mg g‒1 is achieved under the best conditions. It may thus be concluded that modified citrulluscolosynthis ash can be used as an effective adsorbent to treat colored wastewaters.

  7. Evaluation of the potential of red mud heat treated at 400 deg C in adsorption of reactive yellow 145 dye

    International Nuclear Information System (INIS)

    Rangueri, T.B.; Souza, K.C. de; Lima, V.F. de; Antunes, M.L.P.

    2012-01-01

    Red mud is the generic name for the industrial waste generated during the Bayer process. Storing this material can cause environmental damage and requires a large area for their disposal. Red mud has properties to be used in treatment of effluents. The red mud was dried and activated at 400°C. This work presents the characterization by pH, conductivity and zero charge potential of the red mud thermally activated. The assessment of adsorption capacity of this material to dye reactive Yellow 145 in pH 4 was done. The percentage of adsorption to concentrations of 500 mg/L of dye reaches 97%. This work presents results of adsorption isotherms, using the Langmuir model, and reaction kinetics. It is concluded that, in an acid medium, the red mud presents excellent potential of adsorption and could be an alternative material to absorb the Yellow 145 dye. (author)

  8. 3D-QSPR method of computational technique applied on red reactive dyes by using CoMFA strategy.

    Science.gov (United States)

    Mahmood, Uzma; Rashid, Sitara; Ali, S Ishrat; Parveen, Rasheeda; Zaheer-Ul-Haq; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang

    2011-01-01

    Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are "reactive dyes" because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR) technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA) method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps) help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the characteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber.

  9. 3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy

    Directory of Open Access Journals (Sweden)

    Shahnaz Perveen

    2011-12-01

    Full Text Available Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are “reactive dyes” because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the charachteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber.

  10. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation.

    Science.gov (United States)

    Li, Mei; Li, Ji-Tai; Sun, Han-Wen

    2008-07-01

    At its natural pH (6.95), the decolorization of Reactive red 24 in ultrasound, ultrasound/H2O2, exfoliated graphite, ultrasound/exfoliated graphite, exfoliated graphite/H2O2 and ultrasound/exfoliated graphite/H2O2 systems were compared. An enhancement was observed for the decolorization in ultrasound/exfoliated graphite/H2O2 system. The effect of solution pH, H2O2 and exfoliated graphite dosages, and temperature on the decolorization of Reactive red 24 was investigated. The sonochemical treatment in combination with exfoliated graphite/H2O2 showed a synergistic effect for the decolorization of Reactive red 24. The results indicated that under proper conditions, there was a possibility to remove Reactive red 24 very efficient from aqueous solution. The decolorization of other azo dyes (Reactive red 2, Methyl orange, Acid red 1, Acid red 73, Acid red 249, Acid orange 7, Acid blue 113, Acid brown 75, Acid green 20, Acid yellow 42, Acid mordant brown 33, Acid mordant yellow 10 and Direct green 1) was also investigated, at their natural pH.

  11. [Decolorization of the azo dye reactive red X-3B by an Al-Cu bimetallic system].

    Science.gov (United States)

    Fan, Jin-hong; Ma, Lu-ming; Wang, Hong-wu; Wu, De-li

    2008-06-01

    The decoloration mechanism and kinetics of the azo dye reactive red X-3B by an Al-Cu bimetallic system were investigated by measuring the dye removal, the TOC removal and the aniline concentration, and by adding EDTA as control experiments. The results showed the colority removal rate of X-3B reached 83% in the near neutral pH medium for 30 min and 96.4% for 120 min, in which, about 34% was due to the X-3B reduced to aniline, and about 20% and 30% was due to the flocculating of aluminum ions and surface adsorption of aluminum-fillings respectively. The decolorization of dyeing wastewater is a gradual reaction process, which first adsorbs a large number of dyeing ingredients and then carries out inner electrolysis reduction, improved effectively by the flocculating action of aluminum ions. The decolorization reaction appears to be a pseudo first-order reaction and increases with rising temperature.

  12. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.

    Science.gov (United States)

    Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U

    2016-03-01

    Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1

    International Nuclear Information System (INIS)

    Kalyani, D.C.; Telke, A.A.; Dhanve, R.S.; Jadhav, J.P.

    2009-01-01

    The aim of this work is to evaluate textile dyes degradation by novel bacterial strain isolated from the waste disposal sites of local textile industries. Detailed taxonomic studies identified the organisms as Pseudomonas species and designated as strain Pseudomonas sp. SUK1. The isolate was able to decolorize sulfonated azo dye (Reactive Red 2) in a wide range (up to 5 g l -1 ), at temperature 30 deg. C, and pH range 6.2-7.5 in static condition. This isolate also showed decolorization of the media containing a mixture of dyes. Measurements of COD were done at regular intervals to have an idea of mineralization, showing 52% reduction in the COD within 24 h. Induction in the activity of lignin peroxidase and azoreductase was observed during decolorization of Reactive Red 2 in the batch culture, which represented their role in degradation. The biodegradation was monitored by UV-vis, IR spectroscopy, HPLC. The final product, 2-naphthol was characterized by GC-mass spectroscopy. The phytotoxicity study revealed the degradation of Reactive Red 2 into non-toxic product by Pseudomonas sp. SUK1

  14. Removal of Reactive Red 141 Dye from Synthetic Wastewater by Electrocoagulation Process: Investigation of Operational Parameters

    Directory of Open Access Journals (Sweden)

    Elham Rahmanpour Salmani

    2016-01-01

    Full Text Available Release of textile industries waste especially their dying effluent impose a serious pollution on the environment. Reactive dyes are one of the most used dyes which are recalcitrant to conventional treatment processes. In the performed project, the effectiveness of electrocoagulation process was studied on decolorization. RR141 was selected as model dye and treatment process was performed in a simple batch of electrocoagulation (EC cell using iron electrodes. Central Composite Design (CCD was used to plan study runs. Experiments were done under 5 levels of various operational parameters at bench scale. Initial concentration of dye was varied among 50 and 500ppm, pH ranging from 4-12; retention time was ranged between 3-30 minutes, 1-3cm was selected as the distance between electrodes, and current intensity studied under the range of 5-30 mA/cm2. EC treatment process of dyestuff wastewater was satisfactory at high levels of current density, pH, and retention time. While increasing the initial dye concentration and electrodes gap had a negative effect on decolorization performance. Determined optimal conditions to treat 200ml of sample were including pH: 9.68, electrode gap: 1.58cm, dye concentration: 180ppm, retention time: 10.82 minutes, and current intensity: 22.76mA/cm2. Successful removal of the model dye about 99.88% was recorded in the mentioned values of variables. Simple design and operation of the experiments can be an interesting option for implementation and applying of inexpensive electrocoagulation treatment process which was successful to reach nearly a complete decolorization.

  15. 3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy

    OpenAIRE

    Mahmood, Uzma; Rashid, Sitara; Ali, S. Ishrat; Parveen, Rasheeda; ul-Haq, Zaheer; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang

    2011-01-01

    Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are ?reactive dyes? because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called ...

  16. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    Science.gov (United States)

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Adsorption of C.I. Reactive Red 228 and Congo Red dye from aqueous solution by amino-functionalized Fe3O4 particles: kinetics, equilibrium, and thermodynamics.

    Science.gov (United States)

    Yan, Ting-guo; Wang, Li-Juan

    2014-01-01

    A magnetic adsorbent was synthesized by γ-aminopropyltriethoxysilane (APTES) modification of Fe(3)O(4) particles using a two-step process. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometry were used to characterize the obtained magnetic adsorbent. EDS and XPS showed that APTES polymer was successfully introduced onto the as-prepared Fe(3)O(4)/APTES particle surfaces. The saturation magnetization of the magnetic adsorbent was around 65 emu g(-1), which indicated that the dye can be removed fast and efficiently from aqueous solution with an external magnetic field. The maximum adsorption capacities of Fe(3)O(4)/APTES for C.I. Reactive Red 228 (RR 228) and Congo Red (CR) were 51.4 and 118.8 mg g(-1), respectively. The adsorption of C.I. Reactive Red 228 (RR 228) and Congo Red (CR) on Fe(3)O(4)/APTES particles corresponded well to the Langmuir model and the Freundlich model, respectively. The adsorption processes for RR 228 and CR followed the pseudo-second-order model. The Boyd's film-diffusion model showed that film diffusion also played a major role in the studied adsorption processes for both dyes. Thermodynamic study indicated that both of the adsorption processes of the two dyes are spontaneous exothermic.

  18. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L

    International Nuclear Information System (INIS)

    Aksakal, Ozkan; Ucun, Handan

    2010-01-01

    This study investigated the biosorption of Reactive Red 195 (RR 195), an azo dye, from aqueous solution by using cone biomass of Pinus sylvestris Linneo. To this end, pH, initial dye concentration, biomass dosage and contact time were studied in a batch biosorption system. Maximum pH for efficient RR 195 biosorption was found to be 1.0 and the initial RR 195 concentration increased with decreasing percentage removal. Biosorption capacity increased from 6.69 mg/g at 20 deg. C to 7.38 mg/g at 50 deg. C for 200 mg/L dye concentration. Kinetics of the interactions was tested by pseudo-first-order and pseudo-second-order kinetics, the Elovich equation and intraparticle diffusion mechanism. Pseudo-second-order kinetic model provided a better correlation for the experimental data studied in comparison to the pseudo-first-order kinetic model and intraparticle diffusion mechanism. Moreover, the Elovich equation also showed a good fit to the experimental data. Freundlich and Langmuir adsorption isotherms were used for the mathematical description of the biosorption equilibrium data. The activation energy of biosorption (Ea) was found to be 8.904 kJ/mol by using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the study also evaluated the thermodynamic constants of biosorption (ΔG o , ΔH o and ΔS). The results indicate that cone biomass can be used as an effective and low-cost biosorbent to remove reactive dyes from aqueous solution.

  19. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    Science.gov (United States)

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  20. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent.

    Science.gov (United States)

    Munagapati, Venkata Subbaiah; Yarramuthi, Vijaya; Kim, Yeji; Lee, Kwon Min; Kim, Dong-Su

    2018-02-01

    The adsorption characteristics of Reactive Black 5 (RB5) and Cong Red (CR) onto Banana Peel Powder (BPP) from aqueous solution were investigated as a function of pH, contact time, initial dye concentration and temperature. The BPP was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) analysis. FTIR results revealed that hydroxyl (-OH), amine (-NH) and carboxyl (-C˭O) functional groups present on the surface of BPP. The SEM results show that BPP has an irregular and porous surface morphology which is adequate for dye adsorption. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models. Experimental results were best represented by the Langmuir isotherm model. The adjustments of models were confirmed by the Chi-square (χ 2 ) test and the correlation coefficients (R 2 ). The maximum monolayer adsorption capacities of RB5 and CR on BPP calculated from Langmuir isotherm model were 49.2 and 164.6mg/g at pH 3.0 and 298K. Experimental data were also tested in terms of adsorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption processes of both RB5 and CR followed well pseudo-second-order kinetic models. The calculated thermodynamic parameters ΔG°, ΔH° and ΔS° showed that the adsorption of RB5 and CR onto BPP was feasible, spontaneous and endothermic in the temperature range 298-318K. The RB5 and CR were desorbed from BPP using 0.1M NaOH. The recovery for both anionic dyes was found to be higher than 90%. Based on these it can be concluded that BPP can be used as an effective, low cost, and eco-friendly adsorbent for CR removal than RB5 from aqueous solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  2. Photocatalytic Study of New Immobilized TiO2 Technique Towards Degradation of Reactive Red 4 Dye

    Directory of Open Access Journals (Sweden)

    Ain S. K.

    2016-01-01

    Full Text Available The study on TiO2 for wastewater remediation has gained interest among researchers. However, the application of this photocatalyst is limited due to non-recyclability of conventional TiO2. Thus, immobilization technique has been developed to solve this issue. Hence, a comparison study between two types of immobilized photocatalysts namely titanium dioxide (TiO2 and TiO2 mixed with polyvinyl alcohol (PVA has been conducted in this work to observe the significant effect of PVA polymer in photocatalysis reaction of reactive red 4 (RR4 dye. Double sided adhesive tape (DSAT was used as thin layer binder in this immobilization system. The result shows that the photocatalytic performance of TiO2-PVA/DSAT was higher than that of TiO2/DSAT under both normal UV and visible light irradiations due to the conjugated unsaturated polymer from PVA serve as electron donor for TiO2 thus increase the photocatalysis process. Besides, TiO2-PVA/DSAT was also found to possess much better adhesion strength to the support material compared to TiO2/DSAT. Based on the findings, this TiO2 immobilization system is expected to be beneficial in the industrial wastewater treatment. Thus, further study to improve the photocatalytic activity of this immobilized TiO2 will be in our future work.

  3. Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots.

    Science.gov (United States)

    Srikantan, Chitra; Suraishkumar, G K; Srivastava, Smita

    2018-06-01

    The study demonstrates for the first time that light influences the adsorption equilibrium and kinetics of a dye by root culture system. The azo dye (Reactive Red 120) adsorption by the hairy roots of H. annuus followed a pseudo first-order kinetic model and the adsorption equilibrium parameters were best estimated using Langmuir isotherm. The maximum dye adsorption capacity of the roots increased 6-fold, from 0.26 mg g -1 under complete dark conditions to 1.51 mg g -1 under 16/8 h light/dark photoperiod. Similarly, adsorption rate of the dye and removal (%) also increased in the presence of light, irrespective of the initial concentration of the dye (20-110 mg L -1 ). The degradation of the azo dye upon adsorption by the hairy roots of H. annuus was also confirmed. In addition, a strategy for simultaneous dye removal and increased alpha-tocopherol (industrially relevant) production by H. annuus hairy root cultures has been proposed and demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay

    International Nuclear Information System (INIS)

    Huang Jianhua; Liu Yuanfa; Jin Qingzhe; Wang Xingguo; Yang Jun

    2007-01-01

    The removal of water-soluble Reactive Red MF-3B from aqueous media by sonication-surfactant-modified attapulgite clay was studied in a batch system. The surfactant used was octodecyl trimethyl ammonium chloride (OTMAC). Adsorbent characterizations were investigated using X-ray diffraction, infrared spectroscopy, and surface area analysis. The effects of pH, contact time, initial solute concentration, adsorbent dose, and temperature on the adsorption of Reactive Red MF-3B onto modified clay were investigated. On the basis of kinetic studies, specific rate constants involved in the processes were calculated and second-order adsorption kinetics was observed in the case. Film diffusion was found to be the rate-limiting step. Reactive Red MF-3B adsorption was found to increase with increase temperature. The Reactive Red MF-3B equilibrium adsorption data were fitted to Freundlich and Langmuir isotherm models, the former being found to provide the better fit of the experimental data. Thermodynamic parameters were calculated. From the results it can be concluded that the surfactant-modified clay could be a good adsorbent for treating Reactive Red MF-3B-contaminated waters

  5. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    International Nuclear Information System (INIS)

    Cardoso, Natali F.; Lima, Eder C.; Royer, Betina; Bach, Marta V.; Dotto, Guilherme L.; Pinto, Luiz A.A.; Calvete, Tatiana

    2012-01-01

    Highlights: ► Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. ► The maximum adsorption capacities were found at pH 2 and 298 K. ► The values were 482.2 and 267.2 mg g −1 for SP and AC, respectively. ► Adsorption was exothermic, spontaneous and favorable. ► SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g −1 for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4–99.0% and 93.6–97.7%, respectively, of the dye mixtures containing high saline concentrations.

  6. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Natali F. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: profederlima@gmail.com [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Royer, Betina; Bach, Marta V. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Dotto, Guilherme L.; Pinto, Luiz A.A. [Unit Operation Laboratory, School of Chemistry and Food, Federal University of Rio Grande, FURG, R. Engenheiro Alfredo Huch 475, 96201-900, Rio Grande, RS (Brazil); Calvete, Tatiana [Universitary Center La Salle (UNILASALLE), Av. Victor Barreto 2288, 92010-000, Canoas, RS (Brazil)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. Black-Right-Pointing-Pointer The maximum adsorption capacities were found at pH 2 and 298 K. Black-Right-Pointing-Pointer The values were 482.2 and 267.2 mg g{sup -1} for SP and AC, respectively. Black-Right-Pointing-Pointer Adsorption was exothermic, spontaneous and favorable. Black-Right-Pointing-Pointer SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g{sup -1} for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4-99.0% and 93.6-97.7%, respectively, of the dye mixtures containing high saline concentrations.

  7. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses

    Energy Technology Data Exchange (ETDEWEB)

    Huseynli, Sabina; Baydemir, Gözde; Sarı, Esma [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Elkak, Assem [Laboraory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS)”, Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath (Lebanon); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2015-01-01

    Naturally produced by the human immune system, immunoglobulin nowadays is widely used for in vivo and in vitro purposes. The increased needs for pure immunoglobulin have prompted researchers to find new immunoglobulin chromatographic separation processes. Cryogels as chromatographic adsorbents, congregate several mechanical features including good compatibility, large pore structure, flexibility, short diffusion pathway and stability. These different characteristics make them a good alternative to conventional chromatographic methods and allowing their potential use in separation technology. In the present study, two sets of poly(2-hydroxyethyl methacrylate) (PHEMA) based beads were prepared and functionalized with Reactive Red 120 (RR) and Reactive Green HE 4BD (RG) dyes, and then embedded into supermacroporous cryogels. The morphology, physical and chemical features of the prepared bead embedded composite cryogel discs (CCDs) were performed by scanning electron microscopy (SEM), swelling test, elemental analysis and Fourier transform infrared spectroscopy (FTIR). The results showed that the embedded composite cryogel discs have a specific surface area of 192.0 m{sup 2}/g with maximum adsorption capacity of HIgG 239.8 mg/g for the RR functionalized CCD and 170 mg/g for RG functionalized CCD columns, both at pH 6.2. - Highlights: • Dye attached composite cryogel discs were prepared to separate HIgG subclasses. • Composite cryogels characterized by swelling, FTIR, SEM and elemental analysis. • Reactive Green HE 4B and Reactive Red 120 dyes were used as the affinity ligand. • HIgG and subclasses were separate from both aqueous solution and human plasma.

  8. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses

    International Nuclear Information System (INIS)

    Huseynli, Sabina; Baydemir, Gözde; Sarı, Esma; Elkak, Assem; Denizli, Adil

    2015-01-01

    Naturally produced by the human immune system, immunoglobulin nowadays is widely used for in vivo and in vitro purposes. The increased needs for pure immunoglobulin have prompted researchers to find new immunoglobulin chromatographic separation processes. Cryogels as chromatographic adsorbents, congregate several mechanical features including good compatibility, large pore structure, flexibility, short diffusion pathway and stability. These different characteristics make them a good alternative to conventional chromatographic methods and allowing their potential use in separation technology. In the present study, two sets of poly(2-hydroxyethyl methacrylate) (PHEMA) based beads were prepared and functionalized with Reactive Red 120 (RR) and Reactive Green HE 4BD (RG) dyes, and then embedded into supermacroporous cryogels. The morphology, physical and chemical features of the prepared bead embedded composite cryogel discs (CCDs) were performed by scanning electron microscopy (SEM), swelling test, elemental analysis and Fourier transform infrared spectroscopy (FTIR). The results showed that the embedded composite cryogel discs have a specific surface area of 192.0 m 2 /g with maximum adsorption capacity of HIgG 239.8 mg/g for the RR functionalized CCD and 170 mg/g for RG functionalized CCD columns, both at pH 6.2. - Highlights: • Dye attached composite cryogel discs were prepared to separate HIgG subclasses. • Composite cryogels characterized by swelling, FTIR, SEM and elemental analysis. • Reactive Green HE 4B and Reactive Red 120 dyes were used as the affinity ligand. • HIgG and subclasses were separate from both aqueous solution and human plasma

  9. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    Bacillus cereus isolated from dye industrial waste, that is, effluent and soil samples was screened for its ability to decolourize two reactive azo dye – cibacron black PSG and cibacron red P4B under aerobic conditions at pH 7 and incubated at 35°C over a five day period. Different carbon and nitrogen sources were used for ...

  10. Adsorption of procion red and congo red dyes using microalgae Spirulina sp

    Directory of Open Access Journals (Sweden)

    Risfidian Mohadi

    2017-10-01

    Full Text Available Adsorption of procion red and congo red dyes using microalgae Spirulina sp was conducted. Spirulina sp was obtained by cultivation and production in laboratory scale. Spirulina sp was used as adsorbent for adsorption of dyes. Adsorption process was studied by kinetic and thermodynamic in order to know the adsorption phenomena. The results showed that kinetically congo red is reactive than procion red on Spirulina sp. On the other hand, thermodynamically procion red was stable than congo red on Spirulina sp which was indicated by adsorption capacity, enthalpy, and entropy.

  11. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31.

    Science.gov (United States)

    Khan, Razia; Fulekar, M H

    2016-08-01

    The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Adsorption of reactive Remazol Red RB dye of aqueous solution using zeolite of the coal ash and evaluation of acute toxicity with Daphnia similis

    International Nuclear Information System (INIS)

    Magdalena, Carina Pitwak

    2010-01-01

    In this study, the capacity of zeolite synthesized from coal ash in the removal of Remazol Red dye aqueous solution was investigated by batch mode operation. The equilibrium was attained after 360 min of contact time. The adsorption rate followed the kinetic model of pseudo-second-order. The equilibrium data obtained fitted to Langmuir adsorption isotherm showing the adsorption capacity of up to 1.20mg g-1. The efficiency of adsorption was between 75 to 91% in the equilibrium time. In order to obtain the best conditions for removal of this dye, the influence of the following parameters was: initial concentration of the dye, pH of the aqueous solution, dose of adsorbent and temperature. The thermodynamic parameters were evaluated showing that the adsorption of Remazol red on the zeolite is of a spontaneous nature. Experiments by adding NaCl and Na 2 SO 4 were carried out to simulate the real conditions of the effluents from the dyeing bath and to evaluate the influence of these chemical compounds in the phenomenon of adsorption. The equilibrium data of adsorption of Remazol red on the zeolite was achieved in a shorter time in the presence of increasing concentrations of salts in solution and an increase in adsorption capacity. The efficiency of the study was evaluated as a treatment for acute toxicity using Daphnia similis microcrustacean. (author)

  13. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    International Nuclear Information System (INIS)

    Balla, Wafaa; Essadki, A.H.; Gourich, B.; Dassaa, A.; Chenik, H.; Azzi, M.

    2010-01-01

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm -2 and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E dye ) in optimal conditions for real effluent was calculated. 170 kWh/kg dye was required for a reactive dye, 120 kWh/kg dye for disperse and 50 kWh/kg dye for the mixture.

  14. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Balla, Wafaa [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Essadki, A.H., E-mail: essadki@est-uh2c.ac.ma [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Dassaa, A. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Chenik, H. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Azzi, M. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco)

    2010-12-15

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm{sup -2} and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E{sub dye}) in optimal conditions for real effluent was calculated. 170 kWh/kg{sub dye} was required for a reactive dye, 120 kWh/kg{sub dye} for disperse and 50 kWh/kg{sub dye} for the mixture.

  15. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor

    International Nuclear Information System (INIS)

    Garcia-Montano, Julia; Torrades, Francesc; Garcia-Hortal, Jose A.; Domenech, Xavier; Peral, Jose

    2006-01-01

    A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250 mg l -1 ) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD 5 /COD), as well as the toxicity (EC 50 ), DOC, colour (Abs 543.5 ) and H 2 O 2 evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60 min of 10 mg l -1 Fe(II) and 125 mg l -1 H 2 O 2 photo-Fenton pre-treatment and 1 day HRT in SBR

  16. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Montano, Julia [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Torrades, Francesc [Departament d' Enginyeria Quimica, ETSEI de Terrassa (UPC), C/Colom, 11, E-08222 Terrassa, Barcelona (Spain); Garcia-Hortal, Jose A. [Departament d' Enginyeria Textil i Paperera, ETSEI de Terrassa (UPC), C/Colom, 11, E-08222 Terrassa, Barcelona (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-06-30

    A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250 mg l{sup -1}) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD{sub 5}/COD), as well as the toxicity (EC{sub 50}), DOC, colour (Abs{sub 543.5}) and H{sub 2}O{sub 2} evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60 min of 10 mg l{sup -1} Fe(II) and 125 mg l{sup -1} H{sub 2}O{sub 2} photo-Fenton pre-treatment and 1 day HRT in SBR.

  17. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  18. Irradiation treatment of textile dyes: Apollofix-red

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2004-01-01

    The UV-VIS absorption spectra of azo dyes in aqueous solutions strongly overlap with the spectra of intermediates produced in reaction with the intermediates of water radiolysis. This overlap complicates the investigation of reaction mechanisms. The paper describes a method for the separation of the two spectra on the example of Apollofix-Red, a triazine and H-acid containing dye. The reactivity of water radiolysis intermediates (e aq - , OH, H, O 2 /HO 2 ) with the dye is also discussed. The most intensive decolouration was found in the reaction of e aq - and H which is due to the fast reaction of these intermediates with the -N=N-azo group of the unreacted molecule and their slow reaction with the transformed molecules. (author)

  19. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Science.gov (United States)

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Low cost removal of reactive dyes using wheat bran

    International Nuclear Information System (INIS)

    Cicek, Fatma; Ozer, Dursun; Ozer, Ahmet; Ozer, Ayla

    2007-01-01

    In this study, the adsorption of Reactive Blue 19 (RB 19), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145) onto wheat bran, generated as a by-product material from flour factory, was studied with respect to initial pH, temperature, initial dye concentration, adsorbent concentration and adsorbent size. The adsorption of RB 19, RR 195 and RY 145 onto wheat bran increased with increasing temperature and initial dye concentration while the adsorbed RB 19, RR 195 and RY 145 amounts decreased with increasing initial pH and adsorbent concentration. The Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data depending on temperature and the isotherm constants were determined by using linear regression analysis. The monolayer covarage capacities of wheat bran for RB 19, RR 195 and RY 145 dyes were obtained as 117.6, 119.1 and 196.1 mg/g at 60 deg. C, respectively. It was observed that the reactive dye adsorption capacity of wheat bran decreased in the order of RY 145 > RB 19 > RR 195. The pseudo-second order kinetic and Weber-Morris models were applied to the experimental data and it was found that both the surface adsorption as well as intraparticle diffusion contributed to the actual adsorption processes of RB 19, RR 195 and RY 145. Regression coefficients (R 2 ) for the pseudo-second order kinetic model were higher than 0.99. Thermodynamic studies showed that the adsorption of RB 19, RR 195 and RY 145 dyes onto wheat bran was endothermic in nature

  1. Removal of reactive dyes from wastewater by shale

    Directory of Open Access Journals (Sweden)

    Jareeya Yimrattanabovorn

    2012-02-01

    Full Text Available Colored textile effluents represent severe environmental problems as they contain mixture of chemicals, auxiliariesand dyestuffs of different classes and chemical constitutions. Elimination of dyes in the textile wastewater by conventionalwastewater treatment methods is very difficult. At present, there is a growing interest in using inexpensive and potentialmaterials for the adsorption of reactive dyes. Shale has been reported to be a potential media to remove color from wastewaterbecause of its chemical characteristics. In this study, shale was used as an adsorbent. The chosen shale had particlesizes of : A (1.00 < A < 2.00 mm, B (0.50 < B < 1.00 mm, C (0.25 < C < 0.50 mm, D (0.18 < D < 0.25 mm and E (0.15 < E < 0.18mm. Remazol Deep Red RGB (Red, Remazol Brilliant Blue RN gran (Blue and Remazol Yellow 3RS 133% gran (Yellow wereused as adsorbates. Batch adsorption experiments were performed to investigate the effect of contact time, pH, temperatureand initial dye concentration. It was found that the equilibrium data were best described by the Langmuir isotherm model,with the maximum monolayer adsorption capacities of 0.0110-0.0322 mg/g for Red, 0.4479-1.1409 mg/g for Blue and 0.0133-0.0255 mg/g for Yellow, respectively. The maximum adsorption capacity of reactive dye by shale occurred at an initial pH of 2,initial concentration of 700 Pt-Co and temperature 45°C. Reactive dye adsorption capacities increased with an increase of theinitial dye concentration and temperature whereas with a decrease of pH. The fixed bed column experiments were appliedwith actual textile wastewater for estimation of life span. The results showed that COD and color removal efficiencies of shalefix bed column were 97% and 90%, respectively. Also the shale fixed bed columns were suitable for using with textile effluentfrom activated sludge system because of their COD and color removal efficiencies and life expectancy comparison using withdyebath wastewater and raw

  2. COMPARATIVE STUDY OF TWO DYEING METHODS USING REACTIVE DYE

    Directory of Open Access Journals (Sweden)

    HINOJOSA Belén

    2016-05-01

    Full Text Available Environment preservation is a common worry not only for people but for companies as well. Industry is more and more concern about the necessity of developing new and more respectful processes. Dye is one of the most important processes in the textile industry but it is also considered as no too safe regarding environment issues. This process uses large amounts of water and generates big volumes of wastewater. Following this issue, new regulations and laws emerge to control the waste generated. This leads to the companies and increased costs in terms of wastewater treatments and high water consumption. In this research we compare two systems on garment finishing application, the conventional bath process and the new Ecofinish system that is able to save water and product. To compare these processes, we carried out a reactive dyeing using both systems in order to determine the quality differences in the final product. For this purpose, the samples have been tested to washing and rubbing fastness, according to UNE EN ISO 105 C10 and UNE- EN ISO 105 X12 standards, respectively. This study confirms that this system achieves water savings and reduces the wastewater produced, getting a good dyeing. This process can be considered as an alternative to the conventional one.

  3. Nano-dyeing

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2016-01-01

    Full Text Available Dyeing nanofibers is a frontier of both modern textile engineering and nanotechnology. This paper suggest a feasible method for dyeing nanofibers with a natural red (Roselle Calyx by bubble electrospinning. Reactive dye (Red S3B and acid dye (Red 2B were also used in the experiment for comparison. The dyeing process was finished during the spinning process.

  4. Synthesis of Novel Reactive Disperse Silicon-Containing Dyes and Their Coloring Properties on Silicone Rubbers

    Directory of Open Access Journals (Sweden)

    Ning Yu

    2018-01-01

    Full Text Available Novel red and purple reactive disperse silicon-containing dyes were designed and synthesized using p-nitroaniline and 6-bromo-2,4-dinitro-aniline as diazonium components, the first condensation product of cyanuric chloride and 3-(N,N-diethylamino-aniline as coupling component, and 3-aminopropylmethoxydimethylsilane, 3-aminopropylmethyldimethoxysilane, and 3-aminopropyltrimethoxysilane as silicone reactive agents. These dyes were characterized by UV-Vis, 1H-NMR, FT-IR, and MS. The obtained reactive disperse silicon-containing dyes were used to color silicone rubbers and the color fastness of the dyes were evaluated. The dry/wet rubbing and washing fastnesses of these dyes all reached 4–5 grade and the sublimation fastness was also above 4 grade, indicating outstanding performance in terms of color fastness. Such colored silicone rubbers showed bright and rich colors without affecting its static mechanical properties.

  5. Kinetics of the decoloration of reactive dyes over visible light-irradiated TiO2 semiconductor photocatalyst

    International Nuclear Information System (INIS)

    Chatterjee, Debabrata; Patnam, Vidya Rupini; Sikdar, Anindita; Joshi, Priyanka; Misra, Rohit; Rao, Nageswara N.

    2008-01-01

    Photocatalytic decoloration kinetics of triazine (Reactive Red 11, Reactive Red 2, and Reactive Orange 84) and vinylsulfone type (Reactive Orange 16 and Reactive Black 5) of reactive dyes have been studied spectrophotometrically by following the decrease in dye concentration with time. At ambient conditions, over 90-95% decoloration of above dyes have been observed upon prolonged illumination (15 h) of the reacting system with a 150 W xenon lamp. It was found that the decoloration reaction followed first-order kinetics. The values of observed rate constants were found to be dependent of the structure of dyes at low dye concentration, but independent at higher concentration. It also reports for the first time the decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst. Rate of decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst is governed by the adsorptivity of the particular dye onto the surface of the TiO 2 photocatalyst

  6. Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Dizge, N.; Aydiner, C.; Demirbas, E.; Kobya, M.; Kara, S.

    2008-01-01

    Adsorption kinetic and equilibrium studies of three reactive dyes namely, Remazol Brillant Blue (RB), Remazol Red 133 (RR) and Rifacion Yellow HED (RY) from aqueous solutions at various initial dye concentration (100-500 mg/l), pH (2-8), particle size (45-112.5 μm) and temperature (293-323 K) on fly ash (FA) were studied in a batch mode operation. The adsorbent was characterized with using several methods such as SEM, XRD and FTIR. Adsorption of RB reactive dye was found to be pH dependent but both RR and RY reactive dyes were not. The result showed that the amount adsorbed of the reactive dyes increased with increasing initial dye concentration and contact time. Batch kinetic data from experimental investigations on the removal of reactive dyes from aqueous solutions using FA have been well described by external mass transfer and intraparticle diffusion models. It was found that external mass transfer and intraparticle diffusion had rate limiting affects on the removal process. This was attributed to the relatively simple macropore structure of FA particles. The adsorption data fitted well with Langmuir and Freundlich isotherm models. The optimum conditions for removal of the reactive dyes were 100 mg/l initial dye concentration, 0.6 g/100 ml adsorbent dose, temperature of 293 K, 45 μm particle size, pH 6 and agitation speed of 250 rpm, respectively. The values of Langmuir and Freundlich constants were found to increase with increasing temperature in the range 135-180 and 15-34 mg/g for RB, 47-86 and 1.9-3.7 mg/g for RR and 37-61 and 3.0-3.6 mg/g for RY reactive dyes, respectively. Different thermodynamic parameters viz., changes in standard free energy, enthalpy and entropy were evaluated and it was found that the reaction was spontaneous and endothermic in nature

  7. Removal of Reactive-dyes from Textile Plant Effluents Using Polyvinyl Alcohol-coated Active Carbon obtained from Sesame Seeds

    Directory of Open Access Journals (Sweden)

    Sheida Moradi- Nasab

    2016-09-01

    Full Text Available In this study, the adsorption of active carbon derived from waste sesame seeds coated with polyvinyl alcohol (AC/PVA was investigated for removing red 198 and blue 19 reactive dyes from textile effluents. The batch process was carried out to identify such parameters as pH, adsorbent dose, contact time, and initial dye concentration involved in the dye removal adsorption capacity of AC/PVA. Also, batch kinetic and isotherm experiments were conducted. Results indicated that the maximum dye removal was obtained in an acidic pH over 90 min of contact time and that adsorption rates followed the pseudo-second-order kinetics. Blue and red dye concentrations were determined using the spectrophotometric method at 590 and 517 nm, respectively. It may be concluded that AC/PVA is capable of removing blue and red reactive dyes and can be used as an efficient, cheap, and accessible adsorbent for treating textile effluents.

  8. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  9. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Improvement of COD and TOC reactive dyes in textile wastewater by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... This study was designed to investigate the removal of reactive dyes, Samofix Red V-RBL and Samofix. Green V-G from wastewater using a two step Al (III) coagulation/activated carbon adsorption method. ... (90%) of chemical oxygen demand (COD), total organic carbon (TOC) ..... a liquid to a solid surface.

  11. Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes

    International Nuclear Information System (INIS)

    Xue, Ailian; Zhou, Shouyong; Zhao, Yijiang; Lu, Xiaoping; Han, Pingfang

    2011-01-01

    Highlights: → We prepared a new amine functionalized adsorbent derived from clay-based material. → Attapulgite surface was modified with 3-aminopropyltriethoxysilane. → Some modification parameters affecting the adsorption potential were investigated. → Enhance the attapulgite adsorptive capacity for reactive dyes from aqueous solutions. - Abstract: The amine moiety has an important function in many applications, including, adsorption, catalysis, electrochemistry, chromatography, and nanocomposite materials. We developed an effective adsorbent for aqueous reactive dye removal by modifying attapulgite with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES). Surface properties of the APTES-modified attapulgite were characterized by the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. We evaluated the impact of solvent, APTES concentration, water volume, reaction time, and temperature on the surface modification. NH 2 -attapulgite was used to remove reactive dyes in aqueous solution and showed very high adsorption rates of 99.32%, 99.67%, and 96.42% for Reactive Red 3BS, Reactive Blue KE-R and Reactive Black GR, respectively. These powerful dye removal effects were attributed to strong electrostatic interactions between reactive dyes and the grafted NH 2 groups.

  12. Radiation-induced decomposition and decoloration of reactive dyes in the presence of H2O2

    International Nuclear Information System (INIS)

    Wang Min; Yang Ruiyuan; Wang Wenfeng; Shen Zhongqun; Bian Shaowei; Zhu Zhiyuan

    2006-01-01

    The dyeing wastewaters represent a large input of hazardous compounds to the environment and these compounds are usually non-biodegradable. In this study, electron beam irradiation-induced decoloration and decomposition of reactive dyes in aqueous solution were investigated. Two different reactive dyes (reactive red KE-3B and reactive blue XBR) solutions were irradiated with electron beam at different doses in the absence and presence of H 2 O 2 . The changes of absorption spectra and pH value were described and analyzed as well as the degree of decoloration and COD removal. The influences of absorbed doses, H 2 O 2 additions and initial dye concentrations are discussed. The experimental results show that reactive dyes in aqueous solutions can be effectively degraded by electron beam irradiation, especially in the presence of hydrogen peroxide

  13. Comparison of four supports for adsorption of reactive dyes by immobilized Aspergillus fumigatus beads

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-e; HU Yong-you

    2007-01-01

    Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and chitosan (CTS), were prepared as supports for entrapping fungus Aspergillus fumigatus. The adsorption of synthetic dyes, reactive brilliant blue KN-R, and reactive brilliant red K-2BP, by these immobilized gel beads and plain gel beads was evaluated. The adsorption efficiencies of reactive brilliant red K-2BP and reactive brilliant blue KN-R by CTS immobilized beads were 89.1% and 93.5% in 12 h, respectively. The adsorption efficiency by Na-CMC immobilized beads was slightly lower than that of mycelial pellets. But the dye culture mediums were almost completely decolorized in 48 h using the above-mentioned two immobilized beads (exceeding 95%). The adsorption efficiency by SA immobilized beads exceeded 92% in 48 h. PVA-SA immobilized beads showed the lowest adsorption efficiency, which was 79.8% for reactive brilliant red K-2BP and 92.5% for reactive brilliant blue KN-R in 48 h. Comparing the adsorption efficiency by plain gel beads, Na-CMC plain gel beads ranked next to CTS ones. SA and PVA-SA plain gel beads hardly had the ability of adsorbing dyes. Subsequently, the growth of mycelia in Na-CMC and SA immobilized beads were evaluated. The biomass increased continuously in 72 h. The adsorption capacity of reactive brilliant red K-2BP and reactive brilliant blue KN-R by Na-CMC immobilized beads was 78.0 and 86.7 mg/g, respectively. The SEM micrographs show that the surface structure of Na-CMC immobilized bead is loose and finely porous, which facilitates diffusion of the dyes.

  14. Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%.

    Science.gov (United States)

    Kamel, M M; Helmy, H M; Mashaly, H M; Kafafy, H H

    2010-01-01

    The dyeing of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% has been studied with both conventional and ultrasonic techniques. The effect of dye concentration, dye bath pH, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with both techniques were compared. Colour strength values obtained were found to be higher with ultrasonic than with conventional heating. The results of fastness properties of the dyed fabrics were studied. X-ray and Scanning Electron Microscope SEM were carried out on dyed samples using both methods of dyeing to find out an explanation for the better dyeability of acrylic fabrics with (US) method. Dyeing kinetics of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% using conventional and ultrasonic conditions were compared. The time/dye-uptake isotherms are revealing the enhanced dye-uptake in the second phase of dyeing. The values of dyeing rate constant, half-time of dyeing and standard affinity and ultrasonic efficiency have been calculated and discussed.

  15. Mycoremediation of congo red dye by filamentous fungi

    OpenAIRE

    Bhattacharya, Sourav; Das, Arijit; G, Mangai.; K, Vignesh.; J, Sangeetha.

    2011-01-01

    Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was t...

  16. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  17. The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution.

    Science.gov (United States)

    Wang, Qi; Luan, Zhaokun; Wei, Ning; Li, Jin; Liu, Chengxi

    2009-10-30

    In this study, the MgCl2/red mud system (MRM) was used to investigate the color removal efficiency of dye solutions. Parameters such as the effect of the dosage of red mud (RM) and MgCl2 have been studied. The effect of pH on the conversion rate of Mg2+ has also been studied. The color removal efficiency of MRM was compared with that of PAC/RM and PAC/NaOH. Meanwhile, the color removal efficiency of RM was compared with that of NaOH. The results show that the MRM system can remove more than 98% of the coloring material at a dosage of 25 g RM/L dye solution and a volume of 1.5 mL MgCl2/L dye solution in the decolorization process of reactive dye, acid dye and direct dye. The color removal efficiency was better than PAC/RM and PAC/NaOH system. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicated that both models provide the best correlation of the experimental data. The decolorization mechanism of MRM was discussed, too. The MRM system was a viable alternative to some of the more conventional forms of chemical treatment of dye solutions and also provided another way to make use of industrial waste red mud.

  18. Removal of Reactive Anionic Dyes from Binary Solutions by Adsorption onto Quaternized Kenaf Core Fiber

    Directory of Open Access Journals (Sweden)

    Intidhar Jabir Idan

    2017-01-01

    Full Text Available The most challenging mission in wastewater treatment plants is the removal of anionic dyes, because they are water-soluble and produce very shining colours in the water. In this regard, kenaf core fiber (KCF was chemically modified by the quaternized agent (3-chloro-2-hydroxypropyltrimethylammonium chloride to increase surface area and change the surface properties in order to improve the removing reactive anionic dyes from binary aqueous solution. The influencing operating factors like dye concentration, pH, adsorbent dosage, and contact time were examined in a batch mode. The results indicate that the percentage of removal of Reactive Red-RB (RR-RB and Reactive Black-5 (RB-5 dyes from binary solution was increased with increasing dyes concentrations and the maximum percentage of removal reached up to 98.4% and 99.9% for RR-RB and RB-5, respectively. Studies on effect of pH showed that the adsorption was not significantly influenced by pH. The equilibrium analyses explain that, in spite of the extended Langmuir model failure to describe the data in the binary system, it is better than the Jain and Snoeyink model in describing the adsorption behavior of binary dyes onto QKCF. Also, the pseudo-second-order model was better to represent the adsorption kinetics for RR-RB and RB-5 dyes on QKCF.

  19. Radiation degradation and hemolytic toxicity evaluation of mono azo reactive dyes

    International Nuclear Information System (INIS)

    Saeed, Q.U.; Bhatti, I.A.; Ashraf, A.

    2017-01-01

    Monoazo reactive dyes have been synthesized and subjected to degradation before their application. Advanced oxidation process has been recognized as a promising radiation technology for the remediation of hazardous organic compounds. Radiation induced degradation of two mono azo reactive dyes have been tried at different absorbed dose, 5 kGy,10 kGy and 15 kGy. Aqueous solutions of these dyes were treated with gamma radiation using Cs 137 radiation source at Nuclear Institute of Agriculture and Biology (NIAB) Faisalabad. Dyes were evaluated spectrophotometrically by UV-visible and fourier transform infra red (FT-IR) spectroscopic techniques before and after irradiation to analyse their percentage decolorization and degradation. Maximum percentage decolorization of 93% and 63% was achieved for mono azo dyes D1 and D2 at 15 kGy absorbed dose. Toxicity study of these dyes was also tested by haemolytic activity assay. Percentage haemolytic activity of untreated dyes was found within permissible limit showing non toxicity of dye solutions. (author)

  20. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    Science.gov (United States)

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  1. Bioremediation of acid fast red dye by Streptomyces globosus under ...

    African Journals Online (AJOL)

    Two different azo dyes known as acid fast red (AFR) and Congo red (CR) were examined for their decolorization by five strains of actinomycetes (Streptomyces globosus, Streptomyces alanosinicus, Streptomyces ruber, Streptomyces gancidicus, and Nocardiopsis aegyptia) under shake and static conditions. Streptomyces ...

  2. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: Moussavi@modares.ac.ir [Department of Environmental Health, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mahmoudi, Maryam [Department of Environmental Health, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2009-09-15

    In the present investigation, a porous MgO powder was synthesized and tested for the removal of dyes from aqueous solution. The size of the MgO particles was in the range of 38-44 nm, with an average specific surface area of 153.7 m{sup 2}/g. Adsorption of reactive blue 19 and reactive red 198 was conducted to model azo and anthraquinone dyes at various MgO dosages, dye concentrations, solution pHs and contact times in a batch reactor. Experimental results indicate that the prepared MgO powder can remove more than 98% of both dyes under optimum operational conditions of a dosage of 0.2 g, pH 8 and a contact time of 5 min for initial dye concentrations of 50-300 mg/L. The isotherm evaluations revealed that the Langmuir model attained better fits to the experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacities were 166.7 and 123.5 mg of dye per gram of adsorbent for RB 19 and RR 198, respectively. In addition, adsorption kinetic data followed a pseudo-second-order rate for both tested dyes.

  3. Design and Application of Electrochemical Processes for Decolorization Treatment of Nylanthrene Red dye Bearing Wastewaters

    Directory of Open Access Journals (Sweden)

    D. Marmanis

    2016-04-01

    Full Text Available The purpose of this paper is the investigation of the capability of electrochemical methods, such as electrocoagulation, electrooxidation and electro-Fenton for decolorization and degradation of synthetic aqueous solutions and actual dye house effluents containing nylanthrene red reactive dye. All electrochemical experiments with the synthetic dye solutions were conducted in electrochemical cell of volume 500 ml containing 200 mL of dye solution at concentration 50 mg/L and interelectrode distance of 1 cm. The three different electrochemical processes were analyzed, and their removal efficiencies were measured and evaluated. In addition, a flow diagram is designed for a continuously operated electrochemical process for remediation of synthetic and actual dye house effluents laden with nylanthrene dye. In the electrocoagulation process with aluminum electrodes, the colored aqueous dye solution was treated at the applied current densities of 5, 10 and 15 mA/cm2 and was quantitatively decolorized in 11, 9 and less than 6 minutes of electroprocessing time respectively. The electrooxidation process conducted with Ti/Pt and boron doped diamond (BDD electrodes, at the applied current density of 10 mA/cm2 led to the quantitative decolorization and destruction of the dye in 25 and 15 min respectively. In the electro-Fenton process with iron electrodes, supply of added hydrogen peroxide and applied current density of 10 mA/cm2, complete decolorization and degradation of the nylanthrene red dye occurred in 6 min. The actual polyamide textile dyeing effluent of same volume 200 mL with initial turbidity of 114 NTU and COD of 1755 mg/L was treated by electrocoagulation at the same applied current density of 10 mA/cm2. The turbidity was quantitatively eliminated in only 10 min, while COD was reduced by 74.5 % in 40 minutes of electrolysis time.

  4. Mycoremediation of congo red dye by filamentous fungi.

    Science.gov (United States)

    Bhattacharya, Sourav; Das, Arijit; G, Mangai; K, Vignesh; J, Sangeetha

    2011-10-01

    Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was to study the factors influencing mycoremediation of Congo red. Several basidiomycetes and deuteromycetes species were tested for the decolourisation of Congo red (0.05 g/l) in a semi synthetic broth at static and shaking conditions. Poor decolourisation was observed when the dye acted as the sole source of nitrogen, whereas semi synthetic broth supplemented with fertilizer resulted in better decolourisation. Decolourisation of Congo red was checked in the presence of salts of heavy metals such as mercuric chloride, lead acetate and zinc sulphate. Decolourisation parameters such as temperature, pH, and rpm were optimized and the decolourisation obtained at optimized conditions varied between 29.25- 97.28% at static condition and 82.1- 100% at shaking condition. Sodium dodecyl sulphate polyacrylamide gel electrophoretic analysis revealed bands with molecular weights ranging between 66.5 to 71 kDa, a characteristic of the fungal laccases. High efficiency decolourisation of Congo red makes these fungal forms a promising choice in biological treatment of waste water containing Congo red.

  5. Mycoremediation of Congo red dye by filamentous fungi

    Directory of Open Access Journals (Sweden)

    Sourav Bhattacharya

    2011-12-01

    Full Text Available Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was to study the factors influencing mycoremediation of Congo red. Several basidiomycetes and deuteromycetes species were tested for the decolourisation of Congo red (0.05 g/l in a semi synthetic broth at static and shaking conditions. Poor decolourisation was observed when the dye acted as the sole source of nitrogen, whereas semi synthetic broth supplemented with fertilizer resulted in better decolourisation. Decolourisation of Congo red was checked in the presence of salts of heavy metals such as mercuric chloride, lead acetate and zinc sulphate. Decolourisation parameters such as temperature, pH, and rpm were optimized and the decolourisation obtained at optimized conditions varied between 29.25- 97.28% at static condition and 82.1- 100% at shaking condition. Sodium dodecyl sulphate polyacrylamide gel electrophoretic analysis revealed bands with molecular weights ranging between 66.5 to 71 kDa, a characteristic of the fungal laccases. High efficiency decolourisation of Congo red makes these fungal forms a promising choice in biological treatment of waste water containing Congo red.

  6. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    M) for 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed...

  7. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27

    OpenAIRE

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Background Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. Methods In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by ...

  8. The removal of reactive dyes using high-ash char

    Directory of Open Access Journals (Sweden)

    Moreira R.F.P.M.

    2001-01-01

    Full Text Available The thermodynamics and kinetics of adsorption of reactive dyes on high-ash char was studied. Equilibrium data were obtained using the static method with controlled agitation at temperatures in the range of 30 to 60ºC. The Langmuir isotherm model was used to describe the equilibrium of adsorption, and the equilibrium parameters, R L, in the range of 0 to 1 indicate favorable adsorption. The amount of dye adsorbed increased as temperature increased from 30 to 40ºC, but above 40ºC the increase in temperature resulted in a decrease in the amount of dye adsorbed. The kinetic data presented are for controlled agitation at 50 rpm and constant temperature with dye concentrations in the range of 10 ppm to50 ppm. The film mass transfer coefficient, Kf, and the effective diffusivity inside the particle, De, were fitted to the experimental data. The results indicate that internal diffusion governs the adsorption rate.

  9. pH effect on decolorization of raw textile wastewater polluted with reactive dyes by advanced oxidation with uv/h2o2

    NARCIS (Netherlands)

    Racyte, J.; Rimeika, M.; Bruning, H.

    2009-01-01

    The effectiveness of the advanced oxidation process (UV/H2O2) in decolorizing real textile wastewater polluted with commercial reactive dyes - Reactive Yellow 84 and Reactive Red 141 was investigated. All the experiments were performed in a lab-scale reactor with the original high pH of the

  10. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    Science.gov (United States)

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  11. The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.

    Science.gov (United States)

    Peternel, L; Kusic, H; Koprivanac, N; Locke, B R

    2006-05-01

    In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.

  12. Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution

    Science.gov (United States)

    Ahmad, S.; Wong, Y. C.; Veloo, K. V.

    2018-04-01

    Reactive red 120 is used as a textile dye for fabric coloring. The dye waste is produced during textile finishing process subsequently released directly to water bodies which giving harmful effects to the environment due to the carcinogenic characteristic. Adsorption process becomes an effective treatment to treat textile dye. This research emphasizes the treatment of textile dye namely reactive red 120 (RR120) by using sugarcane bagasse powder. The batch study was carried out under varying parameters such as 60 minutes contact time, pH (1-8), dye concentration (5-25 mg/L), particle size (125-500 μm) and biosorbent dosage (0.01-0.2 g/L). The maximum adsorption percentage of RR120 was 94.62%. The adsorption of dye was increased with the decreasing of pH, initial dye concentration and particle size. Sugarcane bagasse powder as low-cost biosorbent was established using Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM). This locally agricultural waste could be upgraded into useful material which is biosorbent that promising for decolorization of colored textile wastewater.

  13. Noncovalent Labeling of Biomolecules with Red and Near- Infrared Dyes

    Directory of Open Access Journals (Sweden)

    Lucjan Strekowski

    2004-02-01

    Full Text Available Biopolymers such as proteins and nucleic acids can be labeled with a fluorescent marker to allow for their detection. Covalent labeling is achieved by the reaction of an appropriately functionalized dye marker with a reactive group on a biomolecule. The recent trend, however, is the use of noncovalent labeling that results from strong hydrophobic and/or ionic interactions between the marker and biomolecule of interest. The main advantage of noncovalent labeling is that it affects the functional activity of the biomolecule to a lesser extent. The applications of luminescent cyanine and squarylium dyes are reviewed.

  14. Electrochemical Treatment of Wastewater Containing Mixed Reactive Dyes Using Carbon Nanotube Modified Cathode Electrodes

    Directory of Open Access Journals (Sweden)

    Nader Djafarzadeh

    2016-11-01

    Full Text Available Nowadays, advanced electrochemical oxidation processes are promising methods for the treatment of wastewaters containing organic dyes. One of these methods is the Electro-Fenton (EF technique in which an electrical current is applied to the cathode and anode electrodes to promote electrochemical reactions that generate hydroxyl radicals which mineralize organic pollutants and remove them from wastewater. To carry out the Electro-Fenton process iIn this work, the carbon paper (CP electrode was initially modified with carbon nanotubes (CNT to produce the CP-CNT electrode which was used as the cathode to remove a mixture of organic dyestuff (containing Reactive Blue 69, Reactive Red 195, and Reactive Yellow 84 from wastewaters. Comparison of the two types of cathode electrodes (i.e., CNT and the modified CP-CNT showed that the CP-CNT outperformed the CP electrode. The EF process was employed to treat 500 ml of a mixture of dyes (50 mg/L of each dye containing sodium soulfate and Fe+3 ions. The results revealed that the highest color removal efficiency was achieved when a current of 300 mA was applied for 210 min. COD measurments were used to calculate the effective current and power consumption. It was found that the 300 mA current applied over a period of 210 min yielded the highest effective current and the lowest power consumption. The amount of dyes mineralized by the EF process in the dye solution indicated that 78% of the initial COD had been removed under the above conditions. It may be concluded that the Electro-Fenton process can be successfully used for the treatment of wastewaters containing mixtures of dye pollutants. Cathode electrode type, electrical current, and electrolysis duration were identified as the parameters affecting the process.

