WorldWideScience

Sample records for dye reactive red

  1. Toxicity Reduction of Reactive Red Dye-238 Using Advanced Oxidation Process by Solar Energy

    Directory of Open Access Journals (Sweden)

    Riyad Al-Anbari

    2017-09-01

    Full Text Available Decolorization of red azo dye (Cibacron Red FN-R from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 and 80 % respectively. It can be concluded, from these experiments, that the using of ZnO as a photocatalysis was exhibited as economical and efficient treatment method to remove reactive red dye-238 from aqueous solution.

  2. Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1

    International Nuclear Information System (INIS)

    Kalyani, D.C.; Telke, A.A.; Dhanve, R.S.; Jadhav, J.P.

    2009-01-01

    The aim of this work is to evaluate textile dyes degradation by novel bacterial strain isolated from the waste disposal sites of local textile industries. Detailed taxonomic studies identified the organisms as Pseudomonas species and designated as strain Pseudomonas sp. SUK1. The isolate was able to decolorize sulfonated azo dye (Reactive Red 2) in a wide range (up to 5 g l -1 ), at temperature 30 deg. C, and pH range 6.2-7.5 in static condition. This isolate also showed decolorization of the media containing a mixture of dyes. Measurements of COD were done at regular intervals to have an idea of mineralization, showing 52% reduction in the COD within 24 h. Induction in the activity of lignin peroxidase and azoreductase was observed during decolorization of Reactive Red 2 in the batch culture, which represented their role in degradation. The biodegradation was monitored by UV-vis, IR spectroscopy, HPLC. The final product, 2-naphthol was characterized by GC-mass spectroscopy. The phytotoxicity study revealed the degradation of Reactive Red 2 into non-toxic product by Pseudomonas sp. SUK1

  3. Biodecolorization of the azo dye Reactive Red 2 by a halotolerant enrichment culture.

    Science.gov (United States)

    Beydilli, M Inan; Pavlostathis, Spyros G

    2007-11-01

    The decolorization of the azo dye Reactive Red 2 (RR2) under anoxic conditions was investigated using a mesophilic (35 degrees C) halotolerant enrichment culture capable of growth at 100 g/L sodium chloride (NaCl). Batch decolorization assays were conducted with the unacclimated halotolerant culture, and dye decolorization kinetics were determined as a function of the initial dye, biomass, carbon source, and an externally added oxidation-reduction mediator (anthraquinone-2,6-disulphonic acid) concentrations. The maximum biomass-normalized RR2 decolorization rate by the halotolerant enrichment culture under batch, anoxic incubation conditions was 26.8 mg dye/mg VSSxd. Although RR2 decolorization was inhibited at RR2 concentrations equal to and higher than 300 mg/L, the halotolerant culture achieved a 156-fold higher RR2 decolorization rate compared with a previously reported, biomass-normalized RR2 decolorization rate by a mixed mesophilic (35 degrees C) methanogenic culture in the absence of NaCl. Decolorization kinetics at inhibitory RR2 levels were described based on the Haldane model (Haldane, 1965). Five repetitive dyeing/decolorization cycles performed using the halotolerant culture and the same RR2 dyebath solution demonstrated the feasibility of biological renovation and reuse of commercial-strength spent reactive azo dyebaths.

  4. 3D-QSPR method of computational technique applied on red reactive dyes by using CoMFA strategy.

    Science.gov (United States)

    Mahmood, Uzma; Rashid, Sitara; Ali, S Ishrat; Parveen, Rasheeda; Zaheer-Ul-Haq; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang

    2011-01-01

    Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are "reactive dyes" because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR) technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA) method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps) help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the characteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber.

  5. Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution

    International Nuclear Information System (INIS)

    Paul, Jhimli; Rawat, K.P.; Sarma, K.S.S.; Sabharwal, S.

    2011-01-01

    The decoloration and degradation of aqueous solution of the reactive azo dye viz. Reactive Red-120 (RR-120) was carried out by electron beam irradiation. The change in decoloration percentage, removal of chemical oxygen demand (COD) and total organic carbon (TOC), solution pH and five-day biochemical oxygen demand (BOD 5 ) were investigated with respect to the applied dose. However, the concentration of the dye in the solution showed a great influence on all these observables. During the radiolysis process, it was found that the decoloration of dye was caused by the destruction of the chromophore group of the dye molecule, whereas COD and TOC removal were depended on the extent of mineralization of the dye. The decrease in pH during the radiolysis process indicated the fragmentation of the large dye molecule into smaller organic components mostly like smaller organic acids. The BOD 5 /COD ratio of the unirradiated dye solution was in the range of 0.1-0.2, which could be classified as non-biodegradable wastewater. However, the BOD 5 /COD ratio increased upon irradiation and it indicated the transformation of non-biodegradable dye solution into biodegradable solution. This study showed that electron beam irradiation could be a promising method for treatment of textile wastewater containing RR-120 dye.

  6. Adsorption of procion red and congo red dyes using microalgae Spirulina sp

    Directory of Open Access Journals (Sweden)

    Risfidian Mohadi

    2017-10-01

    Full Text Available Adsorption of procion red and congo red dyes using microalgae Spirulina sp was conducted. Spirulina sp was obtained by cultivation and production in laboratory scale. Spirulina sp was used as adsorbent for adsorption of dyes. Adsorption process was studied by kinetic and thermodynamic in order to know the adsorption phenomena. The results showed that kinetically congo red is reactive than procion red on Spirulina sp. On the other hand, thermodynamically procion red was stable than congo red on Spirulina sp which was indicated by adsorption capacity, enthalpy, and entropy.

  7. 3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy

    Directory of Open Access Journals (Sweden)

    Shahnaz Perveen

    2011-12-01

    Full Text Available Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are “reactive dyes” because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the charachteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber.

  8. Adsorption of Reactive Red Dye from Wastewater Using Modified Citrulluscolosynthis Ash

    Directory of Open Access Journals (Sweden)

    Mohammadreza Rezaei Kahkha

    2016-07-01

    Full Text Available Dye-bearing wastes pose serious risks to and leave harmful effects on the environment. Increasing wastewater color intensity leads to reduced light reaching the aquatic environment, which adversely affects the life and growth of aquatic plants and invertebrates. Among the many methods available for dye removal from wastewater, membrane separation, oxidation, coagulation, and anaerobic treatment are more common but they are all costly and involve complex processes. Biosorption, in contrast, enjoys both ease of application and simple design so that it is widely used for removing dyes, heavy metals, and phenolic compounds from both water and wastewater. In this paper, the ability of citrulluscolosynthis ash as a bioadsorbent for the removal of reactive red dye is investigated for the first time. Sodium hydroxide is also used to modify the plant ash surface which expectedly enhances its dye removal efficiency. Measurements and removal levels are determined using a UV-vis spectrophotometer. Finally, the effects of pH, adsorbent dosage, dye concentration, and reaction time on dye removal efficiency are also explored. Results show that the optimum conditions to achieve maximum dye removal are as follows: A pH level of 2, an adsorbant dosage of 1.75 g l-1, an initial concentration equal to 90 mg L-1, and A reaction time of 70 min. Adsorption isotherm is found to obey the Ferundlich isotherm. Also, an adsorption capacity of 36 mg g‒1 is achieved under the best conditions. It may thus be concluded that modified citrulluscolosynthis ash can be used as an effective adsorbent to treat colored wastewaters.

  9. Regeneration of carbon nanotubes exhausted with dye reactive red 3BS using microwave irradiation

    International Nuclear Information System (INIS)

    Wang Jun; Peng Xianjia; Luan Zhaokun; Zhao Changwei

    2010-01-01

    Carbon nanotubes (CNTs) exhausted with dye reactive red 3BS were regenerated by microwave irradiation under N 2 atmosphere. High regeneration efficiency was achieved and the regeneration efficiency reached 92.8% after four cycles regeneration. The decrease in adsorption capacity was suggested to be due to the deposition of decomposition residues in CNT pores, which blocked the carbon porosity and decreased the specific surface area.

  10. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    International Nuclear Information System (INIS)

    Balla, Wafaa; Essadki, A.H.; Gourich, B.; Dassaa, A.; Chenik, H.; Azzi, M.

    2010-01-01

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm -2 and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E dye ) in optimal conditions for real effluent was calculated. 170 kWh/kg dye was required for a reactive dye, 120 kWh/kg dye for disperse and 50 kWh/kg dye for the mixture.

  11. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Balla, Wafaa [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Essadki, A.H., E-mail: essadki@est-uh2c.ac.ma [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Dassaa, A. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Chenik, H. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Azzi, M. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco)

    2010-12-15

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm{sup -2} and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E{sub dye}) in optimal conditions for real effluent was calculated. 170 kWh/kg{sub dye} was required for a reactive dye, 120 kWh/kg{sub dye} for disperse and 50 kWh/kg{sub dye} for the mixture.

  12. Evaluation of the potential of red mud heat treated at 400 deg C in adsorption of reactive yellow 145 dye

    International Nuclear Information System (INIS)

    Rangueri, T.B.; Souza, K.C. de; Lima, V.F. de; Antunes, M.L.P.

    2012-01-01

    Red mud is the generic name for the industrial waste generated during the Bayer process. Storing this material can cause environmental damage and requires a large area for their disposal. Red mud has properties to be used in treatment of effluents. The red mud was dried and activated at 400°C. This work presents the characterization by pH, conductivity and zero charge potential of the red mud thermally activated. The assessment of adsorption capacity of this material to dye reactive Yellow 145 in pH 4 was done. The percentage of adsorption to concentrations of 500 mg/L of dye reaches 97%. This work presents results of adsorption isotherms, using the Langmuir model, and reaction kinetics. It is concluded that, in an acid medium, the red mud presents excellent potential of adsorption and could be an alternative material to absorb the Yellow 145 dye. (author)

  13. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation.

    Science.gov (United States)

    Li, Mei; Li, Ji-Tai; Sun, Han-Wen

    2008-07-01

    At its natural pH (6.95), the decolorization of Reactive red 24 in ultrasound, ultrasound/H2O2, exfoliated graphite, ultrasound/exfoliated graphite, exfoliated graphite/H2O2 and ultrasound/exfoliated graphite/H2O2 systems were compared. An enhancement was observed for the decolorization in ultrasound/exfoliated graphite/H2O2 system. The effect of solution pH, H2O2 and exfoliated graphite dosages, and temperature on the decolorization of Reactive red 24 was investigated. The sonochemical treatment in combination with exfoliated graphite/H2O2 showed a synergistic effect for the decolorization of Reactive red 24. The results indicated that under proper conditions, there was a possibility to remove Reactive red 24 very efficient from aqueous solution. The decolorization of other azo dyes (Reactive red 2, Methyl orange, Acid red 1, Acid red 73, Acid red 249, Acid orange 7, Acid blue 113, Acid brown 75, Acid green 20, Acid yellow 42, Acid mordant brown 33, Acid mordant yellow 10 and Direct green 1) was also investigated, at their natural pH.

  14. Application of Electrocoagulation Process for Reactive Red 198 Dye Removal from the Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2014-04-01

    Full Text Available Abstract Background and purpose:The main objectives of this research were to evaluating the application of electrocoagulation process for 198 dye from the aqueous phase and determining the optimum operating conditions to the dye removal using aluminum and iron electrodes. Materials and Methods:The present study was conducted in bench-scale. The spectrophotometer DR 5000 was used to determine the dye concentration. The effects of pH, retention time, voltage, dye concentration on the efficiency of electrocoagulation process were investigated. Data were analyzed in SPSS for Windows 16.0 using Pearson’scorrelation coefficient to analyze the relationship between these parameters. Results:The results showed that the optimal conditions for reactive red 198 (RR-198 dye removal from the aqueous solution are pH of 11, the voltage of 32 V, the initial dye concentration of 10 ppm, and the reaction time of 40 min. Pearson correlation analysis showed that there is a significant relationship between voltage and the reaction time with the removal efficiencies (P< 0.01. Conclusion:It was revealed that the removal efficiency of dye was directly proportional to the voltage and reaction time, but inversely proportional to the initial dye concentration. In conclusion, electrocoagulation process using two-fold iron and aluminum electrodes is an appropriate method for reducing the RR-198 dye in the aqueous phase.

  15. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    Science.gov (United States)

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Adsorption of C.I. Reactive Red 228 and Congo Red dye from aqueous solution by amino-functionalized Fe3O4 particles: kinetics, equilibrium, and thermodynamics.

    Science.gov (United States)

    Yan, Ting-guo; Wang, Li-Juan

    2014-01-01

    A magnetic adsorbent was synthesized by γ-aminopropyltriethoxysilane (APTES) modification of Fe(3)O(4) particles using a two-step process. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometry were used to characterize the obtained magnetic adsorbent. EDS and XPS showed that APTES polymer was successfully introduced onto the as-prepared Fe(3)O(4)/APTES particle surfaces. The saturation magnetization of the magnetic adsorbent was around 65 emu g(-1), which indicated that the dye can be removed fast and efficiently from aqueous solution with an external magnetic field. The maximum adsorption capacities of Fe(3)O(4)/APTES for C.I. Reactive Red 228 (RR 228) and Congo Red (CR) were 51.4 and 118.8 mg g(-1), respectively. The adsorption of C.I. Reactive Red 228 (RR 228) and Congo Red (CR) on Fe(3)O(4)/APTES particles corresponded well to the Langmuir model and the Freundlich model, respectively. The adsorption processes for RR 228 and CR followed the pseudo-second-order model. The Boyd's film-diffusion model showed that film diffusion also played a major role in the studied adsorption processes for both dyes. Thermodynamic study indicated that both of the adsorption processes of the two dyes are spontaneous exothermic.

  17. Kinetics of the decoloration of reactive dyes over visible light-irradiated TiO2 semiconductor photocatalyst

    International Nuclear Information System (INIS)

    Chatterjee, Debabrata; Patnam, Vidya Rupini; Sikdar, Anindita; Joshi, Priyanka; Misra, Rohit; Rao, Nageswara N.

    2008-01-01

    Photocatalytic decoloration kinetics of triazine (Reactive Red 11, Reactive Red 2, and Reactive Orange 84) and vinylsulfone type (Reactive Orange 16 and Reactive Black 5) of reactive dyes have been studied spectrophotometrically by following the decrease in dye concentration with time. At ambient conditions, over 90-95% decoloration of above dyes have been observed upon prolonged illumination (15 h) of the reacting system with a 150 W xenon lamp. It was found that the decoloration reaction followed first-order kinetics. The values of observed rate constants were found to be dependent of the structure of dyes at low dye concentration, but independent at higher concentration. It also reports for the first time the decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst. Rate of decoloration of two different dyes together in a binary dye mixture using visible light-irradiated TiO 2 photocatalyst is governed by the adsorptivity of the particular dye onto the surface of the TiO 2 photocatalyst

  18. [Decolorization of the azo dye reactive red X-3B by an Al-Cu bimetallic system].

    Science.gov (United States)

    Fan, Jin-hong; Ma, Lu-ming; Wang, Hong-wu; Wu, De-li

    2008-06-01

    The decoloration mechanism and kinetics of the azo dye reactive red X-3B by an Al-Cu bimetallic system were investigated by measuring the dye removal, the TOC removal and the aniline concentration, and by adding EDTA as control experiments. The results showed the colority removal rate of X-3B reached 83% in the near neutral pH medium for 30 min and 96.4% for 120 min, in which, about 34% was due to the X-3B reduced to aniline, and about 20% and 30% was due to the flocculating of aluminum ions and surface adsorption of aluminum-fillings respectively. The decolorization of dyeing wastewater is a gradual reaction process, which first adsorbs a large number of dyeing ingredients and then carries out inner electrolysis reduction, improved effectively by the flocculating action of aluminum ions. The decolorization reaction appears to be a pseudo first-order reaction and increases with rising temperature.

  19. Removal of reactive dyes from wastewater by shale

    Directory of Open Access Journals (Sweden)

    Jareeya Yimrattanabovorn

    2012-02-01

    Full Text Available Colored textile effluents represent severe environmental problems as they contain mixture of chemicals, auxiliariesand dyestuffs of different classes and chemical constitutions. Elimination of dyes in the textile wastewater by conventionalwastewater treatment methods is very difficult. At present, there is a growing interest in using inexpensive and potentialmaterials for the adsorption of reactive dyes. Shale has been reported to be a potential media to remove color from wastewaterbecause of its chemical characteristics. In this study, shale was used as an adsorbent. The chosen shale had particlesizes of : A (1.00 < A < 2.00 mm, B (0.50 < B < 1.00 mm, C (0.25 < C < 0.50 mm, D (0.18 < D < 0.25 mm and E (0.15 < E < 0.18mm. Remazol Deep Red RGB (Red, Remazol Brilliant Blue RN gran (Blue and Remazol Yellow 3RS 133% gran (Yellow wereused as adsorbates. Batch adsorption experiments were performed to investigate the effect of contact time, pH, temperatureand initial dye concentration. It was found that the equilibrium data were best described by the Langmuir isotherm model,with the maximum monolayer adsorption capacities of 0.0110-0.0322 mg/g for Red, 0.4479-1.1409 mg/g for Blue and 0.0133-0.0255 mg/g for Yellow, respectively. The maximum adsorption capacity of reactive dye by shale occurred at an initial pH of 2,initial concentration of 700 Pt-Co and temperature 45°C. Reactive dye adsorption capacities increased with an increase of theinitial dye concentration and temperature whereas with a decrease of pH. The fixed bed column experiments were appliedwith actual textile wastewater for estimation of life span. The results showed that COD and color removal efficiencies of shalefix bed column were 97% and 90%, respectively. Also the shale fixed bed columns were suitable for using with textile effluentfrom activated sludge system because of their COD and color removal efficiencies and life expectancy comparison using withdyebath wastewater and raw

  20. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    Bacillus cereus isolated from dye industrial waste, that is, effluent and soil samples was screened for its ability to decolourize two reactive azo dye – cibacron black PSG and cibacron red P4B under aerobic conditions at pH 7 and incubated at 35°C over a five day period. Different carbon and nitrogen sources were used for ...

  1. Comparison of four supports for adsorption of reactive dyes by immobilized Aspergillus fumigatus beads

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-e; HU Yong-you

    2007-01-01

    Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and chitosan (CTS), were prepared as supports for entrapping fungus Aspergillus fumigatus. The adsorption of synthetic dyes, reactive brilliant blue KN-R, and reactive brilliant red K-2BP, by these immobilized gel beads and plain gel beads was evaluated. The adsorption efficiencies of reactive brilliant red K-2BP and reactive brilliant blue KN-R by CTS immobilized beads were 89.1% and 93.5% in 12 h, respectively. The adsorption efficiency by Na-CMC immobilized beads was slightly lower than that of mycelial pellets. But the dye culture mediums were almost completely decolorized in 48 h using the above-mentioned two immobilized beads (exceeding 95%). The adsorption efficiency by SA immobilized beads exceeded 92% in 48 h. PVA-SA immobilized beads showed the lowest adsorption efficiency, which was 79.8% for reactive brilliant red K-2BP and 92.5% for reactive brilliant blue KN-R in 48 h. Comparing the adsorption efficiency by plain gel beads, Na-CMC plain gel beads ranked next to CTS ones. SA and PVA-SA plain gel beads hardly had the ability of adsorbing dyes. Subsequently, the growth of mycelia in Na-CMC and SA immobilized beads were evaluated. The biomass increased continuously in 72 h. The adsorption capacity of reactive brilliant red K-2BP and reactive brilliant blue KN-R by Na-CMC immobilized beads was 78.0 and 86.7 mg/g, respectively. The SEM micrographs show that the surface structure of Na-CMC immobilized bead is loose and finely porous, which facilitates diffusion of the dyes.

  2. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  3. Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes

    International Nuclear Information System (INIS)

    Xue, Ailian; Zhou, Shouyong; Zhao, Yijiang; Lu, Xiaoping; Han, Pingfang

    2011-01-01

    Highlights: → We prepared a new amine functionalized adsorbent derived from clay-based material. → Attapulgite surface was modified with 3-aminopropyltriethoxysilane. → Some modification parameters affecting the adsorption potential were investigated. → Enhance the attapulgite adsorptive capacity for reactive dyes from aqueous solutions. - Abstract: The amine moiety has an important function in many applications, including, adsorption, catalysis, electrochemistry, chromatography, and nanocomposite materials. We developed an effective adsorbent for aqueous reactive dye removal by modifying attapulgite with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES). Surface properties of the APTES-modified attapulgite were characterized by the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. We evaluated the impact of solvent, APTES concentration, water volume, reaction time, and temperature on the surface modification. NH 2 -attapulgite was used to remove reactive dyes in aqueous solution and showed very high adsorption rates of 99.32%, 99.67%, and 96.42% for Reactive Red 3BS, Reactive Blue KE-R and Reactive Black GR, respectively. These powerful dye removal effects were attributed to strong electrostatic interactions between reactive dyes and the grafted NH 2 groups.

  4. Radiation degradation and hemolytic toxicity evaluation of mono azo reactive dyes

    International Nuclear Information System (INIS)

    Saeed, Q.U.; Bhatti, I.A.; Ashraf, A.

    2017-01-01

    Monoazo reactive dyes have been synthesized and subjected to degradation before their application. Advanced oxidation process has been recognized as a promising radiation technology for the remediation of hazardous organic compounds. Radiation induced degradation of two mono azo reactive dyes have been tried at different absorbed dose, 5 kGy,10 kGy and 15 kGy. Aqueous solutions of these dyes were treated with gamma radiation using Cs 137 radiation source at Nuclear Institute of Agriculture and Biology (NIAB) Faisalabad. Dyes were evaluated spectrophotometrically by UV-visible and fourier transform infra red (FT-IR) spectroscopic techniques before and after irradiation to analyse their percentage decolorization and degradation. Maximum percentage decolorization of 93% and 63% was achieved for mono azo dyes D1 and D2 at 15 kGy absorbed dose. Toxicity study of these dyes was also tested by haemolytic activity assay. Percentage haemolytic activity of untreated dyes was found within permissible limit showing non toxicity of dye solutions. (author)

  5. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    Science.gov (United States)

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  6. Irradiation treatment of textile dyes: Apollofix-red

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2004-01-01

    The UV-VIS absorption spectra of azo dyes in aqueous solutions strongly overlap with the spectra of intermediates produced in reaction with the intermediates of water radiolysis. This overlap complicates the investigation of reaction mechanisms. The paper describes a method for the separation of the two spectra on the example of Apollofix-Red, a triazine and H-acid containing dye. The reactivity of water radiolysis intermediates (e aq - , OH, H, O 2 /HO 2 ) with the dye is also discussed. The most intensive decolouration was found in the reaction of e aq - and H which is due to the fast reaction of these intermediates with the -N=N-azo group of the unreacted molecule and their slow reaction with the transformed molecules. (author)

  7. Nano-dyeing

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2016-01-01

    Full Text Available Dyeing nanofibers is a frontier of both modern textile engineering and nanotechnology. This paper suggest a feasible method for dyeing nanofibers with a natural red (Roselle Calyx by bubble electrospinning. Reactive dye (Red S3B and acid dye (Red 2B were also used in the experiment for comparison. The dyeing process was finished during the spinning process.

  8. Radiation-induced decomposition and decoloration of reactive dyes in the presence of H2O2

    International Nuclear Information System (INIS)

    Wang Min; Yang Ruiyuan; Wang Wenfeng; Shen Zhongqun; Bian Shaowei; Zhu Zhiyuan

    2006-01-01

    The dyeing wastewaters represent a large input of hazardous compounds to the environment and these compounds are usually non-biodegradable. In this study, electron beam irradiation-induced decoloration and decomposition of reactive dyes in aqueous solution were investigated. Two different reactive dyes (reactive red KE-3B and reactive blue XBR) solutions were irradiated with electron beam at different doses in the absence and presence of H 2 O 2 . The changes of absorption spectra and pH value were described and analyzed as well as the degree of decoloration and COD removal. The influences of absorbed doses, H 2 O 2 additions and initial dye concentrations are discussed. The experimental results show that reactive dyes in aqueous solutions can be effectively degraded by electron beam irradiation, especially in the presence of hydrogen peroxide

  9. Removal of Reactive-dyes from Textile Plant Effluents Using Polyvinyl Alcohol-coated Active Carbon obtained from Sesame Seeds

    Directory of Open Access Journals (Sweden)

    Sheida Moradi- Nasab

    2016-09-01

    Full Text Available In this study, the adsorption of active carbon derived from waste sesame seeds coated with polyvinyl alcohol (AC/PVA was investigated for removing red 198 and blue 19 reactive dyes from textile effluents. The batch process was carried out to identify such parameters as pH, adsorbent dose, contact time, and initial dye concentration involved in the dye removal adsorption capacity of AC/PVA. Also, batch kinetic and isotherm experiments were conducted. Results indicated that the maximum dye removal was obtained in an acidic pH over 90 min of contact time and that adsorption rates followed the pseudo-second-order kinetics. Blue and red dye concentrations were determined using the spectrophotometric method at 590 and 517 nm, respectively. It may be concluded that AC/PVA is capable of removing blue and red reactive dyes and can be used as an efficient, cheap, and accessible adsorbent for treating textile effluents.

  10. 3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy

    OpenAIRE

    Mahmood, Uzma; Rashid, Sitara; Ali, S. Ishrat; Parveen, Rasheeda; ul-Haq, Zaheer; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang

    2011-01-01

    Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are ?reactive dyes? because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called ...

  11. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L

    International Nuclear Information System (INIS)

    Aksakal, Ozkan; Ucun, Handan

    2010-01-01

    This study investigated the biosorption of Reactive Red 195 (RR 195), an azo dye, from aqueous solution by using cone biomass of Pinus sylvestris Linneo. To this end, pH, initial dye concentration, biomass dosage and contact time were studied in a batch biosorption system. Maximum pH for efficient RR 195 biosorption was found to be 1.0 and the initial RR 195 concentration increased with decreasing percentage removal. Biosorption capacity increased from 6.69 mg/g at 20 deg. C to 7.38 mg/g at 50 deg. C for 200 mg/L dye concentration. Kinetics of the interactions was tested by pseudo-first-order and pseudo-second-order kinetics, the Elovich equation and intraparticle diffusion mechanism. Pseudo-second-order kinetic model provided a better correlation for the experimental data studied in comparison to the pseudo-first-order kinetic model and intraparticle diffusion mechanism. Moreover, the Elovich equation also showed a good fit to the experimental data. Freundlich and Langmuir adsorption isotherms were used for the mathematical description of the biosorption equilibrium data. The activation energy of biosorption (Ea) was found to be 8.904 kJ/mol by using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the study also evaluated the thermodynamic constants of biosorption (ΔG o , ΔH o and ΔS). The results indicate that cone biomass can be used as an effective and low-cost biosorbent to remove reactive dyes from aqueous solution.

  12. Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots.

    Science.gov (United States)

    Srikantan, Chitra; Suraishkumar, G K; Srivastava, Smita

    2018-06-01

    The study demonstrates for the first time that light influences the adsorption equilibrium and kinetics of a dye by root culture system. The azo dye (Reactive Red 120) adsorption by the hairy roots of H. annuus followed a pseudo first-order kinetic model and the adsorption equilibrium parameters were best estimated using Langmuir isotherm. The maximum dye adsorption capacity of the roots increased 6-fold, from 0.26 mg g -1 under complete dark conditions to 1.51 mg g -1 under 16/8 h light/dark photoperiod. Similarly, adsorption rate of the dye and removal (%) also increased in the presence of light, irrespective of the initial concentration of the dye (20-110 mg L -1 ). The degradation of the azo dye upon adsorption by the hairy roots of H. annuus was also confirmed. In addition, a strategy for simultaneous dye removal and increased alpha-tocopherol (industrially relevant) production by H. annuus hairy root cultures has been proposed and demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution

    Science.gov (United States)

    Ahmad, S.; Wong, Y. C.; Veloo, K. V.

    2018-04-01

    Reactive red 120 is used as a textile dye for fabric coloring. The dye waste is produced during textile finishing process subsequently released directly to water bodies which giving harmful effects to the environment due to the carcinogenic characteristic. Adsorption process becomes an effective treatment to treat textile dye. This research emphasizes the treatment of textile dye namely reactive red 120 (RR120) by using sugarcane bagasse powder. The batch study was carried out under varying parameters such as 60 minutes contact time, pH (1-8), dye concentration (5-25 mg/L), particle size (125-500 μm) and biosorbent dosage (0.01-0.2 g/L). The maximum adsorption percentage of RR120 was 94.62%. The adsorption of dye was increased with the decreasing of pH, initial dye concentration and particle size. Sugarcane bagasse powder as low-cost biosorbent was established using Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM). This locally agricultural waste could be upgraded into useful material which is biosorbent that promising for decolorization of colored textile wastewater.

  14. Low cost removal of reactive dyes using wheat bran

    International Nuclear Information System (INIS)

    Cicek, Fatma; Ozer, Dursun; Ozer, Ahmet; Ozer, Ayla

    2007-01-01

    In this study, the adsorption of Reactive Blue 19 (RB 19), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145) onto wheat bran, generated as a by-product material from flour factory, was studied with respect to initial pH, temperature, initial dye concentration, adsorbent concentration and adsorbent size. The adsorption of RB 19, RR 195 and RY 145 onto wheat bran increased with increasing temperature and initial dye concentration while the adsorbed RB 19, RR 195 and RY 145 amounts decreased with increasing initial pH and adsorbent concentration. The Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data depending on temperature and the isotherm constants were determined by using linear regression analysis. The monolayer covarage capacities of wheat bran for RB 19, RR 195 and RY 145 dyes were obtained as 117.6, 119.1 and 196.1 mg/g at 60 deg. C, respectively. It was observed that the reactive dye adsorption capacity of wheat bran decreased in the order of RY 145 > RB 19 > RR 195. The pseudo-second order kinetic and Weber-Morris models were applied to the experimental data and it was found that both the surface adsorption as well as intraparticle diffusion contributed to the actual adsorption processes of RB 19, RR 195 and RY 145. Regression coefficients (R 2 ) for the pseudo-second order kinetic model were higher than 0.99. Thermodynamic studies showed that the adsorption of RB 19, RR 195 and RY 145 dyes onto wheat bran was endothermic in nature

  15. Synthesis of Novel Reactive Disperse Silicon-Containing Dyes and Their Coloring Properties on Silicone Rubbers

    Directory of Open Access Journals (Sweden)

    Ning Yu

    2018-01-01

    Full Text Available Novel red and purple reactive disperse silicon-containing dyes were designed and synthesized using p-nitroaniline and 6-bromo-2,4-dinitro-aniline as diazonium components, the first condensation product of cyanuric chloride and 3-(N,N-diethylamino-aniline as coupling component, and 3-aminopropylmethoxydimethylsilane, 3-aminopropylmethyldimethoxysilane, and 3-aminopropyltrimethoxysilane as silicone reactive agents. These dyes were characterized by UV-Vis, 1H-NMR, FT-IR, and MS. The obtained reactive disperse silicon-containing dyes were used to color silicone rubbers and the color fastness of the dyes were evaluated. The dry/wet rubbing and washing fastnesses of these dyes all reached 4–5 grade and the sublimation fastness was also above 4 grade, indicating outstanding performance in terms of color fastness. Such colored silicone rubbers showed bright and rich colors without affecting its static mechanical properties.

  16. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses

    Energy Technology Data Exchange (ETDEWEB)

    Huseynli, Sabina; Baydemir, Gözde; Sarı, Esma [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Elkak, Assem [Laboraory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS)”, Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath (Lebanon); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2015-01-01

    Naturally produced by the human immune system, immunoglobulin nowadays is widely used for in vivo and in vitro purposes. The increased needs for pure immunoglobulin have prompted researchers to find new immunoglobulin chromatographic separation processes. Cryogels as chromatographic adsorbents, congregate several mechanical features including good compatibility, large pore structure, flexibility, short diffusion pathway and stability. These different characteristics make them a good alternative to conventional chromatographic methods and allowing their potential use in separation technology. In the present study, two sets of poly(2-hydroxyethyl methacrylate) (PHEMA) based beads were prepared and functionalized with Reactive Red 120 (RR) and Reactive Green HE 4BD (RG) dyes, and then embedded into supermacroporous cryogels. The morphology, physical and chemical features of the prepared bead embedded composite cryogel discs (CCDs) were performed by scanning electron microscopy (SEM), swelling test, elemental analysis and Fourier transform infrared spectroscopy (FTIR). The results showed that the embedded composite cryogel discs have a specific surface area of 192.0 m{sup 2}/g with maximum adsorption capacity of HIgG 239.8 mg/g for the RR functionalized CCD and 170 mg/g for RG functionalized CCD columns, both at pH 6.2. - Highlights: • Dye attached composite cryogel discs were prepared to separate HIgG subclasses. • Composite cryogels characterized by swelling, FTIR, SEM and elemental analysis. • Reactive Green HE 4B and Reactive Red 120 dyes were used as the affinity ligand. • HIgG and subclasses were separate from both aqueous solution and human plasma.

  17. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses

    International Nuclear Information System (INIS)

    Huseynli, Sabina; Baydemir, Gözde; Sarı, Esma; Elkak, Assem; Denizli, Adil

    2015-01-01

    Naturally produced by the human immune system, immunoglobulin nowadays is widely used for in vivo and in vitro purposes. The increased needs for pure immunoglobulin have prompted researchers to find new immunoglobulin chromatographic separation processes. Cryogels as chromatographic adsorbents, congregate several mechanical features including good compatibility, large pore structure, flexibility, short diffusion pathway and stability. These different characteristics make them a good alternative to conventional chromatographic methods and allowing their potential use in separation technology. In the present study, two sets of poly(2-hydroxyethyl methacrylate) (PHEMA) based beads were prepared and functionalized with Reactive Red 120 (RR) and Reactive Green HE 4BD (RG) dyes, and then embedded into supermacroporous cryogels. The morphology, physical and chemical features of the prepared bead embedded composite cryogel discs (CCDs) were performed by scanning electron microscopy (SEM), swelling test, elemental analysis and Fourier transform infrared spectroscopy (FTIR). The results showed that the embedded composite cryogel discs have a specific surface area of 192.0 m 2 /g with maximum adsorption capacity of HIgG 239.8 mg/g for the RR functionalized CCD and 170 mg/g for RG functionalized CCD columns, both at pH 6.2. - Highlights: • Dye attached composite cryogel discs were prepared to separate HIgG subclasses. • Composite cryogels characterized by swelling, FTIR, SEM and elemental analysis. • Reactive Green HE 4B and Reactive Red 120 dyes were used as the affinity ligand. • HIgG and subclasses were separate from both aqueous solution and human plasma

  18. Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Dizge, N.; Aydiner, C.; Demirbas, E.; Kobya, M.; Kara, S.

    2008-01-01

    Adsorption kinetic and equilibrium studies of three reactive dyes namely, Remazol Brillant Blue (RB), Remazol Red 133 (RR) and Rifacion Yellow HED (RY) from aqueous solutions at various initial dye concentration (100-500 mg/l), pH (2-8), particle size (45-112.5 μm) and temperature (293-323 K) on fly ash (FA) were studied in a batch mode operation. The adsorbent was characterized with using several methods such as SEM, XRD and FTIR. Adsorption of RB reactive dye was found to be pH dependent but both RR and RY reactive dyes were not. The result showed that the amount adsorbed of the reactive dyes increased with increasing initial dye concentration and contact time. Batch kinetic data from experimental investigations on the removal of reactive dyes from aqueous solutions using FA have been well described by external mass transfer and intraparticle diffusion models. It was found that external mass transfer and intraparticle diffusion had rate limiting affects on the removal process. This was attributed to the relatively simple macropore structure of FA particles. The adsorption data fitted well with Langmuir and Freundlich isotherm models. The optimum conditions for removal of the reactive dyes were 100 mg/l initial dye concentration, 0.6 g/100 ml adsorbent dose, temperature of 293 K, 45 μm particle size, pH 6 and agitation speed of 250 rpm, respectively. The values of Langmuir and Freundlich constants were found to increase with increasing temperature in the range 135-180 and 15-34 mg/g for RB, 47-86 and 1.9-3.7 mg/g for RR and 37-61 and 3.0-3.6 mg/g for RY reactive dyes, respectively. Different thermodynamic parameters viz., changes in standard free energy, enthalpy and entropy were evaluated and it was found that the reaction was spontaneous and endothermic in nature

  19. Improvement of COD and TOC reactive dyes in textile wastewater by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... This study was designed to investigate the removal of reactive dyes, Samofix Red V-RBL and Samofix. Green V-G from wastewater using a two step Al (III) coagulation/activated carbon adsorption method. ... (90%) of chemical oxygen demand (COD), total organic carbon (TOC) ..... a liquid to a solid surface.

  20. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Science.gov (United States)

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Adsorption performance and mechanism in binding of Reactive Red 4 by coke waste

    International Nuclear Information System (INIS)

    Won, Sung Wook; Wu Guiping; Ma Hui; Liu Qiong; Yan Yao; Cui Longzhe; Liu Chengfu; Yun, Yeoung-Sang

    2006-01-01

    The protonated coke waste was used as a new type of adsorbent for the removal of Reactive Red 4. To identify the binding sites in the protonated coke waste, the waste was potentiometrically titrated. As a result, four types of functional groups were present in the waste, which was confirmed by FT-IR analysis. Among functional groups, primary amine groups (-NH 2 ) were likely the binding sites for anionic Reactive Red 4. It was also found that sulfonate, carboxyl and phosphonate groups played a role in electrostatic interference with the binding of dye molecules. The maximum adsorption capacities of the coke waste were 70.3 ± 11.1 and 24.9 ± 1.8 mg/g at pH 1 and 2, respectively. Kinetic study showed a pseudo-first-order rate of adsorption with respect to the solution. The uptake of Reactive Red 4 was not significantly affected by the high concentration of salts. These results of adsorption performance indicate the coke waste as a potentially economical adsorbent for dye removal

  2. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  3. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: Moussavi@modares.ac.ir [Department of Environmental Health, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mahmoudi, Maryam [Department of Environmental Health, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2009-09-15

    In the present investigation, a porous MgO powder was synthesized and tested for the removal of dyes from aqueous solution. The size of the MgO particles was in the range of 38-44 nm, with an average specific surface area of 153.7 m{sup 2}/g. Adsorption of reactive blue 19 and reactive red 198 was conducted to model azo and anthraquinone dyes at various MgO dosages, dye concentrations, solution pHs and contact times in a batch reactor. Experimental results indicate that the prepared MgO powder can remove more than 98% of both dyes under optimum operational conditions of a dosage of 0.2 g, pH 8 and a contact time of 5 min for initial dye concentrations of 50-300 mg/L. The isotherm evaluations revealed that the Langmuir model attained better fits to the experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacities were 166.7 and 123.5 mg of dye per gram of adsorbent for RB 19 and RR 198, respectively. In addition, adsorption kinetic data followed a pseudo-second-order rate for both tested dyes.

  4. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    Science.gov (United States)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  5. The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution.

    Science.gov (United States)

    Wang, Qi; Luan, Zhaokun; Wei, Ning; Li, Jin; Liu, Chengxi

    2009-10-30

    In this study, the MgCl2/red mud system (MRM) was used to investigate the color removal efficiency of dye solutions. Parameters such as the effect of the dosage of red mud (RM) and MgCl2 have been studied. The effect of pH on the conversion rate of Mg2+ has also been studied. The color removal efficiency of MRM was compared with that of PAC/RM and PAC/NaOH. Meanwhile, the color removal efficiency of RM was compared with that of NaOH. The results show that the MRM system can remove more than 98% of the coloring material at a dosage of 25 g RM/L dye solution and a volume of 1.5 mL MgCl2/L dye solution in the decolorization process of reactive dye, acid dye and direct dye. The color removal efficiency was better than PAC/RM and PAC/NaOH system. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicated that both models provide the best correlation of the experimental data. The decolorization mechanism of MRM was discussed, too. The MRM system was a viable alternative to some of the more conventional forms of chemical treatment of dye solutions and also provided another way to make use of industrial waste red mud.

  6. Removal of Reactive Anionic Dyes from Binary Solutions by Adsorption onto Quaternized Kenaf Core Fiber

    Directory of Open Access Journals (Sweden)

    Intidhar Jabir Idan

    2017-01-01

    Full Text Available The most challenging mission in wastewater treatment plants is the removal of anionic dyes, because they are water-soluble and produce very shining colours in the water. In this regard, kenaf core fiber (KCF was chemically modified by the quaternized agent (3-chloro-2-hydroxypropyltrimethylammonium chloride to increase surface area and change the surface properties in order to improve the removing reactive anionic dyes from binary aqueous solution. The influencing operating factors like dye concentration, pH, adsorbent dosage, and contact time were examined in a batch mode. The results indicate that the percentage of removal of Reactive Red-RB (RR-RB and Reactive Black-5 (RB-5 dyes from binary solution was increased with increasing dyes concentrations and the maximum percentage of removal reached up to 98.4% and 99.9% for RR-RB and RB-5, respectively. Studies on effect of pH showed that the adsorption was not significantly influenced by pH. The equilibrium analyses explain that, in spite of the extended Langmuir model failure to describe the data in the binary system, it is better than the Jain and Snoeyink model in describing the adsorption behavior of binary dyes onto QKCF. Also, the pseudo-second-order model was better to represent the adsorption kinetics for RR-RB and RB-5 dyes on QKCF.

  7. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.

    Science.gov (United States)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-05

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.

    Science.gov (United States)

    Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U

    2016-03-01

    Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of heavy metals ondecolorization of reactive brilliant red by newly isolated microorganisms

    International Nuclear Information System (INIS)

    Nosheen, S.; Arshad, M.

    2011-01-01

    This study involves aerobic decolorisation of reactive azo dye reactive brilliant red 2KBP by newly isolated microbial strains (two bacterial and one fungal strain) in presence of heavy metals including cobalt chloride, ferric chloride, zinc sulphate, copper sulphate and nickel chloride. Many heavy metals are necessary for microbial growth and are required in very small amounts however at higher levels they become toxic. So was the objective of present work to check the effect of concentration of heavy metals on the potential of microbial strains to decolorize azo dyes. All the heavy metals under consideration were added in range of 0.5 gl-1-2.5gl/sup -1/. All heavy metals showed inhibitory effect on decolorization capacity of bacterial as well as fungal strain .At optimum conditions bacterial strains named as B1 and B2 removed 84% and 78% while fungal strain decolorized 90.4% of dye. Cobalt and nickel showed greater inhibitors on% decolorization of dyes than Zinc and iron. Fungal strain showed greater negative effect. Heavy metals might affect enzyme activities and thus reducing removal of dye. (author)

  10. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  11. pH effect on decolorization of raw textile wastewater polluted with reactive dyes by advanced oxidation with uv/h2o2

    NARCIS (Netherlands)

    Racyte, J.; Rimeika, M.; Bruning, H.

    2009-01-01

    The effectiveness of the advanced oxidation process (UV/H2O2) in decolorizing real textile wastewater polluted with commercial reactive dyes - Reactive Yellow 84 and Reactive Red 141 was investigated. All the experiments were performed in a lab-scale reactor with the original high pH of the

  12. Biodecolorization and biodegradation of Reactive Blue by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... Aspergillus sp. effectively decolorized Reactive Blue and other structurally different synthetic dyes. Agitation was found to be an important ... Few chemically different dyes such as Reactive Black (75%), Reactive Yellow (70%),. Reactive Red (33%) and ..... Degradation of azo dyes by the lignin degrading ...

  13. Dicolorization of Reactive Dyes in Aqueous Solutions Using Ionizing Electron Beam Radiation

    Directory of Open Access Journals (Sweden)

    Abbas Behjat

    2009-09-01

    Full Text Available Experiments were carried out to study the effects of high-energy electron beam irradiation on reactive azo dyes (Remazol blue 133%, and Remazol red which are widely used in Yazd textile plants. Laboratory scale experiments were carried out using advanced 10 MeV electron beam accelerator service in Yazd Radiation Processing Center (YRPC. The irradiation dose was varied over 1, 3, 5, 8, and11 kGy. Dicoloration of the prepared dye solution was monitored by comparing the absorption spectra of the samples before and after irradiation. Mineralization of the dye solutions were estimated by measuring COD and PH of the irradiated samples. Our results show a color removal efficeincy of 83% in from different samples by applying 1 kGy irradiation dose. This value increases by up to 96%  under 3kGy irradiation. pH and COD values decrease with increasing absorbed doses.  COD removals for Remazol blue 133% and Remazol  red samples were calculated as 20% and 18% for an absorbed dose of 1 kGy and 60% and 72% for an absorbed dose of 11 kGy, respectively.

  14. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2012-04-01

    Full Text Available Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used. The new dye-bath formulation using the organic salt gave more than 90% dye-fixation. Traditional pad-steam process of dyeing cotton with reactive dyes requires the use of inorganic electrolyte, sodium-chloride, and alkali, sodium-carbonate, to ensure effective dye consumption and fixation. These inorganic chemicals when drained generate heavy contents of dissolved solids and oxygen demand in the effluent leading to environmental pollution. Thus, Tetrasodium N, N-biscarboxylatomethyl-L-Glutamate was used in place of inorganic electrolyte and alkali to improve effluent quality. A significant increase in dye-fixation and ultimate color-yield was obtained with same colorfastness properties of the dyed fabric comparing to the traditional pad-steam dye-bath formulation.

  15. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  16. Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%.

    Science.gov (United States)

    Kamel, M M; Helmy, H M; Mashaly, H M; Kafafy, H H

    2010-01-01

    The dyeing of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% has been studied with both conventional and ultrasonic techniques. The effect of dye concentration, dye bath pH, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with both techniques were compared. Colour strength values obtained were found to be higher with ultrasonic than with conventional heating. The results of fastness properties of the dyed fabrics were studied. X-ray and Scanning Electron Microscope SEM were carried out on dyed samples using both methods of dyeing to find out an explanation for the better dyeability of acrylic fabrics with (US) method. Dyeing kinetics of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% using conventional and ultrasonic conditions were compared. The time/dye-uptake isotherms are revealing the enhanced dye-uptake in the second phase of dyeing. The values of dyeing rate constant, half-time of dyeing and standard affinity and ultrasonic efficiency have been calculated and discussed.

  17. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  18. Mycoremediation of congo red dye by filamentous fungi.

    Science.gov (United States)

    Bhattacharya, Sourav; Das, Arijit; G, Mangai; K, Vignesh; J, Sangeetha

    2011-10-01

    Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was to study the factors influencing mycoremediation of Congo red. Several basidiomycetes and deuteromycetes species were tested for the decolourisation of Congo red (0.05 g/l) in a semi synthetic broth at static and shaking conditions. Poor decolourisation was observed when the dye acted as the sole source of nitrogen, whereas semi synthetic broth supplemented with fertilizer resulted in better decolourisation. Decolourisation of Congo red was checked in the presence of salts of heavy metals such as mercuric chloride, lead acetate and zinc sulphate. Decolourisation parameters such as temperature, pH, and rpm were optimized and the decolourisation obtained at optimized conditions varied between 29.25- 97.28% at static condition and 82.1- 100% at shaking condition. Sodium dodecyl sulphate polyacrylamide gel electrophoretic analysis revealed bands with molecular weights ranging between 66.5 to 71 kDa, a characteristic of the fungal laccases. High efficiency decolourisation of Congo red makes these fungal forms a promising choice in biological treatment of waste water containing Congo red.

  19. Mycoremediation of Congo red dye by filamentous fungi

    Directory of Open Access Journals (Sweden)

    Sourav Bhattacharya

    2011-12-01

    Full Text Available Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was to study the factors influencing mycoremediation of Congo red. Several basidiomycetes and deuteromycetes species were tested for the decolourisation of Congo red (0.05 g/l in a semi synthetic broth at static and shaking conditions. Poor decolourisation was observed when the dye acted as the sole source of nitrogen, whereas semi synthetic broth supplemented with fertilizer resulted in better decolourisation. Decolourisation of Congo red was checked in the presence of salts of heavy metals such as mercuric chloride, lead acetate and zinc sulphate. Decolourisation parameters such as temperature, pH, and rpm were optimized and the decolourisation obtained at optimized conditions varied between 29.25- 97.28% at static condition and 82.1- 100% at shaking condition. Sodium dodecyl sulphate polyacrylamide gel electrophoretic analysis revealed bands with molecular weights ranging between 66.5 to 71 kDa, a characteristic of the fungal laccases. High efficiency decolourisation of Congo red makes these fungal forms a promising choice in biological treatment of waste water containing Congo red.

  20. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    Energy Technology Data Exchange (ETDEWEB)

    Mulyanto, Subur, E-mail: subur.mulyanto@poltekba.ac.id [Graduate Program of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Department of Mechanical Engineering, State Polytechnic of Balikpapan, Jl. Soekarno-Hatta Km.8 Balikpapan (Indonesia); Suyitno,, E-mail: suyitno@uns.ac.id; Rachmanto, Rendy Adhi, E-mail: rendy.ar@gmail.com; Hidayat, Lullus Lambang Govinda, E-mail: lulus-l@yahoo.com; Hadi, Syamsul, E-mail: syamsulhadi@ft.uns.ac.id [Department of Mechanical Engineering, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Wibowo, Atmanto Heru, E-mail: aheruwibowo@yahoo.com [Department of Chemistry, SebelasMaret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  1. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    International Nuclear Information System (INIS)

    Mulyanto, Subur; Suyitno,; Rachmanto, Rendy Adhi; Hidayat, Lullus Lambang Govinda; Hadi, Syamsul; Wibowo, Atmanto Heru

    2016-01-01

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to the Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.

  2. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    Science.gov (United States)

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  3. Effect of viscosity, basicity and organic content of composite flocculant on the decolorization performance and mechanism for reactive dyeing wastewater

    Institute of Scientific and Technical Information of China (English)

    Yuanfang Wang; Baoyu Gao; Qinyan Yue; Yah Wang

    2011-01-01

    A coagulation/flocculation process using the composite floceulant polyaluminum chloride-epichlorohydrin dimethylamine (PAC-EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2BP dye).The effect of viscosity (η),basicity (B =[OH]/[Al]) and organic content (Wp) on the flocculation performance as well as the mechanism of PAC-EPI-DMA flocculant were investigated.The η was the key factor affecting the dye removal efficiency of PAC-EPI-DMA.PAC-EPI-DMA with an intermediate η (2400 mPa-sec) gave higher decolorization efficiency by adsorption bridging and charge neutralization due to the co-effect of PAC and EPI-DMA polymers.The Wp of the composite flocculant was a minor important factor for the flocculation.The adsorption bridging of PAC-EPI-DMA with η of 300 or 4300 mPa.sec played an important role with the increase of Wp,whereasthe charge neutralization of them was weaker with the increase of Wp.There was interaction between Wp and B on the removal of reactive dye.The composite flocculant with intermediate viscosity and organic content was effective for the treatment of reactive dyeing wastewater,which could achieve high reactive dye removal efficiency with low organic dosage.

  4. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    International Nuclear Information System (INIS)

    Cardoso, Natali F.; Lima, Eder C.; Royer, Betina; Bach, Marta V.; Dotto, Guilherme L.; Pinto, Luiz A.A.; Calvete, Tatiana

    2012-01-01

    Highlights: ► Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. ► The maximum adsorption capacities were found at pH 2 and 298 K. ► The values were 482.2 and 267.2 mg g −1 for SP and AC, respectively. ► Adsorption was exothermic, spontaneous and favorable. ► SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g −1 for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4–99.0% and 93.6–97.7%, respectively, of the dye mixtures containing high saline concentrations.

  5. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Natali F. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: profederlima@gmail.com [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Royer, Betina; Bach, Marta V. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Dotto, Guilherme L.; Pinto, Luiz A.A. [Unit Operation Laboratory, School of Chemistry and Food, Federal University of Rio Grande, FURG, R. Engenheiro Alfredo Huch 475, 96201-900, Rio Grande, RS (Brazil); Calvete, Tatiana [Universitary Center La Salle (UNILASALLE), Av. Victor Barreto 2288, 92010-000, Canoas, RS (Brazil)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. Black-Right-Pointing-Pointer The maximum adsorption capacities were found at pH 2 and 298 K. Black-Right-Pointing-Pointer The values were 482.2 and 267.2 mg g{sup -1} for SP and AC, respectively. Black-Right-Pointing-Pointer Adsorption was exothermic, spontaneous and favorable. Black-Right-Pointing-Pointer SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g{sup -1} for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4-99.0% and 93.6-97.7%, respectively, of the dye mixtures containing high saline concentrations.

  6. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay

    International Nuclear Information System (INIS)

    Huang Jianhua; Liu Yuanfa; Jin Qingzhe; Wang Xingguo; Yang Jun

    2007-01-01

    The removal of water-soluble Reactive Red MF-3B from aqueous media by sonication-surfactant-modified attapulgite clay was studied in a batch system. The surfactant used was octodecyl trimethyl ammonium chloride (OTMAC). Adsorbent characterizations were investigated using X-ray diffraction, infrared spectroscopy, and surface area analysis. The effects of pH, contact time, initial solute concentration, adsorbent dose, and temperature on the adsorption of Reactive Red MF-3B onto modified clay were investigated. On the basis of kinetic studies, specific rate constants involved in the processes were calculated and second-order adsorption kinetics was observed in the case. Film diffusion was found to be the rate-limiting step. Reactive Red MF-3B adsorption was found to increase with increase temperature. The Reactive Red MF-3B equilibrium adsorption data were fitted to Freundlich and Langmuir isotherm models, the former being found to provide the better fit of the experimental data. Thermodynamic parameters were calculated. From the results it can be concluded that the surfactant-modified clay could be a good adsorbent for treating Reactive Red MF-3B-contaminated waters

  7. STATISTICAL INVESTIGATION OF ADSORPTION OF TWO REACTIVE TEXTILE DYES BY VARIOUS ADSORBENTS

    Directory of Open Access Journals (Sweden)

    Ümmühan DANIŞ

    2002-03-01

    Full Text Available Textile industry, in which uses the dyestuffs containing coloured and complex chemical compounds, is both water consumer and water pollutant. The removal of these compounds from the wastewaters is one of the most important problems in the textile industry. In this study, the adsorption of two reactive dyes (Red Px and Yellow P onto Aşkale and Balkaya lignites, Bensan clay and powdered active carbon (PAC from aqueous solution was statistically investigated. The adsorption time, dye concentration, solid/liquid ratio and mixing rate were chosen as parameters. The effects of these parameters on the amount of dye adsorbed by the adsorbents were determined. The results obtained have been statistically evaluated by using the stepwise method and SPSS Sortware version (9.1. The experimental observations and statistical evaluations shown that the effective parameters on the adsorption are equilibrium dye concentration and solid/liquid ratio. It was found that the adsorptive behaviours of both lignites and clay are similar to each other, but powdered active carbon displays different adsorptive behaviour. Finally, the empirical equations showing the relation between amount of dye adsorbed and the effective parameters were developed.

  8. Electrochemical Treatment of Wastewater Containing Mixed Reactive Dyes Using Carbon Nanotube Modified Cathode Electrodes

    Directory of Open Access Journals (Sweden)

    Nader Djafarzadeh

    2016-11-01

    Full Text Available Nowadays, advanced electrochemical oxidation processes are promising methods for the treatment of wastewaters containing organic dyes. One of these methods is the Electro-Fenton (EF technique in which an electrical current is applied to the cathode and anode electrodes to promote electrochemical reactions that generate hydroxyl radicals which mineralize organic pollutants and remove them from wastewater. To carry out the Electro-Fenton process iIn this work, the carbon paper (CP electrode was initially modified with carbon nanotubes (CNT to produce the CP-CNT electrode which was used as the cathode to remove a mixture of organic dyestuff (containing Reactive Blue 69, Reactive Red 195, and Reactive Yellow 84 from wastewaters. Comparison of the two types of cathode electrodes (i.e., CNT and the modified CP-CNT showed that the CP-CNT outperformed the CP electrode. The EF process was employed to treat 500 ml of a mixture of dyes (50 mg/L of each dye containing sodium soulfate and Fe+3 ions. The results revealed that the highest color removal efficiency was achieved when a current of 300 mA was applied for 210 min. COD measurments were used to calculate the effective current and power consumption. It was found that the 300 mA current applied over a period of 210 min yielded the highest effective current and the lowest power consumption. The amount of dyes mineralized by the EF process in the dye solution indicated that 78% of the initial COD had been removed under the above conditions. It may be concluded that the Electro-Fenton process can be successfully used for the treatment of wastewaters containing mixtures of dye pollutants. Cathode electrode type, electrical current, and electrolysis duration were identified as the parameters affecting the process.

  9. Statistical Optimization of Conditions for Decolorization of Synthetic Dyes by Cordyceps militaris MTCC 3936 Using RSM

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur

    2015-01-01

    Full Text Available In the present study, the biobleaching potential of white rot fungus Cordyceps militaris MTCC3936 was investigated. For preliminary screening, decolorization properties of C. militaris were comparatively studied using whole cells in agar-based and liquid culture systems. Preliminary investigation in liquid culture systems revealed 100% decolorization achieved within 3 days of incubation for reactive yellow 18, 6 days for reactive red 31, 7 days for reactive black 8, and 11 days for reactive green 19 and reactive red 74. RSM was further used to study the effect of three independent variables such as pH, incubation time, and concentration of dye on decolorization properties of cell free supernatant of C. militaris. RSM based statistical analysis revealed that dye decolorization by cell free supernatants of C. militaris is more efficient than whole cell based system. The optimized conditions for decolorization of synthetic dyes were identified as dye concentration of 300 ppm, incubation time of 48 h, and optimal pH value as 5.5, except for reactive red 31 (for which the model was nonsignificant. The maximum dye decolorizations achieved under optimized conditions for reactive yellow 18, reactive green 19, reactive red 74, and reactive black 8 were 73.07, 65.36, 55.37, and 68.59%, respectively.

  10. Mass transfer of Disperse Red 153 and its crude dye in supercritical CO2 fluid

    Directory of Open Access Journals (Sweden)

    Zheng Huan-Da

    2017-01-01

    Full Text Available In this paper, polyester fibers were dyed with Disperse Red 153 and its crude dye in supercritical CO2. The effect of dyeing temperature, dyeing time, dyeing pressure, as well as auxiliaries in the commercialized Disperse Red 153 on the dyeing performance of polyester fibers was investigated. The obtained results showed that the dyeing effect of crude dye for polyester was better than that of Disperse Red 153 in the same dyeing condition. The color strength values of the dyed polyester samples were increased gradually with the increase of temperature and pressure since mass transfer of dye was improved. In addition, the mass transfer model of Disperse Red 153 in supercritical CO2 was also proposed.

