WorldWideScience

Sample records for dwpf sb6 initial

  1. DWPF SB6 Initial CPC Flowsheet Testing SB6-1 TO SB6-4L Tests Of SB6-A And SB6-B Simulants

    International Nuclear Information System (INIS)

    Lambert, D.; Pickenheim, B.; Best, D.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing in late fiscal year 2010. Tests were conducted using non-radioactive simulants of the expected SB6 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2008-0043, Rev.0 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT and QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. These studies were conducted with the estimated SB6 composition at the time of the study. This composition assumed a blend of 101,085 kg of Tank 4 insoluble solids and 179,000 kg of Tank 12 insoluble solids. The current plans are to subject Tank 12 sludge to aluminum dissolution. Liquid Waste Operations assumed that 75% of the aluminum would be dissolved during this process. After dissolution and blending of Tank 4 sludge slurry, plans included washing the contents of Tank 51 to ∼1M Na. After the completion of washing, the plan assumes that 40 inches on Tank 40 slurry would remain for blending with the qualified SB6 material. There are several parameters that are noteworthy concerning SB6 sludge: (1) This is the second batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution; (2) The sludge is high in mercury, but the projected concentration is lower than SB5; (3) The sludge is high in noble metals, but the projected concentrations are lower than SB5; and(4) The sludge is high in U and Pu - components that are not added in sludge simulants. Six DWPF process simulations were completed in 4-L laboratory-scale equipment using

  2. DWPF simulant CPC studies for SB8

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  3. DWPF simulant CPC studies for SB8

    International Nuclear Information System (INIS)

    Koopman, D. C.; Zamecnik, J. R.

    2013-01-01

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  4. DWPF Simulant CPC Studies For SB8

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51 heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected

  5. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01

    Prior to initiating a new sludge batch in the Defense Waste Processing Facility (DWPF), Savannah River National Laboratory (SRNL) is required to simulate this processing, including Chemical Process Cell (CPC) simulation, waste glass fabrication, and chemical durability testing. This report documents this simulation for the next sludge batch, Sludge Batch 6 (SB6). SB6 consists of Tank 12 material that has been transferred to Tank 51 and subjected to Low Temperature Aluminum Dissolution (LTAD), Tank 4 sludge, and H-Canyon Pu solutions. Following LTAD and the Tank 4 addition, Liquid Waste Operations (LWO) provided SRNL a 3 L sample of Tank 51 sludge for SB6 qualification. Pu solution from H Canyon was also received. SB6 qualification included washing the sample per LWO plans/projections (including the addition of Pu from H Canyon), DWPF CPC simulations, waste glass fabrication (vitrification), and waste glass characterization and chemical durability evaluation. The following are significant observations from this demonstration. Sludge settling improved slightly as the sludge was washed. SRNL recommended (and the Tank Farm implemented) one less wash based on evaluations of Tank 40 heel projections and projections of the glass composition following transfer of Tank 51 to Tank 40. Thorium was detected in significant quantities (>0.1 wt % of total solids) in the sludge. In past sludge batches, thorium has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), seen in small quantities, and reported with the radionuclides. As a result of the high thorium, SRNL-AD has added thorium to their suite of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) elements. The acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT) processing of 115%, or 1.3 mol acid per liter of SRAT receipt slurry, was adequate to accomplish some of the goals of SRAT processing: nitrite was destroyed to below 1,000 mg/kg and mercury was removed to

  6. Analysis Of DWPF Sludge Batch 7A (Macrobatch 8) Pour Stream Samples

    International Nuclear Information System (INIS)

    Johnson, F.

    2012-01-01

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed. The following conclusions were drawn from the analytical results provided in this report: (1) The sum of oxides for the official SB7a pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%). (2) The average calculated Waste Dilution Factor (WDF) for SB7a is 2.3. In general, the measured radionuclide content of the official SB7a pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7a Waste Acceptance Program Specification (WAPS) sample. (3) As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the official SB7a pour stream sample. (4) The Product Consistency Test (PCT) results indicate that the official SB7a pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.64 g/L, which is an order of magnitude less than the Environmental

  7. SCIX IMPACT ON DWPF CPC

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2011-07-14

    A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheet includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not

  8. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  9. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 4 MACROBATCH 5

    International Nuclear Information System (INIS)

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-01-01

    the inputs for the development of the Production Records that relate to the radionuclide inventory. This work was initiated through Task Technical Request HLW/DWPF/TTR-2005-0034; Rev. 0 entitled Sludge Batch 4 SRNL Shielded Cells Testing4. Specifically, this report details results from performing, in part, Subtask 3 of the TTR and, in part, meets Deliverable 7 of the TTR. The work was performed following the Technical Task and Quality Assurance Plan (TTQAP), WSRC-RP-2006-00310, Rev. 15 and Analytical Study Plan (ASP), WSRC-RP-2006-00458, Rev. 16. In order to determine the reportable radionuclides for Sludge Batch 4 (SB4) (Macro Batch 5 (MB5)), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes excluded from the projection calculations. Based on measurements and analytical detection limits, twenty-nine radionuclides have been identified as reportable for DWPF SB4 (MB5) as specified by WAPS 1.2. The 29 reportable nuclides are: Ni-59; Ni-63; Se-79; Sr-90; Zr-93; Nb-93m; Tc-99; Sn-126; Cs-137; Sm-151; U-233; U-234; Np-237; U-238; Pu-238; Pu-239; Pu-240; Am-241; Pu-241; Pu-242; Am-242m; Am-243; Cm-244; Cm-245; Cm-246; Cm-247; Bk-247; Cm-248; and Cf-251. The WCP and WQR require that all of radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB4 (MB5), all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time through the calendar year 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list

  10. Examination Of Sulfur Measurements In DWPF Sludge Slurry And SRAT Product Materials

    International Nuclear Information System (INIS)

    Bannochie, C. J.; Wiedenman, B. J.

    2012-01-01

    Savannah River National Laboratory (SRNL) was asked to re-sample the received SB7b WAPS material for wt. % solids, perform an aqua regia digestion and analyze the digested material by inductively coupled plasma - atomic emission spectroscopy (ICP-AES), as well as re-examine the supernate by ICP-AES. The new analyses were requested in order to provide confidence that the initial analytical subsample was representative of the Tank 40 sample received and to replicate the S results obtained on the initial subsample collected. The ICP-AES analyses for S were examined with both axial and radial detection of the sulfur ICP-AES spectroscopic emission lines to ascertain if there was any significant difference in the reported results. The outcome of this second subsample of the Tank 40 WAPS material is the first subject of this report. After examination of the data from the new subsample of the SB7b WAPS material, a team of DWPF and SRNL staff looked for ways to address the question of whether there was in fact insoluble S that was not being accounted for by ion chromatography (IC) analysis. The question of how much S is reaching the melter was thought best addressed by examining a DWPF Slurry Mix Evaporator (SME) Product sample, but the significant dilution of sludge material, containing the S species in question, that results from frit addition was believed to add additional uncertainty to the S analysis of SME Product material. At the time of these discussions it was believed that all S present in a Sludge Receipt and Adjustment Tank (SRAT) Receipt sample would be converted to sulfate during the course of the SRAT cycle. A SRAT Product sample would not have the S dilution effect resulting from frit addition, and hence, it was decided that a DWPF SRAT Product sample would be obtained and submitted to SRNL for digestion and sample preparation followed by a round-robin analysis of the prepared samples by the DWPF Laboratory, F/H Laboratories, and SRNL for S and sulfate. The

  11. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non

  12. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R

  13. ALTERNATIVE ANALYTICAL DIGESTION SCHEME FOR THE DEFENSE WASTE PROCESSING FACILITY (DWPF) SLURRY RECEIPT AND ADJUSTMENT TANK (SRAT) ANALYSES

    International Nuclear Information System (INIS)

    Click, D; Charles02 Coleman, C; Frank Pennebaker, F; Kristine Zeigler, K; Tommy Edwards, T

    2007-01-01

    As part of the radioactive sludge batch qualification, Savannah River National Laboratory (SRNL) performs a verification of the digestion methods to be used by the Defense Waste Processing Facility (DWPF) Lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt process control samples and SRAT product process control samples. Verification of these methods on Sludge Batch 4 (SB4) radioactive sludge slurry indicated SB4 contains a higher concentration of aluminum (Al) than previous sludge batches. Aluminum plays a direct role in vitrification chemistry. At moderate levels, Al assists in glass forming, but at elevated levels Al can increase the viscosity of the molten glass which can adversely impact glass production rate and the volume of glass produced via limiting waste loading.3 Most of the Al present in SB4 is in the form of Al hydroxide as a mixture of gibbsite [α-aluminum trihydroxide, α-Al(OH) 3 ] and boehmite (α-aluminum oxyhydroxide, α-AlOOH) in an unknown ratio. Testing done at SRNL indicates Gibbsite is soluble at low pH but boehmite has limited solubility in the acid mixture (DWPF Cold Chem Method (CC), 25 mL nitric acid (HNO 3 ) and 25 mL hydrofluoric acid (HF)) used by DWPF to digest process control samples. Because Al plays such an important part in vitrification chemistry, it is necessary to have a robust digestion method that will dissolve all forms of Al present in the radioactive sludge while not increasing the analytical lab turnaround time. SRNL initially suggested that the DWPF lab use the sodium peroxide/hydroxide fusion (PF) digestion method4 to digest SRAT receipt and SRAT product radioactive sludge as an alternative to the acid digestion method to ensure complete digestion based on results obtained from digesting a SB4 radioactive sample.2 However, this change may have a significant impact on the DWPF lab analytical turnaround time due to the inefficiency in drying the radioactive sludge contained in a peanut

  14. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludge – Sludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  15. SLUDGE BATCH 5 ACCEPTANCE EVALUATION RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB5 QUALIFICATION SAMPLE PREPARED AT SRNL

    International Nuclear Information System (INIS)

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-01-01

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Five (SB5) for processing in the Defense Waste Processing Facility (DWPF). Part of this SB5 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40 to complete the formation of SB5. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB4. The radionuclide concentrations were measured or estimated in the Tank 51 SB5 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter sample of Tank 51 sludge slurry taken on March 21, 2008. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under direction of the Liquid Waste Organization it was then modified by five washes, six decants, an addition of Pu/Be from Canyon Tank 16.4, and an addition of NaNO2. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Ta Determining the radionuclide concentrations in this Tank 51 SB5 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2008-0010. The work with this qualification sample is covered by a Task Technical and Quality Assurance Plan and an Analytical Study Plan. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task 2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task 5) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB5 will be taken and

  16. Technical bases for the DWPF testing program

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the first production facility in the United States for the immobilization of high-level nuclear waste. Production of DWPF canistered wasteforms will begin prior to repository licensing, so decisions on facility startup will have to be made before the final decisions on repository design are made. The Department of Energy's Office of Civilian Radioactive Waste Management (RW) has addressed this discrepancy by defining a Waste Acceptance Process. This process provides assurance that the borosilicate-glass wasteform, in a stainless-steel canister, produced by the DWPF will be acceptable for permanent storage in a federal repository. As part of this process, detailed technical specifications have been developed for the DWPF product. SRS has developed detailed strategies for demonstrating compliance with each of the Waste Acceptance Process specifications. An important part of the compliance is the testing which will be carried out in the DWPF. In this paper, the bases for each of the tests to be performed in the DWPF to establish compliance with the specifications are described, and the tests are detailed. The results of initial tests relating to characterization of sealed canisters are reported

  17. Freeze and restart of the DWPF Scale Glass Melter

    International Nuclear Information System (INIS)

    Choi, A.S.

    1989-01-01

    After over two years of successful demonstration of many design and operating concepts of the DWPF Melter system, the last Scale Glass Melter campaign was initiated on 6/9/88 and consisted of two parts; (1) simulation of noble metal buildup and (2) freeze and subsequent restart of the melter under various scenarios. The objectives were to simulate a prolonged power loss to major heating elements and to examine the characteristics of transient melter operations during a startup with a limited supply of lid heat. Experimental results indicate that in case of a total power loss to the lower electrodes such as due to noble metal deposition, spinel crystals will begin to form in the SRL 165 composite waste glass pool in 24 hours. The total lid heater power required to initiate joule heating was the same as that during slurry-feeding. Results of a radiative heat transfer analysis in the plenum indicate that under the identical operating conditions, the startup capabilities of the SGM and the DWPF Melter are quite similar, despite a greater lid heater to melt surface area ratio in the DWPF Melter

  18. Phase II of a Six sigma Initiative to Study DWPF SME Analytical Turnaround Times: SRNL's Evaluation of Carbonate-Based Dissolution Methods

    International Nuclear Information System (INIS)

    Edwards, Thomas

    2005-01-01

    The Analytical Development Section (ADS) and the Statistical Consulting Section (SCS) of the Savannah River National Laboratory (SRNL) are participating in a Six Sigma initiative to improve the Defense Waste Processing Facility (DWPF) Laboratory. The Six Sigma initiative has focused on reducing the analytical turnaround time of samples from the Slurry Mix Evaporator (SME) by developing streamlined sampling and analytical methods [1]. The objective of Phase I was to evaluate the sub-sampling of a larger sample bottle and the performance of a cesium carbonate (Cs 2 CO 3 ) digestion method. Successful implementation of the Cs 2 CO 3 fusion method in the DWPF would have important time savings and convenience benefits because this single digestion would replace the dual digestion scheme now used. A single digestion scheme would result in more efficient operations in both the DWPF shielded cells and the inductively coupled plasma--atomic emission spectroscopy (ICP-AES) laboratory. By taking a small aliquot of SME slurry from a large sample bottle and dissolving the vitrified SME sample with carbonate fusion methods, an analytical turnaround time reduction from 27 hours to 9 hours could be realized in the DWPF. This analytical scheme has the potential for not only dramatically reducing turnaround times, but also streamlining operations to minimize wear and tear on critical shielded cell components that are prone to fail, including the Hydragard(trademark) sampling valves and manipulators. Favorable results from the Phase I tests [2] led to the recommendation for a Phase II effort as outlined in the DWPF Technical Task Request (TTR) [3]. There were three major tasks outlined in the TTR, and SRNL issued a Task Technical and QA Plan [4] with a corresponding set of three major task activities: (1) Compare weight percent (wt%) total solids measurements of large volume samples versus peanut vial samples. (2) Evaluate Cs 2 CO 3 and K 2 CO 3 fusion methods using DWPF simulated

  19. IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES

    International Nuclear Information System (INIS)

    Eibling, R; Michael Stone, M

    2006-01-01

    The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress (∼10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report focuses

  20. DWPF Flowsheet Studies with Simulants to Determine Modular Caustic Side Solvent Extraction Unit Solvent Partitioning and Verify Actinide Removal Process Incorporation Strategy

    International Nuclear Information System (INIS)

    Herman, C

    2006-01-01

    The Actinide Removal Process (ARP) facility and the Modular Caustic Side Solvent Extraction Unit (MCU) are scheduled to begin processing salt waste in fiscal year 2007. A portion of the streams generated in the salt processing facilities will be transferred to the Defense Waste Processing Facility (DWPF) to be incorporated in the glass matrix. Before the streams are introduced, a combination of impact analyses and research and development studies must be performed to quantify the impacts on DWPF processing. The Process Science and Engineering (PS and E) section of the Savannah River National Laboratory (SRNL) was requested via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 to evaluate the impacts on DWPF processing. Simulant Chemical Process Cell (CPC) flowsheet studies have been performed using previous composition and projected volume estimates for the ARP sludge/monosodium titanate (MST) stream. Due to changes in the flammability control strategy for DWPF for salt processing, the incorporation strategy for ARP has changed and additional ARP flowsheet tests were necessary to validate the new processing strategy. The last round of ARP testing included the incorporation of the MCU stream and identified potential processing issues with the MCU solvent. The identified issues included the potential carry-over and accumulation of the MCU solvent components in the CPC condensers and in the recycle stream to the Tank Farm. Therefore, DWPF requested SRNL to perform additional MCU flowsheet studies to better quantify the organic distribution in the CPC vessels. The previous MCU testing used a Sludge Batch 4 (SB4) simulant since it was anticipated that both of these facilities would begin salt processing during SB4 processing. The same sludge simulant recipe was used in this round of ARP and MCU testing to minimize the number of changes between the two phases of testing so a better comparison could be made. ARP and MCU stream simulants were made for this phase of

  1. DWPF Sample Vial Insert Study-Statistical Analysis of DWPF Mock-Up Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.P. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-09-18

    This report is prepared as part of Technical/QA Task Plan WSRC-RP-97-351 which was issued in response to Technical Task Request HLW/DWPF/TTR-970132 submitted by DWPF. Presented in this report is a statistical analysis of DWPF Mock-up test data for evaluation of two new analytical methods which use insert samples from the existing HydragardTM sampler. The first is a new hydrofluoric acid based method called the Cold Chemical Method (Cold Chem) and the second is a modified fusion method.Either new DWPF analytical method could result in a two to three fold improvement in sample analysis time.Both new methods use the existing HydragardTM sampler to collect a smaller insert sample from the process sampling system. The insert testing methodology applies to the DWPF Slurry Mix Evaporator (SME) and the Melter Feed Tank (MFT) samples.The insert sample is named after the initial trials which placed the container inside the sample (peanut) vials. Samples in small 3 ml containers (Inserts) are analyzed by either the cold chemical method or a modified fusion method. The current analytical method uses a HydragardTM sample station to obtain nearly full 15 ml peanut vials. The samples are prepared by a multi-step process for Inductively Coupled Plasma (ICP) analysis by drying, vitrification, grinding and finally dissolution by either mixed acid or fusion. In contrast, the insert sample is placed directly in the dissolution vessel, thus eliminating the drying, vitrification and grinding operations for the Cold chem method. Although the modified fusion still requires drying and calcine conversion, the process is rapid due to the decreased sample size and that no vitrification step is required.A slurry feed simulant material was acquired from the TNX pilot facility from the test run designated as PX-7.The Mock-up test data were gathered on the basis of a statistical design presented in SRT-SCS-97004 (Rev. 0). Simulant PX-7 samples were taken in the DWPF Analytical Cell Mock

  2. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    International Nuclear Information System (INIS)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

    2013-01-01

    This report contains the results and comparison of data generated from inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition

  3. TECHNOLOGY DEMONSTRATION OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION: GLASS FORMULATION PROCESSING WINDOW PREDICTIONS FOR SB5

    International Nuclear Information System (INIS)

    Fox, K.; Tommy Edwards, T.; David Peeler, D.

    2007-01-01

    Composition projections for Sludge Batch 5 (SB5) were developed, based on a modeling approach at the Savannah River National Laboratory (SRNL), to evaluate possible impacts of the Al-dissolution process on the availability of viable frit compositions for vitrification at the Defense Waste Processing Facility (DWPF). The study included two projected SB5 compositions that bound potential outcomes (or degrees of effectiveness) of the Al-dissolution process, as well as a nominal SB5 composition projection based on the results of the recent Al-dissolution demonstration at SRNL. The three SB5 projections were the focus of a two-stage paper study assessment. A Nominal Stage assessment combined each of the SB5 composition projections with an array of 19,305 frit compositions over a wide range of waste loading (WL) values and evaluated them against the DWPF process control models. The Nominal Stage results allowed for the down-selection of a small number of frits that provided reasonable projected operating windows (typically 27 to 42 wt% WL). The frit/sludge systems were mostly limited by process related constraints, with only one system being limited by predictions of nepheline crystallization, a waste form affecting constraint. The criteria applied in selecting the frit compositions somewhat restricted the compositional flexibility of the candidate frits for each individual SB5 composition projection, which may limit the ability to further tailor the frit for improved melt rate. Variation Stage assessments were then performed using the down-selected frits and the three SB5 composition projections with variation applied to each sludge component. The Variation Stage results showed that the operating windows were reduced in width, as expected when variation in the sludge composition is applied. However, several of the down-selected frits exhibited a relatively high degree of robustness to the applied sludge variation, providing WL windows of approximately 30 to 39 wt%. The

  4. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    International Nuclear Information System (INIS)

    Edwards, T. B.

    2013-01-01

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF's melter operation during the processing of Sludge Batch 8 (SB8). SRNL's support has been in response to technical task requests that have been made by SRR's Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF's strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy

  5. DWPF Development Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Holtzscheiter, E.W.

    1994-05-09

    The DWPF Development Plan is based on an evaluation process flowsheet and related waste management systems. The scope is shown in Figure 1 entitled ``DWPF Process Development Systems.`` To identify the critical development efforts, each system has been analyzed to determine: The identification of unresolved technology issues. A technology issue (TI) is one that requires basic development to resolve a previously unknown process or equipment problem and is managed via the Technology Assurance Program co-chaired by DWPF and SRTC. Areas that require further work to sufficiently define the process basis or technical operating envelop for DWPF. This activity involves the application of sound engineering and development principles to define the scope of work required to complete the technical data. The identification of the level of effort and expertise required to provide process technical consultation during the start-up and demonstration of this first of a kind plant.

  6. DWPF Development Plan. Revision 1

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.

    1994-01-01

    The DWPF Development Plan is based on an evaluation process flowsheet and related waste management systems. The scope is shown in Figure 1 entitled ''DWPF Process Development Systems.'' To identify the critical development efforts, each system has been analyzed to determine: The identification of unresolved technology issues. A technology issue (TI) is one that requires basic development to resolve a previously unknown process or equipment problem and is managed via the Technology Assurance Program co-chaired by DWPF and SRTC. Areas that require further work to sufficiently define the process basis or technical operating envelop for DWPF. This activity involves the application of sound engineering and development principles to define the scope of work required to complete the technical data. The identification of the level of effort and expertise required to provide process technical consultation during the start-up and demonstration of this first of a kind plant

  7. DWPF recycle minimization: Brainstorming session

    International Nuclear Information System (INIS)

    Jacobs, R.A.; Poirier, M.R.

    1993-01-01

    The recycle stream from the DWPF constitutes a major source of water addition to the High Level Waste evaporator system. As now designed, the entire flow of 3.5 to 6.5 gal/min (at sign 25% and 75% attainment, respectively), or 2 gal/min during idling, flow to the 2H evaporator system (Tank 43). Substantial improvement in the HLW water balance and tank volume management is expected if the DWPF recycle to the HLW evaporator system can be significantly reduced. A task team has been appointed to study alternatives for reducing the flow to the HLW evaporator system and make recommendations for implementation and/or further study and evaluation. The brainstorming session detailed in this report was designed to produce the first cut options for the task team to further evaluate

  8. Initial results from the canistered waste forms produced during the first campaign of the DWPF Startup Test Program

    International Nuclear Information System (INIS)

    Harbour, J.R.

    1995-01-01

    As part of the Defense Waste Processing Facility (DWPF) Startup Test Program, approximately 90 canisters will be filled with glass containing simulated radioactive waste during five separate campaigns. The first campaign is a facility acceptance test to demonstrate the operability of the facility and to collect initial data on the glass and the canistered waste forms. During the next four campaigns (the waste qualification campaigns) data will be obtained which will be used to demonstrate that the DWPF product meets DOE's Waste Acceptance Product Specifications (WAPS). Currently 12 of the 16 canisters have been filled with glass during the first campaign (FA-13). This paper describes the tests that have been carried out on these 12 glass-filled canisters and presents the data with reference to the acceptance criteria of the WAPS. These tests include measurement of canister dimensions prior to and after glass filling. dew point, composition, and pressure of the gas within the free volume of the canister, fill height, free volume, weight, leak rates of welds and temporary seals, and weld parameters

  9. Glass formulation requirements for DWPF coupled operations using crystalline silicotitanates

    International Nuclear Information System (INIS)

    Harbour, J.R.; Andrews, M.K.

    1997-01-01

    The design basis DWPF flowsheet couples the vitrification of two waste streams: (1) a washed sludge and (2) a hydrolyzed sodium tetraphenylborate precipitate product, PHA. The PHA contains cesium-137 which had been precipitated from the tank supernate with sodium tetraphenylborate. Smaller amounts of strontium and plutonium adsorbed on sodium titanate are also present with the PHA feed. Currently, DWPF is running a sludge-only flowsheet while working towards solutions to the problems encountered with In Tank Precipitation (ITP). The sludge loading for the sludge-only flowsheet and for the anticipated coupled operations is 28 wt% on an oxide basis. For the coupled operation, it is essential to balance the treatment of the two waste streams such that no supernate remains after immobilization of all the sludge. An alternative to ITP and sodium titanate is the removal of Cs-137, Sr-90, and plutonium from the tank supernate by ion exchange using crystalline silicotitanate (CST). This material has been shown to effectively sorb these elements from the supernate. It is also known that CST sorbs plutonium. The loaded CST could then be immobilized with the sludge during vitrification. It has recently been demonstrated that CST loadings approaching 70 wt% for a CST-only glass can be achieved using a borosilicate glass formulation which can be processed by the DWPF melter. Initial efforts on coupled waste streams with simulated DWPF sludge show promise that a borosilicate glass formulation can incorporate both sludge and CST. This paper presents the bases for research efforts to develop a glass formulation which will incorporate sludge and CST at loadings appropriate for DWPF operation

  10. DWPF MATERIALS EVALUATION SUMMARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Gee, T.; Chandler, G.; Daugherty, W.; Imrich, K.; Jankins, C.

    1996-09-12

    To better ensure the reliability of the Defense Waste Processing Facility (DWPF) remote canyon process equipment, a materials evaluation program was performed as part of the overall startup test program. Specific test programs included FA-04 ('Process Vessels Erosion/Corrosion Studies') and FA-05 (melter inspection). At the conclusion of field testing, Test Results Reports were issued to cover the various test phases. While these reports completed the startup test requirements, DWPF-Engineering agreed to compile a more detailed report which would include essentially all of the materials testing programs performed at DWPF. The scope of the materials evaouation programs included selected equipment from the Salt Process Cell (SPC), Chemical Process Cell (CPC), Melt Cell, Canister Decon Cell (CDC), and supporting facilities. The program consisted of performing pre-service baseline inspections (work completed in 1992) and follow-up inspections after completion of the DWPF cold chemical runs. Process equipment inspected included: process vessels, pumps, agitators, coils, jumpers, and melter top head components. Various NDE (non-destructive examination) techniques were used during the inspection program, including: ultrasonic testing (UT), visual (direct or video probe), radiography, penetrant testing (PT), and dimensional analyses. Finally, coupon racks were placed in selected tanks in 1992 for subsequent removal and corrosion evaluation after chemical runs.