  15. Removal of Reactive Red 198 by Nanoparticle Zero Valent Iron in the Presence of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Siroos Shojaei

    2017-04-01

    Full Text Available Although dyes are widely used in textile industries, they are carcinogenic, teratogenic and mutagenic. Industries discharge their wastewater containing a variety of colors into water resources and make harmful effect on the environment. The present study aims to Evaluate removal of reactive red 198 by nanoparticle zero valent iron (NZVI in the presence of hydrogen peroxide from aqueous solution. The effective parameters on the removal of dye such as the hydrogen peroxide concentration of NZVI, contact time, pH and dye concentration were investigated and optimized. According to the results, the combination of NZVI with hydrogen peroxide is more effective than single hydrogen peroxide. At pH = 4, contact time= 40 min, 200 M of hydrogen peroxide, dye concentration= 75 mg/L and concentration of NZVI 2g/L, color removal was achieved 91% approximately. Based on the results of experiments, using hydrogen peroxide- NZVI has high efficiency in removal of azo dye type.

  16. Lasing of Some Red Laser Dyes in Annealed Silica Xerogel

    Science.gov (United States)

    Bezkrovnaya, O. N.; Maslov, V. V.; Pritula, I. M.; Yurkevich, A. G.

    2018-01-01

    The spectral and energy characteristics of generation in the red spectral region 650-720 nm were measured and analyzed for three laser dyes in preliminarily annealed SiO2 xerogel matrices under laser excitation λp = 588 nm in a nonselective cavity. The specific laser-energy output for two of them (LK678 and Ox170) in the matrices was 10-13% higher than in MeOH. NBA dye in the matrix generated two laser radiation bands in the 700-720 nm region with pumping E p ≥ 80 mJ whereas its generation threshold in MeOH exceeded the maximum pumping energy of 140 mJ so that NBA generation was not observed. Laser emission spectra of the studied matrices in a nonselective cavity were red-shifted by 1000 cm-1 from the fluorescence maximum. Such a shift could improve the characteristics of biosensors based on these matrices.

  17. Mass transfer of Disperse Red 153 and its crude dye in supercritical CO2 fluid

    Directory of Open Access Journals (Sweden)

    Zheng Huan-Da

    2017-01-01

    Full Text Available In this paper, polyester fibers were dyed with Disperse Red 153 and its crude dye in supercritical CO2. The effect of dyeing temperature, dyeing time, dyeing pressure, as well as auxiliaries in the commercialized Disperse Red 153 on the dyeing performance of polyester fibers was investigated. The obtained results showed that the dyeing effect of crude dye for polyester was better than that of Disperse Red 153 in the same dyeing condition. The color strength values of the dyed polyester samples were increased gradually with the increase of temperature and pressure since mass transfer of dye was improved. In addition, the mass transfer model of Disperse Red 153 in supercritical CO2 was also proposed.

  18. Natural red dyes extraction on roselle petals

    Science.gov (United States)

    Inggrid, H. M.; Jaka; Santoso, H.

    2016-11-01

    Roselle (Hibiscus sabdariffa L.) has a high quantity of anthocyanin pigment and is a good colorant. The anthocyanin pigment can be used as a natural colorant and antioxidant. An antioxidant is an organic compound that has the ability to inhibit free radical reactions in the human body. The objective of this research is to study the effect of pH and temperature on total anthocyanin and antioxidant activity in roselle extract, and to evaluate the effect of temperature and sunlight on the stability of the red color from roselle. Dried roselle petals were extracted with solid liquid extraction method using water as solvent. The variables in this study are temperature (5°C, 30°C, and 55°C) and pH (2, 7, and 12). Total anthocyanin was analysed using the pH differential method. The antioxidant activities were determined using the DPPH method. The highest total anthocyanin in the roselle petals was 80.4 mg/L at a temperature of 5°C and pH 2. The highest antioxidant activity and yield content in the roselle were 90.4% and 71.6 % respectively, obtained at 55°C and pH 2.

  19. Effect of viscosity, basicity and organic content of composite flocculant on the decolorization performance and mechanism for reactive dyeing wastewater

    Institute of Scientific and Technical Information of China (English)

    Yuanfang Wang; Baoyu Gao; Qinyan Yue; Yah Wang

    2011-01-01

    A coagulation/flocculation process using the composite floceulant polyaluminum chloride-epichlorohydrin dimethylamine (PAC-EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2BP dye).The effect of viscosity (η),basicity (B =[OH]/[Al]) and organic content (Wp) on the flocculation performance as well as the mechanism of PAC-EPI-DMA flocculant were investigated.The η was the key factor affecting the dye removal efficiency of PAC-EPI-DMA.PAC-EPI-DMA with an intermediate η (2400 mPa-sec) gave higher decolorization efficiency by adsorption bridging and charge neutralization due to the co-effect of PAC and EPI-DMA polymers.The Wp of the composite flocculant was a minor important factor for the flocculation.The adsorption bridging of PAC-EPI-DMA with η of 300 or 4300 mPa.sec played an important role with the increase of Wp,whereasthe charge neutralization of them was weaker with the increase of Wp.There was interaction between Wp and B on the removal of reactive dye.The composite flocculant with intermediate viscosity and organic content was effective for the treatment of reactive dyeing wastewater,which could achieve high reactive dye removal efficiency with low organic dosage.

  20. STATISTICAL INVESTIGATION OF ADSORPTION OF TWO REACTIVE TEXTILE DYES BY VARIOUS ADSORBENTS

    Directory of Open Access Journals (Sweden)

    Ümmühan DANIŞ

    2002-03-01

    Full Text Available Textile industry, in which uses the dyestuffs containing coloured and complex chemical compounds, is both water consumer and water pollutant. The removal of these compounds from the wastewaters is one of the most important problems in the textile industry. In this study, the adsorption of two reactive dyes (Red Px and Yellow P onto Aşkale and Balkaya lignites, Bensan clay and powdered active carbon (PAC from aqueous solution was statistically investigated. The adsorption time, dye concentration, solid/liquid ratio and mixing rate were chosen as parameters. The effects of these parameters on the amount of dye adsorbed by the adsorbents were determined. The results obtained have been statistically evaluated by using the stepwise method and SPSS Sortware version (9.1. The experimental observations and statistical evaluations shown that the effective parameters on the adsorption are equilibrium dye concentration and solid/liquid ratio. It was found that the adsorptive behaviours of both lignites and clay are similar to each other, but powdered active carbon displays different adsorptive behaviour. Finally, the empirical equations showing the relation between amount of dye adsorbed and the effective parameters were developed.

  1. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  2. Electrochemical degradation of reactive dyes at different DSA compositions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rodrigo G. da; Aquino Neto, Sydney; Andrade, Adalgisa R. de, E-mail: ardandra@ffclrp.usp.b [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia Ciencias e Letras. Dept. de Quimica

    2011-07-01

    This paper investigates the electrochemical oxidation of the reactive dyes reactive blue 4 (RB-4) and reactive orange 16 (RO-16) on RuO{sub 2} dimensionally stable anode (DSA) electrodes. Electrolysis was achieved under galvanostatic control as a function of supporting electrolyte and electrode composition. The electrolyses, performed in either the presence or absence of NaCl, were able to promote efficient color removal; moreover, at low chloride concentration (0.01 mol L{sup -1}), total color removal was obtained after just 10 min of electrolysis, and a significant increase in total dye combustion was achieved for all the studied anodes in chloride medium (reaching ca. 80% - chemical oxygen demand - COD removal). No significant enhancement in dye color removal or mineralization was observed upon increasing chloride concentration. The influence of oxide composition on dye elimination seems to be significant in both media (with or without chloride), being Ti/Ru{sub 0.30}Ti{sub 0.70}O{sub 2}, the most active material for organic compound oxidation. The oxygen evolution reaction was shown to be a limiting reaction in both supporting electrolytes; i.e., NaCl and Na{sub 2}SO{sub 4}, and its competition with organic compound oxidation remained an obstacle. The adsorbable organo halogens formation study revealed that there is slight consumption of the undesirable species formed within the first minutes of the electrolysis, being Ti/(RuO{sub 2}){sub 0.70}(Ta{sub 2}O{sub 5}){sub 0.30} the most environmentally friendly composition. Both anode composition and chloride concentration affect the formation of these undesirable compounds. (author)

  3. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.

    Science.gov (United States)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-05

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    Science.gov (United States)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  5. A REVIEW ON EFFICACIOUS METHODS TO DECOLORIZE REACTIVE AZO DYE

    Directory of Open Access Journals (Sweden)

    Jagadeesan Vijayaraghavan

    2013-01-01

    Full Text Available This paper deals with the intensive review of reactive azo dye, Reactive Black 5. Various physicochemical methods namely photo catalysis, electrochemical, adsorption, hydrolysis and biological methods like microbial degradation, biosorption and bioaccumulation have been analyzed thoroughly along with the merits and demerits of each method. Among these various methods, biological treatment methods are found to be the best for decolorization of Reactive Black 5. With respect to dye biosorption, microbial biomass (bacteria, fungi, microalgae, etc, and outperformed macroscopic materials (seaweeds, crab shell, etc. are used for decolorization process. The use of living organisms may not be an option for the continuous treatment of highly toxic organic/inorganic contaminants. Once the toxicant concentration becomes too high or the process operated for a long time, the amount of toxicant accumulated will reach saturation. Beyond this point, an organism's metabolism may be interrupted, resulting in death of the organism. This scenario is not existed in the case of dead biomass, which is flexible to environmental conditions and toxicant concentrations. Thus, owing to its favorable characteristics, biosorption has received much attention in recent years.

  6. Process Improvement of Reactive Dye Synthesis Using Six Sigma Concept

    Science.gov (United States)

    Suwanich, Thanapat; Chutima, Parames

    2017-06-01

    This research focuses on the problem occurred in the reactive dye synthesis process of a global manufacturer in Thailand which producing various chemicals for reactive dye products to supply global industries such as chemicals, textiles and garments. The product named “Reactive Blue Base” is selected in this study because it has highest demand and the current chemical yield shows a high variation, i.e. yield variation of 90.4% - 99.1% (S.D. = 2.405 and Cpk = -0.08) and average yield is 94.5% (lower than the 95% standard set by the company). The Six Sigma concept is applied aiming at increasing yield and reducing variation of this process. This approach is suitable since it provides a systematic guideline with five improvement phases (DMAIC) to effectively tackle the problem and find the appropriate parameter settings of the process. Under the new parameter settings, the process yield variation is reduced to range between 96.5% - 98.5% (S.D. = 0.525 and Cpk = 1.83) and the average yield is increased to 97.5% (higher than the 95% standard set by the company).

  7. Dicolorization of Reactive Dyes in Aqueous Solutions Using Ionizing Electron Beam Radiation

    Directory of Open Access Journals (Sweden)

    Abbas Behjat

    2009-09-01

    Full Text Available Experiments were carried out to study the effects of high-energy electron beam irradiation on reactive azo dyes (Remazol blue 133%, and Remazol red which are widely used in Yazd textile plants. Laboratory scale experiments were carried out using advanced 10 MeV electron beam accelerator service in Yazd Radiation Processing Center (YRPC. The irradiation dose was varied over 1, 3, 5, 8, and11 kGy. Dicoloration of the prepared dye solution was monitored by comparing the absorption spectra of the samples before and after irradiation. Mineralization of the dye solutions were estimated by measuring COD and PH of the irradiated samples. Our results show a color removal efficeincy of 83% in from different samples by applying 1 kGy irradiation dose. This value increases by up to 96%  under 3kGy irradiation. pH and COD values decrease with increasing absorbed doses.  COD removals for Remazol blue 133% and Remazol  red samples were calculated as 20% and 18% for an absorbed dose of 1 kGy and 60% and 72% for an absorbed dose of 11 kGy, respectively.

  8. Degradation kinetics of reactive dye by UV/H2O2/US process under continuous mode operation.

    Science.gov (United States)

    Fung, P C; Poon, C S; Chu, C W; Tsui, S M

    2001-01-01

    Degradation of a dye, C. I . Reactive Red 120, in dyeing waatewater by the process o UV/H2O2/US was studied with a bench-scale reactor under the continuous mode of operation. The effects of dyeing wastewater flow rate and the feeding rate of an oxidant, H2O2, on the color removal efficiency of the process were investigated. The significance of ultrasonic (US) combined with UV irradiation was also investigated and the performances of the process on color removal were evaluated. The results showed that the decoloration process followed a pseudo first-order kinetic model and the UV light is the most significant factor on dye removal. Besides, at higher flow rates, incomplete color removal was observed due to relatively insufficient irradiation time (low degradation rate). In order to achieve a higher degradation rate, the feeding rate of H2O2 should be increased.

  9. Bacterial reduction in genotoxicity of Direct Red 28 dye.

    Science.gov (United States)

    Bafana, Amit; Jain, Minakshi; Agrawal, Gaurav; Chakrabarti, Tapan

    2009-03-01

    Direct Red 28 (DR28) is a benzidine-based azo dye widely used in several countries. It has also been a subject of intense research for its anti-prion activity. Like other benzidine-based azo dyes, it is also carcinogenic and toxic. However, there are very few studies addressing its detoxification. In the present study, a Bacillus velezensis strain was used for detoxification of DR28. Toxicity was checked by a battery of highly sensitive genotoxicity assays like comet assay, DNA ladder formation, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and flow cytometric Annexin V binding assay. HL-60 cell line was used as the test system. All the assays showed an initial increase in toxicity upon biodegradation due to release of mutagenic products, like benzidine and 4-aminobiphenyl, from the dye. These intermediates caused significant DNA damage and induced apoptosis in HL-60 cells. Then the culture degraded these mutagenic intermediates, due to which the toxicity was reduced gradually, finally resulting in nearly complete detoxification.

  10. Decolourization and degradation of azo Dye, Synozol Red HF6BN ...

    African Journals Online (AJOL)

    Decolourization and degradation of azo Dye, Synozol Red HF6BN, by Pleurotus ostreatus. Sidra Ilyas, Skinder Sultan Sultan, Abdul Rehman. Abstract. The present paper focuses on the use of fungus, Pleurotus ostreatus, to decolorize and degrade azo dye, Synazol Red HF6BN. Decolorization study showed that P.

  11. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... Azo dyes generally resist aerobic microbial degra- dation, only organisms with specialized azo dye reducing enzymes were found to degrade azo dyes under fully aerobic ... textile mill, in sterile plastic bottles. Isolation of ...

  12. Magnetic polymer microcapsules loaded with Nile Red fluorescent dye

    Science.gov (United States)

    Bartel, Marta; Wysocka, Barbara; Krug, Pamela; Kępińska, Daria; Kijewska, Krystyna; Blanchard, Gary J.; Kaczyńska, Katarzyna; Lubelska, Katarzyna; Wiktorska, Katarzyna; Głowala, Paulina; Wilczek, Marcin; Pisarek, Marcin; Szczytko, Jacek; Twardowski, Andrzej; Mazur, Maciej

    2018-04-01

    Fabrication of multifunctional smart vehicles for drug delivery is a fascinating challenge of multidisciplinary research at the crossroads of materials science, physics and biology. We demonstrate a prototypical microcapsule system that is capable of encapsulating hydrophobic molecules and at the same time reveals magnetic properties. The microcapsules are prepared using a templated synthesis approach where the molecules to be encapsulated (Nile Red) are present in the organic droplets that are suspended in the polymerization solution which also contains magnetic nanoparticles. The polymer (polypyrrole) grows on the surface of organic droplets encapsulating the fluorescent dye in the core of the formed microcapsule which incorporates the nanoparticles into its wall. For characterization of the resulting structures a range of complementary physicochemical methodology is used including optical and electron microscopy, magnetometry, 1H NMR and spectroscopy in the visible and X-ray spectral ranges. Moreover, the microcapsules have been examined in biological environment in in vitro and in vivo studies.

  13. Effect of heavy metals ondecolorization of reactive brilliant red by newly isolated microorganisms

    International Nuclear Information System (INIS)

    Nosheen, S.; Arshad, M.

    2011-01-01

    This study involves aerobic decolorisation of reactive azo dye reactive brilliant red 2KBP by newly isolated microbial strains (two bacterial and one fungal strain) in presence of heavy metals including cobalt chloride, ferric chloride, zinc sulphate, copper sulphate and nickel chloride. Many heavy metals are necessary for microbial growth and are required in very small amounts however at higher levels they become toxic. So was the objective of present work to check the effect of concentration of heavy metals on the potential of microbial strains to decolorize azo dyes. All the heavy metals under consideration were added in range of 0.5 gl-1-2.5gl/sup -1/. All heavy metals showed inhibitory effect on decolorization capacity of bacterial as well as fungal strain .At optimum conditions bacterial strains named as B1 and B2 removed 84% and 78% while fungal strain decolorized 90.4% of dye. Cobalt and nickel showed greater inhibitors on% decolorization of dyes than Zinc and iron. Fungal strain showed greater negative effect. Heavy metals might affect enzyme activities and thus reducing removal of dye. (author)

  14. Radiolysis of Reactive AZO Dyes in Aqueous Solution

    International Nuclear Information System (INIS)

    Bagyo, Agustin NM; Winarti-Andayani; Hendig-Winarno; Ermin-Katrin; Soebianto, Yanti S

    2004-01-01

    The effects of radiation on aerated reactive dye solutions i.e Cibacron Violet, Cibacron Orange and Cibacron Yellow solutions have been studied. Parameters analysis were the change of pH after radiation, the change of absorption, degradation products and effects of pH on the radiolysis. The uv-vis absorption of solutions were observed before and after irradiation. pH variation was done from pHs 3, 5, 7, 9 and 12. Irradiation was done at doses of 0, 2, 4, 6, 8 and 10 kGy with dose rate of 5 kGy/h and was determined by a Fricke dosimeter. HPLC with UV detector was used to analyze the degradation products. Oxalic acid was the main degradation product and small amount of succinic acid was also detected. (author)

  15. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.

    Science.gov (United States)

    Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R

    2006-04-15

    The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.

  16. Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents.

    Science.gov (United States)

    Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi

    2017-02-01

    A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer

    Science.gov (United States)

    Mozaffari, Sayed Ahmad; Saeidi, Mahsa; Rahmanian, Reza

    2015-05-01

    Natural dye extracted from Siahkooti fruit with/without purification by solid phase extraction (SPE) technique was used in the fabrication of DSSC as natural sensitizer. The UV-Vis absorption spectroscopy and Fourier transform infrared (FTIR) were employed to indicate the presence of anthocyanins in the fruit of red Siahkooti. The photoelectrochemical performance and the efficiency of assembled DSSC using Siahkooti fruit dye extract were evaluated and efficiency enhancement was obtained by a preliminary purification of extracted dye. The efficiency and fill factor of the DSSC using purified Siahkooti fruit dye were 0.32% and 0.73%, respectively. The results successfully showed that the DSSC, using Siahkooti fruit extract as a dye sensitizer, is useful for the preparation of environmentally friendly, low-cost, renewable and clean sources of energy.

  18. Adsorption performance and mechanism in binding of Reactive Red 4 by coke waste

    International Nuclear Information System (INIS)

    Won, Sung Wook; Wu Guiping; Ma Hui; Liu Qiong; Yan Yao; Cui Longzhe; Liu Chengfu; Yun, Yeoung-Sang

    2006-01-01

    The protonated coke waste was used as a new type of adsorbent for the removal of Reactive Red 4. To identify the binding sites in the protonated coke waste, the waste was potentiometrically titrated. As a result, four types of functional groups were present in the waste, which was confirmed by FT-IR analysis. Among functional groups, primary amine groups (-NH 2 ) were likely the binding sites for anionic Reactive Red 4. It was also found that sulfonate, carboxyl and phosphonate groups played a role in electrostatic interference with the binding of dye molecules. The maximum adsorption capacities of the coke waste were 70.3 ± 11.1 and 24.9 ± 1.8 mg/g at pH 1 and 2, respectively. Kinetic study showed a pseudo-first-order rate of adsorption with respect to the solution. The uptake of Reactive Red 4 was not significantly affected by the high concentration of salts. These results of adsorption performance indicate the coke waste as a potentially economical adsorbent for dye removal

  19. Biodecolorization and biodegradation of Reactive Blue by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... Aspergillus sp. effectively decolorized Reactive Blue and other structurally different synthetic dyes. Agitation was found to be an important ... Few chemically different dyes such as Reactive Black (75%), Reactive Yellow (70%),. Reactive Red (33%) and ..... Degradation of azo dyes by the lignin degrading ...

  20. Decolorization of reactive dyes under batch anaerobic condition by ...

    African Journals Online (AJOL)

    However, decolorization was lower for the dye of RB 49 than other two dyes in all concentrations despite 72 h incubation period by mixed anaerobic culture. All of the three dyes correlated with 1st order reaction kinetic with respect to decolorization kinetics. The results of the study demonstrated that high decolorization was ...

  1. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2012-04-01

    Full Text Available Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used. The new dye-bath formulation using the organic salt gave more than 90% dye-fixation. Traditional pad-steam process of dyeing cotton with reactive dyes requires the use of inorganic electrolyte, sodium-chloride, and alkali, sodium-carbonate, to ensure effective dye consumption and fixation. These inorganic chemicals when drained generate heavy contents of dissolved solids and oxygen demand in the effluent leading to environmental pollution. Thus, Tetrasodium N, N-biscarboxylatomethyl-L-Glutamate was used in place of inorganic electrolyte and alkali to improve effluent quality. A significant increase in dye-fixation and ultimate color-yield was obtained with same colorfastness properties of the dyed fabric comparing to the traditional pad-steam dye-bath formulation.

  2. Photocatalytic degradation of methyl red dye by silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Y. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt); Abd El-Wahed, M.G. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Mahmoud, M.A. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt)], E-mail: mahmoudchem@yahoo.com

    2008-06-15

    Silica nanoparticles (SiO{sub 2} NPs) were found to be photocatalytically active for degradation of methyl red dye (MR). The SiO{sub 2} NPs and SiO{sub 2} NPs doped with silver (and or) gold nanoparticles were prepared. From the transmission electron microscopy (TEM) images the particle size and particle morphology of catalysts were monitored. Moreover, SiO{sub 2} NPs doped with silver and gold ions were used as a photocatalyst for degradation of MR. The rate of photocatalytic degradation of MR was found to be increased in the order of SiO{sub 2} NPs, SiO{sub 2} NPs coated with gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs), SiO{sub 2} NPs coated with Ag NPs, SiO{sub 2} NPs coated with Au NPs, Ag{sup +}-doped SiO{sub 2} NPs, and Au{sup 3+}-doped SiO{sub 2} NPs. The kinetic and mechanism of photocatalytic reaction were studied and accorded well with experimental results.

  3. Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes.

    Science.gov (United States)

    Bellebia, S; Kacha, S; Bouberka, Z; Bouyakoub, A Z; Derriche, Z

    2009-04-01

    In this study, electrocoagulation of Marine Blue Erionyl MR (acid dye) and electrocoagulation followed by adsorption of Brilliant Blue Levafix E-BRA (reactive dye) from aqueous solutions were investigated, using aluminum electrodes and granular activated carbon (GAC). In the electrocoagulation and adsorption of dyestuff solutions, the effects of current density, loading charge, pH, conductivity, stirring velocity, contact time, and GAC concentration were examined. The optimum conditions for the electrocoagulation process were identified as loading charges 7.46 and 1.49 F/m3, for a maximum abatement of 200 mg/L reactive and acid dye, respectively. The residual reactive dye concentration was completely removed with 700 mg/L GAC. The results of this investigation provide important data for the development of a combined process to remove significant concentrations of recalcitrant dyes from water, using moderate activated carbon energy and aluminum consumption, and thereby lowering the cost of treatment.

  4. ZnO/spiral-shaped glass for solar photocatalytic oxidation of Reactive Red 120

    Directory of Open Access Journals (Sweden)

    Montaser Y. Ghaly

    2017-05-01

    Full Text Available ZnO/glass spiral (GS was prepared by immobilization of ZnO on GS with facile method, and was characterized by X-ray diffraction analysis (XRD, scanning electron microscope (SEM and the crystallite size of ZnO on GS surface was calculated. SEM showed rod-like shape of ZnO particles on GS surface. Photocatalytic activity of prepared immobilized photocatalyst was investigated for decolourization and degradation of C.I. Reactive Red 120 (RR-120 dye under sunlight. The kinetics of decolourization and degradation removal has been investigated. The effect of pH on decolourization and degradation of dye was studied. The decolourization and degradation of dye were followed by pseudo-first order reaction. The decolourization and degradation of RR-120 dye were enhanced by H2O2 addition to definite dosage beyond that the effect is diminished. Also, the reusability of immobilized ZnO on GS was tested for photocatalytic degradation of dye and it was worth noting that it has high efficiency with slight decrease (5% after five successive runs.

  5. Photocatalytic degradation of reactive black-5 dye using TiO2 ...

    Indian Academy of Sciences (India)

    sons, considerable attention has been focused on complete oxidation of organic ... Figure 1. Molecular structure of the RB-5 dye (Reactive black 5 (RB 5) dye: molec- ular weight: 991·8 .... by collision with ground state molecules. The optimum ...

  6. Removal of Reactive Dyes (Green, Orange, and Yellow from Aqueous Solutions by Peanut Shell Powder as a Natural Adsorbent

    Directory of Open Access Journals (Sweden)

    Hosein Nadi

    2012-11-01

    -bireactive dye removal. Appl Catal B Environ 2006;67(1:86-92. 2. Shu HY, Huang CR. Degradation of commercial ago dyes in water using ozonation and UV enhanced ozonation process. Chemosphere 1995;31(8:3813-25. 3. Clarke EA, Anliker R. Organic dyes and pigments. In The Handbook of Environmental Chemistry. Berlin: Springer-Verlag; 1980;3(part A:181-215. 4. Riu J, Schönsee I, Barceló D. Determination of sulfonated azo dyes in water and wastewater. TrAC Trends Anal Chem1997;16(7:405-19. 5. Venkatamohan S, Mamatha VVS, Karthikeyan J. Removal of colour from acid and direct dyes by adsorption onto silica fumes. Fresenius Envion Bull 1998;7(1:51-8. 6. da Silveira Neta JJ, Moreira GC, da Silva CJ, Reis C, Reis EL. Use of polyurethane foams for the removal of the Direct Red 80 and Reactive Blue 21 dyes in aqueous medium. Desalination 2011;281:55–60. 7. Paul J, Naik DB, Sabharwal S. High energy induced decoloration and mineralization of reactive red 120 dye in aqueous solution:a steady state and pulse radiolysis study. Radiat Phys Chem. 2010;79(7:770-6. 8. Merzouk B, Gourich B, Madani K, Vial Ch, Sekki A. Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination 2011;272(1-3:246-53. 9. Gholami Borujeni F, Mahvi AH, Naseri S, Faramarzi MA, Nabizadeh R, Alimohammadi M. Application of immobilized horseradish peroxidase for removal and detoxification of azo dye from aqueous solution. Res J Chem Environ 2011;15:217-22. 10. Gholami-Borujeni F, Mahvi AH, Nasseri S, Faramarzi MA, Nabizadeh R, Alimohammadi M. Enzymatic treatment and detoxification of acid orange 7 from textile wastewater. Appl Biochem Biotechnol 2011;165(5-6:1274-84. 11. Dehghani MH, Mesdaghinia AR, Nasseri S, Mahvi AH, Azam K. Application of SCR technology for degradation of reactive yellow dye in aqueous solution. Water Qual Res J Can 2008;43(2/3:183-7. 12. Mahvi AH, Ghanbarian M, Nasseri S, Khairi A. Mineralization and discoloration of

  7. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  8. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    Sudarjanto, Gatut; Keller-Lehmann, Beatrice; Keller, Jurg

    2006-01-01

    The integrated chemical-biological degradation combining advanced oxidation by UV/H 2 O 2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H 2 O 2 /L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  9. Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling

    Directory of Open Access Journals (Sweden)

    Khadeeja Rehman

    2018-05-01

    Full Text Available Azo dyes are one of the largest classes of synthetic dyes being used in textile industries. It has been reported that 15–50% of these dyes find their way into wastewater that is often used for irrigation purpose in developing countries. The effect of azo dyes contamination on soil nitrogen (N has been studied previously. However, how does the azo dye contamination affect soil carbon (C cycling is unknown. Therefore, we assessed the effect of azo dye contamination (Reactive Black 5, 30 mg kg−1 dry soil, bacteria that decolorize this dye and dye + bacteria in the presence or absence of maize leaf litter on soil respiration, soil inorganic N and microbial biomass. We found that dye contamination did not induce any change in soil respiration, soil microbial biomass or soil inorganic N availability (P > 0.05. Litter evidently increased soil respiration. Our study concludes that the Reactive Black 5 azo dye (applied in low amount, i.e., 30 mg kg−1 dry soil contamination did not modify organic matter decomposition, N mineralization and microbial biomass in a silty loam soil.

  10. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  11. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    Energy Technology Data Exchange (ETDEWEB)

    Mulyanto, Subur, E-mail: subur.mulyanto@poltekba.ac.id [Graduate Program of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Department of Mechanical Engineering, State Polytechnic of Balikpapan, Jl. Soekarno-Hatta Km.8 Balikpapan (Indonesia); Suyitno,, E-mail: suyitno@uns.ac.id; Rachmanto, Rendy Adhi, E-mail: rendy.ar@gmail.com; Hidayat, Lullus Lambang Govinda, E-mail: lulus-l@yahoo.com; Hadi, Syamsul, E-mail: syamsulhadi@ft.uns.ac.id [Department of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Wibowo, Atmanto Heru, E-mail: aheruwibowo@yahoo.com [Department of Chemistry, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  12. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    International Nuclear Information System (INIS)

    Mulyanto, Subur; Suyitno,; Rachmanto, Rendy Adhi; Hidayat, Lullus Lambang Govinda; Hadi, Syamsul; Wibowo, Atmanto Heru

    2016-01-01

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  13. Adsorption of reactive Remazol Red RB dye of aqueous solution using zeolite of the coal ash and evaluation of acute toxicity with Daphnia similis; Adsorcao de corante reativo Remazol Vermelho RB de solucao aquosa usando zeolita de cinzas de carvao e avaliacao da toxicidade aguda com Daphnia similis

    Energy Technology Data Exchange (ETDEWEB)

    Magdalena, Carina Pitwak

    2010-07-01

    In this study, the capacity of zeolite synthesized from coal ash in the removal of Remazol Red dye aqueous solution was investigated by batch mode operation. The equilibrium was attained after 360 min of contact time. The adsorption rate followed the kinetic model of pseudo-second-order. The equilibrium data obtained fitted to Langmuir adsorption isotherm showing the adsorption capacity of up to 1.20mg g-1. The efficiency of adsorption was between 75 to 91% in the equilibrium time. In order to obtain the best conditions for removal of this dye, the influence of the following parameters was: initial concentration of the dye, pH of the aqueous solution, dose of adsorbent and temperature. The thermodynamic parameters were evaluated showing that the adsorption of Remazol red on the zeolite is of a spontaneous nature. Experiments by adding NaCl and Na{sub 2}SO{sub 4} were carried out to simulate the real conditions of the effluents from the dyeing bath and to evaluate the influence of these chemical compounds in the phenomenon of adsorption. The equilibrium data of adsorption of Remazol red on the zeolite was achieved in a shorter time in the presence of increasing concentrations of salts in solution and an increase in adsorption capacity. The efficiency of the study was evaluated as a treatment for acute toxicity using Daphnia similis microcrustacean. (author)

  14. Evaluation of the potential of red mud heat treated at 400 deg C in adsorption of textile dyes

    International Nuclear Information System (INIS)

    Antunes, M.L.P.; Rangueri, T.B.

    2011-01-01

    The production of aluminum metal generates a huge amount of red mud as industrial waste. The storage of such material causes serious environmental damage and needs large area for your disposal. Develop technologies that allow its reuse is an alternative. Studies show that the mud has adsorbent properties and may be used in the treatment of wastewater, gas and textiles. This work presents the characterization by X-ray diffraction and surface area of the red mud Brazilian thermally activated at 400 deg C to evaluate the adsorption capacity of this material to the dye reactive blue 19 in pH 4. Through the construction of the Langmuir isotherm was determined adsorption capacity, which, in alkaline media, got an average of 136.9 mg / g. The results suggest that under certain conditions, the red mud has potential as an alternative adsorbent and low cost. (author)

  15. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Dojcinovic, Biljana P. [Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, Studentski trg 12-16, 11000 Belgrade (Serbia); Roglic, Goran M. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia); Obradovic, Bratislav M., E-mail: obrat@ff.bg.ac.rs [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kuraica, Milorad M. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kostic, Mirjana M. [Faculty of Technology and Metallurgy, Department of Textile Engineering, Karnegijeva 4, 11000 Belgrade (Serbia); Nesic, Jelena; Manojlovic, Dragan D. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia)

    2011-08-30

    Highlights: {yields} Decolorization of four reactive textile dyes using non-thermal plasma reactor. {yields} Influence of applied energy on decolorization. {yields} Effects of initial pH and addition of homogeneous catalysts. {yields} Toxicity evaluation using the brine shrimp as a test organism. - Abstract: Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H{sub 2}O{sub 2}, Fe{sup 2+} and Cu{sup 2+}) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H{sub 2}O{sub 2} in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  16. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge

    International Nuclear Information System (INIS)

    Dojcinovic, Biljana P.; Roglic, Goran M.; Obradovic, Bratislav M.; Kuraica, Milorad M.; Kostic, Mirjana M.; Nesic, Jelena; Manojlovic, Dragan D.

    2011-01-01

    Highlights: → Decolorization of four reactive textile dyes using non-thermal plasma reactor. → Influence of applied energy on decolorization. → Effects of initial pH and addition of homogeneous catalysts. → Toxicity evaluation using the brine shrimp as a test organism. - Abstract: Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H 2 O 2 , Fe 2+ and Cu 2+ ) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H 2 O 2 in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  17. EFFECT OF UV IRRADIATION ON THE DYEING OF COTTON FABRIC WITH REACTIVE BLUE 204

    Directory of Open Access Journals (Sweden)

    ROŞU Liliana

    2017-05-01

    Full Text Available Reactive dyes are synthetic organic compounds used on a wide scale in textile industry, for painting materials of different types and compositions (e.g. 100% cotton, wool, natural satin, viscose, synthetic fibres. Reactive dyes are solid compounds (powders completely water soluble at normal temperature and pressure conditions. Their structures contain chromophore groups, which generate colour, and auxochrome groups, which determine the compounds water solubility and the capacity to fix to the textile fiber. Such organic compounds absorb UV-Vis radiations at specific wavelengths, corresponding to maximum absorbtion peaks, in both solution and dyed fiber. The human organism, through the dyed clothing, comes in direct contact with those dyes which can undergo modifications once exposed to UV radiations, having the posibility to reach the organism via cutanated transport. As it is known, the provoked negative effects are stronger during summer when UV radiations are more intense and in order to reduce their intensity dark coloured clothing is avoided. Dyes can be transformed in compounds which are easily absorbed into the skin. Some of these metabolites can be less toxic than the original corresponding dye, whilst others, such as free radicals, are potentially cancerous. Knowledge of the biological effects of the organic dyes, reactive dyes in particular, correlated with their structural and physical characteristics, permanently consists an issue of high scientific and practical interest and its solution may contribute in the diminishing of risk factors and improving of population health. UV radiation influence on the structural and colour modifications of textile materials were studied. Colour modifications are due to structural changes in aromatic and carbonil groups. In most cases photo-oxidative processes were identified in the dye structure. Dyeing was performed using non-irradiated and irradiated cotton painted with reactive blue dye 204.

  18. Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules.

    Science.gov (United States)

    Chaudhari, Ashvini U; Paul, Dhiraj; Dhotre, Dhiraj; Kodam, Kisan M

    2017-10-01

    Treatment of textile wastewater containing anthraquinone dye is quite a huge challenge due to its complex aromatic structure and toxicity. Present study deals with the degradation and detoxification of anthraquinone dye reactive blue 4 using aerobic bacterial granules. Bacterial granules effectively decolorized reactive blue 4 at wide range of pH (4.0-11.0) and temperature (20-55 °C) as well as decolorized and tolerated high concentration of reactive blue 4 dye upto 1000 mg l -1 with V max 6.16 ± 0.82 mg l -1 h -1 and K m 227 ± 41 mg l -1 . Metagenomics study evaluates important role of Clostridia, Actinobacteria, and Proteobacterial members in biotransformation and tolerance of high concentrations of reactive blue 4 dye. Up-regulation of xenobiotic degradation and environmental information processing pathways during dye exposure signifies their noteworthy role in dye degradation. Biotransformation of dye was confirmed by significant decrease in the values of total suspended solids, biological and chemical oxygen demand. The metabolites formed after biotransformation was characterized by FT-IR and GC-MS analysis. The reactive blue 4 dye was found to be phytotoxic, cytotoxic and genotoxic whereas its biotransformed product were non-toxic. This study comprehensively illustrates that, bacterial aerobic granules can be used for eco-friendly remediation and detoxification of wastewater containing high organic load of anthraquinone dye. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: A spectroscopic study

    Science.gov (United States)

    Lucilha, Adriana Campano; Bonancêa, Carlos Eduardo; Barreto, Wagner José; Takashima, Keiko

    2010-01-01

    The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 °C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 nm. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo dye molecule may be adsorbed onto the ZnO surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies.

  20. Comparison of activated carbon and bottom ash removal of reactive dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, A.R.; Gunes, Y.; Karakaya, N.; Gunes, E. [Trakya University, Tekirdag (Turkey). Dept. of Environmental Engineering

    2007-03-15

    The adsorption of reactive dye from synthetic aqueous solution onto granular activated carbon (GAC) and coal-based bottom ash (CBBA) were studied under the same experimental conditions. As an alternative to GAC CBBA was used as adsorbent for dye removal from aqueous solution. The amount of Vertigo Navy Marine (VNM) adsorbed onto CBBA was lower compared with GAC at equilibrium and dye adsorption capacity increased from 0.71 to 3.82 mg g{sup -1}, and 0.73 to 6.35 mg g{sup -1} with the initial concentration of dye from 25 to 300 mg l{sup -1} respectively. The initial dye uptake of CBBA was not so rapid as in the case of GAC and the dye uptake was slow and gradually attained equilibrium.

  1. Comparison of Electrocoagulation and Chemical Coagulation Processes in Removing Reactive red 196 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2016-06-01

    Full Text Available Background: Conventional chemical coagulation is considered as an old method to dye and COD removal in textile effluent. Electrocoagulation (EC process is a robust method to achieve maximum removal. Methods: This study was designed to compare the result of operational parameters including optimum pH and coagulant concentration for chemical coagulation with ferric chloride and alum also, voltage, electrolysis time, initial pH, and conductivity for EC with iron electrodes to remove reactive red 196 (RR 196. Results: The outcomes show that ferric chloride and alum at optimum concentration were capable of removing dye and COD by 79.63 % and 84.83% and 53% and 55%, respectively. In contrast, EC process removed the dye and COD by 99.98% and 90.4%, respectively. Conclusion: The highest treatment efficiency was obtained by increasing the voltage, electrolysis time, pH and conductivity. Increase initial dye concentration reduces removal efficiency. Ultimately, it could be concluded that EC technology is an efficient procedure for handling of colored industrial wastewaters.

  2. Photo-Electrochemical Treatment of Reactive Dyes in Wastewater and Reuse of the Effluent: Method Optimization

    Science.gov (United States)

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    In this work, the efficiency of a photo-electrochemical method to remove color in textile dyeing effluents is discussed. The decolorization of a synthetic effluent containing a bi-functional reactive dye was carried out by applying an electrochemical treatment at different intensities (2 A, 5 A and 10 A), followed by ultraviolet irradiation. The combination of both treatments was optimized. The final percentage of effluent decolorization, the reduction of halogenated organic volatile compound and the total organic carbon removal were the determinant factors in the selection of the best treatment conditions. The optimized method was applied to the treatment of nine simulated dyeing effluents prepared with different reactive dyes in order to compare the behavior of mono, bi, and tri-reactive dyes. Finally, the nine treated effluents were reused in new dyeing processes and the color differences (DECMC (2:1)) with respect to a reference were evaluated. The influence of the effluent organic matter removal on the color differences was also studied. The reuse of the treated effluents provides satisfactory dyeing results, and an important reduction in water consumption and salt discharge is achieved. PMID:28788251

  3. Bioaccumulation versus adsorption of reactive dye by immobilized growing Aspergillus fumigatus beads

    International Nuclear Information System (INIS)

    Wang, B.-E.; Hu Yongyou

    2008-01-01

    The removal of reactive brilliant blue KN-R using growing Aspergillus fumigatus (abbr. A. fumigatus) immobilized on carboxymethylcellulose (CMC) beads with respect to initial dye concentration was investigated. Bioaccumulation was the dominant mechanism of the dye removal. According to the UV-vis spectra and the results of three sets of experiments, it could be concluded that the bioaccumulation using immobilized growing A. fumigatus beads was achieved by metabolism-dependent accumulation and metabolism-independent adsorption (15-23% proportion of overall dye removal), which included biosorption by mycelia entrapped in them and adsorption on immobilization matrix. The transmission electron microscope (TEM) images showed the intracellular structures of mycelia and the toxicity of dye. It was found that the fungus had a considerable tolerance to reactive brilliant blue KN-R at initial dye concentrations of <114.7 mg/l. Though at high initial dye concentrations the growth of mycelia was inhibited significantly by the dye molecules in the growth medium, the bioaccumulation capacity was not markedly affected and the maximum bioaccumulation capacity was 190.5 ± 2.0 mg/g at an initial dye concentration of 374.4 mg/l. The bioaccumulation rates were not constant over the contact time

  4. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis

    International Nuclear Information System (INIS)

    Annadurai, Gurusamy; Ling, L.Y.; Lee, J.-F.

    2008-01-01

    The adsorption of Remazol black 13 (Reactive) dye onto chitosan in aqueous solutions was investigated. Experiments were carried out as function of contact time, initial dye concentration (100-300 mg/L), particle size (0.177, 0.384, 1.651 mm), pH (6.7-9.0), and temperature (30-60 deg. C). The equilibrium adsorption data of reactive dye on chitosan were analyzed by Langmuir and Freundlich models. The maximum adsorption capacity (q m ) has been found to be 91.47-130.0 mg/g. The amino group nature of the chitosan provided reasonable dye removal capability. The kinetics of reactive dye adsorption nicely followed the pseudo-first and second-order rate expression which demonstrates that intraparticle diffusion plays a significant role in the adsorption mechanism. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (0.212 kJ/mol) indicated that the adsorption is endothermic process. The results indicate that chitosan is suitable as adsorbent material for adsorption of reactive dye form aqueous solutions

  5. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media

    International Nuclear Information System (INIS)

    Silva, Alessandra C.; Pic, Jean Stephane; Sant'Anna, Geraldo L.; Dezotti, Marcia

    2009-01-01

    Ozonation of two azo dyes was investigated in a monitored bench scale bubble column reactor (8.5-L), varying liquid media salt content (0, 1, 40 and 100 g L -1 , NaCl). In experiments with Orange II pH was varied (5, 7.5 and 9) but ozonation of Acid Red 27 was performed at pH 7.5. Ozone self-decomposition rate-constant increased with salt concentration. Color removal was very effective and fast achieved under all experimental conditions. For the two azo dyes tested, more than 98% of color intensity was removed in 30-min ozonation assays. However, only partial mineralization of azo dyes (45%-Orange II; 20%-Acid Red 27) was attained in such experiments. The degree of mineralization (TOC removal) was negatively affected by salt concentration. Biodegradation assays conducted by respirometry revealed the inhibitory effect of dye degradation products formed during ozonation.

  6. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31 by moderately alkaliphilic bacterial consortium

    Directory of Open Access Journals (Sweden)

    Sylvine Lalnunhlimi

    2016-03-01

    Full Text Available Abstract Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151 and Direct Red 31 (DR 31. The decolorization of azo dyes was studied at various concentrations (100–300 mg/L. The bacterial consortium, when subjected to an application of 200 mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment.

  7. Clinical and immunological investigations of respiratory disease in workers using reactive dyes.

    Science.gov (United States)

    Docker, A; Wattie, J M; Topping, M D; Luczynska, C M; Newman Taylor, A J; Pickering, C A; Thomas, P; Gompertz, D

    1987-01-01

    A questionnaire survey of over 400 workers handling reactive dyes showed that over 15% had work related respiratory or nasal symptoms. Forty nine employees with symptoms were referred to chest clinics for detailed assessment. It was considered that in 19 the symptoms could be attributed to an irritant response to a variety of chemicals, including hydrochloric acid vapour, sulphur dioxide, and reactive dyes. Symptoms in 24 were attributed to an allergic reaction to a specific agent; in most (21) to one or more reactive dyes. Two patterns of allergic lower respiratory symptoms were identified; an immediate response of short duration and a longer lasting response, usually of several hours, sometimes accompanied by nocturnal asthma. A radioallergosorbent test (RAST) screen containing the most commonly used reactive dyes was used to detect specific IgE. Allergic symptoms to reactive dyes were strongly associated with specific IgE (17/21 employees) and atopy (18/21). Irritant symptoms were also associated with atopy (13/19) but only weakly associated with specific IgE (7/19). PMID:3651352

  8. Removal of Congo red dye from aqueous solutions using a halloysite-magnetite-based composite.

    Science.gov (United States)

    Ferrarini, F; Bonetto, L R; Crespo, Janaina S; Giovanela, M

    2016-01-01

    Adsorption has been considered as one of the most effective methods to remove dyes from aqueous solutions due to its ease of operation, high efficiency and wide adaptability. In view of all these aspects, this study aimed to evaluate the adsorption capacity of a halloysite-magnetite-based composite in the removal of Congo red dye from aqueous solutions. The effects of stirring rate, pH, initial dye concentration and contact time were investigated. The results revealed that the adsorption kinetics followed the pseudo-second-order model, and equilibrium was well represented by the Brunauer-Emmett-Teller isotherm. The thermodynamic data showed that dye adsorption onto the composite was spontaneous and endothermic and occurred by physisorption. Finally, the composite could also be regenerated at least four times by calcination and was shown to be a promising adsorbent for the removal of this dye.

  9. Photoassisted Electrochemical Treatment of Azo and Phtalocyanine Reactive Dyes in the Presence of Surfactants

    Science.gov (United States)

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2016-01-01

    An electrochemical treatment (EC) was applied at different intensities to degrade the chromophoric groups of dyes C.I. Reactive Black 5 (RB5) and C.I. Reactive Blue 7 (Rb7) until uncolored species were obtained. Decolorization rate constants of the azo dye RB5 were higher than the phtalocyanine Rb7 ones. In addition, the EC treatment was more efficient at higher intensities, but these conditions significantly increased the generation of undesirable by-products such as chloroform. The combination of EC with UV irradiation (UVEC) drastically minimized the generation of chloroform. The photo-assisted electrochemical treatment was also able to achieve decolorization values of 99%. Finally, mixtures of dyes and surfactants were treated by EC and UVEC. In the presence of surfactants, the decolorization kinetic of dyes was slowed due to the competitive reactions of surfactants degradation. Both methods achieved total decolorization and in both cases, the generation of haloforms was negligible. PMID:28773335

  10. Determination of the phthalocyanine textile dye, reactive turquoise blue, by electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Osugi Marly E.

    2003-01-01

    Full Text Available Turquoise blue 15 (AT15 is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00x10-8 mol L-1 to 1.00x10-6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.

  11. Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2014-08-01

    Full Text Available Dyes are an important class of pollutants and disposal of them in precious water resources must be avoided. Among various methods adsorption occupies a prominent place in dye removal. The aim of this study is to evaluate adsorption of dye Reactive Red 198 and Blue 19 (RR-198 & RB-19 (on to Aloe Vera plant ash from aqueous solutions. In this research Aloe Vera ash was prepared at laboratory conditions and then after shredding, screened by ASTM standard sieve with 60 -200 mesh sizes and the effects of pH (3-12, adsorbent dose (0.1-1 g/L, contact time (10-60 min, initial dye concentration (10-160 mg/L and temperature were investigated in the experiment. In different samples Dye concentration was measured by spectrophotometer at 592 nm and 520 nm wavelength for RR198 and RB19 respectively. Also the Langmuir and Freundlich adsorption isotherms were determined in order to describe the relations between the colored solutions and the adsorbent. The results of this study showed that acidic conditions were more conducive to enhance the hydrolysis rate than basic ones as the decomposition was optimum at pH 3. The adsorption rate of RR-198 and RB-19 dyes was increased by increasing of initial dye concentration, increasing of adsorbent dose in 0.1 to 0.4 mg/L. Dye solution was decolorized in a relatively short time (20 min. The efficiencies for RR-198 and RB- 19 reactive dyes were 82.68% and 90.42% respectively. The maximum adsorption capacity (qmax has been found to be 80.152 mg/g for RR-198 reactive dye and 88.452 mg/g for Blue 19 reactive dye. Adsorption isotherms were examined by Freundlich and Langmuir isotherm that finally showed the Freundlich multilayer isotherm has better accordance with dates. The results indicate that Aloe Vera ash plant as a natural and inexpensive adsorbent is a suitable adsorbent for the adsorption of textile dyes.

  12. Bioremediation of acid fast red dye by Streptomyces globosus under ...

    African Journals Online (AJOL)

    Administrator

    2011-04-25

    Apr 25, 2011 ... Azo dyes are widely used in industries, such as textiles, paper, plastics ... processes have received increasing interest owing to their cost effectiveness and environmental friendliness. (Mabrouk and ... hydrolytic enzymes . In addition it .... A trial for using potato peels for more economic biomass production.

  13. Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania

    Directory of Open Access Journals (Sweden)

    Peter J. Holliman

    2008-01-01

    Full Text Available Sorption kinetics and isotherms have been measured for a commercial dye (Direct Red 23 on different samples of powdered Titania, and the data were analysed to better understand the dye sensitization process for dye sensitised solar cells (DSSCs. For the sorption kinetics, the data show rapid initial sorption (<1 hour followed by slower rate of increasing uptake between 1 and 24 hours. While higher initial concentrations of dye correspond to higher sorption overall, less dye is absorbed from higher initial dye concentrations when considered as percentage uptake. The correlation between the sorption data and model isotherms has been considered with time. The Langmuir model shows better correlations compared to the Freundlich isotherm. The dye uptake data has also been correlated with Titania characterization data (X-ray diffraction, scanning electron microscopy, BET and zero point charge analysis. Kinetic data show significantly better fits to second-order models compared to first order. This suggests that chemisorption is taking place and that the interaction between the dye sorbate and the Titania sorbent involves electron sharing to form an ester bond.

  14. New risks from ancient food dyes: cochineal red allergy.

    Science.gov (United States)

    Voltolini, S; Pellegrini, S; Contatore, M; Bignardi, D; Minale, P

    2014-11-01

    This study reports an unusual case of IgE-mediated hypersensitivity to Cochineal red or Carmine red, a coloring agent of natural origin. Although the risk of anaphylactic reactions is well known, since the nineties the use of this additive seems to be nowadays on the rise. The problem of labeling of additives used in handmade food products is highlighted.

  15. DFT Study of the Structure, Reactivity, Natural Bond Orbital and Hyperpolarizability of Thiazole Azo Dyes

    Directory of Open Access Journals (Sweden)

    Osman I. Osman

    2017-02-01

    Full Text Available The structure, reactivity, natural bond orbital (NBO, linear and nonlinear optical (NLO properties of three thiazole azo dyes (A, B and C were monitored by applying B3LYP, CAM-B3LYP and ωB97XD functionals with 6-311++G** and aug-cc-pvdz basis sets. The geometrical parameters,dipolemoments,HOMO-LUMO(highest occupied molecular orbital,lowest unoccupied molecular orbital energy gaps, absorption wavelengths and total hyperpolarizabilities were investigated in carbon tetrachloride (CCl4 chloroform (CHCl3, dichloromethane (CH2Cl2 and dimethlysulphoxide (DMSO. The donor methoxyphenyl group deviates from planarity with the thiazole azo moiety by ca. 38◦; while the acceptor dicyanovinyl, indandione and dicyanovinylindanone groups diverge by ca. 6◦. The HOMOs for the three dyes are identical. They spread over the methoxyphenyl donor moiety, the thiazole and benzene rings as π-bonding orbitals. The LUMOs are shaped up by the nature of the acceptor moieties. The LUMOs of the A, B and C dyes extend over the indandione, malononitrile and dicyanovinylindanone acceptor moieties, respectively, as π-antibonding orbitals. The HOMO-LUMO splittings showed that Dye C is much more reactive than dyes A and B. Compared to dyes A and B, Dye C yielded a longer maximum absorption wavelength because of the stabilization of its LUMOs relative to those of the other two. The three dyes show solvatochromism accompanied by significant increases in hyperpolarizability. The enhancement of the total hyperpolarizability of C compared to those of A and B is due to the cumulative action of the long π-conjugation of the indanone ring and the stronger electron-withdrawing ability of the dicyanovinyl moiety that form the dicyanovinylindanone acceptor group. These findings are facilitated by a natural bond orbital (NBO technique. The very high total hyperpolarizabilities of the three dyes define their potent nonlinear optical (NLO behaviour.

  16. Carbon Nitrogen Co-Doped P25: Parameter Study on Photodegradation of Reactive Red 4

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available Photocatalytic degradation rate of reactive red 4 (RR4 using carbon coated nitrogen doped TiO2 (C N co-doped TiO2 in photocatalysis process is main goal on this research. The main operating the parameters such as effect of initial dye concentration, catalyst loading, aeration flow rate and initial pH on degradation of RR4 under 45 W fluorescent lamp was investigated. photocatalytic activity of RR4 dye decreased with increasing RR4 dye concentration. The optimum loading is around 0.04 g and optimum aeration rate is about 25 mL min-1 of C N co-doped TiO2. Effect of pH was conducted based on the optimum loading and conclude that the photocatalytic degradation of RR4 became faster at pH 2 - 7. For the future work, the modification of doping with others element like non-metal or metal with C N co-doped TiO2 can be enhanced toward the higher efficieny of photodegradation under visible light. Moreover, the immobilized technique can be used in future to overcome the difficulty of filtration on suspension.