  11. Design and Application of Electrochemical Processes for Decolorization Treatment of Nylanthrene Red dye Bearing Wastewaters

    Directory of Open Access Journals (Sweden)

    D. Marmanis

    2016-04-01

    Full Text Available The purpose of this paper is the investigation of the capability of electrochemical methods, such as electrocoagulation, electrooxidation and electro-Fenton for decolorization and degradation of synthetic aqueous solutions and actual dye house effluents containing nylanthrene red reactive dye. All electrochemical experiments with the synthetic dye solutions were conducted in electrochemical cell of volume 500 ml containing 200 mL of dye solution at concentration 50 mg/L and interelectrode distance of 1 cm. The three different electrochemical processes were analyzed, and their removal efficiencies were measured and evaluated. In addition, a flow diagram is designed for a continuously operated electrochemical process for remediation of synthetic and actual dye house effluents laden with nylanthrene dye. In the electrocoagulation process with aluminum electrodes, the colored aqueous dye solution was treated at the applied current densities of 5, 10 and 15 mA/cm2 and was quantitatively decolorized in 11, 9 and less than 6 minutes of electroprocessing time respectively. The electrooxidation process conducted with Ti/Pt and boron doped diamond (BDD electrodes, at the applied current density of 10 mA/cm2 led to the quantitative decolorization and destruction of the dye in 25 and 15 min respectively. In the electro-Fenton process with iron electrodes, supply of added hydrogen peroxide and applied current density of 10 mA/cm2, complete decolorization and degradation of the nylanthrene red dye occurred in 6 min. The actual polyamide textile dyeing effluent of same volume 200 mL with initial turbidity of 114 NTU and COD of 1755 mg/L was treated by electrocoagulation at the same applied current density of 10 mA/cm2. The turbidity was quantitatively eliminated in only 10 min, while COD was reduced by 74.5 % in 40 minutes of electrolysis time.

  12. The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.

    Science.gov (United States)

    Peternel, L; Kusic, H; Koprivanac, N; Locke, B R

    2006-05-01

    In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.

  13. Removal of Reactive Red 141 Dye from Synthetic Wastewater by Electrocoagulation Process: Investigation of Operational Parameters

    Directory of Open Access Journals (Sweden)

    Elham Rahmanpour Salmani

    2016-01-01

    Full Text Available Release of textile industries waste especially their dying effluent impose a serious pollution on the environment. Reactive dyes are one of the most used dyes which are recalcitrant to conventional treatment processes. In the performed project, the effectiveness of electrocoagulation process was studied on decolorization. RR141 was selected as model dye and treatment process was performed in a simple batch of electrocoagulation (EC cell using iron electrodes. Central Composite Design (CCD was used to plan study runs. Experiments were done under 5 levels of various operational parameters at bench scale. Initial concentration of dye was varied among 50 and 500ppm, pH ranging from 4-12; retention time was ranged between 3-30 minutes, 1-3cm was selected as the distance between electrodes, and current intensity studied under the range of 5-30 mA/cm2. EC treatment process of dyestuff wastewater was satisfactory at high levels of current density, pH, and retention time. While increasing the initial dye concentration and electrodes gap had a negative effect on decolorization performance. Determined optimal conditions to treat 200ml of sample were including pH: 9.68, electrode gap: 1.58cm, dye concentration: 180ppm, retention time: 10.82 minutes, and current intensity: 22.76mA/cm2. Successful removal of the model dye about 99.88% was recorded in the mentioned values of variables. Simple design and operation of the experiments can be an interesting option for implementation and applying of inexpensive electrocoagulation treatment process which was successful to reach nearly a complete decolorization.

  14. Mycoremediation of congo red dye by filamentous fungi

    OpenAIRE

    Bhattacharya, Sourav; Das, Arijit; G, Mangai.; K, Vignesh.; J, Sangeetha.

    2011-01-01

    Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was t...

  15. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge

    International Nuclear Information System (INIS)

    Dojcinovic, Biljana P.; Roglic, Goran M.; Obradovic, Bratislav M.; Kuraica, Milorad M.; Kostic, Mirjana M.; Nesic, Jelena; Manojlovic, Dragan D.

    2011-01-01

    Highlights: → Decolorization of four reactive textile dyes using non-thermal plasma reactor. → Influence of applied energy on decolorization. → Effects of initial pH and addition of homogeneous catalysts. → Toxicity evaluation using the brine shrimp as a test organism. - Abstract: Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H 2 O 2 , Fe 2+ and Cu 2+ ) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H 2 O 2 in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  16. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Dojcinovic, Biljana P. [Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, Studentski trg 12-16, 11000 Belgrade (Serbia); Roglic, Goran M. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia); Obradovic, Bratislav M., E-mail: obrat@ff.bg.ac.rs [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kuraica, Milorad M. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kostic, Mirjana M. [Faculty of Technology and Metallurgy, Department of Textile Engineering, Karnegijeva 4, 11000 Belgrade (Serbia); Nesic, Jelena; Manojlovic, Dragan D. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia)

    2011-08-30

    Highlights: {yields} Decolorization of four reactive textile dyes using non-thermal plasma reactor. {yields} Influence of applied energy on decolorization. {yields} Effects of initial pH and addition of homogeneous catalysts. {yields} Toxicity evaluation using the brine shrimp as a test organism. - Abstract: Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H{sub 2}O{sub 2}, Fe{sup 2+} and Cu{sup 2+}) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H{sub 2}O{sub 2} in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  17. Decolourization and degradation of azo Dye, Synozol Red HF6BN ...

    African Journals Online (AJOL)

    Decolourization and degradation of azo Dye, Synozol Red HF6BN, by Pleurotus ostreatus. Sidra Ilyas, Skinder Sultan Sultan, Abdul Rehman. Abstract. The present paper focuses on the use of fungus, Pleurotus ostreatus, to decolorize and degrade azo dye, Synazol Red HF6BN. Decolorization study showed that P.

  18. Clinical and immunological investigations of respiratory disease in workers using reactive dyes.

    Science.gov (United States)

    Docker, A; Wattie, J M; Topping, M D; Luczynska, C M; Newman Taylor, A J; Pickering, C A; Thomas, P; Gompertz, D

    1987-01-01

    A questionnaire survey of over 400 workers handling reactive dyes showed that over 15% had work related respiratory or nasal symptoms. Forty nine employees with symptoms were referred to chest clinics for detailed assessment. It was considered that in 19 the symptoms could be attributed to an irritant response to a variety of chemicals, including hydrochloric acid vapour, sulphur dioxide, and reactive dyes. Symptoms in 24 were attributed to an allergic reaction to a specific agent; in most (21) to one or more reactive dyes. Two patterns of allergic lower respiratory symptoms were identified; an immediate response of short duration and a longer lasting response, usually of several hours, sometimes accompanied by nocturnal asthma. A radioallergosorbent test (RAST) screen containing the most commonly used reactive dyes was used to detect specific IgE. Allergic symptoms to reactive dyes were strongly associated with specific IgE (17/21 employees) and atopy (18/21). Irritant symptoms were also associated with atopy (13/19) but only weakly associated with specific IgE (7/19). PMID:3651352

  19. ZnO/spiral-shaped glass for solar photocatalytic oxidation of Reactive Red 120

    Directory of Open Access Journals (Sweden)

    Montaser Y. Ghaly

    2017-05-01

    Full Text Available ZnO/glass spiral (GS was prepared by immobilization of ZnO on GS with facile method, and was characterized by X-ray diffraction analysis (XRD, scanning electron microscope (SEM and the crystallite size of ZnO on GS surface was calculated. SEM showed rod-like shape of ZnO particles on GS surface. Photocatalytic activity of prepared immobilized photocatalyst was investigated for decolourization and degradation of C.I. Reactive Red 120 (RR-120 dye under sunlight. The kinetics of decolourization and degradation removal has been investigated. The effect of pH on decolourization and degradation of dye was studied. The decolourization and degradation of dye were followed by pseudo-first order reaction. The decolourization and degradation of RR-120 dye were enhanced by H2O2 addition to definite dosage beyond that the effect is diminished. Also, the reusability of immobilized ZnO on GS was tested for photocatalytic degradation of dye and it was worth noting that it has high efficiency with slight decrease (5% after five successive runs.

  20. Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents.

    Science.gov (United States)

    Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi

    2017-02-01

    A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Degradation kinetics of reactive dye by UV/H2O2/US process under continuous mode operation.

    Science.gov (United States)

    Fung, P C; Poon, C S; Chu, C W; Tsui, S M

    2001-01-01

    Degradation of a dye, C. I . Reactive Red 120, in dyeing waatewater by the process o UV/H2O2/US was studied with a bench-scale reactor under the continuous mode of operation. The effects of dyeing wastewater flow rate and the feeding rate of an oxidant, H2O2, on the color removal efficiency of the process were investigated. The significance of ultrasonic (US) combined with UV irradiation was also investigated and the performances of the process on color removal were evaluated. The results showed that the decoloration process followed a pseudo first-order kinetic model and the UV light is the most significant factor on dye removal. Besides, at higher flow rates, incomplete color removal was observed due to relatively insufficient irradiation time (low degradation rate). In order to achieve a higher degradation rate, the feeding rate of H2O2 should be increased.

  2. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.

    Science.gov (United States)

    Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R

    2006-04-15

    The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.

  3. Photocatalytic Study of New Immobilized TiO2 Technique Towards Degradation of Reactive Red 4 Dye

    Directory of Open Access Journals (Sweden)

    Ain S. K.

    2016-01-01

    Full Text Available The study on TiO2 for wastewater remediation has gained interest among researchers. However, the application of this photocatalyst is limited due to non-recyclability of conventional TiO2. Thus, immobilization technique has been developed to solve this issue. Hence, a comparison study between two types of immobilized photocatalysts namely titanium dioxide (TiO2 and TiO2 mixed with polyvinyl alcohol (PVA has been conducted in this work to observe the significant effect of PVA polymer in photocatalysis reaction of reactive red 4 (RR4 dye. Double sided adhesive tape (DSAT was used as thin layer binder in this immobilization system. The result shows that the photocatalytic performance of TiO2-PVA/DSAT was higher than that of TiO2/DSAT under both normal UV and visible light irradiations due to the conjugated unsaturated polymer from PVA serve as electron donor for TiO2 thus increase the photocatalysis process. Besides, TiO2-PVA/DSAT was also found to possess much better adhesion strength to the support material compared to TiO2/DSAT. Based on the findings, this TiO2 immobilization system is expected to be beneficial in the industrial wastewater treatment. Thus, further study to improve the photocatalytic activity of this immobilized TiO2 will be in our future work.

  4. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent.

    Science.gov (United States)

    Munagapati, Venkata Subbaiah; Yarramuthi, Vijaya; Kim, Yeji; Lee, Kwon Min; Kim, Dong-Su

    2018-02-01

    The adsorption characteristics of Reactive Black 5 (RB5) and Cong Red (CR) onto Banana Peel Powder (BPP) from aqueous solution were investigated as a function of pH, contact time, initial dye concentration and temperature. The BPP was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) analysis. FTIR results revealed that hydroxyl (-OH), amine (-NH) and carboxyl (-C˭O) functional groups present on the surface of BPP. The SEM results show that BPP has an irregular and porous surface morphology which is adequate for dye adsorption. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models. Experimental results were best represented by the Langmuir isotherm model. The adjustments of models were confirmed by the Chi-square (χ 2 ) test and the correlation coefficients (R 2 ). The maximum monolayer adsorption capacities of RB5 and CR on BPP calculated from Langmuir isotherm model were 49.2 and 164.6mg/g at pH 3.0 and 298K. Experimental data were also tested in terms of adsorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption processes of both RB5 and CR followed well pseudo-second-order kinetic models. The calculated thermodynamic parameters ΔG°, ΔH° and ΔS° showed that the adsorption of RB5 and CR onto BPP was feasible, spontaneous and endothermic in the temperature range 298-318K. The RB5 and CR were desorbed from BPP using 0.1M NaOH. The recovery for both anionic dyes was found to be higher than 90%. Based on these it can be concluded that BPP can be used as an effective, low cost, and eco-friendly adsorbent for CR removal than RB5 from aqueous solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  6. Removal of Reactive Red 198 by Nanoparticle Zero Valent Iron in the Presence of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Siroos Shojaei

    2017-04-01

    Full Text Available Although dyes are widely used in textile industries, they are carcinogenic, teratogenic and mutagenic. Industries discharge their wastewater containing a variety of colors into water resources and make harmful effect on the environment. The present study aims to Evaluate removal of reactive red 198 by nanoparticle zero valent iron (NZVI in the presence of hydrogen peroxide from aqueous solution. The effective parameters on the removal of dye such as the hydrogen peroxide concentration of NZVI, contact time, pH and dye concentration were investigated and optimized. According to the results, the combination of NZVI with hydrogen peroxide is more effective than single hydrogen peroxide. At pH = 4, contact time= 40 min, 200 M of hydrogen peroxide, dye concentration= 75 mg/L and concentration of NZVI 2g/L, color removal was achieved 91% approximately. Based on the results of experiments, using hydrogen peroxide- NZVI has high efficiency in removal of azo dye type.

  7. Insights into the Synergistic Effect of Fungi and Bacteria for Reactive Red Decolorization

    Directory of Open Access Journals (Sweden)

    Dandan Zhou

    2014-01-01

    Full Text Available Bacterial contamination is a prevalent problem in fungal dye wastewater decolorization that prevents the development of this technology in practical engineering. New insight into the relationship between fungi and bacteria is given in terms of settleability, bioadsorption, and biodegradation, which all confirm their synergistic effect. Sterilization is implied to be not the only mechanism for fungi decolorization. When the fungi and bacteria isolated from the activated sludge were cocultured, fungi removed more than 70% of the reactive red through sole bioadsorption in 5 min and enhanced the settleability of the bacteria group from 7.7 to 18.4 in the aggregation index. Subsequently, the bacteria played a more significant role in dye biodegradation according to the ultraviolet-visible spectrum analysis. They further enhanced the decolorization efficiency to over 80% when cocultured with fungi. Therefore, the advanced bioadsorption and settleability of fungi, combined with the good dye biodegradation ability of bacteria, results in the synergistic effect of the coculture microorganisms.

  8. Experimental Study of Dye Removal from Industrial Wastewater by Membrane Technologies of Reverse Osmosis and Nanofiltration

    Directory of Open Access Journals (Sweden)

    Mohammad Fadhil Abid

    2012-12-01

    Full Text Available Currently, biological method has been utilized in the treatment of wastewater -containing synthetic dyes used by textile industries in Iraq. The present work was devoted to study the operating feasibility using reverse osmosis (RO and nanofiltration (NF membrane systems as an alternative treatment method of wastewater discharged from Iraqi textile mills. Acid red, reactive black and reactive blue dyes were selected, based on the usage rate in Iraq. Effects of dye concentration, pH of solution, feed temperature, dissolved salts and operating pressure on permeate flux and dye rejection were studied. Results at operating conditions of dye concentration?=?65 mg/L, feed temperature?=?39?C and pressure?=?8 bar showed the final dye removal with RO membrane as 97.2%, 99.58% and 99.9% for acid red, reactive black and reactive blue dyes, respectively. With NF membrane, the final dye removal were as 93.77%, 95.67%, and 97% for red, black and blue dyes, respectively. The presence of salt (particularly NaCl in the dye solution resulted in a higher color removal with a permeate flux decline. It was confirmed that pH of solution had a positive impact on dye removal while feed temperature showed a different image. A comparison was made between the results of dye removal in biological and membrane methods. The results showed that membrane method had higher removal potential with lower effective cost. The present study indicates that the use of NF membrane in dye removal from the effluent of Iraqi textile mills is promising.

  9. Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2014-08-01

    Full Text Available Dyes are an important class of pollutants and disposal of them in precious water resources must be avoided. Among various methods adsorption occupies a prominent place in dye removal. The aim of this study is to evaluate adsorption of dye Reactive Red 198 and Blue 19 (RR-198 & RB-19 (on to Aloe Vera plant ash from aqueous solutions. In this research Aloe Vera ash was prepared at laboratory conditions and then after shredding, screened by ASTM standard sieve with 60 -200 mesh sizes and the effects of pH (3-12, adsorbent dose (0.1-1 g/L, contact time (10-60 min, initial dye concentration (10-160 mg/L and temperature were investigated in the experiment. In different samples Dye concentration was measured by spectrophotometer at 592 nm and 520 nm wavelength for RR198 and RB19 respectively. Also the Langmuir and Freundlich adsorption isotherms were determined in order to describe the relations between the colored solutions and the adsorbent. The results of this study showed that acidic conditions were more conducive to enhance the hydrolysis rate than basic ones as the decomposition was optimum at pH 3. The adsorption rate of RR-198 and RB-19 dyes was increased by increasing of initial dye concentration, increasing of adsorbent dose in 0.1 to 0.4 mg/L. Dye solution was decolorized in a relatively short time (20 min. The efficiencies for RR-198 and RB- 19 reactive dyes were 82.68% and 90.42% respectively. The maximum adsorption capacity (qmax has been found to be 80.152 mg/g for RR-198 reactive dye and 88.452 mg/g for Blue 19 reactive dye. Adsorption isotherms were examined by Freundlich and Langmuir isotherm that finally showed the Freundlich multilayer isotherm has better accordance with dates. The results indicate that Aloe Vera ash plant as a natural and inexpensive adsorbent is a suitable adsorbent for the adsorption of textile dyes.

  10. Removal of Reactive Dyes (Green, Orange, and Yellow from Aqueous Solutions by Peanut Shell Powder as a Natural Adsorbent

    Directory of Open Access Journals (Sweden)

    Hosein Nadi

    2012-11-01

    -bireactive dye removal. Appl Catal B Environ 2006;67(1:86-92. 2. Shu HY, Huang CR. Degradation of commercial ago dyes in water using ozonation and UV enhanced ozonation process. Chemosphere 1995;31(8:3813-25. 3. Clarke EA, Anliker R. Organic dyes and pigments. In The Handbook of Environmental Chemistry. Berlin: Springer-Verlag; 1980;3(part A:181-215. 4. Riu J, Schönsee I, Barceló D. Determination of sulfonated azo dyes in water and wastewater. TrAC Trends Anal Chem1997;16(7:405-19. 5. Venkatamohan S, Mamatha VVS, Karthikeyan J. Removal of colour from acid and direct dyes by adsorption onto silica fumes. Fresenius Envion Bull 1998;7(1:51-8. 6. da Silveira Neta JJ, Moreira GC, da Silva CJ, Reis C, Reis EL. Use of polyurethane foams for the removal of the Direct Red 80 and Reactive Blue 21 dyes in aqueous medium. Desalination 2011;281:55–60. 7. Paul J, Naik DB, Sabharwal S. High energy induced decoloration and mineralization of reactive red 120 dye in aqueous solution:a steady state and pulse radiolysis study. Radiat Phys Chem. 2010;79(7:770-6. 8. Merzouk B, Gourich B, Madani K, Vial Ch, Sekki A. Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination 2011;272(1-3:246-53. 9. Gholami Borujeni F, Mahvi AH, Naseri S, Faramarzi MA, Nabizadeh R, Alimohammadi M. Application of immobilized horseradish peroxidase for removal and detoxification of azo dye from aqueous solution. Res J Chem Environ 2011;15:217-22. 10. Gholami-Borujeni F, Mahvi AH, Nasseri S, Faramarzi MA, Nabizadeh R, Alimohammadi M. Enzymatic treatment and detoxification of acid orange 7 from textile wastewater. Appl Biochem Biotechnol 2011;165(5-6:1274-84. 11. Dehghani MH, Mesdaghinia AR, Nasseri S, Mahvi AH, Azam K. Application of SCR technology for degradation of reactive yellow dye in aqueous solution. Water Qual Res J Can 2008;43(2/3:183-7. 12. Mahvi AH, Ghanbarian M, Nasseri S, Khairi A. Mineralization and discoloration of

  11. Bioremediation of acid fast red dye by Streptomyces globosus under ...

    African Journals Online (AJOL)

    Two different azo dyes known as acid fast red (AFR) and Congo red (CR) were examined for their decolorization by five strains of actinomycetes (Streptomyces globosus, Streptomyces alanosinicus, Streptomyces ruber, Streptomyces gancidicus, and Nocardiopsis aegyptia) under shake and static conditions. Streptomyces ...

  12. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  13. Adsorption of reactive Remazol Red RB dye of aqueous solution using zeolite of the coal ash and evaluation of acute toxicity with Daphnia similis

    International Nuclear Information System (INIS)

    Magdalena, Carina Pitwak

    2010-01-01

    In this study, the capacity of zeolite synthesized from coal ash in the removal of Remazol Red dye aqueous solution was investigated by batch mode operation. The equilibrium was attained after 360 min of contact time. The adsorption rate followed the kinetic model of pseudo-second-order. The equilibrium data obtained fitted to Langmuir adsorption isotherm showing the adsorption capacity of up to 1.20mg g-1. The efficiency of adsorption was between 75 to 91% in the equilibrium time. In order to obtain the best conditions for removal of this dye, the influence of the following parameters was: initial concentration of the dye, pH of the aqueous solution, dose of adsorbent and temperature. The thermodynamic parameters were evaluated showing that the adsorption of Remazol red on the zeolite is of a spontaneous nature. Experiments by adding NaCl and Na 2 SO 4 were carried out to simulate the real conditions of the effluents from the dyeing bath and to evaluate the influence of these chemical compounds in the phenomenon of adsorption. The equilibrium data of adsorption of Remazol red on the zeolite was achieved in a shorter time in the presence of increasing concentrations of salts in solution and an increase in adsorption capacity. The efficiency of the study was evaluated as a treatment for acute toxicity using Daphnia similis microcrustacean. (author)

  14. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27

    OpenAIRE

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Background Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. Methods In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by ...

  15. Decolorization of six synthetic dyes by fungi

    OpenAIRE

    Hartikainen, E. Samuel; Miettinen, Otto; Hatakka, Annele; Kähkönen, Mika A.

    2016-01-01

    To find out ability of fourteen basidiomycetes and four ascomycetes strains to grow in the presence of synthetic colour dyes and to degrade them, fungi were cultivated on the malt agar plates containing 0.5 g kg-1 dye, either Remazol Brilliant Blue R, Remazol Brilliant Yellow GL, Remazol Brilliant Orange 3 R, Reactive Blue 4, Remazol Brilliant Red F3B or Reactive Black 5. Fungi representing basidiomycetes were Phlebia radiata (FBCC 43), Tremella encephala (FBCC 1145), Dichomitus squalens (FBC...

  16. Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules.

    Science.gov (United States)

    Chaudhari, Ashvini U; Paul, Dhiraj; Dhotre, Dhiraj; Kodam, Kisan M

    2017-10-01

    Treatment of textile wastewater containing anthraquinone dye is quite a huge challenge due to its complex aromatic structure and toxicity. Present study deals with the degradation and detoxification of anthraquinone dye reactive blue 4 using aerobic bacterial granules. Bacterial granules effectively decolorized reactive blue 4 at wide range of pH (4.0-11.0) and temperature (20-55 °C) as well as decolorized and tolerated high concentration of reactive blue 4 dye upto 1000 mg l -1 with V max 6.16 ± 0.82 mg l -1 h -1 and K m 227 ± 41 mg l -1 . Metagenomics study evaluates important role of Clostridia, Actinobacteria, and Proteobacterial members in biotransformation and tolerance of high concentrations of reactive blue 4 dye. Up-regulation of xenobiotic degradation and environmental information processing pathways during dye exposure signifies their noteworthy role in dye degradation. Biotransformation of dye was confirmed by significant decrease in the values of total suspended solids, biological and chemical oxygen demand. The metabolites formed after biotransformation was characterized by FT-IR and GC-MS analysis. The reactive blue 4 dye was found to be phytotoxic, cytotoxic and genotoxic whereas its biotransformed product were non-toxic. This study comprehensively illustrates that, bacterial aerobic granules can be used for eco-friendly remediation and detoxification of wastewater containing high organic load of anthraquinone dye. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The importance of thin layer chromatography and UV microspectrophotometry in the analysis of reactive dyes released from wool and cotton fibers.

    Science.gov (United States)

    Wiggins, Kenneth G; Holness, Julie-Ann; March, Bridget M

    2005-03-01

    Samples of reactively-dyed wool and cotton were obtained from a range of dye manufacturers, dye distributors and the Forensic Science Service (FSS) Fibre Data Collection. The wool fibers were red in color and had previously been compared using comparison microscopy (CM), visible range microspectrophotometry (VS) and thin layer chromatography (TLC). The cotton fibers were blue and black in color and had not been previously compared. Red, blue and black fibers were chosen because they are often encountered in casework. The usage of reactive dyes to color fibers has increased over the last 10-15 years and these are often seen in casework. Before techniques were available that allowed reactively-dyed fibers to be compared using TLC only CM and microspectrophotometry were routinely carried out. Many laboratories, who had a microspectrophotometer, only had a visible range instrument. It was therefore important to see which techniques provide additional information, that gives greater individuality to fibers, to that obtained from CM. The color was released from the wool and cotton fibres using alkaline hydrolysis and a cellulase enzyme respectively. Many of the red wool samples were differentiated from each other using CM. More differentiation was found using VS and even more when ultraviolet range microspectrophotometry (UV) or TLC was used. Two samples could only be differentiated using TLC because CM, VS and UV failed to separate them. The black cotton samples were predominately differentiated using CM but VS allowed for further differentiation. With the samples used in this project UV and TLC failed to separate the samples further. The blue cotton samples benefited from the use of CM, VS and either UV or TLC to reduce the number of matching pairs. All techniques aided differentiation although with this set TLC and UV proved to be complementary techniques. Results demonstrate that TLC and UV both yield important information over and above that obtained from CM and VS

  18. Photocatalytic degradation of reactive black-5 dye using TiO2 ...

    Indian Academy of Sciences (India)

    sons, considerable attention has been focused on complete oxidation of organic ... Figure 1. Molecular structure of the RB-5 dye (Reactive black 5 (RB 5) dye: molec- ular weight: 991·8 .... by collision with ground state molecules. The optimum ...

  19. Bioaccumulation versus adsorption of reactive dye by immobilized growing Aspergillus fumigatus beads

    International Nuclear Information System (INIS)

    Wang, B.-E.; Hu Yongyou

    2008-01-01

    The removal of reactive brilliant blue KN-R using growing Aspergillus fumigatus (abbr. A. fumigatus) immobilized on carboxymethylcellulose (CMC) beads with respect to initial dye concentration was investigated. Bioaccumulation was the dominant mechanism of the dye removal. According to the UV-vis spectra and the results of three sets of experiments, it could be concluded that the bioaccumulation using immobilized growing A. fumigatus beads was achieved by metabolism-dependent accumulation and metabolism-independent adsorption (15-23% proportion of overall dye removal), which included biosorption by mycelia entrapped in them and adsorption on immobilization matrix. The transmission electron microscope (TEM) images showed the intracellular structures of mycelia and the toxicity of dye. It was found that the fungus had a considerable tolerance to reactive brilliant blue KN-R at initial dye concentrations of <114.7 mg/l. Though at high initial dye concentrations the growth of mycelia was inhibited significantly by the dye molecules in the growth medium, the bioaccumulation capacity was not markedly affected and the maximum bioaccumulation capacity was 190.5 ± 2.0 mg/g at an initial dye concentration of 374.4 mg/l. The bioaccumulation rates were not constant over the contact time

  20. Comparison of Electrocoagulation and Chemical Coagulation Processes in Removing Reactive red 196 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2016-06-01

    Full Text Available Background: Conventional chemical coagulation is considered as an old method to dye and COD removal in textile effluent. Electrocoagulation (EC process is a robust method to achieve maximum removal. Methods: This study was designed to compare the result of operational parameters including optimum pH and coagulant concentration for chemical coagulation with ferric chloride and alum also, voltage, electrolysis time, initial pH, and conductivity for EC with iron electrodes to remove reactive red 196 (RR 196. Results: The outcomes show that ferric chloride and alum at optimum concentration were capable of removing dye and COD by 79.63 % and 84.83% and 53% and 55%, respectively. In contrast, EC process removed the dye and COD by 99.98% and 90.4%, respectively. Conclusion: The highest treatment efficiency was obtained by increasing the voltage, electrolysis time, pH and conductivity. Increase initial dye concentration reduces removal efficiency. Ultimately, it could be concluded that EC technology is an efficient procedure for handling of colored industrial wastewaters.

  1. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis

    International Nuclear Information System (INIS)

    Annadurai, Gurusamy; Ling, L.Y.; Lee, J.-F.

    2008-01-01

    The adsorption of Remazol black 13 (Reactive) dye onto chitosan in aqueous solutions was investigated. Experiments were carried out as function of contact time, initial dye concentration (100-300 mg/L), particle size (0.177, 0.384, 1.651 mm), pH (6.7-9.0), and temperature (30-60 deg. C). The equilibrium adsorption data of reactive dye on chitosan were analyzed by Langmuir and Freundlich models. The maximum adsorption capacity (q m ) has been found to be 91.47-130.0 mg/g. The amino group nature of the chitosan provided reasonable dye removal capability. The kinetics of reactive dye adsorption nicely followed the pseudo-first and second-order rate expression which demonstrates that intraparticle diffusion plays a significant role in the adsorption mechanism. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (0.212 kJ/mol) indicated that the adsorption is endothermic process. The results indicate that chitosan is suitable as adsorbent material for adsorption of reactive dye form aqueous solutions

  2. COMPARATIVE STUDY OF TWO DYEING METHODS USING REACTIVE DYE

    Directory of Open Access Journals (Sweden)

    HINOJOSA Belén

    2016-05-01

    Full Text Available Environment preservation is a common worry not only for people but for companies as well. Industry is more and more concern about the necessity of developing new and more respectful processes. Dye is one of the most important processes in the textile industry but it is also considered as no too safe regarding environment issues. This process uses large amounts of water and generates big volumes of wastewater. Following this issue, new regulations and laws emerge to control the waste generated. This leads to the companies and increased costs in terms of wastewater treatments and high water consumption. In this research we compare two systems on garment finishing application, the conventional bath process and the new Ecofinish system that is able to save water and product. To compare these processes, we carried out a reactive dyeing using both systems in order to determine the quality differences in the final product. For this purpose, the samples have been tested to washing and rubbing fastness, according to UNE EN ISO 105 C10 and UNE- EN ISO 105 X12 standards, respectively. This study confirms that this system achieves water savings and reduces the wastewater produced, getting a good dyeing. This process can be considered as an alternative to the conventional one.

  3. Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes.

    Science.gov (United States)

    Bellebia, S; Kacha, S; Bouberka, Z; Bouyakoub, A Z; Derriche, Z

    2009-04-01

    In this study, electrocoagulation of Marine Blue Erionyl MR (acid dye) and electrocoagulation followed by adsorption of Brilliant Blue Levafix E-BRA (reactive dye) from aqueous solutions were investigated, using aluminum electrodes and granular activated carbon (GAC). In the electrocoagulation and adsorption of dyestuff solutions, the effects of current density, loading charge, pH, conductivity, stirring velocity, contact time, and GAC concentration were examined. The optimum conditions for the electrocoagulation process were identified as loading charges 7.46 and 1.49 F/m3, for a maximum abatement of 200 mg/L reactive and acid dye, respectively. The residual reactive dye concentration was completely removed with 700 mg/L GAC. The results of this investigation provide important data for the development of a combined process to remove significant concentrations of recalcitrant dyes from water, using moderate activated carbon energy and aluminum consumption, and thereby lowering the cost of treatment.

  4. Recovery of synthetic dye from simulated wastewater using emulsion liquid membrane process containing tri-dodecyl amine as a mobile carrier

    Energy Technology Data Exchange (ETDEWEB)

    Othman, N., E-mail: norasikin@cheme.utm.my [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Zailani, S.N.; Mili, N. [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The emulsion liquid membrane process for synthetic reactive dyes recovery was examined. Black-Right-Pointing-Pointer Mobile carriers of tri-dodycylamine and salicyclic acid was used in formulation to remove the reactive dyes from simulated wastewater. Black-Right-Pointing-Pointer Almost 100% of dye was extracted and recovered in receiving phase. Black-Right-Pointing-Pointer An electrical field was used to breakdown the emulsion to separate the liquid membrane and receiving/recovery phase. - Abstract: The extraction of Red 3BS reactive dye from aqueous solution was studied using emulsion liquid membrane (ELM). ELM is one of the processes that have very high potential in treating industrial wastewater consisting of dyes. In this research, Red 3BS reactive dye was extracted from simulated wastewater using tridodecylamine (TDA) as the carrier agent, salicyclic acid (SA) to protonate TDA, sodium chloride as the stripping agent, kerosene as the diluent and SPAN 80 as emulsifier. Experimental parameters investigated were salicyclic acid concentration, extraction time, SPAN 80 concentration, sodium chloride concentration, TDA concentration, agitation speed, homogenizer speed, emulsifying time and treat ratio. The results show almost 100% of Red 3BS was removed and stripped in the receiving phase at the optimum condition in this ELM system. High voltage coalesce was applied to break the emulsion hence, enables recovery of Red 3BS in the receiving phase.

  5. EFFECT OF UV IRRADIATION ON THE DYEING OF COTTON FABRIC WITH REACTIVE BLUE 204

    Directory of Open Access Journals (Sweden)

    ROŞU Liliana

    2017-05-01

    Full Text Available Reactive dyes are synthetic organic compounds used on a wide scale in textile industry, for painting materials of different types and compositions (e.g. 100% cotton, wool, natural satin, viscose, synthetic fibres. Reactive dyes are solid compounds (powders completely water soluble at normal temperature and pressure conditions. Their structures contain chromophore groups, which generate colour, and auxochrome groups, which determine the compounds water solubility and the capacity to fix to the textile fiber. Such organic compounds absorb UV-Vis radiations at specific wavelengths, corresponding to maximum absorbtion peaks, in both solution and dyed fiber. The human organism, through the dyed clothing, comes in direct contact with those dyes which can undergo modifications once exposed to UV radiations, having the posibility to reach the organism via cutanated transport. As it is known, the provoked negative effects are stronger during summer when UV radiations are more intense and in order to reduce their intensity dark coloured clothing is avoided. Dyes can be transformed in compounds which are easily absorbed into the skin. Some of these metabolites can be less toxic than the original corresponding dye, whilst others, such as free radicals, are potentially cancerous. Knowledge of the biological effects of the organic dyes, reactive dyes in particular, correlated with their structural and physical characteristics, permanently consists an issue of high scientific and practical interest and its solution may contribute in the diminishing of risk factors and improving of population health. UV radiation influence on the structural and colour modifications of textile materials were studied. Colour modifications are due to structural changes in aromatic and carbonil groups. In most cases photo-oxidative processes were identified in the dye structure. Dyeing was performed using non-irradiated and irradiated cotton painted with reactive blue dye 204.

  6. Photodegradation of Acid red 18 dye by BiOI/ZnO nanocomposite: A dataset

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2018-02-01

    Full Text Available Dyes are one of the most important existing pollutants in textile industrial wastewater. These compounds are often toxic, carcinogenic, and mutagenic to living organisms, chemically and photochemically stable, and non-biodegradable. Acid red 18 is one of the azo dyes that are currently used in the textile industries. Photocatalytic degradation offers a great potential as an advanced oxidation process, in this study photocatalytic degradation of Acid red 18 by using BiOI/ZnO nanocomposite was evaluated under visible light irradiation. The influence of most essential parameters such as pH and BiOI/ZnO dosage were studied for optimum conditions. The dye removal efficiency was 85.1% at optimum experimental conditions of pH of 7, and BiOI/ZnO dosage of 1.5 g/L. The data had a good agreement with pseudo first-order kinetic model. Thus, the BiOI/ZnO/UV is an efficient process for dye degradation. Keywords: Photodegradation, Nanocomposite, BiOI/ZnO, Degradation, Dye, Acid red 18

  7. Electrochemical degradation of reactive dyes at different DSA compositions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rodrigo G. da; Aquino Neto, Sydney; Andrade, Adalgisa R. de, E-mail: ardandra@ffclrp.usp.b [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia Ciencias e Letras. Dept. de Quimica

    2011-07-01

    This paper investigates the electrochemical oxidation of the reactive dyes reactive blue 4 (RB-4) and reactive orange 16 (RO-16) on RuO{sub 2} dimensionally stable anode (DSA) electrodes. Electrolysis was achieved under galvanostatic control as a function of supporting electrolyte and electrode composition. The electrolyses, performed in either the presence or absence of NaCl, were able to promote efficient color removal; moreover, at low chloride concentration (0.01 mol L{sup -1}), total color removal was obtained after just 10 min of electrolysis, and a significant increase in total dye combustion was achieved for all the studied anodes in chloride medium (reaching ca. 80% - chemical oxygen demand - COD removal). No significant enhancement in dye color removal or mineralization was observed upon increasing chloride concentration. The influence of oxide composition on dye elimination seems to be significant in both media (with or without chloride), being Ti/Ru{sub 0.30}Ti{sub 0.70}O{sub 2}, the most active material for organic compound oxidation. The oxygen evolution reaction was shown to be a limiting reaction in both supporting electrolytes; i.e., NaCl and Na{sub 2}SO{sub 4}, and its competition with organic compound oxidation remained an obstacle. The adsorbable organo halogens formation study revealed that there is slight consumption of the undesirable species formed within the first minutes of the electrolysis, being Ti/(RuO{sub 2}){sub 0.70}(Ta{sub 2}O{sub 5}){sub 0.30} the most environmentally friendly composition. Both anode composition and chloride concentration affect the formation of these undesirable compounds. (author)

  8. NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater

    International Nuclear Information System (INIS)

    Song Zhi; Hu Juncheng; Chen Lifang; Richards, Ryan

    2009-01-01

    Semiconductor single-crystalline polar NiO(111) nanosheets with well-defined hexagonal holes have been investigated for application in dye adsorption and combustion processes. With regard to adsorption technologies, high surface area metal oxides have an advantage over activated carbon in that the adsorbed species can be combusted and the adsorbent reused in the case of metal oxides while regeneration of activated carbon remains challenging and thus the adsorbent/adsorbate system must be disposed of. Here, three typical textile dyes, reactive brilliant red X-3B, congo red and fuchsin red, were studied for removal from wastewater with two NiO systems and activated carbon. These studies revealed that the NiO(111) nanosheets exhibited much more favorable adsorptive properties than conventionally prepared nickel oxide powder (CP-NiO) obtained from thermal decomposition of nickel nitrate. The maximum adsorption capabilities of the three dyes on NiO(111) nanosheets reached 30.4 mg g -1 , 35.15 mg g -1 and 22 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid, respectively, while the maximum adsorption capabilities of the three dyes on CP-NiO were only 8.4, 13.2 and 12 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid. To simulate the adsorption isotherm, two commonly employed models, the Langmuir and the Freundlich isotherms, were selected to explicate the interaction of the dye and NiO(111). The isotherm evaluations revealed that the Langmuir model demonstrated better fit to experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacity was 36.1 mg g -1 . In addition, adsorption kinetic data of NiO(111) followed a pseudo-second-order rate for congo red. These studies infer that NiO(111) nanosheets possess desirable properties for application in adsorption and combustion applications.

  9. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Chen, Bor-Yann, E-mail: bychen@niu.edu.tw [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Yen, Chia-Yi [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China)

    2009-08-15

    This novel comparative study tended to disclose how the molecular structures present in seven azo dyes including two types of azo dyes (i.e., naphthol type azo dyes - Reactive Black 5 (RB 5), Reactive Blue 171 (RB 171), Reactive Green 19 (RG19), Reactive Red 198 (RR198), Reactive Red 141 (RR141) and non-naphthol type azo dyes - Direct Yellow 86 (DY86), Reactive Yellow 84 (RY84)) affected color removal capability of Aeromonas hydrophila. Generally speaking, the decolorization rate of naphthol type azo dye with hydroxyl group at ortho to azo bond was faster than that of non-naphthol type azo dye without hydroxyl group, except of RG19. The azo dyes with electron-withdrawing groups (e.g., sulfo group in RR198, RB5 and RR141) would be easier to be decolorized than the azo dyes with the electron-releasing groups (e.g., -NH-triazine in RB171 and RG19). In addition, the azo dyes containing more electron-withdrawing groups (e.g., RR198, RB5 and RR141) showed significantly faster rate of decolorization. The azo dyes with electron-withdrawing groups (e.g., sulfo group) at para and ortho to azo bond (e.g., RR198, RB5 and RR141) could be more preferred for color removal than those at meta (e.g., DY86 and RY84). The former azo dyes with para and ortho sulfo group provided more effective resonance effects to withdraw electrons from azo bond, causing azo dyes to be highly electrophilic for faster rates of reductive biodecolorization. However, since the ortho substituent caused steric hindrance near azo linkage(s), azo dyes with para substituent could be more favorable (e.g., SO{sub 2}(CH{sub 2}){sub 2}SO{sub 4}{sup -} in RR198 and RB5) than those with ortho substituent (e.g., sulfo group at RR141) for decolorization. Thus, the ranking of the position for the electron-withdrawing substituent in azo dyes to escalate decolorization was para > ortho > meta. This study suggested that both the positions of substituents on the aromatic ring and the electronic characteristics of

  10. Azo dye reduction by mesophilic and thermophilic anaerobic consortia

    NARCIS (Netherlands)

    Santos, dos A.B.; Madrid, de M.P.; Stams, A.J.M.; Lier, van J.B.; Cervantes, F.J.

    2005-01-01

    The reduction of the azo dye model compounds Reactive Red 2 (RR2) and Reactive Orange 14 (RO14) by mesophilic (30 C) and thermophilic (55 C) anaerobic consortia was studied in batch assays. The contribution of fermentative and methanogenic microorganisms in both temperatures was evaluated in the

  11. Photo-Electrochemical Treatment of Reactive Dyes in Wastewater and Reuse of the Effluent: Method Optimization

    Science.gov (United States)

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    In this work, the efficiency of a photo-electrochemical method to remove color in textile dyeing effluents is discussed. The decolorization of a synthetic effluent containing a bi-functional reactive dye was carried out by applying an electrochemical treatment at different intensities (2 A, 5 A and 10 A), followed by ultraviolet irradiation. The combination of both treatments was optimized. The final percentage of effluent decolorization, the reduction of halogenated organic volatile compound and the total organic carbon removal were the determinant factors in the selection of the best treatment conditions. The optimized method was applied to the treatment of nine simulated dyeing effluents prepared with different reactive dyes in order to compare the behavior of mono, bi, and tri-reactive dyes. Finally, the nine treated effluents were reused in new dyeing processes and the color differences (DECMC (2:1)) with respect to a reference were evaluated. The influence of the effluent organic matter removal on the color differences was also studied. The reuse of the treated effluents provides satisfactory dyeing results, and an important reduction in water consumption and salt discharge is achieved. PMID:28788251

  12. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    International Nuclear Information System (INIS)

    Oliveira, Luiz C.A.; Goncalves, Maraisa; Oliveira, Diana Q.L.; Guerreiro, Mario C.; Guilherme, Luiz R.G.; Dallago, Rogerio M.

    2007-01-01

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g -1 ) and textile dye reactive red (163 mg g -1 ), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials

  13. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.A. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil)]. E-mail: luizoliveira@ufla.br; Goncalves, Maraisa [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Oliveira, Diana Q.L. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guerreiro, Mario C. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guilherme, Luiz R.G. [Universidade Federal de Lavras, Depto. de Ciencia do solo, CEP 37200.000, Lavras-MG (Brazil); Dallago, Rogerio M. [URI-Campus Erechim, Av. 7 Setembro 1621, Centro, CEP 99700-000, Depto de Quimica, Erechim-RS (Brazil)

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g{sup -1}) and textile dye reactive red (163 mg g{sup -1}), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  14. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In{sub 2}S{sub 3} nanoflowers: dye charge-dependent roles of reactive species

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Suxiang [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China); Cai, Lejuan, E-mail: 494169965@qq.com [Central China Normal University, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry (China); Li, Dapeng, E-mail: lidapengabc@126.com; Fa, Wenjun; Zhang, Yange; Zheng, Zhi [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In{sub 2}S{sub 3} nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In{sub 2}S{sub 3} nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  15. Removal of dissolved textile dyes from wastewater by a compost sorbent

    Science.gov (United States)

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  16. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media

    International Nuclear Information System (INIS)

    Silva, Alessandra C.; Pic, Jean Stephane; Sant'Anna, Geraldo L.; Dezotti, Marcia

    2009-01-01

    Ozonation of two azo dyes was investigated in a monitored bench scale bubble column reactor (8.5-L), varying liquid media salt content (0, 1, 40 and 100 g L -1 , NaCl). In experiments with Orange II pH was varied (5, 7.5 and 9) but ozonation of Acid Red 27 was performed at pH 7.5. Ozone self-decomposition rate-constant increased with salt concentration. Color removal was very effective and fast achieved under all experimental conditions. For the two azo dyes tested, more than 98% of color intensity was removed in 30-min ozonation assays. However, only partial mineralization of azo dyes (45%-Orange II; 20%-Acid Red 27) was attained in such experiments. The degree of mineralization (TOC removal) was negatively affected by salt concentration. Biodegradation assays conducted by respirometry revealed the inhibitory effect of dye degradation products formed during ozonation.

  17. Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer

    Science.gov (United States)

    Mozaffari, Sayed Ahmad; Saeidi, Mahsa; Rahmanian, Reza

    2015-05-01

    Natural dye extracted from Siahkooti fruit with/without purification by solid phase extraction (SPE) technique was used in the fabrication of DSSC as natural sensitizer. The UV-Vis absorption spectroscopy and Fourier transform infrared (FTIR) were employed to indicate the presence of anthocyanins in the fruit of red Siahkooti. The photoelectrochemical performance and the efficiency of assembled DSSC using Siahkooti fruit dye extract were evaluated and efficiency enhancement was obtained by a preliminary purification of extracted dye. The efficiency and fill factor of the DSSC using purified Siahkooti fruit dye were 0.32% and 0.73%, respectively. The results successfully showed that the DSSC, using Siahkooti fruit extract as a dye sensitizer, is useful for the preparation of environmentally friendly, low-cost, renewable and clean sources of energy.

  18. Evaluation of the potential of red mud heat treated at 400 deg C in adsorption of textile dyes

    International Nuclear Information System (INIS)

    Antunes, M.L.P.; Rangueri, T.B.

    2011-01-01

    The production of aluminum metal generates a huge amount of red mud as industrial waste. The storage of such material causes serious environmental damage and needs large area for your disposal. Develop technologies that allow its reuse is an alternative. Studies show that the mud has adsorbent properties and may be used in the treatment of wastewater, gas and textiles. This work presents the characterization by X-ray diffraction and surface area of the red mud Brazilian thermally activated at 400 deg C to evaluate the adsorption capacity of this material to the dye reactive blue 19 in pH 4. Through the construction of the Langmuir isotherm was determined adsorption capacity, which, in alkaline media, got an average of 136.9 mg / g. The results suggest that under certain conditions, the red mud has potential as an alternative adsorbent and low cost. (author)

  19. Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels.

    Science.gov (United States)

    El-Harby, Nouf F; Ibrahim, Shaimaa M A; Mohamed, Nadia A

    2017-11-01

    Adsorption capacity of three antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels for Congo red dye removal from its aqueous solution has been investigated for the first time in this work. These hydrogels were prepared by reacting chitosan with various amounts of terephthaloyl diisothiocyanate cross-linker. The effect of the hydrogel structural variations and several dye adsorption processing parameters to achieve the best adsorption capacity were investigated. The hydrogels' structural variations were obtained by varying their terephthaloyl thiourea moieties content. The processing variables included initial concentration of the dye solution, temperature and time of exposure to the dye. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by the pseudo-second-order equation and the Langmuir equation, respectively. On the basis of the Langmuir analysis Congo red dye gave the maximum sorption capacity of 44.248 mg/g. The results obtained confirmed that the sorption phenomena are most likely to be controlled by chemisorption process. The adsorption reaction was endothermic and spontaneous according to the calculated results of adsorption thermodynamics.

  20. THE USE OF TIO2-ZEOLIT AS A CATALYST ON THE DEGRADATION PROCESS OF ERIONIL RED DYE

    Directory of Open Access Journals (Sweden)

    Agustin Sumartono

    2010-06-01

    Full Text Available Degradation of erionil red dye using photo catalytic processes with TiO2-zeolit as a catalyst was carried out. Degradation of the dye was observed in 10 L volume, and erionil red dye was used as a model of organic pollutant. The parameters examinated were  intensity of the spectrum, the decrease of pH, percentage of degradation, and the efectifity TiO2-zeolit  as a catalyst. The use of UV lamp and TiO2-zeolit as a catalyst showed a good results because the dye could be degraded. This could be seen from the decreasing of the intensity of the spectrum  24 h after illumination. The pH of erionil red increased from around 4 into 5.5 which is still acidic. Effectivity of TiO2 composit as a catalyst could be used only two times. The compound resulted from degradation that could be detected using HPLC was oxalic acid.   Keywords: dye, erionil red, photocatalytic, TiO2

  1. Carbon Nitrogen Co-Doped P25: Parameter Study on Photodegradation of Reactive Red 4

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available Photocatalytic degradation rate of reactive red 4 (RR4 using carbon coated nitrogen doped TiO2 (C N co-doped TiO2 in photocatalysis process is main goal on this research. The main operating the parameters such as effect of initial dye concentration, catalyst loading, aeration flow rate and initial pH on degradation of RR4 under 45 W fluorescent lamp was investigated. photocatalytic activity of RR4 dye decreased with increasing RR4 dye concentration. The optimum loading is around 0.04 g and optimum aeration rate is about 25 mL min-1 of C N co-doped TiO2. Effect of pH was conducted based on the optimum loading and conclude that the photocatalytic degradation of RR4 became faster at pH 2 - 7. For the future work, the modification of doping with others element like non-metal or metal with C N co-doped TiO2 can be enhanced toward the higher efficieny of photodegradation under visible light. Moreover, the immobilized technique can be used in future to overcome the difficulty of filtration on suspension.

  2. The removal of reactive dyes using high-ash char

    Directory of Open Access Journals (Sweden)

    Moreira R.F.P.M.

    2001-01-01

    Full Text Available The thermodynamics and kinetics of adsorption of reactive dyes on high-ash char was studied. Equilibrium data were obtained using the static method with controlled agitation at temperatures in the range of 30 to 60ºC. The Langmuir isotherm model was used to describe the equilibrium of adsorption, and the equilibrium parameters, R L, in the range of 0 to 1 indicate favorable adsorption. The amount of dye adsorbed increased as temperature increased from 30 to 40ºC, but above 40ºC the increase in temperature resulted in a decrease in the amount of dye adsorbed. The kinetic data presented are for controlled agitation at 50 rpm and constant temperature with dye concentrations in the range of 10 ppm to50 ppm. The film mass transfer coefficient, Kf, and the effective diffusivity inside the particle, De, were fitted to the experimental data. The results indicate that internal diffusion governs the adsorption rate.

  3. Photo- and chemocatalytic oxidation of dyes in water.

    Science.gov (United States)

    Du, Wei-Ning; Chen, Shyi-Tien

    2018-01-15

    Three commonly used dyes, Acid Red-114 (AR-114), Reactive Black-5 (RB-5), and Disperse Black EX-SF (DB-EX-SF), were treated in a pH-neutral liquid with ultraviolet (UV) light by two reactive methods: photocatalysis with titanium dioxide (TiO 2 ), and/or chemocatalysis with hydrogen peroxide (H 2 O 2 ) as the oxidant and various ferrous-based electron mediators as catalysts. Important factors for dye oxidation were determined through bifactorial experiments. The optimum combinations and doses of the three key reagents, namely TiO 2 , H 2 O 2 , and EDTA-Fe, were also determined. The degradation kinetics of the studied dyes at their optimum doses reveal that the oxidation reactions are pseudo-first-order in nature, and that certain dyes are selectively degraded more by one method than the other. The overall results suggest that co-treatment using more than one oxidative method is beneficial for the treatment of wastewater from dyeing processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  5. A REVIEW ON EFFICACIOUS METHODS TO DECOLORIZE REACTIVE AZO DYE

    Directory of Open Access Journals (Sweden)

    Jagadeesan Vijayaraghavan

    2013-01-01

    Full Text Available This paper deals with the intensive review of reactive azo dye, Reactive Black 5. Various physicochemical methods namely photo catalysis, electrochemical, adsorption, hydrolysis and biological methods like microbial degradation, biosorption and bioaccumulation have been analyzed thoroughly along with the merits and demerits of each method. Among these various methods, biological treatment methods are found to be the best for decolorization of Reactive Black 5. With respect to dye biosorption, microbial biomass (bacteria, fungi, microalgae, etc, and outperformed macroscopic materials (seaweeds, crab shell, etc. are used for decolorization process. The use of living organisms may not be an option for the continuous treatment of highly toxic organic/inorganic contaminants. Once the toxicant concentration becomes too high or the process operated for a long time, the amount of toxicant accumulated will reach saturation. Beyond this point, an organism's metabolism may be interrupted, resulting in death of the organism. This scenario is not existed in the case of dead biomass, which is flexible to environmental conditions and toxicant concentrations. Thus, owing to its favorable characteristics, biosorption has received much attention in recent years.

  6. Lasing of Some Red Laser Dyes in Annealed Silica Xerogel

    Science.gov (United States)

    Bezkrovnaya, O. N.; Maslov, V. V.; Pritula, I. M.; Yurkevich, A. G.

    2018-01-01

    The spectral and energy characteristics of generation in the red spectral region 650-720 nm were measured and analyzed for three laser dyes in preliminarily annealed SiO2 xerogel matrices under laser excitation λp = 588 nm in a nonselective cavity. The specific laser-energy output for two of them (LK678 and Ox170) in the matrices was 10-13% higher than in MeOH. NBA dye in the matrix generated two laser radiation bands in the 700-720 nm region with pumping E p ≥ 80 mJ whereas its generation threshold in MeOH exceeded the maximum pumping energy of 140 mJ so that NBA generation was not observed. Laser emission spectra of the studied matrices in a nonselective cavity were red-shifted by 1000 cm-1 from the fluorescence maximum. Such a shift could improve the characteristics of biosensors based on these matrices.

  7. Characteristics of dye-sensitized solar cells using natural dye

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Shoji, E-mail: furukawa@cse.kyutech.ac.j [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan); Iino, Hiroshi; Iwamoto, Tomohisa; Kukita, Koudai; Yamauchi, Shoji [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan)

    2009-11-30

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such as the dye of red-cabbage, curcumin, and red-perilla. As a result, it was found that the conversion efficiency of the solar cell fabricated using the mixture of red-cabbage and curcumin was about 0.6% (light source: halogen lamp), which was larger than that of the solar cells using one kind of dye. It was also found that the conversion efficiency was about 1.0% for the solar cell with the oxide semiconductor film fabricated using polyethylene glycol (PEG) whose molecular weight was 2,000,000 and red-cabbage dye. This indicates that the cost performance (defined by [conversion efficiency]/[cost of dye]) of the latter solar cell (dye: red-cabbage) is larger by more than 50 times than that of the solar cell using Ruthenium complex, even if the effect of the difference between the halogen lamp and the standard light source is taken into account.

  8. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    Science.gov (United States)

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  9. Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling

    Directory of Open Access Journals (Sweden)

    Khadeeja Rehman

    2018-05-01

    Full Text Available Azo dyes are one of the largest classes of synthetic dyes being used in textile industries. It has been reported that 15–50% of these dyes find their way into wastewater that is often used for irrigation purpose in developing countries. The effect of azo dyes contamination on soil nitrogen (N has been studied previously. However, how does the azo dye contamination affect soil carbon (C cycling is unknown. Therefore, we assessed the effect of azo dye contamination (Reactive Black 5, 30 mg kg−1 dry soil, bacteria that decolorize this dye and dye + bacteria in the presence or absence of maize leaf litter on soil respiration, soil inorganic N and microbial biomass. We found that dye contamination did not induce any change in soil respiration, soil microbial biomass or soil inorganic N availability (P > 0.05. Litter evidently increased soil respiration. Our study concludes that the Reactive Black 5 azo dye (applied in low amount, i.e., 30 mg kg−1 dry soil contamination did not modify organic matter decomposition, N mineralization and microbial biomass in a silty loam soil.

  10. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    Science.gov (United States)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  11. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp

    Directory of Open Access Journals (Sweden)

    Sidra Ilyas

    2013-01-01

    Full Text Available In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synazol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synazol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synazol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50[degree sign]C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synazol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes.

  12. Biological decolorization of xanthene dyes by anaerobic granular biomass.

    Science.gov (United States)

    Apostol, Laura Carmen; Pereira, Luciana; Pereira, Raquel; Gavrilescu, Maria; Alves, Maria Madalena

    2012-09-01

    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L⁻¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L⁻¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L⁻¹ AC₀). Using different modified AC samples (from the treatment of AC₀), a threefold higher rate was obtained with the most basic one, AC(H₂), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na₂S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.

  13. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy.

    Science.gov (United States)

    Maynez-Rojas, M A; Casanova-González, E; Ruvalcaba-Sil, J L

    2017-05-05

    Understanding dye chemistry and dye processes is an important issue for studies of cultural heritage collections and science conservation. Fiber Optics Reflectance Spectroscopy (FORS) is a powerful technique, which allows preliminary dye identification, causing no damage or mechanical stress on the artworks subjected to analysis. Some information related to specific light scattering and absorption can be obtained in the UV-visible and infrared range (300-1400nm) and it is possible to discriminate the kind of support fiber in the near infrared region (1000-2500nm). The main spectral features of natural dye fibers samples, such as reflection maxima, inflection points and reflection minima, can be used in the differentiation of various red natural dyes. In this work, a set of dyed references were manufactured following Mexican recipes with red dyes (cochineal and brazilwood) in order to determine the characteristic FORS spectral features of fresh and aged dyed fibers for their identification in historical pieces. Based on these results, twenty-nine indigenous textiles belonging to the National Commission for the Development of Indigenous People of Mexico were studied. Cochineal and brazilwood were successfully identified by FORS in several pieces, as well as the mixture of cochineal and indigo for purple color. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Process Improvement of Reactive Dye Synthesis Using Six Sigma Concept

    Science.gov (United States)

    Suwanich, Thanapat; Chutima, Parames

    2017-06-01

    This research focuses on the problem occurred in the reactive dye synthesis process of a global manufacturer in Thailand which producing various chemicals for reactive dye products to supply global industries such as chemicals, textiles and garments. The product named “Reactive Blue Base” is selected in this study because it has highest demand and the current chemical yield shows a high variation, i.e. yield variation of 90.4% - 99.1% (S.D. = 2.405 and Cpk = -0.08) and average yield is 94.5% (lower than the 95% standard set by the company). The Six Sigma concept is applied aiming at increasing yield and reducing variation of this process. This approach is suitable since it provides a systematic guideline with five improvement phases (DMAIC) to effectively tackle the problem and find the appropriate parameter settings of the process. Under the new parameter settings, the process yield variation is reduced to range between 96.5% - 98.5% (S.D. = 0.525 and Cpk = 1.83) and the average yield is increased to 97.5% (higher than the 95% standard set by the company).

  15. Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range

    Science.gov (United States)

    Damaceanu, Mariana-Dana; Constantin, Catalin-Paul

    2018-04-01

    A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.