  11. The DWPF waste form qualification program

    International Nuclear Information System (INIS)

    Marra, S.L.; Plodinec, M.J.

    1994-01-01

    Prior to the introduction of radioactive feed into the Defense Waste Processing Facility for immobilization in borosilicate glass an extensive waste qualification program must be completed. The DWPF must demonstrate its ability to comply with the Waste Acceptance Product Specifications. This ability is being demonstrated through laboratory and pilot scale work and will be completed after the full operation of the DWPF using various simulated feeds

  12. The single crystal structure determination of Ln{sub 6}MnSb{sub 15} (Ln=La, Ce), Ln{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), and Ln{sub 6}ZnSb{sub 15} (Ln=La-Pr)

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Katherine A.; McCandless, Gregory T.; Chan, Julia Y. [Texas Univ., Dallas, Richardson, TX (United States). Dept. of Chemistry and Biochemistry

    2017-09-01

    Single crystals of Ln{sub 6}MnSb{sub 15} (Ln=La, Ce), Ln{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), and Ln{sub 6}ZnSb{sub 15} (Ln=La-Pr) have been successfully grown and the compounds adopt the orthorhombic Ln{sub 6}MnSb{sub 15} structure type (space group Immm), with a∝4.3 Aa, b∝15 Aa, and c∝19 Aa. This structure is comprised of antimony nets and antimony ribbons which exhibit positional disorder at connecting points between antimony substructures, in addition to two partially occupied transition metal sites. The unit cell volumes of the La analogs displayed a systematic decrease upon Zn substitution. However, for the Ce{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} and Pr{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), the volumes deviate from linearity as observed in the parent compounds.

  13. DWPF Sample Vial Insert Study-Statistical Analysis of DWPF Mock-Up Test Data

    International Nuclear Information System (INIS)

    Harris, S.P.

    1997-01-01

    This report is prepared as part of Technical/QA Task Plan WSRC-RP-97-351 which was issued in response to Technical Task Request HLW/DWPF/TTR-970132 submitted by DWPF. Presented in this report is a statistical analysis of DWPF Mock-up test data for evaluation of two new analytical methods which use insert samples from the existing HydragardTM sampler. The first is a new hydrofluoric acid based method called the Cold Chemical Method (Cold Chem) and the second is a modified fusion method.Both new methods use the existing HydragardTM sampler to collect a smaller insert sample from the process sampling system. The insert testing methodology applies to the DWPF Slurry Mix Evaporator (SME) and the Melter Feed Tank (MFT) samples. Samples in small 3 ml containers (Inserts) are analyzed by either the cold chemical method or a modified fusion method. The current analytical method uses a HydragardTM sample station to obtain nearly full 15 ml peanut vials. The samples are prepared by a multi-step process for Inductively Coupled Plasma (ICP) analysis by drying, vitrification, grinding and finally dissolution by either mixed acid or fusion. In contrast, the insert sample is placed directly in the dissolution vessel, thus eliminating the drying, vitrification and grinding operations for the Cold chem method. Although the modified fusion still requires drying and calcine conversion, the process is rapid due to the decreased sample size and that no vitrification step is required.A slurry feed simulant material was acquired from the TNX pilot facility from the test run designated as PX-7.The Mock-up test data were gathered on the basis of a statistical design presented in SRT-SCS-97004 (Rev. 0). Simulant PX-7 samples were taken in the DWPF Analytical Cell Mock-up Facility using 3 ml inserts and 15 ml peanut vials. A number of the insert samples were analyzed by Cold Chem and compared with full peanut vial samples analyzed by the current methods. The remaining inserts were analyzed by

  14. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In

  15. Elimination Of The Characterization Of DWPF Pour Stream Sample And The Glass Fabrication And Testing Of The DWPF Sludge Batch Qualification Sample

    International Nuclear Information System (INIS)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-01-01

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the

  16. Glass sampling program during DWPF Integrated Cold Runs

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1990-01-01

    The described glass sampling program is designed to achieve two objectives: To demonstrate Defense Waste Processing Facility (DWPF) ability to control and verify the radionuclide release properties of the glass product; To confirm DWPF's readiness to obtain glass samples during production, and SRL's readiness to analyze and test those samples remotely. The DWPF strategy for control of the radionuclide release properties of the glass product, and verification of its acceptability are described in this report. The basic approach of the test program is then defined

  17. Gel-combustion synthesis of CoSb2O6 and its reduction to powdery Sb2Co alloy

    Directory of Open Access Journals (Sweden)

    MAJA JOVIC

    2009-01-01

    Full Text Available Sb2Co alloy in powdery form was synthesized via reduction with gaseous hydrogen of the oxide CoSb2O6, obtained by the citrate gel-combustion technique. The precursor was an aqueous solution of antimony nitrate, cobalt nitrate and citric acid. The precursor solution with mole ratio Co(II/Sb(V of 1:2 was gelatinized by evaporation of water. The gel was heated in air up to the temperature of self-ignition. The product of gel combustion was a mixture of oxides and it had to be additionally thermally treated in order to be converted to pure CoSb2O6. The reduction of CoSb2O6 by gaseous hydrogen yielded powdery Sb2Co as the sole phase. The process of oxide reduction to alloy was controlled by thermogravimetry, while X-ray diffractometry was used to control the phase compositions of both the oxides and alloys.

  18. Structural transition of (InSb)n clusters at n = 6-10

    Science.gov (United States)

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De

    2016-10-01

    An optimization strategy combining global semi-empirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (InSb)n clusters with n = 6-10. A new structural growth pattern of the clusters was observed. The lowest energy structures of (InSb)6 and (InSb)8 were different from that of previously reported results. Competition existed between core-shell and cage-like structures of (InSb)8. The structural transition of (InSb)n clusters occurred at size n = 8-9. For (InSb)9 and (InSb)10 clusters, core-shell structure were more energetically favorable than the cage. The corresponding electronic properties were investigated.

  19. Preliminary Analysis of Species Partitioning in the DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kesterson, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-15

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas entrainment rates from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream compositions and timeaveraged melter operating data over the duration of one canister-filling cycle. The only case considered in this study involved the SB6 pour stream sample taken while Canister #3472 was being filled over a 20-hour period on 12/20/2010, approximately three months after the bubblers were installed. The analytical results for that pour stream sample provided the necessary glass composition data for the mass balance calculations. To estimate the “matching” feed composition, which is not necessarily the same as that of the Melter Feed Tank (MFT) batch being fed at the time of pour stream sampling, a mixing model was developed involving three preceding MFT batches as well as the one being fed at that time based on the assumption of perfect mixing in the glass pool but with an induction period to account for the process delays involved in the calcination/fusion step in the cold cap and the melter turnover.

  20. DWPF liquid sample station: Status of equipment development

    International Nuclear Information System (INIS)

    Caplan, J.R.

    1987-01-01

    This report summarizes operating experience and equipment status of the DWPF liquid sample cell. Operation hours to date, results of equipment inspections and problems encountered and their solutions are discussed. An equipment and instrumentation status updating DPST-85-592, DWPF LIQUID SAMPLE CELL MOCK-UP, is presented. Remaining development items are also outlined

  1. SB6.0: The 6th International meeting on Synthetic Biology, July 9-11, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, Linda J. [BioBricks Foundation

    2015-04-23

    The Synthetic Biology conference series (SBx.0) is the preeminent academic meeting in synthetic biology. Organized by the BioBricks Foundation, the SBx.0 conference series brings together leading researchers, students, industry executives, and policy makers from around the world to share, consider, debate, and plan efforts to make biology easier to engineer. Historically held every two years, the SBx.0 conferences are held in alternating locations in the United States, Europe, and Asia to encourage global participation and collaboration so that the ramifications of synthetic biology research and development are most likely to be safe ethical, and beneficial. On 9-11 July 2013, the 6th installment of the synthetic biology conference series (SB6.0) was held on the campus of Imperial College London (http://sb6.biobricks.org). The SB6.0 conference was attended by over 700 people, and many more were able to participate via video digital conference (http://sb6.biobricks.org/digital-conference/). Over the course of three days, the SB6.0 conference agenda included plenary sessions, workshops, and poster presentations covering topics ranging from the infrastructure needs arising when “Systematic Engineering Meets Biological Complexity” and design-led considerations for “Connecting People and Technologies” to discussions on “Engineering Biology for New Materials,” “Assessing Risk and Managing Biocontainment,” and “New Directions for Energy and Sustainability.” The $10,150 grant awarded by the U.S. Department of Energy (DE-SC0010233) to the BioBricks Foundation was used to provide partial reimbursement for the travel expenses of leading researchers from the United States to speak at the SB6.0 conference. A total of $9,450 was used to reimburse U.S. speakers for actual expenses related to the SB6.0 conference, including airfare (economy or coach only), ground transportation, hotel, and registration fees. In addition, $700 of the grant was used to offset

  2. SME Acceptability Determination For DWPF Process Control (U)

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-12

    The statistical system described in this document is called the Product Composition Control System (PCCS). K. G. Brown and R. L. Postles were the originators and developers of this system as well as the authors of the first three versions of this technical basis document for PCCS. PCCS has guided acceptability decisions for the processing at the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) since the start of radioactive operations in 1996. The author of this revision to the document gratefully acknowledges the firm technical foundation that Brown and Postles established to support the ongoing successful operation at the DWPF. Their integration of the glass propertycomposition models, developed under the direction of C. M. Jantzen, into a coherent and robust control system, has served the DWPF well over the last 20+ years, even as new challenges, such as the introduction into the DWPF flowsheet of auxiliary streams from the Actinide Removal Process (ARP) and other processes, were met. The purpose of this revision is to provide a technical basis for modifications to PCCS required to support the introduction of waste streams from the Salt Waste Processing Facility (SWPF) into the DWPF flowsheet. An expanded glass composition region is anticipated by the introduction of waste streams from SWPF, and property-composition studies of that glass region have been conducted. Jantzen, once again, directed the development of glass property-composition models applicable for this expanded composition region. The author gratefully acknowledges the technical contributions of C.M. Jantzen leading to the development of these glass property-composition models. The integration of these models into the PCCS constraints necessary to administer future acceptability decisions for the processing at DWPF is provided by this sixth revision of this document.

  3. A pilot scale demonstration of the DWPF process control and product verification strategy

    International Nuclear Information System (INIS)

    Hutson, N.D.; Jantzen, C.M.; Beam, D.C.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) has been designed and constructed to immobilize Savannah River Site high level liquid waste within a durable borosilicate glass matrix for permanent storage. The DWPF will be operated to produce a glass product which must meet a number of product property constraints which are dependent upon the final product composition. During actual operations, the DWPF will control the properties of the glass product by the controlled blending of the waste streams with a glass-forming frit to produce the final melter feed slurry. The DWPF will verify control of the glass product through analysis of vitrified samples of slurry material. In order to demonstrate the DWPF process control and product verification strategy, a pilot-scale vitrification research facility was operated in three discrete batches using simulated DWPF waste streams. All of the DWPF process control methodologies were followed and the glass produce from each experiment was leached according to the Product Consistency Test. Results of the campaign are summarized

  4. Relaxation of the lower frit loading constraint for DWPF process control

    International Nuclear Information System (INIS)

    Brown, K.G.

    2000-01-01

    The lower limit on the frit loading parameter when measurement uncertainty is introduced has impacted DWPF performance during immobilization of Tank 42 Sludge; therefore, any defensible relaxation or omission of this constraint should correspondingly increase DWPF waste loading and efficiency. Waste loading should be increased because the addition of frit is the current remedy for exceeding the lower frit loading constraint. For example, frit was added to DWPF SME Batches 94, 97 and 98 to remedy these batches for low frit loading. Attempts were also made to add frit in addition to the optimum computed to assure the lower frit loading constraint would be satisfied; however, approximately half of the SME Batches produced after Batch 98 have violated the lower frit loading constraint. If the DWPF batches did not have to be remediated and additional frit added because of the lower frit loading limit, then both, the performance of the DWPF process and the waste loading in the glass produced would be increased. Before determining whether or not the lower frit loading limit can be relaxed or omitted, the origin of this and the other constraints related to durability prediction must be examined. The lower limit loading constraint results from the need to make highly durable glass in DWPF. It is required that DWPF demonstrate that the glass produced would have durability that is at least two standard deviations greater than that of the Environmental Assessment (EA) glass. Glass durability cannot be measured in situ, it must be predicted from composition which can be measured. Fortunately, the leaching characteristics of homogeneous waste glasses is strongly related to the total molar free energy of the constituent species. Thus the waste acceptance specification has been translated into a requirement that the total molar free energy associated with the glass composition that would be produced from a DWPF melter feed batch be less than that of the EA glass accounting for

  5. Sludge Batch 5 Slurry Fed Melt Rate Furnace Test with Frits 418 and 550

    International Nuclear Information System (INIS)

    Miller, Donald; Pickenheim, Bradley

    2009-01-01

    Based on Melt Rate Furnace (MRF) testing for the Sludge Batch 5 (SB5) projected composition and assessments of the potential frits with reasonable operating windows, the Savannah River National Laboratory (SRNL) recommended Slurry Fed Melt Rate Furnace (SMRF) testing with Frits 418 and 550. DWPF is currently using Frit 418 with SB5 based on SRNL's recommendation due to its ability to accommodate significant sodium variation in the sludge composition. However, experience with high boron containing frits in DWPF indicated a potential advantage for Frit 550 might exist. Therefore, SRNL performed SMRF testing to assess Frit 550's potential advantages. The results of SMRF testing with SB5 simulant indicate that there is no appreciable difference in melt rate between Frit 418 and Frit 550 at a targeted 34 weight % waste loading. Both batches exhibited comparable behavior when delivered through the feed tube by the peristaltic pump. Limited observation of the cold cap during both runs showed no indication of major cold cap mounding. MRF testing, performed after the SMRF runs due to time constraints, with the same two Slurry Mix Evaporator (SME) dried products led to the same conclusion. Although visual observations of the cross-sectioned MRF beakers indicated differences in the appearance of the two systems, the measured melt rates were both ∼0.6 in/hr. Therefore, SRNL does not recommend a change from Frit 418 for the initial SB5 processing in DWPF. Once the actual SB5 composition is known and revised projections of SB5 after the neptunium stream addition and any decants is provided, SRNL will perform an additional compositional window assessment with Frit 418. If requested, SRNL can also include other potential frits in this assessment should processing of SB5 with Frit 418 result in less than desirable melter throughput in DWPF. The frits would then be subjected to melt rate testing at SRNL to determine any potential advantages

  6. A pilot scale demonstration of the DWPF process control and product verification strategy

    International Nuclear Information System (INIS)

    Hutson, N.D.; Jantzen, C.M.; Beam, D.C.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) has been designed and constructed to immobilize Savannah River Site high level liquid waste within a durable borosilicate glass matrix for permanent storage. The DWPF will be operated to produce a glass product which must meet a number of product property constraints which are dependent upon the final product composition. During actual operations, the DWPF will control the properties of the glass product by the controlled blending of the waste streams with a glass-forming frit to produce the final melter feed slurry. The DWPF will verify control of the glass product through analysis of vitrified samples of slurry material. In order to demonstrate the DWPF process control and product verification strategy, a pilot-scale vitrification research facility was operated in three discrete batches using simulated DWPF waste streams. All of the DWPF process control methodologies were followed and the glass product from each experiment was leached according to the Product Consistency Test. In this paper results of the campaign are summarized

  7. Estimation of total error in DWPF reported radionuclide inventories. Revision 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is required to determine and report the radionuclide inventory of its glass product. For each macro-batch, the DWPF will report both the total amount (in curies) of each reportable radionuclide and the average concentration (in curies/gram of glass) of each reportable radionuclide. The DWPF is to provide the estimated error of these reported values of its radionuclide inventory as well. The objective of this document is to provide a framework for determining the estimated error in DWPF's reporting of these radionuclide inventories. This report investigates the impact of random errors due to measurement and sampling on the total amount of each reportable radionuclide in a given macro-batch. In addition, the impact of these measurement and sampling errors and process variation are evaluated to determine the uncertainty in the reported average concentrations of radionuclides in DWPF's filled canister inventory resulting from each macro-batch

  8. DWPF PCCS version 2.0 test case

    International Nuclear Information System (INIS)

    Brown, K.G.; Pickett, M.A.

    1992-01-01

    To verify the operation of the Product Composition Control System (PCCS), a test case specific to DWPF operation was developed. The values and parameters necessary to demonstrate proper DWPF product composition control have been determined and are presented in this paper. If this control information (i.e., for transfers and analyses) is entered into the PCCS as illustrated in this paper, and the results obtained correspond to the independently-generated results, it can safely be said that the PCCS is operating correctly and can thus be used to control the DWPF. The independent results for this test case will be generated and enumerated in a future report. This test case was constructed along the lines of the normal DWPF operation. Many essential parameters are internal to the PCCS (e.g., property constraint and variance information) and can only be manipulated by personnel knowledgeable of the Symbolics reg-sign hardware and software. The validity of these parameters will rely on induction from observed PCCS results. Key process control values are entered into the PCCS as they would during normal operation. Examples of the screens used to input specific process control information are provided. These inputs should be entered into the PCCS database, and the results generated should be checked against the independent, computed results to confirm the validity of the PCCS

  9. The corrosion behavior of DWPF glasses

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.

    1995-01-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed

  10. Can-in-canister cold demonstration in DWPF (U)

    International Nuclear Information System (INIS)

    Kuehn, N.H.

    1996-07-01

    The Department of Energy Fissile Materials Disposition Program is evaluating a number of options for disposition of weapons-usable plutonium surplus to national defense needs. One of the immobilization options is the Can-In-Canister approach. In this option small cans of a plutonium glass, which contains a neutron absorber, are placed on a support structure in a large Savannah River Site Defense Waste Processing Facility (DWPF) canister. The top is then welded onto the canister. This canister is filled with High Level Waste (HLW) glass at the DWPF. The HLW glass provides the radiation source for proliferation resistance. These canisters are to be placed in a Federal Repository. To provide information on the technical feasibility of this option prior to the Record of Decision on plutonium disposition, the Department of Energy Fissile Materials Disposition Program funded a demonstration in the DWPF. This demonstration was conducted before the start of radioactive operations. Two test canisters containing cans of surrogate (non- radioactive) plutonium glass were successfully filled with simulated HLW glass at the DWPF using standard pouring procedures. One canister had twenty cans of surrogate plutonium glass. The other had eight cans of surrogate plutonium glass. After the canisters were filled, the contents of the canisters were examined to provide data on the effect of the rack and cans on the filling of the DWPF canister, the effect of the pour on the surrogate plutonium glass and the effect of the rack and cans on the simulated HLW glass. There was no deformation of the support racks during the pour. The simulated HLW glass filled all the regions around the rack and cans and the regions between the cans and the wall of the canister. This report discusses the design of the racks and cans, the modification of the DWPF canisters to accommodate the rack and cans, the conditions during the pours and the results of the post pour analysis

  11. TANK 40 FINAL SB4 CHEMICAL CHARACTERIZATION RESULTS

    International Nuclear Information System (INIS)

    Best, J.

    2008-01-01

    A sample of Sludge Batch 4 (SB4) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). This sample was also analyzed for elemental and chemical composition including noble metals. These analyses along with the WAPS analyses will help define the composition of the sludge currently in Tank 40 which is currently being fed to DWPF and will become part of Sludge Batch 5 (SB5). At SRNL the 3-L Tank 40 SB4 sample was transferred from the shipping container into a 4-L vessel and solids allowed to settle overnight. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 280 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO 3 /HCl in sealed Teflon(reg s ign) vessels and four in Na 2 O 2 using Zr crucibles. Due to the use of Zr crucibles and Na in the peroxide fusions, Na and Zr cannot be determined from this preparation. Three glass standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted and submitted to Analytical Development (AD) for inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma-mass spectrometry (ICP-MS) analysis, and cold vapor atomic absorption (CV-AA) analysis. Equivalent dilutions of the peroxide fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB4 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES and ICP-MS. Weighted dilutions of slurry were submitted for ion chromatography (IC), total inorganic carbon/total organic carbon (TIC/TOC), and total base analyses. A sample of Tank 40 SB4 decant was collected by carefully removing the supernate phase

  12. Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task.

    Science.gov (United States)

    Perez-García, Georgina; Meneses, Alfredo

    2005-07-01

    In this work we aimed to re-examine the 5-HT6 receptor role, by testing the selective antagonists SB-357134 (1-30 mg/kg p.o.) and SB-399885 (1-30 mg/kg p.o.) during memory consolidation of conditioned responses (CR%), in an autoshaping Pavlovian/instrumental learning task. Bioavailability, half-life and minimum effective dose to induce inappetence for SB-357134 were 65%, 3.4 h, and 30 mg/kg p.o., and for SB-399885 were 52%, 2.2 h, and 50 mg/kg p.o., respectively. Oral acute and chronic administration of either SB-357134 or SB-399885 improved memory consolidation compared to control groups. Acute administration of SB-357134, at 1, 3, 10 and 30 mg/kg, produced a CR% inverted-U curve, eliciting the latter dose a 7-fold increase relative to saline group. Acute injection of SB-399885 produced significant CR% increments, being 1 mg/kg the most effective dose. Repeated administration (7 days) of either SB-357134 (10 mg/kg) or SB-399885 (1 mg/kg) elicited the most significant CR% increments. Moreover, modeling the potential therapeutic benefits of 5-HT6 receptor blockade, acute or repeated administration of SB-399885, at 10 mg/kg reversed memory deficits produced by scopolamine or dizocilpine, and SB-357134 (3 and 10 mg/kg) prevented amnesia and even improved performance. These data support the notion that endogenously 5-HT acting, via 5-HT6 receptor, improves memory consolidation.

  13. Canister disposition plan for the DWPF Startup Test Program

    International Nuclear Information System (INIS)

    Harbour, J.R.; Payne, C.H.

    1990-01-01

    This report details the disposition of canisters and the canistered waste forms produced during the DWPF Startup Test Program. The six melter campaigns (DWPF Startup Tests FA-13, WP-14, WP-15, WP-16, WP-17, and FA-18) will produce 126 canistered waste forms. In addition, up to 20 additional canistered waste forms may be produced from glass poured during the transition between campaigns. In particular, this canister disposition plan (1) assigns (by alpha-numeric code) a specific canister to each location in the six campaign sequences, (2) describes the method of access for glass sampling on each canistered waste form, (3) describes the nature of the specific tests which will be carried out, (4) details which tests will be carried out on each canistered waste form, (5) provides the sequence of these tests for each canistered waste form, and (6) assigns a storage location for each canistered waste form. The tests are designed to provide evidence, as detailed in the Waste Form Compliance Plan (WCP 1 ), that the DWPF product will comply with the Waste Acceptance Product Specifications (WAPS 2 ). The WAPS must be met before the canistered waste form is accepted by DOE for ultimate disposal at the Federal Repository. The results of these tests will be included in the Waste Form Qualification Report (WQR)

  14. First-principles study of amorphous Ga4Sb6Te3 phase-change alloys

    Science.gov (United States)

    Bouzid, Assil; Gabardi, Silvia; Massobrio, Carlo; Boero, Mauro; Bernasconi, Marco

    2015-05-01

    First-principles molecular dynamics simulations within the density functional theory framework were performed to generate amorphous models of the Ga4Sb6Te3 phase change alloy by quenching from the melt. We find that Ga-Sb and Ga-Te are the most abundant bonds with only a minor amount of Sb-Te bonds participating to the alloy network. Ga and four-coordinated Sb atoms present a tetrahedral-like geometry, whereas three-coordinated Sb atoms are in a pyramidal configuration. The tetrahedral-like geometries are similar to those of the crystalline phase of the two binary compounds GaTe and GaSb. A sizable fraction of Sb-Sb bonds is also present, indicating a partial nanoscale segregation of Sb. Despite the fact that the composition Ga4Sb6Te3 lies on the pseudobinary Ga Sb -Sb2Te3 tie line, the amorphous network can be seen as a mixture of the two binary compounds GaTe and GaSb with intertwined elemental Sb.

  15. DWPF integrated cold runs revised technical bases for precipitate hydrolysis

    International Nuclear Information System (INIS)

    Landon, L.F.

    1992-01-01

    The report defines new precipitate hydrolysis process operating parameters for DWPF Chemical runs assuming the precipitate feed simulants to be processed reflect the decision to implement a final wash of the tetraphenylborate slurry before transfer to DWPF (i.e. the Late Wash Facility). Control of the nitrite content of the tetraphenylborate slurry to 0.01M or less has eliminated the need for hydroxylamine nitrate (HAN) during hydrolysis. Consequently, the oxidant nitrous oxide will not be generated. However, nitric oxide (NO) is expected to be generated (reaction of formic acid with nitrite) and some fraction of the NO can be expected to be oxidized to nitrogen dioxide. The rate of NO generation with low nitrite feed has not been quantified at this time nor is the extent to which the NO is oxidized to NO 2 known. A mass spectrometer is being installed in the Precipitate Hydrolysis Experimental Facility (PHEF) which will enable the NO generation rate to be defined as well as the extent to which the NO is oxidized to NO 2 . There is some undocumented data available for C 6 H 6 /NO and C 6 H 6 /NO 2 with N 2 as the diluent but no similar data for CO 2 . Development of test data in the required time frame is not possible. However, MOC's will be estimated for benzene/NO/NO 2 /CO 2 gas mixtures (the MOC is expected to be approximately 60% less than for the HAN process). Once these data are obtained, and NO/NO 2 concentration profiles are obtained from PHEF hydrolysis process demonstrations, a flammability control strategy for the DWPF Salt Processing Cell will be developed. Implementation of the HAN process purge strategy upon startup of the SPC with the late wash process would be conservative

  16. Spin 1/2 Delafossite Honeycomb Compound Cu5SbO6

    DEFF Research Database (Denmark)

    Climent-Pascual, E.; Norby, Poul; Andersen, Niels Hessel

    2012-01-01

    Cu5SbO6 is found to have a monoclinic, Delafossite-derived structure consisting of alternating layers of O–Cu(I)–O sticks and magnetic layers of Jahn–Teller distorted Cu(II)O6 octahedra in an edge sharing honeycomb arrangement with Sb(V)O6 octahedra. This yields the structural formula Cu(I)3Cu(II...