  17. Insights into the Synergistic Effect of Fungi and Bacteria for Reactive Red Decolorization

    Directory of Open Access Journals (Sweden)

    Dandan Zhou

    2014-01-01

    Full Text Available Bacterial contamination is a prevalent problem in fungal dye wastewater decolorization that prevents the development of this technology in practical engineering. New insight into the relationship between fungi and bacteria is given in terms of settleability, bioadsorption, and biodegradation, which all confirm their synergistic effect. Sterilization is implied to be not the only mechanism for fungi decolorization. When the fungi and bacteria isolated from the activated sludge were cocultured, fungi removed more than 70% of the reactive red through sole bioadsorption in 5 min and enhanced the settleability of the bacteria group from 7.7 to 18.4 in the aggregation index. Subsequently, the bacteria played a more significant role in dye biodegradation according to the ultraviolet-visible spectrum analysis. They further enhanced the decolorization efficiency to over 80% when cocultured with fungi. Therefore, the advanced bioadsorption and settleability of fungi, combined with the good dye biodegradation ability of bacteria, results in the synergistic effect of the coculture microorganisms.

  18. Photodegradation of Acid red 18 dye by BiOI/ZnO nanocomposite: A dataset

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2018-02-01

    Full Text Available Dyes are one of the most important existing pollutants in textile industrial wastewater. These compounds are often toxic, carcinogenic, and mutagenic to living organisms, chemically and photochemically stable, and non-biodegradable. Acid red 18 is one of the azo dyes that are currently used in the textile industries. Photocatalytic degradation offers a great potential as an advanced oxidation process, in this study photocatalytic degradation of Acid red 18 by using BiOI/ZnO nanocomposite was evaluated under visible light irradiation. The influence of most essential parameters such as pH and BiOI/ZnO dosage were studied for optimum conditions. The dye removal efficiency was 85.1% at optimum experimental conditions of pH of 7, and BiOI/ZnO dosage of 1.5 g/L. The data had a good agreement with pseudo first-order kinetic model. Thus, the BiOI/ZnO/UV is an efficient process for dye degradation. Keywords: Photodegradation, Nanocomposite, BiOI/ZnO, Degradation, Dye, Acid red 18

  19. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy.

    Science.gov (United States)

    Maynez-Rojas, M A; Casanova-González, E; Ruvalcaba-Sil, J L

    2017-05-05

    Understanding dye chemistry and dye processes is an important issue for studies of cultural heritage collections and science conservation. Fiber Optics Reflectance Spectroscopy (FORS) is a powerful technique, which allows preliminary dye identification, causing no damage or mechanical stress on the artworks subjected to analysis. Some information related to specific light scattering and absorption can be obtained in the UV-visible and infrared range (300-1400nm) and it is possible to discriminate the kind of support fiber in the near infrared region (1000-2500nm). The main spectral features of natural dye fibers samples, such as reflection maxima, inflection points and reflection minima, can be used in the differentiation of various red natural dyes. In this work, a set of dyed references were manufactured following Mexican recipes with red dyes (cochineal and brazilwood) in order to determine the characteristic FORS spectral features of fresh and aged dyed fibers for their identification in historical pieces. Based on these results, twenty-nine indigenous textiles belonging to the National Commission for the Development of Indigenous People of Mexico were studied. Cochineal and brazilwood were successfully identified by FORS in several pieces, as well as the mixture of cochineal and indigo for purple color. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of chitosan on resist printing of cotton fabrics with reactive dyes

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... levels may cause the dyes to form a partial covalent bond with chitosan, thereby diminishing the resist-printing effect. In such a case, the resist printing would not be linear as a function of chitosan concentration. Red 184 exhibited the highest resist-printing effect, followed by. Blue 204 and Yellow 143.

  1. Synthetic Textile Red Dye Removal From Aqueous Solution by Adsorption onto Pomegranate Peel

    Directory of Open Access Journals (Sweden)

    Sundus Saleh Nehaba

    2017-07-01

    Full Text Available This study is conducted to evaluate the ability of using pomegranate peel as low cost material for adsorption one of synthetic textile dye (C.I.Direct Red 89 dye. The removal of dye from aqueous solution is done by using pomegranate peel with two forms, as raw pomegranate peel (RPP and activated carbon prepared from pomegranate peel(ACPP. Some operational factors like contact time, pH, adsorbent dosage , and temperature were investigated in experimental work. Also the thermodynamic parameters ΔH, ΔG, and ΔS were calculated, the result shows that the adsorption process of dye onto two forms of adsorbents was spontaneous and endothermic in nature. Finally, the adsorption isotherm of experimental data we refitted for the Langmuir, and Freundlich equations

  2. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    Science.gov (United States)

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  3. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay

    International Nuclear Information System (INIS)

    Karim, A. Bennani; Mounir, B.; Hachkar, M.; Bakasse, M.; Yaacoubi, A.

    2009-01-01

    In this study, Moroccan crude clay of Safi, which was characterized by X-ray diffraction, is used as adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the Basic Red 46 (BR46) in aqueous solutions at various dye concentrations, adsorbent masses and pH values. The results showed that the adsorption capacity of the dye increased by initial dye concentration and pH values. Two kinetic models (the pseudo-first-order and the pseudo-second-order) were used to calculate the adsorption rate constants. The adsorption kinetics of the basic dye followed pseudo-second-order model. The experimental data isotherms were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevish equations. The monolayer adsorption capacity for BR46 dye is 54 mg/g of crude clay. Nearly 20 min of contact time was found to be sufficient for the dye adsorption to reach equilibrium. Thermodynamical parameters were also evaluated for the dye-adsorbent system and revealed that the adsorption process is exothermic in nature.

  4. Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors.

    Science.gov (United States)

    Honorio, Jacqueline Ferandin; Veit, Márcia Teresinha; Gonçalves, Gilberto da Cunha; de Campos, Élvio Antonio; Fagundes-Klen, Márcia Regina

    2016-01-01

    The textile industry is known for the high use of chemicals, such as dyes, and large volumes of effluent that contaminate waters, a fact that has encouraged research and improved treatment techniques. In this study, we used unprocessed soybean hulls for the removal of reactive blue BF-5G dye. The point of zero charge of soybean hulls was 6.76. Regarding the speed of agitation in the adsorption process, the resistance to mass transfer that occurs in the boundary layer was eliminated at 100 rpm. Kinetics showed an experimental amount of dye adsorbed at equilibrium of 57.473 mg g(-1) obtained under the following conditions: dye initial concentration = 400 mg L(-1); diameter of particle = 0.725 mm; dosage = 6 g L(-1); pH 2; 100 rpm; temperature = 30 °C; and duration of 24 hours. The pseudo-second order best showed the dye removal kinetics. The adsorption isotherms performed at different temperatures (20, 30, 40 and 50 °C) showed little variation in the concentration range assessed, being properly adjusted by the Langmuir isotherm model. The maximum capacity of dye adsorption was 72.427 mg g(-1) at 30 °C. Since soybean hull is a low-cost industrial byproduct, it proved to be a potential adsorbent for the removal of the textile dye assessed.

  5. Modified coal fly ash as low cost adsorbent for removal reactive dyes from batik industry

    Directory of Open Access Journals (Sweden)

    Taufiq Agus

    2018-01-01

    Full Text Available The removal of reactive dyes on modified coal fly ash has been investigated during a series of batch adsorption experiments. Physical characteristics of modified coal fly ash was characterized by Brunauer Emmett Teller (BET surface area analysis, X-ray powder diffraction (XRD, Fourier transform infrared spectrophotometer (FT-IR, and scanning electron microscope (SEM. The effects of operational parameters such as initial dye concentration (50–200 mg/L, solution pH (4–10 and adsorbent dosage (50–200 mg/L were studied. The adsorption experiments indicated that modified coal fly ash was effective in removing of Remazol Blue. The percentage removal of dyes increased while the modified fly ash dosage increased. The percentage removal of dyes increased with decreased initial concentration of the dye and also increased with amount of adsorbent used. The optimum of removal of dyes was found to be 94% at initial dye concentration 50 g/mL, modified fly ash dosage 250 g/mL, and pH of 2.0.

  6. Photocatalytic oxidation of a reactive azo dye and evaluation of the ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the photocatalytic oxidation of a reactive azo dye and determine the improvement in the biodegradability when photocatalytic oxidation was used as a pretreatment step prior to biological treatment. The results obtained from the experiments adding H2O2/TiO2 show that the ...

  7. Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.

    Science.gov (United States)

    Gong, Honghong; Liu, Mingzhu; Zhang, Bing; Cui, Dapeng; Gao, Chunmei; Ni, Boli; Chen, Jiucun

    2011-12-01

    The aim of this study was to prepare oxidized guar gum with a simple dry method, basing on guar gum, hydrogen peroxide and a small amount of solvent. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The product was characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, scanning electron microscopy and differential scanning calorimetry. The hydrated rate of guar gum and oxidized guar gum was estimated through measuring the required time when their solutions (1%, w/v) reached the maximum viscosity. The effects of the salt concentration and pH on viscosity of the resultant product were studied. The mixed paste containing oxidized guar gum and carboxymethyl starch was prepared and its viscosity was determined by the viscometer. The rheological property of the mixed paste was appraised by the printing viscosity index. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the mixed paste could partially replace sodium alginate as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight.

    Science.gov (United States)

    Rajeswari, A; Jackcina Stobel Christy, E; Pius, Anitha

    2018-02-01

    A study was carried out to investigate the degradation of organic contaminants (Congo red and Reactive yellow - 105) using cellulose acetate - polystyrene (CA-PS) membrane with and without ZnO impregnation. Scanning electron microscope (SEM), electron dispersive analysis of X-rays (EDAX), Fourier transform infrared spectrometer (FTIR), atomic force microscope (AFM) and thermogravimeric analysis (TG-DTA) analysis were carried out to characterize bare and ZnO impregnated CA-PS membranes. Membrane efficiency was also tested for pure water flux and antifouling performance. The modified membrane showed almost 85% water flux recovery. Blending of ZnO nanoparticles to CA-PS matrix could decrease membrane fouling and increase permeation quality of the membrane with above 90% of photocatalytic degradation efficiency for dyes. The rate of degradation of dyes was observed using UV-Vis spectrometer. Reusability of CA-PS-ZnO membrane was studied and no significant change was noted in the degradation efficiency until fourth cycle. Langmuir-Hinshelwood kinetic model well describes the photo degradation capacity and the degradation of dyes CR and RY - 105 exhibited pseudo-first order kinetics. The regression coefficient (R) of CR and RY - 105 found to be 0.99. The novelty of the prepared CA-PS-ZnO membrane is that it has better efficiency and high thermal stability than our previously reported material. Therefore, ZnO impregnated CA-PS membrane had proved to be an innovative alternative for the degradation of CR and RY - 105 dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels.

    Science.gov (United States)

    El-Harby, Nouf F; Ibrahim, Shaimaa M A; Mohamed, Nadia A

    2017-11-01

    Adsorption capacity of three antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels for Congo red dye removal from its aqueous solution has been investigated for the first time in this work. These hydrogels were prepared by reacting chitosan with various amounts of terephthaloyl diisothiocyanate cross-linker. The effect of the hydrogel structural variations and several dye adsorption processing parameters to achieve the best adsorption capacity were investigated. The hydrogels' structural variations were obtained by varying their terephthaloyl thiourea moieties content. The processing variables included initial concentration of the dye solution, temperature and time of exposure to the dye. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by the pseudo-second-order equation and the Langmuir equation, respectively. On the basis of the Langmuir analysis Congo red dye gave the maximum sorption capacity of 44.248 mg/g. The results obtained confirmed that the sorption phenomena are most likely to be controlled by chemisorption process. The adsorption reaction was endothermic and spontaneous according to the calculated results of adsorption thermodynamics.

  10. Case study of the sonochemical decolouration of textile azo dye Reactive Black 5

    International Nuclear Information System (INIS)

    Vajnhandl, Simona; Le Marechal, Alenka Majcen

    2007-01-01

    The decolouration and mineralization of reactive dye C.I. Reactive Black 5, a well-known representative of non-biodegradable azo dyes, by means of ultrasonic irradiation at 20, 279 and 817 kHz has been investigated with emphasis on the effect of various parameters on decolouration and degradation efficiency. Characterization of the used ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using Fricke and iodine dosimeter. Experiments were carried out with low frequency probe type, and a high-frequency plate type transducer at 50, 100 and 150 W of acoustic power and within the 5-300 mg/L initial dye concentration range. Decolouration, as well as radical production, increased with increasing frequency, acoustic power, and irradiation time. Any increase in initial dye concentration results in decreased decolouration rates. Sonochemical decolouration was substantially depressed by the addition of 2-methyl-2-propanol as a radical scavenger, which suggests radical-induced reactions in the solution. Acute toxicity to marine bacteria Vibrio fischeri was tested before and after ultrasound irradiation. Under the conditions employed in this study, no toxic compounds were detected after 6 h of irradiation. Mineralization of the dye was followed by TOC measurements. Relatively low degradation efficiency (50% after 6 h of treatment) indicates that ultrasound is rather inefficient in overall degradation, when used alone

  11. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  12. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon

    International Nuclear Information System (INIS)

    Ahmad, Rais; Kumar, Rajeev

    2010-01-01

    This study investigates the potential use of bael shell carbon (BSC) as an adsorbent for the removal of congo red (CR) dye from aqueous solution. The effect of various operational parameters such as contact time, temperature, pH, and dye concentration were studied. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, and pseudo-second-order kinetics. The dye uptake process obeyed the pseudo-second-order kinetic expression at pH 5.7, 7 and 8 whereas the pseudo-first-order kinetic model was fitted well at pH 9. Langmuir, Freundlich and Temkin adsorption models were applied to fit adsorption equilibrium data. The best-fitted data was obtained with the Freundlich model. Thermodynamic study showed that adsorption of CR onto BSC was endothermic in nature and favorable with the positive ΔH o value of 13.613 kJ/mol.

  13. Adsorptive removal of congo red and sunset yellow dyes from water systems by lady finger stem

    International Nuclear Information System (INIS)

    Abbas, A.; Murtaza, S.; Ayub, R.; Rehman, R.; Zahid, A.

    2012-01-01

    Summary: In this research work two anionic dyes, i.e. Congo Red and Sunset Yellow were removed successfully from aqueous media by Lady Finger stem in batch mode. Operational conditions optimization showed that agitation speed and particle size did not affect much in adsorption of these dyes; but contact time, pH, adsorbent dose and temperature of system effects the adsorption rate. Optimized conditions of adsorption for Congo Red dye were: 40 minute contact time, 8.0 pH, 0.5 g adsorbent dose, 40-60 microns mesh sized particles, 150 rpm agitation speed and 50 degree C temperature. Whereas for Sunset Yellow optimized conditions were: 30 minute contact time, 2.0 pH, 2.5 g adsorbent dose, 20-40 microns mesh sized particles, 50 rpm agitation speed and 30 degree C temperature. Suitability of equilibrium data was modulated with Langmuir, Freundlich and Temkin models and found that both physisorption and chemisorption processes play important role in adsorption of these dyes by Lady Finger stem. The results demonstrated that Lady Finger stem can be efficiently employed on larger scale wastewater treatment. (author)

  14. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    Science.gov (United States)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  15. Studies on UV/NaOCl/TiO2/Sep photocatalysed degradation of Reactive Red 195.

    Science.gov (United States)

    Karaoğlu, M Hamdi; Uğurlu, Mehmet

    2010-02-15

    The photocatalytic degradation of Reactive Red 195 (RR195) has been investigated in aqueous suspensions by using ultraviolet (UV), sodium hypochlorite (NaOCl) and TiO(2)/Sep nanoparticles together. To get the TiO(2)/Sep nanoparticle, the nanocrystalline TiO(2) anatase phase on sepiolite was obtained using a sufficient thermal treatment by gradually increasing the temperature from 300, 400 and 500 degrees C for 3h. Then, TiO(2)/Sep materials were characterized using different spectral and technical structural analyses with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The influence of pH, catalyst amount, oxidant and initial dye concentration was investigated in all the experiments. Maximum colour and chemical oxygen demand (COD) removal were 99.9% and 78% respectively, at a dye concentration of 250 mg L(-1), NaOCl dosage of 50.37 mM, 0.1 g L(-1) weight of TiO(2)/Sep and pH of 5.45 in 3h. In addition, the pseudo-first order model was applied and r(2) values were noted from 0.92 to 0.99.

  16. Discoloration of a red cationic dye by supported TiO2 photocatalysis

    International Nuclear Information System (INIS)

    Mounir, B.; Pons, M.N.; Zahraa, O.; Yaacoubi, A.; Benhammou, A.

    2007-01-01

    The degradation under UV, visible and sunlight irradiation of C.I. Basic Red 46 (BR 46) dye used for acrylic fibers dyeing has been studied in a lab-scale continuous system with two different immobilized TiO 2 systems. Catalyst I was based on TiO 2 particles deposited on cellulose fibers; Catalyst II combined TiO 2 particles deposited on a layer of cellulose fibers (as in Catalyst I) with a layer of carbon fibers and finally a layer of cellulose fibers. The treatment of aqueous dye solutions and industrial wastewater contaminated with the same dye has been evaluated in terms of color removal and chemical oxygen demand (COD) decrease. With UV light, aqueous solutions containing dye were decolorized slightly more rapidly with Catalyst II than with Catalyst I. Sunlight was also very effective and experiments involving sunlight irradiation showed Catalyst II to be the more efficient, giving more than 90% discoloration after 20 min of treatment. Comparing the discoloration yield by adsorption or under visible light for both catalysts, it was observed that the difference between them is below 5%. The adsorption kinetics was found to follow a second-order rate law for Catalyst I and a first-order rate law for Catalyst II. The kinetics of photocatalytic degradation under UV or sunlight were found to follow a first-order rate law for both catalytic systems. Under sunlight the COD removal yield for textile wastewater reaches 33% with Catalyst I against 93% with Catalyst II

  17. Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite

    International Nuclear Information System (INIS)

    Dogan, Mehmet; Karaoglu, M. Hamdi; Alkan, Mahir

    2009-01-01

    Kaolinite, a low-costly material, is the most abundant phyllosilicate mineral in highly weathered soils. In this work, the adsorption kinetics of maxilon yellow 4GL (MY 4GL) and maxilon red GRL (MR GRL) dyes on kaolinite from aqueous solutions was investigated using the parameters such as contact time, stirring speed, initial dye concentration, initial pH, ionic strength, acid-activation, calcination and solution temperature. The equilibrium time was 150 min for both dyes. The results showed that alkaline pH was favorable for the adsorption of MY 4GL and MR GRL dyes and physisorption seemed to play a major role in the adsorption process. It was found that the rate of adsorption decreases with increasing temperature and the process is exothermic. The adsorption kinetics followed the pseudo-second-order equation for both dyes investigated in this work with the k 2 values lying in the region of 1.79 x 10 4 to 107.87 x 10 4 g/mol min for MY 4GL and 3.44 x 10 4 to 72.09 x 10 4 g/mol min for MR GRL. The diffusion coefficient values calculated for the dyes were in the range of 3.76 x 10 -9 to 62.50 x 10 -9 cm 2 /s for MY 4GL and 1.98 x 10 -9 to 44.00 x 10 -9 cm 2 /s for MR GRL, and are compatible with other studies reported in the literature. The thermodynamic activation parameters such as the enthalpy, entropy and free energy were determined. The obtained results confirmed the applicability of this clay as an efficient adsorbent for cationic dyes.

  18. Adsorption of the reactive azo dyes onto NH4Cl-induced activated carbon

    Directory of Open Access Journals (Sweden)

    Sakine Shekoohiyan

    2016-03-01

    Full Text Available Background: The efficacy of NH4Cl-induced activated carbon (NAC was examined in order to adsorb RR198, an azo reactive model dye, from an aqueous solution. Methods: The effects of pH (3 to 10, adsorbent dose (0.1 to 1.2 g/L, dye concentration and contact time on the adsorption efficiency were investigated. Results: The results showed that the removal of dye was highest at a solution pH of 7 and a powder dose of 1.1 g/L. The 85.9%, 72.6% and 65.4% removal of RR198 was obtained for a concentration of 25, 50 and 100 mg/L, respectively, at a relatively short contact time of 30 minutes, and at optimum pH and NAC concentrations of 1 g/L. The experimental data for kinetic analysis illustrated a best fit to the pseudo-second-order model. The study data on equilibrium were modeled using Langmuir, Freundlich and Dubinin–Radushkevich models; the Langmuir equation provided the best fit for the data. Conclusion: Therefore, the NAC appears to be an efficient and appropriate adsorbent for the removal of reactive azo dyes from waste streams.

  19. The application of sensitizers from red frangipani flowers and star gooseberry leaves in dye-sensitized solar cells

    Science.gov (United States)

    Almaz Dhafina, Wan; Salleh, Hasiah; Zalani Daud, Muhamad; Ali, Nora’aini

    2018-05-01

    Nowadays natural based dyes for dye-sensitized solar cells (DSSCs) have been in research field attention due to its advantages over other type of dyes such as low-cost, low-toxicity, completely biodegradable and abundance of resources. Natural dyes can be produced via the simple extraction method of pigments from plant parts such as flower, fruits, leaves, tuber etc. In this feature article, the natural dyes which composed of anthocyanin pigment from red frangipani flowers and chlorophyll from star gooseberry leaves were applied in zinc oxide, (ZnO) based-DSSC. The ZnO photoanode of the DSSCs sample were sensitized in each dye with different duration. It was observed that DSSCs which has chlorophyll pigment as dye had better performance with power conversion efficiency (PCE) of 0.007%.

  20. Application of ionizing radiation on industry waste treatment I. radiolysis of standard reactive dye Cibacron violet

    International Nuclear Information System (INIS)

    Winarti Andayani; Agustin Sumartono

    1999-01-01

    The effect of aeration, irradiation dose and pH on radiation degradation of reactive dye cibacron violet 2r in aqueous solution have been studied. Observation was done on the absorption spectrum before and after irradiation at various conditions. The percentage of degraded sample was analyzed by using HPLC with UV detector. The percentage of degradation was higher by aeration during irradiation. It suggest that oxygen is important for degradation of the dye molecule. Irradiation at neutral pH is preferred to obtain maximum degradation, since pH may affect the reactivity of the radicals produced by the radiolysis of water molecules. One of the degradation product that could be detected was oxalic acid. (author)

  1. ADSORPTION OF THE DYE REACTIVE BLUE 5G IN RETORTED SHALE

    Directory of Open Access Journals (Sweden)

    R. Lambrecht

    2015-03-01

    Full Text Available Abstract In this study the influence of the volumetric flow rate and feed concentration was investigated for the adsorption of the reactive dye Blue 5G. Experiments were carried out in a bed packed with retorted shale, at 30 ºC. The ranges investigated were flow rate 2 -10 mL/min and the feed concentration 13-105 mg/L. Mathematical models were used to represent the dynamic sorption. The double resistance model considers the effects of the axial dispersion and the mass transfer resistance of the external film and inside the particles. As a result, the mass transfer coefficient of the external film and the internal mass transfer coefficient were estimated. The Thomas model was used to simulate the experimental data. In this model the fitted parameter was the adsorption kinetic constant. The first model provided an acceptable representation of the dynamic uptake of the reactive dye Blue 5G.

  2. Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye

    International Nuclear Information System (INIS)

    Tunc, Ozlem; Tanaci, Hacer; Aksu, Zuemriye

    2009-01-01

    In this study, the potential use of cotton plant wastes - stalk (CS) and hull (CH) - as sorbents for the removal of Remazol Black B (RB5), a vinyl sulfone type reactive dye, was investigated. The results indicated that adsorption was strongly pH-dependent but slightly temperature-dependent for each sorbent-dye system. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich adsorption models were used for the mathematical description of adsorption equilibrium and isotherm constants were evaluated at 25 deg. C. All models except the Freundlich model were applicable for the description of dye adsorption by both sorbents in the concentration range studied. According to the Langmuir model, CS and CH sorbents exhibited the highest RB5 dye uptake capacities of 35.7 and 50.9 mg g -1 , respectively, at an initial pH value of 1.0. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye, and adsorption kinetics followed the pseudo second-order type kinetic model for each sorbent. Using the Langmuir model parameters, thermodynamic constant ΔG o was also evaluated for each sorption system

  3. Development of sustainable dye adsorption system using nutraceutical industrial fennel seed spent-studies using Congo red dye.

    Science.gov (United States)

    Taqui, Syed Noeman; Yahya, Rosiyah; Hassan, Aziz; Nayak, Nayan; Syed, Akheel Ahmed

    2017-07-03

    Fennel seed spent (FSS)-an inexpensive nutraceutical industrial spent has been used as an efficient biosorbent for the removal of Congo red (CR) from aqueous media. Results show that the conditions for maximum adsorption would be pH 2-4 and 30°C were ideal for maximum adsorption. Based on regression fitting of the data, it was determined that the Sips isotherm (R 2 = 0.994, χ 2 = 0.5) adequately described the mechanism of adsorption, suggesting that the adsorption occurs homogeneously with favorable interaction between layers with favorable interaction between layers. Thermodynamic analysis showed that the adsorption is favorable (negative values for ΔG°) and endothermic (ΔH° = 12-20 kJ mol -1 ) for initial dye concentrations of 25, 50, and 100 ppm. The low ΔH° value indicates that the adsorption is a physical process involving weak chemical interactions like hydrogen bonds and van der Waals interactions. The kinetics revealed that the adsorption process showed pseudo-second-order tendencies with the equal influence of intraparticle as well as film diffusion. The scanning electron microscopy images of FSS show a highly fibrous matrix with a hierarchical porous structure. The Fourier transform infrared spectroscopy analysis of the spent confirmed the presence of cellulosic and lignocellulosic matter, giving it both hydrophilic and hydrophobic properties. The investigations indicate that FSS is a cost-effective and efficient biosorbent for the remediation of toxic CR dye.

  4. Synthesis and characterization of carboxymethyl potato starch and its application in reactive dye printing.

    Science.gov (United States)

    Zhang, Bing; Gong, Honghong; Lü, Shaoyu; Ni, Boli; Liu, Mingzhu; Gao, Chunmei; Huang, Yinjuan; Han, Fei

    2012-11-01

    Carboxymethyl potato starch (CMPS) was synthesized with a simple dry and multi-step method as a product of the reaction of native potato starch and monochloroacetic acid in the presence of sodium hydroxide. The influence of the molar ratio of sodium hydroxide to anhydroglucose unit, the volume of 95% (v/v) ethanol, the rotation rate of motor driven stirrer and the reaction time for degree of substitution (DS) were evaluated. The product was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). FTIR spectrometry showed new bonds at 1618 and 1424 cm⁻¹ when native starch underwent carboxymethylation. SEM pictures showed that the smooth surface of native starch particles was mostly ruptured. XRD revealed that starch crystallinity was reduced after carboxymethylation. The viscosity of the mixture paste of carboxymethyl starch and sodium alginate (SA) was measured using a rotational viscometer. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with SA. And the results indicated that the mixed paste could partially replace SA as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Study of the Direct Red 81 Dye/Copper(II-Phenanthroline System

    Directory of Open Access Journals (Sweden)

    Elsa Walger

    2018-01-01

    Full Text Available Recovered papers contain several chromophores, such as wood lignin and dyes. These have to be eliminated during paper recycling in order to produce white paper. Hydrogen peroxide under alkaline conditions is generally used to decolorize lignin, but its effect on dyes is limited. Copper(II-phenanthroline (Cu-Phen complexes can activate the oxidation of lignin by hydrogen peroxide. Hydrogen peroxide may also be activated during recycled fiber bleaching, thus enhancing its color-stripping efficiency towards unoxidizable azo dyes. The purpose of this paper was to determine the effect of Cu-Phen complexes on a model azo dye, Direct Red 81 (DR81, in aqueous solution. Different Cu-Phen solutions (with different initial Cu:Phen molar ratios were prepared and mixed with the dye at different pHs. The geochemical computer program PHREEQC allowed precise calculation of the theoretical distribution between different possible coordinates (CuPhenOH+, Cu(Phen22+, CuPhen(OH2, Cu(Phen32+, etc. depending on pH and initial concentrations. UV-vis spectroscopic measurements were correlated with the major species theoretically present in each condition. The UV absorbance of the system was mainly attributed to the Cu-Phen complex and the visible absorbance was only due to the dye. Cu-Phen appeared to reduce the color intensity of the DR81 dye aqueous solution under specific conditions (more effective at pH 10.7 with Cu:Phen = 1:1, probably owing to the occurrence of a coordination phenomenon between DR81 and Cu-Phen. Hence, the ligand competition between phenanthroline and hydroxide ions would be disturbed by a third competitor, which is the dye molecule. Further investigation proved that the DR81 dye is able to form a complex with copper-phenanthroline, leading to partial color-stripping. This new “color-stripping effect” may be a new opportunity in paper and textile industries for wastewater treatment.

  6. Removal of Acid Red 18 dye from Aqueous Solutions Using Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2015-08-01

    Full Text Available Background and Purpose:Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim was to evaluate the performance nanoscalezero-valent iron (NZVI in the removal of dye acid red 18 (AR18 from aqueous solutions. Materials and Methods:This study was conducted at the laboratory scale. In this study, the removal efficiency of AR18 from a synthetic solution by NZVI was investigated. As well as the effect of solution pH, dye concentration, the concentration of NZVI and contact time in decolorization efficiency was investigated. Results:The results show that in pH = 3, contact time of 80 minutes, dye concentration of 25 mg/l and concentration of NZVI of 2 g/l, the removal efficiency was about 94%. Conclusion:According to the results of experiments, NZVI has high efficiency in removal of AR18 from aqueous solution.

  7. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.

    Science.gov (United States)

    Chawla, Sneha; Uppal, Himani; Yadav, Mohit; Bahadur, Nupur; Singh, Nahar

    2017-01-01

    In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO 2 ) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO 2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg -1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. REMOVAL OF REACTIVE DYES FROM WASTEWATER OF TEXTILE INDUSTRIES BY USING ENVIRONMENTAL FRIENDLY ADSORBENTS

    Directory of Open Access Journals (Sweden)

    ALAM Md Shamim

    2016-05-01

    Full Text Available This paper is aimed at developing a method to treat wastewater by using inexpensive adsorbents. Textile industries produce wastewater, otherwise known as effluent, as a bi-product of their production. The effluent contains several pollutants. Among the various stages of textile production, the operations in the dyeing plant, which include pre-treatments, dyeing, printing and finishing, produce the most pollution. The textile dyeing wastes contain unused or partially used organic compounds, and high level of different pollutants. They are often of strong color and may also be of high temperature. When disposed into water bodies or onto land these effluents will result in the deterioration of ecology and damage to aquatic life. Furthermore they may cause damage to fisheries and economic loss to fishermen and farmer, there may be impacts on human health which can be removed with the help of an effluent treatment plant (ETP. The “clean” water can then be safely discharged into the environment and ultimately save our environment from pollution. In this study, rice husk and cotton dust were used as an adsorbent. In this research work waste water was characterized with this useless adsorbents. The parameters which were tested in this study are DO, BOD, COD, TS, TDS and TSS. The results showed that the selected bio adsorbents have good potential for removal of reactive dyes from textile effluent.

  9. Dosimetric studies based on the radiation-induced bleaching of Sudan red and Sudan blue dyes in organic solutions

    International Nuclear Information System (INIS)

    Souka, N.; Farag, A.N.

    1990-01-01

    An investigation was carried out on the effect of γ-radiation on the absorption spectra of Sudan red and Sudan blue dyes in organic solutions. A continuous decrease in the absorbance values at the absorption bands was observed with an increase of absorbed dose. The radiation sensitivities of decoloration gave widely different radiation chemical reduction yields (G-values) for the bleaching of both dyes depending on whether xylene, ethyl acetate, or chloroform was used as the solvent. On the basis of experimental results, suggestions are made concerning the dye solutions as prospective dosimeters. The following absorbed dose ranges can be covered: 10 1 -10 2 Gy by 10 -5 M Sudan red or Sudan blue in chloroform; 4 x 10 2 -4 x 10 3 Gy by 10 -5 M Sudan red or Sudan Blue in ethyl acetate; 10 3 -3 x 10 4 Gy by 5 x 10 -6 M Sudan red in xylene. (author)

  10. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  11. The Application of Low-Cost Adsorbent for Reactive Blue 19 Dye Removal from Aqueous Solution: Lemna Minor

    Directory of Open Access Journals (Sweden)

    Davoud Balarak

    2015-10-01

    Full Text Available Background & Aims of the Study: Due to widespread use and adverse effect of dyes, the removal of dyes from effluents is necessary. This study was aimed to remove the reactive blue 19 dye removal from aqueous solution by dried Lemna minor. Materials and Methods:  The effect of various parameters including contact time, solution pH, adsorbent dosage and dye concentration was investigated in this experimental-lab study, Also, the isotherm and kinetic studies was performed for RB19 dye adsorption process. Results: The results indicated that RB19 dye removal efficiency increases by increasing of contact time and adsorbent dosage. The equilibrium time was 75 min ad the maximum dye removal efficiency was obtained in pH=3. Also, the dye removal efficiency decreases by increasing of pH and initial concentration. It was found that the equilibrium data was best follow by Langmuier isotherm. Also, the pseudo-second-kinetic model was best applicable for RB 19 dye adsorption. Conclusion: It can be concluded that the dried Lemna minor can be considered as an effective adsorbent to remove the RB19 dye.

  12. Discoloration of a red cationic dye by supported TiO{sub 2} photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Mounir, B. [Ecole Superieure de Technologie de Safi, Universite Cadi Ayyad, BP 89, Route Dar Si Aissa, Safi (Morocco); Pons, M.N. [Laboratoire des Sciences du Genie Chimique, CNRS-ENSIC-INPL, 1, rue Grandville, BP 20451, F-54001 Nancy Cedex (France)], E-mail: Marie-Noelle.Pons@ensic.inpl-nancy.fr; Zahraa, O. [Departement de Chimie Physique des Reactions, ENSIC-INPL, 1, rue Grandville, BP 20451, F-54001 Nancy Cedex (France); Yaacoubi, A. [Departement de Chimie, Faculte des Sciences Semlalia, Universite Cadi Ayyad, Boulevard Prince Moulay Abdellah, BP 2390, 40000 Marrakech (Morocco); Benhammou, A. [Laboratoire d' Automatique et d' Etudes des Procedes, Faculte des Sciences Semlalia, Universite Cadi Ayyad, Boulevard Prince Moulay Abdellah, BP 2390, 40000 Marrakech (Morocco)

    2007-09-30

    The degradation under UV, visible and sunlight irradiation of C.I. Basic Red 46 (BR 46) dye used for acrylic fibers dyeing has been studied in a lab-scale continuous system with two different immobilized TiO{sub 2} systems. Catalyst I was based on TiO{sub 2} particles deposited on cellulose fibers; Catalyst II combined TiO{sub 2} particles deposited on a layer of cellulose fibers (as in Catalyst I) with a layer of carbon fibers and finally a layer of cellulose fibers. The treatment of aqueous dye solutions and industrial wastewater contaminated with the same dye has been evaluated in terms of color removal and chemical oxygen demand (COD) decrease. With UV light, aqueous solutions containing dye were decolorized slightly more rapidly with Catalyst II than with Catalyst I. Sunlight was also very effective and experiments involving sunlight irradiation showed Catalyst II to be the more efficient, giving more than 90% discoloration after 20 min of treatment. Comparing the discoloration yield by adsorption or under visible light for both catalysts, it was observed that the difference between them is below 5%. The adsorption kinetics was found to follow a second-order rate law for Catalyst I and a first-order rate law for Catalyst II. The kinetics of photocatalytic degradation under UV or sunlight were found to follow a first-order rate law for both catalytic systems. Under sunlight the COD removal yield for textile wastewater reaches 33% with Catalyst I against 93% with Catalyst II.

  13. Liquid-phase separation of reactive dye by wood-rotting fungus: a biotechnological approach.

    Science.gov (United States)

    Binupriya, Arthur R; Sathishkumar, Muthuswamy; Dhamodaran, Kavitha; Jayabalan, Rasu; Swaminathan, Krishnaswamy; Yun, Sei Eok

    2007-08-01

    The live and pretreated mycelial pellets/biomass of Trametes versicolor was used for the biosorption of a textile dye, reactive blue MR (RBMR) from aqueous solution. The parameters that affect the biosorption of RBMR, such as contact time, concentration of dye and pH, on the extent of RBMR adsorption were investigated. To develop an effective and accurate design model for removal of dye, adsorption kinetics and equilibrium data are essential basic requirements. Lagergren first-order, second-order and Bangham's model were used to fit the experimental data. Results of the kinetic studies showed that the second order kinetic model fitted well for the present experimental data. The Langmuir, Freundlich and Temkin adsorption models were used for the mathematical description of the biosorption equilibrium. The biosorption equilibrium data obeyed well for Langmuir isotherm and the maximum adsorption capacities were found to be 49.8, 51.6, 47.4 and 46.7 mg/g for live, autoclaved, acid- and alkali-pretreated biomass. The dye uptake capacity order of the fungal biomass was found as autoclaved > live > acid-treated > alkali-pretreated. The Freundlich and Temkin models were also able to describe the biosorption equilibrium on RBMR on live and pretreated fungal biomass. Acidic pH was favorable for the adsorption of dye. Studies on pH effect and desorption show that chemisorption seems to play a major role in the adsorption process. On comparison with fixed bed adsorption, batch mode adsorption was more efficient in adsorption of RBMR.

  14. ADSORPTION OF THE DYE REACTIVE BLUE 5G IN RETORTED SHALE

    OpenAIRE

    Lambrecht, R.; Barros, M. A. S. D. de; Arroyo, P. A.; Borba, C. E.; Silva, E. A. da

    2015-01-01

    Abstract In this study the influence of the volumetric flow rate and feed concentration was investigated for the adsorption of the reactive dye Blue 5G. Experiments were carried out in a bed packed with retorted shale, at 30 ºC. The ranges investigated were flow rate 2 -10 mL/min and the feed concentration 13-105 mg/L. Mathematical models were used to represent the dynamic sorption. The double resistance model considers the effects of the axial dispersion and the mass transfer resistance...

  15. Experimental and ab initio DFT calculated Raman Spectrum of Sudan I, a Red Dye

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Liu, Chuan

    2011-01-01

    The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3-21G and 6-311+G(d,p) basis...... of the Sudan I molecule was involved in the majority of the vibrations through N N and C–N stretching and various bending modes. Low-intensity bands in the lower wavenumber range (at about 721, 616, 463 and 218 cm−1) were selectively enhanced by the resonance Raman effect when using the 532 nm excitation line....... Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different...

  16. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  17. Removal of Reactive Orange 16 Dye from Aqueous Solution by Using Modified Kenaf Core Fiber

    Directory of Open Access Journals (Sweden)

    Maytham Kadhim Obaid

    2016-01-01

    Full Text Available Evaluated removal of reactive orange 16 (RO16 dye from aqueous solution was studied in batch mode by using kenaf core fiber as low-cost adsorbents. In this attempt, kenaf core fiber with size 0.25–1 mm was treated by using (3-chloro-2-hydroxypropyl trimethylammonium chloride (CHMAC as quaternization agent. Then effective parameters include adsorbent dose, pH, and contact time and initial dye concentration on adsorption by modified kenaf core fiber was investigated. In addition, isotherms and kinetics adsorption studies were estimated for determination of the equilibrium adsorption capacity and reactions dynamics, respectively. Results showed that the best dose of MKCF was 0.1 g/100 mL, the maximum removal of RO16 was 97.25 at 30°C, pH = 6.5, and agitation speed was 150 rpm. The results also showed that the equilibrium data were represented by Freundlich isotherm with correlation coefficients R2=0.9924, and the kinetic study followed the pseudo-second-order kinetic model with correlation coefficients R2=0.9997 for Co=100 mg/L. Furthermore, the maximum adsorption capacity was 416.86 mg/g. Adsorption through kenaf was found to be very effective for the removal of the RO16 dye.

  18. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes

    International Nuclear Information System (INIS)

    Chen Ping; Duan Yu; Xie Wenfa; Zhao Yi; Hou Jingying; Liu Shiyong; Zhang Liying; Li Bin

    2009-01-01

    We demonstrate efficient white organic light-emitting devices (WOLEDs) based on an orange phosphorescent iridium complex bis(2-(2-fluorphenyl)-1,3-benzothiozolato-N, C 2' )iridium(acetylacetonate) in combination with blue phosphorescent dye bis[(4, 6-difluorophenyl)-pyridinato-N,C 2 )](picolinato) Ir(III) and red phosphorescent dye bis[1-(phenyl)isoquinoline] iridium (III) acetylanetonate. By introducing a thin layer of 4, 7-diphenyl-1,10-phenanthroline between blue and red emission layers, the diffusion of excitons is confined and white light can be obtained. WOLEDs with the interlayer all have a higher colour rendering index (>82) than the device without it (76). One device has the maximum current efficiency of 17.6 cd A -1 and a maximum luminance of 39 050 cd m -2 . The power efficiency is 8.7 lm W -1 at 100 cd m -2 . Furthermore, the device has good colour stability and the CIE coordinates just change from (0.394, 0.425) to (0.390, 0.426) with the luminance increasing from 630 to 4200 cd m -2 .

  19. UV/Fenton photo-oxidation of Drimarene Dark Red (DDR) containing textile-dye wastewater

    Science.gov (United States)

    Hudaya, T.; Anthonios, J.; Septianto, E.

    2016-11-01

    Textile dye wastewater contains organic pollutants which are non-biodegradable, characterized by low BOD/COD ratio of typically Advanced Oxidation Processes (AOPs). One of the AOPs method which is the UV/H2O2/Fe2+ (or UV/Fenton) offers not only relatively low cost but also quite effective (in terms of color removal and reaction time) treatment. This particular research aimed to optimize the conditions of UV/Fenton photo-oxidation process for Drimarene Dark Red containing textile- dye wastewater. The two main operating conditions to be optimized were the initial concentration of H2O2 ranged between 0.022-0.078 %-w and the mol ratio of Fe2+: H2O2 was varied from 1: 13 up to 1: 45, using the Central Composite Design experimental matrix. The photo-oxidation was carried out at the optimum pH of 3 from some previous experiments. The best processing conditions of the photo-oxidation of Drimarene Dark Red (DDR) were found at the initial concentration of H2O2 at 0.050%-w and the mole ratio Fe2+: H2O2 of 1: 22. Under these conditions, the measured 2nd order pseudo-rate constantwas 0.021 M-1.min-1. The DDR color removal of 90% was surprisingly achievable within only 10 minutes reaction time.

  20. Stability of eosin-5'-maleimide dye used in flow cytometric analysis for red cell membrane disorders.

    Science.gov (United States)

    Mehra, Simmi; Tyagi, Neetu; Dorwal, Pranav; Pande, Amit; Jain, Dharmendra; Sachdev, Ritesh; Raina, Vimarsh

    2015-06-01

    The eosin-5'-maleimide (EMA) binding test using flow cytometry is a common method to measure reduced mean channel fluorescence (MCF) of EMA-labeled red blood cells (RBCs) from patients with red cell membrane disorders. The basic principle of the EMA-RBC binding test involves the covalent binding of EMA to lysine-430 on the first extracellular loop of band 3 protein. In the present study, the MCF of EMA was analyzed for samples derived from 12 healthy volunteers (controls) to determine the stability (i.e., the percentage decrease in fluorescence) of EMA over a period of 1 year. Comparison of periodical MCF readings over time, that is, at 2-month intervals, showed that there were no significant changes in mean channel fluorescence for up to 6 months; however, there was a significant decrease in MCF at 8 months. For optimal dye utilization, EMA remained stable only for up to 6 months. Therefore, we recommend reconstitution of the dye every 6 months when implementing this test and storage at -80℃ in dark conditions.

  1. Assessment of the banana pseudostem as a low-cost biosorbent for the removal of reactive blue 5G dye.

    Science.gov (United States)

    Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Geraldi, Claudinéia A Q; Manenti, Diego R; Trigueros, Daniela E G; Oliveira, Ana Paula de; Borba, Carlos E; Kroumov, Alexander D

    2015-01-01

    In this work, the removal of reactive blue 5G (RB5G) dye using the drying biomass of banana pseudostem (BPS) was investigated. The characterization of BPS particles was performed. Improvement in the RB5G dye removal performance at the following sorption conditions was evidenced: pH 1, 30°C sorption temperature and 40 rpm shaking, regardless of the particle size range. Kinetic RB5G dye sorption data obtained at better conditions fit well in an Elovich model. A combined Langmuir-BET isotherm model provides a good representation of the RB5G dye equilibrium sorption data, which shows the evidence of a physical sorption process on the BPS surface. Based on the results, the removal of RB5G dye molecules by BPS is based on a physical sorption process.

  2. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp

    Directory of Open Access Journals (Sweden)

    Sidra Ilyas

    2013-01-01

    Full Text Available In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synazol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synazol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synazol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50[degree sign]C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synazol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes.

  3. THE USE OF TIO2-ZEOLIT AS A CATALYST ON THE DEGRADATION PROCESS OF ERIONIL RED DYE

    Directory of Open Access Journals (Sweden)

    Agustin Sumartono

    2010-06-01

    Full Text Available Degradation of erionil red dye using photo catalytic processes with TiO2-zeolit as a catalyst was carried out. Degradation of the dye was observed in 10 L volume, and erionil red dye was used as a model of organic pollutant. The parameters examinated were  intensity of the spectrum, the decrease of pH, percentage of degradation, and the efectifity TiO2-zeolit  as a catalyst. The use of UV lamp and TiO2-zeolit as a catalyst showed a good results because the dye could be degraded. This could be seen from the decreasing of the intensity of the spectrum  24 h after illumination. The pH of erionil red increased from around 4 into 5.5 which is still acidic. Effectivity of TiO2 composit as a catalyst could be used only two times. The compound resulted from degradation that could be detected using HPLC was oxalic acid.   Keywords: dye, erionil red, photocatalytic, TiO2

  4. Formation of Sulfonyl Aromatic Alcohols by Electrolysis of a Bisazo Reactive Dye

    Directory of Open Access Journals (Sweden)

    María P. Elizalde-González

    2012-12-01

    Full Text Available Five sulfonyl aromatic alcohols, namely 4-((2-hydroxyethylsulfonylphenol, 4-((2-(2-((4-hydroxyphenylsulfonylethoxyvinylsulfonylphenol, 4-(ethylsulfonylphenol, 4-(vinylsulfonylphenol and 5-((4-aminophenylsulfonyl-2-penten-1-ol were identified by LC-ESI-Qq-TOF-MS as products formed by electrolysis of the bisazo reactive dye Reactive Black 5 (RB5. Since electrolyses were performed in an undivided cell equipped with Ni electrodes in alkaline medium, amines like 4-(2-methoxyethylsulfonylbenzene-amine (MEBA with m/z 216 were also suspected to be formed due to the plausible chemical reaction in the bulk or the cathodic reduction of RB5 and its oxidation by-products. Aiming to check this hypothesis, a method was used for the preparation of MEBA with 98% purity, via chemical reduction also of the dye RB5. The logP of the synthesized sulfonyl aromatic compounds was calculated and their logkw values were determined chromatographically. These data were discussed in regard to the relationship between hydrophobicity/lipophilicity and toxicity.

  5. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance.

    Science.gov (United States)

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2012-03-30

    An ultrafiltration (UF) ceramic membrane was used to decolorize Reactive Black 5 (RB5) solutions at different dye concentrations (50 and 500 mg/L). Transmembrane pressure (TMP) and cross-flow velocity (CFV) were modified to study their influence on initial and steady-state permeate flux (J(p)) and dye rejection (R). Generally, J(p) increased with higher TMP and CFV and lower feed concentration, up to a maximum steady-state J(p) of 266.81 L/(m(2)h), obtained at 3 bar, 3m/s and 50mg/L. However, there was a TMP value (which changed depending on operating CFV and concentration) beyond which slight or no further increase in steady-state J(p) was observed. Similarly, the higher the CFV was, the more slightly the steady-state J(p) increased. Furthermore, the effectiveness of ultrafiltration treatment was evaluated through dye rejection coefficient. The results showed significant dye removals, regardless of the tested conditions, with steady-state R higher than 79.8% for the 50mg/L runs and around 73.2% for the 500 mg/L runs. Finally response surface methodology (RSM) was used to optimize membrane performance. At 50mg/L, a TMP of 4 bar and a CFV of 2.53 m/s were found to be the conditions giving the highest steady-state J(p), 255.86 L/(m(2)h), and the highest R, 95.2% simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Immobilized/P25/DSAT and Immobilized/Kronos/DSAT on Photocatalytic Degradation of Reactive Red 4 Under Fluorescent Light

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available In this work, photocatalytic degradation of Reactive Red 4 (RR4 using immobilized P25 and kronos were performed under fluorescent light sources. The photocatalysis activity for both catalysts was investigated under fluorescent lamp source which consist UV and Visible light. The effect of various parameters such as initial concentration, initial pH and strenght of immobilized plate were studied. The result showed that 90% of RR4 dye was degrade in 1 hr using immobilized/kronos/DSAT at 100 mg L-1 of RR4 dye while 81% degradation was achieved by immobilized/P25/DSAT at the same condition. The lowest pH showed the higher photocatalytic activity. Hence, the effect of dye concentration and pH on the photocatalysis study can be related with the behavior of environmental pollution. The low strength showed by immobilized/P25/DSAT where it remain 37 % as compared with strength of immobilized/kronos/DSAT (52 wt.%. For the future work, the polymer binder like Polyvinyl alcohol (PVA, Polyethylene glycol (PEG, and others polymers can be apply in immobilized study to overcome the strength problem.

  7. The importance of thin layer chromatography and UV microspectrophotometry in the analysis of reactive dyes released from wool and cotton fibers.

    Science.gov (United States)

    Wiggins, Kenneth G; Holness, Julie-Ann; March, Bridget M

    2005-03-01

    Samples of reactively-dyed wool and cotton were obtained from a range of dye manufacturers, dye distributors and the Forensic Science Service (FSS) Fibre Data Collection. The wool fibers were red in color and had previously been compared using comparison microscopy (CM), visible range microspectrophotometry (VS) and thin layer chromatography (TLC). The cotton fibers were blue and black in color and had not been previously compared. Red, blue and black fibers were chosen because they are often encountered in casework. The usage of reactive dyes to color fibers has increased over the last 10-15 years and these are often seen in casework. Before techniques were available that allowed reactively-dyed fibers to be compared using TLC only CM and microspectrophotometry were routinely carried out. Many laboratories, who had a microspectrophotometer, only had a visible range instrument. It was therefore important to see which techniques provide additional information, that gives greater individuality to fibers, to that obtained from CM. The color was released from the wool and cotton fibres using alkaline hydrolysis and a cellulase enzyme respectively. Many of the red wool samples were differentiated from each other using CM. More differentiation was found using VS and even more when ultraviolet range microspectrophotometry (UV) or TLC was used. Two samples could only be differentiated using TLC because CM, VS and UV failed to separate them. The black cotton samples were predominately differentiated using CM but VS allowed for further differentiation. With the samples used in this project UV and TLC failed to separate the samples further. The blue cotton samples benefited from the use of CM, VS and either UV or TLC to reduce the number of matching pairs. All techniques aided differentiation although with this set TLC and UV proved to be complementary techniques. Results demonstrate that TLC and UV both yield important information over and above that obtained from CM and VS

  8. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment.

    Science.gov (United States)

    Elmorsi, Taha M; Riyad, Yasser M; Mohamed, Zeinhom H; Abd El Bary, Hassan M H

    2010-02-15

    Decolorization of the Mordant red 73 (MR73) azo dye in water was investigated in laboratory-scale experiments using UV/H(2)O(2) and photo-Fenton treatments. Photodegradation experiments were carried out in a stirred batch photoreactor equipped with a low-pressure mercury lamp as UV source at 254 nm. The effect of operating parameters such as pH, [H(2)O(2)](,) [dye] and the presence of inorganic salts (NaNO(3), NaCl and Na(2)CO(3)) were also investigated. The results indicated that complete dye decolorization was obtained in less than 60 min under optimum conditions. Furthermore, results showed that dye degradation was dependent upon pH, [H(2)O(2)] and initial dye concentration. The presence of chloride ion led to large decreases in the photodegradation rate of MR73 while both nitrate and carbonate ions have a slight effect. The photo-Fenton treatment, in the presence of Fe powder as a source of Fe(2+) ions, was highly efficient and resulted in 99% decolorization of the dye in 15 min. Mineralization of MR73 dye was investigated by determining chemical oxygen demand (COD). In a 3h photoperiod "65%" of the dye was mineralized by the H(2)O(2)/UV process, while the photo-Fenton treatment was more efficient producing 85% mineralization over the same 3-h period.

  9. Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range

    Science.gov (United States)

    Damaceanu, Mariana-Dana; Constantin, Catalin-Paul

    2018-04-01

    A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.

  10. Curcuma longa extract as a histological dye for collagen fibres and red blood cells

    Science.gov (United States)

    Avwioro, O G; Onwuka, S K; Moody, J O; Agbedahunsi, J M; Oduola, T; Ekpo, O E; Oladele, A A

    2007-01-01

    Crude ethanolic extract and column chromatographic fractions of the Allepey cultivar of Curcuma longa Roxb, commonly called turmeric (tumeric) in commerce, were used as a stain for tissue sections. Staining was carried out under basic, acidic and neutral media conditions. Inorganic and organic dissolution solvents were used. The stain was used as a counterstain after alum and iron haematoxylins. C. longa stained collagen fibres, cytoplasm, red blood cells and muscle cells yellow. It also stained in a fashion similar to eosin, except for its intense yellow colour. Preliminary phytochemical evaluation of the active column fraction revealed that it contained flavonoids, free anthraquinone and deoxy sugar. A cheap, natural dye can thus be obtained from C. longa. PMID:17451535

  11. Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber.