  16. Photoassisted Electrochemical Treatment of Azo and Phtalocyanine Reactive Dyes in the Presence of Surfactants

    Science.gov (United States)

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2016-01-01

    An electrochemical treatment (EC) was applied at different intensities to degrade the chromophoric groups of dyes C.I. Reactive Black 5 (RB5) and C.I. Reactive Blue 7 (Rb7) until uncolored species were obtained. Decolorization rate constants of the azo dye RB5 were higher than the phtalocyanine Rb7 ones. In addition, the EC treatment was more efficient at higher intensities, but these conditions significantly increased the generation of undesirable by-products such as chloroform. The combination of EC with UV irradiation (UVEC) drastically minimized the generation of chloroform. The photo-assisted electrochemical treatment was also able to achieve decolorization values of 99%. Finally, mixtures of dyes and surfactants were treated by EC and UVEC. In the presence of surfactants, the decolorization kinetic of dyes was slowed due to the competitive reactions of surfactants degradation. Both methods achieved total decolorization and in both cases, the generation of haloforms was negligible. PMID:28773335

  17. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    Sudarjanto, Gatut; Keller-Lehmann, Beatrice; Keller, Jurg

    2006-01-01

    The integrated chemical-biological degradation combining advanced oxidation by UV/H 2 O 2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H 2 O 2 /L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  18. Noncovalent Labeling of Biomolecules with Red and Near- Infrared Dyes

    Directory of Open Access Journals (Sweden)

    Lucjan Strekowski

    2004-02-01

    Full Text Available Biopolymers such as proteins and nucleic acids can be labeled with a fluorescent marker to allow for their detection. Covalent labeling is achieved by the reaction of an appropriately functionalized dye marker with a reactive group on a biomolecule. The recent trend, however, is the use of noncovalent labeling that results from strong hydrophobic and/or ionic interactions between the marker and biomolecule of interest. The main advantage of noncovalent labeling is that it affects the functional activity of the biomolecule to a lesser extent. The applications of luminescent cyanine and squarylium dyes are reviewed.

  19. Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: A spectroscopic study

    Science.gov (United States)

    Lucilha, Adriana Campano; Bonancêa, Carlos Eduardo; Barreto, Wagner José; Takashima, Keiko

    2010-01-01

    The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 °C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 nm. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo dye molecule may be adsorbed onto the ZnO surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies.

  20. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    Science.gov (United States)

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  1. Determination of the phthalocyanine textile dye, reactive turquoise blue, by electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Osugi Marly E.

    2003-01-01

    Full Text Available Turquoise blue 15 (AT15 is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00x10-8 mol L-1 to 1.00x10-6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.

  2. Comparison of activated carbon and bottom ash removal of reactive dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, A.R.; Gunes, Y.; Karakaya, N.; Gunes, E. [Trakya University, Tekirdag (Turkey). Dept. of Environmental Engineering

    2007-03-15

    The adsorption of reactive dye from synthetic aqueous solution onto granular activated carbon (GAC) and coal-based bottom ash (CBBA) were studied under the same experimental conditions. As an alternative to GAC CBBA was used as adsorbent for dye removal from aqueous solution. The amount of Vertigo Navy Marine (VNM) adsorbed onto CBBA was lower compared with GAC at equilibrium and dye adsorption capacity increased from 0.71 to 3.82 mg g{sup -1}, and 0.73 to 6.35 mg g{sup -1} with the initial concentration of dye from 25 to 300 mg l{sup -1} respectively. The initial dye uptake of CBBA was not so rapid as in the case of GAC and the dye uptake was slow and gradually attained equilibrium.

  3. Bacterial reduction in genotoxicity of Direct Red 28 dye.

    Science.gov (United States)

    Bafana, Amit; Jain, Minakshi; Agrawal, Gaurav; Chakrabarti, Tapan

    2009-03-01

    Direct Red 28 (DR28) is a benzidine-based azo dye widely used in several countries. It has also been a subject of intense research for its anti-prion activity. Like other benzidine-based azo dyes, it is also carcinogenic and toxic. However, there are very few studies addressing its detoxification. In the present study, a Bacillus velezensis strain was used for detoxification of DR28. Toxicity was checked by a battery of highly sensitive genotoxicity assays like comet assay, DNA ladder formation, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and flow cytometric Annexin V binding assay. HL-60 cell line was used as the test system. All the assays showed an initial increase in toxicity upon biodegradation due to release of mutagenic products, like benzidine and 4-aminobiphenyl, from the dye. These intermediates caused significant DNA damage and induced apoptosis in HL-60 cells. Then the culture degraded these mutagenic intermediates, due to which the toxicity was reduced gradually, finally resulting in nearly complete detoxification.

  4. Adsorption of the reactive azo dyes onto NH4Cl-induced activated carbon

    Directory of Open Access Journals (Sweden)

    Sakine Shekoohiyan

    2016-03-01

    Full Text Available Background: The efficacy of NH4Cl-induced activated carbon (NAC was examined in order to adsorb RR198, an azo reactive model dye, from an aqueous solution. Methods: The effects of pH (3 to 10, adsorbent dose (0.1 to 1.2 g/L, dye concentration and contact time on the adsorption efficiency were investigated. Results: The results showed that the removal of dye was highest at a solution pH of 7 and a powder dose of 1.1 g/L. The 85.9%, 72.6% and 65.4% removal of RR198 was obtained for a concentration of 25, 50 and 100 mg/L, respectively, at a relatively short contact time of 30 minutes, and at optimum pH and NAC concentrations of 1 g/L. The experimental data for kinetic analysis illustrated a best fit to the pseudo-second-order model. The study data on equilibrium were modeled using Langmuir, Freundlich and Dubinin–Radushkevich models; the Langmuir equation provided the best fit for the data. Conclusion: Therefore, the NAC appears to be an efficient and appropriate adsorbent for the removal of reactive azo dyes from waste streams.

  5. Case study of the sonochemical decolouration of textile azo dye Reactive Black 5

    International Nuclear Information System (INIS)

    Vajnhandl, Simona; Le Marechal, Alenka Majcen

    2007-01-01

    The decolouration and mineralization of reactive dye C.I. Reactive Black 5, a well-known representative of non-biodegradable azo dyes, by means of ultrasonic irradiation at 20, 279 and 817 kHz has been investigated with emphasis on the effect of various parameters on decolouration and degradation efficiency. Characterization of the used ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using Fricke and iodine dosimeter. Experiments were carried out with low frequency probe type, and a high-frequency plate type transducer at 50, 100 and 150 W of acoustic power and within the 5-300 mg/L initial dye concentration range. Decolouration, as well as radical production, increased with increasing frequency, acoustic power, and irradiation time. Any increase in initial dye concentration results in decreased decolouration rates. Sonochemical decolouration was substantially depressed by the addition of 2-methyl-2-propanol as a radical scavenger, which suggests radical-induced reactions in the solution. Acute toxicity to marine bacteria Vibrio fischeri was tested before and after ultrasound irradiation. Under the conditions employed in this study, no toxic compounds were detected after 6 h of irradiation. Mineralization of the dye was followed by TOC measurements. Relatively low degradation efficiency (50% after 6 h of treatment) indicates that ultrasound is rather inefficient in overall degradation, when used alone

  6. Synthetic Textile Red Dye Removal From Aqueous Solution by Adsorption onto Pomegranate Peel

    Directory of Open Access Journals (Sweden)

    Sundus Saleh Nehaba

    2017-07-01

    Full Text Available This study is conducted to evaluate the ability of using pomegranate peel as low cost material for adsorption one of synthetic textile dye (C.I.Direct Red 89 dye. The removal of dye from aqueous solution is done by using pomegranate peel with two forms, as raw pomegranate peel (RPP and activated carbon prepared from pomegranate peel(ACPP. Some operational factors like contact time, pH, adsorbent dosage , and temperature were investigated in experimental work. Also the thermodynamic parameters ΔH, ΔG, and ΔS were calculated, the result shows that the adsorption process of dye onto two forms of adsorbents was spontaneous and endothermic in nature. Finally, the adsorption isotherm of experimental data we refitted for the Langmuir, and Freundlich equations

  7. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight.

    Science.gov (United States)

    Rajeswari, A; Jackcina Stobel Christy, E; Pius, Anitha

    2018-02-01

    A study was carried out to investigate the degradation of organic contaminants (Congo red and Reactive yellow - 105) using cellulose acetate - polystyrene (CA-PS) membrane with and without ZnO impregnation. Scanning electron microscope (SEM), electron dispersive analysis of X-rays (EDAX), Fourier transform infrared spectrometer (FTIR), atomic force microscope (AFM) and thermogravimeric analysis (TG-DTA) analysis were carried out to characterize bare and ZnO impregnated CA-PS membranes. Membrane efficiency was also tested for pure water flux and antifouling performance. The modified membrane showed almost 85% water flux recovery. Blending of ZnO nanoparticles to CA-PS matrix could decrease membrane fouling and increase permeation quality of the membrane with above 90% of photocatalytic degradation efficiency for dyes. The rate of degradation of dyes was observed using UV-Vis spectrometer. Reusability of CA-PS-ZnO membrane was studied and no significant change was noted in the degradation efficiency until fourth cycle. Langmuir-Hinshelwood kinetic model well describes the photo degradation capacity and the degradation of dyes CR and RY - 105 exhibited pseudo-first order kinetics. The regression coefficient (R) of CR and RY - 105 found to be 0.99. The novelty of the prepared CA-PS-ZnO membrane is that it has better efficiency and high thermal stability than our previously reported material. Therefore, ZnO impregnated CA-PS membrane had proved to be an innovative alternative for the degradation of CR and RY - 105 dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dosimetric studies based on the radiation-induced bleaching of Sudan red and Sudan blue dyes in organic solutions

    International Nuclear Information System (INIS)

    Souka, N.; Farag, A.N.

    1990-01-01

    An investigation was carried out on the effect of γ-radiation on the absorption spectra of Sudan red and Sudan blue dyes in organic solutions. A continuous decrease in the absorbance values at the absorption bands was observed with an increase of absorbed dose. The radiation sensitivities of decoloration gave widely different radiation chemical reduction yields (G-values) for the bleaching of both dyes depending on whether xylene, ethyl acetate, or chloroform was used as the solvent. On the basis of experimental results, suggestions are made concerning the dye solutions as prospective dosimeters. The following absorbed dose ranges can be covered: 10 1 -10 2 Gy by 10 -5 M Sudan red or Sudan blue in chloroform; 4 x 10 2 -4 x 10 3 Gy by 10 -5 M Sudan red or Sudan Blue in ethyl acetate; 10 3 -3 x 10 4 Gy by 5 x 10 -6 M Sudan red in xylene. (author)

  9. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    International Nuclear Information System (INIS)

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B.; Freeman, Harold S.; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC–ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: ► Aqueous solutions of Disperse Red 1 were treated with chlorine. ► The chlorination products of Disperse Red 1 were identified using LC–ESI-MS/MS. ► Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. ► The chlorinated dye was more mutagenic than the dye itself. ► Chlorination should be avoided in effluents containing azo-dyes.

  10. ADSORPTION OF THE DYE REACTIVE BLUE 5G IN RETORTED SHALE

    Directory of Open Access Journals (Sweden)

    R. Lambrecht

    2015-03-01

    Full Text Available Abstract In this study the influence of the volumetric flow rate and feed concentration was investigated for the adsorption of the reactive dye Blue 5G. Experiments were carried out in a bed packed with retorted shale, at 30 ºC. The ranges investigated were flow rate 2 -10 mL/min and the feed concentration 13-105 mg/L. Mathematical models were used to represent the dynamic sorption. The double resistance model considers the effects of the axial dispersion and the mass transfer resistance of the external film and inside the particles. As a result, the mass transfer coefficient of the external film and the internal mass transfer coefficient were estimated. The Thomas model was used to simulate the experimental data. In this model the fitted parameter was the adsorption kinetic constant. The first model provided an acceptable representation of the dynamic uptake of the reactive dye Blue 5G.

  11. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  12. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    OpenAIRE

    Kenzom, T.; Srivastava, P.; Mishra, S.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-...

  13. Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania

    Directory of Open Access Journals (Sweden)

    Peter J. Holliman

    2008-01-01

    Full Text Available Sorption kinetics and isotherms have been measured for a commercial dye (Direct Red 23 on different samples of powdered Titania, and the data were analysed to better understand the dye sensitization process for dye sensitised solar cells (DSSCs. For the sorption kinetics, the data show rapid initial sorption (<1 hour followed by slower rate of increasing uptake between 1 and 24 hours. While higher initial concentrations of dye correspond to higher sorption overall, less dye is absorbed from higher initial dye concentrations when considered as percentage uptake. The correlation between the sorption data and model isotherms has been considered with time. The Langmuir model shows better correlations compared to the Freundlich isotherm. The dye uptake data has also been correlated with Titania characterization data (X-ray diffraction, scanning electron microscopy, BET and zero point charge analysis. Kinetic data show significantly better fits to second-order models compared to first order. This suggests that chemisorption is taking place and that the interaction between the dye sorbate and the Titania sorbent involves electron sharing to form an ester bond.

  14. Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.

    Science.gov (United States)

    Gong, Honghong; Liu, Mingzhu; Zhang, Bing; Cui, Dapeng; Gao, Chunmei; Ni, Boli; Chen, Jiucun

    2011-12-01

    The aim of this study was to prepare oxidized guar gum with a simple dry method, basing on guar gum, hydrogen peroxide and a small amount of solvent. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The product was characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, scanning electron microscopy and differential scanning calorimetry. The hydrated rate of guar gum and oxidized guar gum was estimated through measuring the required time when their solutions (1%, w/v) reached the maximum viscosity. The effects of the salt concentration and pH on viscosity of the resultant product were studied. The mixed paste containing oxidized guar gum and carboxymethyl starch was prepared and its viscosity was determined by the viscometer. The rheological property of the mixed paste was appraised by the printing viscosity index. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the mixed paste could partially replace sodium alginate as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Immobilized/P25/DSAT and Immobilized/Kronos/DSAT on Photocatalytic Degradation of Reactive Red 4 Under Fluorescent Light

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available In this work, photocatalytic degradation of Reactive Red 4 (RR4 using immobilized P25 and kronos were performed under fluorescent light sources. The photocatalysis activity for both catalysts was investigated under fluorescent lamp source which consist UV and Visible light. The effect of various parameters such as initial concentration, initial pH and strenght of immobilized plate were studied. The result showed that 90% of RR4 dye was degrade in 1 hr using immobilized/kronos/DSAT at 100 mg L-1 of RR4 dye while 81% degradation was achieved by immobilized/P25/DSAT at the same condition. The lowest pH showed the higher photocatalytic activity. Hence, the effect of dye concentration and pH on the photocatalysis study can be related with the behavior of environmental pollution. The low strength showed by immobilized/P25/DSAT where it remain 37 % as compared with strength of immobilized/kronos/DSAT (52 wt.%. For the future work, the polymer binder like Polyvinyl alcohol (PVA, Polyethylene glycol (PEG, and others polymers can be apply in immobilized study to overcome the strength problem.

  16. Removal of Congo red dye from aqueous solutions using a halloysite-magnetite-based composite.

    Science.gov (United States)

    Ferrarini, F; Bonetto, L R; Crespo, Janaina S; Giovanela, M

    2016-01-01

    Adsorption has been considered as one of the most effective methods to remove dyes from aqueous solutions due to its ease of operation, high efficiency and wide adaptability. In view of all these aspects, this study aimed to evaluate the adsorption capacity of a halloysite-magnetite-based composite in the removal of Congo red dye from aqueous solutions. The effects of stirring rate, pH, initial dye concentration and contact time were investigated. The results revealed that the adsorption kinetics followed the pseudo-second-order model, and equilibrium was well represented by the Brunauer-Emmett-Teller isotherm. The thermodynamic data showed that dye adsorption onto the composite was spontaneous and endothermic and occurred by physisorption. Finally, the composite could also be regenerated at least four times by calcination and was shown to be a promising adsorbent for the removal of this dye.

  17. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor

    International Nuclear Information System (INIS)

    Garcia-Montano, Julia; Torrades, Francesc; Garcia-Hortal, Jose A.; Domenech, Xavier; Peral, Jose

    2006-01-01

    A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250 mg l -1 ) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD 5 /COD), as well as the toxicity (EC 50 ), DOC, colour (Abs 543.5 ) and H 2 O 2 evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60 min of 10 mg l -1 Fe(II) and 125 mg l -1 H 2 O 2 photo-Fenton pre-treatment and 1 day HRT in SBR

  18. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    Energy Technology Data Exchange (ETDEWEB)

    Vacchi, Francine Inforcato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil); Ormond, Alexandra B.; Freeman, Harold S. [Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Zocolo, Guilherme Juliao; Zanoni, Maria Valnice Boldrin [Departamento de Quimica Analitica, Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Quimica de Araraquara, Araraquara, SP 14801-970 (Brazil); Umbuzeiro, Gisela, E-mail: giselau@ft.unicamp.br [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil)

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: Black-Right-Pointing-Pointer Aqueous solutions of Disperse Red 1 were treated with chlorine. Black-Right-Pointing-Pointer The chlorination products of Disperse Red 1 were identified using LC-ESI-MS/MS. Black-Right-Pointing-Pointer Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. Black-Right-Pointing-Pointer The chlorinated dye was more mutagenic

  19. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay

    International Nuclear Information System (INIS)

    Karim, A. Bennani; Mounir, B.; Hachkar, M.; Bakasse, M.; Yaacoubi, A.

    2009-01-01

    In this study, Moroccan crude clay of Safi, which was characterized by X-ray diffraction, is used as adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the Basic Red 46 (BR46) in aqueous solutions at various dye concentrations, adsorbent masses and pH values. The results showed that the adsorption capacity of the dye increased by initial dye concentration and pH values. Two kinetic models (the pseudo-first-order and the pseudo-second-order) were used to calculate the adsorption rate constants. The adsorption kinetics of the basic dye followed pseudo-second-order model. The experimental data isotherms were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevish equations. The monolayer adsorption capacity for BR46 dye is 54 mg/g of crude clay. Nearly 20 min of contact time was found to be sufficient for the dye adsorption to reach equilibrium. Thermodynamical parameters were also evaluated for the dye-adsorbent system and revealed that the adsorption process is exothermic in nature.

  20. Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment

    Directory of Open Access Journals (Sweden)

    L.R. Bergsten-Torralba

    2009-12-01

    Full Text Available The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198, Reactive Blue 214 (RB214, Reactive Blue 21 (RB21 and the mixture of the three dyes (MXD by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50. P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments.

  1. Fenton oxidation treatment of spent wash-off liquor for reuse in reactive dying

    International Nuclear Information System (INIS)

    Mangat, A.; Shaikh, I.A.; Ahmed, F.; Baqar, M

    2014-01-01

    The use of clean and high quality water in textile dyeing process is very expensive. In this study, the potential of reusing Fenton treated wash-off wastewater generated at the end of reactive dyeing was investigated. The treated wastewater was used in several dyeings employing three widely used reactive dyes, C. I. Reactive Yellow 145, C. I. Reactive Red 194, and C. I. Reactive Blue 221. Experimental results showed that at acidic pH (3.5) using optimized quantities of FeSO/sub 4/ and H/sub 2/O/sub 2/, Fenton process yielded a significant reduction (80-99%) of colour and COD in 30 minutes of treatment time. New dyeings were then carried out in Fenton decolourized wash-off wastewater, and dyed fabric samples were subjected to quality evaluations in terms of wash fastness, crock fastness, and colour difference properties (delta L*, delta c*, delta h*, and delta E*). This study concluded that Fenton oxidation was an efficient method for the treatment of textile wash-off wastewater, and treated liquor can be effectively recycled in next dyeing, without compromising quality parameters. This method proved to be an eco-friendly process owing to the fact that it did not use any fresh water. (author)

  2. Adsorptive removal of congo red and sunset yellow dyes from water systems by lady finger stem

    International Nuclear Information System (INIS)

    Abbas, A.; Murtaza, S.; Ayub, R.; Rehman, R.; Zahid, A.

    2012-01-01

    Summary: In this research work two anionic dyes, i.e. Congo Red and Sunset Yellow were removed successfully from aqueous media by Lady Finger stem in batch mode. Operational conditions optimization showed that agitation speed and particle size did not affect much in adsorption of these dyes; but contact time, pH, adsorbent dose and temperature of system effects the adsorption rate. Optimized conditions of adsorption for Congo Red dye were: 40 minute contact time, 8.0 pH, 0.5 g adsorbent dose, 40-60 microns mesh sized particles, 150 rpm agitation speed and 50 degree C temperature. Whereas for Sunset Yellow optimized conditions were: 30 minute contact time, 2.0 pH, 2.5 g adsorbent dose, 20-40 microns mesh sized particles, 50 rpm agitation speed and 30 degree C temperature. Suitability of equilibrium data was modulated with Langmuir, Freundlich and Temkin models and found that both physisorption and chemisorption processes play important role in adsorption of these dyes by Lady Finger stem. The results demonstrated that Lady Finger stem can be efficiently employed on larger scale wastewater treatment. (author)

  3. DFT Study of the Structure, Reactivity, Natural Bond Orbital and Hyperpolarizability of Thiazole Azo Dyes

    Directory of Open Access Journals (Sweden)

    Osman I. Osman

    2017-02-01

    Full Text Available The structure, reactivity, natural bond orbital (NBO, linear and nonlinear optical (NLO properties of three thiazole azo dyes (A, B and C were monitored by applying B3LYP, CAM-B3LYP and ωB97XD functionals with 6-311++G** and aug-cc-pvdz basis sets. The geometrical parameters,dipolemoments,HOMO-LUMO(highest occupied molecular orbital,lowest unoccupied molecular orbital energy gaps, absorption wavelengths and total hyperpolarizabilities were investigated in carbon tetrachloride (CCl4 chloroform (CHCl3, dichloromethane (CH2Cl2 and dimethlysulphoxide (DMSO. The donor methoxyphenyl group deviates from planarity with the thiazole azo moiety by ca. 38◦; while the acceptor dicyanovinyl, indandione and dicyanovinylindanone groups diverge by ca. 6◦. The HOMOs for the three dyes are identical. They spread over the methoxyphenyl donor moiety, the thiazole and benzene rings as π-bonding orbitals. The LUMOs are shaped up by the nature of the acceptor moieties. The LUMOs of the A, B and C dyes extend over the indandione, malononitrile and dicyanovinylindanone acceptor moieties, respectively, as π-antibonding orbitals. The HOMO-LUMO splittings showed that Dye C is much more reactive than dyes A and B. Compared to dyes A and B, Dye C yielded a longer maximum absorption wavelength because of the stabilization of its LUMOs relative to those of the other two. The three dyes show solvatochromism accompanied by significant increases in hyperpolarizability. The enhancement of the total hyperpolarizability of C compared to those of A and B is due to the cumulative action of the long π-conjugation of the indanone ring and the stronger electron-withdrawing ability of the dicyanovinyl moiety that form the dicyanovinylindanone acceptor group. These findings are facilitated by a natural bond orbital (NBO technique. The very high total hyperpolarizabilities of the three dyes define their potent nonlinear optical (NLO behaviour.

  4. Photocatalytic oxidation of a reactive azo dye and evaluation of the ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the photocatalytic oxidation of a reactive azo dye and determine the improvement in the biodegradability when photocatalytic oxidation was used as a pretreatment step prior to biological treatment. The results obtained from the experiments adding H2O2/TiO2 show that the ...

  5. Comparative removal of congo red dye from water by adsorption on grewia asiatica leaves, raphanus sativus peels and activated charcoal

    International Nuclear Information System (INIS)

    Rehman, R.; Abbas, A.; Murtaza, S.; Mahmud, T.; Waheed-uz-Zaman; Salman, M.; Shafiq, U.

    2012-01-01

    Water treatment by adsorption methodology is being evolved in recent years. Various researchers are searching new adsorbents for water treatment which can replace activated charcoal. In the following study, the efficiency of removing Congo Red dye from water using two novel adsorbents, i.e. Raphanus sativus (Radish) peels and Grewia asiatica (Phalsa) leaves was evaluated and compared with activated charcoal. The adsorption process is carried out batch wise by using different concentrations of the aqueous dye solution with different adsorbent doses, agitation rate, varying contact time intervals, at a range of initial pH values and at different temperatures. Various chemicals were used for enhancing the adsorption capacity of adsorbents. The suitability of the adsorbent for using it is tested by fitting the adsorption data on Langmuir isotherm. The results showed that the Phalsa leaves powder is more effective adsorbent than Reddish peels for removing Congo Red dye from water. It can be used for removing Congo Red dye from waste water. (author)

  6. Studies on UV/NaOCl/TiO2/Sep photocatalysed degradation of Reactive Red 195.

    Science.gov (United States)

    Karaoğlu, M Hamdi; Uğurlu, Mehmet

    2010-02-15

    The photocatalytic degradation of Reactive Red 195 (RR195) has been investigated in aqueous suspensions by using ultraviolet (UV), sodium hypochlorite (NaOCl) and TiO(2)/Sep nanoparticles together. To get the TiO(2)/Sep nanoparticle, the nanocrystalline TiO(2) anatase phase on sepiolite was obtained using a sufficient thermal treatment by gradually increasing the temperature from 300, 400 and 500 degrees C for 3h. Then, TiO(2)/Sep materials were characterized using different spectral and technical structural analyses with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The influence of pH, catalyst amount, oxidant and initial dye concentration was investigated in all the experiments. Maximum colour and chemical oxygen demand (COD) removal were 99.9% and 78% respectively, at a dye concentration of 250 mg L(-1), NaOCl dosage of 50.37 mM, 0.1 g L(-1) weight of TiO(2)/Sep and pH of 5.45 in 3h. In addition, the pseudo-first order model was applied and r(2) values were noted from 0.92 to 0.99.

  7. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    International Nuclear Information System (INIS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-01-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO 2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO 2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO 2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively. (paper)

  8. Formation of Sulfonyl Aromatic Alcohols by Electrolysis of a Bisazo Reactive Dye

    Directory of Open Access Journals (Sweden)

    María P. Elizalde-González

    2012-12-01

    Full Text Available Five sulfonyl aromatic alcohols, namely 4-((2-hydroxyethylsulfonylphenol, 4-((2-(2-((4-hydroxyphenylsulfonylethoxyvinylsulfonylphenol, 4-(ethylsulfonylphenol, 4-(vinylsulfonylphenol and 5-((4-aminophenylsulfonyl-2-penten-1-ol were identified by LC-ESI-Qq-TOF-MS as products formed by electrolysis of the bisazo reactive dye Reactive Black 5 (RB5. Since electrolyses were performed in an undivided cell equipped with Ni electrodes in alkaline medium, amines like 4-(2-methoxyethylsulfonylbenzene-amine (MEBA with m/z 216 were also suspected to be formed due to the plausible chemical reaction in the bulk or the cathodic reduction of RB5 and its oxidation by-products. Aiming to check this hypothesis, a method was used for the preparation of MEBA with 98% purity, via chemical reduction also of the dye RB5. The logP of the synthesized sulfonyl aromatic compounds was calculated and their logkw values were determined chromatographically. These data were discussed in regard to the relationship between hydrophobicity/lipophilicity and toxicity.

  9. Influence of operating conditions on the removal of brilliant vital red dye from aqueous media by bio-sorption using rice husk

    International Nuclear Information System (INIS)

    Rehman, R.; Anwar, J.; Mahmud, T.; Salman, M.; Shafique, U.

    2011-01-01

    Bio-sorption is emerging as an economical and eco friendly methodology for the removal of hazardous and toxic chemicals from waste water. The operating conditions have a great influence on the efficiency of this process. Conventional and indigenous bio sorbents like bagasse, wheat husk and rice husk have been evaluated for their removing efficiency of Brilliant Vital Red dye from water. Rice husk is proved better among them. The effect of important operating conditions for the removal of the dye using rice husk were studied. The observed optimum values for various factors are; 0.2 g of bio sorbent, 25 ppm initial dye concentration, 30 deg. C temperature, 15 minutes contact time, 300 rpm stirring speed and 2.0 ph. Langmuir adsorption isotherm model was also applied to evaluate maximum adsorption capacity of rice husk for Brilliant Vital Red dye. Q/sub max/ value was 15.06 which indicated that rice husk can effectively be used for the removal of Brilliant Vital Red dye from wastewater using the optimized operational conditions. This study would be accommodative with regard to practical wastewater treatment. (author)

  10. The application of sensitizers from red frangipani flowers and star gooseberry leaves in dye-sensitized solar cells

    Science.gov (United States)

    Almaz Dhafina, Wan; Salleh, Hasiah; Zalani Daud, Muhamad; Ali, Nora’aini

    2018-05-01

    Nowadays natural based dyes for dye-sensitized solar cells (DSSCs) have been in research field attention due to its advantages over other type of dyes such as low-cost, low-toxicity, completely biodegradable and abundance of resources. Natural dyes can be produced via the simple extraction method of pigments from plant parts such as flower, fruits, leaves, tuber etc. In this feature article, the natural dyes which composed of anthocyanin pigment from red frangipani flowers and chlorophyll from star gooseberry leaves were applied in zinc oxide, (ZnO) based-DSSC. The ZnO photoanode of the DSSCs sample were sensitized in each dye with different duration. It was observed that DSSCs which has chlorophyll pigment as dye had better performance with power conversion efficiency (PCE) of 0.007%.

  11. Kinetics and mechanism of azo dye destruction in advanced oxidation processes

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2007-01-01

    The kinetics and mechanism of dye destruction in advanced oxidation processes is discussed on the example of Apollofix Red (Ar-28) radiolysis in aqueous solution. When the reactive intermediate reacts with the color bearing part of the molecule causing with nearly 100% efficiency destruction of the conjugation, the dose dependence, or time dependence of color disappearance is linear. In this case, spectrophotometry can be used to follow-up dye decomposition. Linear dependence was observed when hydrated electrons or hydrogen atoms reacted with the dye. In hydroxyl radical reactions some colored products form with spectra similar to those of the starting dye molecules. For that reason, spectrophotometry gives false result about the intact dye molecule concentration. Analysis by the HPLC reveals logarithmic time dependence in agreement with a theoretical model developed

  12. Effect of chitosan on resist printing of cotton fabrics with reactive dyes

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... levels may cause the dyes to form a partial covalent bond with chitosan, thereby diminishing the resist-printing effect. In such a case, the resist printing would not be linear as a function of chitosan concentration. Red 184 exhibited the highest resist-printing effect, followed by. Blue 204 and Yellow 143.

  13. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Montano, Julia [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Torrades, Francesc [Departament d' Enginyeria Quimica, ETSEI de Terrassa (UPC), C/Colom, 11, E-08222 Terrassa, Barcelona (Spain); Garcia-Hortal, Jose A. [Departament d' Enginyeria Textil i Paperera, ETSEI de Terrassa (UPC), C/Colom, 11, E-08222 Terrassa, Barcelona (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-06-30

    A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250 mg l{sup -1}) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD{sub 5}/COD), as well as the toxicity (EC{sub 50}), DOC, colour (Abs{sub 543.5}) and H{sub 2}O{sub 2} evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60 min of 10 mg l{sup -1} Fe(II) and 125 mg l{sup -1} H{sub 2}O{sub 2} photo-Fenton pre-treatment and 1 day HRT in SBR.

  14. Synthesis and characterization of carboxymethyl potato starch and its application in reactive dye printing.

    Science.gov (United States)

    Zhang, Bing; Gong, Honghong; Lü, Shaoyu; Ni, Boli; Liu, Mingzhu; Gao, Chunmei; Huang, Yinjuan; Han, Fei

    2012-11-01

    Carboxymethyl potato starch (CMPS) was synthesized with a simple dry and multi-step method as a product of the reaction of native potato starch and monochloroacetic acid in the presence of sodium hydroxide. The influence of the molar ratio of sodium hydroxide to anhydroglucose unit, the volume of 95% (v/v) ethanol, the rotation rate of motor driven stirrer and the reaction time for degree of substitution (DS) were evaluated. The product was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). FTIR spectrometry showed new bonds at 1618 and 1424 cm⁻¹ when native starch underwent carboxymethylation. SEM pictures showed that the smooth surface of native starch particles was mostly ruptured. XRD revealed that starch crystallinity was reduced after carboxymethylation. The viscosity of the mixture paste of carboxymethyl starch and sodium alginate (SA) was measured using a rotational viscometer. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with SA. And the results indicated that the mixed paste could partially replace SA as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Study of the Direct Red 81 Dye/Copper(II-Phenanthroline System

    Directory of Open Access Journals (Sweden)

    Elsa Walger

    2018-01-01

    Full Text Available Recovered papers contain several chromophores, such as wood lignin and dyes. These have to be eliminated during paper recycling in order to produce white paper. Hydrogen peroxide under alkaline conditions is generally used to decolorize lignin, but its effect on dyes is limited. Copper(II-phenanthroline (Cu-Phen complexes can activate the oxidation of lignin by hydrogen peroxide. Hydrogen peroxide may also be activated during recycled fiber bleaching, thus enhancing its color-stripping efficiency towards unoxidizable azo dyes. The purpose of this paper was to determine the effect of Cu-Phen complexes on a model azo dye, Direct Red 81 (DR81, in aqueous solution. Different Cu-Phen solutions (with different initial Cu:Phen molar ratios were prepared and mixed with the dye at different pHs. The geochemical computer program PHREEQC allowed precise calculation of the theoretical distribution between different possible coordinates (CuPhenOH+, Cu(Phen22+, CuPhen(OH2, Cu(Phen32+, etc. depending on pH and initial concentrations. UV-vis spectroscopic measurements were correlated with the major species theoretically present in each condition. The UV absorbance of the system was mainly attributed to the Cu-Phen complex and the visible absorbance was only due to the dye. Cu-Phen appeared to reduce the color intensity of the DR81 dye aqueous solution under specific conditions (more effective at pH 10.7 with Cu:Phen = 1:1, probably owing to the occurrence of a coordination phenomenon between DR81 and Cu-Phen. Hence, the ligand competition between phenanthroline and hydroxide ions would be disturbed by a third competitor, which is the dye molecule. Further investigation proved that the DR81 dye is able to form a complex with copper-phenanthroline, leading to partial color-stripping. This new “color-stripping effect” may be a new opportunity in paper and textile industries for wastewater treatment.

  16. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  17. Treatment and kinetic modelling of a simulated dye house effluent by enzymatic catalysis.

    Science.gov (United States)

    Cristóvão, Raquel O; Tavares, Ana P M; Loureiro, José M; Boaventura, Rui A R; Macedo, Eugénia A

    2009-12-01

    Biocatalytic treatment of a synthetic dye house effluent, simulating a textile wastewater containing various reactive dyestuffs (Reactive Yellow 15, Reactive Red 239 and Reactive Black 5) and auxiliary chemicals, was investigated in a batch reactor using a commercial laccase. A high decolourisation (above 86%) was achieved at the maximum wavelength of Reactive Black 5. The decolourisation at the other dyes wavelengths (above 63% for RY15 and around 41% for RR239) and the total decolourisation based on all the visible spectrum (around 55%) were not so good, being somewhat lower than in the case of a mixture of the dyes (above 89% for RB5, 77% for RY15, 68% for RR239 and above 84% for total decolourisation). Even so, these results suggest the applicability of this method to treat textile dyeing wastewaters. Kinetic models were developed to simulate the synthetic effluent decolourisation by commercial laccase. The kinetic constants of the models were estimated by minimizing the difference between the predicted and the experimental time courses. The close correlation between the experimental data and the simulated values seems to demonstrate that the models are able to describe with remarkable accuracy the simulated effluent degradation. Water quality parameters such as TOC, COD, BOD(5) and toxicity were found to be under the maximum permissible discharge limits for textile industries wastewaters.

  18. Investigation of adsorption and inhibitive effect of acid red GRE (183 dye on the corrosion of carbon steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    M. Abd El-raouf

    2015-09-01

    Full Text Available The adsorption and corrosion inhibitive effect of acid red GRE (183 dye on carbon steel alloy in 1 M HCl solutions was studied using various techniques. Results of weight loss, Tafel polarization measurements and electrochemical impedance spectroscopy (EIS techniques show that this compound has fairly good inhibiting properties for steel corrosion in acidic bath; with efficiency around 96% at a concentration of 50 ppm. The inhibition is of a mixed anodic–cathodic nature. Factors affecting the corrosion process have been calculated and discussed. Acid red GRE (183 dye was shown to be an inhibitor in the acidic corrosion. Inhibition efficiency increased with acid red GRE (183 dye concentration but decreased with rise in temperature, corrosion inhibition is attributed to the adsorption of acid red GRE (183 dye on the carbon steel surface via a physical adsorption mechanism. Langmuir isotherm is found to provide an accurate description of the adsorption behavior of the investigated azo compound. The nature of the protective film was investigated using SEM and EDX techniques.

  19. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31.

    Science.gov (United States)

    Khan, Razia; Fulekar, M H

    2016-08-01

    The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization

    Science.gov (United States)

    Shaban, Mohamed; Abukhadra, Mostafa R.; Ibrahim, Suzan S.; Shahien, Mohamed. G.

    2017-12-01

    Refined natural Fe-chromite was characterized by XRD, FT-IR, reflected polarized microscope, XRF and UV spectrophotometer. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye by Fe-chromite was investigated using 1 mL H2O2. The degradation of dye was studied as a function of illumination time, chromite mass, initial dye concentration, and pH. Fe-chromite acts as binary oxide system from chromium oxide and ferrous oxide. Thus, it exhibits photocatalytic properties under UV illumination and photo-Fenton oxidation after addition of H2O2. The degradation in the presence of H2O2 reached the equilibrium stage after 8 h (59.4%) but in the absence of H2O2 continued to 12 h (54.6%). Photocatalytic degradation results fitted well with zero, first order and second order kinetic model but it represented by second order rather than by the other models. While the photo-Fenton oxidation show medium fitting with the second order kinetic model only. The values of kinetic rate constants for the photo-Fenton oxidation were greater than those for the photocatalytic degradation. Thus, degradation of Congo red dye using chromite as catalyst is more efficient by photo-Fenton oxidation. Based on the response surface analysis, the predicted optimal conditions for maximum removal of Congo red dye by photocatalytic degradation (100%) were 12 mg/l, 0.14 g, 3, and 11 h for dye concentration, chromite mass, pH, and illumination time, respectively. Moreover, the optimum condition for photo-Fenton oxidation of dye (100%) is 13.5 mg/l, 0.10 g, 4, and 10 h, respectively.

  1. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye

    International Nuclear Information System (INIS)

    Akar, Tamer; Tosun, Ilknur; Kaynak, Zerrin; Kavas, Emine; Incirkus, Gonul; Akar, Sibel Tunali

    2009-01-01

    This study focuses on the possible use of macro-fungus Agaricus bisporus to remove Acid Red 44 dye from aqueous solutions. Batch equilibrium studies were carried out as a function of pH, biomass amount, contact time and temperature to determine the decolorization efficiency of biosorbent. The highest dye removal yield was achieved at pH 2.0. Equilibrium occurred within about 30 min. Biosorption data were successfully described by Langmuir isotherm model and the pseudo-second-order kinetic model. The maximum monolayer biosorption capacity of biosorbent material was found as 1.19 x 10 -4 mol g -1 . Thermodynamic parameters indicated that the biosorption of Acid Red 44 onto fungal biomass was spontaneous and endothermic in nature. Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of possible dye-biosorbent interaction and surface structure of biosorbent, respectively. Finally the proposed biosorbent was successfully used for the decolorization of Acid Red 44 in synthetic wastewater conditions.

  2. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    Science.gov (United States)

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  4. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    Directory of Open Access Journals (Sweden)

    Mercè Vilaseca

    2014-09-01

    Full Text Available Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  5. Production of Ligninolytic Enzymes by White-Rot Fungus Datronia sp. KAPI0039 and Their Application for Reactive Dye Removal

    Directory of Open Access Journals (Sweden)

    Pilanee Vaithanomsat

    2010-01-01

    Full Text Available This study focused on decolorization of 2 reactive dyes; Reactive Blue 19 (RBBR and Reactive Black 5 (RB5, by selected white-rot fungus Datronia sp. KAPI0039. The effects of reactive dye concentration, fungal inoculum size as well as pH were studied. Samples were periodically collected for the measurement of color unit, Laccase (Lac, Manganese Peroxidase (MnP, and Lignin Peroxidase (LiP activity. Eighty-six percent of 1,000 mg L−1 RBBR decolorization was achieved by 2% (w/v Datronia sp. KAPI0039 at pH 5. The highest Lac activity (759.81 UL−1 was detected in the optimal condition. For RB5, Datronia sp. KAPI0039 efficiently performed (88.01% decolorization at 2% (w/v fungal inoculum size for the reduction of 600 mg L−1 RB5 under pH 5. The highest Lac activity (178.57 UL−1 was detected, whereas the activity of MnP and LiP was absent during this hour. The result, therefore, indicated that Datronia sp. KAPI0039 was obviously able to breakdown both reactive dyes, and Lac was considered as a major lignin-degradation enzyme in this reaction.

  6. Deciphering effects of functional groups and electron density on azo dyes degradation by graphene loaded TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemical Engineering, HuaQiao University, Xiamen 361021 (China); Liang, Xiao [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Bor-Yann [Department of Chemical and Materials Engineering, National I-Lan University, 26047, Taiwan (China); Chang, Chang-Tang, E-mail: ctchang@niu.edu.tw [Department of Environmental Engineering, National I-Lan University, 26047, Taiwan (China)

    2015-12-01

    Highlights: • The degradation pathways of RB5, RB171 and RR198 have been identified. • The favorable bond to be broken under photo degradation was deciphered in this research. • The breakages of the bonds were due to the electron density changes around the bonds. • The hydroxyl radicals as the main oxidized species were confirmed by positive hole trapper and ESR. - Abstract: This study tended to decipher the mechanism of photo degradation of azo dyes, which bond was favorable to be broken for application of wastewater decolorization. That is, from chemical structure perspective, the critical substituents to affect electron donor/acceptor for dye degradation would be identified in this research. The model reactive blacks (RB5), reactive blue 171 (RB171) and reactive red 198 (RR198) were degraded by graphene loaded TiO{sub 2}, indicating how the electron withdrawing and releasing groups affect azo dye degradability. The byproducts and intermediate products were analyzed by ultraviolet–visible spectroscopy (UV–vis), gas chromatography–mass spectrometry (GC–MS) and ion chromatography (IC). Furthermore, the radicals involved in the reaction were found by electron paramagnetic resonance (ESR) to confirm the main oxidized species of hydroxyl radicals rather than the light generated positive holes. The finding revealed that the breakages of the bonds were due to the electron density changes around the bonds. This principle can be applicable not only for RB5 degradation, but also for reactive blue 171 (RB171), reactive red 198 (RR198) and some other textile dyes.

  7. Modified coal fly ash as low cost adsorbent for removal reactive dyes from batik industry

    Directory of Open Access Journals (Sweden)

    Taufiq Agus

    2018-01-01

    Full Text Available The removal of reactive dyes on modified coal fly ash has been investigated during a series of batch adsorption experiments. Physical characteristics of modified coal fly ash was characterized by Brunauer Emmett Teller (BET surface area analysis, X-ray powder diffraction (XRD, Fourier transform infrared spectrophotometer (FT-IR, and scanning electron microscope (SEM. The effects of operational parameters such as initial dye concentration (50–200 mg/L, solution pH (4–10 and adsorbent dosage (50–200 mg/L were studied. The adsorption experiments indicated that modified coal fly ash was effective in removing of Remazol Blue. The percentage removal of dyes increased while the modified fly ash dosage increased. The percentage removal of dyes increased with decreased initial concentration of the dye and also increased with amount of adsorbent used. The optimum of removal of dyes was found to be 94% at initial dye concentration 50 g/mL, modified fly ash dosage 250 g/mL, and pH of 2.0.

  8. Reactive Pad-Steam Dyeing of Cotton Fabric Modified with Cationic P(St-BA-VBT Nanospheres

    Directory of Open Access Journals (Sweden)

    Kuanjun Fang

    2018-05-01

    Full Text Available The Poly[Styrene-Butyl acrylate-(P-vinylbenzyl trimethyl ammonium chloride] P(St-BA-VBT nanospheres with N+(CH33 functional groups were successfully prepared and applied to modify cotton fabrics using a pad-dry process. The obtained cationic cotton fabrics were dyed with pad-steam dyeing with reactive dye. The results show that the appropriate concentration of nanospheres was 4 g/L. The sodium carbonate of 25 g/L and steaming time of 3 min were suitable for dyeing cationic cotton with 25 g/L of C.I. Reactive Blue 222. The color strength and dye fixation rates of dyed cationic cotton fabrics increased by 39.4% and 14.3% compared with untreated fabrics. Moreover, sodium carbonate and steaming time were reduced by 37.5% and 40%, respectively. The rubbing and washing fastness of dyed fabrics were equal or higher 3 and 4–5 grades, respectively. Scanning electron microscopy (SEM images revealed that the P(St-BA-VBT nanospheres randomly distributed and did not form a continuous film on the cationic cotton fiber surfaces. The X-ray photoelectron spectroscopy (XPS analysis further demonstrated the presence of cationic nanospheres on the fiber surfaces. The cationic modification did not affect the breaking strength of cotton fabrics.

  9. Isolation and Characterization of Paracoccus sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5

    Directory of Open Access Journals (Sweden)

    Mallikarjun C. Bheemaraddi

    2014-01-01

    Full Text Available A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v. UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2.

  10. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31 by moderately alkaliphilic bacterial consortium

    Directory of Open Access Journals (Sweden)

    Sylvine Lalnunhlimi

    2016-03-01

    Full Text Available Abstract Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151 and Direct Red 31 (DR 31. The decolorization of azo dyes was studied at various concentrations (100–300 mg/L. The bacterial consortium, when subjected to an application of 200 mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment.

  11. Studies on photofading and stable free radical formation in reactive dyed cellulosic systems under their exposure to light

    International Nuclear Information System (INIS)

    Remi, E.; Horvath, O.; Vig, A.; Aranyosi, P.; Rusznak, I.

    1996-01-01

    In light exposed systems of cotton and C.I. Reactive Red 3, C.I. Reactive Black 5 and C.I. Direct Blue 78 azo dyes respectively, generated stable free radicals could be detected. The observed hyperfine splitting of ESR spectra suggest the free radical are formed in the chromophore. Based upon the calculated g-values the location of the generated unpaired electron could be assumed on one of the C atoms of the dye molecule. (author)

  12. Application of non-thermal plasma reactor for degradation and detoxification of high concentrations of dye Reactive Black 5 in water

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2016-01-01

    Full Text Available Degradation and detoxification efficiency of high concentrations of commercially available reactive textile dye Reactive Black 5 solution (40, 80, 200, 500, 1000 mg L-1, were studied. Advanced oxidation processes in water falling film based dielectric barrier discharge as a non-thermal plasma reactor were used. For the first time, this reactor was used for the treatment of high concentrations of organic pollutants such as reactive textile dye Reactive Black 5 in water. Solution of the dye is treated by plasma as thin water solution film that is constantly regenerated. Basically, the reactor works as a continuous flow reactor and the electrical discharge itself takes place at the gas-liquid interphase. The dye solution was recirculated through the reactor with an applied energy density of 0-374 kJ L-1. Decolorization efficiency (% was monitored by UV-VIS spectrophotometric technique. Samples were taken after every recirculation (~ 22 kJ L-1 and decolorization percent was measured after 5 min and 24 h of plasma treatment. The efficiency of degradation (i.e. mineralization and possible degradation products were also tracked by determination of the chemical oxygen demand (COD and by ion chromatography (IC. Initial toxicity and toxicity of solutions after the treatment were studied with Artemia salina test organisms. Efficiency of decolorization decreased with the increase of the dye concentration. Complete decolorization, high mineralization and non-toxicity of the solution (<10 % were acomplished after plasma treatment using energy density of 242 kJ L-1, while the initial concentrations of Reactive Black 5 were 40 and 80 mg L-1. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 171034

  13. Removal of Acid Red 18 dye from Aqueous Solutions Using Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2015-08-01

    Full Text Available Background and Purpose:Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim was to evaluate the performance nanoscalezero-valent iron (NZVI in the removal of dye acid red 18 (AR18 from aqueous solutions. Materials and Methods:This study was conducted at the laboratory scale. In this study, the removal efficiency of AR18 from a synthetic solution by NZVI was investigated. As well as the effect of solution pH, dye concentration, the concentration of NZVI and contact time in decolorization efficiency was investigated. Results:The results show that in pH = 3, contact time of 80 minutes, dye concentration of 25 mg/l and concentration of NZVI of 2 g/l, the removal efficiency was about 94%. Conclusion:According to the results of experiments, NZVI has high efficiency in removal of AR18 from aqueous solution.

  14. Application of ionizing radiation on industry waste treatment I. radiolysis of standard reactive dye Cibacron violet

    International Nuclear Information System (INIS)

    Winarti Andayani; Agustin Sumartono

    1999-01-01

    The effect of aeration, irradiation dose and pH on radiation degradation of reactive dye cibacron violet 2r in aqueous solution have been studied. Observation was done on the absorption spectrum before and after irradiation at various conditions. The percentage of degraded sample was analyzed by using HPLC with UV detector. The percentage of degradation was higher by aeration during irradiation. It suggest that oxygen is important for degradation of the dye molecule. Irradiation at neutral pH is preferred to obtain maximum degradation, since pH may affect the reactivity of the radicals produced by the radiolysis of water molecules. One of the degradation product that could be detected was oxalic acid. (author)

  15. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes

    International Nuclear Information System (INIS)

    Chen Ping; Duan Yu; Xie Wenfa; Zhao Yi; Hou Jingying; Liu Shiyong; Zhang Liying; Li Bin

    2009-01-01

    We demonstrate efficient white organic light-emitting devices (WOLEDs) based on an orange phosphorescent iridium complex bis(2-(2-fluorphenyl)-1,3-benzothiozolato-N, C 2' )iridium(acetylacetonate) in combination with blue phosphorescent dye bis[(4, 6-difluorophenyl)-pyridinato-N,C 2 )](picolinato) Ir(III) and red phosphorescent dye bis[1-(phenyl)isoquinoline] iridium (III) acetylanetonate. By introducing a thin layer of 4, 7-diphenyl-1,10-phenanthroline between blue and red emission layers, the diffusion of excitons is confined and white light can be obtained. WOLEDs with the interlayer all have a higher colour rendering index (>82) than the device without it (76). One device has the maximum current efficiency of 17.6 cd A -1 and a maximum luminance of 39 050 cd m -2 . The power efficiency is 8.7 lm W -1 at 100 cd m -2 . Furthermore, the device has good colour stability and the CIE coordinates just change from (0.394, 0.425) to (0.390, 0.426) with the luminance increasing from 630 to 4200 cd m -2 .

  16. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon

    International Nuclear Information System (INIS)

    Ahmad, Rais; Kumar, Rajeev

    2010-01-01

    This study investigates the potential use of bael shell carbon (BSC) as an adsorbent for the removal of congo red (CR) dye from aqueous solution. The effect of various operational parameters such as contact time, temperature, pH, and dye concentration were studied. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, and pseudo-second-order kinetics. The dye uptake process obeyed the pseudo-second-order kinetic expression at pH 5.7, 7 and 8 whereas the pseudo-first-order kinetic model was fitted well at pH 9. Langmuir, Freundlich and Temkin adsorption models were applied to fit adsorption equilibrium data. The best-fitted data was obtained with the Freundlich model. Thermodynamic study showed that adsorption of CR onto BSC was endothermic in nature and favorable with the positive ΔH o value of 13.613 kJ/mol.

  17. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    OpenAIRE

    Kęstutis BELEŠKA; Virgilijus VALEIKA; Justa ŠIRVAITYTĖ; Violeta VALEIKIENĖ

    2013-01-01

    The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on...

  18. Novel elastomer dye-functionalised POSS nanocomposites: Enhanced colourimetric, thermomechanical and thermal properties

    Directory of Open Access Journals (Sweden)

    R. A. Shanks

    2012-05-01

    Full Text Available Nanocomposites consisting of poly(styrene-b-butadiene-b-styrene (SBS and polyhedral oligomeric silsesquioxanes (POSS were prepared using a solvent dispersion method. POSS molecules were functionalised with two dichlorotriazine reactive dyes (CI Reactive Blue 4, CI Reactive Red 2 prior to compounding. Infrared spectroscopy confirmed functionalisation.Scanning electron microscopy revealed an increase in filler aggregation with concentration, with preferential phase selectivity. Ultraviolet spectroscopy and colourimetry confirmed colour uniformity and suggested that colour intensity could be controlled. Functionalised POSS improved thermal stability by imparting restrictions on SBS chain motions. Tensile stress-strain analysis revealed an increase in modulus with filler concentration, while creep deformation decreased and permanent strain increased with POSS content. Storage modulus, loss modulus and glass transition temperature increased with filler content due to effective SBS-POSS interaction. Nanocomposite properties were influenced by the phase the filler was dispersed throughout and the structure of the dye chromophore.

  19. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  20. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Teng, Jun-Yu

    2009-01-01

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  1. Discoloration of a red cationic dye by supported TiO2 photocatalysis

    International Nuclear Information System (INIS)

    Mounir, B.; Pons, M.N.; Zahraa, O.; Yaacoubi, A.; Benhammou, A.

    2007-01-01

    The degradation under UV, visible and sunlight irradiation of C.I. Basic Red 46 (BR 46) dye used for acrylic fibers dyeing has been studied in a lab-scale continuous system with two different immobilized TiO 2 systems. Catalyst I was based on TiO 2 particles deposited on cellulose fibers; Catalyst II combined TiO 2 particles deposited on a layer of cellulose fibers (as in Catalyst I) with a layer of carbon fibers and finally a layer of cellulose fibers. The treatment of aqueous dye solutions and industrial wastewater contaminated with the same dye has been evaluated in terms of color removal and chemical oxygen demand (COD) decrease. With UV light, aqueous solutions containing dye were decolorized slightly more rapidly with Catalyst II than with Catalyst I. Sunlight was also very effective and experiments involving sunlight irradiation showed Catalyst II to be the more efficient, giving more than 90% discoloration after 20 min of treatment. Comparing the discoloration yield by adsorption or under visible light for both catalysts, it was observed that the difference between them is below 5%. The adsorption kinetics was found to follow a second-order rate law for Catalyst I and a first-order rate law for Catalyst II. The kinetics of photocatalytic degradation under UV or sunlight were found to follow a first-order rate law for both catalytic systems. Under sunlight the COD removal yield for textile wastewater reaches 33% with Catalyst I against 93% with Catalyst II

  2. Toxicological Assessment and UV/TiO2-Based Induced Degradation Profile of Reactive Black 5 Dye

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M. N.; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2018-01-01

    In this study, the toxicological and degradation profile of Reactive Black 5 (RB5) dye was evaluated using a UV/TiO2-based degradation system. Fourier transform infrared spectroscopy (FT-IR), thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) techniques were used to evaluate the degradation level of RB5. The UV-Vis spectral analysis revealed the disappearance of peak intensity at 599 nm (λmax). The FT-IR spectrum of UV/TiO2 treated dye sample manifest appearance of new peaks mainly because of the degraded product and/or disappearance of some characteristics peaks which were present in the untreated spectrum. The HPLC profile verified the RB5 degradation subject to the formation of metabolites at different retention times. A stable color removal higher than 96% with COD removal in the range of 74-82.3% was noted at all evaluated dye concentrations. The tentative degradation pathway of RB5 is proposed following a careful analysis of the intermediates identified by UPLC-MS. Toxicity profile of untreated and degraded dye samples was monitored using three types of human cell lines via MTT assay and acute toxicity testing with Artemia salina. In conclusion, the UV/TiO2-based degradation system could be effectively employed for the remediation of textile wastewater comprising a high concentration of reactive dyes.

  3. The effect of NCS- on the radiation-induced decoloration of azo and anthraquinone dyes in N2O-saturated aqueous solutions

    International Nuclear Information System (INIS)

    Suzuki, Nobutake; Hotta, Hiroshi

    1977-01-01

    The radiation-induced decoloration of azo and anthraquinone dyes was studied in N 2 O-saturated aqueous solutions containing NCS - . In the N 2 O-saturated solutions, the decoloration yield, G(-Dye), increased markedly upon the addition of NCS - , which is an efficient scavenger of the OH radical-that is, from 1.46 up to 2.10 for Acid Red 265 and from 0.51 up to 1.51 for Acid Blue 40 upon the addition of 1 mM NCS - . In the nitrogen-saturated solutions, however, the G(-Dye) decreased upon the addition of NCS - . It is concluded that the increase in the G(-Dye) upon the addition of NCS - in the N 2 O-saturated solutions is mainly attributable to the attack of the radical anion (NCS) 2 - on the ring structure of the dyes. This radical anion is formed through the following path: NCS - +OH → NCS+OH - and NCS+NCS - reversible (NCS) 2 - . At low NCS - concentrations, the G(-Dye) decreased for Acid Red 265 and increased for Acid Blue 40. This may be attributable to the larger reactivity of (NCS) 2 - on Acid Blue 40 than on Acid Red 265. (auth.)

  4. Visible light photocatalytic activities of template free porous graphitic carbon nitride-BiOBr composite catalysts towards the mineralization of reactive dyes

    Science.gov (United States)

    Kanagaraj, Thamaraiselvi; Thiripuranthagan, Sivakumar; Paskalis, Sahaya Murphin Kumar; Abe, Hideki

    2017-12-01

    Template free porous g-C3N4 (pGCN) and flower like bismuth oxybromide catalysts were synthesized by poly condensation and precipitation methods respectively. Various weight percentages of porous GCN-BiOBr composite catalysts (x% pGCN-BiOBr where x = 5, 10, 30, 50 & 70 wt% of pGCN) were synthesized by impregnation method. All the synthesized catalysts were characterized by X-Ray diffractometer, Fourier transform infrared spectrophotometer, BET surface area analyzer, UV Visible diffuse reflectance spectrophotometer, X-Ray photoelectron spectrophotometer, SEM with Energy dispersive X-ray analyzer (SEM/EDAX) and elemental mapping, Transmission electron microscope, Photoluminescence spectrophotometer and Electrochemical impedance. Photocatalytic degradation of all the synthesized catalysts were tested towards the harmful reactive dyes such as reactive blue 198 (RB 198), reactive black 5 (RB 5) and reactive yellow 145 (RY 145) in presence of visible irradiation. Among the catalysts 30% pGCN-BiOBr resulted in the highest photocatalytic activity towards the degradation of all the three dyes in presence of UV, visible and solar irradiations. Kinetics studies on the photocatalytic mineralization of dyes indicated that it followed pseudo first order. HPLC, TOC and COD studies confirm that the dyes are mineralized into CO2, water and mineral salts.

  5. The Application of Low-Cost Adsorbent for Reactive Blue 19 Dye Removal from Aqueous Solution: Lemna Minor

    Directory of Open Access Journals (Sweden)

    Davoud Balarak

    2015-10-01

    Full Text Available Background & Aims of the Study: Due to widespread use and adverse effect of dyes, the removal of dyes from effluents is necessary. This study was aimed to remove the reactive blue 19 dye removal from aqueous solution by dried Lemna minor. Materials and Methods:  The effect of various parameters including contact time, solution pH, adsorbent dosage and dye concentration was investigated in this experimental-lab study, Also, the isotherm and kinetic studies was performed for RB19 dye adsorption process. Results: The results indicated that RB19 dye removal efficiency increases by increasing of contact time and adsorbent dosage. The equilibrium time was 75 min ad the maximum dye removal efficiency was obtained in pH=3. Also, the dye removal efficiency decreases by increasing of pH and initial concentration. It was found that the equilibrium data was best follow by Langmuier isotherm. Also, the pseudo-second-kinetic model was best applicable for RB 19 dye adsorption. Conclusion: It can be concluded that the dried Lemna minor can be considered as an effective adsorbent to remove the RB19 dye.