  17. The Impact of Waste Loading on Viscosity in the Frit 418-SB3 System

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    In this report, data are provided to gain insight into the potential impact of a lower viscosity glass on melter stability (i.e., pressure spikes, cold cap behavior) and/or pour stream stability. High temperature viscosity data are generated for the Frit 418-SB3 system as a function of waste loading (from 30 to 45 percent) and compared to similar data from other systems that have been (or are currently being) processed through the Defense Waste Processing Facility (DWPF) melter. The data are presented in various formats to potentially align the viscosity data with physical observations at various points in the melter system or critical DWPF processing unit operations. The expectations is that the data will be provided adequate insight into the vitrification parameters which might evolve into working solutions as DWPF strives to maximize waste throughput. This report attempts to provide insight into a physical interpretation of the data from a DWPF perspective. The theories present ed are certainly not an all inclusive list and the order in which they are present does imply a ranking, probability, or likelihood that the proposed theory is even plausible. The intent of this discussion is to provide a forum in which the viscosity data can be discussed in relation to possible mechanisms which could potentially lead to a workable solution as discussed in relation to possible solution as higher overall attainment is striven for during processing of the current or future sludge batches

  18. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  19. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    International Nuclear Information System (INIS)

    Shine, E. P.; Poirier, M. R.

    2013-01-01

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  20. The DWPF strategy for producing an acceptable product

    International Nuclear Information System (INIS)

    Goldston, W.T.; Plodinec, M.J.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will convert the 130 million liters of high-level nuclear waste at SRS into stable borosilicate glass. Production of canistered waste forms by the DWPF is scheduled to begin well before submission of the license application for the first repository. The Department of Energy has defined waste acceptance specifications to ensure that DWPF canistered waste forms will be acceptable for eventual disposal. To ensure that canistered waste forms meet those specifications, a program is being carried out to qualify the waste form and those aspects of the production process which affect product quality. This program includes: Pre-production qualification testing of simulated and actual waste forms; Disciplined demonstrations of the ability to produce an acceptable product during startup testing; and Application of a rigorous product control program during production

  1. Liquidus Temperature Data for DWPF Glass

    International Nuclear Information System (INIS)

    Piepel, G.F.; Vienna, J.D.; Crum, J.V.; Mika, M.; Hrma, P.

    1999-01-01

    This report provides new liquidus temperature (T L ) versus composition data that can be used to reduce uncertainty in T L calculation for DWPF glass. According to the test plan and test matrix design PNNL has measured T L for 53 glasses within and just outside of the current DWPF processing composition window. The T L database generated under this task will directly support developing and enhancing the current T L process-control model. Preliminary calculations have shown a high probability of increasing HLW loading in glass produced at the SRS and Hanford. This increase in waste loading will decrease the life-cycle tank cleanup costs by decreasing process time and the volume of waste glass produced

  2. Bounding estimate of DWPF mercury emissions

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1992-01-01

    Purges required for H2 flammability control and verification of elevated Formic Acid Vent Condenser (FAVC) exit temperatures due to NO x reactions have lead to significant changes in Chemical Process Cell (CPC) operating conditions. Accordingly, mercury emissions estimates have been updated based upon the new operating requirements, IDMS (Integrated DWPF Melter System) experience, and development of an NO x /FAVC model which predicts FAVC exit temperatures. Using very conservative assumptions and maximum purge rates, the maximum calculated Hg emissions is approximately 130 lbs/yr. A range of 100 to 120 lbs/yr is conservatively predicted for other operating conditions. Defense Waste Processing Facility (DWPF) permitted Hg emissions are 175 lbs/yr (0.02 lbs/hr annual average)

  3. DWPF remotable television and cell lighting facilities

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1984-01-01

    The Defense Waste Processing Facility (DWPF) for radioactive waste vitrification at the Savannah River Plant (SRP) is now under construction. Development of specialized low cost television (TV) viewing equipment for in-cell and within-melter applications is now complete. High resolution TV cameras not originally designed for high radiation environments have been demonstrated in crane remotable packages to be well suited to the DWPF. High intensity in-cell lighting has also been demonstrated in crane remotable assemblies. These dual 1000 W units (2000 W total) are used to support the multiplicity of TV and cell window viewing requirements. 8 figures

  4. Task technical plan: DWPF air permit/dispersion modeling

    International Nuclear Information System (INIS)

    Lambert, D.P.

    1993-01-01

    This Task Technical Plan summarizes work required to project the benzene emissions from the Late Wash Facility (LWF) as well as update the benzene, mercury, and NO x emissions from the remainder of the Defense Waste Processing Facility (DWPF). These calculations will reflect (1) the addition of the LWF and (2) the replacement of formic acid with nitric acid in the melter preparation process. The completed calculations will be used to assist DWPF in applying for the LWF Air Quality Permit

  5. Evaluation of vitrification factors from DWPF's macro-batch 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    2000-01-01

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ''glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015

  6. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  7. Conditions for precipitation of copper phases in DWPF waste glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Ramsey, W.G.

    1993-01-01

    The Defense Waste Processing Facility (DWPF) precipitate hydrolysis process requires the use of copper formate catalyst. The expected absorbed radiation doses to the precipitate require levels of copper formate that increase the potential for the precipitation of metallic copper in the DWPF Melter. The conditions required to avoid the precipitation of copper are described

  8. Single step hydrothermal based synthesis of M(II)Sb2O6 (M = Cd ...

    Indian Academy of Sciences (India)

    characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive .... SEM images and EDAX analysis of (a) and (b) CdSb2O6 and (c) and (d) ZnSb2O6. ... The parent compound, ilmenite (NaSbO3) could degrade MB.

  9. DWPF waste form compliance plan (Draft Revision)

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Marra, S.L.

    1991-01-01

    The Department of Energy currently has over 100 million liters of high-level radioactive waste in storage at the Savannah River Site (SRS). In the late 1970's, the Department of Energy recognized that there were significant safety and cost advantages associated with immobilizing the high-level waste in a stable solid form. Several alternative waste forms were evaluated in terms of product quality and reliability of fabrication. This evaluation led to a decision to build the Defense Waste Processing Facility (DWPF) at SRS to convert the easily dispersed liquid waste to borosilicate glass. In accordance with the NEPA (National Environmental Policy Act) process, an Environmental Impact Statement was prepared for the facility, as well as an Environmental Assessment of the alternative waste forms, and issuance of a Record of Decision (in December, 1982) on the waste form. The Department of Energy, recognizing that start-up of the DWPF would considerably precede licensing of a repository, instituted a Waste Acceptance Process to ensure that these canistered waste forms would be acceptable for eventual disposal at a federal repository. This report is a revision of the DWPF compliance plan

  10. DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE

    International Nuclear Information System (INIS)

    Click, D; Tommy Edwards, T; Henry Ajo, H

    2008-01-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem Method, see Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 5 (SB5) SRAT Receipt and SB5 SRAT Product samples. The SB5 SRAT Receipt and SB5 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB5 Batch composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 4 (SB4), to form the SB5 Blend composition. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element in the sludge or used to estimate ratios of compounds in the sludge. A statistical comparison of the data validates the use of the DWPF CC method for SB5 Batch composition. However, the difficulty that was encountered in using the CC method for SB4 brings into question the adequacy of CC for the SB5 Blend. Also, it should be noted that visible solids remained in the final diluted solutions of all samples digested by this method at SRNL (8 samples total), which is typical for the DWPF CC method but not seen in the other methods. Recommendations to the DWPF for application to SB5 based on studies to date: (1) A dissolution study should be performed on the WAPS

  11. The DWPF: Results of full scale qualification runs leading to radioactive operations

    International Nuclear Information System (INIS)

    Marra, S.L.; Elder, H.H.; Occhipinti, J.H.; Snyder, D.E.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC will immobilize high-level radioactive liquid waste, currently stored in underground carbon steel tanks, in borosilicate glass. The radioactive waste is transferred to the DWPF in two forms: precipitate slurry and sludge slurry. The radioactive waste is pretreated and then combined with a borosilicate glass frit in the DWPF. This homogeneous slurry is fed to a Joule-heated melter which operates at approximately 1150 degrees C. The glass is poured into stainless steel canisters for eventual disposal in a geologic repository. The DWPF product (i.e. the canistered waste form) must comply with the Waste Acceptance Product Specifications (WAPS) in order to be acceptable for disposal. The DWPF has completed Waste Qualification Runs which demonstrate the facility's ability to comply with the waste acceptance specifications. During the Waste Qualification Runs seventy-one canisters of simulated waste glass were produced in preparation for Radioactive Operations. These canisters of simulated waste glass were produced during five production campaigns which also exercised the facility prior to beginning Radioactive Operations. The results of the Waste Qualification Runs are presented

  12. Corrosion impact of reductant on DWPF and downstream facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilderman, J. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing was recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels

  13. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF

  14. RECENT PROCESS IMPROVEMENTS TO INCREASE HLW THROUGHPUT AT THE DWPF

    International Nuclear Information System (INIS)

    Herman, C

    2007-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  15. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses

  16. Neptunium sorption and co-precipitation of strontium in simulated DWPF salt solution

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Orebaugh, E.G.; King, C.M.

    1988-01-01

    Batch experiments performed using crushed slag saltstone (∼40 mesh) removed >80% of 237 Np from simulated Defense Waste Processing Facility (DWPF) salt solution. The concentration of 237 Np (110 pCi/ml) used was 1000x greater than levels in actual DWPF solutions. Neptunium-239 was used as a tracer and was formed by neutron activation of uranyl nitrate. Results showed that small amounts of crushed saltstone (as little as 0.05 grams), removed >80% of neptunium from 15 ml of simulated DWPF solution after several hours equilibration. The neptunium is sorbed on insoluble carbonates formed in and on the saltstone matrix. Further testing showed that addition of 0.01 and 0.10 ml of 1 molar Ca +2 (ie. Ca (NO 3 ) 2 , CaCl 2 ) into 15 ml of simulated DWPF solution yielded a white carbonate precipitate which also removed >80% of the neptunium after 1 hour equilibration. Further experiments were performed to determine the effectiveness of this procedure to co-precipitate strontium

  17. DWPF glass transition temperatures: What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.; Ramsey, A.A.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site will immobilize high-level radioactive liquid waste in borosilicate glass. The glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  18. Effects of FeSb6 octahedral deformations on the electronic structure of LaFe4Sb12

    KAUST Repository

    Pulikkotil, Jiji Thomas Joseph

    2011-09-01

    First-principles density functional based electronic structure calculations are performed in order to clarify the influence of FeSb6 octahedral deformations on the structural and electronic structure properties of LaFe 4Sb12. Our results show that octahedral tiltings correlate with the band dispersions and, consequently, the band masses. While total energy variation points at an enhanced role of lattice anharmonicity, flat bands emerge from a redistribution of the electronic states. © 2011 Elsevier B.V. All rights reserved.

  19. Bounding estimate of DWPF mercury emissions

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1993-01-01

    Two factors which have substantial impact on predicted Mercury emissions are the air flows in the Chemical Process Cell (CPC) and the exit temperature of the Formic Acid Vent Condenser (FAVC). The discovery in the IDMS (Integrated DWPF Melter System) of H 2 generation by noble metal catalyzed formic acid decomposition and the resultant required dilution air flow has increased the expected instantaneous CPC air flow by as much as a factor of four. In addition, IDMS has experienced higher than design (10 degrees C) FAVC exit temperatures during certain portions of the operating cycle. These temperatures were subsequently attributed to the exothermic reaction of NO to NO 2 . Moreover, evaluation of the DWPF FAVC indicated it was undersized and unless modified or replaced, routine exit temperatures would be in excess of design. Purges required for H 2 flammability control and verification of elevated FAVC exit temperatures due to NO x reactions have lead to significant changes in CPC operating conditions. Accordingly, mercury emissions estimates have been updated based upon the new operating requirements, IDMS experience, and development of an NO x /FAVC model which predicts FAVC exit temperatures. Using very conservative assumptions and maximum purge rates, the maximum calculated Hg emissions is approximately 130 lbs/yr. A range of 100 to 120 lbs/yr is conservatively predicted for other operating conditions. The peak emission rate calculated is 0.027 lbs/hr. The estimated DWPF Hg emissions for the construction permit are 175 lbs/yr (0.02 lbs/hr annual average)

  20. The Impact Of The Mcu Life Extension Solvent On Dwpf Glass Formulation Efforts

    International Nuclear Information System (INIS)

    Peeler, D.; Edwards, T.

    2011-01-01

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NG-CSSX), a new strip acid, and modified monosodium titanate (mMST) will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing with the next generation solvent and mMST is required to determine the impact of these changes in 512-S operations as well as Chemical Process Cell (CPC), Defense Waste Processing Facility (DWPF) glass formulation activities, and melter operations at DWPF. To support programmatic objectives, the downstream impacts of the boric acid strip effluent (SE) to the glass formulation activities and melter operations are considered in this study. More specifically, the impacts of boric acid additions to the projected SB7b operating windows, potential impacts to frit production temperatures, and the potential impact of boron volatility are evaluated. Although various boric acid molarities have been reported and discussed, the baseline flowsheet used to support this assessment was 0.01M boric acid. The results of the paper study assessment indicate that Frit 418 and Frit 418-7D are robust to the implementation of the 0.01M boric acid SE into the SB7b flowsheet (sludge-only or ARP-added). More specifically, the projected operating windows for the nominal SB7b projections remain essentially constant (i.e., 25-43 or 25-44% waste loading (WL)) regardless of the flowsheet options (sludge-only, ARP added, and/or the presence of the new SE). These results indicate that even if SE is not transferred to the Sludge Receipt and Adjustment Tank (SRAT), there would be no need to add boric acid (from a trim tank) to compositionally compensate for the absence of the boric acid SE in either a sludge-only or ARP-added SB7b flowsheet. With respect to boron volatility, the Measurement Acceptability Region (MAR) assessments also

  1. Preparation of the Wire of ZChSnSb11-6 Used for Remanufacturing Thermal Spraying

    Science.gov (United States)

    Zhang, B.; Yang, Z. Y.; Fu, D. X.; Li, X. F.; Chen, W.

    Tin base Babbitt alloy widely used in bearing bush production and repair, the performance of ZChSnSb11-6 is better than ZChSnSb8-4.But as a result of as-cast structure of ZChSnSb11-6 is rich in big hard phase, its processing performance is bad, in this paper, through the optimization of smelting, casting, extrusion, drawing and other processes we have been successfully prepared ZChSnSb11-6 wire suitable for thermal spraying. Through metallographic examination, micro hardness, bond strength and porosity testing, it was proved that the wire meet the requirements of bearing manufacturing thermal spraying.

  2. Sludge Batch Variability Study With Frit 418

    International Nuclear Information System (INIS)

    Johnson, F.; Edwards, T.

    2010-01-01

    The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO 2 resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass regardless of

  3. Fabrication of remote steam atomized scrubbers for DWPF off-gas system

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Lafferty, J.D.

    1988-01-01

    The defense waste processing facility (DWPF) is being constructed for the purpose of processing high-level waste from sludge to a vitrified borosilicate glass. In the operation of continuous slurry-fed melters, off-gas aerosols are created by entrainment of feed slurries and the vaporization of volatile species from the molten glass mixture. It is necessary to decontaminate these aerosols in order to minimize discharge of airborne radionuclide particulates. A steam atomized scrubber (SAS) has been developed for DWPF which utilizes a patented hydro- sonic system gas scrubbing method. The Hydro-Sonic System utilizes a steam aspirating-type venturi scrubber that requires very precise fabrication tolerances in order to obtain acceptable decontamination factors. In addition to the process-related tolerances, precision mounting and nozzle tolerances are required for remote service at DWPF

  4. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  5. Crystal structure and magnetic properties of Tb6FeSb2

    International Nuclear Information System (INIS)

    Cai Gemei; Zhang Jiliang; He Wei; Qin Pingli; Zeng Lingmin

    2006-01-01

    The crystal structure and magnetic properties of Tb 6 FeSb 2 has been investigated for the first time. The compound crystallizes in the hexagonal, space group P6-bar 2m (No. 189) with the Ho 6 FeSb 2 structure type and lattice parameters a=8.1942(5)A, c=4.1758(3)A, z=1 and D calc =8.564g/cm 3 . Its magnetic properties were measured between 85 and 420K. The Curie temperature T c =256K was obtained using the method of intersecting tangents, and the effective paramagnetic moment was μ eff =9.32μ B per Tb atom

  6. Nanocrystals of a new complex perovskite dielectric Ba{sub 2}TmSbO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Nair, V.M. [Department of Physics, University College, Trivandrum 695034, Kerala (India); Jose, R., E-mail: rjose@ump.edu.my [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan (Malaysia); Anil Kumar, G.M. [Noritake Co Ltd, 300 Higashiyama, Miyoshi, Aichi 470-0293 (Japan); Yusoff, Mashitah M. [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan (Malaysia); Wariar, P.R.S. [Department of Physics, University College, Trivandrum 695034, Kerala (India)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer A new material, Ba{sub 2}TmSbO{sub 6}, has been synthesized as nanocrystals for the first time. Black-Right-Pointing-Pointer A combustion process, characterized by a one-pot procedure, was adopted to synthesize Ba{sub 2}TmSbO{sub 6} as nanocrystals. Black-Right-Pointing-Pointer Crystal structure and dielectric properties of the Ba{sub 2}TmSbO{sub 6} have been studied and compared with similar materials. - Abstract: Nanocrystals of a new complex perovskites ceramic oxide, barium thulium antimony oxide - Ba{sub 2}TmSbO{sub 6}, were synthesized using a single step auto-ignition combustion process. The combustion product was single phase and composed of aggregates of nanocrystals of sizes in the range 20-50 nm. Ba{sub 2}TmSbO{sub 6} crystallized in cubic perovskite structure with lattice parameter, a = 8.4101 Angstrom-Sign . The polycrystalline fluffy combustion product was sintered to high density ({approx}97%) at {approx}1450 Degree-Sign C for 4 h. Resistivity of the sintered specimen was {approx}5 M{Omega}/cm. The Ba{sub 2}TmSbO{sub 6} has dielectric constant ({epsilon} Prime ) and dielectric loss (tan {delta}) of 17 and {approx}10{sup -4} at 5 MHz; the new material would probably be developed as a low-loss dielectric material.

  7. SLUDGE BATCH 4 BASELINE MELT RATE FURNACE AND SLURRY-FED MELT RATE FURNACE TESTS WITH FRITS 418 AND 510 (U)

    International Nuclear Information System (INIS)

    Smith, M; Timothy Jones, T; Donald02 Miller, D

    2007-01-01

    Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418, 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters

  8. DWPF process control

    International Nuclear Information System (INIS)

    Heckendoin, F.M. II

    1983-01-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant (SRP) is in the final design stage. Instrumentation to provide the parameter sensing required to assure the quality of the two-foot-diameter, ten-foot-high waste canister is in the final stage of development. All step of the process and instrumentation are now operating as nearly full-scale prototypes at SRP. Quality will be maintained by assuring that only the intended material enters the canisters, and by sensing the resultant condition of the filled canisters. Primary emphasis will be on instrumentation of the process

  9. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  10. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  11. Magnetic and transport properties of Ce 6MnSb 15

    Science.gov (United States)

    Godart, Claude; Rogl, Peter; Alleno, Eric; Gonçalves, António P.; Rouleau, Olivier

    2006-05-01

    In our effort to look for new Ce/Yb-based compounds with large unit cell, we studied Ce 6MnSb 15. Rietveld refinements of X-ray powder diffraction confirm that the material crystallizes in orthorhombic structure La 6MnSb 15-type, Imm2 space group, with 2 Ce sites (8e and 4d) and lattice parameters a=15.1643 Å, b=19.3875 Å and c=4.2794 Å, which closely agree with those already published. Magnetic susceptibility results show a paramagnetic behavior and no magnetic order down to 2 K in contrast to antiferromagnetic order previously reported at 7 K. Resistivity shows a metallic behavior and the Seebeck coefficient is very low, typically -2 μV/K.

  12. Radioactive demonstration of DWPF product control strategy

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.

    1992-01-01

    The effectiveness of the product and process control strategies that will be utilized by the Defense Waste Processing Facility (DWPF) was demonstrated during a campaign in the Shielded Cells Facility (SCF) of the Savannah River Technology Center (SRTC). The remotely operated process included the preparation of the melter feed, vitrification in a slurry-fed 1/100th scale melter and analysis of the glass product both for its composition and durability. The campaign processed approximately 10 kg (on a dry basis) of radioactive sludge from Tank 51. This sludge is representative of the first batch of sludge that will be sent to the DWPF for immobilization into borosilicate glass. Additions to the sludge were made based on calculations using the Product Composition Control System (PCCS). Analysis of the glass produced during the campaign showed that a durable glass was produced with a composition similar to that predicted using the PCCS

  13. Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer

    Science.gov (United States)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt

    2018-05-01

    A 99.6% relaxed InSb layer is grown on a 6° offcut (1 0 0) Si substrate via an AlSb/GaSb buffer using molecular beam epitaxy (MBE). A 200 nm GaSb buffer is first grown on Si and the lattice mismatch between them is accommodated by an interfacial misfit (IMF) array consisting of uniformly distributed 90° misfit dislocations. Si delta doping is introduced during the growth of GaSb to reduce the density of threading dislocation. Subsequently, a 50 nm AlSb buffer is grown followed by a 0.8 μm InSb layer. The InSb layer exhibits a 300 K electron mobility of 22,300 cm2/Vs. An InSb photoconductor on Si is demonstrated with a photoconductive gain from 77 K to 200 K under a 700 °C maintained blackbody.

  14. DWPF glass transition temperatures - What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Applewhite-Ramsey, A.L.; Jantzen, C.M.

    1991-01-01

    The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the first geologic repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  15. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  16. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  17. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  18. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12.

    Directory of Open Access Journals (Sweden)

    Shanshan Yang

    Full Text Available Light signaling by phytochrome B in long days inhibits flowering in sorghum by increasing expression of the long day floral repressors PSEUDORESPONSE REGULATOR PROTEIN (SbPRR37, Ma1 and GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGHD7, Ma6. SbPRR37 and SbGHD7 RNA abundance peaks in the morning and in the evening of long days through coordinate regulation by light and output from the circadian clock. 58 M, a phytochrome B deficient (phyB-1, ma3R genotype, flowered ∼60 days earlier than 100 M (PHYB, Ma3 in long days and ∼11 days earlier in short days. Populations derived from 58 M (Ma1, ma3R, Ma5, ma6 and R.07007 (Ma1, Ma3, ma5, Ma6 varied in flowering time due to QTL aligned to PHYB/phyB-1 (Ma3, Ma5, and GHD7/ghd7-1 (Ma6. PHYC was proposed as a candidate gene for Ma5 based on alignment and allelic variation. PHYB and Ma5 (PHYC were epistatic to Ma1 and Ma6 and progeny recessive for either gene flowered early in long days. Light signaling mediated by PhyB was required for high expression of the floral repressors SbPRR37 and SbGHD7 during the evening of long days. In 100 M (PHYB the floral activators SbEHD1, SbCN8 and SbCN12 were repressed in long days and de-repressed in short days. In 58 M (phyB-1 these genes were highly expressed in long and short days. Furthermore, SbCN15, the ortholog of rice Hd3a (FT, is expressed at low levels in 100 M but at high levels in 58 M (phyB-1 regardless of day length, indicating that PhyB regulation of SbCN15 expression may modify flowering time in a photoperiod-insensitive manner.

  19. High Sodium Simulant Testing To Support SB8 Sludge Preparation

    International Nuclear Information System (INIS)

    Newell, J. D.

    2012-01-01

    Scoping studies were completed for high sodium simulant SRAT/SME cycles to determine any impact to CPC processing. Two SRAT/SME cycles were performed with simulant having sodium supernate concentration of 1.9M at 130% and 100% of the Koopman Minimum Acid requirement. Both of these failed to meet DWPF processing objectives related to nitrite destruction and hydrogen generation. Another set of SRAT/SME cycles were performed with simulant having a sodium supernate concentration of 1.6M at 130%, 125%, 110%, and 100% of the Koopman Minimum Acid requirement. Only the run at 110% met DWPF processing objectives. Neither simulant had a stoichiometric factor window of 30% between nitrite destruction and excessive hydrogen generation. Based on the 2M-110 results it was anticipated that the 2.5M stoichiometric window for processing would likely be smaller than from 110-130%, since it appeared that it would be necessary to increase the KMA factor by at least 10% above the minimum calculated requirement to achieve nitrite destruction due to the high oxalate content. The 2.5M-130 run exceeded the DWPF hydrogen limits in both the SRAT and SME cycle. Therefore, testing of this wash endpoint was halted. This wash endpoint with this minimum acid requirement and mercury-noble metal concentration profile appears to be something DWPF should not process due to an overly narrow window of stoichiometry. The 2M case was potentially processable in DWPF, but modifications would likely be needed in DWPF such as occasionally accepting SRAT batches with undestroyed nitrite for further acid addition and reprocessing, running near the bottom of the as yet ill-defined window of allowable stoichiometric factors, potentially extending the SRAT cycle to burn off unreacted formic acid before transferring to the SME cycle, and eliminating formic acid additions in the frit slurry

  20. RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.

    2010-02-08

    The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution of SiO{sub 2}, the major frit component. It is likely that the observed precipitation of Mg

  1. High quality InAsSb grown on InP substrates using AlSb/AlAsSb buffer layers

    International Nuclear Information System (INIS)

    Wu, B.-R.; Liao, C.; Cheng, K. Y.

    2008-01-01

    High quality InAsSb grown on semi-insulating InP substrates by molecular beam epitaxy was achieved using AlSb/AlAsSb structure as the buffer layer. A 1000 A InAsSb layer grown on top of 1 μm AlSb/AlAsSb buffer layer showed a room temperature electron mobility of ∼12 000 cm 2 /V s. High structural quality and low misfit defect density were also demonstrated in the InAsSb layer. This novel AlSb/AlAsSb buffer layer structure with the AlAsSb layer lattice matched to InP substrates could enhance the performance of optoelectronic devices utilizing 6.1 A family of compound semiconductor alloys

  2. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  3. Analysis of the DWPF glass pouring system using neural networks

    International Nuclear Information System (INIS)

    Calloway, T.B. Jr.; Jantzen, C.M.