    Science.gov (United States)

    Gupta, Vinod Kumar; Pathania, Deepak; Agarwal, Shilpi; Sharma, Shikha

    2014-10-13

    The present study deals with the surface modification of Luffa cylindrica fiber through graft copolymerization of methyl acrylate/acrylamide (MA/AAm) via microwave radiation without the use of initiator. Various reaction parameters effecting grafting yield were optimized and physico-chemical properties were evaluated. The grafted Luffa cylindrica fiber showed morphological transformations, thermal stability and chemical resistance. The adsorption potential of modified fiber was investigated using adsorption isotherms for hazardous congo red dye removal from aqueous system. The maximum adsorption capacity of dye onto grafted Luffa cylindrica fiber was found to be 17.39 mg/g with best fit for Langmuir adsorption isotherm. The values of thermodynamic parameters such as enthalpy change, ΔH(0) (21.27 kJ/mol), entropy change, ΔS(0) (64.71 J/mol K) and free energy change, ΔG(0) (-139.52 kJ/mol) were also calculated. Adsorption process was found spontaneous and endothermic in nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Interaction between toxic azo dye C.I. Acid Red 88 and serum albumins

    International Nuclear Information System (INIS)

    Naveenraj, Selvaraj; Solomon, Rajadurai Vijay; Venuvanalingam, Ponnambalam; Asiri, Abdullah M.; Anandan, Sambandam

    2013-01-01

    Serum albumin-toxic dye interaction studies will be of paramount importance in the field of toxicology due to its relation towards the distribution and transportation of dye in blood. In this regard, the binding between C.I. Acid Red 88 (AR88) and serum albumins (HSA and BSA) was investigated by using combination of spectroscopic and molecular modeling methods. The fluorescence results revealed that AR88 interact with serum albumins through the combination of static and dynamic quenching mechanism. The distance “r” between serum albumin and AR88 was obtained according to the Forster resonance energy transfer (FRET) theory. Synchronous fluorescence and CD spectral results showed alterations in the microenvironment and conformation of serum albumins. The molecular docking method is also employed to understand the interaction of AR88 with serum albumins. All these studies confirm that BSA has more affinity towards AR88 than that of HSA which suggests that AR88 is more easily transported in the body of bovid than human and so it is more hazardous to bovids. -- Highlights: • AR88 interacts with serum albumin through the combination of both static and dynamic quenching mechanism. • The binding site of AR88 in serum albumins is nearer to tryptophan moiety. • Circular Dichroism spectra showed that AR88 alters α-helicity of serum albumin. • This interaction study could be greatly imperative for further investigations in toxicology

  13. Degradation reaction of Diazo reactive black 5 dye with copper (II) sulfate catalyst in thermolysis treatment.

    Science.gov (United States)

    Lau, Yen-Yie; Wong, Yee-Shian; Ang, Tze-Zhang; Ong, Soon-An; Lutpi, Nabilah Aminah; Ho, Li-Ngee

    2018-03-01

    The theme of present research demonstrates performance of copper (II) sulfate (CuSO 4 ) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO 4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO 4 . Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp 2 carbon to form C-C of the sp 3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k 1 is 6.5224 whereas the degradation rate constant with catalyst, k 2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.

  14. Photodegradation of Reactive Golden Yellow R Dye Catalyzed by Effective Titania (TiO2)

    International Nuclear Information System (INIS)

    Bedurus, E.A.; Marinah Mohd Ariffin; Mohd Hasmizam Razali

    2015-01-01

    In the present research, Microwave Assisted Synthesis (MAS) method was applied to synthesize titania (TiO 2 ) at 150 degree Celsius in a range of 2-6 hours heating time. Each prepared TiO 2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen gas (N 2 ) sorption analysis (Brunaeur-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) calculation) techniques. The TiO 2 prepared by MAS 150 degree Celsius (4 hours) has emerged with the highest photo catalytic activity. Within 4 hours, the TiO 2 managed to catalyze the degradation of Reactive Golden Yellow R dye up to 98.51 %. This is because of the TiO 2 possessed high crystallinity of anatase phase, small crystallite size and high pore volume compared to other prepared TiO 2 . (author)

  15. Bio sorption of Reactive Dye from Textile Wastewater by Non-viable Biomass of Aspergillus niger and Spirogyra sp

    International Nuclear Information System (INIS)

    Khalaf, M.A.

    2008-01-01

    The Potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a bio sorbents for removal of reactive dye (Synazol) from its multi-component textile wastewater. Pre-treatment of fungal and algal biomass with autoclaving increased the removal of dye more than that pre-treated with gamma-irradiation. The heat dried autoclaved biomass for the 2 organisms exhibited maximum dye removal at ph 3, temperature 30 degree C and 8 g/l (w/v) biomass conc. after 18 h contact time. The results showed that the non-viable biomass possessed high stability and efficiency of dye removal over 3 repeated batches

  16. Decolorization of six synthetic dyes by fungi

    OpenAIRE

    Hartikainen, E. Samuel; Miettinen, Otto; Hatakka, Annele; Kähkönen, Mika A.

    2016-01-01

    To find out ability of fourteen basidiomycetes and four ascomycetes strains to grow in the presence of synthetic colour dyes and to degrade them, fungi were cultivated on the malt agar plates containing 0.5 g kg-1 dye, either Remazol Brilliant Blue R, Remazol Brilliant Yellow GL, Remazol Brilliant Orange 3 R, Reactive Blue 4, Remazol Brilliant Red F3B or Reactive Black 5. Fungi representing basidiomycetes were Phlebia radiata (FBCC 43), Tremella encephala (FBCC 1145), Dichomitus squalens (FBC...

  17. Removal of toxic Congo red dye from water employing low-cost coconut residual fiber.

    Science.gov (United States)

    Rani, K C; Naik, Aduja; Chaurasiya, Ram Saran; Raghavarao, K S M S

    2017-05-01

    The coconut residual fiber (CRF) is the major byproduct obtained during production of virgin coconut oil. Its application as a biosorbent for adsorption of Congo red was investigated. The CRF was subjected to different pretreatments, namely, pressure cooking, hexane treatment, acid treatment and their combinations. The pretreatment of CRF with the combination of hexane, acid, and pressure cooking resulted in the highest degree of adsorption. The equilibrium data were analyzed and found to fit best to both Langmuir and Freundlich isotherms. Thermodynamic parameters such as standard free energy (ΔG 0 kJ mol -1 ), standard enthalpy (ΔH 0 , kJ mol -1 ) and standard entropy (ΔS 0 , kJ mol -1 K -1 ) of the systems were calculated by using the Langmuir constant. The ΔG 0 , ΔH 0 and ΔS 0 were found to be 16.51 kJ mol -1 , -19.39 kJ mol -1 and -0.12 kJ mol -1 K -1 , respectively, at 300 K. These thermodynamic parameters suggest the present adsorption process to be non-spontaneous and exothermic. The adsorption process was observed to follow pseudo-second-order kinetics. The results suggest that CRF has potential to be a biosorbent for the removal of hazardous material (Congo red dye) with a maximum adsorption capacity of 128.94 mg g -1 at 300 K.

  18. Comparative removal of congo red dye from water by adsorption on grewia asiatica leaves, raphanus sativus peels and activated charcoal

    International Nuclear Information System (INIS)

    Rehman, R.; Abbas, A.; Murtaza, S.; Mahmud, T.; Waheed-uz-Zaman; Salman, M.; Shafiq, U.

    2012-01-01

    Water treatment by adsorption methodology is being evolved in recent years. Various researchers are searching new adsorbents for water treatment which can replace activated charcoal. In the following study, the efficiency of removing Congo Red dye from water using two novel adsorbents, i.e. Raphanus sativus (Radish) peels and Grewia asiatica (Phalsa) leaves was evaluated and compared with activated charcoal. The adsorption process is carried out batch wise by using different concentrations of the aqueous dye solution with different adsorbent doses, agitation rate, varying contact time intervals, at a range of initial pH values and at different temperatures. Various chemicals were used for enhancing the adsorption capacity of adsorbents. The suitability of the adsorbent for using it is tested by fitting the adsorption data on Langmuir isotherm. The results showed that the Phalsa leaves powder is more effective adsorbent than Reddish peels for removing Congo Red dye from water. It can be used for removing Congo Red dye from waste water. (author)

  19. Production of Ligninolytic Enzymes by White-Rot Fungus Datronia sp. KAPI0039 and Their Application for Reactive Dye Removal

    Directory of Open Access Journals (Sweden)

    Pilanee Vaithanomsat

    2010-01-01

    Full Text Available This study focused on decolorization of 2 reactive dyes; Reactive Blue 19 (RBBR and Reactive Black 5 (RB5, by selected white-rot fungus Datronia sp. KAPI0039. The effects of reactive dye concentration, fungal inoculum size as well as pH were studied. Samples were periodically collected for the measurement of color unit, Laccase (Lac, Manganese Peroxidase (MnP, and Lignin Peroxidase (LiP activity. Eighty-six percent of 1,000 mg L−1 RBBR decolorization was achieved by 2% (w/v Datronia sp. KAPI0039 at pH 5. The highest Lac activity (759.81 UL−1 was detected in the optimal condition. For RB5, Datronia sp. KAPI0039 efficiently performed (88.01% decolorization at 2% (w/v fungal inoculum size for the reduction of 600 mg L−1 RB5 under pH 5. The highest Lac activity (178.57 UL−1 was detected, whereas the activity of MnP and LiP was absent during this hour. The result, therefore, indicated that Datronia sp. KAPI0039 was obviously able to breakdown both reactive dyes, and Lac was considered as a major lignin-degradation enzyme in this reaction.

  20. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    Science.gov (United States)

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  1. Toxicological Assessment and UV/TiO2-Based Induced Degradation Profile of Reactive Black 5 Dye

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M. N.; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2018-01-01

    In this study, the toxicological and degradation profile of Reactive Black 5 (RB5) dye was evaluated using a UV/TiO2-based degradation system. Fourier transform infrared spectroscopy (FT-IR), thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) techniques were used to evaluate the degradation level of RB5. The UV-Vis spectral analysis revealed the disappearance of peak intensity at 599 nm (λmax). The FT-IR spectrum of UV/TiO2 treated dye sample manifest appearance of new peaks mainly because of the degraded product and/or disappearance of some characteristics peaks which were present in the untreated spectrum. The HPLC profile verified the RB5 degradation subject to the formation of metabolites at different retention times. A stable color removal higher than 96% with COD removal in the range of 74-82.3% was noted at all evaluated dye concentrations. The tentative degradation pathway of RB5 is proposed following a careful analysis of the intermediates identified by UPLC-MS. Toxicity profile of untreated and degraded dye samples was monitored using three types of human cell lines via MTT assay and acute toxicity testing with Artemia salina. In conclusion, the UV/TiO2-based degradation system could be effectively employed for the remediation of textile wastewater comprising a high concentration of reactive dyes.

  2. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    Directory of Open Access Journals (Sweden)

    Mercè Vilaseca

    2014-09-01

    Full Text Available Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  3. Removal of Disperse Blue 56 and Disperse Red 135 dyes from aqueous dispersions by modified montmorillonite nanoclay

    Directory of Open Access Journals (Sweden)

    Ahmadishoar Javad

    2017-01-01

    Full Text Available In this study modified montmorillonite was used as an adsorbent for the removal of two selected disperse dyes i.e., Disperse Blue 56 (DB and Disperse Red 135 (DR from dye dispersions. The adsorption equilibrium data of dyes adsorption were investigated by using Nernst, Freundlich and Langmuir isotherm models. The adsorption kinetics was analyzed by using different models including pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion model. The Freundlich isotherm was found to be the most appropriate model for describing the sorption of the dyes on modified nanoclay. The best fit to the experimental results was obtained by using the pseudo-second-order kinetic equation, which satisfactorily described the process of dye adsorption. Although different kinetic models may control the rate of the adsorption process, the results indicated that the main rate limiting step was the intraparticle diffusion. The results showed that the proposed modified montmorillonite could be used as an effective adsorbent for the removal of disperse dyes even from highly concentrated dispersions.

  4. Isolation and Characterization of Paracoccus sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5

    Directory of Open Access Journals (Sweden)

    Mallikarjun C. Bheemaraddi

    2014-01-01

    Full Text Available A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v. UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2.

  5. Brazilwood, sappanwood, brazilin and the red dye brazilein: from textile dyeing and folk medicine to biological staining and musical instruments.

    Science.gov (United States)

    Dapson, R W; Bain, C L

    2015-01-01

    Brazilin is a nearly colorless dye precursor obtained from the heartwood of several species of trees including brazilwood from Brazil, sappanwood from Asia and the Pacific islands, and to a minor extent from two other species in Central America, northern South America and the Caribbean islands. Its use as a dyeing agent and medicinal in Asia was recorded in the 2(nd) century BC, but was little known in Europe until the 12(th) century AD. Asian supplies were replaced in the 16(th) century AD after the Portuguese discovered vast quantities of trees in what is now Brazil. Overexploitation decimated the brazilwood population to the extent that it never fully recovered. Extensive environmental efforts currently are underway to re-create a viable, sustainable population. Brazilin is structurally similar to the better known hematoxylin, thus is readily oxidized to a colored dye, brazilein, which behaves like hematein. Attachment of the dye to fabric is by hydrogen bonding or in conjunction with certain metallic mordants by coordinative bonding. For histology, most staining procedures involve aluminum (brazalum) for staining nuclei. In addition to textile dyeing and histological staining, brazilin and brazilein have been and still are used extensively in Asian folk medicine to treat a wide variety of disorders. Recent pharmacological studies for the most part have established a scientific basis for these uses and in many cases have elucidated the biochemical pathways involved. The principal use of brazilwood today is for the manufacture of bows for violins and other stringed musical instruments. The dye and other physical properties of the wood combine to produce bows of unsurpassed tonal quality.

  6. Decolorization of Reactive Blue 19 Dye from Textile Wastewater by the UV/H2O2 Process

    Science.gov (United States)

    Rezaee, Abbas; Taghi Ghaneian, Mohammad; Jamalodin Hashemian, Sayed; Moussavi, Gholamreza; Khavanin, Ali; Ghanizadeh, Ghader

    Photo-oxidation of dyes is a new concern among researchers since it offers an attractive method for decoloration of dyes and breaks them into simple mineral forms. An advanced oxidation process, UV/H2O2, was investigated in a laboratory scale photoreactor for decolorization of the Reactive blue 19 (RB19) dye from synthetic textile wastewater. The effects of operating parameters such as hydrogen peroxide dosage, pH, initial dye concentration and UV dosage, on decolorization have been evaluated. The RB19 solution was completely decolorized under optimal hydrogen peroxide dosage of 2.5 mmol L-1 and low-pressure mercury UV-C lamps (55 w) in less than 30 min. The decolorization rate followed pseudo-first order kinetics with respect to the dye concentration. The rate increased linearly with volumetric UV dosage and nonlinearly with increasing initial hydrogen peroxide concentration. It has been found that the degradation rate increased until an optimum of hydrogen peroxide dosage, beyond which the reagent exerted an inhibitory effect. From the experimental results, the UV/H2O2 process was an effective technology for RB19 dye treatment in wastewater.

  7. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier

    International Nuclear Information System (INIS)

    Absalan, Ghodratollah; Asadi, Mozaffar; Kamran, Sedigheh; Sheikhian, Leila; Goltz, Douglas M.

    2011-01-01

    Highlights: → Ionic liquids modify the dye-adsorption characteristics of magnetic nanoparticles. → Modified nanoparticles improved the sensitivity of dye measurements. → Water-solubility is an important factor for choosing an ionic liquid as a modifier for nanoparticles. - Abstract: The nanoparticles of Fe 3 O 4 as well as the binary nanoparticles of ionic liquid and Fe 3 O 4 (IL-Fe 3 O 4 ) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe 3 O 4 nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60 mg, a pH of 2.5, and a contact time of 2 min when initial dyes concentrations of 10-200 mg L -1 were used. The maximum adsorption capacity of IL-Fe 3 O 4 was 166.67 and 49.26 mg g -1 for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62 L mg -1 for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe 3 O 4 by using a mixed NaCl-acetone solution and adsorbent was reusable.

  8. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.

    Science.gov (United States)

    Gore, Mohan M; Saharan, Virendra Kumar; Pinjari, Dipak V; Chavan, Prakash V; Pandit, Aniruddha B

    2014-05-01

    In the present work, degradation of reactive orange 4 dye (RO4) has been investigated using hydrodynamic cavitation (HC) and in combination with other AOP's. In the hybrid techniques, combination of hydrodynamic cavitation and other oxidizing agents such as H2O2 and ozone have been used to get the enhanced degradation efficiency through HC device. The hydrodynamic cavitation was first optimized in terms of different operating parameters such as operating inlet pressure, cavitation number and pH of the operating medium to get the maximum degradation of RO4. Following the optimization of HC parameters, the degradation of RO4 was carried out using the combination of HC with H2O2 and ozone. It has been found that the efficiency of the HC can be improved significantly by combining it with H2O2 and ozone. The mineralization rate of RO4 increases considerably with 14.67% mineralization taking place using HC alone increases to 31.90% by combining it with H2O2 and further increases to 76.25% through the combination of HC and ozone. The synergetic coefficient of greater than one for the hybrid processes of HC+H2O2 and HC+Ozone has suggested that the combination of HC with other oxidizing agents is better than the individual processes for the degradation of dye effluent containing RO4. The combination of HC with ozone proves to be the most energy efficient method for the degradation of RO4 as compared to HC alone and the hybrid process of HC and H2O2. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Anthocyanin – Rich Red Dye of Hibiscus Sabdariffa Calyx Modulates Cisplatin-induced Nephrotoxicity and Oxidative Stress in Rats

    Science.gov (United States)

    Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.

    2013-01-01

    This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (Psabdariffa dye could be attributed to its anthocyanin content. PMID:24711761

  10. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In{sub 2}S{sub 3} nanoflowers: dye charge-dependent roles of reactive species

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Suxiang [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China); Cai, Lejuan, E-mail: 494169965@qq.com [Central China Normal University, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry (China); Li, Dapeng, E-mail: lidapengabc@126.com; Fa, Wenjun; Zhang, Yange; Zheng, Zhi [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In{sub 2}S{sub 3} nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In{sub 2}S{sub 3} nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  11. MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution.

    Science.gov (United States)

    Jin, Li-Na; Qian, Xin-Ye; Wang, Jian-Guo; Aslan, Hüsnü; Dong, Mingdong

    2015-09-01

    MIL-68 (In) nano-rods were prepared by a facile solvothermal synthesis using NaOAc as modulator agent at 100°C for 30 min. The BET test showed that the specific surface area and pore volume of MIL-68 (In) nanorods were 1252 m(2) g(-1) and 0.80 cm(3) g(-1), respectively. The as-prepared MIL-68 (In) nanorods showed excellent adsorption capacity and rapid adsorption rate for removal of Congo red (CR) dye from water. The maximum adsorption capacity of MIL-68 (In) nanorods toward CR reached 1204 mg g(-1), much higher than MIL-68 (In) microrods and most of the previously reported adsorbents. The adsorption process of CR by MIL-68 (In) nano-rods was investigated and found to be obeying the Langmuir adsorption model in addition to pseudo-second-order rate equation. Moreover, the MIL-68 (In) nanorods showed an acceptable reusability after regeneration with ethanol. All information gives an indication that the as-prepared MIL-68 (In) nanorods show their potential as the adsorbent for highly efficient removal of CR in wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    Science.gov (United States)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  13. Anodic oxidation of anthraquinone dye Alizarin Red S at Ti/BDD electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jianrui; Lu Haiyan [College of Chemistry, Jilin University, Changchun 130012 (China); Du Lili [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Lin Haibo, E-mail: lhb910@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China); State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2011-05-15

    The boron-doped diamond (BDD) thin-film electrode with high quality using industrially titanium plate (Ti/BDD) as substrate has been prepared and firstly used in the oxidation of anthraquinone dye Alizarin Red S (ARS) in wastewaters. The Ti/BDD electrodes are shown to have high concentration of sp{sup 3}-bonded carbon and wide electrochemical window. The results of the cyclic voltammetries show that BDD has unique properties such as high anodic stability and the production of active intermediates at the high potential. The oxidation regions of ARS and water are significantly separated at the Ti/BDD electrode, and the peak current increases linearly with increasing ARS concentration. The bulk electrolysis shows that removal of chemical oxygen demand (COD) and color can be completely reached and the electrooxidation of ARS behaves as a mass-transfer-controlled process at the Ti/BDD electrode. It is demonstrated that the performances of the Ti/BDD electrode for anodic oxidation ARS have been significantly improved with respect to the traditional electrodes.

  14. Evaluation of Adsorption Capacity of Low Cost Adsorbent for the Removal of Congo Red Dye from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dattatraya Jirekar

    2016-10-01

    Full Text Available Vigna unguiculata seed husk powder has been investigated as low cost adsorbent for the removal of hazardous chemicals like Congo Red (CR dye from aqueous solution. Various parameters such as effect of contact time, initial CR dye concentration, adsorbent dose, effect of pH, zero-point pH were studied. Batch adsorption technique was employed to optimize the process parameter. The result indicated that, the percentage adsorption of Congo Red increased with increase in contact time, dose of adsorbent and initial concentration of Congo Red and decreased with addition of salt. The adsorption of Congo Red was 78% at the optimum pH of 6. Adsorption equilibrium was found to be reached in 24 h for 5 to 25 g/50 mL Congo red concentrations. The Langmuir and Freundlich isotherm models were found to provide an excellent fitting of the adsorption data.  The adsorption of CR follows Second order rate kinetics. Thermodynamic parameter (δGo showed that it was an exothermic process. This adsorbent was found to be effective and economically attractive. DOI: http://dx.doi.org/10.17807/orbital.v8i5.834

  15. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres

    International Nuclear Information System (INIS)

    Iram, Mahmood; Guo, Chen; Guan Yueping; Ishfaq, Ahmad; Liu Huizhou

    2010-01-01

    Fe 3 O 4 hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe 3 O 4 hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 deg. C and pH 6, was found to be 105 mg g -1 . Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe 3 O 4 nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  16. Assessment of molecularly imprinted polymers (MIPs) in the preconcentration of disperse red 73 dye prior to photoelectrocatalytic treatment.

    Science.gov (United States)

    Franco, Jefferson Honorio; Aissa, Alejandra Ben; Bessegato, Guilherme Garcia; Fajardo, Laura Martinez; Zanoni, Maria Valnice Boldrin; Pividori, María Isabel; Del Pilar Taboada Sotomayor, Maria

    2017-02-01

    Magnetic molecularly imprinted polymers (MMIPs) have become a research hotspot due to their two important characteristics: target recognition and magnetic separation. This paper presents the preparation, characterization, and optimization of an MMIP for the preconcentration of disperse red 73 dye (DR73) and its subsequent efficient degradation by photoelectrocatalytic treatment. The MMIPs were characterized by scanning electron microscopy (SEM), which revealed homogeneous distribution of the particles. Excellent encapsulation of magnetite was confirmed by transmission electron microscopy (TEM). A study of dye binding showed that the dye was retained more selectively in the MIP, compared to the NIP. The release of DR73 from the imprinted polymers into methanol and acetic acid was analyzed by UV-Vis spectrophotometry. The extracts showed higher absorbance values for MMIP, compared to MNIP, confirming greater adsorption of dye in the MMIP material. The extracts were then subjected to photoelectrocatalytic treatment. LC-MS/MS analysis following this treatment showed that the dye was almost completely degraded. Hence, the combination of MMIP extraction and photoelectrocatalysis offers an alternative way of selectively removing an organic contaminant, prior to proceeding with its complete degradation.

  17. Reactive Pad-Steam Dyeing of Cotton Fabric Modified with Cationic P(St-BA-VBT Nanospheres

    Directory of Open Access Journals (Sweden)

    Kuanjun Fang

    2018-05-01

    Full Text Available The Poly[Styrene-Butyl acrylate-(P-vinylbenzyl trimethyl ammonium chloride] P(St-BA-VBT nanospheres with N+(CH33 functional groups were successfully prepared and applied to modify cotton fabrics using a pad-dry process. The obtained cationic cotton fabrics were dyed with pad-steam dyeing with reactive dye. The results show that the appropriate concentration of nanospheres was 4 g/L. The sodium carbonate of 25 g/L and steaming time of 3 min were suitable for dyeing cationic cotton with 25 g/L of C.I. Reactive Blue 222. The color strength and dye fixation rates of dyed cationic cotton fabrics increased by 39.4% and 14.3% compared with untreated fabrics. Moreover, sodium carbonate and steaming time were reduced by 37.5% and 40%, respectively. The rubbing and washing fastness of dyed fabrics were equal or higher 3 and 4–5 grades, respectively. Scanning electron microscopy (SEM images revealed that the P(St-BA-VBT nanospheres randomly distributed and did not form a continuous film on the cationic cotton fiber surfaces. The X-ray photoelectron spectroscopy (XPS analysis further demonstrated the presence of cationic nanospheres on the fiber surfaces. The cationic modification did not affect the breaking strength of cotton fabrics.

  18. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye

    International Nuclear Information System (INIS)

    Akar, Tamer; Tosun, Ilknur; Kaynak, Zerrin; Kavas, Emine; Incirkus, Gonul; Akar, Sibel Tunali

    2009-01-01

    This study focuses on the possible use of macro-fungus Agaricus bisporus to remove Acid Red 44 dye from aqueous solutions. Batch equilibrium studies were carried out as a function of pH, biomass amount, contact time and temperature to determine the decolorization efficiency of biosorbent. The highest dye removal yield was achieved at pH 2.0. Equilibrium occurred within about 30 min. Biosorption data were successfully described by Langmuir isotherm model and the pseudo-second-order kinetic model. The maximum monolayer biosorption capacity of biosorbent material was found as 1.19 x 10 -4 mol g -1 . Thermodynamic parameters indicated that the biosorption of Acid Red 44 onto fungal biomass was spontaneous and endothermic in nature. Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of possible dye-biosorbent interaction and surface structure of biosorbent, respectively. Finally the proposed biosorbent was successfully used for the decolorization of Acid Red 44 in synthetic wastewater conditions.

  19. Bioadsorption of a reactive dye from aqueous solution by municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abdelkader Berrazoum

    2015-09-01

    Full Text Available The biosorbent was obtained from municipal solid waste (MSW of the Mostaganem city. Before use the MSW was dried in air for three days and washed several times. The sorption of yellow procion reactive dye MX-3R onto biomass from aqueous solution was investigated as function of pH, contact time and temperature. The adsorption capacity of MX-3R was 45.84 mg/g at pH 2–3 and room temperature. MX-3R adsorption decreases with increasing temperature. The Langmuir, Freundlich and Langmuir–Freundlich adsorption models were applied to describe the related isotherms. Langmuir–Freundlich equation has shown the best fitting with the experimental data. The pseudo first-order, pseudo second-order and intra-particle diffusion kinetic models were used to describe the kinetic sorption. The results clearly showed that the adsorption of MX-3R onto biosorbent followed the pseudo second-order model. The enthalpy (ΔH°, entropy (ΔS° and Gibbs free energy (ΔG° changes of adsorption were calculated. The results indicated that the adsorption of MX-3R occurs spontaneously as an exothermic process.

  20. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    OpenAIRE

    Vilaseca, Merc?; L?pez-Grimau, V?ctor; Guti?rrez-Bouz?n, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. ...

  1. Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using Micrococcus glutamicus NCIM-2168.

    Science.gov (United States)

    Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P

    2009-09-01

    Micrococcus glutamicus NCIM-2168 exhibited complete decolorization and degradation of C.I. Reactive Green 19A (an initial concentration of 50 mg l(-1)) within 42 h at temperature 37 degrees C and pH 8, under static condition. Extent of mineralization was determined with total organic carbon (TOC) and chemical oxygen demand (COD) measurement, showing a satisfactory reduction of TOC (72%) and COD (66%) within 42 h. Enzyme studies shows involvement of oxidoreductive enzymes in decolorization/degradation process. Analytical studies of the extracted metabolites confirmed the significant degradation of Reactive Green 19A into various metabolites. The microbial toxicity and phytotoxicity assay revealed that the degradation of Reactive Green 19A produced nontoxic metabolites. In addition, the M. glutamicus strain was applied to decolorize a mixture of ten reactive dyes showing a 63% decolorization (in terms of decrease in ADMI value) within 72 h, along with 48% and 42% reduction in TOC and COD under static condition.

  2. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells

    International Nuclear Information System (INIS)

    Méndez-Martínez, Ana J.; Dávila-Jiménez, Martin M.; Ornelas-Dávila, Omar; Elizalde-González, María P.; Arroyo-Abad, Uriel; Sirés, Ignasi; Brillas, Enric

    2012-01-01

    Highlights: ► Ni electrodes were used for the mild degradation of the azo dye Reactive Black 5. ► Potentiostatic degradation was performed in undivided and divided cells. ► Degradation by-products were detected and monitored by RP-HPLC and LC–MS/MS. ► Small alkylsulfonyl phenol and isoxazole derivatives were identified. ► The cathodic and anodic degradation pathways for Reactive Black 5 were elucidated. - Abstract: The cathodic reduction and anodic ·OH-mediated oxidation of the azo dye Reactive Black 5 (RB5) have been studied potentiostatically by using undivided and divided cells with a Ni-polyvinylchloride (Ni-PVC) composite cathode and a Ni wire mesh anode. Solutions of 50–100 cm 3 of 20–80 mg dm −3 RB5 in 0.1 mol dm −3 KOH were degraded to assess the effect of electrolysis time and electrode potentials on the infrared and absorbance spectra, as well as on the decay of the total organic carbon and chemical oxygen demand. Reversed-phase high performance liquid chromatography (RP-HPLC) with ion-pairing and diode array detection (ion pair chromatography), along with coupling to tandem mass spectrometry (LC–MS/MS), were used for the identification of the aromatic degradation by-products and monitoring their time course. These analyses revealed the progressive conversion of the RB5 dye to simpler molecules with m/z 200, 369.5 and 547 under the direct action of the electron at the cathode and the formation of polar compounds such as alkylsulfonyl phenol derivatives with m/z 201, 185 and 171 by the ·OH mediation at the anode. From these results, the electrochemical reduction and oxidation pathways for the RB5 dye were elucidated.

  3. Introduction of Red-Green-Blue Fluorescent Dyes into a Metal-Organic Framework for Tunable White Light Emission.

    Science.gov (United States)

    Wen, Yuehong; Sheng, Tianlu; Zhu, Xiaoquan; Zhuo, Chao; Su, Shaodong; Li, Haoran; Hu, Shengmin; Zhu, Qi-Long; Wu, Xintao

    2017-10-01

    The unique features of the metal-organic frameworks (MOFs), including ultrahigh porosities and surface areas, tunable pores, endow the MOFs with special utilizations as host matrices. In this work, various neutral and ionic guest dye molecules, such as fluorescent brighteners, coumarin derivatives, 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), and 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM), are encapsulated in a neutral MOF, yielding novel blue-, green-, and red-phosphors, respectively. Furthermore, this study introduces the red-, green-, and blue-emitting dyes into a MOF together for the first time, producing white-light materials with nearly ideal Commission International ed'Eclairage (CIE) coordinates, high color-rendering index values (up to 92%) and quantum yields (up to 26%), and moderate correlated color temperature values. The white light is tunable by changing the content or type of the three dye guests, or the excitation wavelength. Significantly, the introduction of blue-emitting guests in the methodology makes the available MOF host more extensive, and the final white-light output more tunable and high-quality. Such strategy can be widely adopted to design and prepare white-light-emitting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Non-aqueous capillary electrophoresis with red light emitting diode absorbance detection for the analysis of basic dyes.

    Science.gov (United States)

    Fakhari, Ali Reza; Breadmore, Michael C; Macka, Miroslav; Haddad, Paul R

    2006-11-24

    Non-aqueous capillary electrophoresis was evaluated for the separation of five hydrophobic basic blue dyes for application in forensic dye analysis. The use of a red light emitting diode as a high intensity, low-noise light source provided sensitive detection of the blue dyes while also allowing the evaluation of solvents that absorb strongly in the UV region. Excellent peak shapes and separation selectivity were obtained in methanol, ethanol, acetonitrile and dimethylsulfoxide, however water, tetrahydrofuran, dimethylformamide and acetone were unsuitable as solvents due to poor peak shapes and a lack of sensitivity, most likely due to adsorption onto the capillary wall. Due to the known compatibility of methanol with capillary electrophoresis-mass spectrometry, this solvent was examined further with the relative acidity/basicity of the electrolyte being optimised with an artificial neural network. The optimised method was examined for the separation of ink samples from 6 fibre tip and 2 ball point blue or black pens and showed that a unique migration time for the main dye component in seven of the eight pens could be obtained.

  5. Decolorization and degradation of reactive dye during the dyed cotton fabric rinsing process.

    Science.gov (United States)

    Luo, Deng-Hong; Zheng, Qing-Kang; Chen, Sheng; Liu, Qing-Shu; Wang, Xiu-Xing; Guan, Yu; Pu, Zong-Yao

    2010-01-01

    Dyeing process of textile consumes large quantities of water, which results in huge amounts of colored wastewater. Most of the dye wastewater treating methods focused on the treatment of wastewater after the rinsing process of dyed textile. In this paper, tetraacetylethylenediamine/hydrogen peroxide (TAED/H₂O₂) active oxidation (AO) system was developed to rinse dyed textile and decolorize the rinsing wastewater simultaneously. The results indicated that the decolorization ratio of the rinse effluent obtained by AO method were in the range of 51.72%-84.15% according to different dyes and the COD value decreased more than 30% compared with that of traditional rinsing process. The decolorization kinetics investigation showed that the decolorization of dyes during AO rinsing process followed the law of pseudo-first order kinetics. The result of UV-Vis and UPLC-MS analysis demonstrated that the dye was degraded into colorless organic molecular fragments and partly mineralized during the AO rinsing process.

  6. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    OpenAIRE

    Kenzom, T.; Srivastava, P.; Mishra, S.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-...

  7. The performance and decolourization kinetics of O3/H2O2 oxidation of reactive green 19 dye in wastewater

    Science.gov (United States)

    Sabri, S. N.; Abidin, C. Z. A.; Fahmi; Kow, S. H.; Razali, N. A.

    2018-03-01

    The degradations characteristic of azo dye Reactive Green 19 (RG19) was investigated using advanced oxidation process (AOPs). It was evaluated based on colour and chemical oxygen demand (COD) removal. The effect of operational parameters such as initial dye concentration, initial dosage of hydrogen peroxide (H2O2), contact time, and pH was also being studied. The samples were treated by ozonation (O3) and peroxone O3/H2O2 process. Advanced oxidation processes (AOPs) involve two stages of oxidation; firstly is the formation of strong oxidant and secondly the reaction of organic contaminants in water. In addition, the term advanced oxidation is referring to the processes in which oxidation of organic contaminants occurs primarily through reactions with hydroxyl radicals. There are several analyses that use to determine the efficiency of the treatment process, which are UV-Vis absorption spectra, COD, Fourier Transform Infrared (FT-IR), and pH. The results demonstrated that the ozone oxidation was efficient in decolourization and good in mineralization, based on the reduction of colour and COD. Additionally, results indicate that H2O2 is able to perform better than ozonation in order to decolourize the dye wastewater with 0.5 mL H2O2/L dye dosage of H2O2 at different initial concentration, initial pH, with contact time.

  8. Removal of reactive blue 19 dyes from textile wastewater by pomegranate seed powder: Isotherm and kinetic studies

    Directory of Open Access Journals (Sweden)

    Mahboobeh Dehvari

    2016-01-01

    Full Text Available Aims: The aim of this study was the evaluation of adsorption kinetics and equilibrium of reactive blue 19 dyes from textile synthetic wastewater by pomegranate seed powder. Materials and Methods: This study is an experimental research, which was performed in laboratory scale. In this study, the parameters such as adsorbent dose, pH and retention time, initial concentration of dye and agitation rate have been investigated. After washing and boiling of pomegranate seeds for 2 h, they dried, milled and finally pulverized by standard ASTM sieves (40-100 mesh. Maximum adsorption wave length (λmax by spectrophotometer ultra violet/visible (model SP-3000 Plus 592 nm was determined. The Langmuir, Freundlich and Temkin isotherm models and the pseudo-first-order and pseudo-second-order kinetic models were analyzed. Results: According to results, the removal efficiency with adsorbent dose, retention time and agitation rate has a direct relation. Maximum adsorption occurred in the first 60 min. The removal efficiency with initial concentration of dye and pH of solution has indirect relation. The Freundlich isotherm fits the experimental data better than the other isotherms. It was recognized that the adsorption followed by pseudo-second-order model (R2 > 0.99. Conclusion: Based on the results, pomegranate seeds as a new natural sorbent can be used in removal of dye and other environmental pollutants with desirable absorption capacity.

  9. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions.

    Science.gov (United States)

    Torrades, Francesc; García-Hortal, José Antonio; García-Montaño, Julia

    2015-01-01

    This study focused on the advanced oxidation of the hetero bi-functional reactive dye Sumifix Supra Yellow 3RF (CI Reactive Yellow 145) using dark Fenton and photo-Fenton conditions in a lab-scale experiment. A 2(3) factorial design was used to evaluate the effects of the three key factors: temperature, Fe(II) and H2O2 concentrations, for a dye concentration of 250 mg L(-1) with chemical oxygen demand (COD) of 172 mg L(-1) O2 at pH=3. The response function was the COD reduction. This methodology lets us find the effects and interactions of the studied variables and their roles in the efficiency of the treatment process. In the optimization, the correlation coefficients for the model (R2) were 0.948 and 0.965 for Fenton and photo-Fenton treatments, respectively. Under optimized reaction conditions: pH=3, temperature=298 K, [H2O2]=11.765 mM and [Fe(II)]=1.075 mM; 60 min of treatment resulted in a 79% and 92.2% decrease in COD, for the dye taken as the model organic compound, after Fenton and photo-Fenton treatments, respectively.

  10. Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2

    NARCIS (Netherlands)

    Jeric, T.; Bisselink, R.J.M.; Tongeren, W. van; Marechal. A.M. Le

    2013-01-01

    Decolorization of Reactive Red 238, Reactive Orange 16, Reactive Black 5 and Reactive Blue 4 was studied in the UV/H2O2 process with H2O2 being produced electrochemically. The experimental results show that decolorization increased considerably when switching on the electrochemical production of

  11. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse.

    Science.gov (United States)

    Khadhraoui, M; Trabelsi, H; Ksibi, M; Bouguerra, S; Elleuch, B

    2009-01-30

    The objective of this study was to investigate the degradation and mineralization of an azo-dye, the Congo red, in aqueous solutions using ozone. Phytotoxicity and the inhibitory effects on the microbial activity of the raw and the ozonated solutions were also carried out with the aim of water reuse and environment protection. Decolorization of the aqueous solutions, disappearance of the parent compound, chemical oxygen demand (COD) and total organic carbon (TOC) removal were the main parameters monitored in this study. To control the mineralization of the Congo red, pH of the ozonated solution and heteroatoms released from the mother molecule such NH(4)(+), NO(3)(-) and SO(4)(2-) were determined. It was concluded that ozone by itself is strong enough to decolorize these aqueous solutions in the early stage of the oxidation process. Nonetheless, efficient mineralization had not been achieved. Significant drops in COD (54%) were registered. The extent of TOC removal was about 32%. Sulfur heteroatom was totally oxidized to SO(4)(2-) ions while the central -NN- azo ring was partially converted to NH(4)(+) and NO(3)(-). Results of the kinetic studies showed that ozonation of the selected molecule was a pseudo-first-order reaction with respect to dye concentration. The obtained results also demonstrate that ozone process reduced the phytotoxicity of the raw solution and enhanced the biodegradability of the treated azo-dyes-wastewater. Hence, this show that ozone remains one of the effective technologies for the discoloration and the detoxification of organic dyes in wastewater.

  12. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa.

    Science.gov (United States)

    Schneidereit, D; Vass, H; Reischl, B; Allen, R J; Friedrich, O

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules [Formula: see text] is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence.

  13. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa

    Science.gov (United States)

    Vass, H.; Reischl, B.; Allen, R. J.; Friedrich, O.

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules Δdv¯ is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence. PMID:27764134

  14. Computer Color Matching and Levelness of PEG-Based Reverse Micellar Decamethyl cyclopentasiloxane (D5 Solvent-Assisted Reactive Dyeing on Cotton Fiber

    Directory of Open Access Journals (Sweden)

    Alan Y. L. Tang

    2017-07-01

    Full Text Available The color matching and levelness of cotton fabrics dyed with reactive dye, in a non-aqueous environmentally-friendly medium of decamethylcyclopentasiloxane (D5, was investigated using the non-ionic surfactant reverse-micellar approach comprised of poly(ethylene glycol-based surfactant. The calibration dyeing databases for both conventional water-based dyeing and D5-assisted reverse micellar dyeing were established, along with the dyeing of standard samples with predetermined concentrations. Computer color matching (CCM was conducted by using different color difference formulae for both dyeing methods. Experimental results reveal that the measured concentrations were nearly the same as the expected concentrations for both methods. This indicates that the D5-assisted non-ionic reverse micellar dyeing approach can achieve color matching as good as the conventional dyeing system. The levelness of the dyed samples was measured according to the relative unlevelness indices (RUI, and the results reveal that the samples dyed by the D5 reverse micellar dyeing system can achieve good to excellent levelness comparable to that of the conventional dyeing system.

  15. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier.

    Science.gov (United States)

    Absalan, Ghodratollah; Asadi, Mozaffar; Kamran, Sedigheh; Sheikhian, Leila; Goltz, Douglas M

    2011-08-30

    The nanoparticles of Fe(3)O(4) as well as the binary nanoparticles of ionic liquid and Fe(3)O(4) (IL-Fe(3)O(4)) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe(3)O(4) nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60mg, a pH of 2.5, and a contact time of 2min when initial dyes concentrations of 10-200mg L(-1) were used. The maximum adsorption capacity of IL-Fe(3)O(4) was 166.67 and 49.26mg g(-1) for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62L mg(-1) for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe(3)O(4) by using a mixed NaCl-acetone solution and adsorbent was reusable. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. DMol3/COSMO-RS prediction of aqueous solubility and reactivity of selected Azo dyes: Effect of global orbital cut-off and COSMO segment variation

    CSIR Research Space (South Africa)

    Wahab, OO

    2018-01-01

    Full Text Available Aqueous solubility and reactivity of four azo dyes were investigated by DMol3/COSMO-RS calculation to examine the effects of global orbital cut-off and COSMO segment variation on the accuracies of theoretical solubility and reactivity. The studied...

  17. Evaluation of sugar-cane bagasse as bioadsorbent in the textile wastewater treatment contaminated with carcinogenic congo red dye

    Directory of Open Access Journals (Sweden)

    Aline Sartório Raymundo

    2010-08-01

    Full Text Available A methodology involving sugar cane bagasse bioadsorbent was developed in order to remove the carcinogenic congo red dye from aqueous medium. The results showed high efficiency with retention of 64 ± 6% in synthetic congo red solution and 94 ± 5% in effluent enriched with congo red, at 10.0 g of the bioadsorbent. The adsorption system provided a maximum adsorption capacity of 4.43 mg/g. Tests showed independence adsorption properties, when compared with the column flow rates. The treatment units could be operated with flexibility. From the results, it was possible to conclude that sugar cane bagasse could be an adequate bioadsorbent.Neste trabalho foi desenvolvida uma metodologia de remoção do corante carcinogênico congo red de sistemas aquosos. Os resultados mostraram uma elevada eficiência de remoção sendo de 64 ± 6% para soluções sintéticas de vermelho congo, e 94 ± 5% para efluente industrial enriquecido com vermelho congo utilizando 10 g de bioadsorvente. A capacidade máxima adsotiva encontrada foi de 4,43 mg/g. Os testes de percolação revelaram independência das porcentagens adsortivas em relação às vazões das colunas. Estes resultados indicam viabilidade de uso do bagaço de cana-de-açucar no tratamento de efluentes contendo o congo red.

  18. Estimation of Para Red Dye in Chilli Powder and Tomato Sauces by ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    food is strictly prohibited because of its ability to form carcinogenic compounds. Although there were a ... numbers of synthetic dyes available in markets used not only to enhance ..... panel on food additives, flavourings, processing aids and ...

  19. Azo dye reduction by mesophilic and thermophilic anaerobic consortia

    NARCIS (Netherlands)

    Santos, dos A.B.; Madrid, de M.P.; Stams, A.J.M.; Lier, van J.B.; Cervantes, F.J.

    2005-01-01

    The reduction of the azo dye model compounds Reactive Red 2 (RR2) and Reactive Orange 14 (RO14) by mesophilic (30 C) and thermophilic (55 C) anaerobic consortia was studied in batch assays. The contribution of fermentative and methanogenic microorganisms in both temperatures was evaluated in the

  20. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

    Science.gov (United States)

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d'Ischia, Marco

    2015-06-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

  1. Statistical Optimization of Conditions for Decolorization of Synthetic Dyes by Cordyceps militaris MTCC 3936 Using RSM

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur

    2015-01-01

    Full Text Available In the present study, the biobleaching potential of white rot fungus Cordyceps militaris MTCC3936 was investigated. For preliminary screening, decolorization properties of C. militaris were comparatively studied using whole cells in agar-based and liquid culture systems. Preliminary investigation in liquid culture systems revealed 100% decolorization achieved within 3 days of incubation for reactive yellow 18, 6 days for reactive red 31, 7 days for reactive black 8, and 11 days for reactive green 19 and reactive red 74. RSM was further used to study the effect of three independent variables such as pH, incubation time, and concentration of dye on decolorization properties of cell free supernatant of C. militaris. RSM based statistical analysis revealed that dye decolorization by cell free supernatants of C. militaris is more efficient than whole cell based system. The optimized conditions for decolorization of synthetic dyes were identified as dye concentration of 300 ppm, incubation time of 48 h, and optimal pH value as 5.5, except for reactive red 31 (for which the model was nonsignificant. The maximum dye decolorizations achieved under optimized conditions for reactive yellow 18, reactive green 19, reactive red 74, and reactive black 8 were 73.07, 65.36, 55.37, and 68.59%, respectively.

  2. Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Enayatzamir, Kheirghadam [Department of Chemical Engineering, Rovira i Virgili University, Av. Paisos Catalans 26, 43007 Tarragona (Spain); Department of Soil Science Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Alikhani, Hossein A. [Department of Soil Science Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Rodriguez Couto, Susana [Department of Chemical Engineering, Rovira i Virgili University, Av. Paisos Catalans 26, 43007 Tarragona (Spain)], E-mail: susana.rodriguez@urv.cat

    2009-05-15

    In this paper the production of laccase and the decolouration of the recalcitrant diazo dye Reactive Black 5 (RB5) by the white-rot fungus Trametes pubescens immobilised on stainless steel sponges in a fixed-bed reactor were studied. Laccase production was increased by 10-fold in the presence of RB5 and reached a maximum value of 1025 U/l. Enhanced laccase production in the presence of RB5 in this fungus is an added advantage during biodegradation of RB5-containing effluents. The decolouration of RB5 was due to two processes: dye adsorption onto the fungal mycelium and dye degradation by the laccase enzymes produced by the fungus. RB5 decolouration was performed during four successive batches obtaining high decolouration percentages (74%, 43% and 52% in 24 h for the first, third and four batch, respectively) without addition of redox mediators. Also, the in vitro decolouration of RB5 by the concentrated culture extract, containing mainly laccase, produced in the above bioreactor was studied. The decolouration percentages obtained were considerably lower (around 20% in 24 h) than that attained with the whole culture.

  3. Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads.

    Science.gov (United States)

    Iglesias, O; Fernández de Dios, M A; Rosales, E; Pazos, M; Sanromán, M A

    2013-04-01

    The aim of this work was to improve the ability of the electro-Fenton process using Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes and using a model diazo dye such as Reactive Black 5 (RB5). Batch experiments were conducted to study the effects of main parameters, such as voltage, pH and iron concentration. Dye decolourisation, reduction of chemical oxygen demand (COD) and energy consumption were studied. Central composite face-centred experimental design matrix and response surface methodology were applied to design the experiments and to evaluate the interactive effects of the three studied parameters. A total of 20 experimental runs were set, and the kinetic data were analysed using first-order and second-order models. In all cases, the experimental data were fitted to the empirical second-order model with a suitable degree for the maximum decolourisation of RB5, COD reduction and energy consumption by electro-Fenton-Fe alginate gel beads treatment. Working with the obtained empirical model, the optimisation of the process was carried out. The second-order polynomial regression model suggests that the optimum conditions for attaining maximum decolourisation, COD reduction and energy consumption are voltage, 5.69 V; pH 2.24 and iron concentration, 2.68 mM. Moreover, the fixation of iron on alginate beads suggests that the degradation process can be developed under this electro-Fenton process in repeated batches and in a continuous mode.

  4. Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor

    International Nuclear Information System (INIS)

    Enayatzamir, Kheirghadam; Alikhani, Hossein A.; Rodriguez Couto, Susana

    2009-01-01

    In this paper the production of laccase and the decolouration of the recalcitrant diazo dye Reactive Black 5 (RB5) by the white-rot fungus Trametes pubescens immobilised on stainless steel sponges in a fixed-bed reactor were studied. Laccase production was increased by 10-fold in the presence of RB5 and reached a maximum value of 1025 U/l. Enhanced laccase production in the presence of RB5 in this fungus is an added advantage during biodegradation of RB5-containing effluents. The decolouration of RB5 was due to two processes: dye adsorption onto the fungal mycelium and dye degradation by the laccase enzymes produced by the fungus. RB5 decolouration was performed during four successive batches obtaining high decolouration percentages (74%, 43% and 52% in 24 h for the first, third and four batch, respectively) without addition of redox mediators. Also, the in vitro decolouration of RB5 by the concentrated culture extract, containing mainly laccase, produced in the above bioreactor was studied. The decolouration percentages obtained were considerably lower (around 20% in 24 h) than that attained with the whole culture

  5. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Hosseini Koupaie, E.; Alavi Moghaddam, M.R.; Hashemi, S.H.

    2011-01-01

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  6. Visible-Light Degradation of Dyes and Phenols over Mesoporous Titania Prepared by Using Anthocyanin from Red Radish as Template

    Directory of Open Access Journals (Sweden)

    Zhiying Yan

    2014-01-01

    Full Text Available Heterogeneous photocatalysis is able to operate effectively to eliminate organic compounds from wastewater in the presence of semiconductor photocatalyst and a light source. Although photosensitization of titania by organic dyes is one of the conventional ways for visible-light utilization of titania, previous studies have not yet addressed the use of natural food coloring agents as templates in the synthesis of mesostructured materials, let alone the simultaneous achievement of highly crystalline mesoscopic framework and visible-light photocatalytic activity. In this work, anthocyanin, a natural pigment from red radish was directly used as template in synthesis of highly crystalline mesoporous titania. The synthesized mesoporous titania samples were characterized by a combination of various physicochemical techniques, such as XRD, SEM, HRTEM, nitrogen adsorption/desorption, and diffuse reflectance UV-Vis. The prepared mesoporous titania photocatalyst exhibited significant activity under visible-light irradiation for the degradation of dyes and phenols due to its red shift of band-gap-absorption onset and visible-light response as a result of the incorporation of surface carbon species.

  7. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium

    International Nuclear Information System (INIS)

    Somasekhara Reddy, M.C.; Sivaramakrishna, L.; Varada Reddy, A.

    2012-01-01

    Highlights: ► We have introduced a low-cost, abundantly locally available non-conventional adsorbent in place of activated carbons. ► The kinetic data were well described by second order kinetic model and intra-particle diffusion model. ► The Langmuir and generalized isotherm models were the best fitting for the isotherm results. ► Removal capacity of Jujuba seeds is more than so many agricultural wastes. ► Relative cost of Jujuba seeds for the removal of Congo red can be compared with activated carbons - Abstract: The feasibility of using Indian Jujuba Seeds (IJS) (Zizyphus maruritiana), abundantly available in and around the Nallamalla forest in Andhra Pradesh, for the anionic dye (Congo red, CR) adsorption from aqueous solution, has been investigated as low cost and eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, pH and temperature. Maximum colour removal was observed at pH 2. The equilibrium data was analyzed by the Langmuir, the Freundlich and the General isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 55.56 mg g −1 . The pseudo-second-order kinetics was the best for the adsorption of CR, by IJS (Z. maruritiana) with good correlation. Thermodynamic parameters, such as standard free energy change (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°), were analyzed. The results suggest that IJS (Z. maruritiana) is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater.

  8. Monopolar Electro-Coagulation Process for Azo Dye C.I. Acid Red 18 Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ghasem Azarian

    2014-12-01

    Full Text Available The discharge of wastewaters containing an untreated dye results in aesthetic problems and an increase in gases solubility, which causes light transmission inhibition into water bodies. In spite of advantages of physicochemical and biological methods, these processes produce huge amounts of sludge, toxic by-products and require several oxidant chemicals. By contrast, electrochemical processes because of their high versatility, high efficiency and eco-friendly properties are more acceptable. In the present study, the removal of azo dye Acid Red 18 and chemical oxygen demand (COD from synthetic wastewater by monopolar (EC process was investigated and key parameters such as operating time, current density (CD, initial pH and energy, and electrode consumption were optimized. It was found that the process had a very good efficiency in the removal of both COD and color; for the iron electrode, the maximum amounts of color and COD removal were 99.5% and 59.0%, respectively. An operating time of 45 min, pH of 7 and CD of 1.2 mA/cm2 was selected as the optimized condition. The optimization of variables is extremely crucial as it results in a decrease in costs, energy and electrode consumption. Overall, the iron electrode used less energy than the aluminum electrode and was more acceptable for use in this process due to economical reasons. The findings of UV/vis spectra illustrated that the structures of this dye were removed by the process. In comparison with traditional methods such as aerobic and anaerobic systems, the EC process is a suitable alternative for the treatment of wastewaters containing dye pollutants.

  9. Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Migliorini, F.L.; Braga, N.A.; Alves, S.A.; Lanza, M.R.V.; Baldan, M.R.; Ferreira, N.G.

    2011-01-01

    Highlights: → Electrochemical advanced oxidation process was studied using BDD based anodes with different boron concentrations. → The difference between the non-active and active anodes for organics degradation. → The influence of morphologic and structural properties of BDD electrodes on the RO-16 dye degradation. - Abstract: Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10 21 atoms cm -3 , respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman's spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 0 0). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process.

  10. Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process : Environmental Science and Pollution Research.