  6. Evaluation of Adsorption Capacity of Low Cost Adsorbent for the Removal of Congo Red Dye from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dattatraya Jirekar

    2016-10-01

    Full Text Available Vigna unguiculata seed husk powder has been investigated as low cost adsorbent for the removal of hazardous chemicals like Congo Red (CR dye from aqueous solution. Various parameters such as effect of contact time, initial CR dye concentration, adsorbent dose, effect of pH, zero-point pH were studied. Batch adsorption technique was employed to optimize the process parameter. The result indicated that, the percentage adsorption of Congo Red increased with increase in contact time, dose of adsorbent and initial concentration of Congo Red and decreased with addition of salt. The adsorption of Congo Red was 78% at the optimum pH of 6. Adsorption equilibrium was found to be reached in 24 h for 5 to 25 g/50 mL Congo red concentrations. The Langmuir and Freundlich isotherm models were found to provide an excellent fitting of the adsorption data.  The adsorption of CR follows Second order rate kinetics. Thermodynamic parameter (δGo showed that it was an exothermic process. This adsorbent was found to be effective and economically attractive. DOI: http://dx.doi.org/10.17807/orbital.v8i5.834

  7. ELECTRO-DEGRADATION OF REACTIVE BLUE DYES USING CYLINDER MODIFIED ELECTRODE: Ti/β-PbO2 AS DIMENSIONALLY STABLE ANODE

    Directory of Open Access Journals (Sweden)

    Aris Mukimin

    2010-12-01

    Full Text Available A cylinder modified electrode of the β-PbO2 was fabricated by anodic electro-deposition method on titanium substrate. The PbO2 layer prepared from high acid solution (pH: 0.3 that contains a mixed of 0.5 M Pb(NO32, 1 M HNO3, and 0,02 M NaF. The physicochemical properties of the PbO2 electrode were analyzed by using Energy Dispersive X-Ray Analysis and X-Ray Diffraction. The analyses have shown that oxide layer has an O/Pb ratio about 1.6 and the PbO impurities are formed in the surface layer besides the β-PbO2. The modified electrode was used as anode paired stainless cathode in the electro-degradation of reactive blue dye. The results of the electro-catalytic oxidation process of the dye solution were expressed in terms of the remaining intensity dye and chemical oxygen demand (COD values. The modified electrode has removal efficiency of the reactive blue dye at voltage of 7 V, pH of 7, concentration NaCl of 2 g/L, initial dye concentration of 100 mg/L with simple and short time operations.

  8. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa.

    Science.gov (United States)

    Schneidereit, D; Vass, H; Reischl, B; Allen, R J; Friedrich, O

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules [Formula: see text] is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence.

  9. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa

    Science.gov (United States)

    Vass, H.; Reischl, B.; Allen, R. J.; Friedrich, O.

    2016-01-01

    The fluorescent Ca2+ sensitive dyes Fura Red (ratiometric) and Fluo-4 (non-ratiometric) are widely utilized for the optical assessment of Ca2+ fluctuations in vitro as well as in situ. The fluorescent behavior of these dyes is strongly depends on temperature, pH, ionic strength and pressure. It is crucial to understand the response of these dyes to pressure when applying calcium imaging technologies in the field of high pressure bioscience. Therefore, we use an optically accessible pressure vessel to pressurize physiological Ca2+-buffered solutions at different fixed concentrations of free Ca2+ (1 nM to 25.6 μM) and a specified dye concentration (12 μM) to pressures of 200 MPa, and record dye fluorescence intensity. Our results show that Fluo-4 fluorescence intensity is reduced by 31% per 100 MPa, the intensity of Fura Red is reduced by 10% per 100 MPa. The mean reaction volume for the dissociation of calcium from the dye molecules Δdv¯ is determined to -17.8 ml mol-1 for Fluo-4 and -21.3 ml mol-1 for Fura Red. Additionally, a model is presented that is used to correct for pressure-dependent changes in pH and binding affinity of Ca2+ to EGTA, as well as to determine the influence of these changes on dye fluorescence. PMID:27764134

  10. Bio sorption of Reactive Dye from Textile Wastewater by Non-viable Biomass of Aspergillus niger and Spirogyra sp

    International Nuclear Information System (INIS)

    Khalaf, M.A.

    2008-01-01

    The Potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a bio sorbents for removal of reactive dye (Synazol) from its multi-component textile wastewater. Pre-treatment of fungal and algal biomass with autoclaving increased the removal of dye more than that pre-treated with gamma-irradiation. The heat dried autoclaved biomass for the 2 organisms exhibited maximum dye removal at ph 3, temperature 30 degree C and 8 g/l (w/v) biomass conc. after 18 h contact time. The results showed that the non-viable biomass possessed high stability and efficiency of dye removal over 3 repeated batches

  11. In-situ Decolorization of Residual Dye Effluent in Textile Jet Dyeing Machine by Ozone

    Directory of Open Access Journals (Sweden)

    Irfan Ahmed Shaikh

    2014-12-01

    Full Text Available In this study, a new idea of decolourization was investigated in which residual dyeing effluent from textile dyeing process was treated using O3 in the same machine where it was generated. The novelty comes from the idea of doing dyeing and treatment simultaneously. At the completion of dyeing process, O3 gas was injected directly into the machine to remove colour and COD from the wastewater. To evaluate the effectiveness of new method, pilot-scale studies were performed, and decolourization of residual dyeing effluents containing C.I. Reactive Orange 7, C.I. Reactive Blue 19, and C.I. Reactive Black 5 was carried out in specially built textile jet dyeing machine. The results showed that almost 100% colour removal and 90% COD reduction were achieved when process conditions such as pH, dye concentration (mg/L, ozone production rate (g/hr, and temperature were optimized. The study concludes that new method has a great potential to eliminate the need of a separate end-of-the-pipe wastewater treatment system, thus offering an on-site and cost-effective solution.

  12. Removal of Disperse Blue 56 and Disperse Red 135 dyes from aqueous dispersions by modified montmorillonite nanoclay

    Directory of Open Access Journals (Sweden)

    Ahmadishoar Javad

    2017-01-01

    Full Text Available In this study modified montmorillonite was used as an adsorbent for the removal of two selected disperse dyes i.e., Disperse Blue 56 (DB and Disperse Red 135 (DR from dye dispersions. The adsorption equilibrium data of dyes adsorption were investigated by using Nernst, Freundlich and Langmuir isotherm models. The adsorption kinetics was analyzed by using different models including pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion model. The Freundlich isotherm was found to be the most appropriate model for describing the sorption of the dyes on modified nanoclay. The best fit to the experimental results was obtained by using the pseudo-second-order kinetic equation, which satisfactorily described the process of dye adsorption. Although different kinetic models may control the rate of the adsorption process, the results indicated that the main rate limiting step was the intraparticle diffusion. The results showed that the proposed modified montmorillonite could be used as an effective adsorbent for the removal of disperse dyes even from highly concentrated dispersions.

  13. Radiolysis of Reactive AZO Dyes in Aqueous Solution

    International Nuclear Information System (INIS)

    Bagyo, Agustin NM; Winarti-Andayani; Hendig-Winarno; Ermin-Katrin; Soebianto, Yanti S

    2004-01-01

    The effects of radiation on aerated reactive dye solutions i.e Cibacron Violet, Cibacron Orange and Cibacron Yellow solutions have been studied. Parameters analysis were the change of pH after radiation, the change of absorption, degradation products and effects of pH on the radiolysis. The uv-vis absorption of solutions were observed before and after irradiation. pH variation was done from pHs 3, 5, 7, 9 and 12. Irradiation was done at doses of 0, 2, 4, 6, 8 and 10 kGy with dose rate of 5 kGy/h and was determined by a Fricke dosimeter. HPLC with UV detector was used to analyze the degradation products. Oxalic acid was the main degradation product and small amount of succinic acid was also detected. (author)

  14. ADSORPTION OF THE DYE REACTIVE BLUE 5G IN RETORTED SHALE

    OpenAIRE

    Lambrecht, R.; Barros, M. A. S. D. de; Arroyo, P. A.; Borba, C. E.; Silva, E. A. da

    2015-01-01

    Abstract In this study the influence of the volumetric flow rate and feed concentration was investigated for the adsorption of the reactive dye Blue 5G. Experiments were carried out in a bed packed with retorted shale, at 30 ºC. The ranges investigated were flow rate 2 -10 mL/min and the feed concentration 13-105 mg/L. Mathematical models were used to represent the dynamic sorption. The double resistance model considers the effects of the axial dispersion and the mass transfer resistance...

  15. Experimental and ab initio DFT calculated Raman Spectrum of Sudan I, a Red Dye

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Liu, Chuan

    2011-01-01

    The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3-21G and 6-311+G(d,p) basis...... of the Sudan I molecule was involved in the majority of the vibrations through N N and C–N stretching and various bending modes. Low-intensity bands in the lower wavenumber range (at about 721, 616, 463 and 218 cm−1) were selectively enhanced by the resonance Raman effect when using the 532 nm excitation line....... Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different...

  16. Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution.

    Science.gov (United States)

    Takam, Brice; Acayanka, Elie; Kamgang, Georges Y; Pedekwang, Merlin T; Laminsi, Samuel

    2017-07-01

    Removal of cationic dye, Azur II, and anionic dye, Reactive Red 2 (RR-2) from aqueous solutions, has been successfully achieved by using a modified agricultural biomaterial waste: cocoa shell husk (Theobroma cacao) treated by gliding arc plasma (CPHP). The biomass in its natural form CPHN and modified form CPHP was characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and point of zero charge (pH pzc ). Experimental variables such as initial pH, contact time, and temperature were optimized for adsorptive characteristics of CPHN and CPHP. The results show that the removal of the Azur II dye was favorable in the basic pH region (pH 10) while the Reactive Red 2 dye was favorable in the acidic pH region (pH 2). The minimum equilibrium time for Azur II and RR-2 dye was obtained after 40 and 240 min, respectively. The adsorption kinetics and isotherm data obtained were best described by a pseudo-second-order kinetic rate model and a combination of Langmuir-Freundlich isotherm models. This work indicates that the plasma-treated raw materials are good alternative multi-purpose sorbents for the removal of many coexisting pollutants from aqueous solutions.

  17. Introduction of Red-Green-Blue Fluorescent Dyes into a Metal-Organic Framework for Tunable White Light Emission.

    Science.gov (United States)

    Wen, Yuehong; Sheng, Tianlu; Zhu, Xiaoquan; Zhuo, Chao; Su, Shaodong; Li, Haoran; Hu, Shengmin; Zhu, Qi-Long; Wu, Xintao

    2017-10-01

    The unique features of the metal-organic frameworks (MOFs), including ultrahigh porosities and surface areas, tunable pores, endow the MOFs with special utilizations as host matrices. In this work, various neutral and ionic guest dye molecules, such as fluorescent brighteners, coumarin derivatives, 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), and 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM), are encapsulated in a neutral MOF, yielding novel blue-, green-, and red-phosphors, respectively. Furthermore, this study introduces the red-, green-, and blue-emitting dyes into a MOF together for the first time, producing white-light materials with nearly ideal Commission International ed'Eclairage (CIE) coordinates, high color-rendering index values (up to 92%) and quantum yields (up to 26%), and moderate correlated color temperature values. The white light is tunable by changing the content or type of the three dye guests, or the excitation wavelength. Significantly, the introduction of blue-emitting guests in the methodology makes the available MOF host more extensive, and the final white-light output more tunable and high-quality. Such strategy can be widely adopted to design and prepare white-light-emitting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Liquid-phase separation of reactive dye by wood-rotting fungus: a biotechnological approach.

    Science.gov (United States)

    Binupriya, Arthur R; Sathishkumar, Muthuswamy; Dhamodaran, Kavitha; Jayabalan, Rasu; Swaminathan, Krishnaswamy; Yun, Sei Eok

    2007-08-01

    The live and pretreated mycelial pellets/biomass of Trametes versicolor was used for the biosorption of a textile dye, reactive blue MR (RBMR) from aqueous solution. The parameters that affect the biosorption of RBMR, such as contact time, concentration of dye and pH, on the extent of RBMR adsorption were investigated. To develop an effective and accurate design model for removal of dye, adsorption kinetics and equilibrium data are essential basic requirements. Lagergren first-order, second-order and Bangham's model were used to fit the experimental data. Results of the kinetic studies showed that the second order kinetic model fitted well for the present experimental data. The Langmuir, Freundlich and Temkin adsorption models were used for the mathematical description of the biosorption equilibrium. The biosorption equilibrium data obeyed well for Langmuir isotherm and the maximum adsorption capacities were found to be 49.8, 51.6, 47.4 and 46.7 mg/g for live, autoclaved, acid- and alkali-pretreated biomass. The dye uptake capacity order of the fungal biomass was found as autoclaved > live > acid-treated > alkali-pretreated. The Freundlich and Temkin models were also able to describe the biosorption equilibrium on RBMR on live and pretreated fungal biomass. Acidic pH was favorable for the adsorption of dye. Studies on pH effect and desorption show that chemisorption seems to play a major role in the adsorption process. On comparison with fixed bed adsorption, batch mode adsorption was more efficient in adsorption of RBMR.

  19. Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite

    International Nuclear Information System (INIS)

    Dogan, Mehmet; Karaoglu, M. Hamdi; Alkan, Mahir

    2009-01-01

    Kaolinite, a low-costly material, is the most abundant phyllosilicate mineral in highly weathered soils. In this work, the adsorption kinetics of maxilon yellow 4GL (MY 4GL) and maxilon red GRL (MR GRL) dyes on kaolinite from aqueous solutions was investigated using the parameters such as contact time, stirring speed, initial dye concentration, initial pH, ionic strength, acid-activation, calcination and solution temperature. The equilibrium time was 150 min for both dyes. The results showed that alkaline pH was favorable for the adsorption of MY 4GL and MR GRL dyes and physisorption seemed to play a major role in the adsorption process. It was found that the rate of adsorption decreases with increasing temperature and the process is exothermic. The adsorption kinetics followed the pseudo-second-order equation for both dyes investigated in this work with the k 2 values lying in the region of 1.79 x 10 4 to 107.87 x 10 4 g/mol min for MY 4GL and 3.44 x 10 4 to 72.09 x 10 4 g/mol min for MR GRL. The diffusion coefficient values calculated for the dyes were in the range of 3.76 x 10 -9 to 62.50 x 10 -9 cm 2 /s for MY 4GL and 1.98 x 10 -9 to 44.00 x 10 -9 cm 2 /s for MR GRL, and are compatible with other studies reported in the literature. The thermodynamic activation parameters such as the enthalpy, entropy and free energy were determined. The obtained results confirmed the applicability of this clay as an efficient adsorbent for cationic dyes.

  20. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  1. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2018-03-01

    Dye-sensitized solar cell (DSSC) is one of the alternative energy that can convert light energy into electrical energy. The component of DSSC consists of FTO substrates, TiO2, electrolyte, dye sensitizer, and counter electrode. This study aim was to determine the effect of optical properties of anthocyanin dyes on efficiency of DSSC. The dye sensitizer used can be extracted from anthocyanin pigments such as dragon fruit, black rice, and red cabbage. The red cabbage sensitizer shows lower absorbance value in the visible range (450-580 nm), than dragon fruit and black rice. The chemical structure of each dye molecules has an R group (carbonyl and hydroxyl) that forms a bond with the oxide layer. Red cabbage dye cell has the highest efficiency, 0.06% then dragon fruit and black rice, 0.02% and 0.03%.

  2. Equilibrium and Thermodynamic Studies of Anionic Dyes Removal by an Anionic Clay-Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Kantasamy, N.; Siti Mariam Sumari

    2016-01-01

    Adsorption isotherm describes the interaction of adsorbates with adsorbent in equilibrium. Equilibrium data was examined using Langmuir and Freundlich isotherm models. Thermodynamic studies were used to evaluate the thermodynamic parameters; heat of enthalpy change (ΔH degree), Gibbs free energy change (ΔG degree) and heat of entropy change (ΔSdegree) in order to gain information regarding the nature of adsorption (exothermic or endothermic). Four reactive dyes of anionic type, Acid Blue 29 (AB29), Reactive Black 5 (RB5), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) were used to obtain equilibrium isotherms at 25, 35, 45 and 55 degree Celsius. Based on Giles' classification, the isotherm produced were of L2-type, indicating strong dye affinity towards the adsorbent, and with weak competition with the solvent molecules for active adsorption sites. Equilibrium data fitted both Langmuir and Freundlich isotherm models with high correlation coefficient (R"2 > 0.91) indicating the possibility of both homogeneity and heterogeneous nature of adsorption. The negative values of ΔGdegree indicate the adsorption processes were spontaneous and feasible. The negative values of ΔHdegree lie between -20 to -75 kJ/ mol, suggesting these processes were exothermic and physical in nature. The negative values of ΔSdegree are indication of decreased disorder and randomness of spontaneous adsorption of reactive dyes on layered double hydroxide as adsorbent. (author)

  3. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    Directory of Open Access Journals (Sweden)

    Kęstutis BELEŠKA

    2013-05-01

    Full Text Available The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on temperature. The diffusion coefficient of dye C.I. Acid Red 423 calculated according to Weisz model is higher when dyeing conventional leather. The change of deliming method has influence on chromed leather dyeing but this influence is not significant. The adsorption ability of control leather fibres at 30 ºC and 45 ºC is higher using both dyes as compared to the dyeing the experimental one. The increase of dyeing temperature increases the adsorption ability independently on the sort of leather fibres. Such dependence of the adsorption ability on the temperature shows that hydrophobic action and van der Waals forces prevail between dye and fibres during dyeing process. The Gibbs energy changes show that adsorption of both dyes by leather fibres independently on their sort is a spontaneous process. The affinity of both dyes to conventional leather fibres is higher comparing with experimental one. The change of enthalpy is positive in all cases, and it means that the driving force of the dyeing is the change of entropy.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4431

  4. Biodecolorization of Reactive Yellow-2 by Serratia sp. RN34 Isolated from Textile Wastewater.

    Science.gov (United States)

    Najme, Rabia; Hussain, Sabir; Maqbool, Zahid; Imran, Muhammad; Mahmood, Faisal; Manzoor, Hamid; Yasmeen, Tahira; Shehzad, Tanvir

    2015-12-01

    Remediation of colored textile wastewaters is a matter of interest. In this study, 49 bacteria were isolated from the textile wastewater and tested for their ability to decolorize reactive yellow-2 (RY2) dye. The most efficient isolate, RN34, was identified through amplification, sequencing, and phylogenetic analysis of its 16S rDNA and was designated as Serratia sp. RN34. This bacterium was also found capable of decolorizing other related reactive azo-dyes, including reactive black-5, reactive red-120, and reactive orange-16 but at varying rates. The optimum pH for decolorization of RY2 by the strain RN34 was 7.5 using yeast extract as cosubstrate under static incubation at 30 °C. The strain RN34 also showed potential to decolorize RY2 in the presence of considerable amounts of hexavalent chromium and sodium chloride. A phytotoxicity study demonstrated relatively reduced toxicity of RY2 decolorized products on Vigna radiata plant as compared to the uninoculated RY2 solution.

  5. Discoloration of a red cationic dye by supported TiO{sub 2} photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Mounir, B. [Ecole Superieure de Technologie de Safi, Universite Cadi Ayyad, BP 89, Route Dar Si Aissa, Safi (Morocco); Pons, M.N. [Laboratoire des Sciences du Genie Chimique, CNRS-ENSIC-INPL, 1, rue Grandville, BP 20451, F-54001 Nancy Cedex (France)], E-mail: Marie-Noelle.Pons@ensic.inpl-nancy.fr; Zahraa, O. [Departement de Chimie Physique des Reactions, ENSIC-INPL, 1, rue Grandville, BP 20451, F-54001 Nancy Cedex (France); Yaacoubi, A. [Departement de Chimie, Faculte des Sciences Semlalia, Universite Cadi Ayyad, Boulevard Prince Moulay Abdellah, BP 2390, 40000 Marrakech (Morocco); Benhammou, A. [Laboratoire d' Automatique et d' Etudes des Procedes, Faculte des Sciences Semlalia, Universite Cadi Ayyad, Boulevard Prince Moulay Abdellah, BP 2390, 40000 Marrakech (Morocco)

    2007-09-30

    The degradation under UV, visible and sunlight irradiation of C.I. Basic Red 46 (BR 46) dye used for acrylic fibers dyeing has been studied in a lab-scale continuous system with two different immobilized TiO{sub 2} systems. Catalyst I was based on TiO{sub 2} particles deposited on cellulose fibers; Catalyst II combined TiO{sub 2} particles deposited on a layer of cellulose fibers (as in Catalyst I) with a layer of carbon fibers and finally a layer of cellulose fibers. The treatment of aqueous dye solutions and industrial wastewater contaminated with the same dye has been evaluated in terms of color removal and chemical oxygen demand (COD) decrease. With UV light, aqueous solutions containing dye were decolorized slightly more rapidly with Catalyst II than with Catalyst I. Sunlight was also very effective and experiments involving sunlight irradiation showed Catalyst II to be the more efficient, giving more than 90% discoloration after 20 min of treatment. Comparing the discoloration yield by adsorption or under visible light for both catalysts, it was observed that the difference between them is below 5%. The adsorption kinetics was found to follow a second-order rate law for Catalyst I and a first-order rate law for Catalyst II. The kinetics of photocatalytic degradation under UV or sunlight were found to follow a first-order rate law for both catalytic systems. Under sunlight the COD removal yield for textile wastewater reaches 33% with Catalyst I against 93% with Catalyst II.

  6. Assessment of the banana pseudostem as a low-cost biosorbent for the removal of reactive blue 5G dye.

    Science.gov (United States)

    Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Geraldi, Claudinéia A Q; Manenti, Diego R; Trigueros, Daniela E G; Oliveira, Ana Paula de; Borba, Carlos E; Kroumov, Alexander D

    2015-01-01

    In this work, the removal of reactive blue 5G (RB5G) dye using the drying biomass of banana pseudostem (BPS) was investigated. The characterization of BPS particles was performed. Improvement in the RB5G dye removal performance at the following sorption conditions was evidenced: pH 1, 30°C sorption temperature and 40 rpm shaking, regardless of the particle size range. Kinetic RB5G dye sorption data obtained at better conditions fit well in an Elovich model. A combined Langmuir-BET isotherm model provides a good representation of the RB5G dye equilibrium sorption data, which shows the evidence of a physical sorption process on the BPS surface. Based on the results, the removal of RB5G dye molecules by BPS is based on a physical sorption process.

  7. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    International Nuclear Information System (INIS)

    Zhang, Xian-Fu; Zhang, Ya-Kui

    2015-01-01

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ f ). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ f ) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ f and τ f values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ f and τ f values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions

  8. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xian-Fu, E-mail: zhangxianfu@tsinghua.org.cn [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China); MPC Technologies, Hamilton, ON, Canada L8S 3H4 (Canada); Zhang, Ya-Kui [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China)

    2015-10-15

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ{sub f}). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ{sub f}) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ{sub f} and τ{sub f} values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ{sub f} and τ{sub f} values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions.

  9. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon

    International Nuclear Information System (INIS)

    Namasivayam, C.; Sangeetha, D.

    2006-01-01

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl 2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl 2 activated coir pith carbon is effective for the removal of toxic pollutants from water

  10. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation.

    Science.gov (United States)

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-03-05

    Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m 2 , corresponding to current density of 120.24mA/m 2 . The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions.

    Science.gov (United States)

    Torrades, Francesc; García-Hortal, José Antonio; García-Montaño, Julia

    2015-01-01

    This study focused on the advanced oxidation of the hetero bi-functional reactive dye Sumifix Supra Yellow 3RF (CI Reactive Yellow 145) using dark Fenton and photo-Fenton conditions in a lab-scale experiment. A 2(3) factorial design was used to evaluate the effects of the three key factors: temperature, Fe(II) and H2O2 concentrations, for a dye concentration of 250 mg L(-1) with chemical oxygen demand (COD) of 172 mg L(-1) O2 at pH=3. The response function was the COD reduction. This methodology lets us find the effects and interactions of the studied variables and their roles in the efficiency of the treatment process. In the optimization, the correlation coefficients for the model (R2) were 0.948 and 0.965 for Fenton and photo-Fenton treatments, respectively. Under optimized reaction conditions: pH=3, temperature=298 K, [H2O2]=11.765 mM and [Fe(II)]=1.075 mM; 60 min of treatment resulted in a 79% and 92.2% decrease in COD, for the dye taken as the model organic compound, after Fenton and photo-Fenton treatments, respectively.

  12. Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors.

    Science.gov (United States)

    Honorio, Jacqueline Ferandin; Veit, Márcia Teresinha; Gonçalves, Gilberto da Cunha; de Campos, Élvio Antonio; Fagundes-Klen, Márcia Regina

    2016-01-01

    The textile industry is known for the high use of chemicals, such as dyes, and large volumes of effluent that contaminate waters, a fact that has encouraged research and improved treatment techniques. In this study, we used unprocessed soybean hulls for the removal of reactive blue BF-5G dye. The point of zero charge of soybean hulls was 6.76. Regarding the speed of agitation in the adsorption process, the resistance to mass transfer that occurs in the boundary layer was eliminated at 100 rpm. Kinetics showed an experimental amount of dye adsorbed at equilibrium of 57.473 mg g(-1) obtained under the following conditions: dye initial concentration = 400 mg L(-1); diameter of particle = 0.725 mm; dosage = 6 g L(-1); pH 2; 100 rpm; temperature = 30 °C; and duration of 24 hours. The pseudo-second order best showed the dye removal kinetics. The adsorption isotherms performed at different temperatures (20, 30, 40 and 50 °C) showed little variation in the concentration range assessed, being properly adjusted by the Langmuir isotherm model. The maximum capacity of dye adsorption was 72.427 mg g(-1) at 30 °C. Since soybean hull is a low-cost industrial byproduct, it proved to be a potential adsorbent for the removal of the textile dye assessed.

  13. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    Science.gov (United States)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  14. Wood (Bagassa guianensis Aubl) and green coconut mesocarp (cocos nucifera) residues as textile dye removers (Remazol Red and Remazol Brilliant Violet).

    Science.gov (United States)

    Monteiro, Mônica S; de Farias, Robson F; Chaves, José Alberto Pestana; Santana, Sirlane A; Silva, Hildo A S; Bezerra, Cícero W B

    2017-12-15

    In this work the efficiency of two lignocellulosic waste materials, wood residues and coconut mesocarp, were investigated as adsorbents towards two representative textile dyes (Remazol Red, RR and Remazol Brilliant Violet, RBV). The moisture, carbohydrate, protein, lipid, ash and fiber contents of both natural matrices were characterized. The materials were also characterized by infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, specific surface area analysis and thermogravimetry. The adsorption of dyes was monitored by using UV-Vis spectrophotometry. It was verified that both, coconut mesocarp (CM) and wood residues can act as effective adsorbents towards the investigated dyes. It is verified that the maximum adsorption capacity Γ M (mg g -1 ) for RBV and RR are 7.28 and 3.97 towards CM and 0.64 and 0.71 towrads SD. Furthermore, it was verified that the adsorption is strongly pH dependent and, as a general behavior, an increase in the pH value is associated with a decrease of the total amount of adsorbed dye. The adsorption of violet dye onto coconut mesocarp is well described by the Langmuir model, while all the remazol red fitted better with the Freundlich equation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye

    International Nuclear Information System (INIS)

    Tunc, Ozlem; Tanaci, Hacer; Aksu, Zuemriye

    2009-01-01

    In this study, the potential use of cotton plant wastes - stalk (CS) and hull (CH) - as sorbents for the removal of Remazol Black B (RB5), a vinyl sulfone type reactive dye, was investigated. The results indicated that adsorption was strongly pH-dependent but slightly temperature-dependent for each sorbent-dye system. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich adsorption models were used for the mathematical description of adsorption equilibrium and isotherm constants were evaluated at 25 deg. C. All models except the Freundlich model were applicable for the description of dye adsorption by both sorbents in the concentration range studied. According to the Langmuir model, CS and CH sorbents exhibited the highest RB5 dye uptake capacities of 35.7 and 50.9 mg g -1 , respectively, at an initial pH value of 1.0. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye, and adsorption kinetics followed the pseudo second-order type kinetic model for each sorbent. Using the Langmuir model parameters, thermodynamic constant ΔG o was also evaluated for each sorption system

  16. Use of Titanium Dioxide Photocatalysis on the Remediation of Model Textile Wastewaters Containing Azo Dyes

    Directory of Open Access Journals (Sweden)

    Josino Costa Moreira

    2011-12-01

    Full Text Available The photocatalytic degradation of two commercial textile azo dyes, namely C.I Reactive Black 5 and C.I Reactive Red 239, has been studied. TiO2 P25 Degussa was used as catalyst and photodegradation was carried out in aqueous solution under artificial irradiation with a 125 W mercury vapor lamp. The effects of the amount of TiO2 used, UV-light irradiation time, pH of the solution under treatment, initial concentration of the azo dye and addition of different concentrations of hydrogen peroxide were investigated. The effect of the simultaneous photodegradation of the two azo dyes was also investigated and we observed that the degradation rates achieved in mono and bi-component systems were identical. The repeatability of photocatalytic activity of the photocatalyst was also tested. After five cycles of TiO2 reuse the rate of colour lost was still 77% of the initial rate. The degradation was followed monitoring the change of azo dye concentration by UV-Vis spectroscopy. Results show that the use of an efficient photocatalyst and the adequate selection of optimal operational parameters may easily lead to a complete decolorization of the aqueous solutions of both azo dyes.

  17. Decolorization of Reactive Blue 19 Dye from Textile Wastewater by the UV/H2O2 Process

    Science.gov (United States)

    Rezaee, Abbas; Taghi Ghaneian, Mohammad; Jamalodin Hashemian, Sayed; Moussavi, Gholamreza; Khavanin, Ali; Ghanizadeh, Ghader

    Photo-oxidation of dyes is a new concern among researchers since it offers an attractive method for decoloration of dyes and breaks them into simple mineral forms. An advanced oxidation process, UV/H2O2, was investigated in a laboratory scale photoreactor for decolorization of the Reactive blue 19 (RB19) dye from synthetic textile wastewater. The effects of operating parameters such as hydrogen peroxide dosage, pH, initial dye concentration and UV dosage, on decolorization have been evaluated. The RB19 solution was completely decolorized under optimal hydrogen peroxide dosage of 2.5 mmol L-1 and low-pressure mercury UV-C lamps (55 w) in less than 30 min. The decolorization rate followed pseudo-first order kinetics with respect to the dye concentration. The rate increased linearly with volumetric UV dosage and nonlinearly with increasing initial hydrogen peroxide concentration. It has been found that the degradation rate increased until an optimum of hydrogen peroxide dosage, beyond which the reagent exerted an inhibitory effect. From the experimental results, the UV/H2O2 process was an effective technology for RB19 dye treatment in wastewater.

  18. Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation.

    Science.gov (United States)

    Zidane, Fatiha; Drogui, Patrick; Lekhlif, Brahim; Bensaid, Jalila; Blais, Jean-François; Belcadi, Said; El Kacemi, Kacem

    2008-06-30

    The colour and colour causing-compounds has always been undesirable in water for any use, be it industrial or domestic wastewaters. The discharge of such effluents causes excessive oxygen demand in the receiving water and then a treatment is required before discharge into ecosystems. This study examined the possibility to remove colour causing-compounds from effluent by chemical coagulation, in comparison with direct electrocoagulation. The inorganic coagulants (C1, C2 and C3) in the form of dry powder tested, were respectively produced from electrolysis of S1=[NaOH (7.5 x 10(-3)M)], S2=[NaCl (10(-2)M)], and S3=[NaOH (7.5 x 10(-3)M)+NaCl (10(-2)M)] solutions, using sacrificial aluminium electrodes operated at an electrical potential of 12 V. Reactive textile dye (CI Reactive Red 141) was used as model of colour-causing compound prepared at a concentration of 50 mgl(-1). The best performances of dye removal were obtained with C(2) having a chemical structure comprised of a mixture of polymeric specie (Al45O45(OH)45Cl) and monomeric species (AlCl(OH)2.2H2O and Al(OH)3). The removal efficiency (R(A)) evaluated by measuring the yields of 540 nm-absorbance removal varied from 41 to 96% through 60 min of treatment by imposing a concentration of C2 ranging from 100 to 400 mg l(-1). The effectiveness of the treatment increased and the effluent became more and more transparent while increasing C(2) concentration. The comparison of chemical treatment using C2 coagulant and direct electrocoagulation of CI Reactive Red 141 containing synthetic solution demonstrated the advantage of chemical treatment during the first few minutes of treatment. A yield of 88% of absorbance removal was recorded using C2 coagulant (400 mg l(-1)) over the first 10 min of treatment, compared to 60% measured using direct electrocoagulation while imposing either 10 or 15 V of electrical potential close to the value (12 V) required during C2 production. However, at the end of the treatment (after 60

  19. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram

    2013-08-01

    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  20. UV/Fenton photo-oxidation of Drimarene Dark Red (DDR) containing textile-dye wastewater

    Science.gov (United States)

    Hudaya, T.; Anthonios, J.; Septianto, E.

    2016-11-01

    Textile dye wastewater contains organic pollutants which are non-biodegradable, characterized by low BOD/COD ratio of typically Advanced Oxidation Processes (AOPs). One of the AOPs method which is the UV/H2O2/Fe2+ (or UV/Fenton) offers not only relatively low cost but also quite effective (in terms of color removal and reaction time) treatment. This particular research aimed to optimize the conditions of UV/Fenton photo-oxidation process for Drimarene Dark Red containing textile- dye wastewater. The two main operating conditions to be optimized were the initial concentration of H2O2 ranged between 0.022-0.078 %-w and the mol ratio of Fe2+: H2O2 was varied from 1: 13 up to 1: 45, using the Central Composite Design experimental matrix. The photo-oxidation was carried out at the optimum pH of 3 from some previous experiments. The best processing conditions of the photo-oxidation of Drimarene Dark Red (DDR) were found at the initial concentration of H2O2 at 0.050%-w and the mole ratio Fe2+: H2O2 of 1: 22. Under these conditions, the measured 2nd order pseudo-rate constantwas 0.021 M-1.min-1. The DDR color removal of 90% was surprisingly achievable within only 10 minutes reaction time.

  1. Study of application properties of novel trisazo hetero bi-functional reactive dyes based on j-acid derivatives for cotton

    International Nuclear Information System (INIS)

    Mokhtari, Javad; Akbarzadeh, A; Phillips, D A S; Taylor, J A

    2009-01-01

    Three novel trisazo hetero bi-functional reactive dyes based on J-acid derivatives were prepared using the diazonium salt of [4-(4-sulphophenylazo-)-2,5-dimethylazobenzene-2-sulphonic acid] and a hetero bi-functional coupling component, derived from 1-hydroxy-6-aminonapthalene-3-sulphonic acid (J-acid), 1-hydroxy-6- methylaminonapthalene-3-sulphonic acid (methyl J-acid), and 1-hydroxy-6-aminonaphthalene-3,5-disulphonic acid (sulpho J-acid). On balance, the dye derived from sulpho J-acid displayed the most attractive set of technical properties, building up and fixing more efficiently than those derived from J-acid and methyl J-acid. In addition, the sulpho J-acid based dye offered better migration and, therefore, level dyeing and ease of wash off. (author)

  2. Stability of eosin-5'-maleimide dye used in flow cytometric analysis for red cell membrane disorders.

    Science.gov (United States)

    Mehra, Simmi; Tyagi, Neetu; Dorwal, Pranav; Pande, Amit; Jain, Dharmendra; Sachdev, Ritesh; Raina, Vimarsh

    2015-06-01

    The eosin-5'-maleimide (EMA) binding test using flow cytometry is a common method to measure reduced mean channel fluorescence (MCF) of EMA-labeled red blood cells (RBCs) from patients with red cell membrane disorders. The basic principle of the EMA-RBC binding test involves the covalent binding of EMA to lysine-430 on the first extracellular loop of band 3 protein. In the present study, the MCF of EMA was analyzed for samples derived from 12 healthy volunteers (controls) to determine the stability (i.e., the percentage decrease in fluorescence) of EMA over a period of 1 year. Comparison of periodical MCF readings over time, that is, at 2-month intervals, showed that there were no significant changes in mean channel fluorescence for up to 6 months; however, there was a significant decrease in MCF at 8 months. For optimal dye utilization, EMA remained stable only for up to 6 months. Therefore, we recommend reconstitution of the dye every 6 months when implementing this test and storage at -80℃ in dark conditions.

  3. Computer Color Matching and Levelness of PEG-Based Reverse Micellar Decamethyl cyclopentasiloxane (D5 Solvent-Assisted Reactive Dyeing on Cotton Fiber

    Directory of Open Access Journals (Sweden)

    Alan Y. L. Tang

    2017-07-01

    Full Text Available The color matching and levelness of cotton fabrics dyed with reactive dye, in a non-aqueous environmentally-friendly medium of decamethylcyclopentasiloxane (D5, was investigated using the non-ionic surfactant reverse-micellar approach comprised of poly(ethylene glycol-based surfactant. The calibration dyeing databases for both conventional water-based dyeing and D5-assisted reverse micellar dyeing were established, along with the dyeing of standard samples with predetermined concentrations. Computer color matching (CCM was conducted by using different color difference formulae for both dyeing methods. Experimental results reveal that the measured concentrations were nearly the same as the expected concentrations for both methods. This indicates that the D5-assisted non-ionic reverse micellar dyeing approach can achieve color matching as good as the conventional dyeing system. The levelness of the dyed samples was measured according to the relative unlevelness indices (RUI, and the results reveal that the samples dyed by the D5 reverse micellar dyeing system can achieve good to excellent levelness comparable to that of the conventional dyeing system.

  4. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells

    International Nuclear Information System (INIS)

    Méndez-Martínez, Ana J.; Dávila-Jiménez, Martin M.; Ornelas-Dávila, Omar; Elizalde-González, María P.; Arroyo-Abad, Uriel; Sirés, Ignasi; Brillas, Enric

    2012-01-01

    Highlights: ► Ni electrodes were used for the mild degradation of the azo dye Reactive Black 5. ► Potentiostatic degradation was performed in undivided and divided cells. ► Degradation by-products were detected and monitored by RP-HPLC and LC–MS/MS. ► Small alkylsulfonyl phenol and isoxazole derivatives were identified. ► The cathodic and anodic degradation pathways for Reactive Black 5 were elucidated. - Abstract: The cathodic reduction and anodic ·OH-mediated oxidation of the azo dye Reactive Black 5 (RB5) have been studied potentiostatically by using undivided and divided cells with a Ni-polyvinylchloride (Ni-PVC) composite cathode and a Ni wire mesh anode. Solutions of 50–100 cm 3 of 20–80 mg dm −3 RB5 in 0.1 mol dm −3 KOH were degraded to assess the effect of electrolysis time and electrode potentials on the infrared and absorbance spectra, as well as on the decay of the total organic carbon and chemical oxygen demand. Reversed-phase high performance liquid chromatography (RP-HPLC) with ion-pairing and diode array detection (ion pair chromatography), along with coupling to tandem mass spectrometry (LC–MS/MS), were used for the identification of the aromatic degradation by-products and monitoring their time course. These analyses revealed the progressive conversion of the RB5 dye to simpler molecules with m/z 200, 369.5 and 547 under the direct action of the electron at the cathode and the formation of polar compounds such as alkylsulfonyl phenol derivatives with m/z 201, 185 and 171 by the ·OH mediation at the anode. From these results, the electrochemical reduction and oxidation pathways for the RB5 dye were elucidated.

  5. Anthocyanin – Rich Red Dye of Hibiscus Sabdariffa Calyx Modulates Cisplatin-induced Nephrotoxicity and Oxidative Stress in Rats

    Science.gov (United States)

    Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.

    2013-01-01

    This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (Psabdariffa dye could be attributed to its anthocyanin content. PMID:24711761

  6. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier

    International Nuclear Information System (INIS)

    Absalan, Ghodratollah; Asadi, Mozaffar; Kamran, Sedigheh; Sheikhian, Leila; Goltz, Douglas M.

    2011-01-01

    Highlights: → Ionic liquids modify the dye-adsorption characteristics of magnetic nanoparticles. → Modified nanoparticles improved the sensitivity of dye measurements. → Water-solubility is an important factor for choosing an ionic liquid as a modifier for nanoparticles. - Abstract: The nanoparticles of Fe 3 O 4 as well as the binary nanoparticles of ionic liquid and Fe 3 O 4 (IL-Fe 3 O 4 ) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe 3 O 4 nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60 mg, a pH of 2.5, and a contact time of 2 min when initial dyes concentrations of 10-200 mg L -1 were used. The maximum adsorption capacity of IL-Fe 3 O 4 was 166.67 and 49.26 mg g -1 for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62 L mg -1 for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe 3 O 4 by using a mixed NaCl-acetone solution and adsorbent was reusable.

  7. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier.

    Science.gov (United States)

    Absalan, Ghodratollah; Asadi, Mozaffar; Kamran, Sedigheh; Sheikhian, Leila; Goltz, Douglas M

    2011-08-30

    The nanoparticles of Fe(3)O(4) as well as the binary nanoparticles of ionic liquid and Fe(3)O(4) (IL-Fe(3)O(4)) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe(3)O(4) nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60mg, a pH of 2.5, and a contact time of 2min when initial dyes concentrations of 10-200mg L(-1) were used. The maximum adsorption capacity of IL-Fe(3)O(4) was 166.67 and 49.26mg g(-1) for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62L mg(-1) for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe(3)O(4) by using a mixed NaCl-acetone solution and adsorbent was reusable. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A Note on the Dyeing of Wool Fabrics Using Natural Dyes Extracted from Rotten Wood-Inhabiting Fungi

    Directory of Open Access Journals (Sweden)

    Vicente A. Hernández

    2018-02-01

    Full Text Available Fungal isolates obtained from rotten wood samples were identified and selected by their ability to produce fungal dyes in liquid media. Fungal isolates produced natural extracellular dyes with colors ranging from red to orange, yellow and purple. Dyes from two of these fungi, Talaromyces australis (red and Penicillium murcianum (yellow, were extracted and used to dye wool samples in a Data Color Ahiba IR Pro-Trade (model Top Speed II machine. The protein nature of wool interacted well with the fungal dyes producing colors suitable for textile applications when used to a concentration of 0.1 g·L−1. Results on color fastness when washing confirmed the affinity of the dyes with wool as the dyed samples kept their color in acceptable ranges after washing, without the implementation of mordanting pretreatments or the use of fixing agents.

  9. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation

    International Nuclear Information System (INIS)

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-01-01

    Highlights: • Monoazo and diazo dyes were used as electron acceptor in the abiotic cathode of MFC. • Simultaneous decolourisation and bioelectricity generation were achieved. • Azo dye structures influenced the decolourisation performance. • Positive relation between decolourisation rate and power performance. - Abstract: Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73 ± 3% and 95.1 ± 1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64 mW/m"2, corresponding to current density of 120.24 mA/m"2. The decolourisation rate and power output of different azo dyes were in the order of NC > AO7 > RR120 > RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.

  10. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Oon, Yoong-Sin [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Ong, Soon-An, E-mail: ongsoonan@yahoo.com [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Ho, Li-Ngee [School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Nordin, Noradiba [School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia)

    2017-03-05

    Highlights: • Monoazo and diazo dyes were used as electron acceptor in the abiotic cathode of MFC. • Simultaneous decolourisation and bioelectricity generation were achieved. • Azo dye structures influenced the decolourisation performance. • Positive relation between decolourisation rate and power performance. - Abstract: Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73 ± 3% and 95.1 ± 1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64 mW/m{sup 2}, corresponding to current density of 120.24 mA/m{sup 2}. The decolourisation rate and power output of different azo dyes were in the order of NC > AO7 > RR120 > RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.

  11. Synthesis, characterization and dyeing behavior of heterocyclic acid dyes and mordent acid dyes on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    Patel Hitendra M.

    2012-01-01

    Full Text Available Novel heterocyclic acid and mordent acid dyes were synthesized by the coupling of diazonium salt solution of different aromatic amines with 2- butyl-3-(4-hydroxybenzoylbenzofuran. The resulting heterocyclic acid dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1HNMR, 13C-NMR spectral studies and UV- visible spectroscopy. The dyeing performance of all the heterocyclic acid dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness.

  12. Non-aqueous capillary electrophoresis with red light emitting diode absorbance detection for the analysis of basic dyes.

    Science.gov (United States)

    Fakhari, Ali Reza; Breadmore, Michael C; Macka, Miroslav; Haddad, Paul R

    2006-11-24

    Non-aqueous capillary electrophoresis was evaluated for the separation of five hydrophobic basic blue dyes for application in forensic dye analysis. The use of a red light emitting diode as a high intensity, low-noise light source provided sensitive detection of the blue dyes while also allowing the evaluation of solvents that absorb strongly in the UV region. Excellent peak shapes and separation selectivity were obtained in methanol, ethanol, acetonitrile and dimethylsulfoxide, however water, tetrahydrofuran, dimethylformamide and acetone were unsuitable as solvents due to poor peak shapes and a lack of sensitivity, most likely due to adsorption onto the capillary wall. Due to the known compatibility of methanol with capillary electrophoresis-mass spectrometry, this solvent was examined further with the relative acidity/basicity of the electrolyte being optimised with an artificial neural network. The optimised method was examined for the separation of ink samples from 6 fibre tip and 2 ball point blue or black pens and showed that a unique migration time for the main dye component in seven of the eight pens could be obtained.

  13. REMOVAL OF REACTIVE DYES FROM WASTEWATER OF TEXTILE INDUSTRIES BY USING ENVIRONMENTAL FRIENDLY ADSORBENTS

    Directory of Open Access Journals (Sweden)

    ALAM Md Shamim

    2016-05-01

    Full Text Available This paper is aimed at developing a method to treat wastewater by using inexpensive adsorbents. Textile industries produce wastewater, otherwise known as effluent, as a bi-product of their production. The effluent contains several pollutants. Among the various stages of textile production, the operations in the dyeing plant, which include pre-treatments, dyeing, printing and finishing, produce the most pollution. The textile dyeing wastes contain unused or partially used organic compounds, and high level of different pollutants. They are often of strong color and may also be of high temperature. When disposed into water bodies or onto land these effluents will result in the deterioration of ecology and damage to aquatic life. Furthermore they may cause damage to fisheries and economic loss to fishermen and farmer, there may be impacts on human health which can be removed with the help of an effluent treatment plant (ETP. The “clean” water can then be safely discharged into the environment and ultimately save our environment from pollution. In this study, rice husk and cotton dust were used as an adsorbent. In this research work waste water was characterized with this useless adsorbents. The parameters which were tested in this study are DO, BOD, COD, TS, TDS and TSS. The results showed that the selected bio adsorbents have good potential for removal of reactive dyes from textile effluent.

  14. Radiation Degradation of some Commercial Dyes in Wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.

    1999-01-01

    The degradation Kinetic due to irradiation of aqueous solutions of some commercial dyes, (Reactive Blue Brilliant, Reactive Yellow and Basic Blue 9 Dye (Methylene Blue 2 B), was studied. Factors affecting radiolysis of the dye such as dye concentration, irradiation dose, dose rate and ph of the solutions were studied. The effects of different additives such as nitrogen oxygen, hydrogen peroxide and sodium hypochlorite on the degradation process were investigated. The effect of irradiation dose on the different dye solutions at various concentrations, showed that the Reactive Yellow G. was very sensitive to gamma radiation. The effect of the ph of the dye solutions proved to very according type of the dye. Synergistic treatment of the dye solutions by irradiation and conventional method showed that saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of oxygen resulted in a remarkable enhancement of the degradation of the dyes. Also, the addition of sodium hypochlorite (5%) and the oxidation by hydrogen peroxide resulted in more radiation degradation, Also, adsorption of the dyes onto Ga and some ion exchangers showed that Ga has the highest adsorption capacity. Radiation degradation of the toxic dye pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (Mpc) according to international standards, proved to be better than conventional methods of purification alone

  15. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment.

    Science.gov (United States)

    Elmorsi, Taha M; Riyad, Yasser M; Mohamed, Zeinhom H; Abd El Bary, Hassan M H

    2010-02-15

    Decolorization of the Mordant red 73 (MR73) azo dye in water was investigated in laboratory-scale experiments using UV/H(2)O(2) and photo-Fenton treatments. Photodegradation experiments were carried out in a stirred batch photoreactor equipped with a low-pressure mercury lamp as UV source at 254 nm. The effect of operating parameters such as pH, [H(2)O(2)](,) [dye] and the presence of inorganic salts (NaNO(3), NaCl and Na(2)CO(3)) were also investigated. The results indicated that complete dye decolorization was obtained in less than 60 min under optimum conditions. Furthermore, results showed that dye degradation was dependent upon pH, [H(2)O(2)] and initial dye concentration. The presence of chloride ion led to large decreases in the photodegradation rate of MR73 while both nitrate and carbonate ions have a slight effect. The photo-Fenton treatment, in the presence of Fe powder as a source of Fe(2+) ions, was highly efficient and resulted in 99% decolorization of the dye in 15 min. Mineralization of MR73 dye was investigated by determining chemical oxygen demand (COD). In a 3h photoperiod "65%" of the dye was mineralized by the H(2)O(2)/UV process, while the photo-Fenton treatment was more efficient producing 85% mineralization over the same 3-h period.

  16. Assessment of molecularly imprinted polymers (MIPs) in the preconcentration of disperse red 73 dye prior to photoelectrocatalytic treatment.

    Science.gov (United States)

    Franco, Jefferson Honorio; Aissa, Alejandra Ben; Bessegato, Guilherme Garcia; Fajardo, Laura Martinez; Zanoni, Maria Valnice Boldrin; Pividori, María Isabel; Del Pilar Taboada Sotomayor, Maria

    2017-02-01

    Magnetic molecularly imprinted polymers (MMIPs) have become a research hotspot due to their two important characteristics: target recognition and magnetic separation. This paper presents the preparation, characterization, and optimization of an MMIP for the preconcentration of disperse red 73 dye (DR73) and its subsequent efficient degradation by photoelectrocatalytic treatment. The MMIPs were characterized by scanning electron microscopy (SEM), which revealed homogeneous distribution of the particles. Excellent encapsulation of magnetite was confirmed by transmission electron microscopy (TEM). A study of dye binding showed that the dye was retained more selectively in the MIP, compared to the NIP. The release of DR73 from the imprinted polymers into methanol and acetic acid was analyzed by UV-Vis spectrophotometry. The extracts showed higher absorbance values for MMIP, compared to MNIP, confirming greater adsorption of dye in the MMIP material. The extracts were then subjected to photoelectrocatalytic treatment. LC-MS/MS analysis following this treatment showed that the dye was almost completely degraded. Hence, the combination of MMIP extraction and photoelectrocatalysis offers an alternative way of selectively removing an organic contaminant, prior to proceeding with its complete degradation.

  17. Enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody as a new tool to detect Sudan dyes and Para red

    International Nuclear Information System (INIS)

    Ju Chunmei; Tang Yong; Fan Huiying; Chen Jinding

    2008-01-01

    To set up an immunoassay-based method to detect Sudan dyes and Para red, we generated a monoclonal antibody (Mab) using a specially designed carboxyl derivative of Sudan I (CSD I) as the immunogen. CSD I was synthesized by azocoupling reaction using 2-naphthol and diazotised 4-aminobenzoic acid. The antibody was obtained from a hybridoma, which was derived from the fusion of the mouse myeloma SP2/0 cells and the splenocytes from the mice immunized with the CSD I-bovine serum albumin (BSA) conjugate. In addition, we showed that the Mab was highly specific for Sudan I, III and Para red. The limit of detection was approximately 0.01 ng mL -1 in phosphate-buffered saline (PBS) buffer and 0.5 ng g -1 in chilli tomato sauce. The recoveries of Sudan I, III and Para red for the chilli tomato sauce were from 84% to 99% and coefficients of variation were from 14.9% to 33.3%. Thus, the enzyme-linked immunosorbent assay (ELISA) method is a rapid and high throughput screening tool to detect Sudan dyes and Para red in food products

  18. Enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody as a new tool to detect Sudan dyes and Para red

    Energy Technology Data Exchange (ETDEWEB)

    Ju Chunmei [College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China); Tang Yong [Center of Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou 510632 (China); Fan Huiying [College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China); Chen Jinding [College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China)], E-mail: jdchen@scau.edu.cn

    2008-07-28

    To set up an immunoassay-based method to detect Sudan dyes and Para red, we generated a monoclonal antibody (Mab) using a specially designed carboxyl derivative of Sudan I (CSD I) as the immunogen. CSD I was synthesized by azocoupling reaction using 2-naphthol and diazotised 4-aminobenzoic acid. The antibody was obtained from a hybridoma, which was derived from the fusion of the mouse myeloma SP2/0 cells and the splenocytes from the mice immunized with the CSD I-bovine serum albumin (BSA) conjugate. In addition, we showed that the Mab was highly specific for Sudan I, III and Para red. The limit of detection was approximately 0.01 ng mL{sup -1} in phosphate-buffered saline (PBS) buffer and 0.5 ng g{sup -1} in chilli tomato sauce. The recoveries of Sudan I, III and Para red for the chilli tomato sauce were from 84% to 99% and coefficients of variation were from 14.9% to 33.3%. Thus, the enzyme-linked immunosorbent assay (ELISA) method is a rapid and high throughput screening tool to detect Sudan dyes and Para red in food products.

  19. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    Science.gov (United States)

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Exploring the critical dependence of adsorption of various dyes on the degradation rate using Ln3+-TiO2 surface under UV/solar light

    International Nuclear Information System (INIS)

    Devi, L. Gomathi; Kumar, S. Girish

    2012-01-01

    Graphical abstract: The surface reactive acidic sites enhances on doping with rare earth ions which facilitates efficient adsorption of the dye molecules on the catalyst surface. In addition, the nature of the dopant, its concentration and electronic configuration additionally contributes to the overall efficiency. Highlights: ► The degradation of structurally different anionic dyes under different pH conditions is reported. ► Pre adsorption of pollutant on catalyst surface is vital for efficient photocatalysis. ► Adsorption of dye on the catalyst surface depends on the substituent's attached to it. ► The dopant with half filled electronic configuration served as shallow traps for charge carriers. - Abstract: The degradation of structurally different anionic dyes like Alizarin Red S (ARS) Amaranth (AR), Brilliant Yellow (BY), Congo Red (CR), Fast Red (FR), Methyl Orange (MO), and Methyl Red (MR) were carried out using Ln 3+ (Ln 3+ = La 3+ , Ce 3+ and Gd 3+ ) doped TiO 2 at different pH conditions under UV/solar light. All the anionic dyes underwent rapid degradation at acidic pH, while resisted at alkaline conditions due to the adsorptive tendency of these dyes on the catalyst surface at different pH conditions. Gd 3+ (0.15 mol%)-TiO 2 exhibited better activity compared to other photocatalyst ascribed to half filled electronic configuration of Gd 3+ ions. It is proposed that Ln 3+ serves only as charge carrier traps under UV light, while it also act as visible light sensitizers under solar light. Irrespective of the catalyst and excitation source, the dye degradation followed the order: AR > FR > MO > MR > ARS > BY > CR. The results suggest that pre-adsorption of the pollutant is vital for efficient photocatalysis which is dependent on the nature of the substituent's group attached to the dye molecule.

  1. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.

    Science.gov (United States)

    Chawla, Sneha; Uppal, Himani; Yadav, Mohit; Bahadur, Nupur; Singh, Nahar

    2017-01-01

    In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO 2 ) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO 2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg -1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Photocatalytic degradation of methyl red dye by silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Y. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt); Abd El-Wahed, M.G. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Mahmoud, M.A. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt)], E-mail: mahmoudchem@yahoo.com

    2008-06-15

    Silica nanoparticles (SiO{sub 2} NPs) were found to be photocatalytically active for degradation of methyl red dye (MR). The SiO{sub 2} NPs and SiO{sub 2} NPs doped with silver (and or) gold nanoparticles were prepared. From the transmission electron microscopy (TEM) images the particle size and particle morphology of catalysts were monitored. Moreover, SiO{sub 2} NPs doped with silver and gold ions were used as a photocatalyst for degradation of MR. The rate of photocatalytic degradation of MR was found to be increased in the order of SiO{sub 2} NPs, SiO{sub 2} NPs coated with gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs), SiO{sub 2} NPs coated with Ag NPs, SiO{sub 2} NPs coated with Au NPs, Ag{sup +}-doped SiO{sub 2} NPs, and Au{sup 3+}-doped SiO{sub 2} NPs. The kinetic and mechanism of photocatalytic reaction were studied and accorded well with experimental results.

  3. Magnetic polymer microcapsules loaded with Nile Red fluorescent dye

    Science.gov (United States)

    Bartel, Marta; Wysocka, Barbara; Krug, Pamela; Kępińska, Daria; Kijewska, Krystyna; Blanchard, Gary J.; Kaczyńska, Katarzyna; Lubelska, Katarzyna; Wiktorska, Katarzyna; Głowala, Paulina; Wilczek, Marcin; Pisarek, Marcin; Szczytko, Jacek; Twardowski, Andrzej; Mazur, Maciej

    2018-04-01

    Fabrication of multifunctional smart vehicles for drug delivery is a fascinating challenge of multidisciplinary research at the crossroads of materials science, physics and biology. We demonstrate a prototypical microcapsule system that is capable of encapsulating hydrophobic molecules and at the same time reveals magnetic properties. The microcapsules are prepared using a templated synthesis approach where the molecules to be encapsulated (Nile Red) are present in the organic droplets that are suspended in the polymerization solution which also contains magnetic nanoparticles. The polymer (polypyrrole) grows on the surface of organic droplets encapsulating the fluorescent dye in the core of the formed microcapsule which incorporates the nanoparticles into its wall. For characterization of the resulting structures a range of complementary physicochemical methodology is used including optical and electron microscopy, magnetometry, 1H NMR and spectroscopy in the visible and X-ray spectral ranges. Moreover, the microcapsules have been examined in biological environment in in vitro and in vivo studies.

  4. A comparative study of quantum yield and electrical energy per order (E(Eo)) for advanced oxidative decolourisation of reactive azo dyes by UV light.

    Science.gov (United States)

    Muruganandham, M; Selvam, K; Swaminathan, M

    2007-06-01

    This paper evaluates the quantum yield and electrical energy per order (E(Eo)) efficiency of Reactive Orange 4 (RO4) and Reactive Yellow 14 (RY14) azo dyes by three advanced oxidation processes (AOPs). Both dyes were completely decolourised by all these processes. The relative decolourisation efficiencies of these processes were in the following order: Fe(2+)/H(2)O(2)/UV>UV/TiO(2)>UV/H(2)O(2). The low efficiency of UV/H(2)O(2) process is mainly due to low UV absorption by hydrogen peroxide at the 365nm. The figure of merit E(Eo) values showed that UV/H(2)O(2) process consumes more electrical energy than the other two processes. The electrical energy consumption is in the following order: UV/H(2)O(2)>UV/TiO(2)>Fe(2+)/H(2)O(2)/UV. At low initial dye concentration higher quantum yield was observed in UV/TiO(2) process, whereas in photo-Fenton process higher quantum yield was observed at high initial dye concentration. The structure of dye molecule also influences the quantum yield and E(Eo) value.