    1997-01-01

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of ± 0.35 inwc ( 2 = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R 2 = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers

  4. Material compatibility evaluataion for DWPF nitric-glycolic acid - literature review

    International Nuclear Information System (INIS)

    Mickalonis, J.I; Skidmore, T.E.

    2013-01-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction: For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 deg C; For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 deg C); For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available; and, For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the aggressive

  5. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction.

  6. Sb{sup III} - Sb{sup V} Exchange Reaction in Hydrochloric: Acid Solutions; Echange Sb{sup III}-Sb{sup V} dans des Solutions d'Acide Chlorhydrique; Reaktsiya obmena Sb(III) - Sb(V) v rastvorakh khloristovodorodnoj kisloty; Intercambio Sb{sup III}-Sb{sup V} en Soluciones de HCl

    Energy Technology Data Exchange (ETDEWEB)

    Kambara, T.; Yamaguchi, K.; Yasuba, S. [Shizuoka University, Shizuoka City (Japan)

    1965-10-15

    The exchange reaction of Sb{sup III} - Sb{sup V} in solutions of low HCl concentrations was studied using {sup 124}Sb as a tracer. The effects of HCl concentrations and chemical forms of antimony on the exchange rate were investigated. The HCl concentrations of the antimony solutions ((Sb{sup III}) =(Sb{sup V}) = 6.8 x 10{sup -4}M) were changed from 0.8 to 4.0M and the half-time for the exchange was measured by plotting log (1 - F) versus time t to calculate the exchange rate assuming the second-ordet reaction. It was found that the exchange rate was sharply increased with the increase of HCl concentrations (at 25 Degree-Sign C, from 0.8 to 2.0M) and at 2.0M HCl concentration the rate reached the maximum, from which the rate was decreased with the increase of HCl concentrations (at 25 Degree-Sign C, from 2.0 to 4.0M). Two sorts of Sb{sup V} species were used for our investigations, i.e. one was used directly after the dilution of 10M HCl Sb{sup V} solution with water and the other was used after 24 hours standing at room temperature from the dilution. (The Sb{sup III} species were also kept standing after preparation from 10M HCl Sb{sup III} solution.) In both cases the maximum rates were found to exist at 2.0M HCl concentration. The rate R{sub 1} for the former (directly after dilution) was 4.5 x 10{sup -6} mole litre{sup -1} min{sup -1} and the rate R{sub 2} for the latter (24 hours standing) was 1.2 x 10{sup -}{sub 6} mole litre. Also the activation energy for these cases was found to be 12.2 kcal/mole and 19.1 kcal/mole. By spectrophotometric studies, the Sb{sup V} species of the former type were found to be mainly consisting of SbCl{sup -}{sub 6} and the species of the latter type to be of SbCl{sub 4}(OH){sup -}{sub 2}, etc. Besides these facts the form of Sb{sup III} species was found to have no influence on the exchange rate. A much sharper increase of the exchange rate was observed when the HCl concentration of the antimony solution was fixed at 0.8M and

  7. Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory

    International Nuclear Information System (INIS)

    Shanahan, K.L.

    1992-02-01

    A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning

  8. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  9. Integration of SWPF into the DWPF Flowsheet: Gap Analysis and Test Matrix Development

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-10

    Based on Revision 19 of the High Level Waste (HLW) System Plan, it is anticipated that the Salt Waste Processing Facility (SWPF) will be integrated into the Defense Waste Processing Facility (DWPF) flowsheet in October 2018 (or with Sludge Batch 11 (SB11)). Given that, Savannah River Remediation (SRR) has requested a technical basis be developed that validates the current Product Composition Control System (PCCS) models for use during the processing of the SWPF-based coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that the models may be used during the processing of the SWPF-based coupled flowsheet. To support this objective, Savannah River National Laboratory (SRNL) has completed three key interim activities prior to validation of the current or development of refined PCCS models over the anticipated glass composition region for SWPF processing. These three key activities include: (1) defining the glass compositional region over which SWPF is anticipated to be processed, (2) comparing the current PCCS model validation ranges to the SWPF glass compositional region from which compositional gaps can be identified, and (3) developing a test matrix to cover the compositional gaps.

  10. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  11. Leaching TC-99 from DWPF glass in simulated geologic repository groundwaters

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jurgensen, A.R.

    1986-01-01

    The purpose was to determine if DWPF glass in geologic groundwaters would immobilize Tc-99 as well as it does other elements. A previous study (using a borosilicate glass of a very different composition from DWPF glass) indicated that Tc-99 leached rapidly from the glass suggesting that glass may not be a good matrix for immobilizing Tc-99. It was suggested that the Tc-99 had migrated to vesicles in the glass while the glass was still molten. To determine if borosilicate glass was a good immobilizing matrix for Tc-99, this study was performed using DWPF glass. The leaching of Tc-99 was compared to other elements in the glass. It was shown that rapid leaching will not occur with SRP glass. The leach rate for Tc-99 was nearly identical to that for B, a matrix element in the glass. Another objective was to compare the release of Tc-99 under oxidizing and reducing conditions with other elements in the glass. In the tests described here, even though the glass was dissolving more under reducing conditions as a result of abnormally high pH values, less Tc-99 appeared in solution

  12. Evaluation of Glass Density to Support the Estimation of Fissile Mass Loadings from Iron Concentrations in SB6 Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Peeler, D.

    2010-12-15

    The Department of Energy - Savannah River (DOE-SR) previously provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of the guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft{reg_sign} Excel{reg_sign} spreadsheet for the evaluation of fissile loading in Sludge Batch 5 glass based on the Fe concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that SRNL provide the necessary information to allow SRR to update the Excel spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 6 (SB6). One of the primary inputs into the fissile loading spreadsheet includes a bounding density for SB6-based glasses. Based on the measured density data of select SB6 variability study glasses, SRNL recommends that SRR utilize the 99/99 Upper Tolerance Limit (UTL) density value at 38% WL (2.823 g/cm{sup 3}) as a bounding density for SB6 glasses to assess the fissile concentration in this glass system. That is, the 2.823 g/cm{sup 3} is recommended as a key (and fixed) input into the fissile concentration spreadsheet for SB6 processing. It should be noted that no changes are needed to the underlying structure of the Excel based spreadsheet to support fissile assessments for SB6. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB6 Waste Acceptance Product Specification (WAPS) sample. The purpose of this technical report is to present the density measurements that were determined for the SB6 variability study glasses and to conduct a statistical evaluation of these measurements to provide a bounding density value that may be used as input to the Excel{reg_sign} spreadsheet to be employed by SRR to maintain the

  13. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith III, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how the varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.

  14. Changes of optical, dielectric, and structural properties of Si15Sb85 phase change memory thin films under different initializing laser power

    International Nuclear Information System (INIS)

    Huang Huan; Zhang Lei; Wang Yang; Han Xiaodong; Wu Yiqun; Zhang Ze; Gan Fuxi

    2011-01-01

    Research highlights: → We study the optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization. → The optical and dielectric constants, absorption coefficient of Si 15 Sb 85 change regularly with the increasing laser power. → The optical band gaps of Si 15 Sb 85 irradiated upon different power lasers were calculated. → HRTEM images of the samples were observed and the changes of optical and dielectric constants are determined by crystalline structures changes of the films. - Abstract: The optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization are studied by using spectroscopic ellipsometry and high-resolution transmission electron microscopy. The dependence of complex refractive index, dielectric functions, absorption coefficient, and optical band gap of the films on its crystallization extents formed by the different initialization laser power are analyzed in detail. The structural change from as-deposited amorphous phase to distorted rhombohedra-Sb-like crystalline structure with the increase of initialization laser power is clearly observed with sub-nanometer resolution. The optical and dielectric constants, the relationship between them, and the local atomic arrangements of this new phase change material can help explain the phase change mechanism and design the practical phase change memory devices.

  15. Translating DWPF design criteria into an engineered facility design

    International Nuclear Information System (INIS)

    Kemp, J.B.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) takes radioactive defense waste sludge and the radioactive nuclides, cesium and strontium, from the salt solution, and incorporates them in borosilicate glass in stainless steel canisters, for subsequent disposal in a deep geologic repository. The facility was designed by Bechtel National, Inc. under a subcontract from E.I. DuPont de Nemurs and Co., the prime contractor for the Department of Energy, for the design, construction and commissioning of the plant. The design criteria were specified by the DuPont Company, based upon their extensive experience as designer, and operator since the early 1950's, of the existing Savannah River Plant facilities. Some of the design criteria imposed unusual or new requirements on the detailed design of the facilities. This paper describes some of these criteria, encompassing several engineering disciplines, and discusses the solutions and designs which were developed for the DWPF

  16. Frit Development Efforts for Sludge Batch 4 (SB4): Operating Window Assessments of Scenarios Leading Up to the Selected Preparation Plan for SB4

    International Nuclear Information System (INIS)

    Peeler, D

    2006-01-01

    The objective of this report is to document technical information that has been provided to Defense Waste Processing Facility (DWPF) and Closure Business Unit (CBU) personnel as part of the frit development support for Sludge Batch 4 (SB4). The information presented in this report includes projected operating windows (expressed in terms of waste loading) for various sludge blending and/or washing options coupled with candidate frits of interest. Although the Nominal Stage assessment serves as the primary tool for these evaluations, select systems were also evaluated using a Variation Stage assessment in which compositional variations were introduced. In addition, assessments of the impacts of nepheline formation potential and the SO 4 - solubility limit on the projected operating windows are also provided. Although this information was used as part of the technical basis leading to CBU's development of the preferred SB4 preparation plan, none of the options presented in this report was selected as the preferred plan. Therefore, the information is presented without significant interpretation of the resulting operating windows, but the projected windows are provided so additional insight can be explored if desired. Detailed assessments of the projected operating windows (using both Nominal and Variation Stage assessments) of the preferred sludge preparation plan with candidate frits are to be documented elsewhere. The information provided in this report is focused solely on model-based projections of the operating windows for various SB4 blending strategies of interest. Although nepheline formation potential is monitored via model predictions as a part of this assessment, experimental work investigating the impact of nepheline on glass quality is also being addressed in a parallel study. The results of this paper study and the experimental assessments of melt rate, SO 4 solubility, and/or nepheline formation potential are all critical components of the inputs into

  17. Spray nozzle pattern test for the DWPF HEME Task QA Plan

    International Nuclear Information System (INIS)

    Lee, L.

    1991-01-01

    The DWPF melter off-gas systems have two High Efficiency Mist Eliminators (HEME) upstream of the High-Efficiency Particulates Air filters (HEPA) to remove fine mists and particulates from the off-gas. To have an acceptable filter life and an efficient operation, an air atomized water is spray on the HEME. The water spray keeps the HEME wet and dissolves the soluble particulates and enhances and HEME efficiency. DWPF Technical asked SRL to determine the conditions which will give satisfactory atomization and distribution of water so that the HEME will operate efficiently. The purpose of this document is to identify, QA controls to be applied in the pursuit of this task (WSRC-RP-91-1151)

  18. Assessment of combustion and related issues in the DWPF and ITP waste tanks

    International Nuclear Information System (INIS)

    Ginsberg, T.

    1994-04-01

    This report presents a review of the safety analyses described in the DWPF Safety Analysis Report, the combustion analysis of the ITP Tanks 48 and 49, and presents conclusions drawn from interviews staff on issues related to accident analysis, in particular on issues related to combustion phenomena. The major objectives of this report are to clarify the issues related to the modes of combustion and expected loads on process vessels and structures and, in addition, to offer recommendations which would improve the defense-in-depth posture of the DWPF

  19. Study of structural and morphological properties of thermally evaporated Sn{sub 2}Sb{sub 6}S{sub 11} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mehrez, N., E-mail: najia.benmehrez@gmail.com [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Khemiri, N. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Kanzari, M. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Institut Préparatoire aux Etudes d’Ingénieurs de Tunis Montfleury, Université de Tunis (Tunisia)

    2016-10-01

    In this study, we report the structural and morphological properties of the new material Sn{sub 2}Sb{sub 6}S{sub 11} thin films prepared on glass substrates by vacuum thermal evaporation at various substrate temperatures (30, 60, 100, 140, 180 and 200 °C). Sn{sub 2}Sb{sub 6}S{sub 11} ingot was synthesized by the horizontal Bridgman technique. The structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The films were characterized for their structural properties by using XRD. All films were polycrystalline in nature. The variations of the structural parameters of the films with the substrate temperature were investigated. The results show that the crystallite sizes increase as the substrate temperature increases. The morphological properties of the films were analyzed by atomic force microscopy (AFM). The roughness and the topography of the surface of the films strongly depend on the substrate temperature. - Highlights: • Sn{sub 2}Sb{sub 6}S{sub 11} powder was successfully synthesized by the horizontal Bridgman technique. • Sn{sub 2}Sb{sub 6}S{sub 11} films were grown by thermal evaporation at different substrate temperatures. • Structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were investigated. • The effect of the substrate temperature on structural and morphological of Sn{sub 2}Sb{sub 6}S{sub 11} films properties was studied.

  20. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area

    International Nuclear Information System (INIS)

    Okkenhaug, Gudny; Zhu Yongguan; Luo Lei; Lei Ming; Li Xi; Mulder, Jan

    2011-01-01

    Here, we present one of the first studies investigating the mobility, solubility and the speciation-dependent in-situ bioaccumulation of antimony (Sb) in an active Sb mining area (Xikuangshan, China). Total Sb concentrations in soils are high (527-11,798 mg kg -1 ), and all soils, including those taken from a paddy field and a vegetable garden, show a high bioavailable Sb fraction (6.3-748 mg kg -1 ), dominated by Sb(V). Elevated concentrations in native plant species (109-4029 mg kg -1 ) underpin this. Both chemical equilibrium studies and XANES data suggest the presence of Ca[Sb(OH) 6 ] 2 , controlling Sb solubility. A very close relationship was found between the citric acid extractable Sb in plants and water or sulfate extractable Sb in soil, indicating that citric acid extractable Sb content in plants may be a better predictor for bioavailable Sb in soil than total acid digestible Sb plant content. - Highlights: → Antimony (Sb) in soils from an active Sb mining area is highly bioavailable. → Sb occurs mainly as Sb(V) in Sb mining impacted soils and plants. → Sb solubility in Sb mining impacted soils is governed by Ca[Sb(OH) 6 ] 2 . → Citric acid extractable Sb in plants and bioavailable Sb in soils are strongly correlated. - Antimony (Sb) in soils from an active Sb mining area is highly bioavailable and controlled by the solubility of calcium antimonate.

  1. Analysis of high-level radioactive slurries as a method to reduce DWPF turnaround times

    International Nuclear Information System (INIS)

    Coleman, C.J.; Bibler, N.E.; Ferrara, D.M.; Hay, M.S.

    1996-01-01

    Analysis of Defense Waste Processing Facility (DWPF) samples as slurries rather than as dried or vitrified samples is an effective way to reduce sample turnaround times. Slurries can be dissolved with a mixture of concentrated acids to yield solutions for elemental analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Slurry analyses can be performed in eight hours, whereas analyses of vitrified samples require up to 40 hours to complete. Analyses of melter feed samples consisting of the DWPF borosilicate frit and either simulated or actual DWPF radioactive sludge were typically within a range of 3--5% of the predicted value based on the relative amounts of sludge and frit added to the slurry. The results indicate that the slurry analysis approach yields analytical accuracy and precision competitive with those obtained from analyses of vitrified samples. Slurry analyses offer a viable alternative to analyses of solid samples as a simple way to reduce analytical turnaround times

  2. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  3. Impact of Spherical Frit Beads on Simulated DWPF Slurries

    International Nuclear Information System (INIS)

    SMITH, MICHAEL

    2005-01-01

    It has been shown that the rheological properties of simulated Defense Waste Processing Facility (DWPF) melter feed with the glass former frit as mostly (90 weight percent) solid spherical particles (referred to as beads) were improved as the feed was less viscous as compared to DWPF melter feed that contained the normal irregular shaped frit particles. Because the physical design of the DWPF Slurry Mix Evaporator (SME), Melter Feed Tank (MFT), and melter feed loop are fixed, the impact of changing the rheology might be very beneficial. Most importantly, higher weight percent total solids feed might be processed by reducing the rheological properties (specifically yield stress) of the feed. Additionally, if there are processing problems, such as air entrainment or pumping, these problems might be alleviated by reducing the rheological properties, while maintaining targeted throughputs. Rheology modifiers are chemical, physical, or a combination of the two and can either thin or thicken the rheology of the targeted slurry. The beads are classified as a physical rheological modifier in this case. Even though the improved rheological properties of the feed in the above mentioned DWPF tanks could be quite beneficial, it is the possibility of increased melt rate that is the main driver for the use of beaded glass formers. By improving the rheological properties of the feed, the weight percent solids of the feed could be increased. This higher weight percent solids (less water) feed could be processed faster by the melter as less energy would be required to evaporate the water, and more would be available for the actual melting of the waste and the frit. In addition, the use of beads to thin the feed could possibly allow for the use of a lower targeted acid stoichiometry in the feed preparation process (if in fact acid stoichiometry is being driven by feed rheology as opposed to feed chemistry). Previous work by the Savannah River National Laboratory (SRNL) with the lab

  4. ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Hera, K.; Coleman, C.; Jones, M.; Wiedenman, B.

    2011-12-05

    Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1). This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from

  5. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  6. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  7. Estimation of Total Error in DWPF Reported Radionuclide Inventories

    International Nuclear Information System (INIS)

    Edwards, T.B.

    1995-01-01

    This report investigates the impact of random errors due to measurement and sampling on the reported concentrations of radionuclides in DWPF's filled canister inventory resulting from each macro-batch. The objective of this investigation is to estimate the variance of the total error in reporting these radionuclide concentrations

  8. Adducts of UF5 with SbF5 and structure of UF5 . 2SbF5

    International Nuclear Information System (INIS)

    Sawodny, W.; Rediess, K.

    1980-01-01

    Both α-UF 5 and β-UF 5 form only a 1:2 compound UF 5 . 2SbF 5 reacting directly with SbF 5 , from which UF 5 . SbF 5 can be obtained by thermal decomposition. UF 5 . 2SbF 5 crystallizes in the monoclinic space group P2 1 /c with the following lattice constants a = 8.110(4), b = 14.129(6), c = 10.032(6) A and β = 96.97(5) 0 ; Z = 4. An X-ray study shows centrosymmetric four-membered rings of alternating UF 8 and SbF 6 polyhedra connected by other SbF 6 entities. This structure is similar to that of UOF 5 . 2SbF 5 , but the distorted pentagonal-bipyramidal coordination of the U atom found there is increased to a dodecahedral coordination by an additional U-F-Sb bridge, though with a somewaht larger UF distance. (author)

  9. The low-temperature structures of Hgsub(3-delta)SbF6 and Hgsub(3-delta)TaF6

    International Nuclear Information System (INIS)

    Tun, Z.; Brown, I.D.

    1986-01-01

    The Hg chains in both Hgsub(3-delta)SbF 6 and Hgsub(3-delta)TaF 6 order below room temperature. Down to about 190 K the ordering results from the interaction between parallel chains. It is short range and is different for the two compounds. Below 190 K both compounds transform to an isostructural long-range-ordered phase which is driven by the interaction between perpendicular chains. The structure of this phase in both compounds has been determined. Hgsub(3-delta)SbF 6 at 173 K, delta=0.134(1), Msub(r)=810.6(2). It is monoclinic but pseudotetragonal with I4 1 /amd, a=7.655(1), c=12.558(1) A, V=735.9(2) A 3 , Z=4, Dsub(x)=7.314(3) Mg m -3 , graphite-monochromated Mo Kα radiation, lambda=0.71069 A, μ=64.8 mm -1 , F(000)=1337.1(3). Hgsub(3-delta)TaF 6 at 150 K is isostructural but has delta=0.142(1), Msub(r)=868.2(2), a=7.634(1), c=12.610(2) A, V=734.9(2) A, Dsub(x)=7.844(3) Mg m -3 , μ=76.4 mm -1 , F(000)=1422.6(3). Comparison of the low-temperature structures with those at room temperature shows that the thermal contraction results from the shortening of interatomic distances associated with the weak bonds, with the result that the MF 6 (M=Sb, Ta) host lattice shrinks more than the Hg chains. Variation of the atomic displacement parameters with temperature indicates that the large librational displacements of the MF 6 ion result from thermal motion rather than static disorder. (orig.)

  10. Radioactive demonstration of DWPF product control strategy

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.

    1994-01-01

    The Defense Waste Processing Facility at the Savannah River Site (SRS) will vitrify high-level nuclear waste into borosilicate glass. The waste will be mixed with properly formulated glass-making frit and fed to a melter at 1150 degrees C. Process reliability and product quality are ensured by proper control of the melter feed composition. The effectiveness of the product and process control strategies that will be utilized by the Defense Waste Processing Facility (DWPF) was demonstrated during a campaign in the Shielded Cells Facility of the Savannah River Technology Center (SRTC). The remotely operated process included the preparation of the melter feed, vitrification in a slurry-fed 1/100th scale melter an analysis of the glass product both for its composition an durability. The campaign processed approximately 10 kg (on a dry basis) of radioactive sludge from Tank 51. This sludge is representative of the first batch of sludge that will be sent to the DWPF for immobilization into borosilicate glass. Additions to the sludge were made based on calculations using the Product Composition Control System (PCCS). Analysis of the glass produced during the campaign showed that a durable glass was produced with a composition very close to that predicted using the PCCS. 10 refs., 4 tabs

  11. Yield of 117Sb, 118mSb, 120mSb, 122Sb, 124Sb in reactions Sn (p, xn)

    International Nuclear Information System (INIS)

    Dmitriev, P.P.; Konstantinov, I.O.

    1993-01-01

    Yield of 117 Sb, 118m Sb, 120m Sb, 122 Sb, 124 Sb from thick target depending on proton energy is measured. The maximum proton energy is 21.7±0.2 MeV. Antimony isotopes yield in separate reactions when irradiating of tin isotopes with 100% enrichment is determined using the method published earlier. The methods for production of 117 Sb, 118m Sb, 120m Sb, 122 Sb, 124 Sb with high radioisotope purity are shown. 13 refs., 1 fig., 3 tabs

  12. Calibration and Measurement of the Viscosity of DWPF Start-Up Glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2001-01-01

    The Harrop, High-Temperature Viscometer has been in operation at the Savannah River Technology Center (SRTC) for several years and has proven itself to be reasonably accurate and repeatable. This is particularly notable when taking into consideration the small amount of glass required to make the viscosity determination. The volume of glass required is only 2.60 cc or about 6 to 7 grams of glass depending on the glass density. This may be compared to the more traditional viscosity determinations, which generally require between 100 to 1000 grams of glass. Before starting the present investigation, the unit was re-aligned and the furnace thermal gradients measured. The viscometer was again calibrated with available NIST Standard Reference Material glasses (717a and 710a) and a spindle constant equation was determined. Standard DWPF Waste Compliance Glasses (Purex, HM, and Batch 1) were used to provide additional verification for the determinations at low temperature. The Harrop, High-Temperature Viscometer was then used to determine the viscosity of three random samples of ground and blended DWPF, Black, Start -Up Frit, which were obtained from Pacific Northwest National Laboratory (PNNL). The glasses were in powder form and required melting prior to the viscosity determination. The results from this evaluation will be compared to ''Round Robin'' measurements from other DOE laboratories and a number of commercial laboratories

  13. The OsO(3)F(+) and mu-F(OsO(3)F)(2)(+) cations: their syntheses and study by Raman and (19)F NMR spectroscopy and electron structure calculations and X-ray crystal structures of [OsO(3)F][PnF(6)] (Pn = As, Sb), [OsO(3)F][HF](2)[AsF(6)], [OsO(3)F][HF][SbF(6)], and [OsO(3)F][Sb(3)F(16)].

    Science.gov (United States)

    Gerken, Michael; Dixon, David A; Schrobilgen, Gary J

    2002-01-28

    The fluoride ion donor properties of OsO(3)F(2) have been investigated. The salts [OsO(3)F][AsF(6)], [OsO(3)F][HF](2)[AsF(6)], mu-F(OsO(3)F)(2)[AsF(6)], [OsO(3)F][HF](2)[SbF(6)], and [OsO(3)F][HF][SbF(6)] have been prepared by reaction of OsO(3)F(2) with AsF(5) and SbF(5) in HF solvent and have been characterized in the solid state by Raman spectroscopy. The single-crystal X-ray diffraction studies of [OsO(3)F][AsF(6)] (P2(1)/n, a = 7.0001(11) A, c = 8.8629(13) A, beta = 92.270(7) degrees, Z = 4, and R(1) = 0.0401 at -126 degrees C), [OsO(3)F][SbF(6)] (P2(1)/c, a = 5.4772(14) A, b = 10.115(3) A, c = 12.234(3) A, beta = 99.321(5) degrees, Z = 4, and R(1) = 0.0325 at -173 degrees C), [OsO(3)F][HF](2)[AsF(6)] (P2(1)/n, a = 5.1491(9) A, b = 8.129(2) A, c = 19.636(7) A, beta = 95.099(7) degrees, Z = 4, and R(1) = 0.0348 at -117 degrees C), and [OsO(3)F][HF][SbF(6)] (Pc, a = 5.244(4) A, b = 9.646(6) A, c = 15.269(10) A, beta = 97.154(13) degrees, Z = 4, and R(1) = 0.0558 at -133 degrees C) have shown that the OsO(3)F(+) cations exhibit strong contacts to the anions and HF solvent molecules giving rise to cyclic, dimeric structures in which the osmium atoms have coordination numbers of 6. The reaction of OsO(3)F(2) with neat SbF(5) yielded [OsO(3)F][Sb(3)F(16)], which has been characterized by (19)F NMR spectroscopy in SbF(5) and SO(2)ClF solvents and by Raman spectroscopy and single-crystal X-ray diffraction in the solid state (P4(1)m, a = 10.076(6) A, c = 7.585(8) A, Z = 2, and R(1) = 0.0858 at -113 degrees C). The weak fluoride ion basicity of the Sb(3)F(16)(-) anion resulted in an OsO(3)F(+) cation (C(3)(v) point symmetry) that is well isolated from the anion and in which the osmium is four-coordinate. The geometrical parameters and vibrational frequencies of OsO(3)F(+), ReO(3)F, mu-F(OsO(3)F)(2)(+), (FO(3)Os--FPnF(5))(2), and (FO(3)Os--(HF)(2)--FPnF(5))(2) (Pn = As, Sb) have been calculated using density functional theory methods.