    Science.gov (United States)

    Cuervo Lumbaque, Elisabeth; Gomes, Monike Felipe; Da Silva Carvalho, Vanessa; de Freitas, Adriane Martins; Tiburtius, Elaine Regina Lopes

    2017-03-01

    This research paper describes the study of a reduction-oxidation system using commercial steel wool (Fe 0 ) and H 2 O 2 for degradation of the dye Reactive Black 5 and aromatic compounds in water. The reductive process alone allowed the almost complete removal of color (97 ± 1 %) after 60 min of reaction. The decrease in spectral area (λ = 599 nm) associated with the chromophore group indicates breakage of the azo bonds. Moreover, the significant change in UV spectra can be associated with the formation of aromatic amines. Regarding the transformation products, a spectrophotometric method based on the diazotization reaction was employed to identify aromatic amines after reductive process, using sulfanilic acid as a model of aromatic amines. In addition, association with Fenton reagents improved the efficiency in the system with 93 ± 1 % degradation of intermediates formed during the reductive process. Ecotoxicological analysis revealed that the dye solution, after the reductive and oxidative processes, was not toxic to Lactuca sativa seeds. For Daphnia magna, the EC 50 (%) values observed revealed that dye solution has an EC 50 (%) = 74.1 and after reductive process, the toxicity increased (EC 50 (%) = 63.5), which might be related to the formation of aromatic amines. However, after the Fenton process, the EC 50 (%) was >100. These results demonstrated that the Fenton reaction using steel wool as an iron source was very efficient to decrease color, aromatic transformation products, and the ecotoxicity of Reactive Black 5 in solution.

  11. Photocatalytic oxidation of a reactive azo dye and evaluation of the ...

    African Journals Online (AJOL)

    driniev

    2004-07-03

    Jul 3, 2004 ... biological oxygen demand (BOD) test. The results ... Toxicity testing of photo- catalytically ... The dye solution contained in a flask was placed on a magnetic ..... opacity of the suspension in the excess of TiO2 particles (Fig. 4).

  12. The Application of Dragon Fruit Peels as a Dye in Red Velvet Cake

    Directory of Open Access Journals (Sweden)

    Dianka Wahyuningtias

    2015-11-01

    Full Text Available Red Dragon fruit peel that has a high antioxidant content is very useful and suitable processed into natural coloring in household industry are easily processed. One product to apply it is the Red Velvet Cake. Red Velvet Cake is basically uses natural coloring from the bits fruit and instant food coloring. This discussion will create a research that is attempting to replace the instant food coloring and natural food coloring from the bit that is commonly used in Red Velvet Cake by making use of the Dragon fruit that is considered to be food wastes. This research aims to provide a new alternative natural food coloring in the Red Velvet Cake. Experimental research is used by doing experiments and planned and systematic testing to Red Velvet Cake, and by collecting primary data and secondary data as well. All data is presented in a descriptive with SPSS. From the results of mean average can be inferred that the Red Velvet Cake using natural food coloring from Red Dragon fruit is acceptable to the community.

  13. Influence of operating conditions on the removal of brilliant vital red dye from aqueous media by bio-sorption using rice husk

    International Nuclear Information System (INIS)

    Rehman, R.; Anwar, J.; Mahmud, T.; Salman, M.; Shafique, U.

    2011-01-01

    Bio-sorption is emerging as an economical and eco friendly methodology for the removal of hazardous and toxic chemicals from waste water. The operating conditions have a great influence on the efficiency of this process. Conventional and indigenous bio sorbents like bagasse, wheat husk and rice husk have been evaluated for their removing efficiency of Brilliant Vital Red dye from water. Rice husk is proved better among them. The effect of important operating conditions for the removal of the dye using rice husk were studied. The observed optimum values for various factors are; 0.2 g of bio sorbent, 25 ppm initial dye concentration, 30 deg. C temperature, 15 minutes contact time, 300 rpm stirring speed and 2.0 ph. Langmuir adsorption isotherm model was also applied to evaluate maximum adsorption capacity of rice husk for Brilliant Vital Red dye. Q/sub max/ value was 15.06 which indicated that rice husk can effectively be used for the removal of Brilliant Vital Red dye from wastewater using the optimized operational conditions. This study would be accommodative with regard to practical wastewater treatment. (author)

  14. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.

    Science.gov (United States)

    Sun, Baoshan; de Sá, Marta; Leandro, Conceição; Caldeira, Ilda; Duarte, Filomena L; Spranger, Isabel

    2013-01-30

    Recent studies have indicated the presence of significant amount of highly polymerized and soluble proanthocyanidins in red wine and such compounds interacted readily with proteins, suggesting that they might be particularly astringent. Thus, the objective of this work was to verify the astringency of polymeric proanthocyanidins and their contribution to red wine astringency. The precipitation reactions of the purified oligomeric procyanidins (degree of polymerization ranging from 2 to 12-15) and polymeric procyanidins (degree of polymerization ranging from 12-15 to 32-34) with human salivary proteins were studied; salivary proteins composition changes before and after the reaction was verified by SDS-PAGE and procyanidins composition changes by spectrometric, direct HPLC and thiolysis-HPLC methods. The astringency intensity of these two procyanidin fractions was evaluated by a sensory analysis panel. For verifying the correlation between polymeric proanthocyanidins and young red wine astringency, the levels of total oligomeric and total polymeric proanthocyanidins and other phenolic composition in various young red wines were quantified and the astringency intensities of these wines were evaluated by a sensory panel. The results showed that polymeric proanthocyanidins had much higher reactivity toward human salivary proteins and higher astringency intensity than the oligomeric ones. Furthermore, young red wine astringency intensities were highly correlated to levels of polymeric proanthocyanidins, particularly at low concentration range (correlation coefficient r = 0.9840) but not significant correlated to total polyphenols (r = 0.2343) or other individual phenolic compounds (generally r wine astringency and the levels of polymeric polyphenols in red wines may be used as an indicator for its astringency.

  15. Investigation of adsorption and inhibitive effect of acid red GRE (183 dye on the corrosion of carbon steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    M. Abd El-raouf

    2015-09-01

    Full Text Available The adsorption and corrosion inhibitive effect of acid red GRE (183 dye on carbon steel alloy in 1 M HCl solutions was studied using various techniques. Results of weight loss, Tafel polarization measurements and electrochemical impedance spectroscopy (EIS techniques show that this compound has fairly good inhibiting properties for steel corrosion in acidic bath; with efficiency around 96% at a concentration of 50 ppm. The inhibition is of a mixed anodic–cathodic nature. Factors affecting the corrosion process have been calculated and discussed. Acid red GRE (183 dye was shown to be an inhibitor in the acidic corrosion. Inhibition efficiency increased with acid red GRE (183 dye concentration but decreased with rise in temperature, corrosion inhibition is attributed to the adsorption of acid red GRE (183 dye on the carbon steel surface via a physical adsorption mechanism. Langmuir isotherm is found to provide an accurate description of the adsorption behavior of the investigated azo compound. The nature of the protective film was investigated using SEM and EDX techniques.

  16. Citotoxicity of food dyes sunset yellow (E-110, bordeaux red (E-123, and tatrazine yellow (E-102 on Allium cepa L. root meristematic cells

    Directory of Open Access Journals (Sweden)

    Keiva Maria Silva Gomes

    2013-03-01

    Full Text Available The objective of this study was to evaluate the cytotoxic effect of the food dyes sunset yellow, bordeaux red, and tartrazine yellow on the cellular cycle of Allium cepa L. Each dye was evaluated at the doses of 0.4 and 4.0 mL, at the exposure times of 24 and 48 hours in root tip cells of Allium cepa L. Slides were prepared and cells were analyzed during the whole cell cycle for cellular aberrations totaling 5,000 total cells for each dose evaluated. The mitotic index was calculated, and statistical analysis was performed using the Chi-squared test (p < 0.05. The results showed that the three dyes used under the evaluated doses and exposure times were cytotoxic to the cells of the system-test used. Further cytotoxicity studies should be conducted for additional results and a proper evaluation of the effect of these three dyes on a cellular level.

  17. Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and its adsorption behavior for Congo Red dye

    Directory of Open Access Journals (Sweden)

    Min-min Wang

    2013-07-01

    Full Text Available A series of carboxymethyl cellulose/organic montmorillonite (CMC/OMMT nanocomposites with different weight ratios of carboxymethyl cellulose (CMC to organic montmorillonite (OMMT were synthesized under different conditions. The nanocomposites were characterized by the Fourier transform infrared (FT-IR spectrophotometer, X-ray diffraction (XRD method, transmission electron microscope (TEM, scanning electron microscope (SEM, and thermal gravimetric (TG analysis. The results showed that the introduction of CMC may have different influences on the physico-chemical properties of OMMT and intercalated-exfoliated nanostructures were formed in the nanocomposites. The effects of different reaction conditions on the adsorption capacity of samples for Congo Red (CR dye were investigated by controlling the amount of hexadecyl trimethyl ammonium bromide (CTAB, the weight ratio of CMC to OMMT, the reaction time, and the reaction temperature. Results from the adsorption experiment showed that the adsorption capacity of the nanocomposites can reach 171.37 mg/g, with the amount of CTAB being 1.0 cation exchange capacity (CEC of MMT, the weight ratio of CMC to OMMT being 1:1, the reaction time being 6 h, and the reaction temperature being 60°C. The CMC/OMMT nanocomposite can be used as a potential adsorbent to remove CR dye from an aqueous solution.

  18. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala (India); Illyaskutty, Navas [Institute for Sensorics and Information Systems (ISIS), Karlsruhe University of Applied Sciences, Moltkestr. 30, D-76133 Karlsruhe (Germany); Sreedhanya, S. [School of Chemical Sciences, M. G. University, Kottayam, Kerala 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore 560080 (India)

    2016-05-21

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  19. Functionalization of Microcrystalline Cellulose with N,N-dimethyldodecylamine for the Removal of Congo Red Dye from an Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dongying Hu

    2014-08-01

    Full Text Available Microcrystalline cellulose (MCC was functionalized with quaternary amine groups for use as an adsorbent to remove Congo Red dye (CR from aqueous solution. The ultrasonic pretreatment of MCC was investigated during its functionalization. Characterization was conducted using infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The batch adsorption of the functionalized MCC was studied to evaluate the effects of dye concentration, pH of solution, temperature, and NaCl concentration on the adsorption CR. The adsorbent (FM-1 obtained using ultrasonic pretreatment of MCC under 10.8 kJ•g–1 exhibited an adsorption capacity of 304 mg•g–1 at initial pH under a dose of 0.1 g•L–1 and initial concentration of 80 mg•L–1. After functionalization, the FT-IR and XPS results indicated that the quaternary amine group was successfully grafted onto the cellulose, the surface was transformed to be coarse and porous, and the crystalline structure of the original cellulose was disrupted. FM-1 has been shown to be a promising and efficient adsorbent for the removal of CR from an aqueous solution.

  20. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization

    Science.gov (United States)

    Shaban, Mohamed; Abukhadra, Mostafa R.; Ibrahim, Suzan S.; Shahien, Mohamed. G.

    2017-12-01

    Refined natural Fe-chromite was characterized by XRD, FT-IR, reflected polarized microscope, XRF and UV spectrophotometer. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye by Fe-chromite was investigated using 1 mL H2O2. The degradation of dye was studied as a function of illumination time, chromite mass, initial dye concentration, and pH. Fe-chromite acts as binary oxide system from chromium oxide and ferrous oxide. Thus, it exhibits photocatalytic properties under UV illumination and photo-Fenton oxidation after addition of H2O2. The degradation in the presence of H2O2 reached the equilibrium stage after 8 h (59.4%) but in the absence of H2O2 continued to 12 h (54.6%). Photocatalytic degradation results fitted well with zero, first order and second order kinetic model but it represented by second order rather than by the other models. While the photo-Fenton oxidation show medium fitting with the second order kinetic model only. The values of kinetic rate constants for the photo-Fenton oxidation were greater than those for the photocatalytic degradation. Thus, degradation of Congo red dye using chromite as catalyst is more efficient by photo-Fenton oxidation. Based on the response surface analysis, the predicted optimal conditions for maximum removal of Congo red dye by photocatalytic degradation (100%) were 12 mg/l, 0.14 g, 3, and 11 h for dye concentration, chromite mass, pH, and illumination time, respectively. Moreover, the optimum condition for photo-Fenton oxidation of dye (100%) is 13.5 mg/l, 0.10 g, 4, and 10 h, respectively.

  1. Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO{sub 3} semiconductor catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Hayat, K. [Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Hooshani, K. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-10-30

    Water contamination by organic substances such as dyes is of great concern worldwide due to their utilization in many industrial processes and environmental concerns. To cater the needs for waste water treatment polluted with organic dyes, laser-induced photocatalytic process was investigated for removal of a dye derivative namely Acid Red 87 using n-type WO{sub 3} semiconductor catalyst. The degradation was investigated in aqueous suspensions of tungsten oxide under different experimental conditions using laser instead of conventional UV lamp as an irradiation source. The degradation process was monitored by measuring the change in dye concentration as a function of laser irradiation time by employing UV spectroscopic analysis. The degradation of dye was studied by varying different parameters such as laser energy, reaction pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H{sub 2}O{sub 2}), and potassium bromate (KBrO{sub 3}). The degradation rates were found to be strongly dependent on all the above-mentioned parameters. Our experimental results revealed that the dye degradation process was very fast (within few minutes) under laser irradiation as compared to conventional setups using broad spectral lamps (hours or days) and this laser-induced photocatalytic degradation method could be an effective means to eliminate the pollutants present in liquid phase. The experience gained through this study could be beneficial for treatment of waste water contaminated with organic dyes and other organic pollutants.

  2. Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122

    International Nuclear Information System (INIS)

    Santana, Mario H.P.; Da Silva, Leonardo M.; Freitas, Admildo C.; Boodts, Julien F.C.; Fernandes, Karla C.; De Faria, Luiz A.

    2009-01-01

    Aqueous solutions containing the commercial azo dye Reactive Orange 122 (RO122) were ozonated in acid and alkaline conditions. Ozone was electrochemically generated using a laboratory-made electrochemical reactor and applied using semi-batch conditions and a column bubble reactor. A constant ozone application rate of 0.25 g h -1 was used throughout. Color removal and degradation efficiency were evaluated as function of ozonation time, pH and initial dye concentration by means of discoloration kinetics and COD-TOC removal. Experimental findings revealed that pH affects both discoloration kinetics and COD-TOC removal. A single pseudo-first-order kinetic rate constant, k obs , for discoloration was found for ozonation carried out in alkaline solutions, contrary to acidic solutions where k obs depends on ozonation time. COD-TOC removal supports degradation of RO122 is more pronounced for alkaline conditions. Evaluation of the oxidation feasibility by means of the COD/TOC ratio indicates that the ozonation process in both acid and alkaline conditions leads to a reduction in recalcitrance of the soluble organic matter

  3. Novel 2-phenyl-3-{4’-[N-(4”-aminophenylcarbamoyl]-phenyl}-quinazoline-4(3Hone-6-sulphonic acidbased mono azo reactive dyes

    Directory of Open Access Journals (Sweden)

    DIVYESH R. PATEL

    2011-02-01

    Full Text Available A series of new heterocyclic mono azo reactive dyes 7a–m were prepared by diazotization of 2-phenyl-3-{4’-[N-(4”-aminophenylcarbamoyl]-phenyl}-quinazoline-4(3H-one-6-sulphonic acid (3 and coupling with various cyanurated coupling components 6a–m and their dyeing performance on silk, wool and cotton fibres was assessed. These dyes were found to give a variety of colour shades with very good depth and levelness on the fibres. All the compounds were identified by conventional method (IR and 1H-NMR and elemental analyses. The percentage dye bath exhaustion on different fibres was reasonably good and acceptable. The dyed fibre showed moderate to very good fastness to light, washing and rubbing.

  4. Study of application properties of novel trisazo hetero bi-functional reactive dyes based on j-acid derivatives for cotton

    International Nuclear Information System (INIS)

    Mokhtari, Javad; Akbarzadeh, A; Phillips, D A S; Taylor, J A

    2009-01-01

    Three novel trisazo hetero bi-functional reactive dyes based on J-acid derivatives were prepared using the diazonium salt of [4-(4-sulphophenylazo-)-2,5-dimethylazobenzene-2-sulphonic acid] and a hetero bi-functional coupling component, derived from 1-hydroxy-6-aminonapthalene-3-sulphonic acid (J-acid), 1-hydroxy-6- methylaminonapthalene-3-sulphonic acid (methyl J-acid), and 1-hydroxy-6-aminonaphthalene-3,5-disulphonic acid (sulpho J-acid). On balance, the dye derived from sulpho J-acid displayed the most attractive set of technical properties, building up and fixing more efficiently than those derived from J-acid and methyl J-acid. In addition, the sulpho J-acid based dye offered better migration and, therefore, level dyeing and ease of wash off. (author)

  5. Low-Cost Biodegradation and Detoxification of Textile Azo Dye C.I. Reactive Blue 172 by Providencia rettgeri Strain HSL1

    Directory of Open Access Journals (Sweden)

    Harshad Lade

    2015-01-01

    Full Text Available Present study focuses on exploitation of agricultural waste wheat bran (WB as growth medium for degradation of textile azo dye C.I. Reactive Blue 172 (RB 172 using a single bacterium P. rettgeri strain HSL1 (GenBank accession number JX853768.1. The bacterium was found to completely decolorize 50 mg L−1 of dye RB 172 within 20 h at 30 ± 0.2°C under microaerophilic incubation conditions. Additionally, significant reduction in COD (85% and TOC (52% contents of dye decolorized medium was observed which suggested its mineralization. Induction in the activities of azoreductase (159% and NADH-DCIP reductase (88% provided an evidence for reductive cleavage of dye RB 172. The HPLC, FTIR, and GC-MS analysis of decolorized products confirmed the degradation of dye into various metabolites. The proposed metabolic pathway for biodegradation of RB 172 has been elucidated which showed the formation of 2 intermediate metabolites, namely, 4-(ethenylsulfonyl aniline and 1-amino-1-(4-aminophenyl propan-2-one. The acute and phytotoxicity evaluation of degraded metabolites suggests that bacterial strain favors the detoxification of dye RB 172. Thus, WB could be utilized as a low-cost growth medium for the enrichment of bacteria and their further use for biodegradation of azo dyes and its derivatives containing wastes into nontoxic form.

  6. Visible light photocatalytic activities of template free porous graphitic carbon nitride-BiOBr composite catalysts towards the mineralization of reactive dyes

    Science.gov (United States)

    Kanagaraj, Thamaraiselvi; Thiripuranthagan, Sivakumar; Paskalis, Sahaya Murphin Kumar; Abe, Hideki

    2017-12-01

    Template free porous g-C3N4 (pGCN) and flower like bismuth oxybromide catalysts were synthesized by poly condensation and precipitation methods respectively. Various weight percentages of porous GCN-BiOBr composite catalysts (x% pGCN-BiOBr where x = 5, 10, 30, 50 & 70 wt% of pGCN) were synthesized by impregnation method. All the synthesized catalysts were characterized by X-Ray diffractometer, Fourier transform infrared spectrophotometer, BET surface area analyzer, UV Visible diffuse reflectance spectrophotometer, X-Ray photoelectron spectrophotometer, SEM with Energy dispersive X-ray analyzer (SEM/EDAX) and elemental mapping, Transmission electron microscope, Photoluminescence spectrophotometer and Electrochemical impedance. Photocatalytic degradation of all the synthesized catalysts were tested towards the harmful reactive dyes such as reactive blue 198 (RB 198), reactive black 5 (RB 5) and reactive yellow 145 (RY 145) in presence of visible irradiation. Among the catalysts 30% pGCN-BiOBr resulted in the highest photocatalytic activity towards the degradation of all the three dyes in presence of UV, visible and solar irradiations. Kinetics studies on the photocatalytic mineralization of dyes indicated that it followed pseudo first order. HPLC, TOC and COD studies confirm that the dyes are mineralized into CO2, water and mineral salts.

  7. Visible-light photocatalytic decolorization of reactive brilliant red X-3B on Cu{sub 2}O/crosslinked-chitosan nanocomposites prepared via one step process

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chunhua [College of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Xiao, Ling, E-mail: xiaoling9119@yahoo.cn [College of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Liu, Li; Zhu, Huayue [College of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Chen, Chunhua; Gao, Lin [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China)

    2013-04-15

    Cu{sub 2}O/crosslinked-chitosan nanocomposites (Cu{sub 2}O/CS NCs) were in situ prepared via a simple one-step liquid phase precipitation–reduction process and characterized by XRD, FT-IR, SEM, TEM, BET, XPS and UV–vis/DRS. The characterization results showed that Cu{sub 2}O/CS NCs were almost similar spherical or ellipsoidal and the surface was rough and porous because Cu{sub 2}O particle was wrapped in chitosan. The chitosan layer was especially favorable for improving the adsorption ability of dye and molecular oxygen and restraining the recombination of electrons–holes pair. The visible-light photocatalytic decolorization behavior on Cu{sub 2}O/CS NCs was evaluated using reactive brilliant red X-3B (X-3B) as a model pollutant. The influences of various experimental factors on X-3B decolorization were investigated. It was found that the photocatalytic decolorization process on Cu{sub 2}O/CS NCs followed apparent pseudo-first-order kinetics model. The dye X-3B could be decolorized more efficiently in acidic media than in alkaline media. Cu{sub 2}O/CS NCs exhibited enhanced visible-light photocatalytic activity compared with other photocatalysts reported before under similar experimental conditions.

  8. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe{sub 3}O{sub 4} magnetic nanoparticles using ionic liquid as modifier

    Energy Technology Data Exchange (ETDEWEB)

    Absalan, Ghodratollah, E-mail: gubsulun@yahoo.com [Professor Masoumi Laboratory, Department of Chemistry, College of Science, Shiraz University, Hafeziyeh, Fars, 71454 Shiraz (Iran, Islamic Republic of); Asadi, Mozaffar; Kamran, Sedigheh; Sheikhian, Leila [Professor Masoumi Laboratory, Department of Chemistry, College of Science, Shiraz University, Hafeziyeh, Fars, 71454 Shiraz (Iran, Islamic Republic of); Goltz, Douglas M. [Department of Chemistry, University of Winnipeg, Winnipeg, MB, R3B 2E9 Canada (Canada)

    2011-08-30

    Highlights: {yields} Ionic liquids modify the dye-adsorption characteristics of magnetic nanoparticles. {yields} Modified nanoparticles improved the sensitivity of dye measurements. {yields} Water-solubility is an important factor for choosing an ionic liquid as a modifier for nanoparticles. - Abstract: The nanoparticles of Fe{sub 3}O{sub 4} as well as the binary nanoparticles of ionic liquid and Fe{sub 3}O{sub 4} (IL-Fe{sub 3}O{sub 4}) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe{sub 3}O{sub 4} nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60 mg, a pH of 2.5, and a contact time of 2 min when initial dyes concentrations of 10-200 mg L{sup -1} were used. The maximum adsorption capacity of IL-Fe{sub 3}O{sub 4} was 166.67 and 49.26 mg g{sup -1} for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62 L mg{sup -1} for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe{sub 3}O{sub 4} by using a mixed NaCl-acetone solution and adsorbent was reusable.

  9. Survey of Basic Red 18 Dye Removal Using Biofilm Formed on Granular Bagass in Continuous Aerobic Reactor

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2015-12-01

    Full Text Available Dyes comprising a major pollutant in the effluent from textile plants are mostly toxic, carcinogenic, mutagenic, and non-biodegradable. This experimental-laboratory study was carried out using a biofilm formed on a granular bagass bed in a continuous aerobic reactor to investigate the kinetic coefficients of the aerobic reactor as well as the effects of color concentration (30-200 mg/l, hydraulic retention time (2-8 h, and BOD concentration (200-100 mg /l on the removal of Basic Red (18 from textile effluents. The results revealed a maximum removal efficiency of 90% for an initial color concentration of 30 mg/l and a hydraulic retention time of 8 hours. A color removal efficiency of 86% was recorded for an influent BOD concentration of 200 mg/l. Also, maximum substrate utilization rate (K for organic loadings of 100 and 200 mg/L were 0.23 and 1.41 while the half velocity constant values were 44.85 and 19.39, respectively. Moreover, for the same organic loadings, the values of 0.35 and 0.5 were recorded for decay coefficient (Kd and 37.36, 4.83 for maximum specific growth rate coefficient (μm, respectively. Based on the findings of this study, it may be claimed that the biofilm formed on a granular bagass bed in a continuous aerobic reactor has a good Basic Red (18 removal efficiency.

  10. Experimental Study of Dye Removal from Industrial Wastewater by Membrane Technologies of Reverse Osmosis and Nanofiltration

    Directory of Open Access Journals (Sweden)

    Mohammad Fadhil Abid

    2012-12-01

    Full Text Available Currently, biological method has been utilized in the treatment of wastewater -containing synthetic dyes used by textile industries in Iraq. The present work was devoted to study the operating feasibility using reverse osmosis (RO and nanofiltration (NF membrane systems as an alternative treatment method of wastewater discharged from Iraqi textile mills. Acid red, reactive black and reactive blue dyes were selected, based on the usage rate in Iraq. Effects of dye concentration, pH of solution, feed temperature, dissolved salts and operating pressure on permeate flux and dye rejection were studied. Results at operating conditions of dye concentration?=?65 mg/L, feed temperature?=?39?C and pressure?=?8 bar showed the final dye removal with RO membrane as 97.2%, 99.58% and 99.9% for acid red, reactive black and reactive blue dyes, respectively. With NF membrane, the final dye removal were as 93.77%, 95.67%, and 97% for red, black and blue dyes, respectively. The presence of salt (particularly NaCl in the dye solution resulted in a higher color removal with a permeate flux decline. It was confirmed that pH of solution had a positive impact on dye removal while feed temperature showed a different image. A comparison was made between the results of dye removal in biological and membrane methods. The results showed that membrane method had higher removal potential with lower effective cost. The present study indicates that the use of NF membrane in dye removal from the effluent of Iraqi textile mills is promising.

  11. Application of non-thermal plasma reactor for degradation and detoxification of high concentrations of dye Reactive Black 5 in water

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2016-01-01

    Full Text Available Degradation and detoxification efficiency of high concentrations of commercially available reactive textile dye Reactive Black 5 solution (40, 80, 200, 500, 1000 mg L-1, were studied. Advanced oxidation processes in water falling film based dielectric barrier discharge as a non-thermal plasma reactor were used. For the first time, this reactor was used for the treatment of high concentrations of organic pollutants such as reactive textile dye Reactive Black 5 in water. Solution of the dye is treated by plasma as thin water solution film that is constantly regenerated. Basically, the reactor works as a continuous flow reactor and the electrical discharge itself takes place at the gas-liquid interphase. The dye solution was recirculated through the reactor with an applied energy density of 0-374 kJ L-1. Decolorization efficiency (% was monitored by UV-VIS spectrophotometric technique. Samples were taken after every recirculation (~ 22 kJ L-1 and decolorization percent was measured after 5 min and 24 h of plasma treatment. The efficiency of degradation (i.e. mineralization and possible degradation products were also tracked by determination of the chemical oxygen demand (COD and by ion chromatography (IC. Initial toxicity and toxicity of solutions after the treatment were studied with Artemia salina test organisms. Efficiency of decolorization decreased with the increase of the dye concentration. Complete decolorization, high mineralization and non-toxicity of the solution (<10 % were acomplished after plasma treatment using energy density of 242 kJ L-1, while the initial concentrations of Reactive Black 5 were 40 and 80 mg L-1. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 171034

  12. Wood (Bagassa guianensis Aubl) and green coconut mesocarp (cocos nucifera) residues as textile dye removers (Remazol Red and Remazol Brilliant Violet).

    Science.gov (United States)

    Monteiro, Mônica S; de Farias, Robson F; Chaves, José Alberto Pestana; Santana, Sirlane A; Silva, Hildo A S; Bezerra, Cícero W B

    2017-12-15

    In this work the efficiency of two lignocellulosic waste materials, wood residues and coconut mesocarp, were investigated as adsorbents towards two representative textile dyes (Remazol Red, RR and Remazol Brilliant Violet, RBV). The moisture, carbohydrate, protein, lipid, ash and fiber contents of both natural matrices were characterized. The materials were also characterized by infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, specific surface area analysis and thermogravimetry. The adsorption of dyes was monitored by using UV-Vis spectrophotometry. It was verified that both, coconut mesocarp (CM) and wood residues can act as effective adsorbents towards the investigated dyes. It is verified that the maximum adsorption capacity Γ M (mg g -1 ) for RBV and RR are 7.28 and 3.97 towards CM and 0.64 and 0.71 towrads SD. Furthermore, it was verified that the adsorption is strongly pH dependent and, as a general behavior, an increase in the pH value is associated with a decrease of the total amount of adsorbed dye. The adsorption of violet dye onto coconut mesocarp is well described by the Langmuir model, while all the remazol red fitted better with the Freundlich equation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram

    2013-08-01

    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  14. A comparative study of quantum yield and electrical energy per order (E(Eo)) for advanced oxidative decolourisation of reactive azo dyes by UV light.

    Science.gov (United States)

    Muruganandham, M; Selvam, K; Swaminathan, M

    2007-06-01

    This paper evaluates the quantum yield and electrical energy per order (E(Eo)) efficiency of Reactive Orange 4 (RO4) and Reactive Yellow 14 (RY14) azo dyes by three advanced oxidation processes (AOPs). Both dyes were completely decolourised by all these processes. The relative decolourisation efficiencies of these processes were in the following order: Fe(2+)/H(2)O(2)/UV>UV/TiO(2)>UV/H(2)O(2). The low efficiency of UV/H(2)O(2) process is mainly due to low UV absorption by hydrogen peroxide at the 365nm. The figure of merit E(Eo) values showed that UV/H(2)O(2) process consumes more electrical energy than the other two processes. The electrical energy consumption is in the following order: UV/H(2)O(2)>UV/TiO(2)>Fe(2+)/H(2)O(2)/UV. At low initial dye concentration higher quantum yield was observed in UV/TiO(2) process, whereas in photo-Fenton process higher quantum yield was observed at high initial dye concentration. The structure of dye molecule also influences the quantum yield and E(Eo) value.

  15. ELECTRO-DEGRADATION OF REACTIVE BLUE DYES USING CYLINDER MODIFIED ELECTRODE: Ti/β-PbO2 AS DIMENSIONALLY STABLE ANODE

    Directory of Open Access Journals (Sweden)

    Aris Mukimin

    2010-12-01

    Full Text Available A cylinder modified electrode of the β-PbO2 was fabricated by anodic electro-deposition method on titanium substrate. The PbO2 layer prepared from high acid solution (pH: 0.3 that contains a mixed of 0.5 M Pb(NO32, 1 M HNO3, and 0,02 M NaF. The physicochemical properties of the PbO2 electrode were analyzed by using Energy Dispersive X-Ray Analysis and X-Ray Diffraction. The analyses have shown that oxide layer has an O/Pb ratio about 1.6 and the PbO impurities are formed in the surface layer besides the β-PbO2. The modified electrode was used as anode paired stainless cathode in the electro-degradation of reactive blue dye. The results of the electro-catalytic oxidation process of the dye solution were expressed in terms of the remaining intensity dye and chemical oxygen demand (COD values. The modified electrode has removal efficiency of the reactive blue dye at voltage of 7 V, pH of 7, concentration NaCl of 2 g/L, initial dye concentration of 100 mg/L with simple and short time operations.

  16. A comparative study of quantum yield and electrical energy per order (E Eo) for advanced oxidative decolourisation of reactive azo dyes by UV light

    International Nuclear Information System (INIS)

    Muruganandham, M.; Selvam, K.; Swaminathan, M.

    2007-01-01

    This paper evaluates the quantum yield and electrical energy per order (E Eo ) efficiency of Reactive Orange 4 (RO4) and Reactive Yellow 14 (RY14) azo dyes by three advanced oxidation processes (AOPs). Both dyes were completely decolourised by all these processes. The relative decolourisation efficiencies of these processes were in the following order: Fe 2+ /H 2 O 2 /UV > UV/TiO 2 > UV/H 2 O 2 . The low efficiency of UV/H 2 O 2 process is mainly due to low UV absorption by hydrogen peroxide at the 365 nm. The figure of merit E Eo values showed that UV/H 2 O 2 process consumes more electrical energy than the other two processes. The electrical energy consumption is in the following order: UV/H 2 O 2 > UV/TiO 2 > Fe 2+ /H 2 O 2 /UV. At low initial dye concentration higher quantum yield was observed in UV/TiO 2 process, whereas in photo-Fenton process higher quantum yield was observed at high initial dye concentration. The structure of dye molecule also influences the quantum yield and E Eo value

  17. Isolation and stabilization of dark red food dye from beta vulgaris

    International Nuclear Information System (INIS)

    Nisa, A.U.; Firdous, S.; Ijaz, N.

    2006-01-01

    Natural highly coloured dark red pigment was isolated from Beta vulgaris. In paste and powdered form. Total colouring matter of the concentrated colour was 1.86% and 4.5%, respectively, for the paste and powdered forms, calculated as betanine. Sodium benzoate (0.01%) was used as the stabilizer for paste, while silicon dioxide (2%) was added in addition to sodium benzoate (0.01%) for storage of the red colour in powdered form. Other parameters that may influence the stability of the colour, such as pH temperature and relative humidity, were studied. Toxicity evaluation, and lead and arsenic levels were determined. The addition of stabilizers, like citric acid, ascorbic acid, EDTA and sodium chloride, were also investigated, none of which showed useful effect. (author)

  18. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation.

    Science.gov (United States)

    Roy, Uttariya; Sengupta, Shubhalakshmi; Banerjee, Priya; Das, Papita; Bhowal, Avijit; Datta, Siddhartha

    2018-06-18

    This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  20. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Larsen, Flemming; Hue, N.T.M.

    2007-01-01

    The mobilization of arsenic (As) to the groundwater was studied in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The groundwater chemistry was investigated in a transect of 100 piezometers. Results show an anoxic aquifer featuring organic carbon decomposition......(III) but some As(V) is always found. Arsenic correlates well with NH4, relating its release to organic matter decomposition and the source of As appears to be the Fe-oxides being reduced. Part of the produced Fe(II) is apparently reprecipitated as siderite containing less As. Results from sediment extraction...... chemistry over depth is homogeneous and a reactive transport model was constructed to quantify the geochemical processes along the vertical groundwater flow component. A redox zonation model was constructed using the partial equilibrium approach with organic carbon degradation in the sediment as the only...

  1. Reactive ground-state pathways are not ubiquitous in red/green cyanobacteriochromes.

    Science.gov (United States)

    Chang, Che-Wei; Gottlieb, Sean M; Kim, Peter W; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S

    2013-09-26

    Recent characterization of the red/green cyanobacteriochrome (CBCR) NpR6012g4 revealed a high quantum yield for its forward photoreaction [J. Am. Chem. Soc. 2012, 134, 130-133] that was ascribed to the activity of hidden, productive ground-state intermediates. The dynamics of the pathways involving these ground-state intermediates was resolved with femtosecond dispersed pump-dump-probe spectroscopy, the first such study reported for any CBCR. To address the ubiquity of such second-chance initiation dynamics (SCID) in CBCRs, we examined the closely related red/green CBCR NpF2164g6 from Nostoc punctiforme. Both NpF2164g6 and NpR6012g4 use phycocyanobilin as the chromophore precursor and exhibit similar excited-state dynamics. However, NpF2164g6 exhibits a lower quantum yield of 32% for the generation of the isomerized Lumi-R primary photoproduct, compared to 40% for NpR6012g4. This difference arises from significantly different ground-state dynamics between the two proteins, with the SCID mechanism deactivated in NpF2164g6. We present an integrated inhomogeneous target model that self-consistently fits the pump-probe and pump-dump-probe signals for both forward and reverse photoreactions in both proteins. This work demonstrates that reactive ground-state intermediates are not ubiquitous phenomena in CBCRs.

  2. A magenta polypyrrole derivatised with Methyl Red azo dye: synthesis and spectroelectrochemical characterisation

    International Nuclear Information System (INIS)

    Almeida, Andresa K.A.; Dias, Jéssica M.M.; Santos, Diego P.; Nogueira, Fred A.R.; Navarro, Marcelo; Tonholo, Josealdo; Lima, Dimas J.P.; Ribeiro, Adriana S.

    2017-01-01

    Highlights: • A pyrrole (Py) derivative functionalised with methyl red (MRPy) was synthesised. • MRPy was polymerised electrochemically in LiClO_4/CH_3CN with BFEE. • Electrochromic properties of PMRPy and PPy doped with methyl red (PPy/MR) were compared. • Colour of the PMRPy changes from magenta to yellow depending on the pH. • PMRPy films might be applicable in optoelectronic devices or in pH sensors. - Abstract: A pyrrole derivative bearing 2-(4-dimethylaminophenylazo)benzoic acid, also known as Methyl Red (MR), was prepared by a simple synthetic route, and electropolymerised onto ITO/glass electrodes in (C_4H_9)_4NBF_4/CH_3CN in presence of boron trifluoride diethyl etherate (BFEE). Films of polypyrrole (PPy) and PPy doped with MR (PPy/MR) were also deposited onto ITO/glass in order to compare their electrochromic properties with the films of PPy derivatised with MR. Cyclic voltammogram of the poly[3-(N-pyrrolyl)propyl 2-(4-dimethylaminophenylazo)benzoate] (PMRPy) film displayed a redox pair with anodic peak potential (Epa) at ca. 0.53 V and cathodic peak potential (Epc) at 0.25 V vs. Ag/Ag"+, corresponding to the polymer p-doping, whilst the PPy/MR film shows capacitive behaviour with a redox pair in the cathodic region (Epa = −0.36 V and Epc = −0.62 V), similar to the PPy film (Epa = −0.10 V, and Epc = −0.15 V), and an anodic wave in the same potential range of that for PMRPy film. The electrochromic properties of the PMRPy film, such as chromatic contrast (Δ%T = 34.2%), switching time (τ = 10 s) and stability (Δ%T = 15% at the 100th cycle), were enhanced relative to the PPy/MR and PPy films. However, the colour of the PMRPy film changed from yellow (-0.8 V) to magenta (E = 1.0 V) in the first cycle and became light magenta at −0.8 V in the subsequent cycles. PMRPy films were also investigated in phosphate buffer solution (PBS, 2.0 ≤ pH ≤ 9.0) and after exposure to HCl vapour, in which the colour varied from magenta at pH = 2.0 to

  3. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    Science.gov (United States)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  4. Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater

    International Nuclear Information System (INIS)

    Jia, Zhigang; Liu, Jianhong; Wang, Qiuze; Li, Shengbiao; Qi, Qin; Zhu, Rongsun

    2015-01-01

    Highlights: • Bowknot-like precursor is obtained via poval-mediated precipitation reaction. • The growth mechanism of the hierarchical superstructure has been discussed. • Mesoporous iron oxide superstructures have been successfully synthesized. • The magnetic superstructures can adsorb CR from aqueous solution effectively. • The adsorption kinetics and isotherm processes are discussed. - Abstract: In this study, 3D hierarchical porous iron oxides were prepared by a precursor thermal conversion method and their adsorption properties for Congo red were reported. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron microscopy (EM) and nitrogen adsorption-desorption isotherms. Results demonstrated that the 3D magnetic bowknot-like iron oxides were constructed by three-dimensional self-assembly of nanorods with porous nanostructures. The effect of experimental parameters including polymer concentration, reaction temperature, reaction time and heat treatment atmosphere were studied. Bowknot-like α-Fe 2 O 3 , Fe 3 O 4 and γ-Fe 2 O 3 superstructures were obtained by the thermal transformation of the oxalate precursor under the various atmosphere. These porous iron oxide superstructures exhibited ferromagnetic property at room temperature. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The results indicated that pseudo-second-order kinetic equation model can better describe the adsorption kinetics of CR onto α-Fe 2 O 3 and γ-Fe 2 O 3 , and Lagergren-first-order kinetic model is better fitted for the adsorption of CR onto Fe 3 O 4 . The hierarchically α-Fe 2 O 3 bowknots showed better adsorption ability for CR than Fe 3 O 4 and γ-Fe 2 O 3 superstructure

  5. Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhigang, E-mail: zjchemyue@126.com; Liu, Jianhong; Wang, Qiuze; Li, Shengbiao; Qi, Qin; Zhu, Rongsun

    2015-02-15

    Highlights: • Bowknot-like precursor is obtained via poval-mediated precipitation reaction. • The growth mechanism of the hierarchical superstructure has been discussed. • Mesoporous iron oxide superstructures have been successfully synthesized. • The magnetic superstructures can adsorb CR from aqueous solution effectively. • The adsorption kinetics and isotherm processes are discussed. - Abstract: In this study, 3D hierarchical porous iron oxides were prepared by a precursor thermal conversion method and their adsorption properties for Congo red were reported. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron microscopy (EM) and nitrogen adsorption-desorption isotherms. Results demonstrated that the 3D magnetic bowknot-like iron oxides were constructed by three-dimensional self-assembly of nanorods with porous nanostructures. The effect of experimental parameters including polymer concentration, reaction temperature, reaction time and heat treatment atmosphere were studied. Bowknot-like α-Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} superstructures were obtained by the thermal transformation of the oxalate precursor under the various atmosphere. These porous iron oxide superstructures exhibited ferromagnetic property at room temperature. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The results indicated that pseudo-second-order kinetic equation model can better describe the adsorption kinetics of CR onto α-Fe{sub 2}O{sub 3} and γ-Fe{sub 2}O{sub 3}, and Lagergren-first-order kinetic model is better fitted for the adsorption of CR onto Fe{sub 3}O{sub 4}. The hierarchically α-Fe{sub 2}O{sub 3} bowknots showed better adsorption ability for CR than Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} superstructure.

  6. Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from Aloe vera leaves shell

    Directory of Open Access Journals (Sweden)

    Yusef Omidi Khaniabadi

    2017-03-01

    Full Text Available Background: Synthetic dyes have several harmful effects on human health as well as aquatic life. In this study, activated carbon (AV-AC, based on Aloe vera leaf shells, was used as a novel agricultural adsorbent, one that is low-cost and available for the removal of Congo red (CR as a carcinogenic dye from aqueous solutions. Methods: In the batch system, the influence of different parameters like contact time, pH, adsorbent dosage, and initial CR concentration were examined on the dye removal from liquid medium. The experimental data were fitted by pseudo-first-order and pseudo-second-order kinetics, and also Langmuir and Freundlich isotherms models. Results: The optimum contact time and pH for the uptake of CR were obtained at 20 minutes and acidic pH of 2. The maximum uptake capacity of CR dye by AV-AC was 1850 mg/g. The results showed that the experimental data were well-fitted by the pseudo-second-order kinetic model (R2 > 0.99 and Freundlich isotherm model (R2 > 0.99. Conclusion: According to the results of our study, the AV-AC is a low-cost, non-toxic, and effective adsorbent for the uptake of CR dye from aqueous media.

  7. Reactive bay functionalized perylene monoimide-polyhedral oligomeric silsesquioxane organic electronic dye

    Directory of Open Access Journals (Sweden)

    Wangatia Lodrick Makokha

    2015-03-01

    Full Text Available Aggregation-induced quenching is particularly detrimental in perylene diimides, which are characterized by a near-unity fluorescence quantum yield in solution but are far less emissive in the solid state. Previously, perylene diimide has been improved by linking it to the inorganic cage of polyhedral oligomeric silsesquioxanes. As a further study on perylene diimidepolyhedral oligomeric silsesquioxanes, we report on a double functionalized molecular structure, which can be used for substitution at the bay area and as a side group in other materials. Typical solution absorption and emission features of the perylene diimide fragment have been observed in this new reactive perylene diimide-polyhedral oligomeric silsesquioxane. Moreover, reduced stacking during aggregation and spherical particles exhibiting solid fluorescence have been obtained. Organic semiconducting material with enhanced solid state photophysical properties, like solid fluorescence is a subject of great interest owing to its possible high-tech applications in optoelectronic devices.

  8. Hydro- and solvothermally-prepared ZnO and its catalytic effect on photodegradation of reactive orange 16 dye

    Directory of Open Access Journals (Sweden)

    Simović Bojana

    2014-01-01

    Full Text Available In this work, zinc oxide powders were obtained by two different techniques: hydro- and solvothermal synthesis starting from Zn(NO32 and Zn(CH3COO2, respectively. The influence of synthetic procedure on the structural, microstructural, thermal and photocatalytic properties of the prepared ZnO powders was investigated. Both ZnO samples were further annealed at moderate conditions (300°C to avoid grain growth and to remove traces of impurities. In all four cases a single-phase hexagonal ZnO was confirmed by X-ray powder diffraction. The morphology of prepared ZnO powders was different and it varied from rounded nanograins to microrods. All prepared samples showed higher photocatalytic efficiency in degradation of textile azo-dye Reactive Orange 16(RO16 than the commercial ZnO. In addition, the non-annealed samples had better photocatalytic properties than the commercial Degussa P25 TiO2 powder. [Projekat Ministarstva nauke Republike Srbije, br. III45007, br. ON171032 i br. ON172013

  9. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Damodar, Rahul A.; Hou, Sheng-Chon

    2010-01-01

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO 2 system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  10. Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory

    Directory of Open Access Journals (Sweden)

    Jahangiri-Rad Mahsa

    2013-01-01

    Full Text Available Abstract The majority of anthraquinone dye released to the environment come from antrapogenic sources. Several techniques are available for dyes' removal. In this study removal of reactive blue 29 (RB29 by an advanced oxidation process sequenced with single wall carbon nanotubes was investigated. Advanced oxidation process was optimized over a period of 60 minutes by changing the ratio of acetic acid to hydrogen peroxide, the compounds which form peroxy acid. Reduction of 20.2% -56.4% of reactive blue 29 was observed when the ratio of hydrogen peroxide/acetic acid/dye changed from 344/344/1 to 344/344/0.08 at different times (60, 120 and 180 min. The optimum ratio of acetic acid/hydrogen peroxide/dye was found to be 344/344/0.16 over 60 min. The resultant then was introduced for further removal by single wall carbon nanotubes(SWCNTs as adsorbent. The adsorption of reactive blue 29 onto SWCNTs was also investigated. Langmuir, Freundlich and BET isotherms were determined and the results revealed that the adsorption of RB29 onto SWCNTs was well explained by BET model and changed to Freundlich isotherm when SWCNTs was used after the application of peroxy acid. Kinetic study showed that the equilibrium time for adsorption of RB 29 on to SWCNT is 4 h. Experiments were carried out to investigate adsorption kinetics, adsorbent capacity and the effect of solution pH on the removal of reactive blue29. The pseudo-second order kinetic equation could best describe the sorption kinetics. The most efficient pH for color removal (amongst pH=3, 5 and 8 was pH= 5. Further studies are needed to identify the peroxy acid degradation intermediates and to investigate their effects on SWCNTs.

  11. The Potential of Fe-exchanged Y Zeolite as a Heterogeneous Fenton-type Catalyst for Oxidative Degradation of Reactive Dye in Water

    OpenAIRE

    Aleksić, M.; Koprivanac, N.; Lončarić Božić, A.; Kušić, H.

    2010-01-01

    The study aimed to investigate the potential of Fe-exchanged zeolites of Y-type as a catalyst in heterogeneous Fenton-type processes for the degradation of model organic pollutant, reactive azo dye C.I. Reactive Blue 137, in water. The research work was directed to investigate the influence of process variables, such as FeY catalyst dosage, Fenton reagent ratio, and initial operating pH on the efficiency of the treatment process. The performance of the studied heterogeneous process was compar...

  12. Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes

    International Nuclear Information System (INIS)

    Faouzi Elahmadi, Mohammed; Bensalah, Nasr; Gadri, Abdellatif

    2009-01-01

    Synthetic aqueous wastes polluted with Congo Red (CR) have been treated by two advanced oxidation processes: electrochemical oxidation on boron doped diamond anodes (BDD-EO) and ozonation under alkaline conditions. For same concentrations, galvanostatic electrolyses have led to total COD and TOC removals but ozonation process can reach only 85% and 81% of COD and TOC removals, respectively. UV-vis qualitative analyses have shown different behaviors of CR molecules towards ozonation and electrochemical oxidation. Rapid discoloration has been observed during ozonation, whereas color persistence till the end of galvanostatic electrolyses has been seen during BDD-EO process. It seems that the oxidation mechanisms involved in the two processes are different: simultaneous destruction of azoic groups is suggested during ozonation process but consecutive destruction of these groups is proposed during BDD-EO. However, energetic study has evidenced that BDD-EO appears more efficient and more economic than ozonation in terms of TOC removals. These results have been explained by the fact that during BDD-EO, other strong oxidants electrogenerated from the electrolyte oxidation such as persulfates and direct-oxidation of CR and its byproducts on BDD anodes complement the hydroxyl radicals mediated oxidation to accomplish the total mineralization of organics.

  13. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.

    Science.gov (United States)

    Wang, Hong-Yan; Gao, Hong-Wen

    2009-05-01

    Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. On the basis of the chemical coprecipitation of calcium oxalate (CaC(2)O(4)), bromopyrogallol red (BPR) was embedded during the growing of CaC(2)O(4) particles. The ternary C(2)O(4) (2-)-BPR-Ca(2+) sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. The saturation number of BPR binding to CaC(2)O(4) reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 x 10(5) M(-1). Over 80% of the sorbent particles are between 0.7 and 1.02 microm, formed by the aggregation of the global CaC(2)O(4)/BPR inclusion grains of 30-50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC(2)O(4)/BPR inclusion material adsorbed EV over two times more

  14. Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP

    Science.gov (United States)

    Guo, Wenyan; Liu, Xiuli; Liu, Yurong; Gang, Yadong; He, Xiaobin; Jia, Yao; Yin, Fangfang; Li, Pei; Huang, Fei; Zhou, Hongfu; Wang, Xiaojun; Gong, Hui; Luo, Qingming; Xu, Fuqiang; Zeng, Shaoqun

    2017-01-01

    The pH-sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EGFP or EYFP is good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is an urgent need. Here a pH-sensitive red fluorescent protein, pHuji, is selected and verified to remain pH-sensitive in HM20 resin. We observe 183% fluorescence intensity of pHuji in resin-embeded mouse brain and 29.08-fold fluorescence intensity of reactivated pHuji compared to the quenched state. pHuji and EGFP can be quenched and chemically reactivated simultaneously in resin, thus enabling simultaneous two-color micro-optical sectioning tomography of resin-embedded mouse brain. This method may greatly facilitate the visualization of neuronal morphology and neural circuits to promote understanding of the structure and function of the brain. PMID:28717566

  15. Adsorption of acid red from dye wastewater by Zn{sub 2}Al-NO{sub 3} LDHs and the resource of adsorbent sludge as nanofiller for polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Tianshan; Gao, Yanshan; Zhang, Zhang [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China); Umar, Ahmad, E-mail: ahmadumar786@gmail.com [Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Yan, Xingru; Zhang, Xi; Guo, Zhanhu [Integrated Composites Laboratory, Dan F Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710 (United States); Wang, Qiang, E-mail: qiang.wang.ox@gmail.com [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China)

    2014-02-25

    Highlights: • High removal efficiency of acid red 97 from dye wastewater was achieved by using Zn{sub 2}Al-NO{sub 3} LDHs adsorbent. • The resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) was proposed for the first time. • The thermal stability of PP was significantly improved by introducing only small amount of LDH adsorbent sludge. • The resource the dye adsorbent sludge as multifunctional nanofiller for polymers is a very promising option. -- Abstract: In this contribution, we report the removal of acid red 97 (AC97) from simulated dye wastewater by using Zn{sub 2}Al-NO{sub 3} layered double hydroxides (LDHs) adsorbent, and the resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) for the first time. The obtained Zn{sub 2}Al-NO{sub 3} LDH was analyzed using X-ray diffraction and scanning electron microscopy analysis, confirming the formation of pure and platelike LDH nanoparticles. The effects of adsorption time and initial dye concentration on the removal of AC97 from wastewater were systematically investigated, showing that the Zn{sub 2}Al-NO{sub 3} LDHs is very efficient in removing AC97. The saturated adsorption capacity of water washed and acetone washed Zn{sub 2}Al-LDHs is 204.4 and 299.5 mg/g, respectively. Finally, the LDH adsorbent sludge was added into PP using a modified solvent mixing method. Thermal gravimetric analysis and ultraviolet (UV) absorption analysis of PP/Zn{sub 2}Al-AC97 LDHs nanocomposites suggested that the Zn{sub 2}Al-AC97 LDH can significantly improve the thermal stability and UV shielding ability of PP. This data demonstrated that it is very promising to resource the dye adsorbent sludge as multifunctional nanofiller for polymers.

  16. Removal of dissolved textile dyes from wastewater by a compost sorbent

    Science.gov (United States)

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  17. Enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody as a new tool to detect Sudan dyes and Para red

    International Nuclear Information System (INIS)

    Ju Chunmei; Tang Yong; Fan Huiying; Chen Jinding

    2008-01-01

    To set up an immunoassay-based method to detect Sudan dyes and Para red, we generated a monoclonal antibody (Mab) using a specially designed carboxyl derivative of Sudan I (CSD I) as the immunogen. CSD I was synthesized by azocoupling reaction using 2-naphthol and diazotised 4-aminobenzoic acid. The antibody was obtained from a hybridoma, which was derived from the fusion of the mouse myeloma SP2/0 cells and the splenocytes from the mice immunized with the CSD I-bovine serum albumin (BSA) conjugate. In addition, we showed that the Mab was highly specific for Sudan I, III and Para red. The limit of detection was approximately 0.01 ng mL -1 in phosphate-buffered saline (PBS) buffer and 0.5 ng g -1 in chilli tomato sauce. The recoveries of Sudan I, III and Para red for the chilli tomato sauce were from 84% to 99% and coefficients of variation were from 14.9% to 33.3%. Thus, the enzyme-linked immunosorbent assay (ELISA) method is a rapid and high throughput screening tool to detect Sudan dyes and Para red in food products

  18. Enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody as a new tool to detect Sudan dyes and Para red

    Energy Technology Data Exchange (ETDEWEB)

    Ju Chunmei [College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China); Tang Yong [Center of Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou 510632 (China); Fan Huiying [College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China); Chen Jinding [College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China)], E-mail: jdchen@scau.edu.cn

    2008-07-28

    To set up an immunoassay-based method to detect Sudan dyes and Para red, we generated a monoclonal antibody (Mab) using a specially designed carboxyl derivative of Sudan I (CSD I) as the immunogen. CSD I was synthesized by azocoupling reaction using 2-naphthol and diazotised 4-aminobenzoic acid. The antibody was obtained from a hybridoma, which was derived from the fusion of the mouse myeloma SP2/0 cells and the splenocytes from the mice immunized with the CSD I-bovine serum albumin (BSA) conjugate. In addition, we showed that the Mab was highly specific for Sudan I, III and Para red. The limit of detection was approximately 0.01 ng mL{sup -1} in phosphate-buffered saline (PBS) buffer and 0.5 ng g{sup -1} in chilli tomato sauce. The recoveries of Sudan I, III and Para red for the chilli tomato sauce were from 84% to 99% and coefficients of variation were from 14.9% to 33.3%. Thus, the enzyme-linked immunosorbent assay (ELISA) method is a rapid and high throughput screening tool to detect Sudan dyes and Para red in food products.