  5. A comparative study of quantum yield and electrical energy per order (E Eo) for advanced oxidative decolourisation of reactive azo dyes by UV light

    International Nuclear Information System (INIS)

    Muruganandham, M.; Selvam, K.; Swaminathan, M.

    2007-01-01

    This paper evaluates the quantum yield and electrical energy per order (E Eo ) efficiency of Reactive Orange 4 (RO4) and Reactive Yellow 14 (RY14) azo dyes by three advanced oxidation processes (AOPs). Both dyes were completely decolourised by all these processes. The relative decolourisation efficiencies of these processes were in the following order: Fe 2+ /H 2 O 2 /UV > UV/TiO 2 > UV/H 2 O 2 . The low efficiency of UV/H 2 O 2 process is mainly due to low UV absorption by hydrogen peroxide at the 365 nm. The figure of merit E Eo values showed that UV/H 2 O 2 process consumes more electrical energy than the other two processes. The electrical energy consumption is in the following order: UV/H 2 O 2 > UV/TiO 2 > Fe 2+ /H 2 O 2 /UV. At low initial dye concentration higher quantum yield was observed in UV/TiO 2 process, whereas in photo-Fenton process higher quantum yield was observed at high initial dye concentration. The structure of dye molecule also influences the quantum yield and E Eo value

  6. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe{sub 3}O{sub 4} magnetic nanoparticles using ionic liquid as modifier

    Energy Technology Data Exchange (ETDEWEB)

    Absalan, Ghodratollah, E-mail: gubsulun@yahoo.com [Professor Masoumi Laboratory, Department of Chemistry, College of Science, Shiraz University, Hafeziyeh, Fars, 71454 Shiraz (Iran, Islamic Republic of); Asadi, Mozaffar; Kamran, Sedigheh; Sheikhian, Leila [Professor Masoumi Laboratory, Department of Chemistry, College of Science, Shiraz University, Hafeziyeh, Fars, 71454 Shiraz (Iran, Islamic Republic of); Goltz, Douglas M. [Department of Chemistry, University of Winnipeg, Winnipeg, MB, R3B 2E9 Canada (Canada)

    2011-08-30

    Highlights: {yields} Ionic liquids modify the dye-adsorption characteristics of magnetic nanoparticles. {yields} Modified nanoparticles improved the sensitivity of dye measurements. {yields} Water-solubility is an important factor for choosing an ionic liquid as a modifier for nanoparticles. - Abstract: The nanoparticles of Fe{sub 3}O{sub 4} as well as the binary nanoparticles of ionic liquid and Fe{sub 3}O{sub 4} (IL-Fe{sub 3}O{sub 4}) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe{sub 3}O{sub 4} nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60 mg, a pH of 2.5, and a contact time of 2 min when initial dyes concentrations of 10-200 mg L{sup -1} were used. The maximum adsorption capacity of IL-Fe{sub 3}O{sub 4} was 166.67 and 49.26 mg g{sup -1} for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62 L mg{sup -1} for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe{sub 3}O{sub 4} by using a mixed NaCl-acetone solution and adsorbent was reusable.

  7. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance.

    Science.gov (United States)

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2012-03-30

    An ultrafiltration (UF) ceramic membrane was used to decolorize Reactive Black 5 (RB5) solutions at different dye concentrations (50 and 500 mg/L). Transmembrane pressure (TMP) and cross-flow velocity (CFV) were modified to study their influence on initial and steady-state permeate flux (J(p)) and dye rejection (R). Generally, J(p) increased with higher TMP and CFV and lower feed concentration, up to a maximum steady-state J(p) of 266.81 L/(m(2)h), obtained at 3 bar, 3m/s and 50mg/L. However, there was a TMP value (which changed depending on operating CFV and concentration) beyond which slight or no further increase in steady-state J(p) was observed. Similarly, the higher the CFV was, the more slightly the steady-state J(p) increased. Furthermore, the effectiveness of ultrafiltration treatment was evaluated through dye rejection coefficient. The results showed significant dye removals, regardless of the tested conditions, with steady-state R higher than 79.8% for the 50mg/L runs and around 73.2% for the 500 mg/L runs. Finally response surface methodology (RSM) was used to optimize membrane performance. At 50mg/L, a TMP of 4 bar and a CFV of 2.53 m/s were found to be the conditions giving the highest steady-state J(p), 255.86 L/(m(2)h), and the highest R, 95.2% simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... Azo dyes generally resist aerobic microbial degra- dation, only organisms with specialized azo dye reducing enzymes were found to degrade azo dyes under fully aerobic ... textile mill, in sterile plastic bottles. Isolation of ...

  9. Theoretical study of indoline dyes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Kim, Young Sik

    2010-01-01

    Indoline dye sensitizers were designed and studied theoretically to increase molar extinction coefficients in the visible to near infrared region for solar-cell devices. To gain insight into dye sensitizers' structural, electronic, and optical properties, DFT/TDDFT calculations were performed on a series of dye sensitizers derived from the D149. The good agreement between the experimental and TDDFT calculated absorption spectra of the D149 sensitizer allowed us to provide a detailed assessment of the main spectral features of a series of dye sensitizers. Increase in the conjugation length resulted in a more red-shifted spectral response and less positive oxidation potential than that of the D149. The dye with the dimethylfluorene group showed stronger absorption bands due to a large dipole moment. The calculated dipoles for the dye series correlate well with the observed strong absorption bands of the electronic spectra. These results provided useful clues for the molecular engineering of efficient organic dye sensitizers.

  10. Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory

    Directory of Open Access Journals (Sweden)

    Jahangiri-Rad Mahsa

    2013-01-01

    Full Text Available Abstract The majority of anthraquinone dye released to the environment come from antrapogenic sources. Several techniques are available for dyes' removal. In this study removal of reactive blue 29 (RB29 by an advanced oxidation process sequenced with single wall carbon nanotubes was investigated. Advanced oxidation process was optimized over a period of 60 minutes by changing the ratio of acetic acid to hydrogen peroxide, the compounds which form peroxy acid. Reduction of 20.2% -56.4% of reactive blue 29 was observed when the ratio of hydrogen peroxide/acetic acid/dye changed from 344/344/1 to 344/344/0.08 at different times (60, 120 and 180 min. The optimum ratio of acetic acid/hydrogen peroxide/dye was found to be 344/344/0.16 over 60 min. The resultant then was introduced for further removal by single wall carbon nanotubes(SWCNTs as adsorbent. The adsorption of reactive blue 29 onto SWCNTs was also investigated. Langmuir, Freundlich and BET isotherms were determined and the results revealed that the adsorption of RB29 onto SWCNTs was well explained by BET model and changed to Freundlich isotherm when SWCNTs was used after the application of peroxy acid. Kinetic study showed that the equilibrium time for adsorption of RB 29 on to SWCNT is 4 h. Experiments were carried out to investigate adsorption kinetics, adsorbent capacity and the effect of solution pH on the removal of reactive blue29. The pseudo-second order kinetic equation could best describe the sorption kinetics. The most efficient pH for color removal (amongst pH=3, 5 and 8 was pH= 5. Further studies are needed to identify the peroxy acid degradation intermediates and to investigate their effects on SWCNTs.

  11. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

    Science.gov (United States)

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d'Ischia, Marco

    2015-06-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

  12. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse.

    Science.gov (United States)

    Khadhraoui, M; Trabelsi, H; Ksibi, M; Bouguerra, S; Elleuch, B

    2009-01-30

    The objective of this study was to investigate the degradation and mineralization of an azo-dye, the Congo red, in aqueous solutions using ozone. Phytotoxicity and the inhibitory effects on the microbial activity of the raw and the ozonated solutions were also carried out with the aim of water reuse and environment protection. Decolorization of the aqueous solutions, disappearance of the parent compound, chemical oxygen demand (COD) and total organic carbon (TOC) removal were the main parameters monitored in this study. To control the mineralization of the Congo red, pH of the ozonated solution and heteroatoms released from the mother molecule such NH(4)(+), NO(3)(-) and SO(4)(2-) were determined. It was concluded that ozone by itself is strong enough to decolorize these aqueous solutions in the early stage of the oxidation process. Nonetheless, efficient mineralization had not been achieved. Significant drops in COD (54%) were registered. The extent of TOC removal was about 32%. Sulfur heteroatom was totally oxidized to SO(4)(2-) ions while the central -NN- azo ring was partially converted to NH(4)(+) and NO(3)(-). Results of the kinetic studies showed that ozonation of the selected molecule was a pseudo-first-order reaction with respect to dye concentration. The obtained results also demonstrate that ozone process reduced the phytotoxicity of the raw solution and enhanced the biodegradability of the treated azo-dyes-wastewater. Hence, this show that ozone remains one of the effective technologies for the discoloration and the detoxification of organic dyes in wastewater.

  13. DMol3/COSMO-RS prediction of aqueous solubility and reactivity of selected Azo dyes: Effect of global orbital cut-off and COSMO segment variation

    CSIR Research Space (South Africa)

    Wahab, OO

    2018-01-01

    Full Text Available Aqueous solubility and reactivity of four azo dyes were investigated by DMol3/COSMO-RS calculation to examine the effects of global orbital cut-off and COSMO segment variation on the accuracies of theoretical solubility and reactivity. The studied...

  14. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.

    Directory of Open Access Journals (Sweden)

    Yoko Hayashi-Takanaka

    Full Text Available To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph and acetylated H3K9 (H3K9ac. These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green, Cy3 (red, and Cy5 or CF640 (far-red.

  15. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  16. Sorption isotherms, kinetic and optimization process of amino acid proline based polymer nanocomposite for the removal of selected textile dyes from industrial wastewater.

    Science.gov (United States)

    Raghunath, Sharista; Anand, K; Gengan, R M; Nayunigari, Mithil Kumar; Maity, Arjun

    2016-12-01

    In this article, adsorption and kinetic studies were carried out on three textile dyes, namely Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145). The dyes studied in a mixture were adsorbed under various conditions onto PRO-BEN, a bentonite modified with a new cationic proline polymer (l-proline-epichlorohydrin polymer). The proline polymer was characterized by 1 H NMR, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and TEM. The PRO-BEN composite was characterized by FT-IR, dynamic light scattering (DLS) (zeta potential), TEM imaging, SEM/EDX and X-ray photoelectron spectroscopy (characterize the binding energy). During adsorption studies, factors involving pH, temperature, the initial concentrations of the dyes and the quantity of PRO-BEN used during adsorption were established. The results revealed that the adsorption mechanism was categorized by the Langmuir type 1 isotherm. The adsorption data followed the pseudo-second order kinetic model. The intraparticle diffusion model indicated that adsorption did not only depend on the intraparticle diffusion of the dyes. The thermodynamic parameters verified that the adsorption process was spontaneous and exothermic. The Gibbs free energy values indicated that physisorption had occurred. Successful adsorption of dyes from an industrial effluent was achieved. Desorption studies concluded that PRO-BEN desorbed the dyes better than alumina. This can thereby be viewed as a recyclable remediation material. The PRO-BEN composite could be a cost efficient alternative towards the removal of organic dyes in wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Contact dermatitis in tie and dye industry workers

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, N K; Mathur, A; Banerjee, K

    1985-01-01

    A survey of the Tie and Dye industry of Jodhpur City in India was made to investigate occupational dermatoses. 49 (16.6%) of 250 workers had incapacitating dermatitis. Skin lesions were seen mostly over the dorsa of the hands and fingers. 26 patients were patch tested with various dyes and chemicals; 14 were positive. Fast Red RC salt was the most potent sensitizer. Other dyes showing positive reactions were Orange GC salt, Bordeaux GP salt, Blue B salt, Red B base and naphthol.

  18. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    Science.gov (United States)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  19. Development of sustainable dye adsorption system using nutraceutical industrial fennel seed spent-studies using Congo red dye.

    Science.gov (United States)

    Taqui, Syed Noeman; Yahya, Rosiyah; Hassan, Aziz; Nayak, Nayan; Syed, Akheel Ahmed

    2017-07-03

    Fennel seed spent (FSS)-an inexpensive nutraceutical industrial spent has been used as an efficient biosorbent for the removal of Congo red (CR) from aqueous media. Results show that the conditions for maximum adsorption would be pH 2-4 and 30°C were ideal for maximum adsorption. Based on regression fitting of the data, it was determined that the Sips isotherm (R 2 = 0.994, χ 2 = 0.5) adequately described the mechanism of adsorption, suggesting that the adsorption occurs homogeneously with favorable interaction between layers with favorable interaction between layers. Thermodynamic analysis showed that the adsorption is favorable (negative values for ΔG°) and endothermic (ΔH° = 12-20 kJ mol -1 ) for initial dye concentrations of 25, 50, and 100 ppm. The low ΔH° value indicates that the adsorption is a physical process involving weak chemical interactions like hydrogen bonds and van der Waals interactions. The kinetics revealed that the adsorption process showed pseudo-second-order tendencies with the equal influence of intraparticle as well as film diffusion. The scanning electron microscopy images of FSS show a highly fibrous matrix with a hierarchical porous structure. The Fourier transform infrared spectroscopy analysis of the spent confirmed the presence of cellulosic and lignocellulosic matter, giving it both hydrophilic and hydrophobic properties. The investigations indicate that FSS is a cost-effective and efficient biosorbent for the remediation of toxic CR dye.

  20. Novel 2-phenyl-3-{4’-[N-(4”-aminophenylcarbamoyl]-phenyl}-quinazoline-4(3Hone-6-sulphonic acidbased mono azo reactive dyes

    Directory of Open Access Journals (Sweden)

    DIVYESH R. PATEL

    2011-02-01

    Full Text Available A series of new heterocyclic mono azo reactive dyes 7a–m were prepared by diazotization of 2-phenyl-3-{4’-[N-(4”-aminophenylcarbamoyl]-phenyl}-quinazoline-4(3H-one-6-sulphonic acid (3 and coupling with various cyanurated coupling components 6a–m and their dyeing performance on silk, wool and cotton fibres was assessed. These dyes were found to give a variety of colour shades with very good depth and levelness on the fibres. All the compounds were identified by conventional method (IR and 1H-NMR and elemental analyses. The percentage dye bath exhaustion on different fibres was reasonably good and acceptable. The dyed fibre showed moderate to very good fastness to light, washing and rubbing.

  1. Decolorization of reactive dyes under batch anaerobic condition by ...

    African Journals Online (AJOL)

    However, decolorization was lower for the dye of RB 49 than other two dyes in all concentrations despite 72 h incubation period by mixed anaerobic culture. All of the three dyes correlated with 1st order reaction kinetic with respect to decolorization kinetics. The results of the study demonstrated that high decolorization was ...

  2. Dye-sensitized solar cells with natural dyes extracted from achiote seeds

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ortiz, N.M.; Vazquez-Maldonado, I.A.; Azamar-Barrios, J.A.; Oskam, G. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida, Yuc. 97310 (Mexico); Perez-Espadas, A.R.; Mena-Rejon, G.J. [Laboratorio de Quimica Organica de Investigacion, Facultad de Quimica, Universidad Autonoma de Yucatan, Merida, Yuc. 97150 (Mexico)

    2010-01-15

    We have explored the application of natural dyes extracted from the seeds of the achiote shrub (Bixa orellana L.) in dye-sensitized solar cells (DSCs). The main pigments are bixin and norbixin, which were obtained by separation and purification from the dark-red extract (annatto). The dyes were characterized using {sup 1}H-NMR, FTIR spectroscopy, and UV-Vis spectrophotometry. Solar cells were prepared using TiO{sub 2} and ZnO nanostructured, mesoporous films and the annatto, bixin, and norbixin as sensitizers. The best results were obtained with bixin-sensitized TiO{sub 2} solar cells with efficiencies of up to 0.53%, illustrating the importance of purification of dyes from natural extracts. (author)

  3. Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO{sub 3} semiconductor catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Hayat, K. [Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Hooshani, K. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-10-30

    Water contamination by organic substances such as dyes is of great concern worldwide due to their utilization in many industrial processes and environmental concerns. To cater the needs for waste water treatment polluted with organic dyes, laser-induced photocatalytic process was investigated for removal of a dye derivative namely Acid Red 87 using n-type WO{sub 3} semiconductor catalyst. The degradation was investigated in aqueous suspensions of tungsten oxide under different experimental conditions using laser instead of conventional UV lamp as an irradiation source. The degradation process was monitored by measuring the change in dye concentration as a function of laser irradiation time by employing UV spectroscopic analysis. The degradation of dye was studied by varying different parameters such as laser energy, reaction pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H{sub 2}O{sub 2}), and potassium bromate (KBrO{sub 3}). The degradation rates were found to be strongly dependent on all the above-mentioned parameters. Our experimental results revealed that the dye degradation process was very fast (within few minutes) under laser irradiation as compared to conventional setups using broad spectral lamps (hours or days) and this laser-induced photocatalytic degradation method could be an effective means to eliminate the pollutants present in liquid phase. The experience gained through this study could be beneficial for treatment of waste water contaminated with organic dyes and other organic pollutants.

  4. Near-infrared dyes and upconverting phosphors as biomolecule labels and probes

    Science.gov (United States)

    Patonay, Gabor; Strekowski, Lucjan; Nguyen, Diem-Ngoc; Seok, Kim Jun

    2007-02-01

    Near-Infrared (NIR) absorbing chromophores have been used in analytical and bioanalytical chemistry extensively, including for determination of properties of biomolecules, DNA sequencing, immunoassays, capillary electrophoresis (CE) separations, etc. The major analytical advantages of these dyes are low background interference and high molar absorptivities. NIR dyes have additional advantages due to their sensitivity to microenvironmental changes. Spectral changes induced by the microenvironment are not desirable if the labels are used as a simple reporting group, e.g., during a biorecognition reaction. For these applications upconverting phosphors seem to be a better choice. There are several difficulties in utilizing upconverting phosphors as reporting labels. These are: large physical size, no reactive groups and insolubility in aqueous systems. This presentation will discuss how these difficulties can be overcome for bioanalytical and forensic applications. During these studies we also have investigated how to reduce physical size of the phosphor by simple grinding without losing activity and how to attach reactive moiety to the phosphor to covalently bind to the biomolecule of interest. It has to be emphasized that the described approach is not suitable for medical applications and the results of this research are not applicable in medical applications. For bioanalytical and forensic applications upconverting phosphors used as reporting labels have several advantages. They are excited with lasers that are red shifted respective to phosphorescence, resulting in no light scatter issues during detection. Also some phosphors are excited using eye safe lasers. In addition energy transfer to NIR dyes is possible, allowing detection schemes using donor-acceptor pairs. Data is presented to illustrate the feasibility of this phenomenon. If microenvironmental sensitivity is required, then specially designed NIR dyes can be used as acceptor labels. Several novel dyes

  5. Adsorption of reactive Remazol Red RB dye of aqueous solution using zeolite of the coal ash and evaluation of acute toxicity with Daphnia similis; Adsorcao de corante reativo Remazol Vermelho RB de solucao aquosa usando zeolita de cinzas de carvao e avaliacao da toxicidade aguda com Daphnia similis

    Energy Technology Data Exchange (ETDEWEB)

    Magdalena, Carina Pitwak

    2010-07-01

    In this study, the capacity of zeolite synthesized from coal ash in the removal of Remazol Red dye aqueous solution was investigated by batch mode operation. The equilibrium was attained after 360 min of contact time. The adsorption rate followed the kinetic model of pseudo-second-order. The equilibrium data obtained fitted to Langmuir adsorption isotherm showing the adsorption capacity of up to 1.20mg g-1. The efficiency of adsorption was between 75 to 91% in the equilibrium time. In order to obtain the best conditions for removal of this dye, the influence of the following parameters was: initial concentration of the dye, pH of the aqueous solution, dose of adsorbent and temperature. The thermodynamic parameters were evaluated showing that the adsorption of Remazol red on the zeolite is of a spontaneous nature. Experiments by adding NaCl and Na{sub 2}SO{sub 4} were carried out to simulate the real conditions of the effluents from the dyeing bath and to evaluate the influence of these chemical compounds in the phenomenon of adsorption. The equilibrium data of adsorption of Remazol red on the zeolite was achieved in a shorter time in the presence of increasing concentrations of salts in solution and an increase in adsorption capacity. The efficiency of the study was evaluated as a treatment for acute toxicity using Daphnia similis microcrustacean. (author)

  6. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye

    International Nuclear Information System (INIS)

    Solano, Aline Maria Sales; Martínez-Huitle, Carlos Alberto; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif

    2016-01-01

    Highlights: • Degradation of Reactive Blue 15 solution at pH 3.0 by electrochemical oxidation, electro-Fenton and photoelectro-Fenton. • Hard destruction of the dye and its products by BDD(·OH) and much more rapidly by ·OH. • 94% mineralization by the most powerful photoelectro-Fenton at 66.7 mA cm"−"2, with acetic acid accumulation. • 25 aromatics and heteroaromatics, 30 hydroxylated derivatives and 4 carboxylic acids as products. • Release of Cl"−, SO_4"2"− and pre-eminently NO_3"− during dye mineralization. - Abstract: The degradation of the copper-phthalocyanine dye Reactive Blue 15 dye in sulfate medium has been comparatively studied by electrochemical oxidation with electrogenerated H_2O_2 (EO-H_2O_2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments with 100 cm"3 solutions of 0.203 mmol dm"−"3 dye were performed with a stirred tank reactor containing a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H_2O_2 production. Experimental conditions of pH 3.0 and 0.50 mmol dm"−"3 Fe"2"+ as catalyst were found optimal for the EF process by the predominant oxidation with hydroxyl radicals formed in the bulk from Fenton’s reaction between added Fe"2"+ and generated H_2O_2. The kinetics of Reactive Blue 15 abatement was followed by reversed-phase HPLC and always obeyed a pseudo-first-order reaction. The decolorization rate in EO-H_2O_2 was much lower than dye decay due to the formation of large quantities of colored intermediates under the action of hydroxyl radicals generated at the BDD anode from water oxidation. In contrast, the color and dye removals were much more rapid in EF and PEF by the most efficient oxidation of hydroxyl radicals produced from Fenton’s reaction. PEF was the most powerful treatment owing to the photolytic action of UVA irradiation, yielding 94% mineralization after 360 min at 66.7 mA cm"−"2. The effect of current density over the performance of all methods was examined. LC

  7. Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Migliorini, F.L.; Braga, N.A.; Alves, S.A.; Lanza, M.R.V.; Baldan, M.R.; Ferreira, N.G.

    2011-01-01

    Highlights: → Electrochemical advanced oxidation process was studied using BDD based anodes with different boron concentrations. → The difference between the non-active and active anodes for organics degradation. → The influence of morphologic and structural properties of BDD electrodes on the RO-16 dye degradation. - Abstract: Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10 21 atoms cm -3 , respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman's spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 0 0). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process.

  8. Identification of the monobrominated derivative of Acid Red 52 (Food Red No. 106) in pickled vegetables.

    Science.gov (United States)

    Ochi, Naoki; Okuda, Tetsuya; Fujii, Hisashi

    2016-09-01

    Two unknown dyes (purple and purplish-red) were detected by TLC in two pickled vegetable (sakura-zuke daikon) samples containing Acid Red 52 (AR) and New Coccine as food colorants. HPLC with diode-array detection and LC/MS analyses suggested that the purple dye is monobrominated AR and the purplish-red dye is its N-desethyl derivative, which would be generated mainly during sample preparation. For the identification of the purple dye, a reference compound was prepared by bromination of AR followed by isolation of the monobrominated AR, the structure of which was elucidated as 4'-brominated AR (4'BrAR) by LC/ToF-MS and (1)H-NMR spectroscopy. The purple dye was confirmed as 4'BrAR by comparison of its retention time, ultraviolet-visible spectrum and mass spectrum with those of the prepared reference compound. To our knowledge, this is the first report of the detection of 4'BrAR in foods.

  9. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Hosseini Koupaie, E.; Alavi Moghaddam, M.R.; Hashemi, S.H.

    2011-01-01

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  10. Visible-Light Degradation of Dyes and Phenols over Mesoporous Titania Prepared by Using Anthocyanin from Red Radish as Template

    Directory of Open Access Journals (Sweden)

    Zhiying Yan

    2014-01-01

    Full Text Available Heterogeneous photocatalysis is able to operate effectively to eliminate organic compounds from wastewater in the presence of semiconductor photocatalyst and a light source. Although photosensitization of titania by organic dyes is one of the conventional ways for visible-light utilization of titania, previous studies have not yet addressed the use of natural food coloring agents as templates in the synthesis of mesostructured materials, let alone the simultaneous achievement of highly crystalline mesoscopic framework and visible-light photocatalytic activity. In this work, anthocyanin, a natural pigment from red radish was directly used as template in synthesis of highly crystalline mesoporous titania. The synthesized mesoporous titania samples were characterized by a combination of various physicochemical techniques, such as XRD, SEM, HRTEM, nitrogen adsorption/desorption, and diffuse reflectance UV-Vis. The prepared mesoporous titania photocatalyst exhibited significant activity under visible-light irradiation for the degradation of dyes and phenols due to its red shift of band-gap-absorption onset and visible-light response as a result of the incorporation of surface carbon species.

  11. Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2

    NARCIS (Netherlands)

    Jeric, T.; Bisselink, R.J.M.; Tongeren, W. van; Marechal. A.M. Le

    2013-01-01

    Decolorization of Reactive Red 238, Reactive Orange 16, Reactive Black 5 and Reactive Blue 4 was studied in the UV/H2O2 process with H2O2 being produced electrochemically. The experimental results show that decolorization increased considerably when switching on the electrochemical production of

  12. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres

    International Nuclear Information System (INIS)

    Iram, Mahmood; Guo, Chen; Guan Yueping; Ishfaq, Ahmad; Liu Huizhou

    2010-01-01

    Fe 3 O 4 hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe 3 O 4 hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 deg. C and pH 6, was found to be 105 mg g -1 . Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe 3 O 4 nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  13. Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process : Environmental Science and Pollution Research.

    Science.gov (United States)

    Cuervo Lumbaque, Elisabeth; Gomes, Monike Felipe; Da Silva Carvalho, Vanessa; de Freitas, Adriane Martins; Tiburtius, Elaine Regina Lopes

    2017-03-01

    This research paper describes the study of a reduction-oxidation system using commercial steel wool (Fe 0 ) and H 2 O 2 for degradation of the dye Reactive Black 5 and aromatic compounds in water. The reductive process alone allowed the almost complete removal of color (97 ± 1 %) after 60 min of reaction. The decrease in spectral area (λ = 599 nm) associated with the chromophore group indicates breakage of the azo bonds. Moreover, the significant change in UV spectra can be associated with the formation of aromatic amines. Regarding the transformation products, a spectrophotometric method based on the diazotization reaction was employed to identify aromatic amines after reductive process, using sulfanilic acid as a model of aromatic amines. In addition, association with Fenton reagents improved the efficiency in the system with 93 ± 1 % degradation of intermediates formed during the reductive process. Ecotoxicological analysis revealed that the dye solution, after the reductive and oxidative processes, was not toxic to Lactuca sativa seeds. For Daphnia magna, the EC 50 (%) values observed revealed that dye solution has an EC 50 (%) = 74.1 and after reductive process, the toxicity increased (EC 50 (%) = 63.5), which might be related to the formation of aromatic amines. However, after the Fenton process, the EC 50 (%) was >100. These results demonstrated that the Fenton reaction using steel wool as an iron source was very efficient to decrease color, aromatic transformation products, and the ecotoxicity of Reactive Black 5 in solution.

  14. New TiO2/DSAT Immobilization System for Photodegradation of Anionic and Cationic Dyes

    Directory of Open Access Journals (Sweden)

    Wan Izhan Nawawi Wan Ismail

    2015-01-01

    Full Text Available A new immobilized TiO2 technique was prepared by coating TiO2 solution onto double-sided adhesive tape (DSAT as a thin layer binder without adding any organic additives. Glass plate was used as support material to immobilized TiO2/DSAT. Two different charges of dyes were applied, namely, anionic reactive red 4 (RR4 and cationic methylene blue (MB dyes. Photocatalytic degradation of RR4 and MB dyes was observed under immobilized TiO2/DSAT with the degradation rate slightly lower and higher, respectively, compared with TiO2 in suspension mode. It was observed that DSAT is able to provide a very strong intact between glass and TiO2 layers thus making the reusability of immobilized TiO2/DSAT be up to 30 cycles. In fact, a better photodegradation activity was observed by number of cycles due to increasing formation of pores on TiO2 surface observed by SEM analysis.

  15. Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using Micrococcus glutamicus NCIM-2168.

    Science.gov (United States)

    Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P

    2009-09-01

    Micrococcus glutamicus NCIM-2168 exhibited complete decolorization and degradation of C.I. Reactive Green 19A (an initial concentration of 50 mg l(-1)) within 42 h at temperature 37 degrees C and pH 8, under static condition. Extent of mineralization was determined with total organic carbon (TOC) and chemical oxygen demand (COD) measurement, showing a satisfactory reduction of TOC (72%) and COD (66%) within 42 h. Enzyme studies shows involvement of oxidoreductive enzymes in decolorization/degradation process. Analytical studies of the extracted metabolites confirmed the significant degradation of Reactive Green 19A into various metabolites. The microbial toxicity and phytotoxicity assay revealed that the degradation of Reactive Green 19A produced nontoxic metabolites. In addition, the M. glutamicus strain was applied to decolorize a mixture of ten reactive dyes showing a 63% decolorization (in terms of decrease in ADMI value) within 72 h, along with 48% and 42% reduction in TOC and COD under static condition.

  16. Low-Cost Biodegradation and Detoxification of Textile Azo Dye C.I. Reactive Blue 172 by Providencia rettgeri Strain HSL1

    Directory of Open Access Journals (Sweden)

    Harshad Lade

    2015-01-01

    Full Text Available Present study focuses on exploitation of agricultural waste wheat bran (WB as growth medium for degradation of textile azo dye C.I. Reactive Blue 172 (RB 172 using a single bacterium P. rettgeri strain HSL1 (GenBank accession number JX853768.1. The bacterium was found to completely decolorize 50 mg L−1 of dye RB 172 within 20 h at 30 ± 0.2°C under microaerophilic incubation conditions. Additionally, significant reduction in COD (85% and TOC (52% contents of dye decolorized medium was observed which suggested its mineralization. Induction in the activities of azoreductase (159% and NADH-DCIP reductase (88% provided an evidence for reductive cleavage of dye RB 172. The HPLC, FTIR, and GC-MS analysis of decolorized products confirmed the degradation of dye into various metabolites. The proposed metabolic pathway for biodegradation of RB 172 has been elucidated which showed the formation of 2 intermediate metabolites, namely, 4-(ethenylsulfonyl aniline and 1-amino-1-(4-aminophenyl propan-2-one. The acute and phytotoxicity evaluation of degraded metabolites suggests that bacterial strain favors the detoxification of dye RB 172. Thus, WB could be utilized as a low-cost growth medium for the enrichment of bacteria and their further use for biodegradation of azo dyes and its derivatives containing wastes into nontoxic form.

  17. Radiation degradation-adsorption treatment of some toxic dyes present in wastewater

    International Nuclear Information System (INIS)

    El-Kelesh, N.A.; Dessouki, A.M.; Amer, S.I.

    2002-01-01

    The radiolysis or three toxic dyes, viz. Reactive Yellow 3, Reactive Black 39, and Basic Blue 26, was investigated as a function of the dye concentration, pH, irradiation dose and dose rate. The radiolytic degradation was more pronounced with Reactive yellow 3 and Reactive Black 39 than with Basic Blue 26. The degree of degradation could be increased by combining the irradiation procedure with the conventional treatment, such as addition of oxygen or hydrogen peroxide; addition of nitrogen, on the other hand, resulted in no change. A pH drop was observed and tentatively attributed to the degradation of the dye molecules to lower molecular weight compounds such as organic acids. The primary radiolysis products as well as the secondary products are responsible for the degradation of the dye chromophore. Experiments with the adsorption or exchange of the dyes on GAC, some ion exchange resins and polymeric membranes were carried out to find that the polymeric membranes have the highest adsorption capacity for the pollutants except the basic dye. The combined treatment by irradiation and adsorption resulted in a complete removal of the toxic dyes in question

  18. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye.

    Science.gov (United States)

    Ullah, Irfan; Haider, Ali; Khalid, Nasir; Ali, Saqib; Ahmed, Sajjad; Khan, Yaqoob; Ahmed, Nisar; Zubair, Muhammad

    2018-06-13

    Tungsten-doped TiO 2 (W@TiO 2 ) nanoparticles, with different percentages of atomic tungsten dopant levels (range of 0 to 6 mol%) have been synthesized by the sol-gel method and characterized by UV-Visible spectroscopy, XRD, SEM, EDX, ICP-OES and XPS analysis. By means of UV-Vis spectroscopy, it has been observed that with 6 mol% tungsten doping the wavelength range of excitation of TiO 2 has extended to the visible portion of spectrum. Therefore, we evaluated the photocatalytic activity of W@TiO 2 catalysts for the degradation of Congo red dye under varying experimental parameters such as dopant concentration, catalyst dosage, dye concentrations and pH. Moreover, 6 mol% W@TiO 2 catalyst was deposited on a glass substrate to form thin film using spin coating technique in order to make the photocatalyst effortlessly reusable with approximately same efficiency. The results compared with standard titania, Degussa P25 both in UV- and visible light, suggest that 6 mol% W@TiO 2 can be a cost-effective choice for visible light induced photocatalytic degradation of Congo red dye. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Removal of Reactive Orange 16 Dye from Aqueous Solution by Using Modified Kenaf Core Fiber

    Directory of Open Access Journals (Sweden)

    Maytham Kadhim Obaid

    2016-01-01

    Full Text Available Evaluated removal of reactive orange 16 (RO16 dye from aqueous solution was studied in batch mode by using kenaf core fiber as low-cost adsorbents. In this attempt, kenaf core fiber with size 0.25–1 mm was treated by using (3-chloro-2-hydroxypropyl trimethylammonium chloride (CHMAC as quaternization agent. Then effective parameters include adsorbent dose, pH, and contact time and initial dye concentration on adsorption by modified kenaf core fiber was investigated. In addition, isotherms and kinetics adsorption studies were estimated for determination of the equilibrium adsorption capacity and reactions dynamics, respectively. Results showed that the best dose of MKCF was 0.1 g/100 mL, the maximum removal of RO16 was 97.25 at 30°C, pH = 6.5, and agitation speed was 150 rpm. The results also showed that the equilibrium data were represented by Freundlich isotherm with correlation coefficients R2=0.9924, and the kinetic study followed the pseudo-second-order kinetic model with correlation coefficients R2=0.9997 for Co=100 mg/L. Furthermore, the maximum adsorption capacity was 416.86 mg/g. Adsorption through kenaf was found to be very effective for the removal of the RO16 dye.

  20. Reduction of azo dyes by flavin reductase from Citrobacter freundii A1

    Directory of Open Access Journals (Sweden)

    Mohd Firdaus Abdul-Wahab

    2012-12-01

    Full Text Available Citrobacter freundii A1 isolated from a sewage treatment facility was demonstrated to be able to effectively decolorize azo dyes as pure and mixed culture. This study reports on the investigation on the enzymatic systems involved. An assay performed suggested the possible involvement of flavin reductase (Fre as an azo reductase. A heterologouslyexpressed recombinant Fre from C. freundii A1 was used to investigate its involvement in the azo reduction process. Three model dyes were used, namely Acid Red 27 (AR27, Direct Blue 15 (DB15 and Reactive Black 5 (RB5. AR27 was found to be reduced the fastest by Fre, followed by RB5, and lastly DB15. Redox mediators nicotinamide adenine dinucleotide (NADH and riboflavin enhance the reduction, suggesting the redox activity of the enzyme. The rate and extent of reduction of the model dyes correlate well with the reduction potentials (Ep. The data presented here strongly suggest that Fre is one of the enzymes responsible for azo reduction in C. freundii A1, acting via an oxidation-reduction reaction.

  1. Biodecolorization of Reactive Black 5 by laccasemediator system ...

    African Journals Online (AJOL)

    Reactive azo dyes are widely used as textile colorants, typically for cotton dyeing, due to their variety of color shades, and minimal energy consumption. In the present study, commercial laccase from Trametes versicolor was used for the biodecolorization of Reactive Black 5 (RB-5) dye using different redox mediators viz, ...

  2. Visible-light photocatalytic decolorization of reactive brilliant red X-3B on Cu{sub 2}O/crosslinked-chitosan nanocomposites prepared via one step process

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chunhua [College of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China); Xiao, Ling, E-mail: xiaoling9119@yahoo.cn [College of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Liu, Li; Zhu, Huayue [College of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Chen, Chunhua; Gao, Lin [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056 (China)

    2013-04-15

    Cu{sub 2}O/crosslinked-chitosan nanocomposites (Cu{sub 2}O/CS NCs) were in situ prepared via a simple one-step liquid phase precipitation–reduction process and characterized by XRD, FT-IR, SEM, TEM, BET, XPS and UV–vis/DRS. The characterization results showed that Cu{sub 2}O/CS NCs were almost similar spherical or ellipsoidal and the surface was rough and porous because Cu{sub 2}O particle was wrapped in chitosan. The chitosan layer was especially favorable for improving the adsorption ability of dye and molecular oxygen and restraining the recombination of electrons–holes pair. The visible-light photocatalytic decolorization behavior on Cu{sub 2}O/CS NCs was evaluated using reactive brilliant red X-3B (X-3B) as a model pollutant. The influences of various experimental factors on X-3B decolorization were investigated. It was found that the photocatalytic decolorization process on Cu{sub 2}O/CS NCs followed apparent pseudo-first-order kinetics model. The dye X-3B could be decolorized more efficiently in acidic media than in alkaline media. Cu{sub 2}O/CS NCs exhibited enhanced visible-light photocatalytic activity compared with other photocatalysts reported before under similar experimental conditions.

  3. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  4. Preparation of anti-Sudan red monoclonal antibody and development of an indirect competitive enzyme-linked immunosorbent assay for detection of Sudan red in chilli jam and chilli oil.

    Science.gov (United States)

    Xu, Jing; Zhang, Yuanyang; Yi, Jian; Meng, Meng; Wan, Yuping; Feng, Caiwei; Wang, Shanliang; Lu, Xiao; Xi, Rimo

    2010-10-01

    Sudan dyes are banned to be used in food additives because of the carcinogenicity of their metabolites. A rapid and sensitive indirect competitive enzyme-linked immunosorbent assay (ELISA) was developed to detect the residues of Sudan dyes. Novel immunogen and coating antigen were synthesized via glutaraldehyde linking. The hapten-bovine serum albumin (BSA) was applied as immunogen and the hapten-ovalbumin (OVA) was served as coating antigen. The monoclonal antibody obtained showed high sensitivity to Sudan I with an IC(50) value of 1.7 μg L(-1) in buffer and was suitable to detect the residues of Sudan red in food products. The specificity of the assay was studied by measuring cross-reactivity of the antibody with the structurally related compounds of Sudan II (red (120%). Chilli jam and chilli oil samples spiked with Sudan dyes were analyzed by the method. The detection limit (LOD) of the ELISA method applied in chilli jam and chilli oil was 9.0 μg L(-1) and 19.6 μg L(-1), respectively. The recovery rates of Sudan-I in chilli oil and chilli jam were in the range of 80%-110% with coefficients of variation <25%. The intra-assay variation and inter-assay variation in buffer were both <9%.

  5. Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP

    Science.gov (United States)

    Guo, Wenyan; Liu, Xiuli; Liu, Yurong; Gang, Yadong; He, Xiaobin; Jia, Yao; Yin, Fangfang; Li, Pei; Huang, Fei; Zhou, Hongfu; Wang, Xiaojun; Gong, Hui; Luo, Qingming; Xu, Fuqiang; Zeng, Shaoqun

    2017-01-01

    The pH-sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EGFP or EYFP is good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is an urgent need. Here a pH-sensitive red fluorescent protein, pHuji, is selected and verified to remain pH-sensitive in HM20 resin. We observe 183% fluorescence intensity of pHuji in resin-embeded mouse brain and 29.08-fold fluorescence intensity of reactivated pHuji compared to the quenched state. pHuji and EGFP can be quenched and chemically reactivated simultaneously in resin, thus enabling simultaneous two-color micro-optical sectioning tomography of resin-embedded mouse brain. This method may greatly facilitate the visualization of neuronal morphology and neural circuits to promote understanding of the structure and function of the brain. PMID:28717566

  6. Removal of reactive blue 19 dyes from textile wastewater by pomegranate seed powder: Isotherm and kinetic studies

    Directory of Open Access Journals (Sweden)

    Mahboobeh Dehvari

    2016-01-01

    Full Text Available Aims: The aim of this study was the evaluation of adsorption kinetics and equilibrium of reactive blue 19 dyes from textile synthetic wastewater by pomegranate seed powder. Materials and Methods: This study is an experimental research, which was performed in laboratory scale. In this study, the parameters such as adsorbent dose, pH and retention time, initial concentration of dye and agitation rate have been investigated. After washing and boiling of pomegranate seeds for 2 h, they dried, milled and finally pulverized by standard ASTM sieves (40-100 mesh. Maximum adsorption wave length (λmax by spectrophotometer ultra violet/visible (model SP-3000 Plus 592 nm was determined. The Langmuir, Freundlich and Temkin isotherm models and the pseudo-first-order and pseudo-second-order kinetic models were analyzed. Results: According to results, the removal efficiency with adsorbent dose, retention time and agitation rate has a direct relation. Maximum adsorption occurred in the first 60 min. The removal efficiency with initial concentration of dye and pH of solution has indirect relation. The Freundlich isotherm fits the experimental data better than the other isotherms. It was recognized that the adsorption followed by pseudo-second-order model (R2 > 0.99. Conclusion: Based on the results, pomegranate seeds as a new natural sorbent can be used in removal of dye and other environmental pollutants with desirable absorption capacity.

  7. Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber.

    Science.gov (United States)

    Gupta, Vinod Kumar; Pathania, Deepak; Agarwal, Shilpi; Sharma, Shikha

    2014-10-13

    The present study deals with the surface modification of Luffa cylindrica fiber through graft copolymerization of methyl acrylate/acrylamide (MA/AAm) via microwave radiation without the use of initiator. Various reaction parameters effecting grafting yield were optimized and physico-chemical properties were evaluated. The grafted Luffa cylindrica fiber showed morphological transformations, thermal stability and chemical resistance. The adsorption potential of modified fiber was investigated using adsorption isotherms for hazardous congo red dye removal from aqueous system. The maximum adsorption capacity of dye onto grafted Luffa cylindrica fiber was found to be 17.39 mg/g with best fit for Langmuir adsorption isotherm. The values of thermodynamic parameters such as enthalpy change, ΔH(0) (21.27 kJ/mol), entropy change, ΔS(0) (64.71 J/mol K) and free energy change, ΔG(0) (-139.52 kJ/mol) were also calculated. Adsorption process was found spontaneous and endothermic in nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    Science.gov (United States)

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. An investigation to adopt zero liquid discharge in textile dyeing using advanced oxidation processes

    International Nuclear Information System (INIS)

    Ahmd, F.

    2015-01-01

    In this study, a novel idea of using ozone oxidation at the end of reactive dyeing process was explored in order to achieve zero discharge dyeing. An advanced oxidative treatment was given during the dyeing process to remove unfixed and hydrolyzed reactive dyes from cotton substrate. Three different shades were dyed using vinylsulphone reactive class of dyes. At the end of fixation step, washing of fabrics was carried out using appropriate quantities of ozone in the process. Ozone oxidation continued until the liquor was decolorized around 95-100% and COD (Chemical Oxygen Demand) was reduced about 80-90%, thus achieving zero liquid discharge dyeing process. The decolouration efficiency of wastewater was regarded as an indicative of removal of dyes from the textile materials because fabric was being washed continuously in the same liquor. Fabric samples dyed with conventional and new methods were compared in terms of change in shade, colourfastness properties, colour stripping, and fabric appearance. Overall results showed that the use of ozone during reactive dyeing can result in less water consumption, reduced process time, and zero discharge of coloured effluents from textile dyeing factories. (author)

  10. The Potential of Fe-exchanged Y Zeolite as a Heterogeneous Fenton-type Catalyst for Oxidative Degradation of Reactive Dye in Water

    OpenAIRE

    Aleksić, M.; Koprivanac, N.; Lončarić Božić, A.; Kušić, H.

    2010-01-01

    The study aimed to investigate the potential of Fe-exchanged zeolites of Y-type as a catalyst in heterogeneous Fenton-type processes for the degradation of model organic pollutant, reactive azo dye C.I. Reactive Blue 137, in water. The research work was directed to investigate the influence of process variables, such as FeY catalyst dosage, Fenton reagent ratio, and initial operating pH on the efficiency of the treatment process. The performance of the studied heterogeneous process was compar...

  11. Patch testing to a textile dye mix by the international contact dermatitis research group.

    Science.gov (United States)

    Isaksson, Marléne; Ale, Iris; Andersen, Klaus E; Diepgen, Thomas; Goh, Chee-Leok; Goossens R, An; Jerajani, Hemangi; Maibach, Howard I; Sasseville, Denis; Bruze, Magnus

    2015-01-01

    Disperse dyes are well-known contact sensitizers not included in the majority of commercially available baseline series. To investigate the outcome of patch testing to a textile dye mix (TDM) consisting of 8 disperse dyes. Two thousand four hundred ninety-three consecutive dermatitis patients in 9 dermatology clinics were patch tested with a TDM 6.6%, consisting of Disperse (D) Blue 35, D Yellow 3, D Orange 1 and 3, D Red 1 and 17, all 1.0% each, and D Blue 106 and D Blue 124, each 0.3%. 90 reacted positively to the TDM. About 92.2% of the patients allergic to the TDM were also tested with the 8 separate dyes. Contact allergy to TDM was found in 3.6% (1.3-18.2) Simultaneous reactivity to p-phenylenediamine was found in 61.1% of the TDM-positive patients. Contact allergy to TDM and not to other p-amino-substituted sensitizers was diagnosed in 1.2%. The most frequent dye allergen in the TDM-positive patients was D Orange 3. Over 30% of the TDM allergic patients had been missed if only the international baseline series was tested. Contact allergy to TDM could explain or contribute to dermatitis in over 20% of the patients. Textile dye mix should be considered for inclusion into the international baseline series.

  12. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    Science.gov (United States)

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  13. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    Science.gov (United States)

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  14. Degradação de corantes reativos pelo sistema ferro metálico/peróxido de hidrogênio Degradation of reactive dyes by the metallic iron/ hydrogen peroxide system

    Directory of Open Access Journals (Sweden)

    Cláudio Roberto Lima de Souza

    2005-03-01

    Full Text Available In this work the degradation of aqueous solutions of reactive azo-dyes is reported using a combined reductive/advanced oxidative process based in the H2O2/zero-valent iron system. At optimized experimental conditions (pH 7, H2O2 100 mg L-1, iron 7 g L-1 and using a continuous system containing commercial iron wool, the process afforded almost total discolorization of aqueous solutions of three reactive azo-dyes (reactive orange 16, reactive black 5 and brilliant yellow 3G-P at a hydraulic retention time of 2.5 min. At these conditions the hydrogen peroxide is almost totally consumed while the released total soluble iron reaches a concentration compatible with the current Brazilian legislation (15 mg L-1.

  15. Curcuma longa extract as a histological dye for collagen fibres and red blood cells

    Science.gov (United States)

    Avwioro, O G; Onwuka, S K; Moody, J O; Agbedahunsi, J M; Oduola, T; Ekpo, O E; Oladele, A A

    2007-01-01

    Crude ethanolic extract and column chromatographic fractions of the Allepey cultivar of Curcuma longa Roxb, commonly called turmeric (tumeric) in commerce, were used as a stain for tissue sections. Staining was carried out under basic, acidic and neutral media conditions. Inorganic and organic dissolution solvents were used. The stain was used as a counterstain after alum and iron haematoxylins. C. longa stained collagen fibres, cytoplasm, red blood cells and muscle cells yellow. It also stained in a fashion similar to eosin, except for its intense yellow colour. Preliminary phytochemical evaluation of the active column fraction revealed that it contained flavonoids, free anthraquinone and deoxy sugar. A cheap, natural dye can thus be obtained from C. longa. PMID:17451535

  16. Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from Aloe vera leaves shell

    Directory of Open Access Journals (Sweden)

    Yusef Omidi Khaniabadi

    2017-03-01

    Full Text Available Background: Synthetic dyes have several harmful effects on human health as well as aquatic life. In this study, activated carbon (AV-AC, based on Aloe vera leaf shells, was used as a novel agricultural adsorbent, one that is low-cost and available for the removal of Congo red (CR as a carcinogenic dye from aqueous solutions. Methods: In the batch system, the influence of different parameters like contact time, pH, adsorbent dosage, and initial CR concentration were examined on the dye removal from liquid medium. The experimental data were fitted by pseudo-first-order and pseudo-second-order kinetics, and also Langmuir and Freundlich isotherms models. Results: The optimum contact time and pH for the uptake of CR were obtained at 20 minutes and acidic pH of 2. The maximum uptake capacity of CR dye by AV-AC was 1850 mg/g. The results showed that the experimental data were well-fitted by the pseudo-second-order kinetic model (R2 > 0.99 and Freundlich isotherm model (R2 > 0.99. Conclusion: According to the results of our study, the AV-AC is a low-cost, non-toxic, and effective adsorbent for the uptake of CR dye from aqueous media.

  17. Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2-hydroxy-4-methoxybenzophenone on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    DHIRUBHAI J. DESAI

    2010-05-01

    Full Text Available Novel acid mono azo and mordent acid mono azo dyes were synthesised by the coupling of diazonium salt solution of different aromatic amines with 2-hydroxy-4-methoxybenzophenone. The resulting dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1H-NMR and UV–visible spectroscopy. The dyeing performance of all the dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre-treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness. The results of antibacterial studies of chrome pre-treated fabrics revealed that the toxicity of mordented dyes against Escherichia coli, Staphylococcus aureus, Salmonella typhi, Bacillus subtilis bacteria was fairly good.

  18. Minimizing Freshwater Consumption in the Wash-Off Step in Textile Reactive Dyeing by Catalytic Ozonation with Carbon Aerogel Hosted Bimetallic Catalyst

    Directory of Open Access Journals (Sweden)

    Enling Hu

    2018-02-01

    Full Text Available In textile reactive dyeing, dyed fabrics have to be rinsed in the wash-off step several times to improve colorfastness. Thus, the multiple rinsing processes drastically increase the freshwater consumption and meanwhile generate massive waste rinsing effluents. This paper addresses an innovative alternative to recycle the waste effluents to minimize freshwater consumption in the wash-off step. Accordingly, catalytic ozonation with a highly effective catalyst has been applied to remedy the waste rinsing effluents for recycling. The carbon aerogel (CA hosted bimetallic hybrid material (Ag–Fe2O3@CA was fabricated and used as the catalyst in the degradation of residual dyes in the waste rinsing effluents by ozonation treatments. The results indicate the participation of Ag–Fe2O3@CA had strikingly enhanced the removal percentage of chemical oxidation demand by 30%. In addition, it has been validated that waste effluents had been successfully reclaimed after catalytic ozonation with Ag–Fe2O3@CA. They could be additionally reused to reduce freshwater consumption in the wash-off step, but without sacrificing the color quality of corresponding fabrics in terms of color difference and colorfastness. This study may be the first to report the feasibility of catalytic ozonation in minimization of freshwater consumption in the wash-off step in textile reactive dyeing.

  19. The Orange Side of Disperse Red 1: Humidity-Driven Color Switching in Supramolecular Azo-Polymer Materials Based on Reversible Dye Aggregation.

    Science.gov (United States)

    Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J

    2017-01-01

    Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λ MAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Monopolar Electro-Coagulation Process for Azo Dye C.I. Acid Red 18 Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ghasem Azarian

    2014-12-01

    Full Text Available The discharge of wastewaters containing an untreated dye results in aesthetic problems and an increase in gases solubility, which causes light transmission inhibition into water bodies. In spite of advantages of physicochemical and biological methods, these processes produce huge amounts of sludge, toxic by-products and require several oxidant chemicals. By contrast, electrochemical processes because of their high versatility, high efficiency and eco-friendly properties are more acceptable. In the present study, the removal of azo dye Acid Red 18 and chemical oxygen demand (COD from synthetic wastewater by monopolar (EC process was investigated and key parameters such as operating time, current density (CD, initial pH and energy, and electrode consumption were optimized. It was found that the process had a very good efficiency in the removal of both COD and color; for the iron electrode, the maximum amounts of color and COD removal were 99.5% and 59.0%, respectively. An operating time of 45 min, pH of 7 and CD of 1.2 mA/cm2 was selected as the optimized condition. The optimization of variables is extremely crucial as it results in a decrease in costs, energy and electrode consumption. Overall, the iron electrode used less energy than the aluminum electrode and was more acceptable for use in this process due to economical reasons. The findings of UV/vis spectra illustrated that the structures of this dye were removed by the process. In comparison with traditional methods such as aerobic and anaerobic systems, the EC process is a suitable alternative for the treatment of wastewaters containing dye pollutants.

  1. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium

    International Nuclear Information System (INIS)

    Somasekhara Reddy, M.C.; Sivaramakrishna, L.; Varada Reddy, A.

    2012-01-01

    Highlights: ► We have introduced a low-cost, abundantly locally available non-conventional adsorbent in place of activated carbons. ► The kinetic data were well described by second order kinetic model and intra-particle diffusion model. ► The Langmuir and generalized isotherm models were the best fitting for the isotherm results. ► Removal capacity of Jujuba seeds is more than so many agricultural wastes. ► Relative cost of Jujuba seeds for the removal of Congo red can be compared with activated carbons - Abstract: The feasibility of using Indian Jujuba Seeds (IJS) (Zizyphus maruritiana), abundantly available in and around the Nallamalla forest in Andhra Pradesh, for the anionic dye (Congo red, CR) adsorption from aqueous solution, has been investigated as low cost and eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, pH and temperature. Maximum colour removal was observed at pH 2. The equilibrium data was analyzed by the Langmuir, the Freundlich and the General isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 55.56 mg g −1 . The pseudo-second-order kinetics was the best for the adsorption of CR, by IJS (Z. maruritiana) with good correlation. Thermodynamic parameters, such as standard free energy change (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°), were analyzed. The results suggest that IJS (Z. maruritiana) is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater.

  2. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  3. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    Science.gov (United States)

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  4. Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor

    International Nuclear Information System (INIS)

    Enayatzamir, Kheirghadam; Alikhani, Hossein A.; Rodriguez Couto, Susana

    2009-01-01

    In this paper the production of laccase and the decolouration of the recalcitrant diazo dye Reactive Black 5 (RB5) by the white-rot fungus Trametes pubescens immobilised on stainless steel sponges in a fixed-bed reactor were studied. Laccase production was increased by 10-fold in the presence of RB5 and reached a maximum value of 1025 U/l. Enhanced laccase production in the presence of RB5 in this fungus is an added advantage during biodegradation of RB5-containing effluents. The decolouration of RB5 was due to two processes: dye adsorption onto the fungal mycelium and dye degradation by the laccase enzymes produced by the fungus. RB5 decolouration was performed during four successive batches obtaining high decolouration percentages (74%, 43% and 52% in 24 h for the first, third and four batch, respectively) without addition of redox mediators. Also, the in vitro decolouration of RB5 by the concentrated culture extract, containing mainly laccase, produced in the above bioreactor was studied. The decolouration percentages obtained were considerably lower (around 20% in 24 h) than that attained with the whole culture

  5. Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Enayatzamir, Kheirghadam [Department of Chemical Engineering, Rovira i Virgili University, Av. Paisos Catalans 26, 43007 Tarragona (Spain); Department of Soil Science Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Alikhani, Hossein A. [Department of Soil Science Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Rodriguez Couto, Susana [Department of Chemical Engineering, Rovira i Virgili University, Av. Paisos Catalans 26, 43007 Tarragona (Spain)], E-mail: susana.rodriguez@urv.cat

    2009-05-15

    In this paper the production of laccase and the decolouration of the recalcitrant diazo dye Reactive Black 5 (RB5) by the white-rot fungus Trametes pubescens immobilised on stainless steel sponges in a fixed-bed reactor were studied. Laccase production was increased by 10-fold in the presence of RB5 and reached a maximum value of 1025 U/l. Enhanced laccase production in the presence of RB5 in this fungus is an added advantage during biodegradation of RB5-containing effluents. The decolouration of RB5 was due to two processes: dye adsorption onto the fungal mycelium and dye degradation by the laccase enzymes produced by the fungus. RB5 decolouration was performed during four successive batches obtaining high decolouration percentages (74%, 43% and 52% in 24 h for the first, third and four batch, respectively) without addition of redox mediators. Also, the in vitro decolouration of RB5 by the concentrated culture extract, containing mainly laccase, produced in the above bioreactor was studied. The decolouration percentages obtained were considerably lower (around 20% in 24 h) than that attained with the whole culture.

  6. Perylene Derivative Dyes Luminescence in Polysiloxane Matrix in Presence of Gold Nanoparticles.

    Science.gov (United States)

    Mantel, Artur; Shautenbaeva, Nazerke; Irgibaeva, Irina; Aldongarov, Anuar; Lang, Albina; Barashkov, Nikolay; Mukatayev, Iskander

    2016-11-01

    Four perylene derivatives, including commercially available dyes Lumogen Red and Lumogen Orange, as well as 1,6,7,12-tetrachlоrоperylene-3,4,9,10-tetradicarboxydianhydride (Dye I) and 3,4:9,10-bis(1,2-benzimidazole)- 1,6,7,12-tetra(4-tert-octylphenoxy) perylene (syn/ anti-isomers) (Dye III, which was prepared from dye I through intermediate 3,4:9,10-bis(1,2-benzimidazole)-1,6,7,12-tetrachloro perylene (Dye II)) were used for preparation of polysiloxane samples (PSi) containing different concentrations of gold nanoparticles (GN). Dyes I and III demonstrate significant fluorescence intensity increase upon addition of GN independent on excitation energy. For Lumogen Red composition in PSi some increase of fluorescence intensity was observed upon addition of small concentrations of GN, while further increase of GN concentration quenches fluorescence. The increase of Lumogen Red emission intensity, which depends on energy of excitation, is probably due to the increase of radiation decay rate since excitation rate decreases. Effect of GN on Lumogen Orange provided quenching of fluorescence even at small concentrations of GN. Calculations at DFT level of approximation for dye III suggest location of GN in plane of perylene core for increase of fluorescence intensity.

  7. Citotoxicity of food dyes sunset yellow (E-110, bordeaux red (E-123, and tatrazine yellow (E-102 on Allium cepa L. root meristematic cells

    Directory of Open Access Journals (Sweden)

    Keiva Maria Silva Gomes

    2013-03-01

    Full Text Available The objective of this study was to evaluate the cytotoxic effect of the food dyes sunset yellow, bordeaux red, and tartrazine yellow on the cellular cycle of Allium cepa L. Each dye was evaluated at the doses of 0.4 and 4.0 mL, at the exposure times of 24 and 48 hours in root tip cells of Allium cepa L. Slides were prepared and cells were analyzed during the whole cell cycle for cellular aberrations totaling 5,000 total cells for each dose evaluated. The mitotic index was calculated, and statistical analysis was performed using the Chi-squared test (p < 0.05. The results showed that the three dyes used under the evaluated doses and exposure times were cytotoxic to the cells of the system-test used. Further cytotoxicity studies should be conducted for additional results and a proper evaluation of the effect of these three dyes on a cellular level.