  14. Remotely replaceable jumpers and embedded wiring for the DWPF

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1984-01-01

    The Defense Waste Processing Facility (DWPF) for radioactive waste vitrification at the Savannah River Plant (SRP) is now under construction. Development of specialized electrical/instrument inter-connectors, or jumpers, is now complete. Remote replacement of the associated through-wall wiring using a standard canyon crane has also been demonstrated. 8 figures

  15. Maximum total organic carbon limit for DWPF melter feed

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T ampersand E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit

  16. Electrochemical properties and lithium ion diffusion in Li4FeSbO6 studied by first principle

    Science.gov (United States)

    Jia, Mingzhen; Wang, Hongyan; Wang, Hui; Chen, Yuanzheng; Guo, Chunsheng; Gan, Liyong

    2017-10-01

    Due to the high capacity, Li-rich materials Li2MO3 (M = transition metal) have attracted considerable attention as the next generation of Li-ion batteries. Li4FeSbO6 is a new Li-rich layered oxide material with antiferromagnet honeycomb structure. In this work, the electrochemical behavior, charging process and oxygen stability of LixFeSbO6 (0 ≤ xextracted, the charge compensation is mainly contributed by the oxygen atoms through analyzing the Bader charges of each element. In addition, oxygen evolution reactions will occur in LixFeSbO6 (x ≤ 1.5), which will decay the capacities during cycling process. Finally, we calculated that the lithium ion can diffuse in a three-dimensional pathway with the activation barriers from 0.36 eV to 0.67 eV.

  17. InSb semiconductors and (In,Mn)Sb diluted magnetic semiconductors. Growth and properties

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Lien

    2011-04-13

    This dissertation describes investigations of the growth by molecular beam epitaxy and the characterization of the semiconductor InSb as well as the diluted magnetic semiconductor (DMS) In{sub 1-x}Mn{sub x}Sb. The InSb films were grown on GaAs (001) substrate and Si (001) offcut by 4 toward (110) substrate up to a thickness of about 2 {mu}m, in spite of a large lattice mismatch between the epi-layer and substrate (14.6% between InSb and GaAs, and 19.3% between InSb and Si). After optimizing the growth conditions, the best InSb films grown directly on GaAs without any special technique results in a high crystal quality, low noise, and an electron mobility of 41100 cm{sup 2}/V s Vs with associated electron concentration of 2.9.10{sup 6} cm{sup -3} at 300 K. Such structures could be used, for example, for infrared detector structures. The growth of InSb on Si, however, is a challenge. In order to successfully grow InSb on Si, tilted substrates and the insertion of buffer layers were used, which helps to reduce the lattice mismatch as well as the formation of defects, and hence to improve the crystal quality. An electron mobility of 24000 cm{sup 2}/V s measured at 300 K, with an associated carrier concentration of 2.6.10{sup 1}6 cm{sup -3} is found for the best sample that was grown at 340 C with a 0.06 {mu}m-thick GaSb/AlSb superlattice buffer layer. The smaller value of electron mobility (compared to the best GaAsbased sample) is related to a higher density of microtwins and stacking faults as well as threading dislocations in the near-interface region as shown by transmission electron microscopy. Deep level noise spectra indicate the existence of deep levels in both GaAs and Si-based samples. The samples grown on Si exhibit the lowest Hooge factor at 300 K, lower than the samples grown on GaAs. Taking the optimized growth conditions of InSb/GaAs, the diluted magnetic semiconductor In{sub 1-x}Mn{sub x}Sb/GaAs (001) is prepared by adding a few percent of Mn into the

  18. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  19. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    International Nuclear Information System (INIS)

    Koopman, David C.:Eibling, Russel E

    2005-01-01

    simulants were visually very viscous compared to the traditional SB3 simulant. (4) Heat-treatment reduced the viscosity of the two new simulants with and without coprecipitated noble metals, though they were still more viscous than the traditional SB3. (5) The approach of using a 97 C heat-treatment step to qualitatively simulate tank farm aging may not be optimal. A significant change in the base equivalent molarities of both simulants was observed during heat-treatment. (6) Heat-treatment appeared to make phosphates insoluble in water. The following recommendations came out of the work: (1) Washed slurry should be checked for TIC and base equivalents before calculating the final trim chemical additions of sodium carbonate and sodium hydroxide. (2) Final insoluble trim chemicals should be added to the slurry in the cross-flow filtration unit mixing tank, since significant slurry is lost in the CUF equipment. Adding the chemicals here would keep them in the correct proportion relative to the precipitated insoluble solids. (3) A composite wash and decant sample should be prepared containing proportionally weighted masses of each aqueous stream removed during preparation of a co-precipitated noble metal simulant. This sample should then be checked for noble metal losses. This would reduce the sample load, while still confirming that there was no significant noble metal loss. (4) A study of the impact of heat-treatment on existing simulants should be undertaken. If there is a shift in base equivalents, then SRNL acid stoichiometries may be biased relative to real waste. The study should be extended to several real wastes as well

  20. Building Planner Commitment : Are California's SB 375 and Oregon's SB 1059 Models for Climate-Change Mitigation?

    Science.gov (United States)

    2017-11-01

    California's Sustainable Communities and Climate Protection Act (SB 375) and the Oregon Sustainable Transportation Initiative (SB 1059) have made them the first states in the nation to try and reduce greenhouse gas (GHG) emissions using the transport...

  1. InSb semiconductors and (In,Mn)Sb diluted magnetic semiconductors: Growth and properties

    International Nuclear Information System (INIS)

    Tran, Lien

    2011-01-01

    This dissertation describes investigations of the growth by molecular beam epitaxy and the characterization of the semiconductor InSb as well as the diluted magnetic semiconductor (DMS) In 1-x Mn x Sb. The InSb films were grown on GaAs (001) substrate and Si (001) offcut by 4 toward (110) substrate up to a thickness of about 2 μm, in spite of a large lattice mismatch between the epi-layer and substrate (14.6% between InSb and GaAs, and 19.3% between InSb and Si). After optimizing the growth conditions, the best InSb films grown directly on GaAs without any special technique results in a high crystal quality, low noise, and an electron mobility of 41100 cm 2 /V s Vs with associated electron concentration of 2.9.10 6 cm -3 at 300 K. Such structures could be used, for example, for infrared detector structures. The growth of InSb on Si, however, is a challenge. In order to successfully grow InSb on Si, tilted substrates and the insertion of buffer layers were used, which helps to reduce the lattice mismatch as well as the formation of defects, and hence to improve the crystal quality. An electron mobility of 24000 cm 2 /V s measured at 300 K, with an associated carrier concentration of 2.6.10 1 6 cm -3 is found for the best sample that was grown at 340 C with a 0.06 μm-thick GaSb/AlSb superlattice buffer layer. The smaller value of electron mobility (compared to the best GaAsbased sample) is related to a higher density of microtwins and stacking faults as well as threading dislocations in the near-interface region as shown by transmission electron microscopy. Deep level noise spectra indicate the existence of deep levels in both GaAs and Si-based samples. The samples grown on Si exhibit the lowest Hooge factor at 300 K, lower than the samples grown on GaAs. Taking the optimized growth conditions of InSb/GaAs, the diluted magnetic semiconductor In 1-x Mn x Sb/GaAs (001) is prepared by adding a few percent of Mn into the host material InSb during growth. I have

  2. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    International Nuclear Information System (INIS)

    Smith, M.E.; Bickford, D.F.

    1997-01-01

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy's Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program

  3. Sensitivity of Mesoporous CoSb2O6 Nanoparticles to Gaseous CO and C3H8 at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Héctor Guillén-Bonilla

    2015-01-01

    Full Text Available Mesoporous CoSb2O6 nanoparticles, synthesized through a nonaqueous method (using cobalt nitrate, antimony trichloride, ethylenediamine, and ethanol as a solvent, were tested to establish their sensitivity to CO and C3H8 atmospheres at relatively low temperatures. The precursor material was dried at 200°C and calcined at 600°C. X-ray diffraction and scanning electron microscopy were employed to verify the existence of crystal phases (P42/mnm and the morphology of this trirutile-type CoSb2O6 oxide. Pyramidal and cubic shaped crystals (average size: 41.1 nm, embedded in the material’s surface, were identified. Mesopores (average size: 6.5 nm on the nanoparticles’ surface were observed by means of transmission electron microscopy. The best sensitivity of the CoSb2O6 in a CO atmosphere was at the relatively low temperatures of 250 and 350°C, whereas, in a C3H8 atmosphere, the sensitivity increased uniformly with temperature. These results encourage using the CoSb2O6 nanoparticles as gas sensors.

  4. Removal of Sb(III and Sb(V by Ferric Chloride Coagulation: Implications of Fe Solubility

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Inam

    2018-04-01

    Full Text Available Coagulation and precipitation appear to be the most efficient and economical methods for the removal of antimony from aqueous solution. In this study, antimony removal from synthetic water and Fe solubility with ferric chloride (FC coagulation has been investigated. The effects of pH, FC dosage, initial antimony loading and mixed Sb(III, Sb(V proportions on Fe solubility and antimony removal were studied. The results showed that the Sb(III removal efficiency increased with the increase of solution pH particularly due to an increase in Fe precipitation. The Sb(V removal was influenced by the solution pH due to a change in Fe solubility. However, the Fe solubility was only impaired by the Sb(III species at optimum pH 7. The removal efficiencies of both Sb species were enhanced with an increase in FC dose. The quantitative analysis of the isotherm study revealed the strong adsorption potential of Sb(III on Fe precipitates as compared to Sb(V. Furthermore, the removal behavior of antimony was inhibited in mixed proportion with high Sb(V fraction. In conclusion, this study contributes to better understanding the fate of Sb species, their mobilities, and comparative removal behavior, with implications for Fe solubility using ferric chloride in different aqueous environments.

  5. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  6. Determination of the enthalpy of fusion and thermal diffusivity for ternary Cu_6_0_−_xSn_xSb_4_0 alloys

    International Nuclear Information System (INIS)

    Zhai, W.; Zhou, K.; Hu, L.; Wei, B.

    2016-01-01

    Highlights: • The increasing Sn content reduces the liquidus temperature. • High Sn content results in lower enthalpy of fusion by polynomial functions. • The thermal diffusivity drops from the solid toward the semi-solid state. • Undercoolability of alloys with primary Cu_2Sb phase is stronger than others. - Abstract: The liquidus and solidus temperatures, enthalpy of fusion, and the temperature dependence of thermal diffusivity for ternary Cu_6_0_−_xSn_xSb_4_0 alloys were systematically measured by DSC and laser flash methods. It is found that both the liquidus temperature and the enthalpy of fusion decrease with the rise of Sn content, and their relationships with alloy composition were established by polynomial functions. The thermal diffusivity usually drops from the solid toward the semi-solid state. The undercoolability of those liquid Cu_6_0_−_xSn_xSb_4_0 alloys with primary Cu_2Sb solid phase is stronger than the others with primary β(SnSb) intermetallic compound, and the increase of cooling rate facilitates further undercooling. Microstructural observation indicates that both of the primary Cu_2Sb and β(SnSb) intermetallic compounds in ternary Cu_6_0_−_xSn_xSb_4_0 alloys grow in faceted mode, and develop into coarse flakes and polygonal blocks.

  7. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  8. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  9. Hole-dominated transport in InSb nanowires grown on high-quality InSb films

    Energy Technology Data Exchange (ETDEWEB)

    Algarni, Zaina; George, David; Singh, Abhay; Lin, Yuankun; Philipose, U., E-mail: usha.philipose@unt.edu [University of North Texas, Department of Physics (United States)

    2016-12-15

    We have developed an effective strategy for synthesizing p-type indium antimonide (InSb) nanowires on a thin film of InSb grown on glass substrate. The InSb films were grown by a chemical reaction between Sb{sub 2}S{sub 3} and In and were characterized by structural, compositional, and optical studies. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal that the surface of the substrate is covered with a polycrystalline InSb film comprised of sub-micron sized InSb islands. Energy dispersive X-ray (EDX) results show that the film is stoichiometric InSb. The optical constants of the InSb film, characterized using a variable-angle spectroscopic ellipsometer (VASE) shows a maximum value for refractive index at 3.7 near 1.8 eV, and the extinction coefficient (k) shows a maximum value 3.3 near 4.1 eV. InSb nanowires were subsequently grown on the InSb film with 20 nm sized Au nanoparticles functioning as the metal catalyst initiating nanowire growth. The InSb nanowires with diameters in the range of 40–60 nm exhibit good crystallinity and were found to be rich in Sb. High concentrations of anions in binary semiconductors are known to introduce acceptor levels within the band gap. This un-intentional doping of the InSb nanowire resulting in hole-dominated transport in the nanowires is demonstrated by the fabrication of a p-channel nanowire field effect transistor. The hole concentration and field effect mobility are estimated to be ≈1.3 × 10{sup 17} cm{sup −3} and 1000 cm{sup 2} V{sup −1} s{sup −1}, respectively, at room temperature, values that are particularly attractive for the technological implications of utilizing p-InSb nanowires in CMOS electronics.

  10. Silver(I) complexes of the weakly coordinating solvents SO(2) and CH(2)Cl(2): crystal structures, bonding, and energetics of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)].

    Science.gov (United States)

    Decken, Andreas; Knapp, Carsten; Nikiforov, Grigori B; Passmore, Jack; Rautiainen, J Mikko; Wang, Xinping; Zeng, Xiaoqing

    2009-06-22

    Pushing the limits of coordination chemistry: The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(Cl(2)CH(2))(2)][SbF(6)] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole-dipole interactions.The synthetically useful solvent-free silver(I) salt Ag[Al(pftb)(4)] (pftb=--OC(CF(3))(3)) was prepared by metathesis reaction of Li[Al(pftb)(4)] with Ag[SbF(6)] in liquid SO(2). The solvated complexes [Ag(OSO)][Al(pftb)(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)] were prepared and isolated by special techniques at low temperatures and structurally characterized by single-crystal X-ray diffraction. The SO(2) complexes provide the first examples of coordination of the very weak Lewis base SO(2) to silver(I). The SO(2) molecule in [Ag(OSO)][Al(pftb)(4)] is eta(1)-O coordinated to Ag(+), while the SO(2) ligands in [Ag(OSO)(2/2)][SbF(6)] bridge two Ag(+) ions in an eta(2)-O,O' (trans,trans) manner. [Ag(CH(2)Cl(2))(2)][SbF(6)] contains [Ag(CH(2)Cl(2))(2)](+) ions linked through [SbF(6)](-) ions to give a polymeric structure. The solid-state silver(I) ion affinities (SIA) of SO(2) and CH(2)Cl(2), based on bond lengths and corresponding valence units in the corresponding complexes and tensimetric titrations of Ag[Al(pftb)(4)] and Ag[SbF(6)] with SO(2) vapor, show that SO(2) is a weaker ligand to Ag(+) than the commonly used weakly coordinating solvent CH(2)Cl(2) and indicated that binding strength of SO(2) to silver(I) in the silver(I) salts increases with increasing size of the corresponding counteranion ([Al(pftb)(4)](-)>[SbF(6)](-)). The experimental findings are in good agreement with theoretical gas-phase ligand

  11. Anisotropic magnetic structures of the Mn R MnSbO6 high-pressure doubly ordered perovskites (R =La , Pr, and Nd)

    Science.gov (United States)

    Solana-Madruga, Elena; Arévalo-López, Ángel M.; Dos santos-García, Antonio J.; Ritter, Clemens; Cascales, Concepción; Sáez-Puche, Regino; Attfield, J. Paul

    2018-04-01

    A new type of doubly ordered perovskite (also reported as double double perovskite, DDPv) structure combining columnar and rock-salt orders of the cations at the A and B sites, respectively, was recently found at high pressure for Mn R MnSb O6 (R =La -Sm ). Here we report further magnetic structures of these compounds. M n2 + spins align into antiparallel ferromagnetic sublattices along the x axis for MnLaMnSb O6 , while the magnetic anisotropy of P r3 + magnetic moments induces their preferential order along the z direction for MnPrMnSb O6 . The magnetic structure of MnNdMnSb O6 was reported to show a spin-reorientation transition of M n2 + spins from the z axis towards the x axis driven by the ordering of N d3 + magnetic moments. The crystal-field parameters for P r3 + and N d3 + at the 4 e C2 site of their DDPv structure have been semiempirically estimated and used to derive their energy levels and associated wave functions. The results demonstrate that the spin-reorientation transition in MnNdMnSb O6 arises as a consequence of the crystal-field-induced magnetic anisotropy of N d3 + .

  12. Formation rate of ammonium nitrate in the off-gas line of SRAT and SME in DWPF

    International Nuclear Information System (INIS)

    Lee, L.

    1992-01-01

    A mathematical model for the formation rate of ammonium nitrate in the off-gas line of the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mixed Evaporator (SME) in DWPF has been developed. The formation rate of ammonium nitrate in the off-gas line depends on pH, temperature, volume and total concentration of ammonia and ammonium ion. Based on a typical SRAT and SME cycle in DWPF, this model predicts the SRAT contributes about 50 lbs of ammonium nitrate while SME contributes about 60 lbs of ammonium nitrate to the off-gas line

  13. Eu{sub 7}Ga{sub 6}Sb{sub 8}: A Zintl phase with Ga-Ga bonds and polymeric gallium antimonide chains

    Energy Technology Data Exchange (ETDEWEB)

    Park, S -M; Kim, S -J; Kanatzidis, M G

    2004-08-01

    The Zintl phase Eu{sub 7}Ga{sub 6}Sb{sub 8} was obtained from a direct element combination reaction at 900 deg. C. It crystallizes in the orthorhombic space group Pbca (No. 61) with a=15.6470(17) A, b=17.2876(19) A, c=17.9200(19) A, and Z=8. In Eu{sub 7}Ga{sub 6}Sb{sub 8}, the anionic framework forms infinite chains of [Ga{sub 6}Sb{sub 8}]{sup 14-} which are arranged side by side to make a sheet-like arrangement but without linking. The sheets of chains are separated by Eu{sup 2+} atoms and also within the sheet, Eu{sup 2+} atoms fill the spaces between two chains. The chain is made up of homoatomic tetramers (Ga{sub 4}){sup 6+} and dimers (Ga{sub 2}){sup 4+} connected by Sb atoms. The compound is a narrow band-gap semiconductor with E{sub g}{approx}0.6 eV and satisfies the classical Zintl concept. Extended Hueckel band structure calculations confirm that the material is a semiconductor and suggest that the structure is stabilized by strong Ga-Ga covalent bonding interactions. Magnetic susceptibility measurements for Eu{sub 7}Ga{sub 6}Sb{sub 8} show that the Eu atoms are divalent and the compound has an antiferromagnetic transition at 9 K.

  14. Hole-dominated transport in InSb nanowires grown on high-quality InSb films

    Science.gov (United States)

    Algarni, Zaina; George, David; Singh, Abhay; Lin, Yuankun; Philipose, U.

    2016-12-01

    We have developed an effective strategy for synthesizing p-type indium antimonide (InSb) nanowires on a thin film of InSb grown on glass substrate. The InSb films were grown by a chemical reaction between S b 2 S 3 and I n and were characterized by structural, compositional, and optical studies. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal that the surface of the substrate is covered with a polycrystalline InSb film comprised of sub-micron sized InSb islands. Energy dispersive X-ray (EDX) results show that the film is stoichiometric InSb. The optical constants of the InSb film, characterized using a variable-angle spectroscopic ellipsometer (VASE) shows a maximum value for refractive index at 3.7 near 1.8 eV, and the extinction coefficient (k) shows a maximum value 3.3 near 4.1 eV. InSb nanowires were subsequently grown on the InSb film with 20 nm sized Au nanoparticles functioning as the metal catalyst initiating nanowire growth. The InSb nanowires with diameters in the range of 40-60 nm exhibit good crystallinity and were found to be rich in Sb. High concentrations of anions in binary semiconductors are known to introduce acceptor levels within the band gap. This un-intentional doping of the InSb nanowire resulting in hole-dominated transport in the nanowires is demonstrated by the fabrication of a p-channel nanowire field effect transistor. The hole concentration and field effect mobility are estimated to be ≈1.3 × 1017 cm-3 and 1000 cm2 V-1 s-1, respectively, at room temperature, values that are particularly attractive for the technological implications of utilizing p-InSb nanowires in CMOS electronics.

  15. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  16. Analysis of the FIST integral tests 4DBA1, 6SB2C and T1QUV with TRAC-BFl/v2001.2

    International Nuclear Information System (INIS)

    Analytis, G.Th.

    2004-01-01

    As part of the assessment of the frozen version of the PSU TRAC-BFl/v2001.2 and its qualification as a LB-LOCA and SB-LOCA code, in this work, we shall outline the comparisons between measurements and code predictions for three FIST tests: The LB-LOCA test 4DBA1, the SB-LOCA test 6SB2C and the failure to maintain water level test T1QUV. We shall study the effect of the number of axial levels in the active core as well as (in the case of the SB-LOCA test 6SB2C) the effect of the timing of the activation of the reflooding options/heat transfer package on the code predictions. Furthermore, we shall show that by using the upwinding option of some terms of the three-dimensional momentum equations, severe mass-error problems appearing in the analysis of the test T1QUV can be resolved. Generally, we shall show that although there are some differences between measurements and predictions, TRAC-BF1 captures quite well the overall behaviour of the LB-LOCA transient (depending on the number of axial nodes in the core) but underpredicts the rod surface temperatures of the SB-LOCA test 6SB2C

  17. Ab initio study of double perovskites Ba_2DySbO_6

    International Nuclear Information System (INIS)

    Jha, Dhiraj Kumar; Mandal, Golak; Singh, B. K.; Ray, Chandan; Himanshu, A. K.; Kumar, Uday; Choudhary, B. K.

    2016-01-01

    First principle study of the electronic band structure of Ba2DySbO_6 synthesied by the solid state reaction technique have been performed within the framework of density function theory using WIEN2K. It has been shown in the absence of electron-electron interaction (U=0), BaDySO_6 behaves like a half-metal. Even in the presence of DFT+U, electron-electron interaction via the Hubbard term (from U = 0, 2.72e -7.02 eV), it still shows half metals.

  18. Criticality assessment of initial operations at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ha, B.C.; Williamson, T.G.

    1993-01-01

    At the Savannah River Site (SRS), high level radioactive wastes will be immobilized into borosilicate glass for long term storage and eventual disposal. Since the waste feed streams contain uranium and plutonium, the Defense Waste Processing Facility (DWPF) process has been evaluated to ensure that a subcritical condition is maintained. It was determined that the risk of nuclear criticality in the DWPF during initial, sludge-only operations is minimal due to the dilute concentration of fissile material in the sludge combined with excess neutron absorbers

  19. Hazards analyses of hydrogen evolution and ammonium nitrate accumulation in DWPF -- Revision 1

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.

    1994-01-01

    This revision consists of two reports, the first of which is an analysis of potential ammonium nitrate explosion hazards in the DWPF (Defense Waste Processing Facility). Sections describe the effect of impurities (organic and inorganic (chlorides, chromates, metals and oxides)); the consequences of a hydrogen deflagration or detonation; the role of confinement; the action of heat on ammonium nitrate; the thermal decomposition of ammonium nitrate; the hazard of spontaneous heating; and the explosive decomposition of ammonium nitrate. The second report, Hazard analysis of hydrogen evolution in DWPF: Process vessels and vent system for the late wash/nitric acid flowsheet, contains a description of a revised model for hydrogen generation based on the late wash/nitric acid process. The second part of the report is a sensitivity analysis of the base case conditions and the hydrogen generation model

  20. Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression.

    Science.gov (United States)

    Wesołowska, Anna; Nikiforuk, Agnieszka

    2007-04-01

    The effects of a selective 5-HT(6) receptor antagonist, SB-399885 (N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide), were evaluated in behavioural tests sensitive to clinically effective anxiolytic- and antidepressant-compounds using diazepam and imipramine as reference drugs. In the Vogel conflict drinking test in rats, SB-399885 (1-3mg/kg i.p.) caused an anxiolytic-like activity comparable to that of diazepam (2.5-5mg/kg i.p.). An anxiolytic-like effect was also seen in the elevated plus-maze test in rats, where SB-399885 (0.3-3mg/kg i.p.) was slightly weaker than diazepam (2.5-5mg/kg i.p.). In the four-plate test in mice, SB-399885 (3-20mg/kg i.p.) showed an anxiolytic-like effect which was weaker than that produced by diazepam (2.5-5mg/kg i.p.). In the forced swim test in rats, SB-399885 (10mg/kg i.p.) significantly shortened the immobility time and the effect was stronger than that of imipramine (30mg/kg i.p.). In the forced swim test in mice, SB-399885 (20-30mg/kg i.p.) had an anti-immobility action, comparable to imipramine (30mg/kg i.p.) and also in the tail suspension test in mice, SB-399885 (10-30mg/kg i.p.) had an antidepressant-like effect, though was weaker than imipramine (10-20mg/kg i.p.). The tested 5-HT(6) antagonist (3-20mg/kg i.p.) shortened the walking time of rats in the open field test and, at a dose of 30mg/kg i.p. reduced the locomotor activity of mice. SB-399885 (in doses up to 30mg/kg i.p.) did not affect motor coordination in mice and rats tested in the rota-rod test. Such data indicate that the selective 5-HT(6) receptor antagonist SB-399885had specific effects, indicative of this compound's anxiolytic and antidepressant potential.