  19. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    International Nuclear Information System (INIS)

    Zhang, Xian-Fu; Zhang, Ya-Kui

    2015-01-01

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ f ). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ f ) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ f and τ f values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ f and τ f values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions

  20. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xian-Fu, E-mail: zhangxianfu@tsinghua.org.cn [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China); MPC Technologies, Hamilton, ON, Canada L8S 3H4 (Canada); Zhang, Ya-Kui [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China)

    2015-10-15

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ{sub f}). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ{sub f}) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ{sub f} and τ{sub f} values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ{sub f} and τ{sub f} values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions.

  1. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant-The temperature dependence and a thermodynamic multivariate analysis

    International Nuclear Information System (INIS)

    Cestari, Antonio R.; Vieira, Eunice F.S.; Vieira, Glaucia S.; Costa, Luiz P. da; Tavares, Andrea M.G.; Loh, Watson; Airoldi, Claudio

    2009-01-01

    The three-parameter Sips adsorption model was successfully employed to modeled equilibrium adsorption data of a yellow and a red dye onto a mesoporous aminopropyl-silica, in the presence of the surfactant sodium dodecylbenzenesulfonate (DBS) from 25 to 55 deg. C. The results were evaluated in relation to the previously reported surface tension measurements. The presence of curvatures of the vant Hoff plots suggested the presence of non-zero heat capacities terms (Δ ads C p ). For the yellow dye, it is observed that the values of Δ ads H are almost all positive and they decrease in endothermicity, in the absence and in the presence of DBS, from 25 to 55 deg. C. For the red dye, there is an increase in endothermicity in relation to the temperature increase. The negative Δ ads G values indicate spontaneous adsorption processes. Almost all adsorption entropy values (Δ ads S) were positive. This suggests that entropy is a driving force of adsorption. The adsorption thermodynamic parameters were also evaluated using a new 2 3 full factorial design analysis. The multivariate polynomial modelings indicated that the thermodynamic parameters are also affected by important interactive effects of the experimental factors and not by the temperature changes alone

  2. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant-The temperature dependence and a thermodynamic multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cestari, Antonio R. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, CEP 49100-000, Sao Cristovao, Sergipe (Brazil)], E-mail: cestari@ufs.br; Vieira, Eunice F.S.; Vieira, Glaucia S.; Costa, Luiz P. da; Tavares, Andrea M.G. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, CEP 49100-000, Sao Cristovao, Sergipe (Brazil); Loh, Watson; Airoldi, Claudio [Universidade Estadual de Campinas, Instituto de Quimica, CP 6154, 13083-970, Campinas, Sao Paulo (Brazil)

    2009-01-15

    The three-parameter Sips adsorption model was successfully employed to modeled equilibrium adsorption data of a yellow and a red dye onto a mesoporous aminopropyl-silica, in the presence of the surfactant sodium dodecylbenzenesulfonate (DBS) from 25 to 55 deg. C. The results were evaluated in relation to the previously reported surface tension measurements. The presence of curvatures of the vant Hoff plots suggested the presence of non-zero heat capacities terms ({delta}{sub ads}C{sub p}). For the yellow dye, it is observed that the values of {delta}{sub ads}H are almost all positive and they decrease in endothermicity, in the absence and in the presence of DBS, from 25 to 55 deg. C. For the red dye, there is an increase in endothermicity in relation to the temperature increase. The negative {delta}{sub ads}G values indicate spontaneous adsorption processes. Almost all adsorption entropy values ({delta}{sub ads}S) were positive. This suggests that entropy is a driving force of adsorption. The adsorption thermodynamic parameters were also evaluated using a new 2{sup 3} full factorial design analysis. The multivariate polynomial modelings indicated that the thermodynamic parameters are also affected by important interactive effects of the experimental factors and not by the temperature changes alone.

  3. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye.

    Science.gov (United States)

    Ullah, Irfan; Haider, Ali; Khalid, Nasir; Ali, Saqib; Ahmed, Sajjad; Khan, Yaqoob; Ahmed, Nisar; Zubair, Muhammad

    2018-06-13

    Tungsten-doped TiO 2 (W@TiO 2 ) nanoparticles, with different percentages of atomic tungsten dopant levels (range of 0 to 6 mol%) have been synthesized by the sol-gel method and characterized by UV-Visible spectroscopy, XRD, SEM, EDX, ICP-OES and XPS analysis. By means of UV-Vis spectroscopy, it has been observed that with 6 mol% tungsten doping the wavelength range of excitation of TiO 2 has extended to the visible portion of spectrum. Therefore, we evaluated the photocatalytic activity of W@TiO 2 catalysts for the degradation of Congo red dye under varying experimental parameters such as dopant concentration, catalyst dosage, dye concentrations and pH. Moreover, 6 mol% W@TiO 2 catalyst was deposited on a glass substrate to form thin film using spin coating technique in order to make the photocatalyst effortlessly reusable with approximately same efficiency. The results compared with standard titania, Degussa P25 both in UV- and visible light, suggest that 6 mol% W@TiO 2 can be a cost-effective choice for visible light induced photocatalytic degradation of Congo red dye. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Hairy root induction and phytoremediation of textile dye, Reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L. L.

    Directory of Open Access Journals (Sweden)

    Vinayak H. Lokhande

    2015-12-01

    Full Text Available In this study, we report phytoremediation of textile dyes using hairy roots derived through Agrobacterium rhizogenes (NCIM 5140 infection of in vitro leaf and stem explants of a halophyte Sesuvium portulacastrum (L. L. Leaf explants showed higher frequency of hairy root induction (70% than stem explants (30%, and maximum number of roots (leaf 42.3 ± 2.4 and stem 50.3 ± 1.7. Transformed nature of hairy roots was ascertained by amplifying 970 bp region of T-DNA of Ri plasmid. Hairy roots were screened for phytoremediation of various textile dyes and results showed that HRs were able to degrade Reactive green 19A HE4BD upto 98% within 5 days of incubation. Spectrophotometric analysis showed decrease in dye concentration while HPLC and FTIR analysis confirmed its degradation. Seed germination assay demonstrated non-toxic nature of the extracted metabolites. This is the first report on induction of hairy root culture in Sesuvium portulacastrum and phytoremediation of textile dyes.

  5. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology

    Science.gov (United States)

    Hong, Gui-Bing; Wang, Yi-Kai

    2017-11-01

    Rice bran is a major by-product of the rice milling industry and is abundant in Taiwan. This study proposed a simple method for modifying rice bran to make it a low-cost adsorbent to remove reactive blue 4 (RB4) from aqueous solutions. The effects of independent variables such as dye concentration (100-500 ppm), adsorbent dosage (20-120 mg) and temperature (30-60 °C) on the dye adsorption capacity of the modified rice bran adsorbent were investigated by using the response surface methodology (RSM). The results showed that the dye maximum adsorption capacity of the modified rice bran adsorbent was 151.3 mg g-1 with respect to a dye concentration of 500 ppm, adsorbent dosage of 65.36 mg, and temperature of 60 °C. The adsorption kinetics data followed the pseudo-second-order kinetic model, and the isotherm data fit the Langmuir isotherm model well. The maximum monolayer adsorption capacity was 178.57-185.19 mg g-1, which was comparable to that of other agricultural waste adsorbents used to remove RB4 from aqueous solutions in the literature. The thermodynamics analysis results indicated that the adsorption of RB4 onto the modified rice bran adsorbent is an endothermic, spontaneous monolayer adsorption that occurs through a physical process.

  6. Phytoremediation potential of Portulaca grandiflora Hook. (Moss-Rose) in degrading a sulfonated diazo reactive dye Navy Blue HE2R (Reactive Blue 172).

    Science.gov (United States)

    Khandare, Rahul V; Kabra, Akhil N; Kurade, Mayur B; Govindwar, Sanjay P

    2011-06-01

    Wild and tissue cultured plants of Portulaca grandiflora Hook. have shown to be able to decolorize a sulfonated diazo dye Navy Blue HE2R (NBHE2R) up to 98% in 40 h. A significant induction in the activities of lignin peroxidase, tyrosinase and DCIP reductase was observed in the roots during dye decolorization. The wild plants and tissue cultures could independently decolorize and degrade NBHE2R into metabolites viz. N-benzylacetamide and 6-diazenyl-4-hydroxynaphthalene-2-sulfonic acid. A dye mixture and a textile effluent were also decolorized efficiently by P. grandiflora. The phytotoxicity study revealed reduction in the toxicity due to metabolites formed after dye degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Minimizing Freshwater Consumption in the Wash-Off Step in Textile Reactive Dyeing by Catalytic Ozonation with Carbon Aerogel Hosted Bimetallic Catalyst

    Directory of Open Access Journals (Sweden)

    Enling Hu

    2018-02-01

    Full Text Available In textile reactive dyeing, dyed fabrics have to be rinsed in the wash-off step several times to improve colorfastness. Thus, the multiple rinsing processes drastically increase the freshwater consumption and meanwhile generate massive waste rinsing effluents. This paper addresses an innovative alternative to recycle the waste effluents to minimize freshwater consumption in the wash-off step. Accordingly, catalytic ozonation with a highly effective catalyst has been applied to remedy the waste rinsing effluents for recycling. The carbon aerogel (CA hosted bimetallic hybrid material (Ag–Fe2O3@CA was fabricated and used as the catalyst in the degradation of residual dyes in the waste rinsing effluents by ozonation treatments. The results indicate the participation of Ag–Fe2O3@CA had strikingly enhanced the removal percentage of chemical oxidation demand by 30%. In addition, it has been validated that waste effluents had been successfully reclaimed after catalytic ozonation with Ag–Fe2O3@CA. They could be additionally reused to reduce freshwater consumption in the wash-off step, but without sacrificing the color quality of corresponding fabrics in terms of color difference and colorfastness. This study may be the first to report the feasibility of catalytic ozonation in minimization of freshwater consumption in the wash-off step in textile reactive dyeing.

  8. RED DRAGON FRUIT (Hylocereus costaricensis Britt. Et R. PEEL EXTRACT AS A NATURAL DYE ALTERNATIVE IN MICROSCOPIC OBSERVATION OF PLANT TISSUES: THE PRACTICAL GUIDE IN SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Heni Wagiyanti

    2017-11-01

    Full Text Available Prepared slide of plant tissue needs to be staining to facilitate observations under microscope. Laboratorium activities in schools usually use synthetic dyes which expensive and can be damaged the student. Therefore the exploration of alternative dyes need to be established, such as utilizing of red dragon fruit (Hylocereus castaricensis Britt. Et R.. This study aims to (1 find out the best concentration of dragon fruit peel extract for staining plant tissue prepared slide and (2 to develop the practical guide related to plant tissue observation. The qualitative research used different concentration of red dragon fruit peel extract, namely: 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% with 3 repetitions. Data were obtained from observation photos of prepared slide. The result showed that the most contrast prepared slide was used red dragon fruit extract in 60% concentration. The result use to arrange practical guide in observation of plant tissues which is validated by material expert. The validation result showed “very good” criteria (86.01%.

  9. The Orange Side of Disperse Red 1: Humidity-Driven Color Switching in Supramolecular Azo-Polymer Materials Based on Reversible Dye Aggregation.

    Science.gov (United States)

    Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J

    2017-01-01

    Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λ MAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu Sujuan; Han Hongwei; Tai Qidong; Zhang Jing; Xu Sheng; Zhou Conghua; Yang Ying; Hu Hao; Chen Bolei; Sebo, Bobby; Zhao Xingzhong

    2008-01-01

    A surface modification method was carried out by reactive DC magnetron sputtering to fabricate TiO 2 electrodes coated with insulating MgO for dye-sensitized solar cells. The MgO-coated TiO 2 electrode had been characterized by x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), UV-vis spectrophotometer, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The study results revealed that the TiO 2 modification increases dye adsorption, decreases trap states and suppresses interfacial recombination. The effects of sputtering MgO for different times on the performance of DSSCs were investigated. It indicated that sputtering MgO for 3 min on TiO 2 increases all cell parameters, resulting in increasing efficiency from 6.45% to 7.57%

  11. Photocatalytic discoloration of reactive blue 5g dye in the presence of mixed oxides and with the addition of iron and silver

    International Nuclear Information System (INIS)

    Souza, M.C.P; Lenzi, G.G.; Jorge, L.M.M.; Santos, O.A.A.; Colpini, L.M.S.

    2011-01-01

    This work reports the use of cerium-titania-alumina-based systems modified with Ag and Fe by the wetness impregnation method for the discoloration of blue 5G dye. The techniques employed to characterize the photocatalysts were: temperature-programmed reduction (TPR), X-ray diffraction (XRD), specific surface area, average pore volume, and average pore diameter. The characterization results indicated that the photocatalysts had different crystalline structures and textural properties. Discoloration with the mixed oxide photocatalyst CeO 2 -TiO 2 -Al 2 O 3 gave a result similar to that of TiO 2 . On the other hand, the addition of Ag and Fe to the mixed oxide increased the discoloration and reaction rates of reactive blue 5G dyes. (author)

  12. Photocatalytic discoloration of reactive blue 5g dye in the presence of mixed oxides and with the addition of iron and silver

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.C.P; Lenzi, G.G.; Jorge, L.M.M.; Santos, O.A.A. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Engenharia Quimica; Colpini, L.M.S. [Universidade Federal do Parana (UFPR), Palotina, PR (Brazil). Curso Superior de Tecnologia em Biocombustiveis

    2011-07-15

    This work reports the use of cerium-titania-alumina-based systems modified with Ag and Fe by the wetness impregnation method for the discoloration of blue 5G dye. The techniques employed to characterize the photocatalysts were: temperature-programmed reduction (TPR), X-ray diffraction (XRD), specific surface area, average pore volume, and average pore diameter. The characterization results indicated that the photocatalysts had different crystalline structures and textural properties. Discoloration with the mixed oxide photocatalyst CeO{sub 2}-TiO{sub 2}-Al{sub 2}O{sub 3} gave a result similar to that of TiO{sub 2}. On the other hand, the addition of Ag and Fe to the mixed oxide increased the discoloration and reaction rates of reactive blue 5G dyes. (author)

  13. The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients

    OpenAIRE

    Coimbra, S.R.; Lage, S.H.; Brandizzi, L.; Yoshida, V.; da Luz, P.L.

    2005-01-01

    Although red wine (RW) reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM), and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 ± 8.1 years) without other risk factors. Twenty-four normal subjects we...

  14. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, Zuemriye [Hacettepe University, Department of Chemical Engineering, 06532 Beytepe, Ankara (Turkey)]. E-mail: zaksu@hacettepe.edu.tr; Isoglu, I. Alper [Hacettepe University, Department of Chemical Engineering, 06532 Beytepe, Ankara (Turkey)

    2006-09-01

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l{sup -1} initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g{sup -1} at 25 deg. C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l{sup -1}) and temperature (25-45 deg. C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature.

  15. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution.

    Science.gov (United States)

    Aksu, Zümriye; Isoglu, I Alper

    2006-09-01

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l(-1) initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g(-1) at 25 degrees C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l(-1)) and temperature (25-45 degrees C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature.

  16. Fixation of some chemically modified reactive dye during gamma irradiation of cotton fabrics in presence of vinyl and acrylic monomers

    International Nuclear Information System (INIS)

    Zohdy, M.H.; El-Naggar, A.M.; Abdallah, W.A.

    1999-01-01

    The radiation grafting of vinyl sulfone dye having an activated double bond in presence of styrene monomer or its mixtures with ethyl acrylate onto cotton fabric has been investigated. The chemical reaction of the vinyl sulfone form with peroxy radicals on cotton fabric through covalent bonding is tested by extracting the dyed samples in 50% aqueous DMF solution. It was found that the presence of styene monomer in the dyeing solution is essential for the reaction or grafting of the vinyl sulfone dye. However, when a constant styrene concentration of 5% was used in the dye bath, the color strength expressed as K/S was found to increase by increasing the dye concentration. The results showed that the color strength obtained in case of using 10% ethyl acrylate is much lower than in the case of using the same concentration of styrene monomer. A solvent composition of equal ratios of methanol and water has been proven to be suitable to produce the highest improvement in the color strength. The irradiation dose was found to play an important role in initiating the reaction of the vinyl sulfone dye

  17. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye

    International Nuclear Information System (INIS)

    Solano, Aline Maria Sales; Martínez-Huitle, Carlos Alberto; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif

    2016-01-01

    Highlights: • Degradation of Reactive Blue 15 solution at pH 3.0 by electrochemical oxidation, electro-Fenton and photoelectro-Fenton. • Hard destruction of the dye and its products by BDD(·OH) and much more rapidly by ·OH. • 94% mineralization by the most powerful photoelectro-Fenton at 66.7 mA cm"−"2, with acetic acid accumulation. • 25 aromatics and heteroaromatics, 30 hydroxylated derivatives and 4 carboxylic acids as products. • Release of Cl"−, SO_4"2"− and pre-eminently NO_3"− during dye mineralization. - Abstract: The degradation of the copper-phthalocyanine dye Reactive Blue 15 dye in sulfate medium has been comparatively studied by electrochemical oxidation with electrogenerated H_2O_2 (EO-H_2O_2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments with 100 cm"3 solutions of 0.203 mmol dm"−"3 dye were performed with a stirred tank reactor containing a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H_2O_2 production. Experimental conditions of pH 3.0 and 0.50 mmol dm"−"3 Fe"2"+ as catalyst were found optimal for the EF process by the predominant oxidation with hydroxyl radicals formed in the bulk from Fenton’s reaction between added Fe"2"+ and generated H_2O_2. The kinetics of Reactive Blue 15 abatement was followed by reversed-phase HPLC and always obeyed a pseudo-first-order reaction. The decolorization rate in EO-H_2O_2 was much lower than dye decay due to the formation of large quantities of colored intermediates under the action of hydroxyl radicals generated at the BDD anode from water oxidation. In contrast, the color and dye removals were much more rapid in EF and PEF by the most efficient oxidation of hydroxyl radicals produced from Fenton’s reaction. PEF was the most powerful treatment owing to the photolytic action of UVA irradiation, yielding 94% mineralization after 360 min at 66.7 mA cm"−"2. The effect of current density over the performance of all methods was examined. LC

  18. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Chen, Bor-Yann, E-mail: bychen@niu.edu.tw [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Yen, Chia-Yi [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China)

    2009-08-15

    This novel comparative study tended to disclose how the molecular structures present in seven azo dyes including two types of azo dyes (i.e., naphthol type azo dyes - Reactive Black 5 (RB 5), Reactive Blue 171 (RB 171), Reactive Green 19 (RG19), Reactive Red 198 (RR198), Reactive Red 141 (RR141) and non-naphthol type azo dyes - Direct Yellow 86 (DY86), Reactive Yellow 84 (RY84)) affected color removal capability of Aeromonas hydrophila. Generally speaking, the decolorization rate of naphthol type azo dye with hydroxyl group at ortho to azo bond was faster than that of non-naphthol type azo dye without hydroxyl group, except of RG19. The azo dyes with electron-withdrawing groups (e.g., sulfo group in RR198, RB5 and RR141) would be easier to be decolorized than the azo dyes with the electron-releasing groups (e.g., -NH-triazine in RB171 and RG19). In addition, the azo dyes containing more electron-withdrawing groups (e.g., RR198, RB5 and RR141) showed significantly faster rate of decolorization. The azo dyes with electron-withdrawing groups (e.g., sulfo group) at para and ortho to azo bond (e.g., RR198, RB5 and RR141) could be more preferred for color removal than those at meta (e.g., DY86 and RY84). The former azo dyes with para and ortho sulfo group provided more effective resonance effects to withdraw electrons from azo bond, causing azo dyes to be highly electrophilic for faster rates of reductive biodecolorization. However, since the ortho substituent caused steric hindrance near azo linkage(s), azo dyes with para substituent could be more favorable (e.g., SO{sub 2}(CH{sub 2}){sub 2}SO{sub 4}{sup -} in RR198 and RB5) than those with ortho substituent (e.g., sulfo group at RR141) for decolorization. Thus, the ranking of the position for the electron-withdrawing substituent in azo dyes to escalate decolorization was para > ortho > meta. This study suggested that both the positions of substituents on the aromatic ring and the electronic characteristics of

  19. Chemical Modification of Oryza sativa Linnaeus Husk with Urea for Removal of Brilliant Vital Red and Murexide Dyes from Water by Adsorption in Environmentally Benign Way

    International Nuclear Information System (INIS)

    Rehman, R.; Mahmud, T.; Kanwal, F.; Aslam, M.N.; Nisar, H.

    2013-01-01

    Oryza sativa Linnaeus is an important food item all around the world. Due to its huge consumption, a large amount of rice husk is generated as agrowaste which can be used for water treatment by adsorption. Its adsorption capacity further can be enhanced by chemical medication. In the present study, urea modified rice husk has been used for removing Brilliant Vital Red and Murexide form water in an efficient way. After optimizing operating conditions, isothermal and thermodynamical studies were carried out, which showed that maximum adsorption capacity of urea modified rice husk for removing Brilliant Vital Red and Murexide dyes were 28.93 and 30.74 mg.g/sup -1/. Adsorbent characterization was carried out by recording its FT-IR spectra. (author)

  20. Biological decolorization of xanthene dyes by anaerobic granular biomass.

    Science.gov (United States)

    Apostol, Laura Carmen; Pereira, Luciana; Pereira, Raquel; Gavrilescu, Maria; Alves, Maria Madalena

    2012-09-01

    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L⁻¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L⁻¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L⁻¹ AC₀). Using different modified AC samples (from the treatment of AC₀), a threefold higher rate was obtained with the most basic one, AC(H₂), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na₂S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.

  1. Efficient degradation of Methylene Blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light.

    Science.gov (United States)

    Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi

    2012-09-01

    Visible light induced photocatalysts of Cu doped SrTiO3 (Cu/SrTiO3) nanoparticles with the size -60-75 nm were prepared via facile sol-gel method. The morphological, optical, crystalline properties and compositions of synthesized Cu/SrTiO3 nanoparticles were thoroughly characterized by field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), ultra violet-visible spectroscopy (UV-Vis) and energy dispersive X-ray (EDX). A significant red shift in the UV-diffused reflectance spectrum was observed and the absorption edge shifted to visible region by the Cu doping. Surprisingly, the band gap of SrTiO3 was changed from 3.2 eV drop to 2.96 eV. The photocatalytic activity of the synthesized Cu/SrTiO3 nanoparticles was demonstrated for the degradation of Methylene Blue dye under visible light irradiation. The formation of new acceptor region in Cu/SrTiO3 was responsible for high photocatalytic activity of Cu/SrTiO3 nanoparticles. The results showed that the Methylene Blue dye was degraded by -66% within time span of 2 h over the Cu/SrTiO3 nanoparticles. This dye degradation reaction followed the Langmuir-Hinshelwood kinetics and also exhibited first order reaction rate. The calculated rate constant for the degradation reaction following first order kinetics was k = 0.0016 min(-1).

  2. Ultra-bright red-emitting photostable perylene bisimide dyes: new indicators for ratiometric sensing of high pH or carbon dioxide.

    Science.gov (United States)

    Pfeifer, David; Klimant, Ingo; Borisov, Sergey M

    2018-05-08

    New pH sensitive perylene bisimide indicator dyes were synthesised and used for fabrication of optical sensors. The highly photostable dyes show absorption/emission bands in the red/near-infrared (NIR) region of the electromagnetic spectrum, high molar absorption coefficients (up to 100 000 M-1 cm-1) and fluorescence quantum yields close to unity. The absorption and emission spectra show strong bathochromic shift upon deprotonation of imidazole nitrogen which makes the dyes promising as ratiometric fluorescent indicators. Physical entrapment of the indicators into polyurethane hydrogel enables pH determination in alkaline pH. It is also shown that plastic carbon dioxide solid state sensor can be manufactured via immobilization of the pH indicator in a hydrophilic polymer, along with a quaternary ammonium base. The influence of plasticizer, different lipophilic bases and humidity on the sensitivity of the sensor material were systematically investigated. The disubstituted perylene, particularly, features two deprotonation equilibria enabling sensing over a very broad range from 0.5 to 1000 hPa pCO2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton

    International Nuclear Information System (INIS)

    Huang Yaohui; Huang Yifong; Chang Poshun; Chen Chuhyung

    2008-01-01

    This study makes a comparison between photo-Fenton and a novel electro-Fenton called Fered-Fenton to study the mineralization of 10,000 mg/L of dye-Reactive Black B (RBB) aqueous solution, which was chosen as the model dye contaminant. Results indicate that the traditional Fenton process only yields 70% mineralization. This result can be improved by using Fered-Fenton to yield 93% mineralization resulting from the action of ferrous ion regenerated on the cathode. Furthermore, photo-Fenton allows a fast and more complete destruction of dye solutions and as a result of the action of ferrous ion regenerated by UV irradiation yields more than 98% mineralization. In all treatments, the RBB is rapidly decayed to some carboxylic acid intermediates. The major intermediates found are formic acid and oxalic acid. This study finds that formic acid can be completely mineralized by photo-Fenton, but its destruction is problematic using the Fenton method. Oxalic acid is much more difficult to treat than other organic acids. It could get further mineralization with the use of the Fered-Fenton process

  4. Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application.

    Science.gov (United States)

    Shaban, Mohamed; Abukhadra, Mostafa R; Hamd, Ahmed; Amin, Ragab R; Abdel Khalek, Ahmed

    2017-12-15

    MCM-48 mesoporous silica was successfully synthesized from silica gel extracted from rice husk ash and loaded by nickel oxide (Ni 2 O 3 ). The resulted composite was characterized using X-ray diffraction, scanning electron microscope, and UV-vis spectrophotometer. The role of MCM-48 as catalyst support in enhancing the photocatalytic properties of nickel oxide was evaluated through the photocatalytic degradation of Congo red dye under visible light source. MCM-48 as catalyst support for Ni 2 O 3 shows considerable enhancement in the adsorption capacity by 17% and 29% higher than the adsorption capacity of MCM-48 and Ni 2 O 3 , respectively. Additionally, the photocatalytic degradation percentage increased by about 64% relative to the degradation percentage using Ni 2 O 3 as a single component. The adsorption mechanism of MCM-48/Ni 2 O 3 is chemisorption process of multilayer form. The using of MCM-48 as catalyst support for Ni 2 O 3 enhanced the adsorption capacity and the photocatalytic degradation through increasing the surface area and prevents the nickel oxide particles from agglomeration. This was done through fixing nickel oxide particles throughout the porous structure which providing more exposed active adsorption sites and active photocatalyst sites for the incident photons. Based on the obtained results, supporting of nickel oxide particles onto MCM-48 are promising active centers for the degradation of Congo red dye molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    Science.gov (United States)

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  6. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling.

    Science.gov (United States)

    Mehrabi, Fatemeh; Vafaei, Azam; Ghaedi, Mehrorang; Ghaedi, Abdol Mohammad; Alipanahpour Dil, Ebrahim; Asfaram, Arash

    2017-09-01

    In this research, a selective, simple and rapid ultrasound assisted dispersive solid-phase micro-microextraction (UA-DSPME) was developed using cobalt ferrite nanoparticles loaded on activated carbon (CoFe 2 O 4 -NPs-AC) as an efficient sorbent for the preconcentration and determination of Maxilon Red GRL (MR-GRL) dye. The properties of sorbent are characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Vibrating sample magnetometers (VSM), Fourier transform infrared spectroscopy (FTIR), Particle size distribution (PSD) and Scanning Electron Microscope (SEM) techniques. The factors affecting on the determination of MR-GRL dye were investigated and optimized by central composite design (CCD) and artificial neural networks based on genetic algorithm (ANN-GA). CCD and ANN-GA were used for optimization. Using ANN-GA, optimum conditions were set at 6.70, 1.2mg, 5.5min and 174μL for pH, sorbent amount, sonication time and volume of eluent, respectively. Under the optimized conditions obtained from ANN-GA, the method exhibited a linear dynamic range of 30-3000ngmL -1 with a detection limit of 5.70ngmL -1 . The preconcentration factor and enrichment factor were 57.47 and 93.54, respectively with relative standard deviations (RSDs) less than 4.0% (N=6). The interference effect of some ions and dyes was also investigated and the results show a good selectivity for this method. Finally, the method was successfully applied to the preconcentration and determination of Maxilon Red GRL in water and wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. On the Effects of Reactive Oxygen Species and Nitric Oxide on Red Blood Cell Deformability

    Directory of Open Access Journals (Sweden)

    Lukas Diederich

    2018-05-01

    Full Text Available The main function of red blood cells (RBCs is the transport of respiratory gases along the vascular tree. To fulfill their task, RBCs are able to elastically deform in response to mechanical forces and, pass through the narrow vessels of the microcirculation. Decreased RBC deformability was observed in pathological conditions linked to increased oxidative stress or decreased nitric oxide (NO bioavailability, like hypertension. Treatments with oxidants and with NO were shown to affect RBC deformability ex vivo, but the mechanisms underpinning these effects are unknown. In this study we investigate whether changes in intracellular redox status/oxidative stress or nitrosation reactions induced by reactive oxygen species (ROS or NO may affect RBC deformability. In a case-control study comparing RBCs from healthy and hypertensive participants, we found that RBC deformability was decreased, and levels of ROS were increased in RBCs from hypertensive patients as compared to RBCs from aged-matched healthy controls, while NO levels in RBCs were not significantly different. To study the effects of oxidants on RBC redox state and deformability, RBCs from healthy volunteers were treated with increasing concentrations of tert-butylhydroperoxide (t-BuOOH. We found that high concentrations of t-BuOOH (≥ 1 mM significantly decreased the GSH/GSSG ratio in RBCs, decreased RBC deformability and increased blood bulk viscosity. Moreover, RBCs from Nrf2 knockout (KO mice, a strain genetically deficient in a number of antioxidant/reducing enzymes, were more susceptible to t-BuOOH-induced impairment in RBC deformability as compared to wild type (WT mice. To study the role of NO in RBC deformability we treated RBC suspensions from human volunteers with NO donors and nitrosothiols and analyzed deformability of RBCs from mice lacking the endothelial NO synthase (eNOS. We found that NO donors induced S-nitrosation of the cytoskeletal protein spectrin, but did not affect

  8. Intravenous injection of artificial red cells and subsequent dye laser irradiation causes deep vessel impairment in an animal model of port-wine stain.

    Science.gov (United States)

    Rikihisa, Naoaki; Tominaga, Mai; Watanabe, Shoji; Mitsukawa, Nobuyuki; Saito, Yoshiaki; Sakai, Hiromi

    2018-03-15

    Our previous study proposed using artificial blood cells (hemoglobin vesicles, Hb-Vs) as photosensitizers in dye laser treatment for port-wine stains (PWSs). Dye laser photons are absorbed by red blood cells (RBCs) and hemoglobin (Hb) mixture, which potentially produce more heat and photocoagulation and effectively destroy endothelial cells. Hb-Vs combination therapy will improve clinical outcomes of dye laser treatment for PWSs because very small vessels do not contain sufficient RBCs and they are poor absorbers/heaters of lasers. In the present study, we analyzed the relationship between vessel depth from the skin surface and vessel distraction through dye laser irradiation following intravenous Hb-Vs injection using a chicken wattle model. Hb-Vs were administered and chicken wattles underwent high-energy irradiation at energy higher than in the previous experiments. Hb-Vs location in the vessel lumen was identified to explain its photosensitizer effect using human Hb immunostaining of the irradiated wattles. Laser irradiation with Hb-Vs can effectively destroy deep vessels in animal models. Hb-Vs tend to flow in the marginal zone of both small and large vessels. Increasing laser power combined with Hb-Vs injection contributed for deep vessel impairment because of the synergetic effect of both methods. Newly added Hb tended to flow near the target endothelial cells of the laser treatment. In Hb-Vs and RBC mixture, heat transfer to endothelial cells from absorbers/heater may increase. Hb-Vs function as photosensitizers to destroy deep vessels within a restricted distance that the photon can reach.

  9. The use of Red Cabbage’s anthocyanine extract as a photosensitizer on a Dye-Sensitized Nanocrystalline TiO2 Solar Cell

    Directory of Open Access Journals (Sweden)

    Akhiruddin Maddu

    2010-10-01

    Full Text Available A solid-state dye-sensitized nanocrystalline TiO2 solar cell utilizing anthocyanin extract form red cabbage as photosensitizer was fabricated. The solar cell was formed in sandwich structure, which two electrodes sandwiching polymer electrolyte containing a redox couple (I-/I3-. One of the electrodes, namely working electrode, TiO2 layer on TCO (transparent conducting oxide coated glass substrate was sensitized with anthocyanin dye as electron donor in the system. Another electrode was a carbon sheet as a counter electrode. Gel electrolyte based on PEG (polyethylene glycol containing a redox couple (I-/I3- used instead of liquid electrolyte in this photoelectrochemical cell. Two fabricated cells have an active area of 1 cm2 were soaked with anthocyanine dye for 1 hr and 24 hrs, respectively. The cells were tested by irradiation with halogen lamp of 24 Watt with intensity 4 mW/cm2 at a distance 30 cm. The testing results of the cells show an ideal I-V characteristic with output parameters: open circuit voltage (VOC of 500 mV, short circuit current (ISC of 5,6 μA and 7,2 μA for each cells, fill factor (FF of 48% for both cells, energy conversion (η of 0.023 % and 0,055 % for the cells with 1 hr and 24 hrs dye soaked, respectively.

  10. Magnetic and photocatalytic response of Ag-doped ZnFeO nano-composites for photocatalytic degradation of reactive dyes in aqueous solution

    International Nuclear Information System (INIS)

    Mahmood, Asif; Ramay, Shahid Mahmood; Al-Zaghayer, Yousef S.; Imran, Muhammad; Atiq, Shahid; Al-Johani, Meshal S.

    2014-01-01

    Highlights: • Self-consistent sol–gel based auto-combustion route was used. • Photocatalytic degradation of reactive dyes in aqueous solution was investigated. • Due to Ag doping, band gap reduced. • Activity of Ag-doped samples was higher than that of un-doped ones. - Abstract: To investigate the photocatalytic degradation of reactive dyes in aqueous solution, pure ZnO and Fe/Ag-doped magnetic photocatalysts having nominal compositions of Zn 0.95−x Fe 0.05 Ag x O (x = 0.0, 0.05 and 0.1) have been synthesized via self-consistent sol–gel based auto-combustion route. Thermally stable samples were subsequently confirmed to exhibit wurtzite type hexagonal structure, characteristic of ZnO. The nature of chemical bonding was elaborated by Fourier transform analysis. Electron microscopic techniques were employed to investigate the structural morphology and to evaluate the particle size. Ferromagnetic nature of the Fe/Ag doped samples was revealed by vibrating sample magnetometry, enabling the photocatalytic samples to be re-collected magnetically for repeated usage. The enhanced photocatalytic activity in the degradation of methylene blue under UV light irradiation with 5 and 10 wt.% Ag/ZnFeO has been observed validating the potential applications of these materials in the field of photo-degradation of organic pollutants

  11. Assessment of toxicity and genotoxicity of the reactive azo dyes Remazol Black B and Remazol Orange 3R and effectiveness of electron beam irradiation in the reduction of color and toxic effects

    International Nuclear Information System (INIS)

    Pinheiro, Alessandro de Sa

    2011-01-01

    The textile industries play an important role in national and global economy. But, their activities are considered potentially polluting. The use of large volumes of water and the production of colored wastewater with high organic matter are among the main issues raised, especially during the stage of dyeing and washing of the textile process. The reactive azo dyes are the main colors used in the industry for dyeing of cotton in Brazil and worldwide. Because of its low setting and variations in the fiber production process, about 30% of the initial concentration used in the dyeing baths are lost and will compose the final effluent. These compounds have a low biodegradability, are highly soluble in water and therefore are not completely removed by conventional biological processes. In addition, other processes do not promote degradation but the transference to solid environment. The dyes discarded without treatment in the water body can cause aesthetic modifications, alter photosynthesis and gas solubility, as well as being toxic and genotoxic. The main objectives of this study were to evaluate the toxicity and genotoxicity of two reactive azo dyes (Remazol Black B - RPB and Remazol Orange 3R - R3AR) and the percentage of color and toxicity reduction after the use of electron beam radiation. The acute toxicity assays performed with Vibrio fischeri, Daphnia similis and Biomphalaria glabrata showed different response patterns for dyes. The different chemical forms of dyes were slightly toxic to Vibrio fischeri and only the RPB dye (vinylsulphone) was toxic (EC50 15min = 6,23 mg L-1). In tests with Daphnia similis, the dye RPB was slightly toxic in its pattern form, sulphatoethylsulphone, (CE50 48h = 91,25 mg L -1 ) and showed no toxicity in other chemical forms. However, the RA3R dye was toxic to the dafnids and the vinylsulphone form very toxic (EC50 48h = 0,54 mg L-1). No toxicity was observed in Biomphalaria glabrata assays. Chronic toxicity was assessed with the

  12. Studies on photofading and stable free radical formation in reactive dyed cellulosic systems under their exposure to light

    International Nuclear Information System (INIS)

    Remi, E.; Horvath, O.; Vig, A.; Aranyosi, P.; Rusznak, I.

    1996-01-01

    In light exposed systems of cotton and C.I. Reactive Red 3, C.I. Reactive Black 5 and C.I. Direct Blue 78 azo dyes respectively, generated stable free radicals could be detected. The observed hyperfine splitting of ESR spectra suggest the free radical are formed in the chromophore. Based upon the calculated g-values the location of the generated unpaired electron could be assumed on one of the C atoms of the dye molecule. (author)

  13. Treatment of Synthetic Wastewater Containing Reactive Red 198 by Electrocoagulation Process

    OpenAIRE

    N.M Mahmoodi; A Ameri; M Gholami; A Jonidi jafari; A Dalvand

    2011-01-01

    "nBackground and Objectives: Discharge of textile colored wastewater industries without providing enough treatment in water bodies, is harmful for human and aquatic organisms and poses serious damages to the environment. Most of conventional wastewater treatment methods don't have enough efficiency to remove textile dyes from colored wastewater; thus in this research the efficiency of electrocoagulation treatment process with aluminum electrodes for treatment of a synthetic wastewater co...

  14. Recovery of synthetic dye from simulated wastewater using emulsion liquid membrane process containing tri-dodecyl amine as a mobile carrier

    Energy Technology Data Exchange (ETDEWEB)

    Othman, N., E-mail: norasikin@cheme.utm.my [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Zailani, S.N.; Mili, N. [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The emulsion liquid membrane process for synthetic reactive dyes recovery was examined. Black-Right-Pointing-Pointer Mobile carriers of tri-dodycylamine and salicyclic acid was used in formulation to remove the reactive dyes from simulated wastewater. Black-Right-Pointing-Pointer Almost 100% of dye was extracted and recovered in receiving phase. Black-Right-Pointing-Pointer An electrical field was used to breakdown the emulsion to separate the liquid membrane and receiving/recovery phase. - Abstract: The extraction of Red 3BS reactive dye from aqueous solution was studied using emulsion liquid membrane (ELM). ELM is one of the processes that have very high potential in treating industrial wastewater consisting of dyes. In this research, Red 3BS reactive dye was extracted from simulated wastewater using tridodecylamine (TDA) as the carrier agent, salicyclic acid (SA) to protonate TDA, sodium chloride as the stripping agent, kerosene as the diluent and SPAN 80 as emulsifier. Experimental parameters investigated were salicyclic acid concentration, extraction time, SPAN 80 concentration, sodium chloride concentration, TDA concentration, agitation speed, homogenizer speed, emulsifying time and treat ratio. The results show almost 100% of Red 3BS was removed and stripped in the receiving phase at the optimum condition in this ELM system. High voltage coalesce was applied to break the emulsion hence, enables recovery of Red 3BS in the receiving phase.

  15. NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater

    International Nuclear Information System (INIS)

    Song Zhi; Hu Juncheng; Chen Lifang; Richards, Ryan

    2009-01-01

    Semiconductor single-crystalline polar NiO(111) nanosheets with well-defined hexagonal holes have been investigated for application in dye adsorption and combustion processes. With regard to adsorption technologies, high surface area metal oxides have an advantage over activated carbon in that the adsorbed species can be combusted and the adsorbent reused in the case of metal oxides while regeneration of activated carbon remains challenging and thus the adsorbent/adsorbate system must be disposed of. Here, three typical textile dyes, reactive brilliant red X-3B, congo red and fuchsin red, were studied for removal from wastewater with two NiO systems and activated carbon. These studies revealed that the NiO(111) nanosheets exhibited much more favorable adsorptive properties than conventionally prepared nickel oxide powder (CP-NiO) obtained from thermal decomposition of nickel nitrate. The maximum adsorption capabilities of the three dyes on NiO(111) nanosheets reached 30.4 mg g -1 , 35.15 mg g -1 and 22 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid, respectively, while the maximum adsorption capabilities of the three dyes on CP-NiO were only 8.4, 13.2 and 12 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid. To simulate the adsorption isotherm, two commonly employed models, the Langmuir and the Freundlich isotherms, were selected to explicate the interaction of the dye and NiO(111). The isotherm evaluations revealed that the Langmuir model demonstrated better fit to experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacity was 36.1 mg g -1 . In addition, adsorption kinetic data of NiO(111) followed a pseudo-second-order rate for congo red. These studies infer that NiO(111) nanosheets possess desirable properties for application in adsorption and combustion applications.

  16. Treatability study of the effluent containing reactive blue 21 dye by ozonation and the mass transfer study of ozone

    Science.gov (United States)

    Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.

    2018-04-01

    Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.

  17. Removal of reactive dye Remazol Brilliant Blue R from aqueous solutions by using anaerobically digested sewage sludge based adsorbents

    Directory of Open Access Journals (Sweden)

    Özçimen Didem

    2016-01-01

    Full Text Available In this study, adsorbents were produced from sewage sludge via chemical and thermal activation processes. Experiments were carried out in a tubular furnace at the heating rate of 20˚C min-1 and temperature of 550 ˚C with a nitrogen flow rate of 400 mL min-1 for 1 h. Dye adsorption experiments were performed with Remazol Brilliant Blue R for its several concentrations under batch equilibrium conditions by comparing sewage sludge based adsorbents with raw material and a commercial activated carbon. Maximum adsorption capacities of carbonized sewage sludge (CSWS and activated sewage sludge (ASWS were found as 7.413 mg g-1 and 9.376 mg g-1 for 100 mg L-1 dye solution, whereas commercial activated carbon had a capacity of 11.561 mg g-1. Freundlich and Langmuir isotherms were used to explain the adsorption mechanism together with pseudo-first-order and pseudo-second-order kinetic models. Langmuir isotherm, which had adsorption capacities of 34.60 mg g-1 (CSWS and 72.99 mg g-1 (ASWS, provided better fit to the equilibrium data than that of Freundlich isotherm. Pseudo second-order, model which had adsorption capacities of 7.451 mg g-1 (CSWS and 9.319 mg g-1 (ASWS, was very favorable to explain the adsorption kinetics of the dye with high regression coefficients.

  18. Alizarin red S dye removal from contaminated water on calcined [Mg/Al, Zn/Al and MgZn/Al]-LDH

    Science.gov (United States)

    Aissat, Miloud; Hamouda, Sara; Benhadria, Naceur; Chellali, Rachid; Bettahar, Noureddine

    2018-05-01

    The waste water rejected by the textile industries is loaded with organic dyes, responsible for the high color present in the effluents. Some dyes and / or their degradation products could be carcinogenic and may have mutagenic properties. The rapid growth of the global economy has caused many environmental problems with a huge pollution problem. The abuse use of chemicals product is an environmental toxicological problem. The consequences can be serious for water resources. In this perspective, our study comes to participate with new means of depollution using new materials with interesting properties in the treatment of pollution. Among these materials, LDHs whose synthesis is easy and inexpensive can be a tool in the treatment of water Polluted [1]. Our contribution consists in using HDL as a means of sorption of dyes which are considered as polluting agents of waters especially for the industry textile. This study considers the removal of the Alizarine Red S (AR) from water on calcined MgAl,ZnAL and MgZnAL-layered double hydroxides. The different LDH was prepared by copreprecipation method. The materials was obtained for molar ratios R =2 for the different LDH. The carbonated layered Calcination of these solids leads to the formation of mixed oxides which have the property of being able to be regenerated by adsorbing new anionic entities. Adsorbents and adsorption products were characterized by physicochemical techniques. The structural characterization of the material was carried out by X-ray diffraction, infrared spectroscopy (FTIR). Dosages of the polluted solutions were monitored by UV-Visible spectrometry.

  19. Degradação de corantes reativos pelo sistema ferro metálico/peróxido de hidrogênio Degradation of reactive dyes by the metallic iron/ hydrogen peroxide system

    Directory of Open Access Journals (Sweden)

    Cláudio Roberto Lima de Souza

    2005-03-01

    Full Text Available In this work the degradation of aqueous solutions of reactive azo-dyes is reported using a combined reductive/advanced oxidative process based in the H2O2/zero-valent iron system. At optimized experimental conditions (pH 7, H2O2 100 mg L-1, iron 7 g L-1 and using a continuous system containing commercial iron wool, the process afforded almost total discolorization of aqueous solutions of three reactive azo-dyes (reactive orange 16, reactive black 5 and brilliant yellow 3G-P at a hydraulic retention time of 2.5 min. At these conditions the hydrogen peroxide is almost totally consumed while the released total soluble iron reaches a concentration compatible with the current Brazilian legislation (15 mg L-1.

  20. Characteristics of dye-sensitized solar cells using natural dye

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Shoji, E-mail: furukawa@cse.kyutech.ac.j [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan); Iino, Hiroshi; Iwamoto, Tomohisa; Kukita, Koudai; Yamauchi, Shoji [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan)

    2009-11-30

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such as the dye of red-cabbage, curcumin, and red-perilla. As a result, it was found that the conversion efficiency of the solar cell fabricated using the mixture of red-cabbage and curcumin was about 0.6% (light source: halogen lamp), which was larger than that of the solar cells using one kind of dye. It was also found that the conversion efficiency was about 1.0% for the solar cell with the oxide semiconductor film fabricated using polyethylene glycol (PEG) whose molecular weight was 2,000,000 and red-cabbage dye. This indicates that the cost performance (defined by [conversion efficiency]/[cost of dye]) of the latter solar cell (dye: red-cabbage) is larger by more than 50 times than that of the solar cell using Ruthenium complex, even if the effect of the difference between the halogen lamp and the standard light source is taken into account.

  1. A rapid, naked-eye detection of hypochlorite and bisulfite using a robust and highly-photostable indicator dye Quinaldine Red in aqueous medium

    Science.gov (United States)

    Dutta, Tanoy; Chandra, Falguni; Koner, Apurba L.

    2018-02-01

    A ;naked-eye; detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8 μM and 0.2 μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.

  2. Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent.

    Science.gov (United States)

    Georgin, Jordana; da Silva Marques, Bianca; da Silveira Salla, Julia; Foletto, Edson Luiz; Allasia, Daniel; Dotto, Guilherme Luiz

    2018-03-01

    The treatment of colored effluents containing Procion Red dye (PR) was investigated using H 2 SO 4 and HNO 3 modified avocado shells (Persea americana) as adsorbents. The adsorbent materials (AS-H 2 SO 4 and AS-HNO 3 ) were properly characterized. The adsorption study was carried out considering the effects of adsorbent dosage and pH. Kinetic, equilibrium, and thermodynamic aspects were also evaluated. Finally, the adsorbents were tested to treat simulated dye house effluents. For both materials, the adsorption was favored using 0.300 g L -1 of adsorbent at pH 6.5, where, more than 90% of PR was removed from the solution. General order model was able to explain the adsorption kinetics for both adsorbents. The Sips model was adequate to represent the isotherm data, being the maximum adsorption capacities of 167.0 and 212.6 mg g -1 for AS-H 2 SO 4 and AS-HNO 3 , respectively. The adsorption processes were thermodynamically spontaneous, favorable (- 17.0 Avocado shells, after a simple acid treatment, can be a low-cost option to treat colored effluents.

  3. Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe{sub 3}O{sub 4} nanoparticles: Optimization, reusability, kinetic and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Dalvand, Arash; Nabizadeh, Ramin [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Reza Ganjali, Mohammad [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khoobi, Mehdi [Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176 (Iran, Islamic Republic of); Nazmara, Shahrokh [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hossein Mahvi, Amir, E-mail: ahmahvi@yahoo.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); National Institute of Health Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-04-15

    This study aimed to investigate the removal of Reactive Blue 19 from colored wastewater using Fe{sub 3}O{sub 4} magnetic nanoparticles modified with L-arginine (Fe{sub 3}O{sub 4}@L-arginine). In order to investigate the effect of independent variables on dye removal and determining the optimum condition, the Box–Behnken Design (BBD) under Response Surface Methodology (RSM) was employed. Fe{sub 3}O{sub 4}@L-arginine nanoparticles were synthesized and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and vibrating sample magnetometer. Applying Fe{sub 3}O{sub 4}@L-arginine nanoparticles for dye removal showed that; by increasing adsorbent dose and decreasing pH, dye concentration, and ionic strength dye removal has been increased. In the optimum condition, Fe{sub 3}O{sub 4}@L-arginine nanoparticles were able to remove dye as high as 96.34% at an initial dye concentration of 50 mg/L, adsorbent dose of 0.74 g/L, and pH 3. The findings indicated that dye removal followed pseudo-second-order kinetic (R{sup 2}=0.999) and Freundlich isotherm (R{sup 2}=0.989). Based on the obtained results, as an efficient and reusable adsorbent, Fe{sub 3}O{sub 4}@L-arginine nanoparticles can be successfully applied for dye removal from colored wastewater. - Highlights: • The Fe{sub 3}O{sub 4}@L-arginine removed RB 19 azo dye from wastewater efficiently. • BBD under RSM was used to analyze and optimize the adsorption process. • pH was the most influential parameter in dye removal.

  4. Extraction and Application of Laccases from Shimeji Mushrooms (Pleurotus ostreatus Residues in Decolourisation of Reactive Dyes and a Comparative Study Using Commercial Laccase from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Ricardo Sposina S. Teixeira

    2010-01-01

    Full Text Available Oxidases are able to degrade organic pollutants; however, high costs associated with biocatalysts production still hinder their use in environmental biocatalysis. Our study compared the action of a commercial laccase from Aspergillus oryzae and a rich extract from Pleurotus ostreatus cultivation residues in decolourisation of reactive dyes: Drimaren Blue X-3LR (DMBLR, Drimaren Blue X-BLN (DMBBLN, Drimaren Rubinol X-3LR (DMR, and Drimaren Blue C-R (RBBR. The colour removal was evaluated by considering dye concentration, reaction time, absence or presence of the mediator ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, and the source of laccase. The presence of ABTS was essential for decolourisation of DMR (80–90%, 1 h and RBBR (80–90%, 24 h with both laccases. The use of ABTS was not necessary in reactions containing DMBLR (85–97%, 1 h and DMBBLN (63–84%, 24 h. The decolourisation of DMBBLN by commercial laccase showed levels near 60% while the crude extract presented 80% in 24 h.

  5. Physicochemical modeling of reactive violet 5 dye adsorption on home-made cocoa shell and commercial activated carbons using the statistical physics theory

    Directory of Open Access Journals (Sweden)

    Lotfi Sellaoui

    Full Text Available Two equilibrium models based on statistical physics, i.e., monolayer model with single energy and multilayer model with saturation, were developed and employed to access the steric and energetic aspects in the adsorption of reactive violet 5 dye (RV-5 on cocoa shell activated carbon (AC and commercial activated carbon (CAC, at different temperatures (from 298 to 323 K. The results showed that the multilayer model with saturation was able to represent the adsorption system. This model assumes that the adsorption occurs by a formation of certain number of layers. The n values ranged from 1.10 to 2.98, indicating that the adsorbate molecules interacted in an inclined position on the adsorbent surface and aggregate in solution. The study of the total number of the formed layers (1 + L2 showed that the steric hindrance is the dominant factor. The description of the adsorbate–adsorbent interactions by calculation of the adsorption energy indicated that the process occurred by physisorption in nature, since the values were lower than 40 kJ mol−1. Keywords: RV-5 dye, Activated carbon, Modeling, Aggregation

  6. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation.

    Science.gov (United States)

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-03-05

    Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m 2 , corresponding to current density of 120.24mA/m 2 . The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Efeitos dos parâmetros operacionais na fotodegradação do azo corante direct red 23 na interface dióxido de titânio/água Effects of operational parameters on the photodegradation of direct red 23 azo dye at the titanium dioxide/water interface

    Directory of Open Access Journals (Sweden)

    Débora Nobile Clausen

    2007-01-01

    Full Text Available The decolorization and degradation of direct red 23 azo dye have been investigated in aqueous suspension of titanium dioxide under artificial irradiation. The effects of some operational parameters such as azo dye concentration, catalyst loading, and solution pH were investigated at 30.0 ºC and optimized values were obtained. The first-order kinetic model was used to discuss the results. The UV-Vis spectra changes showed that the azo dye sample, collected after 6 h irradiation, was 98% decolorized while the residual total carbon was 97.9% degraded, indicating simultaneous photodecolorization and degradation.

  8. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    International Nuclear Information System (INIS)

    Oliveira, Luiz C.A.; Goncalves, Maraisa; Oliveira, Diana Q.L.; Guerreiro, Mario C.; Guilherme, Luiz R.G.; Dallago, Rogerio M.

    2007-01-01

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g -1 ) and textile dye reactive red (163 mg g -1 ), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials

  9. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.A. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil)]. E-mail: luizoliveira@ufla.br; Goncalves, Maraisa [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Oliveira, Diana Q.L. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guerreiro, Mario C. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guilherme, Luiz R.G. [Universidade Federal de Lavras, Depto. de Ciencia do solo, CEP 37200.000, Lavras-MG (Brazil); Dallago, Rogerio M. [URI-Campus Erechim, Av. 7 Setembro 1621, Centro, CEP 99700-000, Depto de Quimica, Erechim-RS (Brazil)

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g{sup -1}) and textile dye reactive red (163 mg g{sup -1}), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  10. Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye "congo red".