  8. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    OpenAIRE

    Vilaseca, Merc?; L?pez-Grimau, V?ctor; Guti?rrez-Bouz?n, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. ...

  9. Ultra-bright red-emitting photostable perylene bisimide dyes: new indicators for ratiometric sensing of high pH or carbon dioxide.

    Science.gov (United States)

    Pfeifer, David; Klimant, Ingo; Borisov, Sergey M

    2018-05-08

    New pH sensitive perylene bisimide indicator dyes were synthesised and used for fabrication of optical sensors. The highly photostable dyes show absorption/emission bands in the red/near-infrared (NIR) region of the electromagnetic spectrum, high molar absorption coefficients (up to 100 000 M-1 cm-1) and fluorescence quantum yields close to unity. The absorption and emission spectra show strong bathochromic shift upon deprotonation of imidazole nitrogen which makes the dyes promising as ratiometric fluorescent indicators. Physical entrapment of the indicators into polyurethane hydrogel enables pH determination in alkaline pH. It is also shown that plastic carbon dioxide solid state sensor can be manufactured via immobilization of the pH indicator in a hydrophilic polymer, along with a quaternary ammonium base. The influence of plasticizer, different lipophilic bases and humidity on the sensitivity of the sensor material were systematically investigated. The disubstituted perylene, particularly, features two deprotonation equilibria enabling sensing over a very broad range from 0.5 to 1000 hPa pCO2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biodegradation of Textile Dyes by Fungi Isolated from North Indian Field Soil

    Directory of Open Access Journals (Sweden)

    Arshi Shahid

    2013-07-01

    Full Text Available In this study one azo dye "Congo red", two triphenymethane dyes "Crystal violet" and "Methylene blue" have been selected for biodegradation using three soil fungal isolates A. niger, F. oxysporum and T. lignorum. These fungal strains were isolated from field soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25°C. The experiment was conducted for 10 days and the results were periodically observed. Aspergillus niger decolorized maximum Congo red (74.07% followed by Crystal violet (33.82% and Methylene blue (22.44% under liquid medium (stationary condition. Whereas, under same conditions, T. lignorum decolorized maximum crystal violet (92.7%, Methylene blue (48.3% and Congo red (35.25%. Use of T. lignorum as dye bio degrader or decolorizer has been done first time in this study. Fusarium oxysporum performed better under shaking conditions compared to stationary and overlay method. It can be concluded that among soil fungus T. lignorum could be used as efficient dye decolorizer especially for crystal violet and A. niger for Congo red. The excellent performance of T. lignorum and F. oxysporum in the biodegradation of textile dyes of different chemical structures reinforces the potential of these fungi for environmental decontamination similar to white rot fungi.

  11. Hairy root induction and phytoremediation of textile dye, Reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L. L.

    Directory of Open Access Journals (Sweden)

    Vinayak H. Lokhande

    2015-12-01

    Full Text Available In this study, we report phytoremediation of textile dyes using hairy roots derived through Agrobacterium rhizogenes (NCIM 5140 infection of in vitro leaf and stem explants of a halophyte Sesuvium portulacastrum (L. L. Leaf explants showed higher frequency of hairy root induction (70% than stem explants (30%, and maximum number of roots (leaf 42.3 ± 2.4 and stem 50.3 ± 1.7. Transformed nature of hairy roots was ascertained by amplifying 970 bp region of T-DNA of Ri plasmid. Hairy roots were screened for phytoremediation of various textile dyes and results showed that HRs were able to degrade Reactive green 19A HE4BD upto 98% within 5 days of incubation. Spectrophotometric analysis showed decrease in dye concentration while HPLC and FTIR analysis confirmed its degradation. Seed germination assay demonstrated non-toxic nature of the extracted metabolites. This is the first report on induction of hairy root culture in Sesuvium portulacastrum and phytoremediation of textile dyes.

  12. Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes

    Science.gov (United States)

    Chaúque, Eutilério F. C.; Dlamini, Langelihle N.; Adelodun, Adedeji A.; Greyling, Corinne J.; Ngila, J. Catherine

    2017-08-01

    The manipulation of nanofibers' surface chemistry could enhance their potential application toward the removal of ionic dyes in wastewater. For this purpose, surface modification of electrospun polyacrylonitrile (PAN) nanofibers with ethylenediaminetetraacetic acid (EDTA) and ethylenediamine (EDA) crosslinker was experimented. The functionalized EDTA-EDA-PAN nanofibers were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) technique. The impregnation of EDA and EDTA chelating agents on the surface of PAN changed the distribution of nanofibers as proximity is increased (accompanied by reduced softness), but the nanofibrous structure of the pristine PAN nanofibers was not substantially altered. Adsorption equilibrium studies were performed with Freundlich, Langmuir and Temkin isotherm models with the former providing better correlation to the experimental data. The modified PAN nanofibers showed efficient sorption of methyl orange (MO) and reactive red (RR) from aqueous synthetic samples, evinced by the maximum adsorption capacities (at 25 °C) of 99.15 and 110.0 mg g-1, respectively. The fabricated nanofibers showed appreciable removal efficiency of the target dye sorptives from wastewater. However, the presence of high metal ions content affected the overall extraction of dyes from wastewater due to the depletion of the adsorbent's active adsorptive sites.

  13. Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond.

    Science.gov (United States)

    Mona, Sharma; Kaushik, Anubha; Kaushik, C P

    2011-02-01

    Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Inhibition of Neutral Red Photolysis with Different Antioxidants

    Directory of Open Access Journals (Sweden)

    Zlatan Rimpapa

    2007-02-01

    Full Text Available Neutral red is a dye the azine structure which has been used as an acido-base indicator and a dye in histochemistry. In 1960 Goldhaber introduced Neutral red into the medium of resorbing bone cultures to localize the osteoclast in the living cultures. Using time-lapse microcinematography in order to follow the osteoclasts, he reported excellent contrast could be obtained with Neutral red due to the avidity of osteoclasts for this dye. Unfortunately, however, the photodynamic effect resulting from subsequent exposure of these cultures to light precluded this approach, and again in 1963. it was observed that the death of the osteoclasts was probably due to a photodynamic effect related to the dye in the cell, the presence of oxygen and the frequent exposure of light by our time-lapse photography. VIS and UV irradiation induced photolysis of Neutral red, and from Neutral red cation produced with photons a Neutral red radical. This Neutral red radical can be inhibited with action of an antioxidant, such as melatonin, glutathione, ascorbic acid, E vitamin, etc. We developed an assay with Neutral redphotolysis which utilizes a VIS and UV irradiation technique for quantification the inhibition of photolysis with action of an antioxidant. In this method Neutral red acts double, as a free radical generator and as a photosensitizer.

  15. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology

    Science.gov (United States)

    Hong, Gui-Bing; Wang, Yi-Kai

    2017-11-01

    Rice bran is a major by-product of the rice milling industry and is abundant in Taiwan. This study proposed a simple method for modifying rice bran to make it a low-cost adsorbent to remove reactive blue 4 (RB4) from aqueous solutions. The effects of independent variables such as dye concentration (100-500 ppm), adsorbent dosage (20-120 mg) and temperature (30-60 °C) on the dye adsorption capacity of the modified rice bran adsorbent were investigated by using the response surface methodology (RSM). The results showed that the dye maximum adsorption capacity of the modified rice bran adsorbent was 151.3 mg g-1 with respect to a dye concentration of 500 ppm, adsorbent dosage of 65.36 mg, and temperature of 60 °C. The adsorption kinetics data followed the pseudo-second-order kinetic model, and the isotherm data fit the Langmuir isotherm model well. The maximum monolayer adsorption capacity was 178.57-185.19 mg g-1, which was comparable to that of other agricultural waste adsorbents used to remove RB4 from aqueous solutions in the literature. The thermodynamics analysis results indicated that the adsorption of RB4 onto the modified rice bran adsorbent is an endothermic, spontaneous monolayer adsorption that occurs through a physical process.

  16. Treatment of dye house effluents

    International Nuclear Information System (INIS)

    Waheed, S.; Ashraf, C.M.

    1999-01-01

    Environmental considerations play an increasingly important role in processing of textiles. For textile, limits on particular substances have been and are being laid down either by law or as a result of the demands of clothing manufactures. One of the most complex areas in textile processing is textile printing and dyeing. Here, virtually all dye classes are used. In some printing processes such as reactive printing, many of products used end up in the wastewater. A study of the optimisation of wastewater treatment systems and the systematic management of water and the problems of dyeing are reviewed in this article. (author)

  17. Evaluation of sugar-cane bagasse as bioadsorbent in the textile wastewater treatment contaminated with carcinogenic congo red dye

    Directory of Open Access Journals (Sweden)

    Aline Sartório Raymundo

    2010-08-01

    Full Text Available A methodology involving sugar cane bagasse bioadsorbent was developed in order to remove the carcinogenic congo red dye from aqueous medium. The results showed high efficiency with retention of 64 ± 6% in synthetic congo red solution and 94 ± 5% in effluent enriched with congo red, at 10.0 g of the bioadsorbent. The adsorption system provided a maximum adsorption capacity of 4.43 mg/g. Tests showed independence adsorption properties, when compared with the column flow rates. The treatment units could be operated with flexibility. From the results, it was possible to conclude that sugar cane bagasse could be an adequate bioadsorbent.Neste trabalho foi desenvolvida uma metodologia de remoção do corante carcinogênico congo red de sistemas aquosos. Os resultados mostraram uma elevada eficiência de remoção sendo de 64 ± 6% para soluções sintéticas de vermelho congo, e 94 ± 5% para efluente industrial enriquecido com vermelho congo utilizando 10 g de bioadsorvente. A capacidade máxima adsotiva encontrada foi de 4,43 mg/g. Os testes de percolação revelaram independência das porcentagens adsortivas em relação às vazões das colunas. Estes resultados indicam viabilidade de uso do bagaço de cana-de-açucar no tratamento de efluentes contendo o congo red.

  18. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola

    International Nuclear Information System (INIS)

    Hsueh, C.-C.; Chen, B.-Y.

    2007-01-01

    This study is to inspect how the variation of molecular structures and functional groups present in our model azo dyes (i.e., Congo red, Eriochrome black T (EBT), methyl orange, and methyl red) affects biodecolorization capability of Pseudomonas luteola. The most viable decolorization was found at pH 7-9 and the optimal cellular age for the most effective decolorization was 7 days after static incubation in dye-free cultures. In decolorization, the maximal absorption wavelength in UV-vis spectra for the different dye-containing cultures shifted from visible light range towards the ultraviolet visible range. Methyl red was not decolorized in contrast to methyl orange, Congo red, and Eriochrome black T. The sulfonic group para to azo bond (-N=N-) in methyl orange was a strong electron-withdrawing group through resonance to cause an enhancement of color removal to be easily biodecolorized. As a charged carboxyl group on methyl red is at ortho position (i.e., in the proximity) to azo bond, this led to a complete inhibition to decolorization. However, decolorization of Congo red and EBT in the absence of charged group (e.g., hydroxy or amino group) near azo bond was not completely repressed like methyl red. Thus, the presence of electron-withdrawing groups as the substituents on azo dyes enhanced decolorization capability for biodegradability. In addition, Monod kinetic model provided better predictions to all dye decolorization at initial short periods of time due to negligible intermediate formed at initial short time duration, but significant intermediate accumulation took place at longer period of time. In contrast, the decolorization performances of methyl orange at 400 ppm and EBT at 230 ppm were significantly less than those predicted from the Monod kinetic model likely due to accumulated intermediates exceeding the threshold levels for feedback inhibition

  19. Interaction between toxic azo dye C.I. Acid Red 88 and serum albumins

    International Nuclear Information System (INIS)

    Naveenraj, Selvaraj; Solomon, Rajadurai Vijay; Venuvanalingam, Ponnambalam; Asiri, Abdullah M.; Anandan, Sambandam

    2013-01-01

    Serum albumin-toxic dye interaction studies will be of paramount importance in the field of toxicology due to its relation towards the distribution and transportation of dye in blood. In this regard, the binding between C.I. Acid Red 88 (AR88) and serum albumins (HSA and BSA) was investigated by using combination of spectroscopic and molecular modeling methods. The fluorescence results revealed that AR88 interact with serum albumins through the combination of static and dynamic quenching mechanism. The distance “r” between serum albumin and AR88 was obtained according to the Forster resonance energy transfer (FRET) theory. Synchronous fluorescence and CD spectral results showed alterations in the microenvironment and conformation of serum albumins. The molecular docking method is also employed to understand the interaction of AR88 with serum albumins. All these studies confirm that BSA has more affinity towards AR88 than that of HSA which suggests that AR88 is more easily transported in the body of bovid than human and so it is more hazardous to bovids. -- Highlights: • AR88 interacts with serum albumin through the combination of both static and dynamic quenching mechanism. • The binding site of AR88 in serum albumins is nearer to tryptophan moiety. • Circular Dichroism spectra showed that AR88 alters α-helicity of serum albumin. • This interaction study could be greatly imperative for further investigations in toxicology

  20. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala (India); Illyaskutty, Navas [Institute for Sensorics and Information Systems (ISIS), Karlsruhe University of Applied Sciences, Moltkestr. 30, D-76133 Karlsruhe (Germany); Sreedhanya, S. [School of Chemical Sciences, M. G. University, Kottayam, Kerala 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore 560080 (India)

    2016-05-21

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  1. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    Science.gov (United States)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  2. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho

    2009-11-23

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture), absorption of red photons by the sensitizer transfers an electron into TiO2 and a hole into the electrolyte. Blue photons absorbed by the ERD are transferred by FRET to the sensitizer. Chemical Equitation Presentation © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton

    International Nuclear Information System (INIS)

    Huang Yaohui; Huang Yifong; Chang Poshun; Chen Chuhyung

    2008-01-01

    This study makes a comparison between photo-Fenton and a novel electro-Fenton called Fered-Fenton to study the mineralization of 10,000 mg/L of dye-Reactive Black B (RBB) aqueous solution, which was chosen as the model dye contaminant. Results indicate that the traditional Fenton process only yields 70% mineralization. This result can be improved by using Fered-Fenton to yield 93% mineralization resulting from the action of ferrous ion regenerated on the cathode. Furthermore, photo-Fenton allows a fast and more complete destruction of dye solutions and as a result of the action of ferrous ion regenerated by UV irradiation yields more than 98% mineralization. In all treatments, the RBB is rapidly decayed to some carboxylic acid intermediates. The major intermediates found are formic acid and oxalic acid. This study finds that formic acid can be completely mineralized by photo-Fenton, but its destruction is problematic using the Fenton method. Oxalic acid is much more difficult to treat than other organic acids. It could get further mineralization with the use of the Fered-Fenton process

  4. Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite.

    Directory of Open Access Journals (Sweden)

    Xinying Zhang

    Full Text Available Azo dyes are very resistant to light-induced fading and biodegradation. Existing advanced oxidative pre-treatment methods based on the generation of non-selective radicals cannot efficiently remove these dyes from wastewater streams, and post-treatment oxidative dye removal is problematic because it may leave many byproducts with unknown toxicity profiles in the outgoing water, or cause expensive complete mineralization. These problems could potentially be overcome by combining photocatalysis and biodegradation. A novel visible-light-responsive hybrid dye removal agent featuring both photocatalysts (g-C3N4-P25 and photosynthetic bacteria encapsulated in calcium alginate beads was prepared by self-assembly. This system achieved a removal efficiency of 94% for the dye reactive brilliant red X-3b and also reduced the COD of synthetic wastewater samples by 84.7%, successfully decolorized synthetic dye-contaminated wastewater and reduced its COD, demonstrating the advantages of combining photocatalysis and biocatalysis for wastewater purification. The composite apparently degrades X-3b by initially converting the dye into aniline and phenol derivatives whose aryl moieties are then attacked by free radicals to form alkyl derivatives, preventing the accumulation of aromatic hydrocarbons that might suppress microbial activity. These alkyl intermediates are finally degraded by the photosynthetic bacteria.

  5. Biotreatment of anthraquinone dye Drimarene Blue K 2 RL | Siddiqui ...

    African Journals Online (AJOL)

    Drimarene Blue (Db) K2RL is a reactive anthraquinone dye, used extensively in textile industry, due to poor adsorbability to textile fiber; it has a higher exhaustion rate in wastewater. The dye is toxic, carcinogenic, mutagenic and resistant to degradation. Decolorization of this dye was studied in two different systems.

  6. Biosorption potential of synthetic dyes by heat-inactivated and live Lentinus edodes CCB-42 immobilized in loofa sponges.

    Science.gov (United States)

    Gimenez, Gabriela Gregolin; Ruiz, Suelen Pereira; Caetano, Wilker; Peralta, Rosane Marina; Matioli, Graciette

    2014-12-01

    Lentinus edodes CCB-42 was immobilized in loofa sponges and applied to the biosorption of the synthetic dyes congo red, bordeaux red and methyl violet. Live immobilized microorganisms achieved average decolorations of congo red, bordeaux red and methyl violet of 97.8, 99.7 and 90.6 %, respectively. The loofa sponge was the support and the coadjuvant promoting dye adsorption. The biosorption conditions were optimized for each dye, yielding 30 °C, pH 5.0 and a 12 h reaction time for congo red; 25 °C, pH 3.0 and 36 h for bordeaux red; and 25 °C, pH 8.0 and 24 h for methyl violet. Operational stability was evaluated over five consecutive cycles, with both bordeaux red and congo red exhibiting decolorations above 90 %, while the decoloration of methyl violet decreased after the third cycle. In the sixth month of storage, congo red, bordeaux red and methyl violet had decolorations of 93.1, 79.4 and 73.8 %, respectively. Biosorption process best fit the pseudo-second-order kinetic and Freundlich isotherm models. Maximum biosorption capacity of heat-treated L. edodes immobilized in loofa sponge was determined as 143.678, 500.00 and 381.679 mg/g for congo red, bordeaux red and methyl violet, respectively. Treatment with immobilized L. edodes reduced the phytotoxicity of the medium containing dyes. FT-Raman experiments suggested the occurrence of interactions between loofa sponge fibers, L. edodes and dye. L. edodes CCB-42 immobilized in loofa sponges represents a promising new mode of treatment of industrial effluents.

  7. Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity

    International Nuclear Information System (INIS)

    Janus, M.; Choina, J.; Morawski, A.W.

    2009-01-01

    New vis active photocatalyst was obtained by the modification of commercial anatase TiO 2 (Police, Poland) in pressure reactor in an ammonia water atmosphere at 100 o C for 4 h. The photocatalytic activity of new material was tested during three azo dyes decomposition: monoazo (Reactive Read), diazo (Reactive Black) and poliazodye (Direct Green). Obtained photocatalyst had new bands at 1430-1440 cm -1 attributed to the bending vibrations of NH 4 + and at 1535 cm -1 associated with NH 2 groups or NO 2 and NO. UV-vis/DR spectra of photocatalyst had also insignificant decrease in visible region. Fluorescence technique was used for studying the amount of hydroxyl radicals produced on TiO 2 surface during visible light irradiation. The hydroxyl radicals produced react with coumarin present in the solution to form 7-hydroxycoumarin which has fluorescent capacity. Photocatalytic activity of modified TiO 2 was compared with commercial titanium dioxide P25 (Degussa, Germany). The photocatalytic activity of TiO 2 /N was higher than that of unmodified material and P25 under visible light irradiation. The ability for dye adsorption (Reactive Red) on photocatalyst surface was also tested. Unmodified TiO 2 and P25 has isotherm of adsorption by Freundlich model, and nitrogen-modified TiO 2 by Langmuir model. The presence of nitrogen at the surface of TiO 2 significantly increased adsorption capacity of TiO 2 as well as OH· radicals formation under visible radiation.

  8. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu Sujuan; Han Hongwei; Tai Qidong; Zhang Jing; Xu Sheng; Zhou Conghua; Yang Ying; Hu Hao; Chen Bolei; Sebo, Bobby; Zhao Xingzhong

    2008-01-01

    A surface modification method was carried out by reactive DC magnetron sputtering to fabricate TiO 2 electrodes coated with insulating MgO for dye-sensitized solar cells. The MgO-coated TiO 2 electrode had been characterized by x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), UV-vis spectrophotometer, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The study results revealed that the TiO 2 modification increases dye adsorption, decreases trap states and suppresses interfacial recombination. The effects of sputtering MgO for different times on the performance of DSSCs were investigated. It indicated that sputtering MgO for 3 min on TiO 2 increases all cell parameters, resulting in increasing efficiency from 6.45% to 7.57%

  9. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  10. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    International Nuclear Information System (INIS)

    Liu Guangfei; Wang Jing; Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long

    2009-01-01

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L -1 , the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  11. Congo red and protein aggregation in neurodegenerative diseases.

    Science.gov (United States)

    Frid, Petrea; Anisimov, Sergey V; Popovic, Natalija

    2007-01-01

    Congo red is a commonly used histological dye for amyloid detection. The specificity of this staining results from Congo red's affinity for binding to fibril proteins enriched in beta-sheet conformation. Unexpectedly, recent investigations indicate that the dye also possesses the capacity to interfere with processes of protein misfolding and aggregation, stabilizing native protein monomers or partially folded intermediates, while reducing concentration of more toxic protein oligomers. Inhibitory effects of Congo red upon amyloid toxicity may also range from blockade of channel formation and interference with glycosaminoglycans binding or immune functions, to the modulation of gene expression. Particularly, Congo red exhibits ameliorative effect in models of neurodegenerative disorders, such as Alzheimer's, Parkinson's, Huntington's and prion diseases. Another interesting application of Congo red analogues is the development of imaging probes. Based on their small molecular size and penetrability through blood-brain barrier, Congo red congeners can be used for both antemortem and in vivo visualization and quantification of brain amyloids. Therefore, understanding mechanisms involved in dye-amyloidal fibril binding and inhibition of aggregation will provide instructive guides for the design of future compounds, potentially useful for monitoring and treating neurodegenerative diseases.

  12. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    M) for 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed...

  13. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Directory of Open Access Journals (Sweden)

    Iuliana Gabriela Breaban

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC. In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2, initial pH of aqueous dye solution (3 or 9, electrocoagulation time (20 or 180 min, GAC dose (0.1 or 0.5 g/L, support electrolyte (2 or 50 mM, initial dye concentration (0.05 or 0.25 g/L and current type (Direct Current—DC or Alternative Pulsed Current—APC. GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  14. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions.

    Science.gov (United States)

    Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela

    2013-07-10

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design ( FFD ) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current- DC or Alternative Pulsed Current- APC ). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  15. The performance and decolourization kinetics of O3/H2O2 oxidation of reactive green 19 dye in wastewater

    Science.gov (United States)

    Sabri, S. N.; Abidin, C. Z. A.; Fahmi; Kow, S. H.; Razali, N. A.

    2018-03-01

    The degradations characteristic of azo dye Reactive Green 19 (RG19) was investigated using advanced oxidation process (AOPs). It was evaluated based on colour and chemical oxygen demand (COD) removal. The effect of operational parameters such as initial dye concentration, initial dosage of hydrogen peroxide (H2O2), contact time, and pH was also being studied. The samples were treated by ozonation (O3) and peroxone O3/H2O2 process. Advanced oxidation processes (AOPs) involve two stages of oxidation; firstly is the formation of strong oxidant and secondly the reaction of organic contaminants in water. In addition, the term advanced oxidation is referring to the processes in which oxidation of organic contaminants occurs primarily through reactions with hydroxyl radicals. There are several analyses that use to determine the efficiency of the treatment process, which are UV-Vis absorption spectra, COD, Fourier Transform Infrared (FT-IR), and pH. The results demonstrated that the ozone oxidation was efficient in decolourization and good in mineralization, based on the reduction of colour and COD. Additionally, results indicate that H2O2 is able to perform better than ozonation in order to decolourize the dye wastewater with 0.5 mL H2O2/L dye dosage of H2O2 at different initial concentration, initial pH, with contact time.

  16. RED DRAGON FRUIT (Hylocereus costaricensis Britt. Et R. PEEL EXTRACT AS A NATURAL DYE ALTERNATIVE IN MICROSCOPIC OBSERVATION OF PLANT TISSUES: THE PRACTICAL GUIDE IN SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Heni Wagiyanti

    2017-11-01

    Full Text Available Prepared slide of plant tissue needs to be staining to facilitate observations under microscope. Laboratorium activities in schools usually use synthetic dyes which expensive and can be damaged the student. Therefore the exploration of alternative dyes need to be established, such as utilizing of red dragon fruit (Hylocereus castaricensis Britt. Et R.. This study aims to (1 find out the best concentration of dragon fruit peel extract for staining plant tissue prepared slide and (2 to develop the practical guide related to plant tissue observation. The qualitative research used different concentration of red dragon fruit peel extract, namely: 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% with 3 repetitions. Data were obtained from observation photos of prepared slide. The result showed that the most contrast prepared slide was used red dragon fruit extract in 60% concentration. The result use to arrange practical guide in observation of plant tissues which is validated by material expert. The validation result showed “very good” criteria (86.01%.

  17. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  18. Decolorization of two azo dyes using marine Lysobacter sp. T312D9

    Directory of Open Access Journals (Sweden)

    Khouloud M. I. B.

    2013-01-01

    Full Text Available Aims: Novel azo dye-degrading bacterium T312D9 strain has been isolated from Abou Quir Gulf, Alexandria, Egypt. Methodology and Results: The identification of the isolate by 16S rRNA gene sequencing revealed to be Lysobacter sp. This marine ecofriendly isolate was exploited for its ability to degrade two synthetic azo dyes considered as detrimental pollutants from industrial effluents: congo red and methyl red. Using different dye concentrations showed the highest metabolic activity for complete degradation obtained from 100 to 500 mg/L within 30 h under static condition, also, sustaining higher dye loading of 1 g/L was carried out. The significant induction of enzymes NADH - 2,6-dichloroindophenol (NADH-DCIP reductase and tyrosinaseindicated their prominent role in dye degradation. The biodegradation of two azo dyes were analyzed by gas chromatographicmass spectrum analysis (GC-MS and Fourier transform infrared spectroscopy (FTIR before and after treatment. Toxicity study revealed the much less toxic nature of the metabolites produced after complete decolorization. Conclusion, significance and impact of study: Lysobacter sp T312D9 represent an inexpensive and promising marine bacteria for removal of both methyl and congo red. High sustainable metabolic activity for biodegradation under static condition. NADHDCIPreductase and tyrosinase were significantly induced during biodegradation of dyes. The obtained metabolites revealed to beless toxic in nature which offers a practical biological treatment.

  19. Photodegradation of Reactive Golden Yellow R Dye Catalyzed by Effective Titania (TiO2)

    International Nuclear Information System (INIS)

    Bedurus, E.A.; Marinah Mohd Ariffin; Mohd Hasmizam Razali

    2015-01-01

    In the present research, Microwave Assisted Synthesis (MAS) method was applied to synthesize titania (TiO 2 ) at 150 degree Celsius in a range of 2-6 hours heating time. Each prepared TiO 2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen gas (N 2 ) sorption analysis (Brunaeur-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) calculation) techniques. The TiO 2 prepared by MAS 150 degree Celsius (4 hours) has emerged with the highest photo catalytic activity. Within 4 hours, the TiO 2 managed to catalyze the degradation of Reactive Golden Yellow R dye up to 98.51 %. This is because of the TiO 2 possessed high crystallinity of anatase phase, small crystallite size and high pore volume compared to other prepared TiO 2 . (author)

  20. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.

    Science.gov (United States)

    Gore, Mohan M; Saharan, Virendra Kumar; Pinjari, Dipak V; Chavan, Prakash V; Pandit, Aniruddha B

    2014-05-01

    In the present work, degradation of reactive orange 4 dye (RO4) has been investigated using hydrodynamic cavitation (HC) and in combination with other AOP's. In the hybrid techniques, combination of hydrodynamic cavitation and other oxidizing agents such as H2O2 and ozone have been used to get the enhanced degradation efficiency through HC device. The hydrodynamic cavitation was first optimized in terms of different operating parameters such as operating inlet pressure, cavitation number and pH of the operating medium to get the maximum degradation of RO4. Following the optimization of HC parameters, the degradation of RO4 was carried out using the combination of HC with H2O2 and ozone. It has been found that the efficiency of the HC can be improved significantly by combining it with H2O2 and ozone. The mineralization rate of RO4 increases considerably with 14.67% mineralization taking place using HC alone increases to 31.90% by combining it with H2O2 and further increases to 76.25% through the combination of HC and ozone. The synergetic coefficient of greater than one for the hybrid processes of HC+H2O2 and HC+Ozone has suggested that the combination of HC with other oxidizing agents is better than the individual processes for the degradation of dye effluent containing RO4. The combination of HC with ozone proves to be the most energy efficient method for the degradation of RO4 as compared to HC alone and the hybrid process of HC and H2O2. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite-A novel eco-friendly polymer

    Energy Technology Data Exchange (ETDEWEB)

    Janaki, V. [Department of Chemistry, Periyar University, Salem 636011, Tamil Nadu (India); Vijayaraghavan, K. [Singapore-Delft Water Alliance, National University of Singapore, 117577 (Singapore); Ramasamy, A.K. [Department of Chemistry, Periyar University, Salem 636011, Tamil Nadu (India); Lee, Kui-Jae [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570752 (Korea, Republic of); Oh, Byung-Taek, E-mail: btoh@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570752 (Korea, Republic of); Kamala-Kannan, Seralathan, E-mail: kannan@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570752 (Korea, Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Competitive adsorption of reactive dyes onto polyaniline/bacterial extracellular polysaccharides composite. Black-Right-Pointing-Pointer The composite have functional groups of both polyaniline and bacterial extracellular polysaccharides. Black-Right-Pointing-Pointer The presence of Reactive Brilliant Blue R diminished the uptake of Reactive Orange 16. Black-Right-Pointing-Pointer Electrostatic interaction was identified as a major mechanism in adsorption process. Black-Right-Pointing-Pointer Reactive Brilliant Blue R and Reactive Orange 16 adsorption was endothermic process. - Abstract: The performance of polyaniline/extracellular polymeric substances (Pn/EPS) composite as an adsorbent to remove the anionic reactive dyes, Reactive Brilliant Blue R (RBBR) and Reactive Orange 16 (RO), was investigated in single and binary systems. The pH{sub pzc} of Pn/EPS composite was calculated as 3.7 through potentiometric mass titration method. Electrostatic interaction between the dye anion and the nitrogen present in the polymer was identified as a major mechanism in adsorption process. Single component isotherms followed the Langmuir model with the maximum adsorption capacity of 0.5775 mmol g{sup -1} for RBBR and 0.4748 mmol g{sup -1} for RO. In binary system, both the reactive dye anions compete with each other and resulted in lower uptake. Binary adsorption data were interpreted well by the Sheindorf-Rehbun-Sheintuch equation as compared to extended Langmuir model with constant interaction factor. Kinetic analysis of single solute followed pseudo-first order model. Thermodynamic studies computed that RBBR and RO adsorption was endothermic, spontaneous, and feasible process.

  2. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Dostanić, J., E-mail: jasmina@nanosys.ihtm.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Lončarević, D. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Zlatar, M. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade (Serbia); Vlahović, F. [University of Belgrade, Innovation center of the Faculty of Chemistry, 11000 Belgrade (Serbia); Jovanović, D.M. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2016-10-05

    Highlights: • Electronic effects of para substituted arylazo pyridone dyes. • Linear relationship between Hammett σ{sub p} constants and dyes photoreactivity. • The photocatalytic reactions facilitated by el.-acceptors and retarded by el.-donors. • Fukui functions to analyze the reactivity on concurrent sites within a molecule. • Hydroxyl radicals sustain attack from two reaction sites, depending on a substituent type. - Abstract: A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31 + G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σ{sub p} constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO{sub 2} photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  3. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Dostanić, J.; Lončarević, D.; Zlatar, M.; Vlahović, F.; Jovanović, D.M.

    2016-01-01

    Highlights: • Electronic effects of para substituted arylazo pyridone dyes. • Linear relationship between Hammett σ_p constants and dyes photoreactivity. • The photocatalytic reactions facilitated by el.-acceptors and retarded by el.-donors. • Fukui functions to analyze the reactivity on concurrent sites within a molecule. • Hydroxyl radicals sustain attack from two reaction sites, depending on a substituent type. - Abstract: A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31 + G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σ_p constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO_2 photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  4. Adsorption of acid red from dye wastewater by Zn{sub 2}Al-NO{sub 3} LDHs and the resource of adsorbent sludge as nanofiller for polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Tianshan; Gao, Yanshan; Zhang, Zhang [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China); Umar, Ahmad, E-mail: ahmadumar786@gmail.com [Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Yan, Xingru; Zhang, Xi; Guo, Zhanhu [Integrated Composites Laboratory, Dan F Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710 (United States); Wang, Qiang, E-mail: qiang.wang.ox@gmail.com [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China)

    2014-02-25

    Highlights: • High removal efficiency of acid red 97 from dye wastewater was achieved by using Zn{sub 2}Al-NO{sub 3} LDHs adsorbent. • The resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) was proposed for the first time. • The thermal stability of PP was significantly improved by introducing only small amount of LDH adsorbent sludge. • The resource the dye adsorbent sludge as multifunctional nanofiller for polymers is a very promising option. -- Abstract: In this contribution, we report the removal of acid red 97 (AC97) from simulated dye wastewater by using Zn{sub 2}Al-NO{sub 3} layered double hydroxides (LDHs) adsorbent, and the resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) for the first time. The obtained Zn{sub 2}Al-NO{sub 3} LDH was analyzed using X-ray diffraction and scanning electron microscopy analysis, confirming the formation of pure and platelike LDH nanoparticles. The effects of adsorption time and initial dye concentration on the removal of AC97 from wastewater were systematically investigated, showing that the Zn{sub 2}Al-NO{sub 3} LDHs is very efficient in removing AC97. The saturated adsorption capacity of water washed and acetone washed Zn{sub 2}Al-LDHs is 204.4 and 299.5 mg/g, respectively. Finally, the LDH adsorbent sludge was added into PP using a modified solvent mixing method. Thermal gravimetric analysis and ultraviolet (UV) absorption analysis of PP/Zn{sub 2}Al-AC97 LDHs nanocomposites suggested that the Zn{sub 2}Al-AC97 LDH can significantly improve the thermal stability and UV shielding ability of PP. This data demonstrated that it is very promising to resource the dye adsorbent sludge as multifunctional nanofiller for polymers.

  5. Assessment of toxicity and genotoxicity of the reactive azo dyes Remazol Black B and Remazol Orange 3R and effectiveness of electron beam irradiation in the reduction of color and toxic effects

    International Nuclear Information System (INIS)

    Pinheiro, Alessandro de Sa

    2011-01-01

    The textile industries play an important role in national and global economy. But, their activities are considered potentially polluting. The use of large volumes of water and the production of colored wastewater with high organic matter are among the main issues raised, especially during the stage of dyeing and washing of the textile process. The reactive azo dyes are the main colors used in the industry for dyeing of cotton in Brazil and worldwide. Because of its low setting and variations in the fiber production process, about 30% of the initial concentration used in the dyeing baths are lost and will compose the final effluent. These compounds have a low biodegradability, are highly soluble in water and therefore are not completely removed by conventional biological processes. In addition, other processes do not promote degradation but the transference to solid environment. The dyes discarded without treatment in the water body can cause aesthetic modifications, alter photosynthesis and gas solubility, as well as being toxic and genotoxic. The main objectives of this study were to evaluate the toxicity and genotoxicity of two reactive azo dyes (Remazol Black B - RPB and Remazol Orange 3R - R3AR) and the percentage of color and toxicity reduction after the use of electron beam radiation. The acute toxicity assays performed with Vibrio fischeri, Daphnia similis and Biomphalaria glabrata showed different response patterns for dyes. The different chemical forms of dyes were slightly toxic to Vibrio fischeri and only the RPB dye (vinylsulphone) was toxic (EC50 15min = 6,23 mg L-1). In tests with Daphnia similis, the dye RPB was slightly toxic in its pattern form, sulphatoethylsulphone, (CE50 48h = 91,25 mg L -1 ) and showed no toxicity in other chemical forms. However, the RA3R dye was toxic to the dafnids and the vinylsulphone form very toxic (EC50 48h = 0,54 mg L-1). No toxicity was observed in Biomphalaria glabrata assays. Chronic toxicity was assessed with the

  6. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  7. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  8. The comparison of spectra and dyeing properties of new azonaphthalimide with analogues azobenzene dyes on natural and synthetic polymers

    Directory of Open Access Journals (Sweden)

    Mozhgan Hosseinnezhad

    2017-05-01

    Full Text Available The aim of the present research was to prepare new acid dyes based on naphthalimides. In this respect a series of monoazo acid dyes have been obtained using 4-amino-N-methyl (alternatively N-butyl-1,8-naphthalimide, aniline and p-nitroaniline as diazo components. 2-Naphthol-6-sulfonic acid (Schaeffer’s acid and 1-naphthol-8-amino-3,6-disulfonic acid (H-acid were used as coupling components. The spectrophotometric properties of the synthesized dyes were investigated in various solvents and compared with analogues azobenzene dyes. It is found, when acid dyes are applied in various solvents and different pH, additional bathochromically shifted bands of different intensity appear in the electronic spectra. This effect is caused by the occurrence of the equilibrium of azo and hydrazone forms in the dyes. The synthesized acid dyes were applied on wool fabrics in order to consider their dyeing properties, fastnesses and the obtainable color gamut. The synthesized dyes represented that they have the ability of dyeing wool and polyamide fabrics and give red to violet hues with good wash, medium light, and good milling and perspiration fastnesses.

  9. An Experimental and Theoretical Investigation of the Electronic Structures and Photoelectrical Properties of Ethyl Red and Carminic Acid for DSSC Application

    Directory of Open Access Journals (Sweden)

    Chaofan Sun

    2016-10-01

    Full Text Available The photoelectrical properties of two dyes—ethyl red and carminic acid—as sensitizers of dye-sensitized solar cells were investigated in experiments herein described. In order to reveal the reason for the difference between the photoelectrical properties of the two dyes, the ground state and excited state properties of the dyes before and after adsorbed on TiO2 were calculated via density functional theory (DFT and time-dependent DFT (TDDFT. The key parameters including the light harvesting efficiency (LHE, the driving force of electron injection ( Δ G inject and dye regeneration ( Δ G regen , the total dipole moment ( μ normal , the conduction band of edge of the semiconductor ( Δ E CB , and the excited state lifetime (τ were investigated, which are closely related to the short-circuit current density ( J sc and open circuit voltage ( V oc . It was found that the experimental carminic acid has a larger J sc and V oc , which are interpreted by a larger amount of dye adsorbed on a TiO2 photoanode and a larger Δ G regen , excited state lifetime (τ, μ normal , and Δ E CB . At the same time, chemical reactivity parameters illustrate that the lower chemical hardness (h and higher electron accepting power (ω+ of carminic acid have an influence on the short-circuit current density. Therefore, carminic acid shows excellent photoelectric conversion efficiency in comparison with ethyl red.

  10. Anodic oxidation of anthraquinone dye Alizarin Red S at Ti/BDD electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jianrui; Lu Haiyan [College of Chemistry, Jilin University, Changchun 130012 (China); Du Lili [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Lin Haibo, E-mail: lhb910@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China); State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2011-05-15

    The boron-doped diamond (BDD) thin-film electrode with high quality using industrially titanium plate (Ti/BDD) as substrate has been prepared and firstly used in the oxidation of anthraquinone dye Alizarin Red S (ARS) in wastewaters. The Ti/BDD electrodes are shown to have high concentration of sp{sup 3}-bonded carbon and wide electrochemical window. The results of the cyclic voltammetries show that BDD has unique properties such as high anodic stability and the production of active intermediates at the high potential. The oxidation regions of ARS and water are significantly separated at the Ti/BDD electrode, and the peak current increases linearly with increasing ARS concentration. The bulk electrolysis shows that removal of chemical oxygen demand (COD) and color can be completely reached and the electrooxidation of ARS behaves as a mass-transfer-controlled process at the Ti/BDD electrode. It is demonstrated that the performances of the Ti/BDD electrode for anodic oxidation ARS have been significantly improved with respect to the traditional electrodes.

  11. Polymerization of novel methacrylated anthraquinone dyes

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-02-01

    Full Text Available A new series of polymerizable methacrylated anthraquinone dyes has been synthesized by nucleophilic aromatic substitution reactions and subsequent methacrylation. Thereby, green 5,8-bis(4-(2-methacryloxyethylphenylamino-1,4-dihydroxyanthraquinone (2, blue 1,4-bis(4-((2-methacryloxyethyloxyphenylaminoanthraquinone (6 and red 1-((2-methacryloxy-1,1-dimethylethylaminoanthraquinone (12, as well as 1-((1,3-dimethacryloxy-2-methylpropan-2-ylaminoanthraquinone (15 were obtained. By mixing of these brilliant dyes in different ratios and concentrations, a broad color spectrum can be generated. After methacrylation, the monomeric dyes can be covalently emplaced into several copolymers. Due to two polymerizable functionalities, they can act as cross-linking agents. Thus, diffusion out of the polymer can be avoided, which increases the physiological compatibility and makes the dyes promising compounds for medical applications, such as iris implants.

  12. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation.

    Science.gov (United States)

    Roy, Uttariya; Sengupta, Shubhalakshmi; Banerjee, Priya; Das, Papita; Bhowal, Avijit; Datta, Siddhartha

    2018-06-18

    This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    Science.gov (United States)

    Attri, Pankaj; Yusupov, Maksudbek; Park, Ji Hoon; Lingamdinne, Lakshmi Prasanna; Koduru, Janardhan Reddy; Shiratani, Masaharu; Choi, Eun Ha; Bogaerts, Annemie

    2016-10-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.

  14. Application of thin film cellulose composite membrane for dye wastewater reuse

    KAUST Repository

    Puspasari, Tiara; Peinemann, Klaus-Viktor

    2016-01-01

    artificial dye effluents. In the experiments using a feed containing Congo Red and high NaCl concentration, the membrane featured impressive dye removal with zero salt rejection combined with high flux. More interestingly, the membrane reached as much as 600

  15. Equilibrium studies on sorption of an anionic dye onto acid activated ...

    African Journals Online (AJOL)

    ISHIOMA

    Batch studies were conducted to evaluate the adsorption capacity of the dye, Congo red on the sorbent with respect to the ... pollution, but dyes are visible even in small quantities due .... in plastic bags, and stored in desiccators for use.

  16. EFFECT OF ULTRAVIOLET LIGHT ON THE PROPERTIES OF DYED COTTON CELLULOSE

    Directory of Open Access Journals (Sweden)

    ROSU Liliana

    2016-05-01

    Full Text Available Textile dyes have been reported of causing various stages of contact dermatitis. Reactive dyes are widely applied in dyeing cellulose fiber based textiles (100% cotton, skin fibers (hemp, flax, regenerated cellulose (cellulose acetate, viscose, protein fibers (natural silk, wool. The human body comes in contact daily with such compounds. This aspect is important for elucidating their biological effects on the human body, in correlation with physico-chemical properties. Dyes are chemical compounds containing chromophore and auxochrome groups. Authors herein report results concerning the influence of UV irradiation with λ > 300 nm on the structure and properties of different colored textiles. Subjects to study were textiles painted with four azo-triazine based dyes which were exposed to 100 h UV irradiation time and irradiation dose values up to 3500 J cm-2. The five azo dyes were: reactive orange 13, reactive red 183, reactive yellow 143, reactive blue 204 and reactive red 2. Structural modifications as a result of irradiation were undertaken by UV-Vis spectroscopy. It was observed that during UV exposure there occurred partial dyes detachment from the textiles, accompanied by glucosidic units and dye photodecomposition by C–N bond scission and degradation of aromatic entities and azo based chromophores. Color modifications were also investigated. Color differences significantly increased with the irradiation dose for all the studied samples.

  17. Ecofriendly laccase-hydrogen peroxide/ultrasound-assisted bleaching of linen fabrics and its influence on dyeing efficiency.

    Science.gov (United States)

    Abou-Okeil, A; El-Shafie, A; El Zawahry, M M

    2010-02-01

    This study evaluates the bleaching efficiency of enzymatically scoured linen fabrics using a combined laccase-hydrogen peroxide bleaching process with and without ultrasonic energy, with the goal of obtaining fabrics with high whiteness levels, well preserved tensile strength and higher dye uptake. The effect of the laccase enzyme and the combined laccase-hydrogen peroxide bleaching process with and without ultrasound has been investigated with regard to whiteness value, tensile strength, dyeing efficiency and dyeing kinetics using both reactive and cationic dyes. The bleached linen fabrics were characterized using X-ray diffraction and by measuring tensile strength and lightness. The dyeing efficiency and kinetics were characterized by measuring dye uptake and colour fastness. The results indicated that ultrasound was an effective technique in the combined laccase-hydrogen peroxide bleaching process of linen fabrics. The whiteness values expressed as lightness of linen fabrics is enhanced by using ultrasonic energy. The measured colour strength values were found to be slightly better for combined laccase-hydrogen peroxide/ultrasound-assisted bleached fabrics than for combined laccase-hydrogen peroxide for both reactive and cationic dyes. The fastness properties of the fabrics dyed with reactive dye were better than those obtained when using cationic dye. The time/dye uptake isotherms were also enhanced when using combined laccase-hydrogen peroxide/ultrasound-assisted bleached fabric, which confirms the efficiency of ultrasound in the combined oxidative bleaching process. The dyeing rate constant, half-time of dyeing and dyeing efficiency have been calculated and discussed.

  18. Pillarization of layer double hydroxides (Mg/Al with keggin type K4[α-SiW12O40]•nH2O and its application as adsorbent of procion red dye

    Directory of Open Access Journals (Sweden)

    Intan Permata Sari

    2017-07-01

    Full Text Available Pillarization of layered double hydroxides with polyoxometalate K4[α-SiW12O40]•nH2O at various times i.e. 3, 6, 9, 12, 24, 36 and 48 hours has been done. The pillared product was characterized by FT-IR spectrophotometer and XRD. The optimum pillared layered double hydroxides of polyoxometalate K4[α-SiW12O40]•nH2O was used as an adsorbent of procion red dye. The results of characterization using FT-IR spectrophotometer is not yet show the optimum pillarization process. The characterisation using XRD the successfully of pillared layered double hydroxides of polyoxometalate K4[α-SiW12O40]•nH2O showing the existence of diffraction angle 8.5o with intensity 355. Furthermore, the pillared layered double hydroxides of polyoxometalate K4[α-SiW12O40]•nH2O with time variation of 12 hours was applied as an adsorbent of procion red dye. The results show the adsorption rate was 0.523 min-1, the highest of absorption capacity at 70oC was 10.8 mol/g, the highest energy of absorption 70 oC was 125 kJ/mol. The enthalpy (∆H and entropy (∆S, decrease as the increasing concentration of procion red dye. Keywords: layered double hydroxides, polyoxometalate, pillaration, procion red, adsorption

  19. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    2014-05-21

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Photocatalytic discoloration of reactive blue 5g dye in the presence of mixed oxides and with the addition of iron and silver

    International Nuclear Information System (INIS)

    Souza, M.C.P; Lenzi, G.G.; Jorge, L.M.M.; Santos, O.A.A.; Colpini, L.M.S.

    2011-01-01

    This work reports the use of cerium-titania-alumina-based systems modified with Ag and Fe by the wetness impregnation method for the discoloration of blue 5G dye. The techniques employed to characterize the photocatalysts were: temperature-programmed reduction (TPR), X-ray diffraction (XRD), specific surface area, average pore volume, and average pore diameter. The characterization results indicated that the photocatalysts had different crystalline structures and textural properties. Discoloration with the mixed oxide photocatalyst CeO 2 -TiO 2 -Al 2 O 3 gave a result similar to that of TiO 2 . On the other hand, the addition of Ag and Fe to the mixed oxide increased the discoloration and reaction rates of reactive blue 5G dyes. (author)

  1. Photocatalytic discoloration of reactive blue 5g dye in the presence of mixed oxides and with the addition of iron and silver

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.C.P; Lenzi, G.G.; Jorge, L.M.M.; Santos, O.A.A. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Engenharia Quimica; Colpini, L.M.S. [Universidade Federal do Parana (UFPR), Palotina, PR (Brazil). Curso Superior de Tecnologia em Biocombustiveis

    2011-07-15

    This work reports the use of cerium-titania-alumina-based systems modified with Ag and Fe by the wetness impregnation method for the discoloration of blue 5G dye. The techniques employed to characterize the photocatalysts were: temperature-programmed reduction (TPR), X-ray diffraction (XRD), specific surface area, average pore volume, and average pore diameter. The characterization results indicated that the photocatalysts had different crystalline structures and textural properties. Discoloration with the mixed oxide photocatalyst CeO{sub 2}-TiO{sub 2}-Al{sub 2}O{sub 3} gave a result similar to that of TiO{sub 2}. On the other hand, the addition of Ag and Fe to the mixed oxide increased the discoloration and reaction rates of reactive blue 5G dyes. (author)

  2. Efeitos dos parâmetros operacionais na fotodegradação do azo corante direct red 23 na interface dióxido de titânio/água Effects of operational parameters on the photodegradation of direct red 23 azo dye at the titanium dioxide/water interface

    Directory of Open Access Journals (Sweden)

    Débora Nobile Clausen

    2007-01-01

    Full Text Available The decolorization and degradation of direct red 23 azo dye have been investigated in aqueous suspension of titanium dioxide under artificial irradiation. The effects of some operational parameters such as azo dye concentration, catalyst loading, and solution pH were investigated at 30.0 ºC and optimized values were obtained. The first-order kinetic model was used to discuss the results. The UV-Vis spectra changes showed that the azo dye sample, collected after 6 h irradiation, was 98% decolorized while the residual total carbon was 97.9% degraded, indicating simultaneous photodecolorization and degradation.

  3. Tunable lasers in isotope separation: a colorful view of a dye chemist

    International Nuclear Information System (INIS)

    Hammond, P.R.

    1977-01-01

    Some of the problems to be encountered in the possible large scale use of dye lasers in an isotope separation plant are discussed.The effect of laser dye deterioration on performance is examined algebraically in terms of disappearance of dye molecules and the appearance of a new, single chemical product having absorption in the fluorescence band for a single pass through a transversely pumped amplifier. Loss of output, defined as ''quantum yield of laser deterioration'', Q/sub L/, is related to the true quantum yield of molecular destruction of the dye Q/sub M/, and other known parameters. 6-Diethylamino 3-keto fluoran, an example of an oxygen tricyclic merocyanine, is described. It was first reported in the pre-1900 German literature under the name of Chromogen Red B and it is an ineffective lasing dye on account of low fluorescence quantum yield. The techniques for measurement and the excited state absorption cross-sections are reported for the dyes rhodamine 6G fluoroborate in alcohol, rhodamine B basic solution in trifluoroethanol and kiton red S in trifluoroethanol

  4. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant-The temperature dependence and a thermodynamic multivariate analysis

    International Nuclear Information System (INIS)

    Cestari, Antonio R.; Vieira, Eunice F.S.; Vieira, Glaucia S.; Costa, Luiz P. da; Tavares, Andrea M.G.; Loh, Watson; Airoldi, Claudio

    2009-01-01

    The three-parameter Sips adsorption model was successfully employed to modeled equilibrium adsorption data of a yellow and a red dye onto a mesoporous aminopropyl-silica, in the presence of the surfactant sodium dodecylbenzenesulfonate (DBS) from 25 to 55 deg. C. The results were evaluated in relation to the previously reported surface tension measurements. The presence of curvatures of the vant Hoff plots suggested the presence of non-zero heat capacities terms (Δ ads C p ). For the yellow dye, it is observed that the values of Δ ads H are almost all positive and they decrease in endothermicity, in the absence and in the presence of DBS, from 25 to 55 deg. C. For the red dye, there is an increase in endothermicity in relation to the temperature increase. The negative Δ ads G values indicate spontaneous adsorption processes. Almost all adsorption entropy values (Δ ads S) were positive. This suggests that entropy is a driving force of adsorption. The adsorption thermodynamic parameters were also evaluated using a new 2 3 full factorial design analysis. The multivariate polynomial modelings indicated that the thermodynamic parameters are also affected by important interactive effects of the experimental factors and not by the temperature changes alone

  5. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant-The temperature dependence and a thermodynamic multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cestari, Antonio R. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, CEP 49100-000, Sao Cristovao, Sergipe (Brazil)], E-mail: cestari@ufs.br; Vieira, Eunice F.S.; Vieira, Glaucia S.; Costa, Luiz P. da; Tavares, Andrea M.G. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, CEP 49100-000, Sao Cristovao, Sergipe (Brazil); Loh, Watson; Airoldi, Claudio [Universidade Estadual de Campinas, Instituto de Quimica, CP 6154, 13083-970, Campinas, Sao Paulo (Brazil)

    2009-01-15

    The three-parameter Sips adsorption model was successfully employed to modeled equilibrium adsorption data of a yellow and a red dye onto a mesoporous aminopropyl-silica, in the presence of the surfactant sodium dodecylbenzenesulfonate (DBS) from 25 to 55 deg. C. The results were evaluated in relation to the previously reported surface tension measurements. The presence of curvatures of the vant Hoff plots suggested the presence of non-zero heat capacities terms ({delta}{sub ads}C{sub p}). For the yellow dye, it is observed that the values of {delta}{sub ads}H are almost all positive and they decrease in endothermicity, in the absence and in the presence of DBS, from 25 to 55 deg. C. For the red dye, there is an increase in endothermicity in relation to the temperature increase. The negative {delta}{sub ads}G values indicate spontaneous adsorption processes. Almost all adsorption entropy values ({delta}{sub ads}S) were positive. This suggests that entropy is a driving force of adsorption. The adsorption thermodynamic parameters were also evaluated using a new 2{sup 3} full factorial design analysis. The multivariate polynomial modelings indicated that the thermodynamic parameters are also affected by important interactive effects of the experimental factors and not by the temperature changes alone.

  6. Magnetic and photocatalytic response of Ag-doped ZnFeO nano-composites for photocatalytic degradation of reactive dyes in aqueous solution

    International Nuclear Information System (INIS)

    Mahmood, Asif; Ramay, Shahid Mahmood; Al-Zaghayer, Yousef S.; Imran, Muhammad; Atiq, Shahid; Al-Johani, Meshal S.

    2014-01-01

    Highlights: • Self-consistent sol–gel based auto-combustion route was used. • Photocatalytic degradation of reactive dyes in aqueous solution was investigated. • Due to Ag doping, band gap reduced. • Activity of Ag-doped samples was higher than that of un-doped ones. - Abstract: To investigate the photocatalytic degradation of reactive dyes in aqueous solution, pure ZnO and Fe/Ag-doped magnetic photocatalysts having nominal compositions of Zn 0.95−x Fe 0.05 Ag x O (x = 0.0, 0.05 and 0.1) have been synthesized via self-consistent sol–gel based auto-combustion route. Thermally stable samples were subsequently confirmed to exhibit wurtzite type hexagonal structure, characteristic of ZnO. The nature of chemical bonding was elaborated by Fourier transform analysis. Electron microscopic techniques were employed to investigate the structural morphology and to evaluate the particle size. Ferromagnetic nature of the Fe/Ag doped samples was revealed by vibrating sample magnetometry, enabling the photocatalytic samples to be re-collected magnetically for repeated usage. The enhanced photocatalytic activity in the degradation of methylene blue under UV light irradiation with 5 and 10 wt.% Ag/ZnFeO has been observed validating the potential applications of these materials in the field of photo-degradation of organic pollutants

  7. Removal of binary azo dyes from water by UV-irradiated degradation in TiO2 suspensions

    International Nuclear Information System (INIS)

    Juang, Ruey-Shin; Lin, Su-Hsia; Hsueh, Pei-Ying

    2010-01-01

    Photodegradation and mineralization of single and binary Acid Orange 7 (AO7) and Reactive Red 2 (RR2) under UV irradiation in TiO 2 suspensions was examined. Experiments were conducted as a function of initial pH, TiO 2 dose, and initial dye concentration. First-order derivative spectrophotometric method was used to simultaneously analyze AO7 and RR2 in binary solutions. The Langmuir-Hinshelwood kinetic model was applied to evaluate and compare the apparent rate constants for the photodegradation of both dyes in single and binary solutions. It was shown that photodegradation of both dyes in binary solution was slower than those in single solution under comparable conditions. Moreover, the difference between the apparent rate constants of RR2 and AO7 became smaller in contrast to the cases of single solutions. After 20-min UV irradiation with 0.5 g/L TiO 2 , complete removal of single 0.086 mM AO7 and 0.086 mM RR2 at pH 6.8 was obtained, but only 60% and 45% of binary 0.086 mM AO7 and 0.086 mM RR2 was removed, respectively.

  8. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangfei [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Wang Jing, E-mail: wangjingbio@yahoo.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China)

    2009-11-15

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L{sup -1}, the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  9. Removal of toxic Congo red dye from water employing low-cost coconut residual fiber.

    Science.gov (United States)

    Rani, K C; Naik, Aduja; Chaurasiya, Ram Saran; Raghavarao, K S M S

    2017-05-01

    The coconut residual fiber (CRF) is the major byproduct obtained during production of virgin coconut oil. Its application as a biosorbent for adsorption of Congo red was investigated. The CRF was subjected to different pretreatments, namely, pressure cooking, hexane treatment, acid treatment and their combinations. The pretreatment of CRF with the combination of hexane, acid, and pressure cooking resulted in the highest degree of adsorption. The equilibrium data were analyzed and found to fit best to both Langmuir and Freundlich isotherms. Thermodynamic parameters such as standard free energy (ΔG 0 kJ mol -1 ), standard enthalpy (ΔH 0 , kJ mol -1 ) and standard entropy (ΔS 0 , kJ mol -1 K -1 ) of the systems were calculated by using the Langmuir constant. The ΔG 0 , ΔH 0 and ΔS 0 were found to be 16.51 kJ mol -1 , -19.39 kJ mol -1 and -0.12 kJ mol -1 K -1 , respectively, at 300 K. These thermodynamic parameters suggest the present adsorption process to be non-spontaneous and exothermic. The adsorption process was observed to follow pseudo-second-order kinetics. The results suggest that CRF has potential to be a biosorbent for the removal of hazardous material (Congo red dye) with a maximum adsorption capacity of 128.94 mg g -1 at 300 K.

  10. An eco-friendly approach for sodium chloride free cotton dyeing

    International Nuclear Information System (INIS)

    Umer, T.