  1. Crystallization and memory programming characteristics of Ge-doped SbTe materials of varying Sb : Te ratio

    International Nuclear Information System (INIS)

    Jeong, Jeung-hyun; Lee, Hyun Seok; Lee, Suyoun; Lee, Taek Sung; Kim, Won Mok; Wu Zhe; Cheong, Byung-ki; Kim, Seul Cham; Oh, Kyu Hwan

    2009-01-01

    A phase change memory (PCM) utilizes resistivity changes accompanying fast transitions from an amorphous to a crystalline phase (SET) and vice versa (RESET). An investigation was made on the SET characteristics of PCM cells with Ge-doped SbTe (Ge-ST) materials of two different Sb : Te ratios (4.53 and 2.08). For the material of higher Sb : Te (4.53), a SET operation was completed within several tens of nanoseconds via nucleation-free crystallization whereas the material of lower Sb : Te (2.08) rendered a slower SET operation requiring several hundred nanoseconds for a nucleation-mediated crystallization. From measurements of nucleation and growth kinetics via laser-induced crystallization, the observed SET characteristics of the former case were found to derive from a growth time about 10 3 times shorter than the nucleation time and those of the latter from a much shorter nucleation time as well as a longer growth time than in the former case. The measured nucleation kinetics of the lower Sb : Te (2.08) material is unexpected from the existing data, which has led us to advance an interesting finding that there occurs a trend-reversing change in the nucleation kinetics of the Ge-ST materials around the eutectic composition (Sb : Te ∼2.6); nucleation is accelerated with the increase in the Sb : Te ratio above Sb : Te of 2.6, but with a decrease in the Sb : Te ratio below it.

  2. Three new superconducting members of the family of tetramethyltetraselenafulvalene (TMTSF) salts: TMTSF2Cl04, TMTSF2SbF6, TMTSF2TaF6

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Ribault, M.; Jerome, D.; Bechgaard, K.

    1981-01-01

    Resistivity against temperature measurements are reported along the high-conductivity a axis of TMTSF 2 ClO 4 , TMTSF 2 SbF 6 and TMTSF 2 TaF 6 , under pressure and as a function of applied magnetic field, that show that all three compounds exhibit superconducting phase transitions near 1 K, when sufficient pressure is applied. TMTSF 2 SbF 6 and TMTSF 2 TaF 6 become superconducting above critical pressures of the order of 10 and 11 kbar respectively whereas a superconducting phase transition in TMTSF 2 ClO 4 is observed at much lower pressures (<3 kbar). The critical pressure above which the sc phase is stabilised can be correlated with the separation between the sheets of TMTSF molecules and anions. (author)

  3. Statistical analysis of the DWPF prototypic sampler

    International Nuclear Information System (INIS)

    Postles, R.L.; Reeve, C.P.; Jenkins, W.J.; Bickford, D.F.

    1991-01-01

    The DWPF process will be controlled using assay measurements on samples of feed slurry. These slurries are radioactive, and thus will be sampled remotely. A Hydraguard trademark pump-driven sampler system will be used as the remote sampling device. A prototype Hydraguard trademark sampler has been studied in a full-scale mock-up of a DWPF process vessel. Two issues were of dominant interest: (1) what accuracy and precision can be provided by such a pump-driven sampler in the face of the slurry rheology; and, if the Hydraguard trademark sample accurately represents the slurry in its local area, (2) is the slurry homogeneous enough throughout for it to represent the entire vessel? To determine Hydraguard trademark Accuracy, a Grab Sampler of simpler mechanism was used as reference. This (Low) Grab Sampler was located as near to the intake port of the Hydraguard trademark as could be arranged. To determine Homogeneity, a second (High) Grab Sampler was located above the first. The data necessary to these determinations comes from the measurement system, so its important variables also affect the results. Thus, the design of the test involved not just Sampling variables, but also some of the Measurement variables as well. However, the main concern was the Sampler and not the Measurement System, so the test design included only such measurement variables as could not be circumvented (Vials, Dissolution Method, and Aliquoting). The test was executed by, or under the direct oversight of, expert technologists. It thus did not explore the many important particulars of ''routine'' plant operations (such as Remote Sample Preparation or Laboratory Shift Operation)

  4. Si-Sb-Te materials for phase change memory applications

    International Nuclear Information System (INIS)

    Rao Feng; Song Zhitang; Ren Kun; Zhou Xilin; Cheng Yan; Wu Liangcai; Liu Bo

    2011-01-01

    Si-Sb-Te materials including Te-rich Si 2 Sb 2 Te 6 and Si x Sb 2 Te 3 with different Si contents have been systemically studied with the aim of finding the most suitable Si-Sb-Te composition for phase change random access memory (PCRAM) use. Si x Sb 2 Te 3 shows better thermal stability than Ge 2 Sb 2 Te 5 or Si 2 Sb 2 Te 6 in that Si x Sb 2 Te 3 does not have serious Te separation under high annealing temperature. As Si content increases, the data retention ability of Si x Sb 2 Te 3 improves. The 10 years retention temperature for Si 3 Sb 2 Te 3 film is ∼ 393 K, which meets the long-term data storage requirements of automotive electronics. In addition, Si richer Si x Sb 2 Te 3 films also show improvement on thickness change upon annealing and adhesion on SiO 2 substrate compared to those of Ge 2 Sb 2 Te 5 or Si 2 Sb 2 Te 6 films. However, the electrical performance of PCRAM cells based on Si x Sb 2 Te 3 films with x > 3.5 becomes worse in terms of stable and long-term operations. Si x Sb 2 Te 3 materials with 3 < x < 3.5 are proved to be suitable for PCRAM use to ensure good overall performance.

  5. Synthesis and some properties of monocrystals. [Monocrystals-SbTiNbO6

    Energy Technology Data Exchange (ETDEWEB)

    Popolitov, V I; Yaroslavskij, I M

    1985-01-01

    The Sb2O3-Nb2O5-TiO2- KHF2-H2O2-H2O system was studied in search for new ferroelectric monocrystals containing oxide forms of antimony, niobium and tantalum. The new compounds were synthesized in batch autoclaves at 500-600 deg, temperature gradient along the vertical autoclave axis being 0.2-0.5 degr/cm. The SbTiNbO6 monocrystals formed as a result of hydrothermal synthesis are assigned to rhombic crystal structure, their electric conductivity and dielectric permittivity at room temperature are 10 S xcm and 75, respectively. Differential thermal analysis of samples has shown the presence of phase transformation in them in the 270 to 280 range. Pyroelectric effect has been observed in monocrystals in the -180 to +280 deg range. The synthesized antimony titaniobate is concluded to be a ferroelectric with the Curie point Tsub(C)=280 +- 10 deg.

  6. CRYSTAL-QUASICHEMICAL ANALYSIS OF DEFECT SUBSYSTEM OF DOPED PbTe: Sb CRYSTALS AND Pb-Sb-Te SOLID SOLUTIONS

    Directory of Open Access Journals (Sweden)

    D.M. Freik

    2014-05-01

    Full Text Available Within crystalquasichemical formalism models of point defects of crystals in the Pb-Sb-Te system were specified. Based on proposed crystalquasichemical formulae of antimony doped crystals PbTe:Sb amphoteric dopant effect was explained. Mechanisms of solid solution formation for РbТе-Sb2Те3: replacement of antimony ions lead sites  with the formation of cation vacancies  (I or neutral interstitial tellurium atoms  (II were examined. Dominant point defects in doped crystals PbTe:Sb and РbТе-Sb2Те3 solid solutions based on p-PbTe were defined. Dependences of concentration of dominant point defects, current carriers and Hall concentration on content of dopant compound and the initial deviation from stoichiometry in the basic matrix were calculated.

  7. Copper solubility in DWPF, Batch 1 waste glass: Update report

    International Nuclear Information System (INIS)

    Schumacker, R.F.

    1992-01-01

    The ''Late Washing'' Step in the processing of precipitate will require the use of additional copper formate in the Precipitate Reactor to catalyze the hydrolysis reaction. The increased copper concentration in the melter feed increases the potential for metal precipitation during the vitrification of the melter feed. This report describes recent results with a conservative glass selected from the DWPF acceptable region in the Batch 1 Variability Study

  8. Structure evolution upon chemical and physical pressure in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Tiittanen, T.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    2017-02-15

    Here we demonstrate the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure upon the isovalent larger-for-smaller A-site cation substitution in the B-site ordered double-perovskite system (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}. This is the same transformation sequence previously observed up to Fm-3m upon heating the parent Sr{sub 2}FeSbO{sub 6} phase to high temperatures. High-pressure treatment, on the other hand, transforms the hexagonal P6{sub 3}/mmc structure of the other end member Ba{sub 2}FeSbO{sub 6} back to the cubic Fm-3m structure. Hence we may conclude that chemical pressure, physical pressure and decreasing temperature all work towards the same direction in the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} system. Also shown is that with increasing Ba-for-Sr substitution level, i.e. with decreasing chemical pressure effect, the degree-of-order among the B-site cations, Fe and Sb, decreases. - Graphical abstract: In the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} double-perovskite system the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure is seen upon the isovalent larger-for-smaller A-site cation substitution. High-pressure treatment under 4 GPa extends stability of the cubic Fm-3m structure within a wider substitution range of x. - Highlights: • Gradual structural transitions upon A-cation substitution in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6.} • With increasing x structure changes from I2/m to I4/m, Fm-3m and P6{sub 3}/mmc. • Degree of B-site order decreases with increasing x and A-site cation radius. • High-pressure treatment extends cubic Fm-3m phase stability for wider x range. • High-pressure treatment affects bond lengths mostly around the A-cation.

  9. Photo-induced effects of the virgin Ge_2_4_._9Sb_1_1_._6S_6_3_._5 film

    International Nuclear Information System (INIS)

    Knotek, P.; Tichy, L.; Kutalek, P.

    2015-01-01

    Amorphous Ge_2_4_._9Sb_1_1_._6S_6_3_._5 film was prepared through thermal evaporation. A blue shift of the optical band gap by approximately 100 meV was observed as a result of self-bleaching process of protected film aged for two years. The magnitude of the light induced blue shift of the optical band of the virgin film is primarily dependent on the light penetration depth and on the light intensity. The kinetics of photo-bleaching follows the stretch exponential function with a formal rate of bleaching depending on the light intensity while the saturated state is independent from the light intensity. The far infrared spectra indicate that ageing, illumination by over-band gap-photons and annealing of the virgin film are mainly accompanied by the film network ordering. Illumination by UV light photons led to a blue shift accompanied by the significant oxidation as evidenced by the results of the far infrared spectra and the energy dispersive analysis. - Highlights: • “Giant” photo-induced effects in virgin Ge_2_4_._9Sb_1_1_._6S_6_3_._5 film • The role of the film thickness, the wavelengths and intensity of excitation photons • The changes of the photo-sensitivity due to the self-ageing process • The high-intensity illumination (> 10 W/cm"2) led to the different processes

  10. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    Weisman, A.F.; Knight, J.R.; McIntosh, D.L.; Papouchado, L.M.

    1988-01-01

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  11. Optical properties of GaSb(001)-c(2 x 6): The role of surface antisite defects

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor; Del Sole, Rodolfo [Department of Physics, CNR-INFM-SMC, Roma (Italy); European Theoretical Spectroscopy Facility (ETSF), University of Rome ' ' Tor Vergata' ' , Roma (Italy); Magri, Rita [Centro S3-CNR-Istituto di Nanoscienze, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy)

    2010-08-15

    We consider the formation of surface antisite defects on a previously proposed model for the GaSb(001)-c(2 x 6) surface. Based on ab initio total energy calculations, we show how these defects stabilize the otherwise metallic surface and how their formation is driven by the excess charge associated with the Sb-rich surface conditions. The surface-sensitive optical technique of reflectance anisotropy spectroscopy is shown to be crucial for detecting the defects, and computation of spectra yields a good agreement with experiment when defects are included in the surface reconstruction. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. CHARACTERIZATION AND SETTLING TESTS WITH TANK 51H SLURRY SAMPLES HTF-076-081

    International Nuclear Information System (INIS)

    HAY, MICHAEL

    2006-01-01

    Sludge Batch 4 (SB4) is the next sludge batch being prepared for feed to the Defense Waste Processing Facility (DWPF). SB4 includes sludge from Tanks 5F, 6F, and 11H and heels from Tanks 7F and 51H. In preparation of SB4, sludge was transferred from Tank 11H to Tank 51H. The sludge currently in Tank 51H has been found to settle at slower rates than previous sludge batches. The slow sludge settling in Tank 51H impacts the ability to wash SB4 to the desired final weight percent insoluble solids and sodium endpoint. This could impact the ability to have SB4 ready on time to support DWPF and result in increased recycle back to the Tank Farm, reduced waste loading at DWPF, and lengthened cycle time in the DWPF Chemical Processing Cell (CPC) Sludge Receipt and Adjustment Tank (SRAT). The Savannah River National Laboratory (SRNL) was requested to characterize and investigate the slower settling rate with six slurry dip samples of Tank 51H sludge. The filtered supernate and the total dried solids of the sludge were analyzed and summaries of the results published in the references listed below. The sludge composition was found to be consistent with H-Area high aluminum sludge. Difficulties were encountered with dissolving all of the material in the dried sludge solids. An analysis of the undissolved material from the digestions found the main constituent was Boehmite (AlO(OH)). This report provides all of the compositional data and an analysis of the data with recommended values to use for the composition of the Tank 51H composite sample. Tables 3-2 through 3-4 provide the composition of the Tank 51H composite sample. Settling tests conducted with the Tank 51H sludge showed a much slower settling rate than with the sludge in Sludge Batch 3 (SB3). A mixture of Tank 51H and sludge from SB3 was prepared to mimic the projected final composition of Sludge Batch 4 (SB4). The mixture showed minimal improvement in the settling rate versus Tank 51H sludge alone. An attempt to

  13. Integrated DWPF Melter System (IDMS) campaign report: The first two noble metals operations

    International Nuclear Information System (INIS)

    Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D.H.; Ritter, J.A.

    1991-01-01

    The Integrated DWPF Melter System (IDMS) is designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas systems. The facility is the first pilot-scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to characterize the processing of noble metals (Pd, Rh, Ru, and Ag) on a large scale, the IDMS will be operated batchstyle for at least nine feed preparation cycles. The first two of these operations are complete. The major observation to date occurred during the second run when significant amounts of hydrogen were evolved during the feed preparation cycle. The runs were conducted between June 7, 1990 and March 8, 1991. This time period included nearly six months of ''fix-up'' time when forced air purges were installed on the SRAT MFT and other feed preparation vessels to allow continued noble metals experimentation

  14. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-12

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.

  15. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-20

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.

  16. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  17. Photoemission study of the skutterudite compounds CoSb sub 3 and RhSb sub 3

    CERN Document Server

    Ishii, H; Fujimori, A; Nagamoto, Y; Koyanagi, T; Sofo, J O

    2002-01-01

    We have studied the electronic structure of the skutterudite compounds CoSb sub 3 and Co(Sb sub 0 sub . sub 9 sub 6 Te sub 0 sub . sub 0 sub 4) sub 3 by photoemission spectroscopy. Valence-band spectra revealed that a significant amount Sb 5p states are present near the Fermi level and are hybridized with Co 3d states just below it. The spectra are well reproduced by the band-structure calculation, suggesting that the effect of electron correlations is not important. When Te is substituted for Sb and n-type carriers are doped into CoSb sub 3 , the spectra are shifted to higher binding energies as described by the rigid-band model. From this shift and the free-electron model for the conduction and valence bands, we have estimated the band gap of CoSb sub 3 to be 0.03-0.04 eV, consistent with transport measurements. Photoemission spectra of RhSb sub 3 have also been measured and revealed expected similarities to and differences from those of CoSb sub 3. Unusual temperature dependence has been observed for the s...

  18. Enhancement of electron correlation due to the molecular dimerization in organic superconductors β -(BDA-TTP )2X (X =I3, SbF6)

    Science.gov (United States)

    Aizawa, Hirohito; Kuroki, Kazuhiko; Yamada, Jun-ichi

    2015-10-01

    We perform a first-principles band calculation for quasi-two-dimensional organic superconductors β -(BDA -TTP) 2I3 and β -(BDA -TTP) 2SbF6. The first-principles band structures between the I3 and SbF6 salts are apparently different. We construct a tight-binding model for each material which accurately reproduces the first-principles band structure. The obtained transfer energies give the differences as follows: (i) larger dimerization in the I3 salt than the SbF6 salt, and (ii) different signs and directions of the interstacking transfer energies. To decompose the origin of the difference into the dimerization and the interstacking transfer energies, we adopt a simplified model by eliminating the dimerization effect and focus only on the difference caused by the interstacking transfer energies. From the analysis using the simplified model, we find that the difference of the band structure comes mainly from the strength of the dimerization. To compare the strength of the electron correlation having roots in the band structure, we calculate the physical properties originating from the effect of the electron correlation such as the spin susceptibility applying the two-particle self-consistent method. We find that the maximum value of the spin susceptibility for the I3 salt is larger than that of the SbF6 salt. Hypothetically decreasing the dimerization within the model of the I3 salt, the spin susceptibility takes almost the same value as that of the SbF6 salt for the same magnitude of the dimerization. We expect that the different ground state between the I3 and SbF6 salt mainly comes from the strength of the dimerization which is apparently masked in the band calculation along a particular k path.

  19. Yield Stress Reduction of DWPF Melter Feed Slurries

    International Nuclear Information System (INIS)

    Stone, M.E.; Smith, M.E.

    2007-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame

  20. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    International Nuclear Information System (INIS)

    Gupta, N.K.; Gong, Chung.

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B ampersand PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels

  1. Two-mode Diode-laser Spectroscopy with a InAsSb/InAsSbP Laser near 3.6 ćm

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Danilova, A. P.; Imenkov, A. N.; Kolchanova, N. M.; Sherstnev, V. V.; Yakovlev, Yu. P.

    1999-01-01

    Roč. 33, č. 12 (1999), s. 1322-1327 ISSN 1063-7826 R&D Projects: GA AV ČR IAA4040708 Institutional research plan: CEZ:A54/98:Z4-040-9-ii Keywords : output frequency of InAsSb/InAsSbP * current dependence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.565, year: 1999

  2. Lot No. 1 of Frit 202 for DWPF cold runs

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    1993-01-01

    This report was prepared at the end of 1992 and summarizes the evaluation of the first lot sample of DWPF Frit 202 from Cataphote Inc. Publication of this report was delayed until the results from the carbon analyses could be included. To avoid confusion the frit specifications presented in this report were those available at the end of 1992. The specifications were slightly modified early in 1993. The frit was received and evaluated for moisture, particle size distribution, organic-inorganic carbon and chemical composition. Moisture content and particle size distribution were determined on a representative sample at SRTC. These properties were within the DWPF specifications for Frit 202. A representative sample was submitted to Corning Engineering Laboratory Services for chemical analyses. The sample was split and two dissolutions prepared. Each dissolution was analyzed on two separate days. The results indicate that there is a high probability (>95%) that the silica content of this frit is below the specification limit of 77.0 ± 1.0 wt %. The average of the four analyzed values was 75.1 wt % with a standard deviation of 0.28 wt %. All other oxides were within the elliptical two sigma limits. Control standard frit samples were submitted and analyzed at the same time and the results were very similar to previous analyses of these materials

  3. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  4. [Sb{sub 4}Au{sub 4}Sb{sub 4}]{sup 2−}: A designer all-metal aromatic sandwich

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wen-Juan; You, Xue-Rui [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); Guo, Jin-Chang [Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000 (China); Li, Da-Zhi, E-mail: hj.zhai@sxu.edu.cn, E-mail: ldz005@126.com [Department of Chemical Engineering, Binzhou University, Binzhou 256603 (China); Wang, Ying-Jin [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000 (China); Sun, Zhong-Ming [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhai, Hua-Jin, E-mail: hj.zhai@sxu.edu.cn, E-mail: ldz005@126.com [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006 (China)

    2016-07-28

    We report on the computational design of an all-metal aromatic sandwich, [Sb{sub 4}Au{sub 4}Sb{sub 4}]{sup 2−}. The triple-layered, square-prismatic sandwich complex is the global minimum of the system from Coalescence Kick and Minima Hopping structural searches. Following a standard, qualitative chemical bonding analysis via canonical molecular orbitals, the sandwich complex can be formally described as [Sb{sub 4}]{sup +}[Au{sub 4}]{sup 4−}[Sb{sub 4}]{sup +}, showing ionic bonding characters with electron transfers in between the Sb{sub 4}/Au{sub 4}/Sb{sub 4} layers. For an in-depth understanding of the system, one needs to go beyond the above picture. Significant Sb → Au donation and Sb ← Au back-donation occur, redistributing electrons from the Sb{sub 4}/Au{sub 4}/Sb{sub 4} layers to the interlayer Sb–Au–Sb edges, which effectively lead to four Sb–Au–Sb three-center two-electron bonds. The complex is a system with 30 valence electrons, excluding the Sb 5s and Au 5d lone-pairs. The two [Sb{sub 4}]{sup +} ligands constitute an unusual three-fold (π and σ) aromatic system with all 22 electrons being delocalized. An energy gap of ∼1.6 eV is predicted for this all-metal sandwich. The complex is a rare example for rational design of cluster compounds and invites forth-coming synthetic efforts.

  5. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations

    Science.gov (United States)

    Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime

    2016-01-01

    Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres. PMID:26840318

  6. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations

    Directory of Open Access Journals (Sweden)

    Héctor Guillén-Bonilla

    2016-01-01

    Full Text Available Bystromite (MgSb2O6 nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM, microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO and propane (C3H8 at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres.

  7. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  8. (In)GaSb/AlGaSb quantum wells grown on Si substrates

    International Nuclear Information System (INIS)

    Akahane, Kouichi; Yamamoto, Naokatsu; Gozu, Shin-ichiro; Ueta, Akio; Ohtani, Naoki

    2007-01-01

    We have successfully grown GaSb and InGaSb quantum wells (QW) on a Si(001) substrate, and evaluated their optical properties using photoluminescence (PL). The PL emissions from the QWs at room temperature were observed at around 1.55 μm, which is suitable for fiber optic communications systems. The measured ground state energy of each QW matched well with the theoretical value calculated by solving the Schroedinger equation for a finite potential QW. The temperature dependence of the PL intensity showed large activation energy (∼ 77.6 meV) from QW. The results indicated that the fabricated QW structure had a high crystalline quality, and the GaSb QW on Si for optical devices operating at temperatures higher than room temperature will be expected

  9. The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum (Sorghum bicolor), SbCAD2 and SbCAD4.

    Science.gov (United States)

    Jun, Se-Young; Walker, Alexander M; Kim, Hoon; Ralph, John; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2017-08-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in monolignol biosynthesis, reducing sinapaldehyde, coniferaldehyde, and p -coumaraldehyde to their corresponding alcohols in an NADPH-dependent manner. Because of its terminal location in monolignol biosynthesis, the variation in substrate specificity and activity of CAD can result in significant changes in overall composition and amount of lignin. Our in-depth characterization of two major CAD isoforms, SbCAD2 (Brown midrib 6 [bmr6]) and SbCAD4, in lignifying tissues of sorghum ( Sorghum bicolor ), a strategic plant for generating renewable chemicals and fuels, indicates their similarity in both structure and activity to Arabidopsis ( Arabidopsis thaliana ) CAD5 and Populus tremuloides sinapyl alcohol dehydrogenase, respectively. This first crystal structure of a monocot CAD combined with enzyme kinetic data and a catalytic model supported by site-directed mutagenesis allows full comparison with dicot CADs and elucidates the potential signature sequence for their substrate specificity and activity. The L119W/G301F-SbCAD4 double mutant displayed its substrate preference in the order coniferaldehyde > p -coumaraldehyde > sinapaldehyde, with higher catalytic efficiency than that of both wild-type SbCAD4 and SbCAD2. As SbCAD4 is the only major CAD isoform in bmr6 mutants, replacing SbCAD4 with L119W/G301F-SbCAD4 in bmr6 plants could produce a phenotype that is more amenable to biomass processing. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Raman spectra of the system TeCl4-SbCl5

    International Nuclear Information System (INIS)

    Brockner, W.; Demiray, A.F.

    1980-01-01

    Raman spectra of the solid and molten TeCl 4 . SbCl 5 addition compound and of some TeCl 4 -SbCl 5 mixtures have been recorded. Two modifications of the crystalline TeCl 4 -SbCl 5 compound have been found. The structure of the melt can be described by the equilibrium TeCl 3 + + SbCl 6 - reversible TeCl 4 + SbCl 5 lying on the left side. Mixtures with other stoichiometry contain the 1:1 adduct only and excess TeCl 4 or SbCl 5 , respectively. Such melts are built up by the ionic species TeCl 3 + and SbCl 6 - also and TeCl 4 or SbCl 5 according to stoichiometry. (author)

  11. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  12. Parametric testing of a DWPF glass

    International Nuclear Information System (INIS)

    Bazan, F.; Rego, J.

    1985-03-01

    A series of tests has been performed to characterize the chemical stability of a DWPF borosilicate glass sample as part of the Waste Package Task of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. This material was prepared at the Savannah River Laboratory for the purpose of testing the 165-frit matrix doped with a simulated nonradioactive waste. All tests were conducted at 90 0 C using deionized water and J-13 water (a tuffaceous formation ground water). In the deionized water tests, both monoliths and crushed glass were tested at various ratios of surface area of the sample to volume of water in order to compare leach rates for different sample geometries or leaching times. Effects on the leach rates as a result of the presence of crushed tuff and stainless steel material were also investigated in the tests with J-13 water. 3 refs., 12 figs., 7 tabs

  13. Ab initio study of double perovskites Ba{sub 2}DySbO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Dhiraj Kumar; Mandal, Golak; Singh, B. K. [Department of Physics, T.M. Bhagalpur University, Bhagalpur, Bihar 812007 (India); Ray, Chandan [Department of Applied Physics & Ballistics, F. M. University, Balasore, Odisha, 756019 (India); Himanshu, A. K., E-mail: akh@vecc.gov.in [Nanostructured & Advanced Material Laboratory, Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Saltlake, Kolkata-700064 (India); Kumar, Uday [Department of Physical Sciences, IISER Kolkata, Mohanpur Campus, Mohanpur, West Bengal (India); Choudhary, B. K. [Department of Physics, Ranchi University, Jharkhand-834001 (India)

    2016-05-23

    First principle study of the electronic band structure of Ba2DySbO{sub 6} synthesied by the solid state reaction technique have been performed within the framework of density function theory using WIEN2K. It has been shown in the absence of electron-electron interaction (U=0), BaDySO{sub 6} behaves like a half-metal. Even in the presence of DFT+U, electron-electron interaction via the Hubbard term (from U = 0, 2.72e -7.02 eV), it still shows half metals.