    Science.gov (United States)

    Khanjani, Somayeh; Morsali, Ali

    2014-07-01

    A metal-organic framework MOF-5 has been synthesized on silk fiber through electrostatic layer-by-layer assembly. The silk surface coating was formed via sequential dipping in an alternating bath of metal and ligand solutions at room temperature by direct mixing. SEM was used to investigate the growth of MOF-5 coating as materials for separation membrane due to their desirable properties in adsorptive removal of congo red (CR) from contaminated water. The adsorption capacity of MOF-5 is remarkable high in the liquid phase. The adsorption of CR at various concentration and contact time in spontaneous process were studied. The silk fibers containing MOF-5 open a wide field of possible applications, such as protection layers or membranes in pollution remediation wastewater and any effluent. Desorption of the dye can be carried out by using NaOH solution with more than about 50% recovery of congo red from MOF-5 coated on silk membrane filtration. In order to investigate the role of sonicating on the morphology of products, one of the reactions was performed with ultrasound irradiation and the crystal growth is completed more than other methods. The samples and adsorption of CR were characterized with SEM, powder X-ray diffraction (XRD) and UV-visible spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Electroluminescence properties of organic light-emitting diodes with a red dye doped into Alq{sub 3} : rubrene mixed host

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H. Y. [Inha University, Incheon (Korea, Republic of); Lee, C. H. [Seoul National University, Seoul (Korea, Republic of)

    2004-09-15

    We have studied the electroluminescence (EL) properties of devices with a red fluorescent dye, 4-(dicyanomethylene)-2-t-butyl-6- (1,1,7,7-tetramethyl-julolidyl-9-enyl)--4H-py ran (DCJTB), doped into a mixed matrix of tris-(8-hydroxyquinoline)aluminum (Alq{sub 3}) and rubrene. The devices doped with DCJTB in the Alq{sub 3}:rubrene mixed host show an efficient red emission from DCJTB with negligible EL emission from both Alq{sub 3} and rubrene. The QE increases with increasing rubrene concentration and reaches a maximum of about 3.6 % for a DCJTB doping concentration of about 5 % in the Alq3:rubrene mixed (50:50 % ratio by weight) host, and then decreases at higher rubrene concentration, due to the concentration quenching effect. At a given bias voltage, the current density increases with increasing rubrene doping concentration, but it decreases with increasing DCJTB doping concentration. The results imply that the injected electrons and holes can transport via hopping through the energy levels of rubrene molecules while DCJTB acts as traps.

  12. Effects of early combinatorial treatment of autologous split-thickness skin grafts in red duroc pig model using pulsed dye laser and fractional CO2 laser.

    Science.gov (United States)

    Bailey, J Kevin; Blackstone, Britani N; DeBruler, Danielle M; Kim, Jayne Y; Baumann, Molly E; McFarland, Kevin L; Imeokparia, Folasade O; Supp, Dorothy M; Powell, Heather M

    2018-01-01

    The use of pulsed dye laser (PDL) and fractional CO 2 (FX CO 2 ) laser therapy to treat and/or prevent scarring following burn injury is becoming more widespread with a number of studies reporting reduction in scar erythema and pruritus following treatment with lasers. While the majority of studies report positive outcomes following PDL or FX CO 2 therapy, a number of studies have reported no benefit or worsening of the scar following treatment. The objective of this study was to directly compare the efficacy of PDL, FX CO 2 , and PDL + FX CO 2 laser therapy in reducing scarring post burn injury and autografting in a standardized animal model. Eight female red Duroc pigs (FRDP) received 4 standardized, 1 in. x 1 in. third degree burns that were excised and autografted. Wound sites were treated with PDL, FX CO 2 , or both at 4, 8, and 12 weeks post grafting. Grafts receiving no laser therapy served as controls. Scar appearance, morphology, size, and erythema were assessed and punch biopsies collected at weeks 4, 8, 12, and 16. At week 16, additional tissue was collected for biomechanical analyses and markers for inflammatory cytokines, extracellular matrix (ECM) proteins, re-epithelialization, pigmentation, and angiogenesis were quantified at all time points using qRT-PCR. Treatment with PDL, FX CO 2 , or PDL + FX CO 2 resulted in significantly less contraction versus skin graft only controls with no statistically significant difference among laser therapy groups. Scars treated with both PDL and FX CO 2 were visually more erythematous than other groups with a significant increase in redness between two and three standard deviations above normal skin redness. Scars treated with FX CO 2 were visually smoother and contained significantly fewer wrinkles. In addition, hyperpigmentation was significantly reduced in scars treated with FX CO 2 . The use of fractional carbon dioxide or pulsed dye laser therapy within 1 month of autografting significantly reduced scar

  13. SYNTHESIS OF ZnO-AC COMPOSITE AND ITS USE IN REDUCING TEXTILE DYES CONCENTRATIONS OF METHYLENE BLUE AND CONGO RED BY PHOTODEGRADATION

    Directory of Open Access Journals (Sweden)

    Ni Putu Diantariani

    2016-06-01

    Full Text Available ABSTRAK: Telah dilakukan penelitian mengenai minimalisasi konsentrasi zat warna tekstil metilen biru (MB dan congo red (CR melalui fotodegradasi menggunakan komposit ZnO-Arang aktif (ZnO-AC. Penelitian meliputi sintesis seng oksida (ZnO dengan berbagai rasio pelarut (air:etanol, pembuatan komposit ZnO-AC, dan penerapan komposit untuk mengurangi konsentrasi MB dan CR dalam limbah buatan melalui proses fotodegradasi. Karakterisasi dari partikel ZnO hasil sintesis dilakukan dengan Fourier Transformed Infra Red (FTIR, X-Ray Diffraction (XRD, dan Scanning Electron Microscope (SEM. Fotodegradasi zat warna tekstil MB dan CR dilakukan dengan memaparkan campuran zat warna dan komposit di bawah radiasi sinar ultraviolet. Intensitas warna sebelum dan sesudah fotodegradasi ditentukan dengan menggunakan spektrofotometer sinar tampak. Hasil menunjukkan bahwa semakin besar rasio pelarut air:etanol yang digunakan dalam sintesis ZnO, semakin mudah, cepat dan semakin banyak jumlah ZnO yang terbentuk. Spektra FTIR dari ZnO hasil sintesis menunjukkan adanya gugus fungsi Zn-O, O-H, N-H, C-H, dan C-O. Semua puncak difraksi dari ZnO hasil sintesis yang pada 2 31,79-31,91, 34,45-34,57, dan 36,27-36,40 sesuai dengan ZnO Wurtzite fase heksagonal. Karakterisasi ZnO dengan SEM menunjukkan bahwa bentuk partikel ZnO adalah bulat dan ukuran partikelnya berkisar 220,5 nm sampai 1222 nm. Bentuk partikel yang paling mendekati bulat dihasilkan oleh perlakuan sintesis dengan rasio pelarut etanol: air sebanyak 150 mL:150 mL. Persentase fotodegradasi dari MB dan CR dengan komposit ZnO-AC lebih besar dibandingkan dengan kontrol (tanpa komposit ZnO-AC, dengan persentase tertinggi diberikan oleh komposit yang terbuat dari ZnO yang disintesis dengan rasio pelarut air : etanol sebesar 150 mL:150 mL.   ABSTRACT: Research on minimization of textile dyes concentration of methylene blue (MB and congo red (CR through photodegradation using ZnO-Activated Carbon (ZnO-AC composite has been done

  14. Lipid chain saturation and the cholesterol in the phospholipid membrane affect the spectroscopic properties of lipophilic dye nile red

    Science.gov (United States)

    Halder, Animesh; Saha, Baishakhi; Maity, Pabitra; Kumar, Gopinatha Suresh; Sinha, Deepak Kumar; Karmakar, Sanat

    2018-02-01

    We have studied the effect of composition and the phase state of phospholipid membranes on the emission spectrum, anisotropy and lifetime of a lipophilic fluorescence probe nile red. Fluorescence spectrum of nile red in membranes containing cholesterol has also been investigated in order to get insights into the influence of cholesterol on the phospholipid membranes. Maximum emission wavelength (λem) of nile red in the fluid phase of saturated and unsaturated phospholipids was found to differ by 10 nm. The λem was also found to be independent of chain length and charge of the membrane. However, the λem is strongly dependent on the temperature in the gel phase. The λem and rotational diffusion rate decrease, whereas the anisotropy and lifetime increase markedly with increasing cholesterol concentration for saturated phosoholipids, such as, dimyristoyl phosphatidylcholine (DMPC) in the liquid ordered phase. However, these spectroscopic properties do not alter significantly in case of unsaturated phospholipids, such as, dioleoyl phosphatidylcholine (DOPC) in liquid disordered phase. Interestingly, red edge excitation shift (REES) in the presence of lipid-cholesterol membranes is the direct consequences of change in rotational diffusion due to motional restriction of lipids in the presence of cholesterol. This study provides correlations between the membrane compositions and fluorescence spectral features which can be utilized in a wide range of biophysical fields as well the cell biology.

  15. Removal of non benzidine direct red dye from aqueous solution by using natural sorbents: Beech and silver fir

    Czech Academy of Sciences Publication Activity Database

    Muntean, S.G.; Todea, A.; Bakardjieva, Snejana; Bologa, C.

    2017-01-01

    Roč. 66, MAR (2017), s. 235-250 ISSN 1944-3994 Institutional support: RVO:61388980 Keywords : Adsorption * Beech * Direct red * Kinetics * Silver fir Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.631, year: 2016

  16. Kinetics and mechanism of azo dye destruction in advanced oxidation processes

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2007-01-01

    The kinetics and mechanism of dye destruction in advanced oxidation processes is discussed on the example of Apollofix Red (Ar-28) radiolysis in aqueous solution. When the reactive intermediate reacts with the color bearing part of the molecule causing with nearly 100% efficiency destruction of the conjugation, the dose dependence, or time dependence of color disappearance is linear. In this case, spectrophotometry can be used to follow-up dye decomposition. Linear dependence was observed when hydrated electrons or hydrogen atoms reacted with the dye. In hydroxyl radical reactions some colored products form with spectra similar to those of the starting dye molecules. For that reason, spectrophotometry gives false result about the intact dye molecule concentration. Analysis by the HPLC reveals logarithmic time dependence in agreement with a theoretical model developed

  17. On the behavior of reduced graphene oxide based electrodes coated with dispersed platinum by alternate current methods in the electrochemical degradation of reactive dyes.

    Science.gov (United States)

    Del Río, A I; García, C; Molina, J; Fernández, J; Bonastre, J; Cases, F

    2017-09-01

    The electrochemical behavior of different carbon-based electrodes with and without nanoparticles of platinum electrochemically dispersed on their surface has been studied. Among others, reduced graphene oxide based electrodes was used to determine the best conditions for the decolorization/degradation of the reactive dye C.I. Reactive Orange 4 in sulfuric medium. Firstly, the electrochemical behavior was evaluated by cyclic voltammetry. Secondly, different electrolyses were performed using two cell configurations: cell with anodic and cathodic compartments separated (divided configuration) and without any separation (undivided configuration). The best results were obtained when reduced graphene oxide based anodes were used. The degree of decolorization was monitored by spectroscopic methods and high performance liquid chromatography. It was found that all of them followed pseudo-first order kinetics. When reduced graphene oxide-based electrodes coated with dispersed platinum by alternate current methods electrodes were used, the lowest energy consumption and the higher decolorization kinetics rate were obtained. Scanning Electronic Microscopy was used to observe the morphological surface differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment

    Directory of Open Access Journals (Sweden)

    L.R. Bergsten-Torralba

    2009-12-01

    Full Text Available The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198, Reactive Blue 214 (RB214, Reactive Blue 21 (RB21 and the mixture of the three dyes (MXD by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50. P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments.

  19. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  20. Pillarization of layer double hydroxides (Mg/Al with keggin type K4[α-SiW12O40]•nH2O and its application as adsorbent of procion red dye

    Directory of Open Access Journals (Sweden)

    Intan Permata Sari

    2017-07-01

    Full Text Available Pillarization of layered double hydroxides with polyoxometalate K4[α-SiW12O40]•nH2O at various times i.e. 3, 6, 9, 12, 24, 36 and 48 hours has been done. The pillared product was characterized by FT-IR spectrophotometer and XRD. The optimum pillared layered double hydroxides of polyoxometalate K4[α-SiW12O40]•nH2O was used as an adsorbent of procion red dye. The results of characterization using FT-IR spectrophotometer is not yet show the optimum pillarization process. The characterisation using XRD the successfully of pillared layered double hydroxides of polyoxometalate K4[α-SiW12O40]•nH2O showing the existence of diffraction angle 8.5o with intensity 355. Furthermore, the pillared layered double hydroxides of polyoxometalate K4[α-SiW12O40]•nH2O with time variation of 12 hours was applied as an adsorbent of procion red dye. The results show the adsorption rate was 0.523 min-1, the highest of absorption capacity at 70oC was 10.8 mol/g, the highest energy of absorption 70 oC was 125 kJ/mol. The enthalpy (∆H and entropy (∆S, decrease as the increasing concentration of procion red dye. Keywords: layered double hydroxides, polyoxometalate, pillaration, procion red, adsorption

  1. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study.

    Science.gov (United States)

    Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C

    2013-05-02

    Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.

  2. The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients.

    Science.gov (United States)

    Coimbra, S R; Lage, S H; Brandizzi, L; Yoshida, V; da Luz, P L

    2005-09-01

    Although red wine (RW) reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM), and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 +/- 8.1 years) without other risk factors. Twenty-four normal subjects were used as controls for vascular reactivity. Subjects randomly received RW, 250 ml/day, or purple grape juice (GJ), 500 ml/day, for 14 days with an equal wash-out period. At baseline, all 16 subjects were hypercholesterolemic (mean LDL = 181.0 +/- 28.7 mg/dl) but HDL, triglycerides, glucose, adhesion molecules, and platelet function were within normal limits. Brachial artery flow-mediated dilation was significantly decreased compared to controls (9.0 +/- 7.1 vs 12.1 +/- 4.5%; P effect on either molecule. No significant alterations were observed in plasma lipids, glucose or platelet aggregability with RW or GJ. Both RW and GJ similarly improved flow-mediated dilation, but RW also enhanced endothelium-independent vasodilation in hypercholesterolemic patients despite the increased plasma cholesterol. Thus, we conclude that GJ may protect against coronary artery disease without the additional negative effects of alcohol despite the gender.

  3. Photo-degradation of basic green 1 and basic red 46 dyes in their binary solution by La2O3-Al2O3nanocomposite using first-order derivative spectra and experimental design methodology

    Science.gov (United States)

    Fahimirad, Bahareh; Asghari, Alireza; Rajabi, Maryam

    2017-05-01

    In this work, the lanthanum oxide-aluminum oxide (La2O3-Al2O3) nanocomposite is introduced as an efficient photocatalyst for the photo-degradation of the dyes basic green 1 (BG1) and basic red 46 (BR46) in their binary aqueous solution under the UV light irradiation. The properties of this catalyst are determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and UV-visible spectrophotometry. The first-order derivative spectra are used for the simultaneous analysis of the dyes in their binary solution. The screening investigations indicate that five parameters including the catalyst dosage, concentration of the dyes, irradiation time, and solution pH have significant effects on the photo-degradation of the dyes. The effects of these variables together with their interactions in the photo-degradation of the dyes are studied using the Box-Behnken design (BBD). Under the optimum experimental conditions, obtained via the desirability function, the photo-catalytic activities of La2O3-Al2O3 and pure Al2O3 are also investigated. The results obtained show an enhancement in the photo-catalytic activity when La2O3 nanoparticles are loaded on the surface of Al2O3 nanoparticles. The La2O3-Al2O3nanocomposite was synthesized as new photo-catalyst for the degradation of binary dyes. The photo-catalytic effect on the binary dyes solution was followed by the first-order derivative spectrophotometric method. Simultaneous dyes photodegradation methodology was presented by using experimental design.

  4. A high throughput colorimetric assay of β-1,3-D-glucans by Congo red dye.

    Science.gov (United States)

    Semedo, Magda C; Karmali, Amin; Fonseca, Luís

    2015-02-01

    Mushroom strains contain complex nutritional biomolecules with a wide spectrum of therapeutic and prophylactic properties. Among these compounds, β-d-glucans play an important role in immuno-modulating and anti-tumor activities. The present work involves a novel colorimetric assay method for β-1,3-d-glucans with a triple helix tertiary structure by using Congo red. The specific interaction that occurs between Congo red and β-1,3-d-glucan was detected by bathochromic shift from 488 to 516 nm (>20 nm) in UV-Vis spectrophotometer. A micro- and high throughput method based on a 96-well microtiter plate was devised which presents several advantages over the published methods since it requires only 1.51 μg of polysaccharides in samples, greater sensitivity, speed, assay of many samples and very cheap. β-D-Glucans of several mushrooms (i.e., Coriolus versicolor, Ganoderma lucidum, Pleurotus ostreatus, Ganoderma carnosum, Hericium erinaceus, Lentinula edodes, Inonotus obliquus, Auricularia auricular, Polyporus umbellatus, Cordyseps sinensis, Agaricus blazei, Poria cocos) were isolated by using a sequence of several extractions with cold and boiling water, acidic and alkaline conditions and quantified by this microtiter plate method. FTIR spectroscopy was used to study the structural features of β-1,3-D-glucans in these mushroom samples as well as the specific interaction of these polysaccharides with Congo red. The effect of NaOH on triple helix conformation of β-1,3-D-glucans was investigated in several mushroom species. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Photo- and chemocatalytic oxidation of dyes in water.

    Science.gov (United States)

    Du, Wei-Ning; Chen, Shyi-Tien

    2018-01-15

    Three commonly used dyes, Acid Red-114 (AR-114), Reactive Black-5 (RB-5), and Disperse Black EX-SF (DB-EX-SF), were treated in a pH-neutral liquid with ultraviolet (UV) light by two reactive methods: photocatalysis with titanium dioxide (TiO 2 ), and/or chemocatalysis with hydrogen peroxide (H 2 O 2 ) as the oxidant and various ferrous-based electron mediators as catalysts. Important factors for dye oxidation were determined through bifactorial experiments. The optimum combinations and doses of the three key reagents, namely TiO 2 , H 2 O 2 , and EDTA-Fe, were also determined. The degradation kinetics of the studied dyes at their optimum doses reveal that the oxidation reactions are pseudo-first-order in nature, and that certain dyes are selectively degraded more by one method than the other. The overall results suggest that co-treatment using more than one oxidative method is beneficial for the treatment of wastewater from dyeing processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    OpenAIRE

    Kęstutis BELEŠKA; Virgilijus VALEIKA; Justa ŠIRVAITYTĖ; Violeta VALEIKIENĖ

    2013-01-01

    The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on...

  7. Diazo dye Congo Red degradation using a Boron-doped diamond anode: An experimental study on the effect of supporting electrolytes.

    Science.gov (United States)

    Jalife-Jacobo, H; Feria-Reyes, R; Serrano-Torres, O; Gutiérrez-Granados, S; Peralta-Hernández, Juan M

    2016-12-05

    Diazo dye Congo Red (CR) solutions at 100mg/L, were degraded using different supporting electrolytes in an electrochemical advanced oxidation process (EAOPs), like the anodic oxidation (AOx/BDD). All experiments were carried out in a 3L flow reactor with a Boron-doped diamond (BDD) anode and stainless steel cathode (AISI 304), at 7.5, 15, 30 and 50mA/cm(2) current densities (j). Furthermore, each experiment was carried out under a flow rate of 7L/min. Additionally, HClO4, NaCl, Na2SO4, and H2SO4 were tested as supporting electrolytes at a 50mM concentration. The degradation process was at all times considerably faster in NaCl medium. Solutions containing SO4(2-) or ClO4(-) ions were less prompted to degradation due to the low oxidation power of these species into the bulk. Dissolved organic carbon (DOC) analysis, was carried out to evaluate the mineralization of CR. The degradation of CR, was evaluated with the HPLC analysis of the treated solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Nanoporous of W/WO{sub 3} thin film electrode grown by electrochemical anodization applied in the photoelectrocatalytic oxidation of the basic red 51 used in hair dye

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Luciano E.; Zanoni, Maria Valnice B., E-mail: fraga@iq.unesp.b [Universidade Estadual Paulista (IQ/UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    Self-organized W/WO{sub 3} nanoporous electrodes can be obtained by simple electrochemical anodization of W foil in 0.15 mol L{sup -1} NaF solution as the supporting electrolyte, applying a ramp potential of 0.2 V s{sup -1} until it reached 60 V, which was maintained for 2 h. The monoclinic form is majority in the highly ordered WO{sub 3} annealed at 450 deg C, obtaining a higher photoactivity when irradiated by visible light than by UV light. The electrode promotes complete discoloration of the investigated basic red 51 dye after 60 min of photoelectrocatalytic oxidation, on current density of 1.25 mA cm{sup -2} and irradiation on wavelength of 420-630 nm. In this condition it was obtained 63% of mineralization. Lower efficiency is obtained for the system irradiated by wavelength (280- 400 nm) when only 40% of total organic carbon removal is obtained and 120 min is required for complete discoloration. (author)

  9. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye.

    Science.gov (United States)

    Ruan, Chang-Qing; Strømme, Maria; Lindh, Jonas

    2018-02-01

    Micrometer sized 2,3-dialdehyde cellulose (DAC) beads were produced via a recently developed method relying on periodate oxidation of Cladophora nanocellulose. The produced dialdehyde groups and pristine hydroxyl groups provided the DAC beads with a vast potential for further functionalization. The sensitivity of the DAC beads to alkaline conditions, however, limits their possible functionalization and applications. Hence, alkaline-stable and porous cellulose beads were prepared via a reductive amination crosslinking reaction between 2,3-dialdehyde cellulose beads and chitosan. The produced materials were thoroughly characterized with different methods. The reaction conditions, including the amount of chitosan used, conditions for reductive amination, reaction temperature and time, were investigated and the maintained morphology of the beads after exposure to 1M NaOH (aq.) was verified with SEM. Different washing and drying procedures were used and the results were studied by SEM and BET analysis. Furthermore, FTIR, TGA, EDX, XPS, DLS and elemental analysis were performed to characterize the properties of the prepared beads. Finally, the alkaline-stable porous chitosan cross-linked 2,3-dialdehyde cellulose beads were applied as adsorbent for the dye Congo red. The crosslinked beads displayed fast and high adsorption capacity at pH 2 and good desorption properties at pH 12, providing a promising sorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Electro-flocculation associated with the extract of Moringa oleifera Lam as natural coagulant for the removal of reactive blue 5G dye

    Directory of Open Access Journals (Sweden)

    Bruna Souza dos Santos

    2016-08-01

    Full Text Available Although an important significant sector in world economy, the textile industry is known for its large volumes of wastewater generated in production processes. In the search for cleaner technologies, the application of electrochemical processes, such as electro-flocculation, or natural coagulants, such as Moringa oleifera Lam extract, have become recurrent in literature. Since the required operating conditions for alternative technologies are such that they hamper effective application, current paper presents results obtained with the use of a hybrid system of treatment which combines electro-flocculation and the aqueous extract of Moringa oleifera lam to evaluate the removal of reactive blue 5G dye from aqueous solutions. Milder conditions of electric current intensity (0.10 – 1.50 A and natural coagulant concentration (250-2000 mg L-1 were tested. Through a Central Composite Rotatable Design, it was possible to obtain a quadratic model which subsidized the optimization of operating conditions. Applying an electric current of 0.97 A to sacrificial electrodes of iron and a concentration of 2000 mg L-1 for the extract of Moringa oleifera Lam, an average 86.79% color removal was obtained, considered a satisfactory rate.

  11. Development of a novel ozone- and photo-stable HyPer5 red fluorescent dye for array CGH and microarray gene expression analysis with consistent performance irrespective of environmental conditions

    Directory of Open Access Journals (Sweden)

    Kille Peter

    2008-11-01

    data quality from gene expression experiments. Conclusion HyPer5 is a red fluorescent dye that behaves functionally similar to Cy5 except in stability to ozone and light. HyPer5 is demonstrated to be resistant to ozone at up to 300 ppb, levels significantly higher than commonly observed during summer months. Consequently, HyPer5 dye can be used in parallel with Cy3 under any environmental conditions in array experiments.

  12. Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging

    Science.gov (United States)

    Chevalier, Arnaud; Piao, Wen; Hanaoka, Kenjiro; Nagano, Tetsuo; Renard, Pierre-Yves; Romieu, Anthony

    2015-12-01

    New sulforhodamine-based fluorescent ‘turn-on’ probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble ‘azobenzene-caged’ fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three ‘smart’ probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).

  13. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide

    International Nuclear Information System (INIS)

    Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha

    2011-01-01

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N 2 adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored.

  14. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide.

    Science.gov (United States)

    Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha

    2011-04-15

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N(2) adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hui-Pin [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Huang, Yao-Hui, E-mail: yhhuang@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Lee, Changha, E-mail: clee@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 698-805 (Korea, Republic of)

    2011-04-15

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N{sub 2} adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation ({lambda} = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored.

  16. Photocatalytic degradation of C. I. Reactive Red 24 solution with K₆SiW₁₁O₃₉Sn(II.).

    Science.gov (United States)

    Guo, Guixiang; Zhu, Xiuhua; Shi, Fuyou; Wang, Anning; Wang, Wei; Mu, Jun; Wan, Quanli; Zhang, Rong

    2013-12-01

    Environmental friendly materials, K6SiW11O39Sn (SiWSn), was synthesized. SiWSn photocatalytic decomposition of C. I. Reactive Red 24 (RR24) with the UV-lamp (253.7 nm, 20 W), Xenon lamp filtered less than 390 nm light (500 W) and sun light was investigated. The results showed that RR24 solution could be effectively decolorized with the SiWSn photocatalyst. The photocatalytic degradation efficiency of RR24 with SiWSn was affected by the initial concentration of RR2 solution, the amount of SiWSn and the photolysis time. It is demonstrated that the process of photodegradation of RR24 with SiWSn is a pesudo first-order reaction, which can be described by Langmuir-Hinshelwood equation. Hydroxyl radicals and holes are both the main oxidants in the photocatalytic reaction of RR24 with SiWSn. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation

    International Nuclear Information System (INIS)

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-01-01

    Highlights: • Monoazo and diazo dyes were used as electron acceptor in the abiotic cathode of MFC. • Simultaneous decolourisation and bioelectricity generation were achieved. • Azo dye structures influenced the decolourisation performance. • Positive relation between decolourisation rate and power performance. - Abstract: Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73 ± 3% and 95.1 ± 1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64 mW/m"2, corresponding to current density of 120.24 mA/m"2. The decolourisation rate and power output of different azo dyes were in the order of NC > AO7 > RR120 > RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.

  18. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Oon, Yoong-Sin [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Ong, Soon-An, E-mail: ongsoonan@yahoo.com [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Ho, Li-Ngee [School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Nordin, Noradiba [School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia)

    2017-03-05

    Highlights: • Monoazo and diazo dyes were used as electron acceptor in the abiotic cathode of MFC. • Simultaneous decolourisation and bioelectricity generation were achieved. • Azo dye structures influenced the decolourisation performance. • Positive relation between decolourisation rate and power performance. - Abstract: Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73 ± 3% and 95.1 ± 1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64 mW/m{sup 2}, corresponding to current density of 120.24 mA/m{sup 2}. The decolourisation rate and power output of different azo dyes were in the order of NC > AO7 > RR120 > RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.

  19. Fenton oxidation treatment of spent wash-off liquor for reuse in reactive dying

    International Nuclear Information System (INIS)

    Mangat, A.; Shaikh, I.A.; Ahmed, F.; Baqar, M

    2014-01-01

    The use of clean and high quality water in textile dyeing process is very expensive. In this study, the potential of reusing Fenton treated wash-off wastewater generated at the end of reactive dyeing was investigated. The treated wastewater was used in several dyeings employing three widely used reactive dyes, C. I. Reactive Yellow 145, C. I. Reactive Red 194, and C. I. Reactive Blue 221. Experimental results showed that at acidic pH (3.5) using optimized quantities of FeSO/sub 4/ and H/sub 2/O/sub 2/, Fenton process yielded a significant reduction (80-99%) of colour and COD in 30 minutes of treatment time. New dyeings were then carried out in Fenton decolourized wash-off wastewater, and dyed fabric samples were subjected to quality evaluations in terms of wash fastness, crock fastness, and colour difference properties (delta L*, delta c*, delta h*, and delta E*). This study concluded that Fenton oxidation was an efficient method for the treatment of textile wash-off wastewater, and treated liquor can be effectively recycled in next dyeing, without compromising quality parameters. This method proved to be an eco-friendly process owing to the fact that it did not use any fresh water. (author)

  20. Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation.

    Science.gov (United States)

    Ljubas, Davor; Smoljanić, Goran; Juretić, Hrvoje

    2015-09-15

    In this study we used TiO2 nanoparticles as semiconductor photocatalysts for the degradation of Methyl Orange (MO) and Congo Red (CR) dyes in an aqueous solution. Since TiO2 particles become photocatalytically active by UV radiation, two sources of UV-A radiation were used - natural solar radiation which contains 3-5% UV-A and artificial, solar-like radiation, created by using a lamp. The optimal doses of TiO2 of 500 mg/L for the CR and 1500 mg/L for the MO degradation were determined in experiments with the lamp and were also used in degradation experiments with natural solar light. The efficiency of each process was determined by measuring the absorbance at two visible wavelengths, 466 nm for MO and 498 nm for CR, and the total organic carbon (TOC), i.e. decolorization and mineralization, respectively. In both cases, considerable potential for the degradation of CR and MO was observed - total decolorization of the solution was achieved within 30-60 min, while the TOC removal was in the range 60-90%. CR and MO solutions irradiated without TiO2 nanoparticles showed no observable changes in either decolorization or mineralization. Three different commercially available TiO2 nanoparticles were used: pure-phase anatase, pure-phase rutile, and mixed-phase preparation named Degussa P25. In terms of degradation kinetics, P25 TiO2 exhibited a photocatalytic activity superior to that of pure-phase anatase or rutile. The electric energy consumption per gram of removed TOC was determined. For nearly the same degradation effect, the consumption in the natural solar radiation experiment was more than 60 times lower than in the artificial solar-like radiation experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients

    Directory of Open Access Journals (Sweden)

    Coimbra S.R.

    2005-01-01

    Full Text Available Although red wine (RW reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM, and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 ± 8.1 years without other risk factors. Twenty-four normal subjects were used as controls for vascular reactivity. Subjects randomly received RW, 250 ml/day, or purple grape juice (GJ, 500 ml/day, for 14 days with an equal wash-out period. At baseline, all 16 subjects were hypercholesterolemic (mean LDL = 181.0 ± 28.7 mg/dl but HDL, triglycerides, glucose, adhesion molecules, and platelet function were within normal limits. Brachial artery flow-mediated dilation was significantly decreased compared to controls (9.0 ± 7.1 vs 12.1 ± 4.5%; P < 0.05 and increased with both GJ (10.1 ± 7.1 before vs 16.9 ± 6.7% after: P < 0.05 and RW (10.1 ± 6.4 before vs 15.6 ± 4.6% after; P < 0.05. RW, but not GJ, also significantly increased endothelium-independent vasodilation (17.0 ± 8.6 before vs 23.0 ± 12.0% after; P < 0.01. GJ reduced ICAM-1 but not VCAM and RW had no effect on either molecule. No significant alterations were observed in plasma lipids, glucose or platelet aggregability with RW or GJ. Both RW and GJ similarly improved flow-mediated dilation, but RW also enhanced endothelium-independent vasodilation in hypercholesterolemic patients despite the increased plasma cholesterol. Thus, we conclude that GJ may protect against coronary artery disease without the additional negative effects of alcohol despite the gender.

  2. Treatment and kinetic modelling of a simulated dye house effluent by enzymatic catalysis.

    Science.gov (United States)

    Cristóvão, Raquel O; Tavares, Ana P M; Loureiro, José M; Boaventura, Rui A R; Macedo, Eugénia A

    2009-12-01

    Biocatalytic treatment of a synthetic dye house effluent, simulating a textile wastewater containing various reactive dyestuffs (Reactive Yellow 15, Reactive Red 239 and Reactive Black 5) and auxiliary chemicals, was investigated in a batch reactor using a commercial laccase. A high decolourisation (above 86%) was achieved at the maximum wavelength of Reactive Black 5. The decolourisation at the other dyes wavelengths (above 63% for RY15 and around 41% for RR239) and the total decolourisation based on all the visible spectrum (around 55%) were not so good, being somewhat lower than in the case of a mixture of the dyes (above 89% for RB5, 77% for RY15, 68% for RR239 and above 84% for total decolourisation). Even so, these results suggest the applicability of this method to treat textile dyeing wastewaters. Kinetic models were developed to simulate the synthetic effluent decolourisation by commercial laccase. The kinetic constants of the models were estimated by minimizing the difference between the predicted and the experimental time courses. The close correlation between the experimental data and the simulated values seems to demonstrate that the models are able to describe with remarkable accuracy the simulated effluent degradation. Water quality parameters such as TOC, COD, BOD(5) and toxicity were found to be under the maximum permissible discharge limits for textile industries wastewaters.

  3. Determinação eletroanalítica de corante reativo presente como contaminante em proteínas purificadas por cromatografia de afinidade Electroanalytical determination of a reactive dye currently used in affinity chromatography for protein purificaton

    Directory of Open Access Journals (Sweden)

    Marly E. Osugi

    2004-06-01

    Full Text Available Procion Green HE-4BD is a reactive dye currently used in affinity purification, and commonly present as a contaminant in the final biological preparation. An assay method is described to determine trace amounts of the dye in the presence of human serum albumin(HSA and leakage from agarose as affinity sorbent by cathodic stripping voltammetry. The proposed method is based on the reductive peak at -0.55V in B-R buffer pH 3 (E=0V and t= 240s, obtained when samples of HSA 2% (m/v containing dye concentrations in sodium hydroxide pH 12 are submitted to a heating time of 330 min at 80 ºC. Linear calibration curves can be obtained for RG19 dye concentrations from 5x10-9 mol L-1 to 8 x10-8 mol L-1. The detection limit (3sigma is 1x10-9 mol L-1.

  4. Novel elastomer dye-functionalised POSS nanocomposites: Enhanced colourimetric, thermomechanical and thermal properties

    Directory of Open Access Journals (Sweden)

    R. A. Shanks

    2012-05-01

    Full Text Available Nanocomposites consisting of poly(styrene-b-butadiene-b-styrene (SBS and polyhedral oligomeric silsesquioxanes (POSS were prepared using a solvent dispersion method. POSS molecules were functionalised with two dichlorotriazine reactive dyes (CI Reactive Blue 4, CI Reactive Red 2 prior to compounding. Infrared spectroscopy confirmed functionalisation.Scanning electron microscopy revealed an increase in filler aggregation with concentration, with preferential phase selectivity. Ultraviolet spectroscopy and colourimetry confirmed colour uniformity and suggested that colour intensity could be controlled. Functionalised POSS improved thermal stability by imparting restrictions on SBS chain motions. Tensile stress-strain analysis revealed an increase in modulus with filler concentration, while creep deformation decreased and permanent strain increased with POSS content. Storage modulus, loss modulus and glass transition temperature increased with filler content due to effective SBS-POSS interaction. Nanocomposite properties were influenced by the phase the filler was dispersed throughout and the structure of the dye chromophore.

  5. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  6. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO{sub 2} coated on non woven paper with SiO{sub 2} as a binder

    Energy Technology Data Exchange (ETDEWEB)

    Aguedach, Abdelkahhar [Laboratoire de l' Eau et environnement, Universite Chouaib Doukkali, Faculte des Sciences, BP.20, El Jadida, Maroc (Morocco); Brosillon, Stephan [Laboratoire Science Chimiques de Rennes UMR 6226, Equipe Chimie et Ingenierie des Procedes, Ecole Nationale Superieure de Chimie, Universite Rennes 1, avenue du General Leclerc, 35700 Rennes (France)], E-mail: Stephan.Brosillon@ensc-rennes.fr; Morvan, Jean [Laboratoire Science Chimiques de Rennes UMR 6226, Equipe Chimie et Ingenierie des Procedes, Ecole Nationale Superieure de Chimie, Universite Rennes 1, avenue du General Leclerc, 35700 Rennes (France); Lhadi, El Kbir [Laboratoire de l' Eau et environnement, Universite Chouaib Doukkali, Faculte des Sciences, BP.20, El Jadida, Maroc (Morocco)

    2008-01-31

    Reactive black 5 (RB5), an azo dye, was degraded by using UV-irradiated TiO{sub 2} coated on non woven paper with SiO{sub 2} as a binder. The adsorption capacity of the photocatalyst was studied at natural pH, superior to pH{sub pzc} of the binder, for various ionic strengths. Different salts such as NaCl, KCl, CaCl{sub 2}, LiCl, Ca(NO{sub 3}){sub 2} were used to increase the ionic strength. The presence of salt increased the adsorption capacity. The electrostatic interactions between dye and oxide surface charges (TiO{sub 2}/SiO{sub 2}) is very important in the adsorption phenomena. The effect of the ionic strength of the solution on photocatalyst degradation was studied. The rate of degradation was increased by the presence of salts in the range of the experimental conditions. The increase of the initial decolorization rate was observed in the following order: Ca{sup 2+} > K{sup +} > Na{sup +} > Li{sup +}. Experiments with different anions (Cl{sup -}, NO{sub 3}{sup -}) had shown that nitrate was an indifferent electrolyte for the adsorption and photodegradation of the dye on SiO{sub 2}/TiO{sub 2}.

  7. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder

    International Nuclear Information System (INIS)

    Aguedach, Abdelkahhar; Brosillon, Stephan; Morvan, Jean; Lhadi, El Kbir

    2008-01-01

    Reactive black 5 (RB5), an azo dye, was degraded by using UV-irradiated TiO 2 coated on non woven paper with SiO 2 as a binder. The adsorption capacity of the photocatalyst was studied at natural pH, superior to pH pzc of the binder, for various ionic strengths. Different salts such as NaCl, KCl, CaCl 2 , LiCl, Ca(NO 3 ) 2 were used to increase the ionic strength. The presence of salt increased the adsorption capacity. The electrostatic interactions between dye and oxide surface charges (TiO 2 /SiO 2 ) is very important in the adsorption phenomena. The effect of the ionic strength of the solution on photocatalyst degradation was studied. The rate of degradation was increased by the presence of salts in the range of the experimental conditions. The increase of the initial decolorization rate was observed in the following order: Ca 2+ > K + > Na + > Li + . Experiments with different anions (Cl - , NO 3 - ) had shown that nitrate was an indifferent electrolyte for the adsorption and photodegradation of the dye on SiO 2 /TiO 2

  8. A bootstrapped neural network model applied to prediction of the biodegradation rate of reactive Black 5 dye - doi: 10.4025/actascitechnol.v35i3.16210

    Directory of Open Access Journals (Sweden)

    Kleber Rogério Moreira Prado

    2013-06-01

    Full Text Available Current essay forwards a biodegradation model of a dye, used in the textile industry, based on a neural network propped by bootstrap remodeling. Bootstrapped neural network is set to generate estimates that are close to results obtained in an intrinsic experience in which a chemical process is applied. Pseudomonas oleovorans was used in the biodegradation of reactive Black 5. Results show a brief comparison between the information estimated by the proposed approach and the experimental data, with a coefficient of correlation between real and predicted values for a more than 0.99 biodegradation rate. Dye concentration and the solution’s pH failed to interfere in biodegradation index rates. A value above 90% of dye biodegradation was achieved between 1.000 and 1.841 mL 10 mL-1 of microorganism concentration and between 1.000 and 2.000 g 100 mL-1 of glucose concentration within the experimental conditions under analysis.   

  9. Structure and reactivity of thiazolium azo dyes: UV-visible, resonance Raman, NMR, and computational studies of the reaction mechanism in alkaline solution.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Moore, John N

    2013-03-07

    UV-visible absorption, resonance Raman, and (1)H NMR spectroscopy, allied with density functional theory (DFT) calculations, have been used to study the structure, bonding, and alkaline hydrolysis mechanism of the cationic thiazloium azo dye, 2-[2-[4-(diethylamino)phenyl]diazenyl]-3-methyl-thiazolium (1a), along with a series of six related dyes with different 4-dialkylamino groups and/or other phenyl ring substituents (2a-c, 3a-c) and the related isothiazolium azo dye, 5-[2-[4-(dimethylamino)phenyl]diazenyl]-2-methyl-isothiazolium (4). These diazahemicyanine dyes are calculated to have a similar low-energy structure that is cis, trans at the (iso)thiazolium-azo group, and for which the calculated Raman spectra provide a good match with the experimental data; the calculations on these structures are used to assign and discuss the transitions giving rise to the experimental spectra, and to consider the bonding and its variation between the dyes. UV-visible, Raman, and NMR spectra recorded from minutes to several weeks after raising the pH of an aqueous solution of 1a to ca. 11.5 show that the dominant initial step in the reaction is loss of diethylamine to produce a quinonimine (ca. hours), with subsequent reactions occurring on longer time scales (ca. days to weeks); kinetic analyses give a rate constant of 2.6 × 10(-2) dm(3) mol(-1) s(-1) for reaction of 1a with OH(-). UV-visible spectra recorded on raising the pH of the other dyes in solution show similar changes that are attributed to the same general reaction mechanism, but with different rate constants for which the dependence on structure is discussed.

  10. Viscosity induced emission of red-emitting NLOphoric coumarin morpholine-thiazole hybrid styryl dyes as FMRs: Consolidated experimental and theoretical approach

    Science.gov (United States)

    Avhad, Kiran C.; Patil, Dinesh S.; Chitrambalam, S.; Sreenath, M. C.; Joe, I. Hubert; Sekar, Nagaiyan

    2018-05-01

    Four new coumarin hybrid styryl dyes are synthesized by condensing 4-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-2-morpholinothiazole-5-carbaldehyde with dicyanovinylene containing active methylene intermediates and their linear and non-linear optical properties are studied. The dye having dicyanovinylene-isophorone acceptor displayed a large Stokes shift of 3702-4795 cm-1 in non-polar to polar solvent respectively. The dyes exhibit a good charge transfer characteristics and positive emission solvatochromism (∼50 nm-72 nm) in non-polar to a polar solvent which is well supported by multi-linear regression analysis. Viscosity induced enhancement study in ethanol/polyethylene glycol-400 system shows 2.71-6.78 fold increase in emission intensity. The intra and twisted-intramolecular charge transfer (ICT-TICT) characteristics were established using emission solvatochromism, polarity plots, generalised Mullikan-Hush (GMH) analysis and optimized geometry. A dye having the highest charge transfer dipole moment relatively possess the maximum two-photon absorption cross-section area (KK-1 = 165-207 GM) which was established using theoretical two-level model. The NLO properties have been investigated employing solvatochromic and computational methods and were found to be directly proportional to the polarity of the solvent. Z-scan results reveal that the dyes KK-1 and KK-2 possesses reverse saturable kind of behaviour whereas KK-3 and KK-4 show saturable kind of behaviour. From the experimental and theoretical data, these coumarin thiazole hybrid dyes can be considered as promising candidates for FMR and NLOphores.

  11. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Directory of Open Access Journals (Sweden)

    Andrew Mamalis

    Full Text Available Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR. For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2 on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched

  12. High photocatalytic performance of BiOI/Bi{sub 2}WO{sub 6} toward toluene and Reactive Brilliant Red

    Energy Technology Data Exchange (ETDEWEB)

    Li Huiquan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Key Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Cui Yumin, E-mail: cuiyumin0908@163.com [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Hong Wenshan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China)

    2013-01-01

    Graphical abstract: When BiOI/Bi{sub 2}WO{sub 6} catalyst was exposed to UV or visible light, the electrons in the valence band of Bi{sub 2}WO{sub 6} would be excited into the conduction band and then injected into the more positive conduction band of BiOI. Therefore, the photoelectrons were generated from Bi{sub 2}WO{sub 6} and transferred across the interface between BiOI and Bi{sub 2}WO{sub 6} to the surface of BiOI, leaving the photogenerated holes in the valence band of Bi{sub 2}WO{sub 6}. In this way, the photoinduced electron-hole pairs were effectively separated. Highlights: Black-Right-Pointing-Pointer BiOI sensitized Bi{sub 2}WO{sub 6} catalysts were successfully prepared by a facile method. Black-Right-Pointing-Pointer The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits higher photoactivities than P25. Black-Right-Pointing-Pointer A possible transfer process of photogenerated carriers was proposed. - Abstract: BiOI sensitized nano-Bi{sub 2}WO{sub 6} photocatalysts with different BiOI contents were successfully synthesized by a facile deposition method at room temperature, and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) high-resolution transmission electron microscopy (HR-TEM), photoluminescence (PL) spectra, UV-vis diffuse reflection spectroscopy (UV-vis DRS) and Brunauer-Emmett-Teller (BET) surface area measurements. The photocatalytic activity of BiOI/Bi{sub 2}WO{sub 6} was evaluated by the photo-degradation of Reactive Brilliant Red (X-3B) in suspended solution and toluene in gas phase. It has been shown that the BiOI/Bi{sub 2}WO{sub 6} catalysts exhibit a coexistence of both tetragonal BiOI and orthorhombic Bi{sub 2}WO{sub 6} phases. With increasing BiOI content, the absorption intensity of BiOI/Bi{sub 2}WO{sub 6} catalysts increases in the 380-600 nm region and the absorption edge shifts significantly to longer wavelengths as compared to pure Bi{sub 2}WO{sub 6}. The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits

  13. Equilibrium and Thermodynamic Studies of Anionic Dyes Removal by an Anionic Clay-Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Kantasamy, N.; Siti Mariam Sumari

    2016-01-01

    Adsorption isotherm describes the interaction of adsorbates with adsorbent in equilibrium. Equilibrium data was examined using Langmuir and Freundlich isotherm models. Thermodynamic studies were used to evaluate the thermodynamic parameters; heat of enthalpy change (ΔH degree), Gibbs free energy change (ΔG degree) and heat of entropy change (ΔSdegree) in order to gain information regarding the nature of adsorption (exothermic or endothermic). Four reactive dyes of anionic type, Acid Blue 29 (AB29), Reactive Black 5 (RB5), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) were used to obtain equilibrium isotherms at 25, 35, 45 and 55 degree Celsius. Based on Giles' classification, the isotherm produced were of L2-type, indicating strong dye affinity towards the adsorbent, and with weak competition with the solvent molecules for active adsorption sites. Equilibrium data fitted both Langmuir and Freundlich isotherm models with high correlation coefficient (R"2 > 0.91) indicating the possibility of both homogeneity and heterogeneous nature of adsorption. The negative values of ΔGdegree indicate the adsorption processes were spontaneous and feasible. The negative values of ΔHdegree lie between -20 to -75 kJ/ mol, suggesting these processes were exothermic and physical in nature. The negative values of ΔSdegree are indication of decreased disorder and randomness of spontaneous adsorption of reactive dyes on layered double hydroxide as adsorbent. (author)

  14. Use of Titanium Dioxide Photocatalysis on the Remediation of Model Textile Wastewaters Containing Azo Dyes

    Directory of Open Access Journals (Sweden)

    Josino Costa Moreira

    2011-12-01

    Full Text Available The photocatalytic degradation of two commercial textile azo dyes, namely C.I Reactive Black 5 and C.I Reactive Red 239, has been studied. TiO2 P25 Degussa was used as catalyst and photodegradation was carried out in aqueous solution under artificial irradiation with a 125 W mercury vapor lamp. The effects of the amount of TiO2 used, UV-light irradiation time, pH of the solution under treatment, initial concentration of the azo dye and addition of different concentrations of hydrogen peroxide were investigated. The effect of the simultaneous photodegradation of the two azo dyes was also investigated and we observed that the degradation rates achieved in mono and bi-component systems were identical. The repeatability of photocatalytic activity of the photocatalyst was also tested. After five cycles of TiO2 reuse the rate of colour lost was still 77% of the initial rate. The degradation was followed monitoring the change of azo dye concentration by UV-Vis spectroscopy. Results show that the use of an efficient photocatalyst and the adequate selection of optimal operational parameters may easily lead to a complete decolorization of the aqueous solutions of both azo dyes.

  15. The effect of NCS- on the radiation-induced decoloration of azo and anthraquinone dyes in N2O-saturated aqueous solutions

    International Nuclear Information System (INIS)

    Suzuki, Nobutake; Hotta, Hiroshi

    1977-01-01

    The radiation-induced decoloration of azo and anthraquinone dyes was studied in N 2 O-saturated aqueous solutions containing NCS - . In the N 2 O-saturated solutions, the decoloration yield, G(-Dye), increased markedly upon the addition of NCS - , which is an efficient scavenger of the OH radical-that is, from 1.46 up to 2.10 for Acid Red 265 and from 0.51 up to 1.51 for Acid Blue 40 upon the addition of 1 mM NCS - . In the nitrogen-saturated solutions, however, the G(-Dye) decreased upon the addition of NCS - . It is concluded that the increase in the G(-Dye) upon the addition of NCS - in the N 2 O-saturated solutions is mainly attributable to the attack of the radical anion (NCS) 2 - on the ring structure of the dyes. This radical anion is formed through the following path: NCS - +OH → NCS+OH - and NCS+NCS - reversible (NCS) 2 - . At low NCS - concentrations, the G(-Dye) decreased for Acid Red 265 and increased for Acid Blue 40. This may be attributable to the larger reactivity of (NCS) 2 - on Acid Blue 40 than on Acid Red 265. (auth.)

  16. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  17. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Teng, Jun-Yu

    2009-01-01

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  18. Treatment of dye house effluents

    International Nuclear Information System (INIS)

    Waheed, S.; Ashraf, C.M.

    1999-01-01

    Environmental considerations play an increasingly important role in processing of textiles. For textile, limits on particular substances have been and are being laid down either by law or as a result of the demands of clothing manufactures. One of the most complex areas in textile processing is textile printing and dyeing. Here, virtually all dye classes are used. In some printing processes such as reactive printing, many of products used end up in the wastewater. A study of the optimisation of wastewater treatment systems and the systematic management of water and the problems of dyeing are reviewed in this article. (author)

  19. Patch testing to a textile dye mix by the international contact dermatitis research group.

    Science.gov (United States)

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus E; Diepgen, Thomas; Goh, Chee-Leok; Goossens R, An; Jerajani, Hemangi; Maibach, Howard I; Sasseville, Denis; Bruze, Magnus

    2015-01-01

    Disperse dyes are well-known contact sensitizers not included in the majority of commercially available baseline series. To investigate the outcome of patch testing to a textile dye mix (TDM) consisting of 8 disperse dyes. Two thousand four hundred ninety-three consecutive dermatitis patients in 9 dermatology clinics were patch tested with a TDM 6.6%, consisting of Disperse (D) Blue 35, D Yellow 3, D Orange 1 and 3, D Red 1 and 17, all 1.0% each, and D Blue 106 and D Blue 124, each 0.3%. 90 reacted positively to the TDM. About 92.2% of the patients allergic to the TDM were also tested with the 8 separate dyes. Contact allergy to TDM was found in 3.6% (1.3-18.2) Simultaneous reactivity to p-phenylenediamine was found in 61.1% of the TDM-positive patients. Contact allergy to TDM and not to other p-amino-substituted sensitizers was diagnosed in 1.2%. The most frequent dye allergen in the TDM-positive patients was D Orange 3. Over 30% of the TDM allergic patients had been missed if only the international baseline series was tested. Contact allergy to TDM could explain or contribute to dermatitis in over 20% of the patients. Textile dye mix should be considered for inclusion into the international baseline series.

  20. Spectroscopic Evidence of the Improvement of Reactive Iron Mineral Content in Red Soil by Long-Term Application of Swine Manure.

    Directory of Open Access Journals (Sweden)

    Chichao Huang

    Full Text Available Mineral elements in soil solutions are thought to be the precursor of the formation of reactive minerals, which play an important role in global carbon (C cycling. However, information regarding the regulation of mineral elements release in soil is scarce. Here, we examined the long-term (i.e., 23 yrs effects of fertilisation practices on Fe minerals in a red soil in Southern China. The results from chemical analysis and Fourier-transform infrared spectroscopy showed that long-term swine manure (M treatment released greater amounts of minerals into soil solutions than chemical fertilisers (NPK treatment, and Fe played a dominant role in the preservation of dissolved organic C. Furthermore, Fe K-edge X-ray absorption near-edge fine structure spectroscopy demonstrated that reactive Fe minerals were mainly composed of less crystalline ferrihydrite in the M-treated soil and more crystalline goethite in the NPK-treated soil. In conclusion, this study reported spectroscopic evidence of the improvement of reactive Femineral content in the M-treated soil colloids when compared to NPK-treated soil colloids.

  1. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    Directory of Open Access Journals (Sweden)

    Kęstutis BELEŠKA

    2013-05-01

    Full Text Available The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on temperature. The diffusion coefficient of dye C.I. Acid Red 423 calculated according to Weisz model is higher when dyeing conventional leather. The change of deliming method has influence on chromed leather dyeing but this influence is not significant. The adsorption ability of control leather fibres at 30 ºC and 45 ºC is higher using both dyes as compared to the dyeing the experimental one. The increase of dyeing temperature increases the adsorption ability independently on the sort of leather fibres. Such dependence of the adsorption ability on the temperature shows that hydrophobic action and van der Waals forces prevail between dye and fibres during dyeing process. The Gibbs energy changes show that adsorption of both dyes by leather fibres independently on their sort is a spontaneous process. The affinity of both dyes to conventional leather fibres is higher comparing with experimental one. The change of enthalpy is positive in all cases, and it means that the driving force of the dyeing is the change of entropy.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4431

  2. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    Energy Technology Data Exchange (ETDEWEB)

    Vacchi, Francine Inforcato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil); Ormond, Alexandra B.; Freeman, Harold S. [Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Zocolo, Guilherme Juliao; Zanoni, Maria Valnice Boldrin [Departamento de Quimica Analitica, Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Quimica de Araraquara, Araraquara, SP 14801-970 (Brazil); Umbuzeiro, Gisela, E-mail: giselau@ft.unicamp.br [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil)

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: Black-Right-Pointing-Pointer Aqueous solutions of Disperse Red 1 were treated with chlorine. Black-Right-Pointing-Pointer The chlorination products of Disperse Red 1 were identified using LC-ESI-MS/MS. Black-Right-Pointing-Pointer Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. Black-Right-Pointing-Pointer The chlorinated dye was more mutagenic

  3. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    International Nuclear Information System (INIS)

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B.; Freeman, Harold S.; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC–ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: ► Aqueous solutions of Disperse Red 1 were treated with chlorine. ► The chlorination products of Disperse Red 1 were identified using LC–ESI-MS/MS. ► Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. ► The chlorinated dye was more mutagenic than the dye itself. ► Chlorination should be avoided in effluents containing azo-dyes.