    2014-01-01

    Present study was conducted with an aim to develop an environmental friendly method of dyeing cotton as an alternative to standard reactive dyeing process that requires high level of salt. When dyeing was carried out in the absence of sodium chloride (NaCl), an extremely lighter depth of shade was experienced, and hence this particular research was focused on the reduction of the total colour difference (AE) to a minimum level. Instead of adding any other chemical or any additional process like cationization, salt-free reactive dyeing was carried out by varying three common process parameters (dyes, alkali, and process time) to achieve required depth of shade. The results obtained were compared with those of conventionally dyed fabrics in terms of depth of shade (AL), total colour difference (AE), washing fastness, and rubbing fastness. The results were found to be promising and comparable to those dyed with using NaCl. Moreover, the investigated method showed a significant reduction of Total Dissolved Solids (TDS) and Electrical Conductivity (EC) in the wastewater, and thus proved to be an environment friendly process. (author)

  11. The radiation-induced degradation of a diazo dye in aqueous solution Pt. 2

    International Nuclear Information System (INIS)

    El-Assy, N.B.; Abdel-Rehim, F.; Abdel-Gawad, A.S.; Abdel-Fattah, A.A.

    1992-01-01

    The effect of γ-radiation on the color intensity of aerated, deaerated and oxygenated aqueous solutions of a diazo dye (Helion Red 8B) has been investigated. The decoloration yields of Helion Red 8B neutral aqueous solution, G(-Dye), for the nitrogen-, oxygen- and aerated-saturated solutions were found to be 0.77, 0.46 and 0.36 in the respective early stage. The rate constant for the reaction of the OH radical with the HR8B dye, obtained from competition kinetics using ethanol, was found to be 1.3*10 10 M -1 *s -1 . In aerated solutions (pH 3), the G(-Dye) decreased markedly upon the addition of a very small amount of ethanol. Suggestions are made for possible use of the dye as a radiation dosimeter in the dose range of 0.1 to 2 kGy. (author) 16 refs.; 8 figs.; 1 tab

  12. Radiation degradation of Congo Red in aqueous solution

    International Nuclear Information System (INIS)

    Ma Hongjuan; Wang Min; Yang Ruiyuan; Wang Wenfeng; Shen Zhongqun; Yao Side

    2006-01-01

    About one-half of the dyes used in textile industry are azo dyes, and as a consequence a lot of azo dyes are released into the environment with industrial wastewater. Because of complex structures of the dyes, biological, physical and chemical treatments of dye effluents are inefficient. In this study, radiation degradation of Congo Red in aqueous solutions was investigated in different reaction systems. Both pulsed radiolysis and laser flash photolysis experiments were carried out for better understandings of degradation mechanisms involved in the treatments. Congo Red solutions saturated by air, N 2 O, O 2 , N 2 O or N 2 and added with tert-butanol were irradiated to 0-14.8 kGy. The absorption spectra, degradation efficiency, TOC (total organic carbon) removal and pH changes of the solutions were investigated. The main radiolytic products from Congo Red samples irradiated in steady-state were determined by HPLC-MS. And probable reaction mechanisms were proposed. Effects of primary species from water radiolysis, such as e aq - , . OH and . O 2 . /HO 2 . on the degradation behavior of the dye were discussed. Below 5 kGy in γ-rays irradiation, the bleaching efficiency of Congo Red was (N 2 +tert-butanol) >O 2 >air>N 2 O>N 2 . Complete degradation of Congo Red was observed at 4.0, 5.5 and 10.2 kGy irradiation of the aqueous solutions saturated by N 2 with tert-butanol added, O 2 and N 2 O, respectively. With just oxidative or reductive species, highly conjugated part of Congo Red molecules could be destroyed. While oxidative species produced from water radiolysis could oxidize the Congo Red more effectively, making the dye to break into fatty acids and CO 2 finally. In the solution saturated with N 2 and air, the primary active species were both of oxidative and reductive and the highly conjugated part of Congo Red molecules could not be destroyed completely up to 14.8 kGy of γ-ray irradiation. It was more difficult to achieve high TOC removal in comparison with

  13. Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122

    International Nuclear Information System (INIS)

    Santana, Mario H.P.; Da Silva, Leonardo M.; Freitas, Admildo C.; Boodts, Julien F.C.; Fernandes, Karla C.; De Faria, Luiz A.

    2009-01-01

    Aqueous solutions containing the commercial azo dye Reactive Orange 122 (RO122) were ozonated in acid and alkaline conditions. Ozone was electrochemically generated using a laboratory-made electrochemical reactor and applied using semi-batch conditions and a column bubble reactor. A constant ozone application rate of 0.25 g h -1 was used throughout. Color removal and degradation efficiency were evaluated as function of ozonation time, pH and initial dye concentration by means of discoloration kinetics and COD-TOC removal. Experimental findings revealed that pH affects both discoloration kinetics and COD-TOC removal. A single pseudo-first-order kinetic rate constant, k obs , for discoloration was found for ozonation carried out in alkaline solutions, contrary to acidic solutions where k obs depends on ozonation time. COD-TOC removal supports degradation of RO122 is more pronounced for alkaline conditions. Evaluation of the oxidation feasibility by means of the COD/TOC ratio indicates that the ozonation process in both acid and alkaline conditions leads to a reduction in recalcitrance of the soluble organic matter

  14. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    Science.gov (United States)

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  15. Degradation reaction of Diazo reactive black 5 dye with copper (II) sulfate catalyst in thermolysis treatment.

    Science.gov (United States)

    Lau, Yen-Yie; Wong, Yee-Shian; Ang, Tze-Zhang; Ong, Soon-An; Lutpi, Nabilah Aminah; Ho, Li-Ngee

    2018-03-01

    The theme of present research demonstrates performance of copper (II) sulfate (CuSO 4 ) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO 4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO 4 . Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp 2 carbon to form C-C of the sp 3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k 1 is 6.5224 whereas the degradation rate constant with catalyst, k 2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.

  16. Development of a Direct Spectrophotometric and Chemometric Method for Determining Food Dye Concentrations.

    Science.gov (United States)

    Arroz, Erin; Jordan, Michael; Dumancas, Gerard G

    2017-07-01

    An ultraviolet visible (UV-Vis) spectrophotometric and partial least squares (PLS) chemometric method was developed for the simultaneous determination of erythrosine B (red), Brilliant Blue, and tartrazine (yellow) dyes. A training set (n = 64) was generated using a full factorial design and its accuracy was tested in a test set (n = 13) using a Box-Behnken design. The test set garnered a root mean square error (RMSE) of 1.79 × 10 -7 for blue, 4.59 × 10 -7 for red, and 1.13 × 10 -6 for yellow dyes. The relatively small RMSE suggests only a small difference between predicted versus measured concentrations, demonstrating the accuracy of our model. The relative error of prediction (REP) for the test set were 11.73%, 19.52%, 19.38%, for blue, red, and yellow dyes, respectively. A comparable overlay between the actual candy samples and their replicated synthetic spectra were also obtained indicating the model as a potentially accurate method for determining concentrations of dyes in food samples.

  17. UV/Ni–TiO2 nanocatalyst for electrochemical removal of dyes considering operating costs

    Directory of Open Access Journals (Sweden)

    Azam Pirkarami

    2014-03-01

    Full Text Available This paper reports an investigation into the effect of a number of operating factors on the removal of Reactive Red 19 (RR 19, Acid Orange 7 (AO 7, and Acid Red 18 (AR 18 from an aqueous solution through photoelectrocatalysis. Nano-Ni–TiO2 was used as the photocatalyst applied in suspension to achieve a larger catalyst surface area. Photocatalyst dose, dye concentration, pH, bias potential, electrolyte concentration, and temperature were found to be optimum at 0.6 ppm, 30 ppm, 7, 1.6 V, 5 ppm, and 25 °C respectively. Significant reduction was observed in the COD values of the solutions, denoting effective treatment. Photocatalyst efficiency was evaluated using SEM, XRD, and FT-IR techniques. Cost analysis was performed for the treatment process. The energy required by the experiment was supplied by solar cells, meaning that no money had to be spent on electricity.

  18. Adsorption of a textile dye from aqueous solutions by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Fernando M.; Bergmann, Carlos P., E-mail: fernando.machado@hotmail.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Dept. de Materiais; Lima, Eder C.; Adebayo, Matthew A. [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Inst. de Quimica; Fagan, Solange B. [Centro Universitario Franciscano (UNIFRA), Santa Maria, RS (Brazil). Area de Ciencias Tecnologicas

    2014-08-15

    Multi-walled and single-walled carbon nanotubes were used as adsorbents for the removal of Reactive Blue 4 textile dye from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N{sub 2} adsorption/desorption isotherms and scanning and transmission electron microscopy. The effects of pH, agitation time and temperature on adsorption capacity were studied. In the acidic pH region, the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium isotherms at 298-323 K was fixed at 4 hours for both adsorbents. For Reactive Blue 4 dye, Liu isotherm model gave the best fit for the equilibrium data. The maximum sorption capacity for adsorption of the dye occurred at 323 K, attaining values of 502.5 and 567.7 mg g{sup -1} for MWCNT and SWCNT, respectively. (author)

  19. Design of new metal-free dyes for dye-sensitized solar cells: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Xiong; Zhou, Le; Li, Yawei [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Sun, Qiang, E-mail: sunqiang@pku.edu.cn [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2012-08-06

    Five new metal-free dyes with acceptor–π–donor (A–π–D) structure are studied using first-principles calculation based on density functional theory. Benzothiadiazole (BTD) and triphenylamine (TPA) were chosen, respectively, as an acceptor and a donor with 4-(dicyanomethylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran (DCM) as a π linker. The linker was further modified by -CH=CH- resulting in a red-shift with improved absorption spectra caused by the smaller energy gap and the increased orbital hybridization. The designed dyes are found to exhibit wide absorption spectra, high molar extinction coefficients, desirable orbital distributions, and good energy levels alignment, and hence can have potential applications in dye-sensitized solar cells. -- Highlights: ► New metal-free dyes with A–π–D architecture. ► With wide absorption spectra and high molar extinction coefficients. ► With desirable orbital distribution and good energy levels alignment.

  20. Red Emitting Phenyl-Polysiloxane Based Scintillators for Neutron Detection

    International Nuclear Information System (INIS)

    Dalla Palma, Matteo; Quaranta, Alberto; Marchi, Tommaso; Gramegna, Fabiana; Cinausero, Marco; Carturan, Sara; Collazuol, Gianmaria

    2013-06-01

    In this work, the performances of new red emitting phenyl- substituted polysiloxane based scintillators are described. Three dyes were dispersed in a phenyl-polysiloxane matrix in order to shift the scintillation wavelength towards the red part of the visible spectrum. PPO, Lumogen Violet (BASF) and Lumogen Red (BASF) were mixed to the starting resins with different wt. % and the analysis of the different samples was performed by means of fluorescence measurements. The scintillation yield to alpha particles at the different dye ratios was monitored by detecting either the full spectrum or the red part of the emitted light. Finally, thin red scintillators with selected compositions were coupled to Avalanche Photodiode sensors, which are usually characterized by higher efficiency in the red part of the spectrum. An increased light output of about 17% has been obtained comparing the red scintillators to standard blue emitting systems. Preliminary results on the detection of fast neutrons with the APD-red scintillator system are also presented. (authors)

  1. Purification and Characterization of a White Laccase with Pronounced Dye Decolorizing Ability and HIV-1 Reverse Transcriptase Inhibitory Activity from Lepista nuda

    Directory of Open Access Journals (Sweden)

    Mengjuan Zhu

    2016-03-01

    Full Text Available A strain LN07 with high laccase yield was identified as basidiomycete fungus Lepista nuda from which a white laccase without type I copper was purified and characterized. The laccase was a monomeric protein with a molecular mass of 56 kDa. Its N-terminal amino acid sequence was AIGPAADLHIVNKDISPDGF. Besides, eight inner peptide sequences were determined and lac4, lac5 and lac6 sequences were in the Cu2+ combination and conservation zones of laccases. HIV-1 reverse transcriptase was inhibited by the laccase with a half-inhibitory concentration of 0.65 μM. Cu2+ ions (1.5 mM enhanced the laccase production and the optimal pH and temperature of the laccase were pH 3.0 and 50 °C, respectively. The Km and Vmax of the laccase using ABTS as substrate were respectively 0.19 mM and 195 μM. Several dyes including laboratory dyes and textile dyes used in this study, such as Methyl red, Coomassie brilliant blue, Reactive brilliant blue and so on, were decolorized in different degrees by the purified laccase. By LC-MS analysis, Methyl red was structurally degraded by the laccase. Moreover, the laccase affected the absorbance at the maximum wavelength of many pesticides. Thus, the white laccase had potential commercial value for textile finishing and wastewater treatment.

  2. The use of Red Cabbage’s anthocyanine extract as a photosensitizer on a Dye-Sensitized Nanocrystalline TiO2 Solar Cell

    Directory of Open Access Journals (Sweden)

    Akhiruddin Maddu

    2010-10-01

    Full Text Available A solid-state dye-sensitized nanocrystalline TiO2 solar cell utilizing anthocyanin extract form red cabbage as photosensitizer was fabricated. The solar cell was formed in sandwich structure, which two electrodes sandwiching polymer electrolyte containing a redox couple (I-/I3-. One of the electrodes, namely working electrode, TiO2 layer on TCO (transparent conducting oxide coated glass substrate was sensitized with anthocyanin dye as electron donor in the system. Another electrode was a carbon sheet as a counter electrode. Gel electrolyte based on PEG (polyethylene glycol containing a redox couple (I-/I3- used instead of liquid electrolyte in this photoelectrochemical cell. Two fabricated cells have an active area of 1 cm2 were soaked with anthocyanine dye for 1 hr and 24 hrs, respectively. The cells were tested by irradiation with halogen lamp of 24 Watt with intensity 4 mW/cm2 at a distance 30 cm. The testing results of the cells show an ideal I-V characteristic with output parameters: open circuit voltage (VOC of 500 mV, short circuit current (ISC of 5,6 μA and 7,2 μA for each cells, fill factor (FF of 48% for both cells, energy conversion (η of 0.023 % and 0,055 % for the cells with 1 hr and 24 hrs dye soaked, respectively.

  3. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, Zuemriye [Hacettepe University, Department of Chemical Engineering, 06532 Beytepe, Ankara (Turkey)]. E-mail: zaksu@hacettepe.edu.tr; Isoglu, I. Alper [Hacettepe University, Department of Chemical Engineering, 06532 Beytepe, Ankara (Turkey)

    2006-09-01

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l{sup -1} initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g{sup -1} at 25 deg. C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l{sup -1}) and temperature (25-45 deg. C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature.

  4. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution.

    Science.gov (United States)

    Aksu, Zümriye; Isoglu, I Alper

    2006-09-01

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l(-1) initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g(-1) at 25 degrees C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l(-1)) and temperature (25-45 degrees C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature.

  5. Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan-Hong; Liu, Rui-Rui [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Zhu, Kai-Li [College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000, Gansu (China); Song, Yan-Lin [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China); Geng, Zhi-Yuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070, Gansu (China)

    2016-09-15

    A novel organic dye with 2D-A structure has been designed and calculated whereby density functional theory (DFT) and time-dependent density functional theory (TD-DFT) for dye-sensitized solar cells. The double-donor branched dye which was consisted of two separated light-harvesting moieties was beneficial to photocurrent generation. First, we discussed the effects of different donor chains on photoelectric performance in the dye molecule, using the DTP-B8 which was a previously reported structure as the reference. Only to conclude that the suitable length can achieve the satisfactory efficiency. Secondly, to modify and sift potential sensitizers further, three series of dyes (BC-series, CB-series and CC-series) were designed and characterized. The increased molar extinction coefficient and the red-shifted λ{sub max} was attributed to an increasing in electron conjunction. This work presented a new route to design sensitizers that provide two channels for donating more electrons and improve the final efficiency. It is expected to provide some theoretical guidance on designing and synthetizing high efficiency photosensitive dye in the future experiments. - Highlights: • A novel organic dye with 2D-A structure was designed and characterized. • The double-donor branched dye was consisted of two separated light-harvesting paths. • The double-donor branched dye was beneficial to photocurrent generation. • The molar extinction coefficient was greatly improved in this novel structure. • Four promising candidates have been screened out.

  6. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization.

    Science.gov (United States)

    Akpinar, Merve; Ozturk Urek, Raziye

    2017-06-01

    Lignocellulosic wastes are generally produced in huge amounts worldwide. Peach waste of these obtained from fruit juice industry was utilized as the substrate for laccase production by Pleurotus eryngii under solid state bioprocessing (SSB). Its chemical composition was determined and this bioprocess was carried out under stationary conditions at 28 °C. The effects of different compounds; copper, iron, Tween 80, ammonium nitrate and manganese, and their variable concentrations on laccase production were investigated in detail. The optimum production of laccase (43,761.33 ± 3845 U L -1 ) was achieved on the day of 20 by employing peach waste of 5.0 g and 70 µM Cu 2+ , 18 µM Fe 2+ , 0.025% (v/v) Tween 80, 4.0 g L -1 ammonium nitrate, 750 µM Mn 2+ as the inducers. The dye decolorization also researched to determine the degrading capability of laccase produced from peach culture under the above-mentioned conditions. Within this scope of the study, methyl orange, tartrazine, reactive red 2 and reactive black dyes were treated with this enzyme. The highest decolorization was performed with methyl orange as 43 ± 2.8% after 5 min of treatment when compared to other dyes. Up to now, this is the first report on the induction of laccase production by P. eryngii under SSB using peach waste as the substrate.

  7. Azo dyes decomposition on new nitrogen-modified anatase TiO{sub 2} with high adsorptivity

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M., E-mail: mjanus@ps.pl [Szczecin University of Technology, Department of Sanitary Engineering, al. Piastow 50, 70-310 Szczecin (Poland); Szczecin University of Technology, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin (Poland); Choina, J.; Morawski, A.W. [Szczecin University of Technology, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin (Poland)

    2009-07-15

    New vis active photocatalyst was obtained by the modification of commercial anatase TiO{sub 2} (Police, Poland) in pressure reactor in an ammonia water atmosphere at 100 {sup o}C for 4 h. The photocatalytic activity of new material was tested during three azo dyes decomposition: monoazo (Reactive Read), diazo (Reactive Black) and poliazodye (Direct Green). Obtained photocatalyst had new bands at 1430-1440 cm{sup -1} attributed to the bending vibrations of NH{sub 4}{sup +} and at 1535 cm{sup -1} associated with NH{sub 2} groups or NO{sub 2} and NO. UV-vis/DR spectra of photocatalyst had also insignificant decrease in visible region. Fluorescence technique was used for studying the amount of hydroxyl radicals produced on TiO{sub 2} surface during visible light irradiation. The hydroxyl radicals produced react with coumarin present in the solution to form 7-hydroxycoumarin which has fluorescent capacity. Photocatalytic activity of modified TiO{sub 2} was compared with commercial titanium dioxide P25 (Degussa, Germany). The photocatalytic activity of TiO{sub 2}/N was higher than that of unmodified material and P25 under visible light irradiation. The ability for dye adsorption (Reactive Red) on photocatalyst surface was also tested. Unmodified TiO{sub 2} and P25 has isotherm of adsorption by Freundlich model, and nitrogen-modified TiO{sub 2} by Langmuir model. The presence of nitrogen at the surface of TiO{sub 2} significantly increased adsorption capacity of TiO{sub 2} as well as OH{center_dot} radicals formation under visible radiation.

  8. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling.

    Science.gov (United States)

    Mehrabi, Fatemeh; Vafaei, Azam; Ghaedi, Mehrorang; Ghaedi, Abdol Mohammad; Alipanahpour Dil, Ebrahim; Asfaram, Arash

    2017-09-01

    In this research, a selective, simple and rapid ultrasound assisted dispersive solid-phase micro-microextraction (UA-DSPME) was developed using cobalt ferrite nanoparticles loaded on activated carbon (CoFe 2 O 4 -NPs-AC) as an efficient sorbent for the preconcentration and determination of Maxilon Red GRL (MR-GRL) dye. The properties of sorbent are characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Vibrating sample magnetometers (VSM), Fourier transform infrared spectroscopy (FTIR), Particle size distribution (PSD) and Scanning Electron Microscope (SEM) techniques. The factors affecting on the determination of MR-GRL dye were investigated and optimized by central composite design (CCD) and artificial neural networks based on genetic algorithm (ANN-GA). CCD and ANN-GA were used for optimization. Using ANN-GA, optimum conditions were set at 6.70, 1.2mg, 5.5min and 174μL for pH, sorbent amount, sonication time and volume of eluent, respectively. Under the optimized conditions obtained from ANN-GA, the method exhibited a linear dynamic range of 30-3000ngmL -1 with a detection limit of 5.70ngmL -1 . The preconcentration factor and enrichment factor were 57.47 and 93.54, respectively with relative standard deviations (RSDs) less than 4.0% (N=6). The interference effect of some ions and dyes was also investigated and the results show a good selectivity for this method. Finally, the method was successfully applied to the preconcentration and determination of Maxilon Red GRL in water and wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of mass transfer and chemical reaction on ozonation of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I.S.; Wiesmann, U. [Dept. of Environmental Engineering, Technical Univ. of Berlin, Berlin (Germany)

    2003-07-01

    Azo dyes can be only mineralised by chemical oxidation. In this paper the oxidation of reactive black 5 (RB 5) and reactive orange 96 (RO 96) with concentrations between 35 and 5700 mgL{sup -1} (RB 5) and between 20 and 2050 mgL{sup -1} (RO 96) is investigated. A lab scale bubble column was used, which was gassed by a mixture of O{sub 2} and O{sub 3}. The oxidation rate was influenced by mass transfer for all dye concentrations used. For lower dye concentrations mass transfer alone was decisive for reaction rate showing an enhancement factor of E {approx} 1. However, in the region of higher dye concentrations, the slope of the decreasing ozone concentration inside the liquid boundary layer increases more and more with increasing dye concentration as a result of a chemical oxidation. Therefore, the enhancement factor depends on the kind and concentration of the azo dyes. For RB 5 as an diazo dye an enhancement factor of E = 9 was observed for 3800 mgL{sup -1}, RO 96 as a mono azo dye with a remarkable higher chemical oxidation rate shows an E = 17 already for 2050 mgL{sup -1}. (orig.)

  10. Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and its adsorption behavior for Congo Red dye

    Directory of Open Access Journals (Sweden)

    Min-min Wang

    2013-07-01

    Full Text Available A series of carboxymethyl cellulose/organic montmorillonite (CMC/OMMT nanocomposites with different weight ratios of carboxymethyl cellulose (CMC to organic montmorillonite (OMMT were synthesized under different conditions. The nanocomposites were characterized by the Fourier transform infrared (FT-IR spectrophotometer, X-ray diffraction (XRD method, transmission electron microscope (TEM, scanning electron microscope (SEM, and thermal gravimetric (TG analysis. The results showed that the introduction of CMC may have different influences on the physico-chemical properties of OMMT and intercalated-exfoliated nanostructures were formed in the nanocomposites. The effects of different reaction conditions on the adsorption capacity of samples for Congo Red (CR dye were investigated by controlling the amount of hexadecyl trimethyl ammonium bromide (CTAB, the weight ratio of CMC to OMMT, the reaction time, and the reaction temperature. Results from the adsorption experiment showed that the adsorption capacity of the nanocomposites can reach 171.37 mg/g, with the amount of CTAB being 1.0 cation exchange capacity (CEC of MMT, the weight ratio of CMC to OMMT being 1:1, the reaction time being 6 h, and the reaction temperature being 60°C. The CMC/OMMT nanocomposite can be used as a potential adsorbent to remove CR dye from an aqueous solution.

  11. Composites based on PET and red mud residues as catalyst for organic removal from water

    Energy Technology Data Exchange (ETDEWEB)

    Bento, Natálya I.; Santos, Patrícia S.C. [Science and Technology Institute, Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999, BR 267, Km 533, CEP 37715-400 Poços de Caldas, MG (Brazil); Souza, Talita E. de; Oliveira, Luiz C.A. [Department of Chemistry, Federal University of Minas Gerais, UFMG, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG (Brazil); Castro, Cínthia S., E-mail: cinthia.soares.castro@gmail.com [Science and Technology Institute, Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999, BR 267, Km 533, CEP 37715-400 Poços de Caldas, MG (Brazil)

    2016-08-15

    Highlights: • Composite based on carbon/iron oxide from PET and red mud wastes for organic contaminants oxidation. • Composites are mainly composed of hematite and a carbon matrix from PET decomposition. • RM/PET-15 presents the highest methylene blue (MB) removal from water, by combined adsorption and oxidation processes. • The dye oxidation was confirmed by ESI-MS studies. • The RM/PET catalysts can be reused for at least four batch runs. - Abstract: In this study, we obtained a composite based on carbon/iron oxide from red mud and PET (poly(ethylene terephthalate)) wastes by mechanical mixture (10, 15 and 20 wt.% of PET powder/red mud) followed by a controlled thermal treatment at 400 °C under air. XRD analyses revealed that the α-Fe{sub 2}O{sub 3} is the main phase formed from red mud. TPR analyses showed that the iron oxide present in the composites undergoes reduction at lower temperature to form Fe{sup 2+} species present in Fe{sub 3}O{sub 4}, indicating that the iron oxide in the composite can exhibit greater reactivity in the catalytic processes compared to the original red mud. In fact, catalytic tests showed that the composites presented higher capacity to remove methylene blue dye (MB), presenting about 90% of removal after 24 h of reaction. The MB removal was also monitored by mass spectrometer with ionization via electrospray (ESI-MS), which demonstrated the occurrence of the oxidation process, showing the formation of MB oxidation products. The stability of the composites was confirmed after four reuse cycles. The results seem to indicate that PET carbon deposited over the iron oxide from red mud promotes adsorption of the contaminant allowing its contact with the iron atoms and their consequent reaction.

  12. The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2017-11-01

    Anthocyanin and chlorophyll dyes have been blended as the photosensitizer of Dye-Sensitized Solar Cell (DSSC). The results study showed the effect of chemical bond dyes on TiO2 and the efficiency of DSSC. Ratio blend of the anthocyanin and chlorophyll dyes are 1:1. The absorbance of dyes and TiO2 were characterized using UV-Vis Spectrophotometer. The chemical bonds contained in TiO2-dyes were characterized using FT-IR spectrophotometer. The efficiency of DSSC was calculated using I-V meter. The absorption spectra of chlorophyll: anthocyanin blend dye solutions and TiO2 films can increase after the dye adsorption. Absorbance characterization of anthocyanin and chlorophyll dye blend solutions showed three peaks at the wavelength of 412 nm; 535.5 nm; and 656.5 nm. Absorbance characterization of spinach before being blend with anthocyanin dyes solutions showed two peaks at the wavelength of 431 nm and 665.5 nm. The absorption spectra of TiO2 films can increase after the dyes adsorption at the wavelength of 400 nm. FT-IR spectra of TiO2 founded the functional groups C-Br, C=C, and O-H. The functional groups founded in anthocyanin: chlorophyll dye blended on the surface of TiO2 are C-Br, C-O, O-H, C-H, C=C, C=O, and O-H. The result showed that the greatest efficiency of 0.0544% at dye red cabbage-spinach. Adsorption blends of anthocyanin and chlorophyll dyes on the surface of TiO2 can be used as the photosensitizer for DSSC.

  13. Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater

    Science.gov (United States)

    Sutedja, Andrew; Aileen Josephine, Claresta; Mangindaan, Dave

    2017-12-01

    This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.

  14. Nano porous Adsorbent from Chitosan Interacted Montmorillonite for Dye-containing Wastewater Treatment

    International Nuclear Information System (INIS)

    Siriphannon, P.; Monvisade, P.

    2011-01-01

    Chitosan intercalated montmorillonite (Chi-MMT) was prepared by mixing 2 wt% of chitosan solution with sodium mont-morillonite (Na + -MMT) suspension at 60 degree Celsius for 24 hours. The Na + ions in Na + -MMT were completely exchanged with -NH 3 + ions of chitosan, resulting in the intercalation of chitosan into the MMT layer. The chitosan intercalation brought about the expansion of d 001 of Na + -MMT from 1.23 nm to 1.42 - >2.21 nm of the Chi-MMT. The existence of the intercalated-chitosan and large pore size could significantly increase the adsorption capacity of Chi-MMT from those of the starting materials, for example Na + -MMT and chitosan. The adsorption capacity of Chi-MMT adsorbent was equal to 4.9 mg/ g for acid red 91 (AR91) with initial dye concentration of 50 mg/ L, 45.9 mg/ g for basic yellow 1 (BY1) and 15.0 mg/ g for reactive orange 16 (RO16) with initial dye concentration of 500 mg/ L. These results indicated the competency of Chi-MMT nano porous adsorbent for treatment of wastewater containing various kinds of dyestuffs. (author)

  15. Pemanfaatan Antosianin dari Ekstrak Kol Merah (Brassica oleracea var sebagai Pewarna Dye-Sensitized Solar Cells (DSSC

    Directory of Open Access Journals (Sweden)

    Dinasti Dwi Pratiwi

    2016-09-01

    Full Text Available A prototype of Dye-Sensitized Solar Cells (DSSC utilizing anthocyanin extract from red cabbage was fabricated. This study aims to determine the wavelength absorption of dye contributed in highest efficiency. The sandwich structure of DSSC consists of TiO2 as working electrode, carbon layer as counter electrode, anthocyanin dye as photosensitizer, and electrolyte as electron transfer media. The absorbance of dye was characterized using UV-Vis spectrophotometer, the efficiency of DSSC was calculated using I-V Meter Keithley, and the quantum efficiency was characterized using IPCE Measurement System. The absorption of dye anthocyanin of red cabbage is 450 nm–580 nm wavelengths, I-V characteristic curves resulted efficiency of 0,029%, and IPCE characteristic resulted highest efficiency at wavelength of 420 nm with efficiency of 0,099%.

  16. Efficiency of Electrocoagulation for Removal of Reactive Yellow 14 from Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yaria

    2013-09-01

    Full Text Available Background & Aims of the Study: Discharge of textile industry colored wastewater without enough treatment into natural water resources cause serious pollution. Most of the conventional wastewater treatment methods are not effective enough to remove these dyes from wastewater. In this study, efficiency of electrocoagulation process with iron electrodes for treatment of Reactive Yellow 14 dye from synthetic solution has been studied and concluded. Materials & Methods: This experiment was conducted in a batch system with a volume of 2 L that had been equipped with 4 iron electrodes. The effect of operating parameters, such as voltage, time of reaction, initial dye concentration, and interelectrode distance on the dye removal efficiency was investigated. Results: In optimum condition (pH 2, voltage 40 V, electrolysis time 25 min, and interelectrode distance 1 cm, electrocoagulation method was able to remove 99.27% of Reactive Yellow 14 from synthetic solution. Conclusions: Electrocoagulation process by iron electrode is an efficient method for removal of reactive dyes from colored solution.

  17. Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06.

    Science.gov (United States)

    Nor, Nurafifah Mohd; Hadibarata, Tony; Zubir, Meor Mohd Fikri Ahmad; Lazim, Zainab Mat; Adnan, Liyana Amalina; Fulazzaky, Mohamad Ali

    2015-11-01

    Cresol Red belongs to the triphenylmethane (TPM) class of dyes which are potentially carcinogenic or mutagenic. However, very few studies on biodegradation of Cresol Red were investigated as compared to other type dyes such as azo and anthraquinone dye. The aim of this work is to evaluate triphenylmethane dye Cresol Red degradation by fungal strain isolated from the decayed wood in Johor Bahru, Malaysia. Detailed taxonomic studies identified the organisms as Trichoderma species and designated as strain Trichoderma harzianum M06. In this study, Cresol Red was decolorized up to 88% within 30 days under agitation condition by Trichoderma harzianum M06. Data analysis revealed that a pH value of 3 yielded a highest degradation rate among pH concentrations (73%), salinity concentrations of 100 g/L (73%), and a volume of 0.1 mL of Tween 80 (79%). Induction in the enzyme activities of manganese peroxidase, lignin peroxidase, laccase, 1,2- and 2,3-dioxygenase indicates their involvement in Cresol Red removal. Various analytical studies such as Thin-Layer Chromatography (TLC), UV-Vis spectrophotometer, and Gas chromatography mass spectrometry (GC-MS) confirmed the biotransformation of Cresol Red by the fungus. Two metabolites were identified in the treated medium: 2,4-dihydroxybenzoic acid (t R 7.3 min and m/z 355) and 2-hydroxybenzoic acid (t R 8.6 min and m/z 267). Based on these products, a probable pathway has been proposed for the degradation of Cresol Red by Trichoderma harzianum M06.

  18. Kinetics of Low Temperature Polyester Dyeing with High Molecular Weight Disperse Dyes by Solvent Microemulsion and AgroSourced Auxiliaries

    Directory of Open Access Journals (Sweden)

    Shahram Radei

    2018-02-01

    Full Text Available This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100 °C. Moreover, the dyeing rate constants, correlation coefficient and activation energies were proposed for this system. It was found that o-vanillin yielded higher dye absorption levels than coumarin, leading to exhaustions of 88% and 87% for Disperse Red 167 and Disperse Blue 79, respectively. K/S values of dyed polyester were also found to be higher for dye baths containing o-vanillin with respect to the ones with coumarin. In terms of hot pressing fastness and wash fastness, generally no adverse influence on fastness properties was reported, while o-vanillin showed slightly better results compared to coumarin.

  19. Decolorization and degradation of reactive dye during the dyed cotton fabric rinsing process.

    Science.gov (United States)

    Luo, Deng-Hong; Zheng, Qing-Kang; Chen, Sheng; Liu, Qing-Shu; Wang, Xiu-Xing; Guan, Yu; Pu, Zong-Yao

    2010-01-01

    Dyeing process of textile consumes large quantities of water, which results in huge amounts of colored wastewater. Most of the dye wastewater treating methods focused on the treatment of wastewater after the rinsing process of dyed textile. In this paper, tetraacetylethylenediamine/hydrogen peroxide (TAED/H₂O₂) active oxidation (AO) system was developed to rinse dyed textile and decolorize the rinsing wastewater simultaneously. The results indicated that the decolorization ratio of the rinse effluent obtained by AO method were in the range of 51.72%-84.15% according to different dyes and the COD value decreased more than 30% compared with that of traditional rinsing process. The decolorization kinetics investigation showed that the decolorization of dyes during AO rinsing process followed the law of pseudo-first order kinetics. The result of UV-Vis and UPLC-MS analysis demonstrated that the dye was degraded into colorless organic molecular fragments and partly mineralized during the AO rinsing process.

  20. Improvement of colour strength and colourfastness properties of gamma irradiated cotton using reactive black-5

    International Nuclear Information System (INIS)

    Ahmad Bhatti, Ijaz; Adeel, Shahid; Nadeem, Raziya; Asghar, Toheed

    2012-01-01

    The dyeing behaviour of gamma irradiated cotton fabric using Reactive Black-5 dye powder has been investigated. The mercerized, bleached and plain weaved cotton fabric was irradiated to different absorbed doses of 100, 200, 300, 400, 500 and 600 Gy using Co-60 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature of dyeing, time of dyeing and pH of dyeing solutions were optimised. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organisation (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It is found that gamma irradiated cotton dyed with Reactive Black-5 has not only improved the colour strength but also enhanced the rating of fastness properties. - Highlights: ► Optimum absorbed dose for cotton is 500 Gy using un-irradiated Reactive Black-5. ► Optimum dyeing conditions: 60 °C, 30 min and dyeing pH is10. ► At optimum conditions colour strength and fastness properties are enhanced. ► Gamma irradiation can improve dyeing characters of other dyed fabrics.

  1. Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis

    Directory of Open Access Journals (Sweden)

    G. L. Dotto

    2013-03-01

    Full Text Available The equilibrium and thermodynamics of azo dye (tartrazine and allura red biosorption onto Spirulina platensis biomass were investigated. The equilibrium curves were obtained at 298, 308, 318 and 328 K, and four isotherm models were fitted the experimental data. Biosorption thermodynamic parameters (ΔG, ΔH and ΔS were estimated. The results showed that the biosorption was favored by a temperature decrease. For both dyes, the Sips model was the best to represent the equilibrium experimental data (R²>0.99 and ARE<5.0% and the maximum biosorption capacities were 363.2 and 468.7 mg g-1 for tartrazine and allura red, respectively, obtained at 298 K. The negative values of ΔG and ΔH showed that the biosorption of both dyes was spontaneous, favorable and exothermic. The positive values of ΔS suggested that the system disorder increases during the biosorption process.

  2. Bioadsorption of a reactive dye from aqueous solution by municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abdelkader Berrazoum

    2015-09-01

    Full Text Available The biosorbent was obtained from municipal solid waste (MSW of the Mostaganem city. Before use the MSW was dried in air for three days and washed several times. The sorption of yellow procion reactive dye MX-3R onto biomass from aqueous solution was investigated as function of pH, contact time and temperature. The adsorption capacity of MX-3R was 45.84 mg/g at pH 2–3 and room temperature. MX-3R adsorption decreases with increasing temperature. The Langmuir, Freundlich and Langmuir–Freundlich adsorption models were applied to describe the related isotherms. Langmuir–Freundlich equation has shown the best fitting with the experimental data. The pseudo first-order, pseudo second-order and intra-particle diffusion kinetic models were used to describe the kinetic sorption. The results clearly showed that the adsorption of MX-3R onto biosorbent followed the pseudo second-order model. The enthalpy (ΔH°, entropy (ΔS° and Gibbs free energy (ΔG° changes of adsorption were calculated. The results indicated that the adsorption of MX-3R occurs spontaneously as an exothermic process.

  3. Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe{sub 3}O{sub 4} nanoparticles: Optimization, reusability, kinetic and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Dalvand, Arash; Nabizadeh, Ramin [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Reza Ganjali, Mohammad [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khoobi, Mehdi [Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176 (Iran, Islamic Republic of); Nazmara, Shahrokh [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hossein Mahvi, Amir, E-mail: ahmahvi@yahoo.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); National Institute of Health Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-04-15

    This study aimed to investigate the removal of Reactive Blue 19 from colored wastewater using Fe{sub 3}O{sub 4} magnetic nanoparticles modified with L-arginine (Fe{sub 3}O{sub 4}@L-arginine). In order to investigate the effect of independent variables on dye removal and determining the optimum condition, the Box–Behnken Design (BBD) under Response Surface Methodology (RSM) was employed. Fe{sub 3}O{sub 4}@L-arginine nanoparticles were synthesized and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and vibrating sample magnetometer. Applying Fe{sub 3}O{sub 4}@L-arginine nanoparticles for dye removal showed that; by increasing adsorbent dose and decreasing pH, dye concentration, and ionic strength dye removal has been increased. In the optimum condition, Fe{sub 3}O{sub 4}@L-arginine nanoparticles were able to remove dye as high as 96.34% at an initial dye concentration of 50 mg/L, adsorbent dose of 0.74 g/L, and pH 3. The findings indicated that dye removal followed pseudo-second-order kinetic (R{sup 2}=0.999) and Freundlich isotherm (R{sup 2}=0.989). Based on the obtained results, as an efficient and reusable adsorbent, Fe{sub 3}O{sub 4}@L-arginine nanoparticles can be successfully applied for dye removal from colored wastewater. - Highlights: • The Fe{sub 3}O{sub 4}@L-arginine removed RB 19 azo dye from wastewater efficiently. • BBD under RSM was used to analyze and optimize the adsorption process. • pH was the most influential parameter in dye removal.

  4. Color removal from dye-containing wastewater by magnesium chloride.

    Science.gov (United States)

    Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Zhou, Wei-Zhi

    2007-01-01

    Color removal by MgCl(2) when treating synthetic waste containing pure dyes was studied. The color removal efficiency of MgCl(2)/Ca(OH)(2) was compared with that of Al(2)(SO(4))(3), polyaluminum chloride (PAC) and FeSO(4)/Ca(OH)(2). The mechanism of color removal by MgCl(2) was also investigated. The experimental results show that the color removal efficiency of MgCl(2) is related to the type of dye and depends on the pH of the waste and the dosage of the coagulants used. Treatment of waste containing reactive dye or dispersed dye with MgCl(2) yielded an optimum color removal ratio when the pH of the solution was equal to or above 12.0. For both the reactive and dispersed dye waste, MgCl(2)/Ca(OH)(2) was shown to be superior to MgCl(2)/NaOH, Al(2)(SO(4))(3), PAC and FeSO(4)/Ca(OH)(2) for color removal. A magnesium hydroxide precipitate formed at pH values greater than 12.0, which provided a large adsorptive surface area and a positive electrostatic surface charge, enabling it to remove the dyes through charge neutralization and an adsorptive coagulating mechanism. So, the MgCl(2)/Ca(OH)(2) system is a viable alternative to some of the more conventional forms of chemical treatment, especially for treating actual textile waste with high natural pH.

  5. Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads.

    Science.gov (United States)

    Iglesias, O; Fernández de Dios, M A; Rosales, E; Pazos, M; Sanromán, M A

    2013-04-01

    The aim of this work was to improve the ability of the electro-Fenton process using Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes and using a model diazo dye such as Reactive Black 5 (RB5). Batch experiments were conducted to study the effects of main parameters, such as voltage, pH and iron concentration. Dye decolourisation, reduction of chemical oxygen demand (COD) and energy consumption were studied. Central composite face-centred experimental design matrix and response surface methodology were applied to design the experiments and to evaluate the interactive effects of the three studied parameters. A total of 20 experimental runs were set, and the kinetic data were analysed using first-order and second-order models. In all cases, the experimental data were fitted to the empirical second-order model with a suitable degree for the maximum decolourisation of RB5, COD reduction and energy consumption by electro-Fenton-Fe alginate gel beads treatment. Working with the obtained empirical model, the optimisation of the process was carried out. The second-order polynomial regression model suggests that the optimum conditions for attaining maximum decolourisation, COD reduction and energy consumption are voltage, 5.69 V; pH 2.24 and iron concentration, 2.68 mM. Moreover, the fixation of iron on alginate beads suggests that the degradation process can be developed under this electro-Fenton process in repeated batches and in a continuous mode.

  6. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    International Nuclear Information System (INIS)

    Mizutani, T.

    2010-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the non inhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of O 12 originating on xanthene dyes by light irradiation, because inhibition was prevented by O 12 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  7. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    Science.gov (United States)

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  8. Prevenient dye-degradation mechanisms using UV/TiO{sub 2}/carbon nanotubes process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-Y. [Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, 123, Section 3, University Road, Douliu, Yunlin, Taiwan (China)], E-mail: kuocyr@ms35.hinet.net

    2009-04-15

    Photocatalysis research heavily emphasizes increasing photo-efficiency. This study presents the application of carbon nanotubes (CNTs) to increase the photocatalytic activity of TiO{sub 2}. It elucidates the effect of CNTs dose on the decolorization efficiency of aqueous azo dye, C.I. Reactive Red 2 (RR2), determines the effects of SO{sub 4}{sup 2-} formation and removal of total organic carbon (TOC), and measures the effects of various ultraviolet wavelengths. Scanning electron microscopy was used to elucidate the mixing phenomenon and the size of TiO{sub 2} and CNTs; X-ray diffraction was used to determine crystallinity; a BET meter was used to measure surface area and a spectrophotometry was used to determine the decolorization of RR2. Experimental results indicated significant effects of photodegradation on the combination of TiO{sub 2} with CNTs and electron transfer is higher for 410 nm irradiation than for 365 nm, revealing that solar light can be used. The electron transfer in the TiO{sub 2}/CNTs composites reduced the electron/hole recombination and increased the photon efficiency and the prevenient dye-degradation mechanisms using UV/TiO{sub 2}/CNTs were established.

  9. Characterization of pore-expanded amino-functionalized mesoporous silicas directly synthesized with dimethyldecylamine and its application for decolorization of sulphonated azo dyes

    International Nuclear Information System (INIS)

    Yang Hong; Feng Qiyan

    2010-01-01

    With dimethyldecylamine (DMDA) as the expander, a new kind of pore-expanded amino-functionalized mesoporous silicas (PEAFMS) was directly synthesized under mild alkali condition. The characteristics of PEAFMS sample demonstrated that the presence of DMDA markedly augmented the average pore diameter (19.04 nm) and strongly enhanced its decolorization ability. Subsequently, acid mordant dark yellow GG (YGG) and reactive red violet X-2R (RVX) were chosen to assess its adsorption capacity for sulphonated azo dyes. The effect of initial pH was investigated and the decolorization mechanism was illuminated. Three isotherms were conducted and the goodness of fit increased as the following order: Freundlich < Langmuir < Redlich-Peterson. The maximum adsorption capacities of YGG and RVX onto PEAFMS were 1.967 and 0.957 mmol/g, respectively. Adsorption kinetic processes were better predicted by the pseudo-second-order rate equation than the pseudo-first-order one. Adsorption thermodynamic results suggested that the adsorption behavior of both dyes onto PEAFMS was spontaneous with the chemical nature. In addition, the regeneration of PEAFMS was proved to be feasible using NaOH as the strippant. After five cycles, PEAFMS still possessed a favorable adsorption capacity for dyes. It is safely concluded that PEAFMS could be a potential adsorbent for the dye removal from wastewater.

  10. Hydrogen recovery from the electrocoagulation treatment of dye-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Phalakornkule, Chantaraporn [The Research and Technology Center for Renewable Products and Energy, King Mongkut' s University of Technology North Bangkok, Bangkok 10800 (Thailand); Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology North Bangkok, Bangkok 10800 (Thailand); Sukkasem, Pisut; Mutchimsattha, Chinnarat [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2010-10-15

    In this paper, a technique of hydrogen recovery from an electrocoagulation process treating dye-containing wastewater is presented. The electrocoagulation system used consists of a continuous-mode electrocoagulator connected with a gas separation tank and two sedimenters. It is shown that a significant amount of hydrogen can be harvested using the gas separation tank whose configuration follows that of a conventional upflow anaerobic sludge bed. The experimental hydrogen yields obtained were comparable with those calculated from theory. The electrical energy demand of the electrocoagulation process for treating Reactive Blue 140 and Direct Red 23 was 1.42 and 0.69 kWh{sub e} m{sup -3}, respectively, while the energy yield of harvested hydrogen was 0.2 kWh m{sup -3}. The quality of water treated by the electrocoagulation system was satisfactory, i.e., the color, COD and TS removal were 99%, 93% and 89%, respectively. (author)

  11. Visible-Light-Driven, Dye-Sensitized TiO2 Photo-Catalyst for Self-Cleaning Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ishaq Ahmad

    2017-11-01

    Full Text Available We report here the photo-catalytic properties of dye-sensitized TiO2-coated cotton fabrics. In this study, visible-light-driven, self-cleaning cotton fabrics were developed by coating the cotton fabrics with dye-sensitized TiO2. TiO2 nano-sol was prepared via the sol-gel method and the cotton fabric was coated with this nano-sol by the dip-pad–dry-cure method. In order to enhance the photo-catalytic properties of this TiO2-coated cotton fabric under visible light irradiation, the TiO2-coated cotton fabric was dyed with a phthalocyanine-based reactive dye, C.I. Reactive Blue 25 (RB-25, as a dye sensitizer for TiO2. The photo-catalytic self-cleaning efficiency of the resulting dye/TiO2-coated cotton fabrics was evaluated by degradation of Rhodamine B (RhB and color co-ordinate measurements. Dye/TiO2-coated cotton fabrics show very good photo-catalytic properties under visible light.

  12. Functionalization of Microcrystalline Cellulose with N,N-dimethyldodecylamine for the Removal of Congo Red Dye from an Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dongying Hu

    2014-08-01

    Full Text Available Microcrystalline cellulose (MCC was functionalized with quaternary amine groups for use as an adsorbent to remove Congo Red dye (CR from aqueous solution. The ultrasonic pretreatment of MCC was investigated during its functionalization. Characterization was conducted using infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The batch adsorption of the functionalized MCC was studied to evaluate the effects of dye concentration, pH of solution, temperature, and NaCl concentration on the adsorption CR. The adsorbent (FM-1 obtained using ultrasonic pretreatment of MCC under 10.8 kJ•g–1 exhibited an adsorption capacity of 304 mg•g–1 at initial pH under a dose of 0.1 g•L–1 and initial concentration of 80 mg•L–1. After functionalization, the FT-IR and XPS results indicated that the quaternary amine group was successfully grafted onto the cellulose, the surface was transformed to be coarse and porous, and the crystalline structure of the original cellulose was disrupted. FM-1 has been shown to be a promising and efficient adsorbent for the removal of CR from an aqueous solution.

  13. THE DYEING PROCESS OF KNITTED FABRICS AT DIFFERENT TEMPERATURES USING ULTRASOUND

    Directory of Open Access Journals (Sweden)

    MITIC Jelena

    2014-05-01

    Full Text Available The dyeing of knitted fabrics made from 100 % cellulose using on-line procedure vinyl sulfonic reactive dye, with or without ultrasound energy, is carried out in this paper. The impact of temperature has been observed. The dye exhaustion is monitored using the method of absorption spectrophotometry, and the quality control of the coloration is monitored using color measurements. The acting of ultrasound on coloration consistency, as well as on some mechanical characteristics has also been examined. All examples of the ultrasound dyeing process show greater dye exhaustion in comparison to the conventional procedure. In addition, all the samples, which have been dyed with the ultrasound energy at 40°C, are significantly darker and have deeper color in comparison with the referent sample. The temperature has a great influence on kinetic energy of the dye molecules, and therefore on the diffusion processes in the dyeing system. The exhaustion chart indicates that when the temperature is lower the exhaustion degree drops. However, all the samples dyed with the ultrasound energy have bigger exhaustion. Besides that, ultrasound energy contributes to warming up the processing environment, so the additional warm up with the electricity is unnecessary, unlike the conventional way of dyeing. Since the reactive dyes chemically connect themselves with the cellulose substrate and in that way form covalent connection, the dyed fabrics have good washing consistency. Analysis results indicate that the consistencies are identical regardless the applied dyeing procedure. In other words, the dyeing method using the ultrasound energy produces the dyed fabric of the same quality. After analyzing the results of breaking force and elongation at break of knitted fabrics, it is noticeable that there is no degradation of previously mentioned knitted fabrics features (horizontally and vertically during the ultrasound wave’s activity.

  14. Brazilwood, sappanwood, brazilin and the red dye brazilein: from textile dyeing and folk medicine to biological staining and musical instruments.

    Science.gov (United States)

    Dapson, R W; Bain, C L

    2015-01-01

    Brazilin is a nearly colorless dye precursor obtained from the heartwood of several species of trees including brazilwood from Brazil, sappanwood from Asia and the Pacific islands, and to a minor extent from two other species in Central America, northern South America and the Caribbean islands. Its use as a dyeing agent and medicinal in Asia was recorded in the 2(nd) century BC, but was little known in Europe until the 12(th) century AD. Asian supplies were replaced in the 16(th) century AD after the Portuguese discovered vast quantities of trees in what is now Brazil. Overexploitation decimated the brazilwood population to the extent that it never fully recovered. Extensive environmental efforts currently are underway to re-create a viable, sustainable population. Brazilin is structurally similar to the better known hematoxylin, thus is readily oxidized to a colored dye, brazilein, which behaves like hematein. Attachment of the dye to fabric is by hydrogen bonding or in conjunction with certain metallic mordants by coordinative bonding. For histology, most staining procedures involve aluminum (brazalum) for staining nuclei. In addition to textile dyeing and histological staining, brazilin and brazilein have been and still are used extensively in Asian folk medicine to treat a wide variety of disorders. Recent pharmacological studies for the most part have established a scientific basis for these uses and in many cases have elucidated the biochemical pathways involved. The principal use of brazilwood today is for the manufacture of bows for violins and other stringed musical instruments. The dye and other physical properties of the wood combine to produce bows of unsurpassed tonal quality.

  15. Kinetic and Thermodynamic Studies on Biosorption of Direct Red 81 from Aqueous Solutions by Chamomilla Plant

    Directory of Open Access Journals (Sweden)

    M. Momen Heravi

    2013-01-01

    Full Text Available In this study, Chamomilla plant biomass used as a sorbent for biosorption of a textile dye, direct red 81, from an aqueous solution. The batch sorption was studied with respect to dye concentration, adsorbent dose and temperature. Also, kinetic and isotherm parameters were determined for biosorption of Direct red 81 by Chamomilla plant. The maximum biosorption capacity (qm of Direct red 81 10 mg g-1 was obtained at 25oC. The kinetic and isotherm studies indicated that the biosorption process obeys a pseudo-second order and Langmuir isotherm models. In addition, various thermodynamic parameters, such as changes in Gibbs free energy (ΔG, enthalpy (ΔH and entropy (ΔS have been calculated. The biosorption process of Direct Red 81 dye onto activated carbon prepared from Chamomilla plant was found to be spontaneous and exothermic. The findings of this investigation suggest that this procces is a physical biosorption. The experimental studies indicated that Chamomilla plant had the potential to act as an alternative biosorbent to remove the Direct Red 81 dye from an aqueous solution.

  16. A bootstrapped neural network model applied to prediction of the biodegradation rate of reactive Black 5 dye - doi: 10.4025/actascitechnol.v35i3.16210

    Directory of Open Access Journals (Sweden)

    Kleber Rogério Moreira Prado

    2013-06-01

    Full Text Available Current essay forwards a biodegradation model of a dye, used in the textile industry, based on a neural network propped by bootstrap remodeling. Bootstrapped neural network is set to generate estimates that are close to results obtained in an intrinsic experience in which a chemical process is applied. Pseudomonas oleovorans was used in the biodegradation of reactive Black 5. Results show a brief comparison between the information estimated by the proposed approach and the experimental data, with a coefficient of correlation between real and predicted values for a more than 0.99 biodegradation rate. Dye concentration and the solution’s pH failed to interfere in biodegradation index rates. A value above 90% of dye biodegradation was achieved between 1.000 and 1.841 mL 10 mL-1 of microorganism concentration and between 1.000 and 2.000 g 100 mL-1 of glucose concentration within the experimental conditions under analysis.   

  17. Characteristics, kinetics and thermodynamics of Congo Red bio sorption by activated sulfidogenic sludge from an aqueous solution

    International Nuclear Information System (INIS)

    Rasool, K.; Lee, D. S.

    2015-01-01

    The kinetics and thermodynamics of the bio sorption of textile dye Congo Red on anaerobic activated sulfidogenic sludge were examined. The influence of different adsorption parameters such as p H, temperature, contact time and initial dye concentrations on the bio sorption capacity was also investigated. The sulfidogenic sludge showed a maximum bio sorption density of 238.90 mg dye/g cell for Congo Red at an initial dye concentration of 1,000 mg/L, p H 3.5 and 22 C, which is higher than that of many other adsorbents reported in the literature. The bio sorption processes obeyed the Langmuir isotherm and exhibited pseudo-second-order rate kinetics. The thermodynamic parameters indicated the spontaneous and exothermic nature of Congo Red bio sorption. The Fourier transform infrared spectra revealed the dye interaction with the biomass. Scanning electron microscopy showed significant changes in the surface morphology of the sludge after dye bio sorption. These results showed that sulfidogenic sludge biomass is an attractive alternative low-cost bio sorbent for the removal of the dye from aqueous media.

  18. Alizarin red S dye removal from contaminated water on calcined [Mg/Al, Zn/Al and MgZn/Al]-LDH

    Science.gov (United States)

    Aissat, Miloud; Hamouda, Sara; Benhadria, Naceur; Chellali, Rachid; Bettahar, Noureddine

    2018-05-01

    The waste water rejected by the textile industries is loaded with organic dyes, responsible for the high color present in the effluents. Some dyes and / or their degradation products could be carcinogenic and may have mutagenic properties. The rapid growth of the global economy has caused many environmental problems with a huge pollution problem. The abuse use of chemicals product is an environmental toxicological problem. The consequences can be serious for water resources. In this perspective, our study comes to participate with new means of depollution using new materials with interesting properties in the treatment of pollution. Among these materials, LDHs whose synthesis is easy and inexpensive can be a tool in the treatment of water Polluted [1]. Our contribution consists in using HDL as a means of sorption of dyes which are considered as polluting agents of waters especially for the industry textile. This study considers the removal of the Alizarine Red S (AR) from water on calcined MgAl,ZnAL and MgZnAL-layered double hydroxides. The different LDH was prepared by copreprecipation method. The materials was obtained for molar ratios R =2 for the different LDH. The carbonated layered Calcination of these solids leads to the formation of mixed oxides which have the property of being able to be regenerated by adsorbing new anionic entities. Adsorbents and adsorption products were characterized by physicochemical techniques. The structural characterization of the material was carried out by X-ray diffraction, infrared spectroscopy (FTIR). Dosages of the polluted solutions were monitored by UV-Visible spectrometry.

  19. Electroluminescence properties of organic light-emitting diodes with a red dye doped into Alq{sub 3} : rubrene mixed host

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H. Y. [Inha University, Incheon (Korea, Republic of); Lee, C. H. [Seoul National University, Seoul (Korea, Republic of)

    2004-09-15

    We have studied the electroluminescence (EL) properties of devices with a red fluorescent dye, 4-(dicyanomethylene)-2-t-butyl-6- (1,1,7,7-tetramethyl-julolidyl-9-enyl)--4H-py ran (DCJTB), doped into a mixed matrix of tris-(8-hydroxyquinoline)aluminum (Alq{sub 3}) and rubrene. The devices doped with DCJTB in the Alq{sub 3}:rubrene mixed host show an efficient red emission from DCJTB with negligible EL emission from both Alq{sub 3} and rubrene. The QE increases with increasing rubrene concentration and reaches a maximum of about 3.6 % for a DCJTB doping concentration of about 5 % in the Alq3:rubrene mixed (50:50 % ratio by weight) host, and then decreases at higher rubrene concentration, due to the concentration quenching effect. At a given bias voltage, the current density increases with increasing rubrene doping concentration, but it decreases with increasing DCJTB doping concentration. The results imply that the injected electrons and holes can transport via hopping through the energy levels of rubrene molecules while DCJTB acts as traps.

  20. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  1. A Novel Preparation Method of Two Polymer Dyes with Low Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dongjun Lv

    2017-02-01

    Full Text Available A new preparation method of polymer dyes was developed to improve both the grafting degree of the azo dyes onto O-carboxymethyl chitosan (OMCS and the water solubility of prepared polymer dyes. Firstly, the coupling compound of two azo edible colorants, sunset yellow (SY and allura red (AR, was grafted onto OMCS, and then coupled with their diazonium salt. The chemical structure of prepared polymer dyes was determined by Fourier transform-infrared spectroscopy and 1H-NMR, and the results showed that the two azo dyes were successfully grafted onto OMCS. The grafting degree onto OMCS and the water solubility of polymer dyes were tested, and the results showed that they were both improved as expected. The UV-vis spectra analysis results showed that the prepared polymer dyes showed similar color performance with the original azo dyes. Eventually, the cytotoxicity of prepared polymer dyes was tested and compared with the original azo dyes by a cytotoxicity test on human liver cell lines LO2, and the results showed that their grafting onto OMCS significantly reduced the cytotoxicity.

  2. Organic Dye Effects on DNAPL Entry Pressure in Water Saturated Porous Media

    International Nuclear Information System (INIS)

    Iversen, G.M.