  14. Structural stability of ternary C22–Zr6X2Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and C22–Zr6Sn2T′ (T′=Fe, Co, Ni, Cu) compounds

    International Nuclear Information System (INIS)

    Colinet, Catherine; Crivello, Jean-Claude; Tedenac, Jean-Claude

    2013-01-01

    The crystal and electronic structures, and the thermodynamic properties of Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu) ternary compounds in the Fe 2 P-type structure have been investigated by means of first principle calculations. The calculated structural parameters are in good agreement with the experimental data. The total electronic densities of states as well as the Bader charges of the atoms have been computed. Both electronic and size effects allow to explain the stability of the ternary Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu) compounds. - Graphical abstract: Valence charge electronic localization function (ELF) calculated for Zr 6 Sb 2 Co compound. Display Omitted - Highlights: • Structural stability of Zr 6 X 2 T′ compounds (X: p element, T′: late transition metal) in the Fe 2 P-type structure. • First principles calculation of lattice parameters and enthalpies of formation. • Electronic densities of state in the series Zr 6 Sn 2 T′ (T′=Fe, Co, Ni, Cu). • Electronic densities of state in the series Zr 6 X 2 Co (X=Al, Ga, Sn, As, Sb, Bi, Te)

  15. Development Of Remote Hanford Connector Gasket Replacement Tooling For DWPF

    International Nuclear Information System (INIS)

    Krementz, D.; Coughlin, Jeffrey

    2009-01-01

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manually or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and

  16. Peripheral Injection of SB203580 Inhibits the Inflammatory-Dependent Synthesis of Proinflammatory Cytokines in the Hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrzej P. Herman

    2014-01-01

    Full Text Available The study was designed to determine the effects of peripheral injection of SB203580 on the synthesis of interleukin- (IL- 1β, IL-6, and tumor necrosis factor (TNF α in the hypothalamus of ewes during prolonged inflammation. Inflammation was induced by the administration of lipopolysaccharide (LPS (400 ng/kg over 7 days. SB203580 is a selective ATP-competitive inhibitor of the p38 mitogen-activated protein kinase (MAPK, which is involved in the regulation of proinflammatory cytokines IL-1β, IL-6 and TNFα synthesis. Intravenous injection of SB203580 successfully inhibited (P<0.01 synthesis of IL-1β and reduced (P<0.01 the production of IL-6 in the hypothalamus. The p38 MAPK inhibitor decreased (P<0.01 gene expression of TNFα but its effect was not observed at the level of TNFα protein synthesis. SB203580 also reduced (P<0.01 LPS-stimulated IL-1 receptor type 1 gene expression. The conclusion that inhibition of p38 MAPK blocks LPS-induced proinflammatory cytokine synthesis seems to initiate new perspectives in the treatment of chronic inflammatory diseases also within the central nervous system. However, potential proinflammatory effects of SB203580 treatment suggest that all therapies using p38 MAPK inhibitors should be introduced very carefully with analysis of all expected and unexpected consequences of treatment.

  17. Experimental investigation of As, Sb and Cs behavior during olivine serpentinization in hydrothermal alkaline systems

    Science.gov (United States)

    Lafay, Romain; Montes-Hernandez, German; Janots, Emilie; Munoz, Manuel; Auzende, Anne Line; Gehin, Antoine; Chiriac, Rodica; Proux, Olivier

    2016-04-01

    While Fluid-Mobile Elements (FMEs) such as B, Sb, Li, As or Cs are particularly concentrated in serpentinites, data on FME fluid-serpentine partitioning, distribution, and sequestration mechanisms are missing. In the present experimental study, the behavior of Sb, As and Cs during San Carlos olivine serpentinization was investigated using accurate mineralogical, geochemical, and spectroscopic characterization. Static-batch experiments were conducted at 200 °C, under saturated vapor pressure (≈1.6 MPa), for initial olivine grain sizes of coefficient increasing such as CsDp/fl = 1.5-1.6 elements are however substantially different. While the As partition coefficient remains constant throughout the serpentinization reaction, the Cs partition coefficient decreases abruptly in the first stages of the reaction to reach a constant value after the reaction is 40-60% complete. Both As and Cs partitioning appear to decrease with increasing initial olivine grain size, but there is no significant difference in the partitioning coefficient between the 30-56 and 56-150 μm grain size after complete serpentinization. X-ray absorption spectroscopy (XAS) measurements combined with X-ray chemical measurements reveal that the As(V) is mainly adsorbed onto the serpentinization products, especially brucite. In contrast, mineralogical characterization combined with XAS spectroscopy reveal redox sensitivity for Sb sequestration within serpentine products, depending on the progress of the reaction. When serpentinization is coefficient compared to that of the serpentine and brucite assemblage. Antimony reduction appears linked to water reduction accompanying the bulk iron oxidation, as half the initial Fe(II) is oxidized into Fe(III) and incorporated into the serpentine products once the reaction is over. The reduction of Sb implies a decrease of its solubility, but the type of secondary Sb-rich phases identified here might not be representative of natural systems where Sb

  18. Determination of Reportable Radionuclides for DWPF Sludge Batch 2 (Macro Batch 3)

    International Nuclear Information System (INIS)

    Bibler, N.E.

    2002-01-01

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the greater than 0.01 percent criterion for Curie content

  19. Remote process cell mercury transfer pumps for DWPF

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Vaughn, V.G.

    1986-01-01

    Final design and the results of the testing performed thus far show that the water displacement of mercury to a height of 40 feet is feasible with just 6 gallons of motive water. Control of the transfer is achieved by monitoring the pump discharge pressure. An air actuated plug valve configuration successfully contained the required discharge pressure of 260 psi. The requirements of low flow and maximum separation of mercury from particulates are achieved due to the configuration of the pressure canister. The pump is capable of transferring a discrete amount of mercury with little additional slurry particulates. The success of this new pumping configuration is highlighted by the fact that it was the inspiration for other remote transfer applications tested at SRP. These application include the dual canister sample pump shown in Figure 7, as well as a successful prototype pump designed at Pacific Northwest Laboratories (PNL). The PNL pump was designed for the purpose of metering waste slurries to an electric melter. Upon completion of final pump fabrication, the Defense Waste Processing facility (DWPF) facility will have a simple and highly reliable method of remotely transferring small discrete batches of mercury as required from radioactive process vessels. 3 refs., 7 figs., 1 tab

  20. DWPF Melter No.2 Prototype Bus Bar Test Report

    International Nuclear Information System (INIS)

    Gordon, J.

    2003-01-01

    Characterization and performance testing of a prototype DWPF Melter No.2 Dome Heater Bus Bar are described. The prototype bus bar was designed to address the design features of the existing system which may have contributed to water leaks on Melter No.1. Performance testing of the prototype revealed significant improvement over the existing design in reduction of both bus bar and heater connection maximum temperature, while characterization revealed a few minor design and manufacturing flaws in the bar. The prototype is recommended as an improvement over the existing design. Recommendations are also made in the area of quality control to ensure that critical design requirements are met

  1. Assembly of a new inorganic-organic frameworks based on [Sb4Mo12(OH)6O48]10- polyanion

    Science.gov (United States)

    Thabet, Safa; Ayed, Meriem; Ayed, Brahim; Haddad, Amor

    2014-10-01

    A new organic-inorganic hybrid material, (C4N2H7)8[K(H2O)]2[Sb4Mo12(OH)6O48]ṡ16H2O (1) has been isolated by the conventional solution method and characterized by elemental analysis, single-crystal X-ray diffraction, infrared spectroscopy, UV-visible spectroscopies, cyclic voltammetry and TG-DTA analysis. The compound crystallizes in the triclinic space group P - 1 with a = 13.407(6) Å, b = 13.906(2) Å, c = 14.657(7) Å, α = 77.216(9)°, β = 71.284(6)°, γ = 71.312(3)° and Z = 1. The crystal structure exhibits an infinite 1D inorganic structure built from [Sb4Mo12(OH)6O48]10- clusters and potassium cations; adjacent chains are further joined up hydrogen bonding interactions between protonated 2-methylimidazolim cations, water molecules and polyoxoanions to form a 3D supramolecular architecture.

  2. Chemical compatibility of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.

    1993-01-01

    The Waste Acceptance Preliminary Specifications (WAPS) require that the contents of the canistered waste form are compatible with one another and the stainless steel canister. The canistered waste form is a closed system comprised of a stainless steel vessel containing waste glass, air, and condensate. This system will experience a radiation field and an elevated temperature due to radionuclide decay. This report discusses possible chemical reactions, radiation interactions, and corrosive reactions within this system both under normal storage conditions and after exposure to temperatures up to the normal glass transition temperature, which for DWPF waste glass will be between 440 and 460 degrees C. Specific conclusions regarding reactions and corrosion are provided. This document is based on the assumption that the period of interim storage prior to packaging at the federal repository may be as long as 50 years

  3. The formation mechanisms and optical characteristics of GaSb quantum rings

    International Nuclear Information System (INIS)

    Lin, Wei-Hsun; Pao, Chun-Wei; Wang, Kai-Wei; Liao, Yu-An; Lin, Shih-Yen

    2013-01-01

    The growth mechanisms and optical characteristics of GaSb quantum rings (QRs) are investigated. Although As-for-Sb exchange is the mechanism responsible for the dot-to-ring transition, significant height difference between GaSb quantum dots (QDs) and QRs in a dot/ring mixture sample suggests that the dot-to-ring transition is not a spontaneous procedure. Instead, it is a rapid transition procedure as long as it initiates. A model is established to explain this phenomenon. Larger ring inner diameters and heights of the sample with longer post Sb soaking time suggest that As-for-Sb exchange takes places in both vertical and lateral directions. The decreasing ring densities, enlarged ring inner/outer diameters and eventually flat GaSb surfaces observed with increasing growth temperatures are resulted from enhanced adatom migration and As-for-Sb exchange with increasing growth temperatures

  4. Sb{sub 7}Te{sub 3}/ZnSb multilayer thin films for high thermal stability and long data retention phase-change memory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiyu; Wu, Weihua [Functional Materials Research Laboratory, School of Materials Science & Engineering, Tongji University, Shanghai 201804 (China); Zhai, Jiwei, E-mail: apzhai@tongji.edu.cn [Functional Materials Research Laboratory, School of Materials Science & Engineering, Tongji University, Shanghai 201804 (China); Song, Sannian; Song, Zhitang [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Science, Shanghai 200050 (China)

    2017-04-15

    Highlights: • Sb{sub 7}Te{sub 3} (ST) provides a fast crystallization speed, low melting temperature. • The Sb{sub 7}Te{sub 3}/ZnSb films exhibits faster crystallization speed, high thermal stability. • The calculated temperature for 10-year data retention is about 127 {sup o}C. • The Sb{sub 7}Te{sub 3}/ZnSb multilayer configuration with low power consumption. - Abstract: Phase-change memory is regard as one of the most promising candidates for the next-generation non-volatile memory. In this work, we proposed a Sb{sub 7}Te{sub 3}/ZnSb multilayer thin films to improve the thermal stability of Sb-rich Sb{sub 3}Te{sub 7}. The sheet resistance ratio between amorphous and crystalline states reached up to 4 orders of magnitude. With regard to the thermal stability, the calculated temperature for 10-year data retention is about 127 °C. The threshold current and threshold voltage of a cell based on Sb{sub 7}Te{sub 3}/ZnSb are 6.9 μA and 1.9 V, respectively. The lower RESET power is presented in the PCM cells of Sb{sub 7}Te{sub 3}/ZnSb films, benefiting from its high resistivity.

  5. SULFURIC ACID CORROSION OF LOW Sb - Pb BATTERY ALLOYS

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... (Manuscript received February,1983). ABSTRACT. The corrosion properties of low Sb - Pb alloys developed for maintenance free motive power industrial batteries was studied by a bare grid constant current method and compared to those of the conventional. Pb- 6% Sb alloy. Low Sb-Pb alloys with Se and ...

  6. The potential impacts of sodium management on Frit Development for Coupled Operations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-10

    In this report, Section 2.0 provides a description of sodium management and its impact on the glass waste form, Section 3.0 provides background information on phase separation, Section 4.0 provides the impact of sodium management on SB9 frit development efforts and the results of a limited scoping study investigating phase separation in potential DWPF frits, and Section 5.0 discusses potential technical issues associated with using a phase separated frit for DWPF operations.

  7. Dissimilatory Sb(V) reduction by microorganisms isolated from Sb-contaminated sediment

    Science.gov (United States)

    Dovick, M. A.; Kulp, T. R.

    2013-12-01

    Mining and smelting are major sources of trace metal contamination in freshwater systems. Arsenic (As) is a common contaminant derived from certain mining operations and is a known toxic metalloid and carcinogen. Antimony (Sb) is listed as a pollutant of priority interest by the EPA and is presumed to share similar geochemical and toxicological properties with arsenic. Both elements can occur in four different oxidation states (V, III, 0, and -III) under naturally occurring conditions. In aqueous solutions As(V) and Sb(V) predominate in oxygenated surface waters whereas As(III) and Sb(III) are stable in anoxic settings. Numerous studies have examined microbiological redox pathways that utilize As(V) as a terminal electron acceptor for anaerobic respiration, however there have been few studies on microbial mechanisms that may affect the biogeochemical cycling of Sb in the environment. Here we report bacterial reduction of Sb(V) to Sb(III) in anoxic enrichment cultures and bacterial isolates grown from sediment collected from an Sb contaminated pond at a mine tailings site in Idaho (total pond water Sb concentration = 235.2 +/- 136.3 ug/L). Anaerobic sediment microcosms (40 mL) were established in artificial freshwater mineral salt medium, amended with millimolar concentrations of Sb(V), acetate or lactate, and incubated at 27°C for several days. Antimony(V), lactate, and acetate concentrations were monitored during incubation by High Performance Liquid Chromatography (HPLC) and Ion Chromatography (IC). Live sediment microcosms reduced millimolar amendments of Sb(V) to Sb(III) coupled to the oxidation of acetate and lactate, while no activity occurred in killed controls. Enrichment cultures were established by serially diluting Sb(V)-reducing microcosms in mineral salt medium with Sb(V) and acetate, and a Sb(V)-reducing bacterial strain was isolated by plating on anaerobic agar plates amended with millimolar Sb(V) and acetate. Direct cell counting demonstrated that

  8. Simultaneous removal of Cd(II) and Sb(V) by Fe–Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruiping [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Feng [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Chengzhi, E-mail: czhu@rcees.ac.cn [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); He, Zan [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huijuan; Qu, Jiuhui [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2015-12-30

    Highlights: • Fe–Mn binary oxide achieves the simultaneous removal of Cd(II) and Sb(V). • Cd(II) at above 0.25 mmol/L improves Sb(V) adsorption onto FMBO. • Cd(II) improves more significant Sb(V) adsorption than Ca{sup 2+} and Mn{sup 2+}. • Sb(V) adsorption decreases whereas Cd(II) adsorption increases with elevated pH. • The increased ζ-potential and Cd(II)–Sb(V) precipitation favors Sb(V) adsorption. - Abstract: The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe–Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Q{sub max,Sb(V)}) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd{sup 2+} exhibited a more significant positive effect than both calcium ion (Ca{sup 2+}) and manganese ion (Mn{sup 2+}). Cd{sup 2+} showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca{sup 2+} and Mn{sup 2+}. The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pH{sub i}) range from 2 to 9, and Q{sub Sb(V)} decreases whereas Q{sub Cd(II)} increases with elevated pH{sub i}. Their combined values, as expressed by Q{sub Sb(V)+Cd(II)}, amount to about 2 mmol/g and vary slightly in the pH{sub i} range 4–9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).

  9. Evaluation Of The Impact Of The Defense Waste Processing Facility (DWPF) Laboratory Germanium Oxide Use On Recycle Transfers To The H-Tank Farm

    International Nuclear Information System (INIS)

    Jantzen, C.; Laurinat, J.

    2011-01-01

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO 3 ), germanium (IV) oxide (GeO 2 ) and cesium carbonate (Cs 2 CO 3 ) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to ∼12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO 2 /year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO 2 may increase to 4 kg/yr when improvements are implemented to attain an annual canister production

  10. Program plan: DWPF/HLWDP stirred Melter Program Plan

    International Nuclear Information System (INIS)

    Smith, M.E.

    1994-01-01

    Slurry Fed Melters (SFM) have been developed in the United States, Europe, and Japan for the conversion of high-level radioactive waste (HLW) to borosilicate glass for permanent disposal. The newest design, the stirred melter, combines the high production rates and high glass quality features of the Joule-heated melters with the low-cost, compact, simple maintenance features of the pot melters. However, further engineering design and demonstrations are needed to operate the stirred melter on a large scale. This document outlines the program which develops a full scale stirred melter for the DWPF (240 pph), and provides a basis which will allow further scale-up of the technology for use in the Hanford High Level Waste Disposal Program (HLWDP) for up to four times the reference capacity

  11. Flake structured SnSbCo/MCMB/C composite as high performance anodes for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoqiu [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangzhou 510631 (China); Ru, Qiang, E-mail: rq7702@yeah.net [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangzhou 510631 (China); Zhao, Doudou; Mo, Yudi; Hu, Shejun [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangzhou 510631 (China)

    2015-10-15

    SnSbCo/MCMB/C composite with flake structure were prepared by stepwise synthesis method. Firstly, SnSbCo nanoparticles were fabricated by co-precipitation, and then nanosized SnSbCo alloy were embedded in mesocarbon microbeads (MCMB) by ball-milling to synthesize primitive SnSbCo/MCMB hybrids, followed by carbonization of phenolic resin to produce an outer layer of carbon coating. The crystal structure, morphology and electrochemical properties of the SnSbCo/MCMB/C composite were evaluated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and galvanostatical cycling tests. Compared with bare SnSbCo alloy and SnSbCo/MCMB hybrids, the efficiently enhanced electrochemical performance of SnSbCo/MCMB/C composite were mainly ascribed to the improved electron conductivity and volume buffering effect provided by the amorphous carbon coating. The resultant SnSbCo/MCMB/C composite delivered an initial discharge capacity of 848 mAh g{sup −1} under 100 mA g{sup −1}, with a good capacity retention of 85.6% after 70 cycles. The composite also exhibited excellent rate capability of 603 mAh g{sup −1} and 405 mAh g{sup −1} at the current density of 200 mA g{sup −1} and 1000 mA g{sup −1}, respectively. - Highlights: • Flake structured SnSbCo/MCMB/C composite have been prepared by stepwise synthesis method. • SnSbCo/MCMB/C composite show good cycle performance and rate capability. • Using both MCMB and phenolic resin as dual carbon sources.

  12. A Summary of Rheology Data For SB3 and SB2/3 Blend Simulant Savannah River Site Wastes

    International Nuclear Information System (INIS)

    KOOPMAN, DAVIDC.

    2004-01-01

    total solids.The slurry pH seemed to be having a significant effect on the rheological variations within a set of similar simulant samples. The most viscous slurry in a set often had an intermediate pH in the 5-8 range. Rheological differences were seen as a function of wash endpoint with simulants. The Case 7d SB2/3SME product was more viscous than the less-washed Case 6b SME product. The more-washed SB3 simulant SME products that started at 20,000 mg/kg sludge nitrite were more viscous than the less washed SB3 simulant SME products that started at 27,000 mg/kg sludge nitrite

  13. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT01, KT02, KT03, AND KT04-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2010-11-01

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT01 and KT02-series of glasses were chosen to allow for the identification of the influence of the concentrations of major components of the glass on the retention of TiO{sub 2}. The KT03 series of glasses was chosen to allow for the identification of these influences when higher Nb{sub 2}O{sub 5} and ZrO{sub 2} concentrations are included along with TiO2. The KT04 series of glasses was chosen to investigate the properties and performance of glasses based on the best available projections of actual compositions to be processed at the DWPF (i.e., future sludge batches including the SCIX streams).

  14. Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer

    Science.gov (United States)

    Li, Qiang; Lai, Billy; Lau, Kei May

    2017-10-01

    We report epitaxial growth of GaSb nano-ridge structures and planar thin films on V-groove patterned Si (001) substrates by leveraging the aspect ratio trapping technique. GaSb was deposited on {111} Si facets of the V-shaped trenches using metal-organic chemical vapor deposition with a 7 nm GaAs growth initiation layer. Transmission electron microscopy analysis reveals the critical role of the GaAs layer in providing a U-shaped surface for subsequent GaSb epitaxy. A network of misfit dislocations was uncovered at the GaSb/GaAs hetero-interface. We studied the evolution of the lattice relaxation as the growth progresses from closely pitched GaSb ridges to coalesced thin films using x-ray diffraction. The omega rocking curve full-width-at-half-maximum of the resultant GaSb thin film is among the lowest values reported by molecular beam epitaxy, substantiating the effectiveness of the defect necking mechanism. These results thus present promising opportunities for the heterogeneous integration of devices based on 6.1 Å family compound semiconductors.

  15. Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures

    Science.gov (United States)

    Bracht, H.; Nicols, S. P.; Haller, E. E.; Silveira, J. P.; Briones, F.

    2001-05-01

    Gallium and antimony self-diffusion experiments have been performed in undoped 69Ga121Sb/71Ga123Sb isotope heterostructures at temperatures between 571 and 708 °C under Sb- and Ga-rich ambients. Ga and Sb profiles measured with secondary ion mass spectrometry reveal that Ga diffuses faster than Sb by several orders of magnitude. This strongly suggests that the two self-atom species diffuse independently on their own sublattices. Experimental results lead us to conclude that Ga and Sb diffusion are mediated by Ga vacancies and Sb interstitials, respectively, and not by the formation of a triple defect proposed earlier by Weiler and Mehrer [Philos. Mag. A 49, 309 (1984)]. The extremely slow diffusion of Sb up to the melting temperature of GaSb is proposed to be a consequence of amphoteric transformations between native point defects which suppress the formation of those native defects which control Sb diffusion. Preliminary experiments exploring the effect of Zn indiffusion at 550 °C on Ga and Sb diffusion reveal an enhanced intermixing of the Ga isotope layers compared to undoped GaSb. However, under the same conditions the diffusion of Sb was not significantly affected.

  16. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9 by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.

  17. Optical and electrical properties of Te doped AlGaAsSb/AlAsSb Bragg mirrors on InP

    OpenAIRE

    Toginho Filho, D. O.; Dias, I. F. L.; Duarte, J. L.; Laureto, E.

    2006-01-01

    We present a comparative study carried out on the optical and electrical characteristics of undoped and Te doped AlGaAsSb/AlAsSb Bragg mirrors with 6.5 pairs of layers and bulk undoped and Te doped AlGaAsSb epilayers alloys lattice matched on InP, grown by molecular beam epitaxy, using SIMS, photoluminescence, reflectivity and IxV techniques. The temperature dependence of PL transitions observed in the Bragg mirrors are similar to that observed in bulk samples and associated with the donor an...

  18. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    Science.gov (United States)

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pH<10, possibly due to the dissolution of ettringite (at alkaline pH) or calcium (Ca)-antimonate. Treated APC residues, stored anoxically in the laboratory, simulating the conditions at the NOAH Langøya landfill, gave rise to decreasing concentrations of Sb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Bannochie, C.

    2014-05-12

    , XRD and SEM) in support of the Salt IPT chemistry team. The overall conclusions from analyses performed in this study are that the PRFT slurry consists of 0.61 Wt.% insoluble MST solids suspended in a 0.77 M [Na+] caustic solution containing various anions such as nitrate, nitrite, sulfate, carbonate and oxalate. The corresponding measured sulfur level in the PRFT slurry, a critical element for determining how much of the PRFT slurry gets blended into the SRAT, is 0.437 Wt.% TS. The PRFT slurry does not contain insoluble oxalates nor significant quantities of high activity sludge solids. The lack of sludge solids has been alluded to by the Salt IPT chemistry team in citing that the mixing pump has been removed from Tank 49H, the feed tank to ARP-MCU, thus allowing the sludge solids to settle out. The PRFT aqueous slurry from DWPF was found to contain 5.96 Wt.% total dried solids. Of these total dried solids, relatively low levels of insoluble solids (0.61 Wt.%) were measured. The densities of both the filtrate and slurry were 1.05 g/mL. Particle size distribution of the PRFT solids in filtered caustic simulant and XRD analysis of washed/dried PRFT solids indicate that the PRFT slurry contains a bimodal distribution of particles in the range of 1 and 6 μm and that the particles contain sodium titanium oxide hydroxide Na2Ti2O4(OH)2 crystalline material as determined by XRD. These data are in excellent agreement with similar data obtained from laboratory sampling of vendor supplied MST. Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDS) analysis of washed/dried PRFT solids shows the particles to be like previous MST analyses consisting of irregular shaped micron-sized solids consisting primarily of Na and Ti. Thermogravimetric analysis of the washed and unwashed PRFT solids shows that the washed solids are very similar to MST solids. The TGA mass loss signal for the unwashed solids shows similar features to TGA performed on

  20. 1/6TH SCALE STRIP EFFLUENT FEED TANK-MIXING RESULTS USING MCU SOLVENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E

    2006-02-01

    The purpose of this task was to determine if mixing was an issue for the entrainment and dispersion of the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) solvent in the Defense Waste Processing Facility (DWPF) Strip Effluent Feed Tank (SEFT). The MCU strip effluent stream containing the Cs removed during salt processing will be transferred to the DWPF for immobilization in HLW glass. In lab-scale DWPF chemical process cell testing, mixing of the solvent in the dilute nitric acid solution proved problematic, and the Savannah River National Laboratory (SRNL) was requested to perform scaled SEFT mixing tests to evaluate whether the problem was symptomatic of the lab-scale set-up or of the solvent. The solvent levels tested were 228 and 235 ppm, which represented levels near the estimated DWPF solvent limit of 239 ppm in 0.001M HNO{sub 3} solution. The 239 ppm limit was calculated by Norato in X-CLC-S-00141. The general approach for the mixing investigation was to: (1) Investigate the use of fluorescent dyes to aid in observing the mixing behavior. Evaluate and compare the physical properties of the fluorescent dyed MCU solvents to the baseline Oak Ridge CSSX solvent. Based on the data, use the dyed MCU solvent that best approximates the physical properties. (2) Use approximately a 1/6th linear scale of the SEFT to replicate the internal configuration for DWPF mixing. (3) Determine agitator speed(s) for scaled testing based on the DWPF SEFT mixing speed. (4) Perform mixing tests using the 1/6th SEFT and determine any mixing issues (entrainment/dispersion, accumulation, adhesion) through visual observations and by pulling samples to assess uniformity. The mixing tests used MCU solvent fabricated at SRNL blended with Risk Reactor DFSB-K43 fluorescent dye. This dyed SRNL MCU solvent had equivalent physical properties important to mixing as compared to the Oak Ridge baseline solvent, blended easily with the MCU solvent, and provided an excellent visual aid.