  4. Exploring the critical dependence of adsorption of various dyes on the degradation rate using Ln3+-TiO2 surface under UV/solar light

    International Nuclear Information System (INIS)

    Devi, L. Gomathi; Kumar, S. Girish

    2012-01-01

    Graphical abstract: The surface reactive acidic sites enhances on doping with rare earth ions which facilitates efficient adsorption of the dye molecules on the catalyst surface. In addition, the nature of the dopant, its concentration and electronic configuration additionally contributes to the overall efficiency. Highlights: ► The degradation of structurally different anionic dyes under different pH conditions is reported. ► Pre adsorption of pollutant on catalyst surface is vital for efficient photocatalysis. ► Adsorption of dye on the catalyst surface depends on the substituent's attached to it. ► The dopant with half filled electronic configuration served as shallow traps for charge carriers. - Abstract: The degradation of structurally different anionic dyes like Alizarin Red S (ARS) Amaranth (AR), Brilliant Yellow (BY), Congo Red (CR), Fast Red (FR), Methyl Orange (MO), and Methyl Red (MR) were carried out using Ln 3+ (Ln 3+ = La 3+ , Ce 3+ and Gd 3+ ) doped TiO 2 at different pH conditions under UV/solar light. All the anionic dyes underwent rapid degradation at acidic pH, while resisted at alkaline conditions due to the adsorptive tendency of these dyes on the catalyst surface at different pH conditions. Gd 3+ (0.15 mol%)-TiO 2 exhibited better activity compared to other photocatalyst ascribed to half filled electronic configuration of Gd 3+ ions. It is proposed that Ln 3+ serves only as charge carrier traps under UV light, while it also act as visible light sensitizers under solar light. Irrespective of the catalyst and excitation source, the dye degradation followed the order: AR > FR > MO > MR > ARS > BY > CR. The results suggest that pre-adsorption of the pollutant is vital for efficient photocatalysis which is dependent on the nature of the substituent's group attached to the dye molecule.

  5. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16.

    Science.gov (United States)

    Vats, Arpita; Mishra, Saroj

    2017-04-01

    In this study, the white-rot fungus Cyathus bulleri was cultivated on low-cost agro-residues, namely wheat bran (WB), wheat straw (WS), and domestic waste orange peel (OP) for production of ligninolytic enzymes. Of the three substrates, WB and OP served as good materials for the production of laccase with no requirement of additional carbon or nitrogen source. Specific laccase activity of 94.4 U mg -1 extracellular protein and 21.01 U mg -1 protein was obtained on WB and OP, respectively. Maximum decolorization rate of 13.6 μmol h -1  U -1 laccase for reactive black 5 and 22.68 μmol h -1  U -1 laccase for reactive orange 16 (RO) was obtained with the WB culture filtrate, and 11.7 μmol h -1  U -1 laccase for reactive violet 5 was observed with OP culture filtrate. Importantly, Kiton blue A (KB), reported not to be amenable to enzymatic degradation, was degraded by culture filtrate borne activities. Products of degradation of KB and RO were identified by mass spectrometry, and a pathway of degradation proposed. WB-grown culture filtrate decolorized and detoxified real and simulated textile effluents by about 40%. The study highlights the use of inexpensive materials for the production of enzymes effective on dyes and effluents.

  6. [Effect of low-energy 633 nm red light stimulation on proliferation and reactive oxygen species level of human epidermal cell line HaCaT].

    Science.gov (United States)

    Chen, Z Y; Li, D L; Duan, X D; Peng, D Z

    2016-09-20

    To investigate the changes of proliferative activity and reactive oxygen species level of human epidermal cell line HaCaT after being irradiated with low-energy 633 nm red light. Irradiation distance was determined through preliminary experiment. HaCaT cells were conventionally sub-cultured with RPMI 1640 culture medium containing 10% fetal calf serum, 100 U/mL penicillin, and 100 μg/mL streptomycin. Cells of the third passage were used in the following experiments. (1) Cells were divided into blank control group and 0.082, 0.164, 0.245, 0.491, 1.472, 2.453, 4.910, and 9.810 J/cm(2) irradiation groups according to the random number table, with 3 wells in each group. Cells in blank control group were not irradiated, while cells in the latter 8 irradiation groups were irradiated with 633 nm red light for 10, 20, 30, 60, 180, 300, 600, and 1 200 s in turn. Cells were reirradiated once every 8 hours. After being irradiated for 48 hours (6 times) in irradiation groups, the proliferative activity of cells in 9 groups was determined with cell counting kit 8 and microplate reader (denoted as absorbance value). (2) Another batch of cells were grouped and irradiated as in experiment (1). After being irradiated for once in irradiation groups, cells in 9 groups were conventionally cultured for 60 min with detection reagent of reactive oxygen species. At post culture minute (PCM) 0 (immediately), 30, 60, and 120, reactive oxygen species level of cells was determined with microplate reader (denoted as absorbance value). (3) Another batch of cells were divided into blank control group, 0.082, 0.491, 2.453, and 9.810 J/cm(2) irradiation groups, and positive control group. Cells in blank control group and positive control group were not irradiated (positive control reagent of reactive oxygen species was added to cells in positive control group), and cells in irradiation groups were irradiated as in experiment (1) for once. The expression of reactive oxygen species in cells of each

  7. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Biotreatment of anthraquinone dye Drimarene Blue K 2 RL | Siddiqui ...

    African Journals Online (AJOL)

    Drimarene Blue (Db) K2RL is a reactive anthraquinone dye, used extensively in textile industry, due to poor adsorbability to textile fiber; it has a higher exhaustion rate in wastewater. The dye is toxic, carcinogenic, mutagenic and resistant to degradation. Decolorization of this dye was studied in two different systems.

  9. Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution.

    Science.gov (United States)

    Takam, Brice; Acayanka, Elie; Kamgang, Georges Y; Pedekwang, Merlin T; Laminsi, Samuel

    2017-07-01

    Removal of cationic dye, Azur II, and anionic dye, Reactive Red 2 (RR-2) from aqueous solutions, has been successfully achieved by using a modified agricultural biomaterial waste: cocoa shell husk (Theobroma cacao) treated by gliding arc plasma (CPHP). The biomass in its natural form CPHN and modified form CPHP was characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and point of zero charge (pH pzc ). Experimental variables such as initial pH, contact time, and temperature were optimized for adsorptive characteristics of CPHN and CPHP. The results show that the removal of the Azur II dye was favorable in the basic pH region (pH 10) while the Reactive Red 2 dye was favorable in the acidic pH region (pH 2). The minimum equilibrium time for Azur II and RR-2 dye was obtained after 40 and 240 min, respectively. The adsorption kinetics and isotherm data obtained were best described by a pseudo-second-order kinetic rate model and a combination of Langmuir-Freundlich isotherm models. This work indicates that the plasma-treated raw materials are good alternative multi-purpose sorbents for the removal of many coexisting pollutants from aqueous solutions.

  10. The destructive degradation of some organic textile dye compounds using gamma ray irradiation

    International Nuclear Information System (INIS)

    Abdel-Gawad Emara, A.S.; Abdel-Fattah, A.A.; Ebraheem, S.E.; Ali, Z.I.; Gad, H.

    2001-01-01

    The destructive degradation of 8 coloured reactive and direct dye compounds currently used in the textile industry has been investigated. These dyes are: Levafix Blue ERA (LB), Levafix Brilliant Red E4BA (LBR), Levafix Brilliant Yellow EGA (LBY), Drimarene Scarlet F3G (DS), Drimarene Brilliant Green X3G (DBG), Fast Yellow RL (FY), Fast Violet 2RL (FV) and Fast Orange 3R (FO). The process of degradation of the respective dye has been followed spectrophotometrically at the characteristic lmax. The variation of the colour intensity of aerated aqueous solution of the investigated dyes has been measured as a function of gamma irradiation dose. In all cases, the amplitude of the absorption bands of the dye compound was found to decrease with the increase of the gamma dose. Irradiation was carried out for actual waste and distilled water. By comparing the heights of the absorption maxima in both the visible and ultraviolet ranges, it was found that complete decolouration is attained at lower doses than that needed for the process of degradation of the dye. The kinetics of the degradation process has been traced and the kinetic constant, k 1 , was calculated and found to be concentration dependent indicating a first order reaction in all cases. The radiation-chemical yield (G-value) as a measure of the efficiency of gamma ray to degrade the respective dye was calculated for all dye compounds and it was found that the G-value in all cases increases exponentially for low radiation doses and changes linearly for high radiation doses. Also the K* value (the efficiency coefficient of dye radiolysis) was calculated and compared for the different dye compounds e.g. for FO, FY and FV dyes, the K* values were found to range from 5.5x10 9 to 1.92x10 -7 mol·L -1 '·cm -1 . In addition to the study of a single dye compound in solution, mixtures of different dyes (3 dyes) were also subjected to g-ray irradiation simulating more closely actual waste effluents. Also the effect of some

  11. Red blood cells augment transport of reactive metabolites of monocrotaline from liver to lung in isolated and tandem liver and lung preparations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, L.C.; Lame, M.W.; Morin, D.; Wilson, D.W.; Segall, H.J. (Department of Veterinary Pharmacology, University of California, Davis (United States))

    1991-09-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid that causes pulmonary hypertension in rats by mechanisms which remain largely unknown. MCT is thought to be activated in the liver to a reactive intermediate that is transported to the lung where it causes endothelial injury. The authors previous pharmacokinetic work demonstrated significant sequestration of radioactivity in red blood cells (RBCs) of rats treated with (14C)MCT. To determine whether this RBC sequestration might be important in the transport of reactive MCT metabolites, they compared the effect of inclusion of RBCs in the perfusion buffer on the extent of covalent binding of (14C)MCT to rat lungs in tandem liver-lung preparations. The potential effect of RBCs in stabilizing reactive intermediates was evaluated by preperfusion of isolated liver preparations with (14C)MCT with and without RBCs, separation and washing of the RBC fraction, and subsequent (90 min later) perfusion of washed RBCs or buffer alone in isolated perfused lungs. Covalent binding to lung tissues was determined by exhaustive methanol/chloroform extractions of unbound label from homogenized lung tissue followed by scintillation counting of residual 14C. Covalent binding was expressed as picomole MCT molecular weight equivalents/mg protein. Comparison of the relative capability of these isolated organ preparations for conversion of MCT to polar metabolites was done by extraction and HPLC analysis of perfusate at the end of the experiment. Isolated livers converted 65-85% of MCT to polar metabolites compared with less than 5% conversion in the isolated lungs. Inclusion of RBCs in the buffer of tandem lung liver preparations perfused with 400 microM (14C)MCT increased the covalent binding to the lung from 97 {plus minus} 25 (buffer alone) to 182 {plus minus} 36 (buffer + RBC) pmol/mg protein.

  12. Red blood cells augment transport of reactive metabolites of monocrotaline from liver to lung in isolated and tandem liver and lung preparations

    International Nuclear Information System (INIS)

    Pan, L.C.; Lame, M.W.; Morin, D.; Wilson, D.W.; Segall, H.J.

    1991-01-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid that causes pulmonary hypertension in rats by mechanisms which remain largely unknown. MCT is thought to be activated in the liver to a reactive intermediate that is transported to the lung where it causes endothelial injury. The authors previous pharmacokinetic work demonstrated significant sequestration of radioactivity in red blood cells (RBCs) of rats treated with [14C]MCT. To determine whether this RBC sequestration might be important in the transport of reactive MCT metabolites, they compared the effect of inclusion of RBCs in the perfusion buffer on the extent of covalent binding of [14C]MCT to rat lungs in tandem liver-lung preparations. The potential effect of RBCs in stabilizing reactive intermediates was evaluated by preperfusion of isolated liver preparations with [14C]MCT with and without RBCs, separation and washing of the RBC fraction, and subsequent (90 min later) perfusion of washed RBCs or buffer alone in isolated perfused lungs. Covalent binding to lung tissues was determined by exhaustive methanol/chloroform extractions of unbound label from homogenized lung tissue followed by scintillation counting of residual 14C. Covalent binding was expressed as picomole MCT molecular weight equivalents/mg protein. Comparison of the relative capability of these isolated organ preparations for conversion of MCT to polar metabolites was done by extraction and HPLC analysis of perfusate at the end of the experiment. Isolated livers converted 65-85% of MCT to polar metabolites compared with less than 5% conversion in the isolated lungs. Inclusion of RBCs in the buffer of tandem lung liver preparations perfused with 400 microM [14C]MCT increased the covalent binding to the lung from 97 ± 25 (buffer alone) to 182 ± 36 (buffer + RBC) pmol/mg protein

  13. Radiation Degradation of some Commercial Dyes in Wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.

    1999-01-01

    The degradation Kinetic due to irradiation of aqueous solutions of some commercial dyes, (Reactive Blue Brilliant, Reactive Yellow and Basic Blue 9 Dye (Methylene Blue 2 B), was studied. Factors affecting radiolysis of the dye such as dye concentration, irradiation dose, dose rate and ph of the solutions were studied. The effects of different additives such as nitrogen oxygen, hydrogen peroxide and sodium hypochlorite on the degradation process were investigated. The effect of irradiation dose on the different dye solutions at various concentrations, showed that the Reactive Yellow G. was very sensitive to gamma radiation. The effect of the ph of the dye solutions proved to very according type of the dye. Synergistic treatment of the dye solutions by irradiation and conventional method showed that saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of oxygen resulted in a remarkable enhancement of the degradation of the dyes. Also, the addition of sodium hypochlorite (5%) and the oxidation by hydrogen peroxide resulted in more radiation degradation, Also, adsorption of the dyes onto Ga and some ion exchangers showed that Ga has the highest adsorption capacity. Radiation degradation of the toxic dye pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (Mpc) according to international standards, proved to be better than conventional methods of purification alone

  14. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  15. Deciphering effects of functional groups and electron density on azo dyes degradation by graphene loaded TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemical Engineering, HuaQiao University, Xiamen 361021 (China); Liang, Xiao [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Bor-Yann [Department of Chemical and Materials Engineering, National I-Lan University, 26047, Taiwan (China); Chang, Chang-Tang, E-mail: ctchang@niu.edu.tw [Department of Environmental Engineering, National I-Lan University, 26047, Taiwan (China)

    2015-12-01

    Highlights: • The degradation pathways of RB5, RB171 and RR198 have been identified. • The favorable bond to be broken under photo degradation was deciphered in this research. • The breakages of the bonds were due to the electron density changes around the bonds. • The hydroxyl radicals as the main oxidized species were confirmed by positive hole trapper and ESR. - Abstract: This study tended to decipher the mechanism of photo degradation of azo dyes, which bond was favorable to be broken for application of wastewater decolorization. That is, from chemical structure perspective, the critical substituents to affect electron donor/acceptor for dye degradation would be identified in this research. The model reactive blacks (RB5), reactive blue 171 (RB171) and reactive red 198 (RR198) were degraded by graphene loaded TiO{sub 2}, indicating how the electron withdrawing and releasing groups affect azo dye degradability. The byproducts and intermediate products were analyzed by ultraviolet–visible spectroscopy (UV–vis), gas chromatography–mass spectrometry (GC–MS) and ion chromatography (IC). Furthermore, the radicals involved in the reaction were found by electron paramagnetic resonance (ESR) to confirm the main oxidized species of hydroxyl radicals rather than the light generated positive holes. The finding revealed that the breakages of the bonds were due to the electron density changes around the bonds. This principle can be applicable not only for RB5 degradation, but also for reactive blue 171 (RB171), reactive red 198 (RR198) and some other textile dyes.

  16. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    International Nuclear Information System (INIS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-01-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO 2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO 2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO 2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively. (paper)

  17. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon

    International Nuclear Information System (INIS)

    Namasivayam, C.; Sangeetha, D.

    2006-01-01

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl 2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl 2 activated coir pith carbon is effective for the removal of toxic pollutants from water

  18. Synthesis, characterization and dyeing behavior of heterocyclic acid dyes and mordent acid dyes on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    Patel Hitendra M.

    2012-01-01

    Full Text Available Novel heterocyclic acid and mordent acid dyes were synthesized by the coupling of diazonium salt solution of different aromatic amines with 2- butyl-3-(4-hydroxybenzoylbenzofuran. The resulting heterocyclic acid dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1HNMR, 13C-NMR spectral studies and UV- visible spectroscopy. The dyeing performance of all the heterocyclic acid dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness.

  19. Adsorptive removal of an anionic dye Congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres

    Science.gov (United States)

    Xu, Jing; Xu, Difa; Zhu, Bicheng; Cheng, Bei; Jiang, Chuanjia

    2018-03-01

    Flower-like magnesium oxide (MgO) microspheres and MgO-graphene oxide (GO) composites with an average diameter of 500 nm and hierarchical structure were synthesized through an ethylene glycol-mediated self-assembly process. The adsorption of Congo red (CR) by the prepared samples was evaluated in water under ambient conditions. The equilibrium adsorption isotherms of CR on the as-prepared samples could be described by the Langmuir model. The MgO-GO microspheres prepared with 0.5 wt% GO showed higher adsorption capacity (237.0 mg/g) than the MgO microspheres (227.7 mg/g). Adsorption kinetics results of CR indicated that pseudo-second-order kinetic equation could well explain the adsorption kinetics behaviors of CR. These findings indicate that the MgO-GO composite microspheres are potential adsorbents for effective removal of Congo red from wastewater.

  20. Theoretical study of indoline dyes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Kim, Young Sik

    2010-01-01

    Indoline dye sensitizers were designed and studied theoretically to increase molar extinction coefficients in the visible to near infrared region for solar-cell devices. To gain insight into dye sensitizers' structural, electronic, and optical properties, DFT/TDDFT calculations were performed on a series of dye sensitizers derived from the D149. The good agreement between the experimental and TDDFT calculated absorption spectra of the D149 sensitizer allowed us to provide a detailed assessment of the main spectral features of a series of dye sensitizers. Increase in the conjugation length resulted in a more red-shifted spectral response and less positive oxidation potential than that of the D149. The dye with the dimethylfluorene group showed stronger absorption bands due to a large dipole moment. The calculated dipoles for the dye series correlate well with the observed strong absorption bands of the electronic spectra. These results provided useful clues for the molecular engineering of efficient organic dye sensitizers.

  1. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  2. Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton's reaction chemistry. Relationship between decolorization, mineralization and products

    International Nuclear Information System (INIS)

    Florenza, Xavier; Solano, Aline Maria Sales; Centellas, Francesc; Martínez-Huitle, Carlos Alberto

    2014-01-01

    Highlights: • Degradation of Acid Red 1 by anodic oxidation, electro-Fenton and photoelectro-Fenton • Quicker and similar decolorization by electro-Fenton and photoelectro-Fenton due to oxidation with ● OH in the bulk • Almost total mineralization by photoelectro-Fenton with Pt or BDD due to fast photolysis of products by UVA light • Detection of 11 aromatic products, 15 hydroxylated compounds, 13 desulfonated derivatives and 7 carboxylic acids • Release of NH 4 + , NO 3 − and SO 4 2− ions, and generation of persistent N-products of low molecular mass - Abstract: Solutions of 236 mg dm −3 Acid Red 1 (AR1), an azo dye widely used in textile dying industries, at pH 3.0 have been comparatively treated by anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF) at constant current density (j). Assays were performed with a stirred tank reactor equipped with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H 2 O 2 generation from O 2 reduction. The main oxidizing agents were hydroxyl radicals produced at the anode from water oxidation in all methods and in the bulk from Fenton's reaction between generated H 2 O 2 and 0.5 mmol dm −3 Fe 2+ in EF and PEF. For each anode, higher oxidation power was found in the sequence AO-H 2 O 2 < EF < PEF. The oxidation ability of the BDD anode was always superior to that of Pt. Faster and similar decolorization efficiency was achieved in EF and PEF owing to the quicker destruction of aromatics with hydroxyl radicals produced in the bulk. The PEF process with BDD was the most potent method yielding almost total mineralization due to the additional rapid photolysis of recalcitrant intermediates like Fe(III)-carboxylate complexes under UVA irradiation. The increase in j always enhanced the decolorization and mineralization processes because of the greater production of hydroxyl radicals, but decreases the mineralization current efficiency

  3. Biodecolorization of Reactive Black 5 by laccasemediator system ...

    African Journals Online (AJOL)

    Reactive azo dyes are widely used as textile colorants, typically for cotton dyeing, due to their variety of color shades, and minimal energy consumption. In the present study, commercial laccase from Trametes versicolor was used for the biodecolorization of Reactive Black 5 (RB-5) dye using different redox mediators viz, ...

  4. Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite.

    Directory of Open Access Journals (Sweden)

    Xinying Zhang

    Full Text Available Azo dyes are very resistant to light-induced fading and biodegradation. Existing advanced oxidative pre-treatment methods based on the generation of non-selective radicals cannot efficiently remove these dyes from wastewater streams, and post-treatment oxidative dye removal is problematic because it may leave many byproducts with unknown toxicity profiles in the outgoing water, or cause expensive complete mineralization. These problems could potentially be overcome by combining photocatalysis and biodegradation. A novel visible-light-responsive hybrid dye removal agent featuring both photocatalysts (g-C3N4-P25 and photosynthetic bacteria encapsulated in calcium alginate beads was prepared by self-assembly. This system achieved a removal efficiency of 94% for the dye reactive brilliant red X-3b and also reduced the COD of synthetic wastewater samples by 84.7%, successfully decolorized synthetic dye-contaminated wastewater and reduced its COD, demonstrating the advantages of combining photocatalysis and biocatalysis for wastewater purification. The composite apparently degrades X-3b by initially converting the dye into aniline and phenol derivatives whose aryl moieties are then attacked by free radicals to form alkyl derivatives, preventing the accumulation of aromatic hydrocarbons that might suppress microbial activity. These alkyl intermediates are finally degraded by the photosynthetic bacteria.

  5. Egg white hybrid nanoflower (EW-hNF) with biomimetic polyphenol oxidase reactivity: Synthesis, characterization and potential use in decolorization of synthetic dyes.

    Science.gov (United States)

    Altinkaynak, Cevahir; Kocazorbaz, Ebru; Özdemir, Nalan; Zihnioglu, Figen

    2018-04-01

    In this study, for the first time, we described organic-inorganic hybrid nanoflowers using crude egg white as the organic component and copper (II) ions as the inorganic component under the mild conditions. The synthesized egg white-inorganic hybrid nanoflowers (EW-hNFs) were characterized using SEM, EDX, XRD and FTIR analysis. The biomimetic Polyphenol/Peroxidase like activities of synthesized egg white-inorganic hybrid nanoflowers (EW-hNFs) were determined by using various phenolics with or without H 2 O 2 . Optimum pH and temperature, kinetic parameters, reusability, pH and thermal stability of EW-hNFs were also studied. The most noteworthy aspect of our study is that synthesized EW-hNFs which consist of only egg white proteins, showed polyphenol oxidase activity. Furthermore, potential use of the EW-hNFs in the discoloration of the some synthetic dyes was also evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Equilibrium studies on sorption of an anionic dye onto acid activated ...

    African Journals Online (AJOL)

    ISHIOMA

    Batch studies were conducted to evaluate the adsorption capacity of the dye, Congo red on the sorbent with respect to the ... pollution, but dyes are visible even in small quantities due .... in plastic bags, and stored in desiccators for use.

  7. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S. Assiyeh Alizadeh; Leiknes, TorOve

    2016-01-01

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY

  8. Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid.

    Science.gov (United States)

    Deng, Hui; Wei, Zhilai; Wang, XiaoNing

    2017-02-10

    A Ti(IV) functionalized chitosan molecularly imprinted polymer (Ti-CSMIP) was successfully prepared. Ti 4+ as Lewis acidic was used to modify chitosan MIP by producing metal hydroxyl group and protonated surface of adsorbent in aqueous solution to recognize X-3B molecule as a Lewis base. The adsorbent was characterized by FTIR, SEM, XRD, BET, elemental and zeta potential analysis. XRD illustrated Ti-CSMIP exhibited a weak anatase phase when Ti 4+ cross-linked with chitosan. Batch adsorption experiments were performed to evaluate adsorption condition, including sorption isotherm, kinetics and reusability. The maximum adsorption capacity of Ti-CSMIP for X-3B was 161.1mg/g at 293K when solution pH was in the range of 6.0-7.0. Equilibrium data was well analyzed by three-parameter isotherm model, and the kinetics of adsorption followed the pseudo-second kinetics equation. Regeneration experiments indicated a possible application as an effective sorbent for the selective removal of azo anionic dye in aqueous solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comparison of the electroluminescence of a red fluorescent dye doped into the Alq{sub 3} and Alq{sub 3}:rubrene mixed host

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee-Young; Kang, Gi-Wook; Park, Kyung-Min; Yoo, In-Sun; Lee, Changhee

    2004-01-05

    We studied the effect of a mixed host of Alq{sub 3} and rubrene on the energy transfer and charge trapping processes in organic light-emitting devices with a red fluorescent dopant of 4-(dicyanomethylene)-2-tert-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB). The temperature dependence of electroluminescence (EL) properties is compared for the device with DCJTB doped into the Alq{sub 3} only host and that with the Alq{sub 3}:rubrene mixed host. The device with the Alq{sub 3}:rubrene mixed host shows an efficient red emission from DCJTB, negligible EL emission from Alq{sub 3}, and a lower EL drive voltage compared to the device with the Alq{sub 3} only host. Upon cooling the device temperature, the EL emission from rubrene increases but the emission from Alq{sub 3} is still weak, and the quantum efficiency (QE) is almost temperature-independent for the device with the Alq{sub 3}:rubrene mixed host. On the contrary, the EL emission from Alq{sub 3} increases and the QE decreases for devices with the Alq{sub 3} only host at low temperature. The results indicate that recombination of injected electrons and holes occurs on rubrene and subsequent energy transfer to DCJTB dominates in the device with the Alq{sub 3}:rubrene mixed host.

  10. Reatividade de uma escória de siderurgia em um latossolo vermelho distrófico Reactivity of a slag in a distrofic red latosol

    Directory of Open Access Journals (Sweden)

    R. M. Prado

    2004-02-01

    Full Text Available O presente trabalho objetivou estudar a reatividade de uma escória de siderurgia de aciaria, em diferentes frações granulométricas, aplicada em uma amostra de um Latossolo Vermelho distrófico, ácido, em condições de laboratório. Utilizou-se um fatorial 4 x 3 + 2 com quatro repetições, sendo quatro granulometrias (material retido entre as peneiras ABNT 5-10; 10-20; 20-50 e The present study investigated the reactivity of a slag from steelworks in different particle size fractions, applied on an acid dystrophic Red Latosol, under laboratory conditions, in a 4 x 3 + 2 factorial scheme in four replications. Four particle sizes (material retained in the ABNT 5-10; 10-20; 20-50, and < 50 sieves, three doses of slag (0.00, 5.04, and 10.08 t ha-1, corresponding to 0.00, 1.01, and 2.02 g in 0.40 dm³ of soil per cup and two control treatments (slag and dolomitic limestone in the corresponding dose to base saturation (V = 70 %, or either, 1.01 and 0.61 g per cup, respectively. The base saturation method was used for the definition of the doses, considering the CaCO3 equivalent value of slag and limestone, for the corresponding particle size fractions. The soil humidity was maintained at field capacity and incubated for three, six, and nine months. Grain size fractions of the slag affected differently the acidity of the soil. The fraction retained between the ABNT 5-10 sieves proved to be inefficient, while the fraction that passed through ABNT < 50 was the one with the greatest effect on acidity neutralization. The reactivity of retained slag particles in the intermediate sieves (ABNT 10-20 and 20-50 sieves was proportional to the effective values of the Brazilian legislation for lime. Therefore, the reactivity rate obtained for steelwork slag was: ABNT nº 5-10 = 0 %; 10-20 = 22 %; 20-50 = 58 % e < 50= 100 %.

  11. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    Science.gov (United States)

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite.

    Science.gov (United States)

    Fu, Jie; Xu, Zhen; Li, Qing-Shan; Chen, Song; An, Shu-Qing; Zeng, Qing-Fu; Zhu, Hai-Liang

    2010-01-01

    A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaClO) and the combination of ZVI/AC-MDEL/NaClO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaClO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaClO, we found that in the ZVI/AC-MEDL/NaClO process, ZVI/AC could break the azo bond firstly and then MEDL/NaClO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.

  13. Identification, expression, and immuno-reactivity of Sol i 2 & Sol i 4 venom proteins of queen red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae).

    Science.gov (United States)

    Lockwood, Stephanie A; Haghipour-Peasley, Jilla; Hoffman, Donald R; Deslippe, Richard J

    2012-10-01

    We report on two low-molecular weight proteins that are stored in the venom of queen red imported fire ants (Solenopsis invicta). Translated amino acid sequences identified one protein to have 74.8% identity with the Sol i 2w worker allergen, and the other protein was found to have 96/97% identity with Sol i 4.01w/4.02w worker allergens. Both Sol i 2 and Sol i 4 queen and worker proteins were expressed using pEXP1-DEST vector in SHuffle™ T7 Express lysY Escherichia coli. Proteins were expressed at significant concentrations, as opposed to the μg/ml amounts by our previous expression methods, enabling further study of these proteins. Sol i 2q protein bound weakly to human IgE, sera pooled from allergic patients, whereas Sol i 2w, Sol i 4.01w, and Sol i 4q proteins bound strongly. Despite Sol i 2w and Sol i 2q proteins having 74.8% identity, the queen protein is less immuno-reactive than the worker allergen. This finding is consistent with allergic individuals being less sensitive to queen than worker venom. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Adsorption of Reactive Brilliant Red X-3B in Aqueous Solutions on Clay–Biochar Composites from Bagasse and Natural Attapulgite

    Directory of Open Access Journals (Sweden)

    Si Chen

    2018-05-01

    Full Text Available The study aims to determine the adsorption mechanism of reactive brilliant red X-3B (RBR on a novel low-cost clay–biochar composite with different proportions of bagasse and natural attapulgite (ATP. Pure bagasse, pure ATP, and two mixtures with weight ratios of 1:5 and 1:3 were pyrolyzed at 700 °C for 4 h in a muffle furnace. Biochar samples were characterized with an element analyzer and by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller method, and zeta potential measurement. Results of the batch and leaching experiments showed that the adsorption capacities followed the order of 1:3 clay–biochar > 1:5 clay–biochar > bagasse biochar > pure ATP. Furthermore, ATP and bagasse exerted a synergistic effect on the adsorption of RBR. The adsorption data showed good correlation with the Langmuir isotherm, and the kinetic data were fitted to the pseudo-second-order model. The adsorption of RBR on clay-biochar involved electrostatic interaction, hydrogen bond, π–π interactions, and surface participation. The modification of biochar by ATP improved the adsorption capacity by increasing functional groups and creating adsorption sites. Therefore, ATP-modified clay–biochar composites could be effective adsorbents for the removal of RBR from wastewater.

  15. Treatment of diazo dye C.I. Reactive Black 5 in aqueous solution by combined process of interior microelectrolysis and ozonation.

    Science.gov (United States)

    Guo, Xiaoyan; Cai, Yaping; Wei, Zhongbo; Hou, Haifeng; Yang, Xi; Wang, Zunyao

    2013-01-01

    Interior microelectrolysis (IM) as a pretreatment process was effective to treat Reactive Black 5 (RB5) in this study. The removal rates of chemical oxygen demand (COD), total organic carbon (TOC) and color were 46.05, 39.99 and 98.77%, respectively, when this process was conducted under the following optimal conditions: the volumetric ratio between iron scraps and active carbon (AC) (V(Fe)/V(C)) 1.0, pH 2.0, aeration dosage 0.6 L/min, and reaction time 100 min. Contaminants could be further removed by ozonation. After subsequent ozonation for 200 min, the solution could be completely decolorized, and the COD and TOC removal rates were up to 77.78 and 66.51%, respectively. In addition, acute toxicity tests with Daphnia magna showed that pretreatment by IM generated effluents that were more toxic when compared with the initial wastewater, and the toxicity was reduced after subsequent ozonation.

  16. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    Science.gov (United States)

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    Science.gov (United States)

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  18. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    Science.gov (United States)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  19. Sorption isotherms, kinetic and optimization process of amino acid proline based polymer nanocomposite for the removal of selected textile dyes from industrial wastewater.

    Science.gov (United States)

    Raghunath, Sharista; Anand, K; Gengan, R M; Nayunigari, Mithil Kumar; Maity, Arjun

    2016-12-01

    In this article, adsorption and kinetic studies were carried out on three textile dyes, namely Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145). The dyes studied in a mixture were adsorbed under various conditions onto PRO-BEN, a bentonite modified with a new cationic proline polymer (l-proline-epichlorohydrin polymer). The proline polymer was characterized by 1 H NMR, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and TEM. The PRO-BEN composite was characterized by FT-IR, dynamic light scattering (DLS) (zeta potential), TEM imaging, SEM/EDX and X-ray photoelectron spectroscopy (characterize the binding energy). During adsorption studies, factors involving pH, temperature, the initial concentrations of the dyes and the quantity of PRO-BEN used during adsorption were established. The results revealed that the adsorption mechanism was categorized by the Langmuir type 1 isotherm. The adsorption data followed the pseudo-second order kinetic model. The intraparticle diffusion model indicated that adsorption did not only depend on the intraparticle diffusion of the dyes. The thermodynamic parameters verified that the adsorption process was spontaneous and exothermic. The Gibbs free energy values indicated that physisorption had occurred. Successful adsorption of dyes from an industrial effluent was achieved. Desorption studies concluded that PRO-BEN desorbed the dyes better than alumina. This can thereby be viewed as a recyclable remediation material. The PRO-BEN composite could be a cost efficient alternative towards the removal of organic dyes in wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    Science.gov (United States)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  1. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.

    Directory of Open Access Journals (Sweden)

    Yoko Hayashi-Takanaka

    Full Text Available To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph and acetylated H3K9 (H3K9ac. These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green, Cy3 (red, and Cy5 or CF640 (far-red.

  2. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  3. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  4. Near-infrared dyes and upconverting phosphors as biomolecule labels and probes

    Science.gov (United States)

    Patonay, Gabor; Strekowski, Lucjan; Nguyen, Diem-Ngoc; Seok, Kim Jun

    2007-02-01

    Near-Infrared (NIR) absorbing chromophores have been used in analytical and bioanalytical chemistry extensively, including for determination of properties of biomolecules, DNA sequencing, immunoassays, capillary electrophoresis (CE) separations, etc. The major analytical advantages of these dyes are low background interference and high molar absorptivities. NIR dyes have additional advantages due to their sensitivity to microenvironmental changes. Spectral changes induced by the microenvironment are not desirable if the labels are used as a simple reporting group, e.g., during a biorecognition reaction. For these applications upconverting phosphors seem to be a better choice. There are several difficulties in utilizing upconverting phosphors as reporting labels. These are: large physical size, no reactive groups and insolubility in aqueous systems. This presentation will discuss how these difficulties can be overcome for bioanalytical and forensic applications. During these studies we also have investigated how to reduce physical size of the phosphor by simple grinding without losing activity and how to attach reactive moiety to the phosphor to covalently bind to the biomolecule of interest. It has to be emphasized that the described approach is not suitable for medical applications and the results of this research are not applicable in medical applications. For bioanalytical and forensic applications upconverting phosphors used as reporting labels have several advantages. They are excited with lasers that are red shifted respective to phosphorescence, resulting in no light scatter issues during detection. Also some phosphors are excited using eye safe lasers. In addition energy transfer to NIR dyes is possible, allowing detection schemes using donor-acceptor pairs. Data is presented to illustrate the feasibility of this phenomenon. If microenvironmental sensitivity is required, then specially designed NIR dyes can be used as acceptor labels. Several novel dyes

  5. Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2-hydroxy-4-methoxybenzophenone on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    DHIRUBHAI J. DESAI

    2010-05-01

    Full Text Available Novel acid mono azo and mordent acid mono azo dyes were synthesised by the coupling of diazonium salt solution of different aromatic amines with 2-hydroxy-4-methoxybenzophenone. The resulting dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1H-NMR and UV–visible spectroscopy. The dyeing performance of all the dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre-treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness. The results of antibacterial studies of chrome pre-treated fabrics revealed that the toxicity of mordented dyes against Escherichia coli, Staphylococcus aureus, Salmonella typhi, Bacillus subtilis bacteria was fairly good.

  6. Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond.

    Science.gov (United States)

    Mona, Sharma; Kaushik, Anubha; Kaushik, C P

    2011-02-01

    Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Directory of Open Access Journals (Sweden)

    Iuliana Gabriela Breaban

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC. In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2, initial pH of aqueous dye solution (3 or 9, electrocoagulation time (20 or 180 min, GAC dose (0.1 or 0.5 g/L, support electrolyte (2 or 50 mM, initial dye concentration (0.05 or 0.25 g/L and current type (Direct Current—DC or Alternative Pulsed Current—APC. GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  8. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions.

    Science.gov (United States)

    Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela

    2013-07-10

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design ( FFD ) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current- DC or Alternative Pulsed Current- APC ). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  9. A Note on the Dyeing of Wool Fabrics Using Natural Dyes Extracted from Rotten Wood-Inhabiting Fungi

    Directory of Open Access Journals (Sweden)

    Vicente A. Hernández

    2018-02-01

    Full Text Available Fungal isolates obtained from rotten wood samples were identified and selected by their ability to produce fungal dyes in liquid media. Fungal isolates produced natural extracellular dyes with colors ranging from red to orange, yellow and purple. Dyes from two of these fungi, Talaromyces australis (red and Penicillium murcianum (yellow, were extracted and used to dye wool samples in a Data Color Ahiba IR Pro-Trade (model Top Speed II machine. The protein nature of wool interacted well with the fungal dyes producing colors suitable for textile applications when used to a concentration of 0.1 g·L−1. Results on color fastness when washing confirmed the affinity of the dyes with wool as the dyed samples kept their color in acceptable ranges after washing, without the implementation of mordanting pretreatments or the use of fixing agents.

  10. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  11. In-situ Decolorization of Residual Dye Effluent in Textile Jet Dyeing Machine by Ozone

    Directory of Open Access Journals (Sweden)

    Irfan Ahmed Shaikh

    2014-12-01

    Full Text Available In this study, a new idea of decolourization was investigated in which residual dyeing effluent from textile dyeing process was treated using O3 in the same machine where it was generated. The novelty comes from the idea of doing dyeing and treatment simultaneously. At the completion of dyeing process, O3 gas was injected directly into the machine to remove colour and COD from the wastewater. To evaluate the effectiveness of new method, pilot-scale studies were performed, and decolourization of residual dyeing effluents containing C.I. Reactive Orange 7, C.I. Reactive Blue 19, and C.I. Reactive Black 5 was carried out in specially built textile jet dyeing machine. The results showed that almost 100% colour removal and 90% COD reduction were achieved when process conditions such as pH, dye concentration (mg/L, ozone production rate (g/hr, and temperature were optimized. The study concludes that new method has a great potential to eliminate the need of a separate end-of-the-pipe wastewater treatment system, thus offering an on-site and cost-effective solution.

  12. Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity

    International Nuclear Information System (INIS)

    Janus, M.; Choina, J.; Morawski, A.W.

    2009-01-01

    New vis active photocatalyst was obtained by the modification of commercial anatase TiO 2 (Police, Poland) in pressure reactor in an ammonia water atmosphere at 100 o C for 4 h. The photocatalytic activity of new material was tested during three azo dyes decomposition: monoazo (Reactive Read), diazo (Reactive Black) and poliazodye (Direct Green). Obtained photocatalyst had new bands at 1430-1440 cm -1 attributed to the bending vibrations of NH 4 + and at 1535 cm -1 associated with NH 2 groups or NO 2 and NO. UV-vis/DR spectra of photocatalyst had also insignificant decrease in visible region. Fluorescence technique was used for studying the amount of hydroxyl radicals produced on TiO 2 surface during visible light irradiation. The hydroxyl radicals produced react with coumarin present in the solution to form 7-hydroxycoumarin which has fluorescent capacity. Photocatalytic activity of modified TiO 2 was compared with commercial titanium dioxide P25 (Degussa, Germany). The photocatalytic activity of TiO 2 /N was higher than that of unmodified material and P25 under visible light irradiation. The ability for dye adsorption (Reactive Red) on photocatalyst surface was also tested. Unmodified TiO 2 and P25 has isotherm of adsorption by Freundlich model, and nitrogen-modified TiO 2 by Langmuir model. The presence of nitrogen at the surface of TiO 2 significantly increased adsorption capacity of TiO 2 as well as OH· radicals formation under visible radiation.

  13. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  14. Polymerization of novel methacrylated anthraquinone dyes

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-02-01

    Full Text Available A new series of polymerizable methacrylated anthraquinone dyes has been synthesized by nucleophilic aromatic substitution reactions and subsequent methacrylation. Thereby, green 5,8-bis(4-(2-methacryloxyethylphenylamino-1,4-dihydroxyanthraquinone (2, blue 1,4-bis(4-((2-methacryloxyethyloxyphenylaminoanthraquinone (6 and red 1-((2-methacryloxy-1,1-dimethylethylaminoanthraquinone (12, as well as 1-((1,3-dimethacryloxy-2-methylpropan-2-ylaminoanthraquinone (15 were obtained. By mixing of these brilliant dyes in different ratios and concentrations, a broad color spectrum can be generated. After methacrylation, the monomeric dyes can be covalently emplaced into several copolymers. Due to two polymerizable functionalities, they can act as cross-linking agents. Thus, diffusion out of the polymer can be avoided, which increases the physiological compatibility and makes the dyes promising compounds for medical applications, such as iris implants.

  15. Contact dermatitis in tie and dye industry workers

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, N K; Mathur, A; Banerjee, K

    1985-01-01

    A survey of the Tie and Dye industry of Jodhpur City in India was made to investigate occupational dermatoses. 49 (16.6%) of 250 workers had incapacitating dermatitis. Skin lesions were seen mostly over the dorsa of the hands and fingers. 26 patients were patch tested with various dyes and chemicals; 14 were positive. Fast Red RC salt was the most potent sensitizer. Other dyes showing positive reactions were Orange GC salt, Bordeaux GP salt, Blue B salt, Red B base and naphthol.

  16. Descoloração redutiva de corantes azo e o efeito de mediadores redox na presença do aceptor de elétrons sulfato Reductive decolourisation of azo dyes and the effect of redox mediators in the presence of the electron acceptor sulfate

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2010-01-01

    Full Text Available We investigated the impact of sulphate and the redox mediator Anthraquinone-2,6-disulfonate (AQDS on the decolorization of the azo dyes Congo Red (CR and Reactive Black 5 (RB5. In anaerobic reactors free of extra sulphate dosage, the color removal efficiency decreased drastically when the external electron donor ethanol was removed. In presence of an extra dosage of sulphate, CR decolourisations were 47.8% (free of AQDS and 96.5% (supplemented with AQDS. The decolourisations achieved in both reactors with RB5 were lower than the ones found with CR. Finally, the biogenic sulphide contribution on azo dye reduction was negligiable.

  17. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    OpenAIRE

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protei...

  19. Reichardt's dye and its reactions with the alkylating agents 4-chloro-1-butanol, ethyl methanesulfonate, 1-bromobutane and Fast Red B - a potentially useful reagent for the detection of genotoxic impurities in pharmaceuticals.

    Science.gov (United States)

    Corrigan, Damion K; Whitcombe, Michael J; McCrossen, Sean; Piletsky, Sergey

    2009-04-01

    Alkylating agents are potentially genotoxic impurities that may be present in drug products. These impurities occur in pharmaceuticals as by-products from the synthetic steps involved in drug production, as impurities in starting materials or from in-situ reactions that take place in the final drug product. Currently, analysis for genotoxic impurities is typically carried out using either HPLC/MS or GC/MS. These techniques require specialist expertise, have long analysis times and often use sample clean-up procedures. Reichardt's dye is well known for its solvatochromic properties. In this paper the dye's ability to undergo alkylation is reported. The reaction between Reichardt's dye and alkylating agents such as 4-chloro-1-butanol and ethyl methanesulfonate was monitored spectrophotometrically at 618 nm in acetonitrile and 624 nm in N,N-dimethylformamide. Changes in absorption were observed using low levels of alkylating agent (5-10 parts per million). Alkylation of the dye with 4-chloro-1-butanol and ethyl methanesulfonate was confirmed. Reichardt's dye, and its changing UV absorption, was examined in the presence of paracetamol (10 and 100 mg/ml). Whilst the alkylation-induced changes in UV absorption were not as pronounced as with standard solutions, detection of alkylation was still possible. Using standard solutions and in the presence of a drug matrix, Reichardt's dye shows promise as a reagent for detection of low levels of industrially important alkylating agents.

  20. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2018-03-01

    Dye-sensitized solar cell (DSSC) is one of the alternative energy that can convert light energy into electrical energy. The component of DSSC consists of FTO substrates, TiO2, electrolyte, dye sensitizer, and counter electrode. This study aim was to determine the effect of optical properties of anthocyanin dyes on efficiency of DSSC. The dye sensitizer used can be extracted from anthocyanin pigments such as dragon fruit, black rice, and red cabbage. The red cabbage sensitizer shows lower absorbance value in the visible range (450-580 nm), than dragon fruit and black rice. The chemical structure of each dye molecules has an R group (carbonyl and hydroxyl) that forms a bond with the oxide layer. Red cabbage dye cell has the highest efficiency, 0.06% then dragon fruit and black rice, 0.02% and 0.03%.

  1. Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation.

    Science.gov (United States)

    Zidane, Fatiha; Drogui, Patrick; Lekhlif, Brahim; Bensaid, Jalila; Blais, Jean-François; Belcadi, Said; El Kacemi, Kacem

    2008-06-30

    The colour and colour causing-compounds has always been undesirable in water for any use, be it industrial or domestic wastewaters. The discharge of such effluents causes excessive oxygen demand in the receiving water and then a treatment is required before discharge into ecosystems. This study examined the possibility to remove colour causing-compounds from effluent by chemical coagulation, in comparison with direct electrocoagulation. The inorganic coagulants (C1, C2 and C3) in the form of dry powder tested, were respectively produced from electrolysis of S1=[NaOH (7.5 x 10(-3)M)], S2=[NaCl (10(-2)M)], and S3=[NaOH (7.5 x 10(-3)M)+NaCl (10(-2)M)] solutions, using sacrificial aluminium electrodes operated at an electrical potential of 12 V. Reactive textile dye (CI Reactive Red 141) was used as model of colour-causing compound prepared at a concentration of 50 mgl(-1). The best performances of dye removal were obtained with C(2) having a chemical structure comprised of a mixture of polymeric specie (Al45O45(OH)45Cl) and monomeric species (AlCl(OH)2.2H2O and Al(OH)3). The removal efficiency (R(A)) evaluated by measuring the yields of 540 nm-absorbance removal varied from 41 to 96% through 60 min of treatment by imposing a concentration of C2 ranging from 100 to 400 mg l(-1). The effectiveness of the treatment increased and the effluent became more and more transparent while increasing C(2) concentration. The comparison of chemical treatment using C2 coagulant and direct electrocoagulation of CI Reactive Red 141 containing synthetic solution demonstrated the advantage of chemical treatment during the first few minutes of treatment. A yield of 88% of absorbance removal was recorded using C2 coagulant (400 mg l(-1)) over the first 10 min of treatment, compared to 60% measured using direct electrocoagulation while imposing either 10 or 15 V of electrical potential close to the value (12 V) required during C2 production. However, at the end of the treatment (after 60

  2. Biodecolorization of Reactive Yellow-2 by Serratia sp. RN34 Isolated from Textile Wastewater.

    Science.gov (United States)

    Najme, Rabia; Hussain, Sabir; Maqbool, Zahid; Imran, Muhammad; Mahmood, Faisal; Manzoor, Hamid; Yasmeen, Tahira; Shehzad, Tanvir

    2015-12-01

    Remediation of colored textile wastewaters is a matter of interest. In this study, 49 bacteria were isolated from the textile wastewater and tested for their ability to decolorize reactive yellow-2 (RY2) dye. The most efficient isolate, RN34, was identified through amplification, sequencing, and phylogenetic analysis of its 16S rDNA and was designated as Serratia sp. RN34. This bacterium was also found capable of decolorizing other related reactive azo-dyes, including reactive black-5, reactive red-120, and reactive orange-16 but at varying rates. The optimum pH for decolorization of RY2 by the strain RN34 was 7.5 using yeast extract as cosubstrate under static incubation at 30 °C. The strain RN34 also showed potential to decolorize RY2 in the presence of considerable amounts of hexavalent chromium and sodium chloride. A phytotoxicity study demonstrated relatively reduced toxicity of RY2 decolorized products on Vigna radiata plant as compared to the uninoculated RY2 solution.

  3. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  4. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  5. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    Science.gov (United States)

    Attri, Pankaj; Yusupov, Maksudbek; Park, Ji Hoon; Lingamdinne, Lakshmi Prasanna; Koduru, Janardhan Reddy; Shiratani, Masaharu; Choi, Eun Ha; Bogaerts, Annemie

    2016-10-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.

  6. An Experimental and Theoretical Investigation of the Electronic Structures and Photoelectrical Properties of Ethyl Red and Carminic Acid for DSSC Application

    Directory of Open Access Journals (Sweden)

    Chaofan Sun

    2016-10-01

    Full Text Available The photoelectrical properties of two dyes—ethyl red and carminic acid—as sensitizers of dye-sensitized solar cells were investigated in experiments herein described. In order to reveal the reason for the difference between the photoelectrical properties of the two dyes, the ground state and excited state properties of the dyes before and after adsorbed on TiO2 were calculated via density functional theory (DFT and time-dependent DFT (TDDFT. The key parameters including the light harvesting efficiency (LHE, the driving force of electron injection ( Δ G inject and dye regeneration ( Δ G regen , the total dipole moment ( μ normal , the conduction band of edge of the semiconductor ( Δ E CB , and the excited state lifetime (τ were investigated, which are closely related to the short-circuit current density ( J sc and open circuit voltage ( V oc . It was found that the experimental carminic acid has a larger J sc and V oc , which are interpreted by a larger amount of dye adsorbed on a TiO2 photoanode and a larger Δ G regen , excited state lifetime (τ, μ normal , and Δ E CB . At the same time, chemical reactivity parameters illustrate that the lower chemical hardness (h and higher electron accepting power (ω+ of carminic acid have an influence on the short-circuit current density. Therefore, carminic acid shows excellent photoelectric conversion efficiency in comparison with ethyl red.

  7. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization.

    Science.gov (United States)

    Akpinar, Merve; Ozturk Urek, Raziye

    2017-06-01

    Lignocellulosic wastes are generally produced in huge amounts worldwide. Peach waste of these obtained from fruit juice industry was utilized as the substrate for laccase production by Pleurotus eryngii under solid state bioprocessing (SSB). Its chemical composition was determined and this bioprocess was carried out under stationary conditions at 28 °C. The effects of different compounds; copper, iron, Tween 80, ammonium nitrate and manganese, and their variable concentrations on laccase production were investigated in detail. The optimum production of laccase (43,761.33 ± 3845 U L -1 ) was achieved on the day of 20 by employing peach waste of 5.0 g and 70 µM Cu 2+ , 18 µM Fe 2+ , 0.025% (v/v) Tween 80, 4.0 g L -1 ammonium nitrate, 750 µM Mn 2+ as the inducers. The dye decolorization also researched to determine the degrading capability of laccase produced from peach culture under the above-mentioned conditions. Within this scope of the study, methyl orange, tartrazine, reactive red 2 and reactive black dyes were treated with this enzyme. The highest decolorization was performed with methyl orange as 43 ± 2.8% after 5 min of treatment when compared to other dyes. Up to now, this is the first report on the induction of laccase production by P. eryngii under SSB using peach waste as the substrate.

  8. Chemistry of Natural Dyes

    Indian Academy of Sciences (India)

    scientific principles, and the interaction between the dye and the dyed material is ... Dyes are classified based on their structure, source, method of application .... the right source that gives not only beautiful tones, but colourfast shades as well.

  9. Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes

    Science.gov (United States)

    Chaúque, Eutilério F. C.; Dlamini, Langelihle N.; Adelodun, Adedeji A.; Greyling, Corinne J.; Ngila, J. Catherine

    2017-08-01

    The manipulation of nanofibers' surface chemistry could enhance their potential application toward the removal of ionic dyes in wastewater. For this purpose, surface modification of electrospun polyacrylonitrile (PAN) nanofibers with ethylenediaminetetraacetic acid (EDTA) and ethylenediamine (EDA) crosslinker was experimented. The functionalized EDTA-EDA-PAN nanofibers were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) technique. The impregnation of EDA and EDTA chelating agents on the surface of PAN changed the distribution of nanofibers as proximity is increased (accompanied by reduced softness), but the nanofibrous structure of the pristine PAN nanofibers was not substantially altered. Adsorption equilibrium studies were performed with Freundlich, Langmuir and Temkin isotherm models with the former providing better correlation to the experimental data. The modified PAN nanofibers showed efficient sorption of methyl orange (MO) and reactive red (RR) from aqueous synthetic samples, evinced by the maximum adsorption capacities (at 25 °C) of 99.15 and 110.0 mg g-1, respectively. The fabricated nanofibers showed appreciable removal efficiency of the target dye sorptives from wastewater. However, the presence of high metal ions content affected the overall extraction of dyes from wastewater due to the depletion of the adsorbent's active adsorptive sites.

  10. New TiO2/DSAT Immobilization System for Photodegradation of Anionic and Cationic Dyes

    Directory of Open Access Journals (Sweden)

    Wan Izhan Nawawi Wan Ismail

    2015-01-01

    Full Text Available A new immobilized TiO2 technique was prepared by coating TiO2 solution onto double-sided adhesive tape (DSAT as a thin layer binder without adding any organic additives. Glass plate was used as support material to immobilized TiO2/DSAT. Two different charges of dyes were applied, namely, anionic reactive red 4 (RR4 and cationic methylene blue (MB dyes. Photocatalytic degradation of RR4 and MB dyes was observed under immobilized TiO2/DSAT with the degradation rate slightly lowe