    2001-01-01

    One of three diazo dyes with the same fundamental structure have been used in most studies of DNAPL behavior in porous media to stain the NAPL: Sudan III, Sudan IV, or Oil-Red-O. The dyes are generally implicitly assumed to not influence DNAPL behavior. That assumption was tested using simple entry pressure experiments

  3. Resonance Raman and UV-visible spectroscopy of black dyes on textiles.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Smith, John R Lindsay; Moore, John N

    2010-10-10

    Resonance Raman and UV-visible diffuse reflectance spectra were recorded from samples of cotton, viscose, polyester, nylon, and acrylic textile swatches dyed black with one of seven single dyes, a mixture of two dyes, or one of seven mixtures of three dyes. The samples generally gave characteristic Raman spectra of the dyes, demonstrating that the technique is applicable for the forensic analysis of dyed black textiles. Survey studies of the widely used dye Reactive Black 5 show that essentially the same Raman spectrum is obtained on bulk sampling from the dye in solution, on viscose, on cotton at different uptakes, and on microscope sampling from the dye in cotton threads and single fibres. The effects of laser irradiation on the Raman bands and emission backgrounds from textile samples with and without dye are also reported. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.

    Science.gov (United States)

    Sun, Baoshan; de Sá, Marta; Leandro, Conceição; Caldeira, Ilda; Duarte, Filomena L; Spranger, Isabel

    2013-01-30

    Recent studies have indicated the presence of significant amount of highly polymerized and soluble proanthocyanidins in red wine and such compounds interacted readily with proteins, suggesting that they might be particularly astringent. Thus, the objective of this work was to verify the astringency of polymeric proanthocyanidins and their contribution to red wine astringency. The precipitation reactions of the purified oligomeric procyanidins (degree of polymerization ranging from 2 to 12-15) and polymeric procyanidins (degree of polymerization ranging from 12-15 to 32-34) with human salivary proteins were studied; salivary proteins composition changes before and after the reaction was verified by SDS-PAGE and procyanidins composition changes by spectrometric, direct HPLC and thiolysis-HPLC methods. The astringency intensity of these two procyanidin fractions was evaluated by a sensory analysis panel. For verifying the correlation between polymeric proanthocyanidins and young red wine astringency, the levels of total oligomeric and total polymeric proanthocyanidins and other phenolic composition in various young red wines were quantified and the astringency intensities of these wines were evaluated by a sensory panel. The results showed that polymeric proanthocyanidins had much higher reactivity toward human salivary proteins and higher astringency intensity than the oligomeric ones. Furthermore, young red wine astringency intensities were highly correlated to levels of polymeric proanthocyanidins, particularly at low concentration range (correlation coefficient r = 0.9840) but not significant correlated to total polyphenols (r = 0.2343) or other individual phenolic compounds (generally r wine astringency and the levels of polymeric polyphenols in red wines may be used as an indicator for its astringency.

  5. Induction of a M/sub r/ 21,000 polypeptide in an Arthrobacter Sp. by dye-sensitized photooxidation

    International Nuclear Information System (INIS)

    Franzi, J.J.

    1985-01-01

    Irradiation of aerobic cultures of an Arthrobacter species with near-UV light and oxygen induced synthesis of a cell surface protein, M/sub r/ 21,000 polypeptide. Visible light, oxygen and a sensitizing dye were also effective in induction. Far-UV light, bleomycin and nalidixic acid, all inducers of the recA protein in Escherichia coli, were ineffective inducers of this protein. Furthermore, X-irradiation and radical-generating oxidants failed to induce synthesis of the M/sub r/ 21,000 polypeptide. DNA binding dyes proved to be capable of inducing synthesis of this protein or inhibiting dye-mediated stimulation of synthesis of this protein. For example, dGdC-specific dyes (e.g. methylene blue, neutral red, acridine orange or ethidium bromide) were efficient inducers of the M/sub r/ 21,000 polypeptide. Also methylene blue and neutral red were more efficient inducers than were acridine orange or ethidium bromide, which could be explained by the greater dGdC specificity and, possibly by the greater photoreactivity of methylene blue and neutral red. dAdT-specific dyes such as methyl green or daunomycin effectively inhibited dye-mediated induction. Rose bengal is an anionic dye which does not bind to DNA but does mediate the photooxidation of deoxyguanosine residues in DNA. It is an efficient inducer of the M/sub r/ 21,000 polypeptide. Induction with this dye is nearly eliminated when novobiocin, an inhibitor of DNA gyrase (topoisomerase II) which mediates relaxation, is added in conjunction with rose bengal

  6. Induction of a M/sub r/ 21,000 polypeptide in an Arthrobacter Sp. by dye-sensitized photooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Franzi, J.J.

    1985-01-01

    Irradiation of aerobic cultures of an Arthrobacter species with near-UV light and oxygen induced synthesis of a cell surface protein, M/sub r/ 21,000 polypeptide. Visible light, oxygen and a sensitizing dye were also effective in induction. Far-UV light, bleomycin and nalidixic acid, all inducers of the recA protein in Escherichia coli, were ineffective inducers of this protein. Furthermore, X-irradiation and radical-generating oxidants failed to induce synthesis of the M/sub r/ 21,000 polypeptide. DNA binding dyes proved to be capable of inducing synthesis of this protein or inhibiting dye-mediated stimulation of synthesis of this protein. For example, dGdC-specific dyes (e.g. methylene blue, neutral red, acridine orange or ethidium bromide) were efficient inducers of the M/sub r/ 21,000 polypeptide. Also methylene blue and neutral red were more efficient inducers than were acridine orange or ethidium bromide, which could be explained by the greater dGdC specificity and, possibly by the greater photoreactivity of methylene blue and neutral red. dAdT-specific dyes such as methyl green or daunomycin effectively inhibited dye-mediated induction. Rose bengal is an anionic dye which does not bind to DNA but does mediate the photooxidation of deoxyguanosine residues in DNA. It is an efficient inducer of the M/sub r/ 21,000 polypeptide. Induction with this dye is nearly eliminated when novobiocin, an inhibitor of DNA gyrase (topoisomerase II) which mediates relaxation, is added in conjunction with rose bengal.

  7. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Decolorisation of Congo Red by Aeromonas hydrophila Under Microaerophilic Conditions

    International Nuclear Information System (INIS)

    El Gizawy, S.; Refae, R.A.; Abd El Kareem, H.; Gomaa, O.M.; Hamed, H.

    2009-01-01

    Among 22 local bacterial isolates, Aeromonas hydrophila isolated from Bolti fish showed a remarkable ability to decolorize congo red under microaerophilic conditions (98.8% in 48 hrs) without prior adaptation. The bacterium had the ability to grow and decolorized high concentrations of congo red which varied from 50 to 1000 mg/l , the decolorisation was irrelevant to bacterial growth. The strain was capable of decolorizing congo red under a wide range of temperatures (20-40 degree C), ph (3-8), NaCl (0-200 mg/l) and also had the ability to decolorized mono, di and poly azo dyes. This bacterium is notable in its ability to decolorized the diazo congo red under extreme conditions of temperature, ph, salinity and high dye concentrations which makes it suitable for decolorisation under extreme industrial conditions

  9. Fabrication of Electrospun Polyamide-6/Chitosan Nanofibrous Membrane toward Anionic Dyes Removal

    Directory of Open Access Journals (Sweden)

    Mozhdeh Ghani

    2014-01-01

    Full Text Available Nanofibrous filter media of polyamide-6/chitosan were fabricated by electrospinning onto a satin fabric substrate and characterized by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and water contact angle (WCA. Anionic dye removal capability of the filter was investigated for Solophenyl Red 3BL and Polar Yellow GN, respectively, as acidic and direct dyes were investigated with respect to solution parameters (pH and initial dye concentration and membrane parameters (electrospinning time and chitosan ratio through filtration system. Experiments were designed using response surface methodology (RSM based on five-level central composite design (CCD with four parameters to maximize removal efficiency of the filter media. Moreover, the effect of parameters and their likely interactions on dye removal were investigated by mathematically developed models. The optimum values for solution pH, initial dye concentration, electrospinning time, and chitosan ratio were predicted to be 5, 50 mg/L, 4 hr, 30% and 5, 100 mg/L, 4 hr, 10%, respectively, for achieving 96% and 95% removal of Solophenyl Red 3BL and Polar Yellow GN. Evaluation of the estimation capability of applied models revealed that the models have a good agreement with experimental values. This study demonstrated that polyamide-6/chitosan nanofibrous membrane has an enormous applicable potential in dye removal from aqueous solutions.

  10. Ethnobotany of dye plants in Dong communities of China.

    Science.gov (United States)

    Liu, Yujing; Ahmed, Selena; Liu, Bo; Guo, Zhiyong; Huang, Weijuan; Wu, Xianjin; Li, Shenghua; Zhou, Jiangju; Lei, Qiyi; Long, Chunlin

    2014-02-19

    Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011-2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye plants, their efficacy in enhancing food

  11. Application of thin film cellulose composite membrane for dye wastewater reuse

    KAUST Repository

    Puspasari, Tiara

    2016-09-22

    The use of low cost membranes with high salt/dye selectivity and high flux is ideal for an economic and eco-friendly treatment of dye wastewater. Here, regenerated cellulose membranes prepared from trimethylsilyl cellulose are studied for treating artificial dye effluents. In the experiments using a feed containing Congo Red and high NaCl concentration, the membrane featured impressive dye removal with zero salt rejection combined with high flux. More interestingly, the membrane reached as much as 600 LMH flux at 80 °C and 4 bar while maintaining high dye rejection close to 98%. In prolonged experiments up to 75 h the membrane exhibited good antifouling behavior with nearly 100% flux recovery. This study may provide a promising alternative of dye effluent treatment where high amounts of monovalent salts are present. © 2016

  12. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S. Assiyeh Alizadeh; Leiknes, TorOve

    2016-01-01

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY

  13. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    Science.gov (United States)

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  14. Efficient degradation of Methylene Blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light.

    Science.gov (United States)

    Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi

    2012-09-01

    Visible light induced photocatalysts of Cu doped SrTiO3 (Cu/SrTiO3) nanoparticles with the size -60-75 nm were prepared via facile sol-gel method. The morphological, optical, crystalline properties and compositions of synthesized Cu/SrTiO3 nanoparticles were thoroughly characterized by field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), ultra violet-visible spectroscopy (UV-Vis) and energy dispersive X-ray (EDX). A significant red shift in the UV-diffused reflectance spectrum was observed and the absorption edge shifted to visible region by the Cu doping. Surprisingly, the band gap of SrTiO3 was changed from 3.2 eV drop to 2.96 eV. The photocatalytic activity of the synthesized Cu/SrTiO3 nanoparticles was demonstrated for the degradation of Methylene Blue dye under visible light irradiation. The formation of new acceptor region in Cu/SrTiO3 was responsible for high photocatalytic activity of Cu/SrTiO3 nanoparticles. The results showed that the Methylene Blue dye was degraded by -66% within time span of 2 h over the Cu/SrTiO3 nanoparticles. This dye degradation reaction followed the Langmuir-Hinshelwood kinetics and also exhibited first order reaction rate. The calculated rate constant for the degradation reaction following first order kinetics was k = 0.0016 min(-1).

  15. Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps

    International Nuclear Information System (INIS)

    Zainal, Zulkarnain; Hui, Lee Kong; Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin; Abdullah, Abdul Halim; Ramli, Irmawati

    2005-01-01

    The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent, the photodegradation experiment was carried out in each dye photodegradation reactive pH range at ∼28 deg C. The dyes removal efficiency was studied and compared using UV-vis spectrophotometer analysis. The total removal of each dye was: methylene blue (90.3%), methyl orange (98.5%), indigo carmine (92.4%), chicago sky blue 6B (60.3%), and mixed dyes (70.1%), respectively. The characteristic of the photocatalyst was investigated using X-ray diffractometer (XRD). The amount of each dye intermediate produced in the photodegradation process was also determined with the help of total organic carbon (TOC) analysis

  16. Evidence for significantly enhancing reduction of Azo dyes in Escherichia coli by expressed cytoplasmic Azoreductase (AzoA) of Enterococcus faecalis.

    Science.gov (United States)

    Feng, J; Heinze, T M; Xu, H; Cerniglia, C E; Chen, H

    2010-05-01

    Although cytoplasmic azoreductases have been purified and characterized from various bacteria, little evidence demonstrating that these azoreductases are directly involved in azo dye reduction in vivo is known. In order to evaluate the contribution of the enzyme to azo dye reduction in vivo, experiments were conducted to determine the effect of a recombinant cytoplasmic azoreductase (AzoA) from Enterococcus faecalis expressed in Escherichia coli on the rate of metabolism of Methyl Red, Ponceau BS and Orange II. The intact cells that contained IPTG induced AzoA had a higher rate of dye reduction with increases of 2 (Methyl Red), 4 (Ponceau BS) and 2.6 (Orange II)-fold compared to noninduced cells, respectively. Metabolites of Methyl Red isolated from induced cultures were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid through liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) analyses. In conclusion, our data demonstrate that AzoA from Ent. faecalis is capable of increasing the reduction of azo dyes in intact E. coli cells and that cytoplasmic azoreductase is involved in bacterial dye degradation in vivo.

  17. Determination of 20 synthetic dyes in chili powders and syrup-preserved fruits by liquid chromatography/tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Chia-Fen Tsai

    2015-09-01

    Full Text Available A liquid chromatography/tandem mass spectrometry (LC-MS/MS method is developed to simultaneously determine 20 synthetic dyes (New Coccine, Indigo Carmine, Erythrosine, Tartrazine, Sunset Yellow FCF, Fast Green FCF, Brilliant Blue FCF, Allura Red AC, Amaranth, Dimethyl Yellow, Fast Garnet GBC, Para Red, Sudan I, Sudan II, Sudan III, Sudan IV, Sudan Orange G, Sudan Red 7B, Sudan Red B, and Sudan Red G in food samples. This method offers high sensitivity and selectivity through the selection of two fragment ion transitions under multiple reaction monitoring mode to satisfy the requirements of both quantitation and qualitation. Using LC-MS/MS, the newly developed extraction protocol used in this study is rapid and simple and does not require the use of solid-phase extraction cartridges. The linearities and recoveries of the method are observed at the concentration range of 0.10–200 μg/kg and more than 90% for all dyes, respectively. The method has been successfully applied to screen 18 commercial chili powders and six commercial syrup-preserved fruits purchased from retail establishments in Taipei City. The results show that three legal food dyes, Tartrazine, and/or Sunset Yellow FCF, and/or New Coccine, are present in some syrup-preserved fruits. Amaranth, an illegal food dye in certain countries but declared illegal in Taiwan, is found in an imported syrup-preserved fruit.

  18. Reaction of congo red in water after irradiation by pulsed intense relativistic electron beam

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Nakanishi, Hiromitsu; Imada, Go

    2011-01-01

    The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by a pulsed intense relativistic electron beam (PIREB). An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  19. Modification of azo dyes by lactic acid bacteria.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F

    2009-08-01

    The ability of Lactobacillus casei and Lactobacillus paracasei to modify the azo dye, tartrazine, was recently documented as the result of the investigation on red coloured spoilage in acidified cucumbers. Fourteen other lactic acid bacteria (LAB) were screened for their capability to modify the food colouring tartrazine and other azo dyes of relevance for the textile industry. Most LAB modified tartrazine under anaerobic conditions, but not under aerobic conditions in modified chemically defined media. Microbial growth was not affected by the presence of the azo dyes in the culture medium. The product of the tartrazine modification by LAB was identified as a molecule 111 daltons larger than its precursor by liquid chromatography-mass spectrometry. This product had a purple colour under aerobic conditions and was colourless under anaerobic conditions. It absorbed light at 361 and 553 nm. LAB are capable of anabolizing azo dyes only under anaerobic conditions. IMPACT AND SIGNIFICANCE OF THE STUDY: Although micro-organisms capable of reducing the azo bond on multiple dyes have been known for decades, this is the first report of anabolism of azo dyes by food related micro-organisms, such as LAB.

  20. Decolorization of Ionic Dyes from Synthesized Textile Wastewater by Nanofiltration Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mehrdad Farhadian

    2015-07-01

    Full Text Available Decolorization of aqueous solutions containing ionic dyes (Reactive Blue 19 and Acid Black 172 by a TFC commercial polyamide nanofilter (NF in a spiral wound configuration was studied. The effect of operating parameters including feed concentration (60-180 mg/l, pressure (0.5-1.1 MPa and pH (6-10 on dye removal efficiency was evaluated. The response surface method (RSM was utilized for the experimental design and statistical analysis to identify the impact of each factor. The results showed that an increase in the dye concentration and pH can significantly enhance the removal efficiency from 88% and 87% up to 95% and 93% for Reactive and Acid dye, respectively. The effect of pressure on the removal efficiency showed different behavior such that by the raise of pressure from 0.5 to 0.8 MPa, the removal efficiency increased to its maximum, then reduction in removal efficiency was observed by further increases in pressure above the optimum range. The maximum dye removal efficiencies which were predicted at the optimum conditions by Design Expert software were 97 % and 94 % for Reactive Blue 19 and Acid Black 172, respectively. According to the results of this study, NF processes can be used at a significantly lower pressure and fouling issue for reuse applications as an alternative to the widely used RO process.

  1. Intravenous injection of artificial red cells and subsequent dye laser irradiation causes deep vessel impairment in an animal model of port-wine stain.

    Science.gov (United States)

    Rikihisa, Naoaki; Tominaga, Mai; Watanabe, Shoji; Mitsukawa, Nobuyuki; Saito, Yoshiaki; Sakai, Hiromi

    2018-03-15

    Our previous study proposed using artificial blood cells (hemoglobin vesicles, Hb-Vs) as photosensitizers in dye laser treatment for port-wine stains (PWSs). Dye laser photons are absorbed by red blood cells (RBCs) and hemoglobin (Hb) mixture, which potentially produce more heat and photocoagulation and effectively destroy endothelial cells. Hb-Vs combination therapy will improve clinical outcomes of dye laser treatment for PWSs because very small vessels do not contain sufficient RBCs and they are poor absorbers/heaters of lasers. In the present study, we analyzed the relationship between vessel depth from the skin surface and vessel distraction through dye laser irradiation following intravenous Hb-Vs injection using a chicken wattle model. Hb-Vs were administered and chicken wattles underwent high-energy irradiation at energy higher than in the previous experiments. Hb-Vs location in the vessel lumen was identified to explain its photosensitizer effect using human Hb immunostaining of the irradiated wattles. Laser irradiation with Hb-Vs can effectively destroy deep vessels in animal models. Hb-Vs tend to flow in the marginal zone of both small and large vessels. Increasing laser power combined with Hb-Vs injection contributed for deep vessel impairment because of the synergetic effect of both methods. Newly added Hb tended to flow near the target endothelial cells of the laser treatment. In Hb-Vs and RBC mixture, heat transfer to endothelial cells from absorbers/heater may increase. Hb-Vs function as photosensitizers to destroy deep vessels within a restricted distance that the photon can reach.

  2. Photocatalytic performance of pure anatase nanocrystallite TiO2 synthesized under low temperature hydrothermal conditions

    International Nuclear Information System (INIS)

    Sayilkan, Funda; Erdemoglu, Sema; Asiltuerk, Meltem; Akarsu, Murat; Sener, Sadiye; Sayilkan, Hikmet; Erdemoglu, Murat; Arpac, Ertugrul

    2006-01-01

    Photocatalytic performance of a hydrothermally synthesized pure anatase TiO 2 with 8 nm average crystallite size for decomposition of Reactive Red 141 was examined by investigating the effects of UV-light irradiation time, irradiation power, amount of TiO 2 and initial dye concentration. Change in the UV absorbance of the dye during irradiation was monitored. One wt.% TiO 2 in 30 mg/l Reactive Red 141 aqueous solution was found adequate for complete decolorization in 70 min at 770 W/m 2 irradiation power. It was realized that, compared to Degussa P-25, the synthesized nano-TiO 2 can be repeatedly used as a new catalyst. The results also proved that Reactive Red 141 is decomposed catalytically due to the pseudo first-order reaction kinetics

  3. Impacto dos mediadores redox na remoção de cor de corantes azo e antraquinônico por lodo granular anaeróbio sob condições mesofílicas e termofílicas Impact of redox mediators on colour removal of azo and anthraquinone dyes by anaerobic granular sludge under mesophilic and thermophilic conditions

    Directory of Open Access Journals (Sweden)

    André Bezerra dos Santos

    2007-03-01

    Full Text Available Investigou-se o efeito de diferentes mediadores redox (MR na remoção de cor de corantes azo e antraquinônico pelo uso de lodo granular anaeróbio sob condições mesofílicas (30ºC e termofílicas (55ºC. Comprovou-se em experimento em batelada que a adição de concentrações catalíticas de MR pode ter um efeito marcante nas taxas de descoloração do corante azo Reactive Red 2 (RR2, mas o mesmo comportamento não pode ser obtido com o corante antraquinônico Reactive Blue 5 (RB5. Entretanto, com ambos os corantes, o simples aumento da temperatura de incubação para condições termofílicas fez acelerar consideravelmente os processos de descoloração, comparados com condições mesofílicas. Por exemplo, a constante de primeira ordem "k" da redução dos corantes RR2 e RB5, foi aumentada em 6,2 e 11 vezes, respectivamente, à 55ºC quando comparado com 30ºC. Por fim, comprovou-se em experimentos de fluxo contínuo, a boa performance do tratamento termofílico na descoloração redutiva de corantes azo.The effect of different redox mediators (RM on colour removal of azo and anthraquinone dyes was investigated with anaerobic granular sludge under mesophilic (30ºC and thermophilic (55ºC conditions. Batch experiments revealed that an addition of catalytic concentrations of RM provided a remarkable effect on the decolourisation rates of the azo dye Reactive Red 2 (RR2, but the same effect could not be obtained with the anthraquinone dye Reactive Blue 5 (RB5. Nevertheless, for both dyes, the temperature increase to thermophilic conditions was an effective strategy to considerably accelerate the decolourisation process compared to mesophilic conditions. For instance, the first-order rate constant "k" of RR2 and RB5 reduction, was increased in 6.2 and 11-fold, respectively, at 55ºC in comparison with 30ºC. Such an effect of the temperature on the reductive decolourisation of azo dye was also verified in continuous flow experiments.

  4. Descoloração redutiva de corantes azo e o efeito de mediadores redox na presença do aceptor de elétrons sulfato Reductive decolourisation of azo dyes and the effect of redox mediators in the presence of the electron acceptor sulfate

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2010-01-01

    Full Text Available We investigated the impact of sulphate and the redox mediator Anthraquinone-2,6-disulfonate (AQDS on the decolorization of the azo dyes Congo Red (CR and Reactive Black 5 (RB5. In anaerobic reactors free of extra sulphate dosage, the color removal efficiency decreased drastically when the external electron donor ethanol was removed. In presence of an extra dosage of sulphate, CR decolourisations were 47.8% (free of AQDS and 96.5% (supplemented with AQDS. The decolourisations achieved in both reactors with RB5 were lower than the ones found with CR. Finally, the biogenic sulphide contribution on azo dye reduction was negligiable.

  5. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood; Khorramfar, Shooka; Amini, Farrokhlegha; Arami, Mokhtar

    2011-01-01

    Highlights: ► Polyaminoimide homopolymer (PAIHP) was synthesized and characterized. ► Kinetics data followed pseudo-second order kinetic model. ► Isotherm data followed Langmuir isotherm. ► Q 0 for DR31, DR23, DB22 and AB25 was 6667, 5555, 9090 and 5882 mg/g, respectively. ► PAIHP was regenerated at pH 12. - Abstract: In this paper, polyaminoimide homopolymer (PAIHP) was synthesized and its dye removal ability was investigated. Physical characteristics of PAIHP were studied using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct Red 31 (DR31), Direct Red 23 (DR23), Direct Black 22 (DB22) and Acid Blue 25 (AB25) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, pH and salt on dye removal was evaluated. Adsorption kinetic of dyes followed pseudo-second order kinetics. The maximum dye adsorption capacity (Q 0 ) of PAIHP was 6667 mg/g, 5555 mg/g, 9090 mg/g and 5882 mg/g for DR31, DR23, DB22 and AB25, respectively. It was found that adsorption of DR31, DR23, DB22 and AB25 onto PAIHP followed with Langmuir isotherm. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% for DR31, 86% for DR23, 87% for DB22 and 90% for AB25 were achieved in aqueous solution at pH 12. The results showed that the PAIHP as a polymeric adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored wastewater.

  6. Significance of hair-dye base-induced sensory irritation.

    Science.gov (United States)

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  7. Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment

    International Nuclear Information System (INIS)

    Tantak, Nilesh P.; Chaudhari, Sanjeev

    2006-01-01

    A two stage sequential Fenton's oxidation followed by aerobic biological treatment train was used to achieve decolorization and to enhance mineralization of azo dyes, viz. Reactive Black 5 (RB5), Reactive Blue 13 (RB13), and Acid Orange 7 (AO7). In the first stage, Fenton's oxidation process was used while in the second stage aerobic sequential batch reactors (SBRs) were used as biological process. Study was done to evaluate effect of pH on Fenton's oxidation process. Results reveal that pH 3 was optimum pH for achieving decolorization and dearomatization of dyes by Fenton's process. Degradation of dye was assessed by COD reduction and reduction in aromatic amines (naphthalene chromophores) which was measured by reduction in absorbance at 200 nm. More than 95% of color was removed with Fenton's oxidation process in all dyes. In overall treatment train 81.95, 85.57, and 77.83% of COD reduction was achieved in RB5, RB13, and AO7 dyes, respectively. In the Fenton's oxidation process 56, 24.5, and 80% reduction in naphthalene group was observed in RB5, RB13, and AO7, respectively, which further increased to 81.34, 68.73, and 92% after aerobic treatment. Fenton's oxidation process followed by aerobic SBRs treatment sequence seems to be viable method for achieving significant degradation of azo dye

  8. Radiation-Adsorption Purification of bisolute containing pesticide and dye

    International Nuclear Information System (INIS)

    Abd El-Aal, S.E.; Sokker, H.H.; Dessouki, A.M.

    2005-01-01

    Radiation induced decomposition of various organic hydrocarbons such as pesticide (Atrazine) and dye (Cresol Red) in water represents a new and very efficient possibility for elimination of the steadily increasing pollution. Experimental results considering the removal of pesticides and dyes alone and in their mixtures were studied. Adsorption of the remaining part of the under graded pollutants will be carried out using granular activated carbon (GAC) and acrylamide (AAm) graft copolymer onto poly vinylalcohol (PVA).Freundlich model will be used to predict the equilibrium uptake of pesticide and dye in binary and single solutions.the preliminary results show that the method of radiation combined with adsorption using GAC was effective than that of a graft copolymer

  9. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium

    Science.gov (United States)

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-01

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs = 34.10 μM, T = 50 °C, pH = 3.5, and CCR = 160 mg/L for the congo red system, and Cs = 34.10 μM, T = 50 °C, pH = 6.1, and CDR80 = 110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  10. Reactive ground-state pathways are not ubiquitous in red/green cyanobacteriochromes.

    Science.gov (United States)

    Chang, Che-Wei; Gottlieb, Sean M; Kim, Peter W; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S

    2013-09-26

    Recent characterization of the red/green cyanobacteriochrome (CBCR) NpR6012g4 revealed a high quantum yield for its forward photoreaction [J. Am. Chem. Soc. 2012, 134, 130-133] that was ascribed to the activity of hidden, productive ground-state intermediates. The dynamics of the pathways involving these ground-state intermediates was resolved with femtosecond dispersed pump-dump-probe spectroscopy, the first such study reported for any CBCR. To address the ubiquity of such second-chance initiation dynamics (SCID) in CBCRs, we examined the closely related red/green CBCR NpF2164g6 from Nostoc punctiforme. Both NpF2164g6 and NpR6012g4 use phycocyanobilin as the chromophore precursor and exhibit similar excited-state dynamics. However, NpF2164g6 exhibits a lower quantum yield of 32% for the generation of the isomerized Lumi-R primary photoproduct, compared to 40% for NpR6012g4. This difference arises from significantly different ground-state dynamics between the two proteins, with the SCID mechanism deactivated in NpF2164g6. We present an integrated inhomogeneous target model that self-consistently fits the pump-probe and pump-dump-probe signals for both forward and reverse photoreactions in both proteins. This work demonstrates that reactive ground-state intermediates are not ubiquitous phenomena in CBCRs.

  11. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase.

    Science.gov (United States)

    Bilal, Muhammad; Asgher, Muhammad

    2015-12-10

    In view of compliance with increasingly stringent environmental legislation, an eco-friendly treatment technology of industrial dyes and effluents is a major environmental challenge in the color industry. In present study, a promising and eco-friendly entrapment approach was adopted to immobilize purified manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum IBL-05 on Ca-alginate beads. The immobilized MnP was subsequently used for enhanced decolorization and detoxification of textile reactive dyes). MnP isolated from solid-state culture of G. lucidum IBL-05, presented highest immobilization yield (83.9 %) using alginate beads prepared at optimized conditions of 4 % (w/v) sodium alginate, 2 % (w/v) Calcium chloride (CaCl2) and 0.5 mg/ml enzyme concentration. Immobilization of MnP enhanced optimum temperature but caused acidic shift in optimum pH of the enzyme. The immobilized MnP showed optimum activity at pH 4.0 and 60 °C as compared to pH 5.0 and 35 °C for free enzyme. The kinetic parameters K(m) and V(max) of MnP were significantly improved by immobilization. The enhanced catalytic potential of immobilized MnP led to 87.5 %, 82.1 %, 89.4 %, 95.7 % and 83 % decolorization of Sandal-fix Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix Foron Blue E2BLN, Sandal-fix Black CKF and Sandal-fix Golden Yellow CRL dyes, respectively. The insolubilized MnP was reusable for 7 repeated cycles in dye color removal. Furthermore, immobilized MnP also caused a significant reduction in biochemical oxygen demand (BOD) (94.61-95.47 %), chemical oxygen demand (COD) (91.18-94.85 %), and total organic carbon (TOC) (89.58-95 %) of aqueous dye solutions. G. lucidum MnP was immobilized in Ca-alginate beads by entrapment method to improve its practical effectiveness. Ca-alginate bound MnP was catalytically more vigorous, thermo-stable, reusable and worked over wider ranges of pH and temperature as compared to its free counterpart. Results of cytotoxicity like

  12. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    Science.gov (United States)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  13. Evaluation of Fenton Process in Removal of Direct Red 81

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2016-01-01

    Full Text Available Background: Dyes are visible materials and are considered as one of the hazardous components that make up the industrial waste. Dye compounds in natural water, even in very low concentrations, will lead to environmental problems. Azo dyes are compounds with one or more –N=N– groups and are used in textile industry. Because of its low price, solubility, and stability, azo dyes are widely used in the textile industry. Direct Red 81 (DR81 is one of the azo dyes, which is removed from bodies of water, using various methods. This study aimed to assess DR81 dye removal by Fenton oxidation and the effects of various parameters on this process. Methods: Decolorization tests by Fenton oxidation were performed at dye concentrations of 50, 500, 100 and 1000 mg/L; hydrogen peroxide concentrations of 0, 10, 30, 60 and 120 mg/L; iron (II sulfate heptahydrate concentrations of 0, 3, 5, 20 and 50 mg/L; and pH levels of 3, 5, 7 and 10 for durations of 5, 10, 20, 30, 60 and 180 minutes. Results: The optimal condition occurred at a dye concentration of 20 mg/L, hydrogen peroxide concentration of 120 mg/L, bivalent iron concentration of 100 mg/L, pH of 3, and duration of 30 minutes. Under such conditions, the maximum dye removal rate was 88.98%. Conclusion: The results showed that DR81 could be decomposed and removed by Fenton oxidation. In addition, the removal of Direct Red 81 (DR81 depends on several factors such as dye concentration, reaction time, concentrations of hydrogen peroxide and iron, and pH

  14. Survey of Basic Red 18 Dye Removal Using Biofilm Formed on Granular Bagass in Continuous Aerobic Reactor

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2015-12-01

    Full Text Available Dyes comprising a major pollutant in the effluent from textile plants are mostly toxic, carcinogenic, mutagenic, and non-biodegradable. This experimental-laboratory study was carried out using a biofilm formed on a granular bagass bed in a continuous aerobic reactor to investigate the kinetic coefficients of the aerobic reactor as well as the effects of color concentration (30-200 mg/l, hydraulic retention time (2-8 h, and BOD concentration (200-100 mg /l on the removal of Basic Red (18 from textile effluents. The results revealed a maximum removal efficiency of 90% for an initial color concentration of 30 mg/l and a hydraulic retention time of 8 hours. A color removal efficiency of 86% was recorded for an influent BOD concentration of 200 mg/l. Also, maximum substrate utilization rate (K for organic loadings of 100 and 200 mg/L were 0.23 and 1.41 while the half velocity constant values were 44.85 and 19.39, respectively. Moreover, for the same organic loadings, the values of 0.35 and 0.5 were recorded for decay coefficient (Kd and 37.36, 4.83 for maximum specific growth rate coefficient (μm, respectively. Based on the findings of this study, it may be claimed that the biofilm formed on a granular bagass bed in a continuous aerobic reactor has a good Basic Red (18 removal efficiency.

  15. Staining of Platyhelminthes by herbal dyes: An eco-friendly technique for the taxonomist

    Directory of Open Access Journals (Sweden)

    Niranjan Kumar

    2015-11-01

    Full Text Available Aim: An environment compatible technique to stain Platyhelminthes, Fasciola gigantica, Gastrothylax crumenifer, Taenia solium, and Moniezia expansa using aqueous and alcoholic extract of sugar beet (Beta vulgaris, China rose (Hibiscus rosasinensis, and red rose (Rosa hybrida were described to minimized the deleterious effects of the synthetic dyes. Materials and Methods: Aqueous/ethanolic extracts of roses were extracted from the flowers while red beet was extracted from the roots. Results: Stained helminthes acquired a comparable level of pigmentation with the distinction of their internal structure in these natural dyes. The flukes (liver and rumen internal structure, oral and ventral/posterior sucker, cirrus sac, gravid uterus, testes, ovary, and vitallaria were appeared pink color in aqueous and alcoholic extract of either China or red rose and yellow to brown color in sugar beet stain. The interior of the proglottid of T. solium and M. expansa took yellow to brown color with good contrast in sugar beet stain and of pink to pink-red in China and red rose stain. Conclusion: The extract of roses (red rose followed by China rose followed by red beet possess the potential to replace the conventional stains in the taxonomic study of Platyhelminthes parasites.

  16. Chemical Modification of Oryza sativa Linnaeus Husk with Urea for Removal of Brilliant Vital Red and Murexide Dyes from Water by Adsorption in Environmentally Benign Way

    International Nuclear Information System (INIS)

    Rehman, R.; Mahmud, T.; Kanwal, F.; Aslam, M.N.; Nisar, H.

    2013-01-01

    Oryza sativa Linnaeus is an important food item all around the world. Due to its huge consumption, a large amount of rice husk is generated as agrowaste which can be used for water treatment by adsorption. Its adsorption capacity further can be enhanced by chemical medication. In the present study, urea modified rice husk has been used for removing Brilliant Vital Red and Murexide form water in an efficient way. After optimizing operating conditions, isothermal and thermodynamical studies were carried out, which showed that maximum adsorption capacity of urea modified rice husk for removing Brilliant Vital Red and Murexide dyes were 28.93 and 30.74 mg.g/sup -1/. Adsorbent characterization was carried out by recording its FT-IR spectra. (author)

  17. A novel approach for the reuse of the textile bleaching wastewater

    International Nuclear Information System (INIS)

    Shaikh, I.A.

    2015-01-01

    In this paper, the efficiency of used hydrogen peroxide (H/sub 2/O/sub 2/) bleach bath was assessed for the elimination of hydrolyzed unfixed reactive dyes from cellulosic fabrics. The aim of this study was to reuse textile wastewater and develop a new textile dyeing and wash-off method with small quantities of water and chemicals, without compromising quality of dyeing. For this purpose, spent bleach bath having H/sub 2/O/sub 2/ was collected from a textile industry and used in wash-off step of fabric after dyeing with reactive dyes to determine colour fastness properties and shade strength of selected reactive dyes. Five dyeings were carried out, using C. I. Reactive Yellow 138, C. I. Reactive Orange 122, C. I. Reactive Red 195, C. I. Reactive Blue 221, and C. I. Reactive Black 5 and dyed samples were passed through both conventional wash-off and new wash-off method containing spent bleach bath. Washing fastness, rubbing fastness, change of colour, and magnitude of total colour difference ( E*) values of both washed-off fabrics were compared. The colourfastness properties and final shade of fabrics washed-off with spent bleach were found to be comparable to those washed-off conventionally. This study concludes that spent bleach bath containing H/sub 2/O/sub 2/ is a potential nominee for the removal of hydrolyzed reactive dyes from cotton fabrics. (author)

  18. Chitosan-edible oil based materials as upgraded adsorbents for textile dyes.

    Science.gov (United States)

    Dos Santos, Clayane Carvalho; Mouta, Rodolpho; Junior, Manoel Carvalho Castro; Santana, Sirlane Aparecida Abreu; Silva, Hildo Antonio Dos Santos; Bezerra, Cícero Wellington Brito

    2018-01-15

    Biopolymer chitosan is a low cost, abundant, environmentally friendly, very selective and efficient anionic dyes adsorbent, being a promising material for large-scale removal of dyes from wastewater. However, raw chitosan (CS) is an ineffective cationic dyes adsorbent and its performance is pH sensitive, thus, CS modifications that address these issues need to be developed. Here, we report the preparation and characterization of two new CS modifications using edible oils (soybean oil or babassu oil), and their adsorption performance for two dyes, one anionic (remazol red, RR) and one cationic (methylene blue, MB). Both modifications extended the pH range of RR adsorption. The babassu oil modification increased adsorption capacity of the cationic dye MB, whereas the soybean oil modification increased that of RR. Such improvements demonstrate the potential of these two new CS modifications as adsorbent candidates for controlling dyes pollution in effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@aut.ac.ir [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Khorramfar, Shooka [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Amini, Farrokhlegha [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Arami, Mokhtar [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Polyaminoimide homopolymer (PAIHP) was synthesized and characterized. Black-Right-Pointing-Pointer Kinetics data followed pseudo-second order kinetic model. Black-Right-Pointing-Pointer Isotherm data followed Langmuir isotherm. Black-Right-Pointing-Pointer Q{sub 0} for DR31, DR23, DB22 and AB25 was 6667, 5555, 9090 and 5882 mg/g, respectively. Black-Right-Pointing-Pointer PAIHP was regenerated at pH 12. - Abstract: In this paper, polyaminoimide homopolymer (PAIHP) was synthesized and its dye removal ability was investigated. Physical characteristics of PAIHP were studied using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct Red 31 (DR31), Direct Red 23 (DR23), Direct Black 22 (DB22) and Acid Blue 25 (AB25) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, pH and salt on dye removal was evaluated. Adsorption kinetic of dyes followed pseudo-second order kinetics. The maximum dye adsorption capacity (Q{sub 0}) of PAIHP was 6667 mg/g, 5555 mg/g, 9090 mg/g and 5882 mg/g for DR31, DR23, DB22 and AB25, respectively. It was found that adsorption of DR31, DR23, DB22 and AB25 onto PAIHP followed with Langmuir isotherm. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% for DR31, 86% for DR23, 87% for DB22 and 90% for AB25 were achieved in aqueous solution at pH 12. The results showed that the PAIHP as a polymeric adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored wastewater.

  20. The red-blue conundrum

    DEFF Research Database (Denmark)

    Nørtoft, Mikkel Johansen

    2017-01-01

    Plants from the Rubiaceae family (Rubia, Galium, and Asperula) are often grouped together as madder because they have been used for dyeing red since at least the Bronze Age. The English plant name madder can be traced through the Germanic language all the way back to Proto-Indo-European (PIE), as...

  1. High energy irradiation treatment of dye containing wastewater. Steady state gamma radiolysis experiments

    International Nuclear Information System (INIS)

    Solpan, D.; Gueven, O.

    2002-01-01

    Complete text of publication follows. The degradation and decoloration of three textile (JGB, Janus Green B, RB5, Reactive Black 5 and AR, Apollofix Red) dyes by gamma irradiation have been studied. Colour and pH of the dye solutions were found to decrease with irradiation, The change of absorption spectra, the degree of decoloration, the change of pH, COD (chemical oxygen demand), BOD (biological oxygen demand) were measured as a function of irradiation dose, dose rate and dye concentration. In all cases the absorbance of the dye compounds was found to decrease with the increase of the dose. The effect of pH, N2, N2O on the degradation and decoloration process was studied. The degradation and decoloration in the presence of nitrous oxide occurred faster than in air and nitrogen-saturated solutions. The degree of decoloration for AR and RB5 increased with the increasing irradiation dose and dose rate but above 2 kGy/h dose rate, the degree of decoloration is independent of the dose rate and irradiation dose. The degree of decoloration increased up to 100% for the nitrous oxide-saturated RB5 solution from 80% for the nitrogen-saturated RB5 solution at 0.8 kGy irradiation dose and at 2 kGy/h dose rate. For AR aqueous solution in air and nitrogen-saturated and nitrous oxide-saturated AR solution, the degrees of decoloration were very similar to each other. Although the absorptions at maximum wavelength (596 nm) decreased with increasing irradiation dose for nitrogen-saturated RB5 aqueous solutions, for nitrous oxide-saturated RB5 aqueous solutions they decreased and shifted to lower wavelength. This suggests that the skeleton of the RB5 molecule is mainly destroyed by the attack of the OH radicals. AR and RB5 dyes are destroyed in the pH range from 7 to 4 with a reduced sensitivity at lower and higher pH range

  2. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-01-01

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q 0 of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q 0 of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q 0 ) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  3. Experimental Researches Regarding the Ecological Dyeing with Natural Extracts

    Directory of Open Access Journals (Sweden)

    Budeanu Ramona

    2014-12-01

    Full Text Available The concept of ‘environmental awareness’ has recently had a major impact on the textile industry and on the fashion world as well. In this context, the use of natural fibres and the development of natural dyeing processes gradually became important goals of the textile industry. Of all natural textile fibres, hemp is considered to be one of the strongest and most durable. A wide range of natural extracts have been used for natural textile coloration and dyeing. Dyes deriving from natural sources have emerged as an important alternative to synthetic dyes. Ecofriendly, nontoxic, sustainable and renewable natural dyes and pigments have been used for colouring the food substrate, leather, wood, natural fibres and fabrics from the dawn of human history. The purpose of the research is to obtain ecologically coloured fabrics for textiles by using a method of dyeing that relies on natural ingredients extracted from red beet, onion leaves and black tea. The experiments are conducted on three different types of hemp fabrics. This paper presents the results of the studies regarding the dyeing process of hemp fabrics with natural extracts, the colours of the dyed samples inspected with reflectance spectra and the CIE L*a*b* colour space measurements.

  4. Interaction of anthraquinone dyes with lysozyme: Evidences from spectroscopic and docking studies

    International Nuclear Information System (INIS)

    Paramaguru, G.; Kathiravan, A.; Selvaraj, S.; Venuvanalingam, P.; Renganathan, R.

    2010-01-01

    The interaction between lysozyme and anthraquinone dyes such as Alizarin Red S, Acid blue 129 and Uniblue was studied using steady state, time resolved fluorescence measurements and docking studies. Addition of anthraquinone dyes effectively quenched the intrinsic fluorescence of lysozyme. Fluorescence quenching of lysozyme by dyes has revealed the formation of complex. The number of binding sites (n) and binding constant (K) for all the three dyes was calculated by relevant fluorescence quenching data. Based on Foerster's non-radiative energy transfer theory, distance (r 0 ) between the donor (lysozyme) and acceptor (dyes) as well as the critical energy transfer distance (R 0 ) has also been calculated. The interaction between dyes and lysozyme occurs through static quenching mechanism as confirmed by time resolved spectroscopy. The conformational change of lysozyme has been analyzed using synchronous fluorescence measurement. Finally, docking studies revealed that specific interactions were observed with the residue of Trp 62.

  5. Bioremediation of acid fast red dye by Streptomyces globosus under ...

    African Journals Online (AJOL)

    Administrator

    2011-04-25

    Apr 25, 2011 ... Azo dyes are widely used in industries, such as textiles, paper, plastics ... processes have received increasing interest owing to their cost effectiveness and environmental friendliness. (Mabrouk and ... hydrolytic enzymes . In addition it .... A trial for using potato peels for more economic biomass production.

  6. Physical and chemical investigations on natural dyes

    Science.gov (United States)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  7. Phytoremediation potential of Portulaca grandiflora Hook. (Moss-Rose) in degrading a sulfonated diazo reactive dye Navy Blue HE2R (Reactive Blue 172).

    Science.gov (United States)

    Khandare, Rahul V; Kabra, Akhil N; Kurade, Mayur B; Govindwar, Sanjay P

    2011-06-01

    Wild and tissue cultured plants of Portulaca grandiflora Hook. have shown to be able to decolorize a sulfonated diazo dye Navy Blue HE2R (NBHE2R) up to 98% in 40 h. A significant induction in the activities of lignin peroxidase, tyrosinase and DCIP reductase was observed in the roots during dye decolorization. The wild plants and tissue cultures could independently decolorize and degrade NBHE2R into metabolites viz. N-benzylacetamide and 6-diazenyl-4-hydroxynaphthalene-2-sulfonic acid. A dye mixture and a textile effluent were also decolorized efficiently by P. grandiflora. The phytotoxicity study revealed reduction in the toxicity due to metabolites formed after dye degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The destructive degradation of some organic textile dye compounds using gamma ray irradiation

    International Nuclear Information System (INIS)

    Abdel-Gawad Emara, A.S.; Abdel-Fattah, A.A.; Ebraheem, S.E.; Ali, Z.I.; Gad, H.

    2001-01-01

    The destructive degradation of 8 coloured reactive and direct dye compounds currently used in the textile industry has been investigated. These dyes are: Levafix Blue ERA (LB), Levafix Brilliant Red E4BA (LBR), Levafix Brilliant Yellow EGA (LBY), Drimarene Scarlet F3G (DS), Drimarene Brilliant Green X3G (DBG), Fast Yellow RL (FY), Fast Violet 2RL (FV) and Fast Orange 3R (FO). The process of degradation of the respective dye has been followed spectrophotometrically at the characteristic lmax. The variation of the colour intensity of aerated aqueous solution of the investigated dyes has been measured as a function of gamma irradiation dose. In all cases, the amplitude of the absorption bands of the dye compound was found to decrease with the increase of the gamma dose. Irradiation was carried out for actual waste and distilled water. By comparing the heights of the absorption maxima in both the visible and ultraviolet ranges, it was found that complete decolouration is attained at lower doses than that needed for the process of degradation of the dye. The kinetics of the degradation process has been traced and the kinetic constant, k 1 , was calculated and found to be concentration dependent indicating a first order reaction in all cases. The radiation-chemical yield (G-value) as a measure of the efficiency of gamma ray to degrade the respective dye was calculated for all dye compounds and it was found that the G-value in all cases increases exponentially for low radiation doses and changes linearly for high radiation doses. Also the K* value (the efficiency coefficient of dye radiolysis) was calculated and compared for the different dye compounds e.g. for FO, FY and FV dyes, the K* values were found to range from 5.5x10 9 to 1.92x10 -7 mol·L -1 '·cm -1 . In addition to the study of a single dye compound in solution, mixtures of different dyes (3 dyes) were also subjected to g-ray irradiation simulating more closely actual waste effluents. Also the effect of some

  9. Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.

    Science.gov (United States)

    Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo

    2001-07-15

    The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.

  10. Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties

    Science.gov (United States)

    Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn

    2018-01-01

    Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.

  11. DECOLORISATION OF AQUEOUS SOLUTIONS OF SYNTHETIC DYES BY Lentinus polychrous Lév. CULTIVATED ON CASSAVA RHIZOME

    Directory of Open Access Journals (Sweden)

    Jirachaya Boonyarit

    2015-02-01

    Full Text Available Cassava rhizomes are left in fields after harvesting. This agricultural waste is rich in lignocellulosic material which is a substrate for white rot fungi. Disposal of synthetic dyes poses a problem to the environment and it needs to be addressed. The ability of Lentinus polychrous Lév., a white rot fungus, grown on the cassava rhizome chips, to decolorise three kinds of synthetic dye was studied. The effects of the initial moisture content of cassava rhizome used for fungal cultivation, the temperature during the decolorisation, and the pH of synthetic dye solution on the extent of decolorisation were investigated. The decolorisations of Reactive blue 49, Navy blue and Acid blue 62 were affected by the initial moisture content of cassava rhizome. The highest extents of decolorisation of these dyestuffs were observed when the fungus was cultivated at 70% initial moisture content. Temperatures of 30, 37 and 45oC did not alter the extent of decolorisation of the dyestuffs. The most extensive decolorisations of Reactive blue 49 and Acid blue 62 (anthraquinone dyes were at pH 3.0 while that of Navy blue (azo dye was at pH 7.0. Adsorption was the main mechanism of decolorisation of Navy blue. However, both enzymic degradation and adsorption were involved in the decolorisations of Reactive blue 49 and Acid blue 62.

  12. ADSORPSI CONGO RED PADA HUMIN HASIL ISOLASI DARI TANAH HUTAN DAMAR BATURRADEN PURWOKERTO

    Directory of Open Access Journals (Sweden)

    Roy Andreas

    2008-05-01

    Full Text Available Congo red is one of dyes-stuff in textile industry wastwater. If it is thrown directly without waste management process, the dyes could pollute environtment, especially soil. Humin has OH phenolic and carboxylic functional group which can interacted with congo red. The aim of this study is recognize humin characteristic from the soil of Baturraden resin forest, determine the adsorption capacity and isotherm adsorption pattern of congo red by humin from the soil of Baturraden resin forest. Humin in this study is isolated from the soil of Baturraden resin forest. soil cleared of gravel and dirt, then it extracted by using NaOH of nitrogen atmosphere and purified to applies mixture HCl:HF. Humin that is obtained is used to be interacted with dyes with various contact time, various of pH and concentration of congo red so that the adsorption capacities and isotherm adsorption pattern can be obtained. Result of the study showed that the humin has water content 34.92 %, dust content 8.64 %, total acidity 475 cmol/Kg, carboxylic rate 272.5 cmol/Kg, and OH Phenolic rate 202.5 cmol/Kg. The optimum contact time of congo red adsorption by humin is 40 minutes, with optimum pH is 7, adsorption capacities 57.14 mg/g and isotherm adsorption pattern of congo red by humin is follow the pattern of Langmuir isotherm adsorption.

  13. The composition dependence of the photochemical reactivity of strontium barium titanate

    Science.gov (United States)

    Bhardwaj, Abhilasha

    The efficiency of particulate water photolysis catalysts is impractically low due to the recombination of intermediate species and charge carriers. The back reaction can occur easily if the oxidation and reduction sites on the surface of the catalyst are not far enough apart. It is hypothesized that it will be possible to increase the separation of the sites of the two half reactions and reduce the recombination of photogenerated charge carriers by using a ferroelectric material with permanent internal dipolar fields. This separation of the reaction sites may significantly increase the efficiency of the process. The present work compares the photochemical reactivities of ferroelectric and nonferroelectric materials (SrxBa1-xTiO 3, 0.0≤ x ≤1.0) with similar composition and structure. The reactivities are compared by measuring the color change of methylene blue dye after the aqueous dye solution reacts on the surface of ceramic sample pellets as a result of exposure to UV light. The reactivities are also compared by measuring the amount of silver that is formed when an aqueous AgNO3 solution photochemically reacts on the surface. The change in the color of the dye is measured by diffuse reflectance spectroscopy and absorbance measurements. The amount of silver is measured by atomic force microscopy. The photochemical reactivity of SrxBa1-xTiO3 shows a local maximum at the composition of the ferroelectric to non-ferroelectric transition. Also, the reactivities decrease as BaTiO3 and SrTiO3 become less pure. The dominant factors causing this trend in reactivities of SrxBa1-xTiO3 are the dielectric constant and alloy scattering. It is found that higher values of the dielectric constant increase the photochemical reactivity by enlarging the space charge region. The increase in alloy scattering in SrxBa1-xTiO 3 solid solutions as x increases from zero or decreases from 1, has adverse effect on reactivity. There are other factors such as ferroelectric polarization

  14. New risks from ancient food dyes: cochineal red allergy.

    Science.gov (United States)

    Voltolini, S; Pellegrini, S; Contatore, M; Bignardi, D; Minale, P

    2014-11-01

    This study reports an unusual case of IgE-mediated hypersensitivity to Cochineal red or Carmine red, a coloring agent of natural origin. Although the risk of anaphylactic reactions is well known, since the nineties the use of this additive seems to be nowadays on the rise. The problem of labeling of additives used in handmade food products is highlighted.

  15. Plants as Natural Dyes for Jonegoroan Batik Processing in Jono Cultural Tourism Village, Bojonegoro, East Java

    Directory of Open Access Journals (Sweden)

    Nurizza Fauziyah

    2015-05-01

    Full Text Available Batik Jonegoroan is one of the potential tourism product in Jono Village, Bojonegoro. Batik was processed by traditional procedure using natural dyes from plants. In order to preserve the traditional batik which was colored by natural dyes from plant, the preservation of such plant were important. As far, there are no scientific data related to the species usage in Batik production. The aims of the research were identifying plant which were used as natural dyes in Batik processing. Data were collected ​​through observation, and  semi-structured interviews to batik craftsmen. Results of interviews were analyzed descriptively. The importance of plant was analyzed using Relative Frequency of Citation (RFC index. Based on the results, there are 12 plant species used as batik dye. It is consisted of Teak, Mahogany, Ketapang, Tamarind, Mangosteen, Mango, Suji, Pandan, Indigofera, Guava, Banana and Onion. Teak (Tectonagrandis L. and Mahogany (Swietenia mahogany L. have the highest value of RFC, 1.00. Both species were the most frequently cited species as sources of natural dyes. Extraction of Teak leaves produce red hearts and extraction of mahogany tree bark produces red-brown dye. Both of the color is the most important color in batik motifs. Keywords: batik Jonegoroan, Jono Cultural Tourism Village, perception, quality, RFC

  16. Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety

    Directory of Open Access Journals (Sweden)

    Moustafa A. Gouda

    2016-03-01

    Full Text Available A series of thiophene incorporating pyrazolone moieties 5a–f and 6a–c were synthesized via diazo coupling of diazonium salt of 3-substituted-2-amino-4,5,6,7-tetrahydrobenzo[b]thiophenes 1a–c with 3-methyl-1H-pyrazol-5(4H-one, 3-methyl-1-phenyl-1H-pyrazol-5(4H-one or 3-amino-1H-pyrazol-5(4H-one, respectively. Newly synthesized dyes were applied to polyester fabric as disperse dyes in which their color measurements and fastness properties were evaluated. These dyes showed generally red to blue shifted color with high extinction coefficient in comparison with aniline-based azo dyes. The antitumor activity of the synthesized dyes was evaluated. The results showed clearly that most of them exhibited good activity and compounds 5c and 5d exhibited moderate activity.

  17. Bio-degradation of synthetic textile dyes by thermophilic lignolytic fungal isolates

    Directory of Open Access Journals (Sweden)

    Nidhi Sahni

    2014-10-01

    Full Text Available Synthetic dyes are extensively used in different industries like textile dyeing, paper, printing, color, photography, pharmaceutics and cosmetics. These are generally toxic and carcinogenic in nature. If not treated, they will remain in nature for a long period of time as they are recalcitrant. Among these, azo dyes represent the largest and most versatile class of synthetic dyes. Approximately 10-15% of the dyes are released into the environment during manufacture and usage. Various methods are used for dye removal viz. physical, chemical, electrochemical and biological. Advantage of chemical, electrochemical and biological methods over physical involves the complete destruction of the dye, but chemical and electrochemical methods are found to be expensive and have operational problems. So the biological method is preferred over other methods for degradation/decolorization of dyes. In the present study, thermophilic lignolytic fungal culture was isolated from compost/soil/digested slurry/plant debris, were subjected for acclimatization to Remazol Brilliant Blue (RBB at 0.05% concentration, in the malt extract broth (MEB. The most promising fungal isolates were used for further dye degradation studies. The results suggest that the isolates T10, T14 and T17 as a useful tool for degradation of reactive dyes.

  18. Interaction of anthraquinone dyes with lysozyme: Evidences from spectroscopic and docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Paramaguru, G.; Kathiravan, A.; Selvaraj, S.; Venuvanalingam, P. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Renganathan, R., E-mail: rrengas@gmail.com [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2010-03-15

    The interaction between lysozyme and anthraquinone dyes such as Alizarin Red S, Acid blue 129 and Uniblue was studied using steady state, time resolved fluorescence measurements and docking studies. Addition of anthraquinone dyes effectively quenched the intrinsic fluorescence of lysozyme. Fluorescence quenching of lysozyme by dyes has revealed the formation of complex. The number of binding sites (n) and binding constant (K) for all the three dyes was calculated by relevant fluorescence quenching data. Based on Foerster's non-radiative energy transfer theory, distance (r{sub 0}) between the donor (lysozyme) and acceptor (dyes) as well as the critical energy transfer distance (R{sub 0}) has also been calculated. The interaction between dyes and lysozyme occurs through static quenching mechanism as confirmed by time resolved spectroscopy. The conformational change of lysozyme has been analyzed using synchronous fluorescence measurement. Finally, docking studies revealed that specific interactions were observed with the residue of Trp 62.

  19. Poly(methylmethacrylate) grafted chitosan: An efficient adsorbent for anionic azo dyes

    International Nuclear Information System (INIS)

    Singh, V.; Sharma, A.K.; Tripathi, D.N.; Sanghi, R.

    2009-01-01

    Present study reports on peroxydisulfate/ascorbic acid initiated synthesis of Chitosan-graft-poly(methylmethacrylate) (Ch-g-PMMA) and its characterization by FTIR, XRD and 13 C NMR. The copolymer remained water insoluble even under highly acidic conditions and was evaluated to be an efficient adsorbent for the three anionic azo dyes (Procion Yellow MX, Remazol Brilliant Violet and Reactive Blue H5G) over a wide pH range of 4-10 being most at pH 7. The adsorbent was also found efficient in decolorizing the textile industry wastewater and was much more efficient than the parent chitosan. Equilibrium sorption experiments were carried out at different pH and initial dye concentration values. The experimental equilibrium data for each adsorbent-dye system were successfully fitted to the Langmuir and Freundlich sorption isotherms. Based on Langmuir model Q max for yellow, violet and blue dyes was 250, 357 and 178, respectively. Thermodynamic parameters of the adsorption processes such as ΔG o , ΔH o , and ΔS o were calculated. The negative values of free energy reflected the spontaneous nature of adsorption. The adsorption kinetic data of all the three dyes could be well represented by pseudo-second-order model with the correlation coefficients (R 2 ) being 0.9922, 0.9997 and 0.9862, for direct yellow, reactive violet and blue dye, respectively with rate constants 0.91 x 10 -4 , 1.82 x 10 -4 and 1.05 x 10 -4 g mg -1 min -1 , respectively. At pH 7, parent chitosan also showed pseudo-second-order kinetics. The temperature dependence of dye uptake and the pseudo-second-order kinetics of the adsorption indicated that chemisorption is the rate-limiting step that controls the process

  20. Comparison of various oxidative treatments for removal of reactive ...

    African Journals Online (AJOL)

    Activated User

    Largest industrial production of wastewater is related with textile industries involved in ... (for example, acid red 73, acid red 14, acid orange 8 and acid orange 7). ... The synthetic dye solutions were treated with KMnO4, H2O2, ferrioxalate and .... previous data that hydrogen peroxide is not a practicable oxidizing method ...