  1. Hydrogen generation and foaming during tests in the GFPS simulating DWPF operations with Tank 42 sludge and CST

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.C.

    1999-12-08

    This report summarizes the pilot-scale research requested by the salt disposition team to examine the effect of crystalline silicotitanate (CST) resin with adsorbed noble metals on the maximum hydrogen generation rate produced during the DWPF melter feed preparation processes.

  2. Hydrogen generation and foaming during tests in the GFPS simulating DWPF operations with Tank 42 sludge and CST

    International Nuclear Information System (INIS)

    Koopman, D.C.

    1999-01-01

    This report summarizes the pilot-scale research requested by the salt disposition team to examine the effect of crystalline silicotitanate (CST) resin with adsorbed noble metals on the maximum hydrogen generation rate produced during the DWPF melter feed preparation processes

  3. Synthetic Cu 0.507(5)Pb 8.73(9)Sb 8.15(8)I 1.6S 20.0(2) nanowires

    Science.gov (United States)

    Kryukova, Galina N.; Heuer, Matthias; Wagner, Gerald; Doering, Thomas; Bente, Klaus

    2005-01-01

    Nanowires of an iodine containing Pb-Sb-sulfosalt have been synthesized by chemical vapor transport. Their structure was studied using high-resolution transmission electron microscopy and X-ray powder diffraction. The lattice parameters show values equal to a=4.9801(4) nm, b=0.41132(8) nm (with two-fold superstructure), c=2.1989(1) nm and β=99.918(6)°. These parameters and the results of a multislice simulation are in good agreement with the mineral pillaite, Cu 0.10Pb 9.16Sb 9.84S 22.94Cl 1.06O 0.5 (space group C2/m, a=4.949(1) nm, b=0.41259(8) nm, c=2.1828(4) nm, and β=99.62(3)°). Microprobe and EDX analyses yielded a chemical composition of Cu 0.507(5)Pb 8.73(9)Sb 8.15(8)I 1.6S 20.0(2) which is close to natural pillaite but contains no oxygen and iodine instead of chlorine. The structure of the investigated material is based on chains of M-S polyhedra ( M=Pb or Sb) typical for the architecture of sulfosalts implying iodine atoms in trigonal prismatic coordination with Pb atoms from the M-S polyhedra of neighboring chains. The [010] superstructure of the specimen was found to be unstable under electron beam irradiation with a rapid decrease of the b lattice parameter from 0.8 to 0.4 nm within 5 min.

  4. Synthetic Cu0.507(5)Pb8.73(9)Sb8.15(8)I1.6S20.0(2) nanowires

    International Nuclear Information System (INIS)

    Kryukova, Galina N.; Heuer, Matthias; Wagner, Gerald; Doering, Thomas; Bente, Klaus

    2005-01-01

    Nanowires of an iodine containing Pb-Sb-sulfosalt have been synthesized by chemical vapor transport. Their structure was studied using high-resolution transmission electron microscopy and X-ray powder diffraction. The lattice parameters show values equal to a=4.9801(4)nm, b=0.41132(8)nm (with two-fold superstructure), c=2.1989(1)nm and β=99.918(6) o . These parameters and the results of a multislice simulation are in good agreement with the mineral pillaite, Cu 0.10 Pb 9.16 Sb 9.84 S 22.94 Cl 1.06 O 0.5 (space group C2/m, a=4.949(1)nm, b=0.41259(8)nm, c=2.1828(4)nm, and β=99.62(3) o ). Microprobe and EDX analyses yielded a chemical composition of Cu 0.507(5) Pb 8.73(9) Sb 8.15(8) I 1.6 S 20.0(2) which is close to natural pillaite but contains no oxygen and iodine instead of chlorine. The structure of the investigated material is based on chains of M-S polyhedra (M=Pb or Sb) typical for the architecture of sulfosalts implying iodine atoms in trigonal prismatic coordination with Pb atoms from the M-S polyhedra of neighboring chains. The [010] superstructure of the specimen was found to be unstable under electron beam irradiation with a rapid decrease of the b lattice parameter from 0.8 to 0.4nm within 5min

  5. Measurement of the volatility and glass transition temperatures of glasses produced during the DWPF startup test program

    International Nuclear Information System (INIS)

    Marra, J.C.; Harbour, J.R.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize high-level radioactive waste currently stored in underground tanks at the Savannah River Site by incorporating the waste into a glass matrix. The molten waste glass will be poured into stainless steel canisters which will be welded shut to produce the final waste form. One specification requires that any volatiles produced as a result of accidentally heating the waste glass to the glass transition temperature be identified. Glass samples from five melter campaigns, run as part of the DWPF Startup Test Program, were analyzed to determine glass transition temperatures and to examine the volatilization (by weight loss). Glass transition temperatures (T g ) for the glasses, determined by differential scanning calorimetry (DSC), ranged between 445 C and 474 C. Thermogravimetric analysis (TGA) scans showed that no overall weight loss occurred in any of the glass samples when heated to 500 C. Therefore, no volatility will occur in the final glass product when heated up to 500 C

  6. Final Report - Glass Formulation Development and Testing for DWPF High AI2O3 HLW Sludges, VSL-10R1670-1, Rev. 0, dated 12/20/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The principal objective of the work described in this Final Report is to develop and identify glass frit compositions for a specified DWPF high-aluminum based sludge waste stream that maximizes waste loading while maintaining high production rate for the waste composition provided by ORP/SRS. This was accomplished through a combination of crucible-scale, vertical gradient furnace, and confirmation tests on the DM100 melter system. The DM100-BL unit was selected for these tests. The DM100-BL was used for previous tests on HLW glass compositions that were used to support subsequent tests on the HLW Pilot Melter. It was also used to process compositions with waste loadings limited by aluminum, bismuth, and chromium, to investigate the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition, to process glass formulations at compositional and property extremes, and to investigate crystal settling on a composition that exhibited one percent crystals at 963{degrees}C (i.e., close to the WTP limit). The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. The tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Specific objectives for the melter tests are as follows: Determine maximum glass production rates without bubbling for a simulated SRS Sludge Batch 19 (SB19). Demonstrate a feed rate equivalent to 1125 kg/m{sup 2}/day glass production using melt pool bubbling. Process a high waste loading glass composition with the simulated SRS SB19 waste and measure the quality of the glass product. Determine the effect of argon as a bubbling gas on waste processing and the glass product including feed processing rate, glass redox, melter emissions, etc.. Determine differences in feed processing and glass characteristics for SRS SB19 waste simulated by the co-precipitated and direct

  7. Dislocation motion in InSb crystals under a magnetic field

    CERN Document Server

    Darinskaya, E V; Erofeeva, S A

    2002-01-01

    Dislocation displacements under the action of a permanent magnetic field without mechanical loading in differently doped InSb crystals are investigated. The dependences of the mean dislocation path length and the relative number of divergence and tightening half-loops on the magnetic induction and preliminary load are obtained. Experiments on n-InSb crystals with Te impurities and on p-InSb crystals with Ge impurities have shown a sensitivity of the magnetoplasticity to the conductivity type and the dopant content. Study of the magnetoplastic effect in the initial deformed InSb crystals shows that internal stresses decrease the lengths of divergence dislocation paths and simultaneously increase the threshold magnetic field above which the magnetoplastic effect exists. Possible reasons for the observed phenomena are discussed.

  8. Effects of Radiative Recombination and Photon Recycling on Minority Carrier Lifetime in Epitaxial GaINAsSb Lattice-matched to GaSb

    International Nuclear Information System (INIS)

    S Anikeev; D Donetsky; G Belenky; S Luryl; CA Wang; DA Shiau; M Dashiell; J Beausang; G Nichols

    2004-01-01

    Radiative coefficient (B) is a fundamental recombination parameter which is of importance for a variety of optoelectronic minority carrier devices. Radiative recombination was comprehensively studied for wide-bandgap III-V compounds, while for 0.5-0.6 eV materials experimental data are quite limited and demonstrate significant spreading. Here we report excess carrier lifetime in isotype double heterostructures (DHs) of 0.54-eV p-GaInAsSb capped with p-AlGaAsSb, and grown lattice-matched to GaSb. Lifetime was measured by time-resolved photoluminescence (dynamic lifetime) as well as by optical response to sinusoidal excitation (static lifetime). Wide range of GaInAsSb layer thickness was used to separate contributions from interface and radiative recombination processes. Radiative coefficient and recombination velocity at GaInAsSb/AlGaAsSb heterointerface were determined. Temperature dependence of lifetime demonstrated significant contribution of radiative effects to the total recombination

  9. Simultaneous removal of Cd(II) and Sb(V) by Fe–Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption

    International Nuclear Information System (INIS)

    Liu, Ruiping; Liu, Feng; Hu, Chengzhi; He, Zan; Liu, Huijuan; Qu, Jiuhui

    2015-01-01

    Highlights: • Fe–Mn binary oxide achieves the simultaneous removal of Cd(II) and Sb(V). • Cd(II) at above 0.25 mmol/L improves Sb(V) adsorption onto FMBO. • Cd(II) improves more significant Sb(V) adsorption than Ca"2"+ and Mn"2"+. • Sb(V) adsorption decreases whereas Cd(II) adsorption increases with elevated pH. • The increased ζ-potential and Cd(II)–Sb(V) precipitation favors Sb(V) adsorption. - Abstract: The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe–Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Q_m_a_x_,_S_b_(_V_)) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd"2"+ exhibited a more significant positive effect than both calcium ion (Ca"2"+) and manganese ion (Mn"2"+). Cd"2"+ showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca"2"+ and Mn"2"+. The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pH_i) range from 2 to 9, and Q_S_b_(_V_) decreases whereas Q_C_d_(_I_I_) increases with elevated pH_i. Their combined values, as expressed by Q_S_b_(_V_)_+_C_d_(_I_I_), amount to about 2 mmol/g and vary slightly in the pH_i range 4–9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).

  10. Sulfuric Acid Corrosion of Low Sb - Pb Battery Alloys | Ntukogu ...

    African Journals Online (AJOL)

    The corrosion properties of low Sb - Pb alloys developed for maintenance free motive power industrial batteries was studied by a bare grid constant current method and compared to those of the conventional Pb- 6% Sb alloy. Low Sb-Pb alloys with Se and As grain refiners were found to have higher corrosion rates than the ...

  11. Structural stability of ternary C22–Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and C22–Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Colinet, Catherine, E-mail: ccolinet@simap.grenoble-inp.fr [Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS, 38402 Saint Martin d’Hères, Cedex (France); Crivello, Jean-Claude [ICMPE-CMTR, CNRS UMR-7182, 2-8 rue Henri Dunant, 94320 Thiais (France); Tedenac, Jean-Claude [Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2013-09-15

    The crystal and electronic structures, and the thermodynamic properties of Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu) ternary compounds in the Fe{sub 2}P-type structure have been investigated by means of first principle calculations. The calculated structural parameters are in good agreement with the experimental data. The total electronic densities of states as well as the Bader charges of the atoms have been computed. Both electronic and size effects allow to explain the stability of the ternary Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te) and Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu) compounds. - Graphical abstract: Valence charge electronic localization function (ELF) calculated for Zr{sub 6}Sb{sub 2}Co compound. Display Omitted - Highlights: • Structural stability of Zr{sub 6}X{sub 2}T′ compounds (X: p element, T′: late transition metal) in the Fe{sub 2}P-type structure. • First principles calculation of lattice parameters and enthalpies of formation. • Electronic densities of state in the series Zr{sub 6}Sn{sub 2}T′ (T′=Fe, Co, Ni, Cu). • Electronic densities of state in the series Zr{sub 6}X{sub 2}Co (X=Al, Ga, Sn, As, Sb, Bi, Te)

  12. High pressure driven superconducting critical temperature tuning in Sb{sub 2}Se{sub 3} topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Anversa, Jonas [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Escola de Engenharia Civil, Faculdade Meridional, 99070-220, Passo Fundo, RS (Brazil); Chakraborty, Sudip, E-mail: sudiphys@gmail.com [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Piquini, Paulo [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2016-05-23

    In this letter, we are reporting the change of superconducting critical temperature in Sb{sub 2}Se{sub 3} topological insulator under the influence of an external hydrostatic pressure based on first principles electronic structure calculations coupled with Migdal–Eliashberg model. Experimentally, it was shown previously that Sb{sub 2}Se{sub 3} was undergoing through a transition to a superconducting phase when subjected to a compressive pressure. Our results show that the critical temperature increases up to 6.15 K under the pressure unto 40 GPa and, subsequently, drops down until 70 GPa. Throughout this pressure range, the system is preserving the initial Pnma symmetry without any structural transformation. Our results suggest that the possible relevant mechanism behind the superconductivity in Sb{sub 2}Se{sub 3} is primarily the electron–phonon coupling.

  13. Inhibition of growth of experimental prostate cancer with sustained delivery systems (microcapsules and microgranules) of the luteinizing hormone-releasing hormone antagonist SB-75.

    Science.gov (United States)

    Korkut, E; Bokser, L; Comaru-Schally, A M; Groot, K; Schally, A V

    1991-02-01

    Inhibitory effects of the sustained delivery systems (microcapsules and microgranules) of a potent antagonist of luteinizing hormone-releasing hormone N-Ac-[3-(2-naphthyl)-D-alanine1, 4-chloro-D-phenylalanine2, 3-(3-pyridyl)-D-alanine3, D-citrulline6, D-alanine10]LH-RH (SB-75) on the growth of experimental prostate cancers were investigated. In the first experiment, three doses of a microcapsule preparation releasing 23.8, 47.6, and 71.4 micrograms of antagonist SB-75 per day were compared with microcapsules of agonist [D-Trp6]LH-RH liberating 25 micrograms/day in rats bearing Dunning R3327H transplantable prostate carcinoma. During 8 weeks of treatment, tumor growth was decreased by [D-Trp6]LH-RH and all three doses of SB-75 as compared to untreated controls. The highest dose of SB-75 (71.4 micrograms/day) caused a greater inhibition of prostate cancer growth than [D-Trp6]LH-RH as based on measurement of tumor volume and percentage change in tumor volume. Doses of 23.8 and 47.6 micrograms of SB-75 per day induced a partial and submaximal decrease, respectively, in tumor weight and volume. Tumor doubling time was the longest (50 days) with the high dose of SB-75 vs. 15 days for controls. The body weights were unchanged. The weights of testes, seminal vesicles, and ventral prostate were greatly reduced in all three groups that received SB-75, and testosterone levels were decreased to nondetectable values in the case of the two higher doses of SB-75. LH levels were also diminished. Similar results were obtained in the second experiment, in which the animals were treated for a period of 8 weeks with microgranules of SB-75. Therapy with microgranules of SB-75 significantly decreased tumor growth as measured by the final tumor volume, the percentage change from the initial tumor volume, and the reduction in tumor weight. The results indicate that antagonist SB-75, released from sustained delivery systems, can produce a state of chemical castration and effectively

  14. Synthesis and crystal structure of Cd2SbBr2

    International Nuclear Information System (INIS)

    Reshetova, L.N.; Shevel'kov, A.V.; Popovkin, B.A.

    1999-01-01

    A new cadmium antimonidobromide, i.e. Cd 2 SbBr 2 , has been synthesized by the standard ampoule method. The compound is crystallized in monoclinic system of sp. gr. P2 1 :a=8.244 (1), b=9.920(1), c=8.492(1) A, Β=116.80(1) deg. Binuclear anions of Sb 2 4- (Sb-Sb 2.78 A), octahedrically surrounded by six cadmium atoms, are a basic specific feature of the structure. Octahedrons of Sb 2 Cd 6 , by collectivizing the equatorial vertices. form layers, the alternation mode of which is similar to the one described for cadmium and mercury arsenidochlorides

  15. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  16. Projected radionuclide inventories of DWPF glass from current waste at time of production

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1993-01-01

    The Waste Acceptance Preliminary Specifications (WAPS) require that the DWPF estimate the inventory of long-lived radionuclides present in the waste glass, and report the values in the Waste Form Qualification Report. In this report, conservative (biased high) estimates of the radionuclide inventory of glass produced from waste currently in the Tank Farm are provided. In most cases, these calculated values compare favorably with actual data. In those cases where the agreement is not good, the values reported here are conservative

  17. Density functional simulations of Sb-rich GeSbTe phase change alloys

    International Nuclear Information System (INIS)

    Gabardi, S; Bernasconi, M; Caravati, S; Parrinello, M

    2012-01-01

    We generated models of the amorphous phase of Sb-rich GeSbTe phase change alloys by quenching from the melt within density functional molecular dynamics. We considered the two compositions Ge 1 Sb 1 Te 1 and Ge 2 Sb 4 Te 5 . Comparison with previous results on the most studied Ge 2 Sb 2 Te 5 allowed us to draw some conclusions on the dependence of the structural properties of the amorphous phase on the alloy composition. Vibrational and electronic properties were also scrutinized. Phonons at high frequencies above 200 cm -1 are localized in tetrahedra around Ge atoms in Sb-rich compounds as well as in Ge 2 Sb 2 Te 5 . All compounds are semiconducting in the amorphous phase, with a band gap in the range 0.7-1.0 eV.

  18. Density functional simulations of Sb-rich GeSbTe phase change alloys

    Science.gov (United States)

    Gabardi, S.; Caravati, S.; Bernasconi, M.; Parrinello, M.

    2012-09-01

    We generated models of the amorphous phase of Sb-rich GeSbTe phase change alloys by quenching from the melt within density functional molecular dynamics. We considered the two compositions Ge1Sb1Te1 and Ge2Sb4Te5. Comparison with previous results on the most studied Ge2Sb2Te5 allowed us to draw some conclusions on the dependence of the structural properties of the amorphous phase on the alloy composition. Vibrational and electronic properties were also scrutinized. Phonons at high frequencies above 200 cm-1 are localized in tetrahedra around Ge atoms in Sb-rich compounds as well as in Ge2Sb2Te5. All compounds are semiconducting in the amorphous phase, with a band gap in the range 0.7-1.0 eV.

  19. Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures

    OpenAIRE

    Bracht, H.; Nicols, S. P.; Haller, E. E.; Silveira, Juan Pedro; Briones Fernández-Pola, Fernando

    2001-01-01

    Gallium and antimony self-diffusion experiments have been performed in undoped 69Ga121Sb/71Ga123Sb isotope heterostructures at temperatures between 571 and 708 °C under Sb- and Ga-rich ambients. Ga and Sb profiles measured with secondary ion mass spectrometry reveal that Ga diffuses faster than Sb by several orders of magnitude. This strongly suggests that the two self-atom species diffuse independently on their own sublattices. Experimental results lead us to conclude that Ga and Sb diffusio...

  20. Stress-Induced Crystallization of Ge-Doped Sb Phase-Change Thin Films

    NARCIS (Netherlands)

    Eising, Gert; Pauza, Andrew; Kooi, Bart J.

    The large effects of moderate stresses on the crystal growth rate in Ge-doped Sb phase-change thin films are demonstrated using direct optical imaging. For Ge6Sb94 and Ge7Sb93 phase-change films, a large increase in crystallization temperature is found when using a polycarbonate substrate instead of

  1. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  2. Density functional simulations of Sb-rich GeSbTe phase change alloys

    OpenAIRE

    Gabardi, S; Caravati, S; Bernasconi, M; Parrinello, M

    2012-01-01

    We generated models of the amorphous phase of Sb rich GeSbTe phase change alloys by quenching from the melt within density functional molecular dynamics. We considered the two compositions Ge 1Sb 1Te 1 and Ge 2Sb 4Te 5. Comparison with previous results on the most studied Ge 2Sb 2Te 5 allowed us to draw some conclusions on the dependence of the structural properties of the amorphous phase on the alloy composition. Vibrational and electronic properties were also scrutinized. Phonons at high fr...

  3. Preparation of PtSnSb/C electrocatalizers for the electro-oxidation of the ethanol; Preparacao de eletrocatalizadores PtSnSb/C para a eletrooxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Tusi, M.M.; Ayoub, J.M.S.; Costa, T.C.; Spinace, E.V.; Neto, A.O., E-mail: aolivei@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    PtSn/C (Pt:Sn atomic ratio of 50:50) and PtSnSb/C (Pt:Sn:Sb atomic ratio of 50:45:05, 50:40:10 and 50:10:40) electrocatalysts were prepared (20 wt% metal loading) by an alcohol-reduction process using ethylene glycol as reducing agent, H{sub 2}PtCl{sub 6}.6H{sub 2}O, SnCl{sub 2}.H{sub 2}O and Sb(OOCCH{sub 3}){sub 3} and carbon Vulcan XC72 as support. The obtained materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and chronoamperometry. The PtSnSb/C (50:45:05) prepared by an alcohol-reduction process showed the best performance for ethanol electro-oxidation compared to the others catalysts. (author)

  4. Compositional and structural characterisation of GaSb and GaInSb

    International Nuclear Information System (INIS)

    Corregidor, V.; Alves, E.; Alves, L.C.; Barradas, N.P.; Duffar, Th.; Franco, N.; Marques, C.; Mitric, A.

    2005-01-01

    Low band gap III-V semiconductors are researched for applications in thermophotovoltaic technology. GaSb crystal is often used as a substrate. Ga 1-x In x Sb is also a promising substrate material, because its lattice parameters can be adjusted by controlling x. We used a new method to synthesise GaSb and GaInSb, in which a high frequency alternate magnetic field is used to heat, to melt and to mix the elements. We present a compositional and structural characterisation of the materials using a combination of complementary techniques. Rutherford backscattering was used to determine accurately the composition of the GaSb. With proton induced X-ray emission in conjunction with a 3 x 3 μm 2 micro-beam we studied the homogeneity of the samples. Structural analysis and phase identification were done with X-ray diffraction. The results for GaSb show a homogeneous composition while the GaInSb samples were found to be strongly heterogeneous at the end of the ingot. The ingots produced are competitive feed material, when compared to other growth techniques, to be used in a second step for the production of good quality ternary crystals

  5. Defect Structure of High-Temperature-Grown GaMnSb/GaSb

    International Nuclear Information System (INIS)

    Romanowski, P.; Bak-Misiuk, J.; Dynowska, E.; Domagala, J.Z.; Wojciechowski, T.; Jakiela, R.; Sadowski, J.; Barcz, A.; Caliebe, W.

    2010-01-01

    GaMnSb/GaSb(100) layers with embedded MnSb inclusions have been grown at 720 K using MBE technique. This paper presents the investigation of the defect structure of Ga1-xMnxSb layers with different content of manganese (up to x = 0.07). X-ray diffraction method using conventional and synchrotron radiation was applied. Dimensions and shapes of inclusions were detected by scanning electron microscopy. Depth profiles of elements were measured using secondary ion mass spectroscopy technique. (authors)

  6. Improved electrochemical performance of natural honeycomb templated LiSbO3 as an anode in lithium-ion battery

    International Nuclear Information System (INIS)

    Kundu, M.; Mahanty, S.; Basu, R.N.

    2011-01-01

    Highlights: → LiSbO 3 powders are synthesized by using honeycomb from natural beehive as template. → Agglomeration-free morphology with discrete cubic shaped 40-80 nm particles. → Electrochemically active anode in lithium-ion coin cells. → Improved capacity retention and rate performance in templated LiSbO 3 . - Abstract: LiSbO 3 has been synthesized by wet-chemical route using natural honeycomb as template, followed by thermal treatment at 850 deg. C. X-ray powder diffraction (XRD) confirms a single phase material having an orthorhombic crystal structure with lattice parameters of a = 4.912 A, b = 8.679 A and c = 5.089 A. Field emission scanning electron microscopy (FESEM) revealed that while conventional LiSbO 3 synthesized without using any template (C-LiSbO 3 ) consists of softly agglomerated clusters of bar-shaped multifaceted micrometer-sized grains (0.5-4.0 μm long and 0.5-1.0 μm wide), templated LiSbO 3 (T-LiSbO 3 ) consists of an agglomeration-free morphology with discrete cubic shaped particles of sizes 40-80 nm. Electrochemical investigation in 2032 type coin cells vs Li/Li + shows that Li insertion in LiSbO 3 takes place at 0.78 V while Li extraction occurs in two stages at 1.1 and 1.4 V with initial capacities of 178 and 196 mAh g -1 for C-LiSbO 3 and T-LiSbO 3 respectively. While C-LiSbO 3 shows a drastic capacity fading retaining only 28% of initial capacity after 100 cycles, T-LiSbO 3 retains ∼48% of the initial capacity due to the faceted morphology of the nanoparticles.

  7. Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: Implications for oxidation and competition.

    Science.gov (United States)

    Qi, Pengfei; Pichler, Thomas

    2016-02-01

    Antimony (Sb) is a naturally occurring element of growing environmental concern whose toxicity, adsorption behavior and other chemical properties are similar to that of arsenic (As). However, less is known about Sb compared to As. Individual and simultaneous adsorption experiments with Sb(III) and Sb(V) were conducted in batch mode with focus on the Sb speciation of the remaining liquid phase during individual Sb(III) adsorption experiments. The simultaneous adsorption and oxidation of Sb(III) was confirmed by the appearance of Sb(V) in the solution at varying Fe/Sb ratios (500, 100 and 8) and varying pH values (3.8, 7 and 9). This newly formed Sb(V) was subsequently removed from solution at a Fe/Sb ratio of 500 or at a pH of 3.8. However, more or less only Sb(V) was observed in the liquid phase at the end of the experiments at lower Fe/Sb ratios and higher pH, indicating that competition took place between the newly formed Sb(V) and Sb(III), and that Sb(III) outcompeted Sb(V). This was independently confirmed by simultaneous adsorption experiments of Sb(III) and Sb(V) in binary systems. Under such conditions, the presence of Sb(V) had no influence on the adsorption of Sb(III) while Sb(V) adsorption was significantly inhibited by Sb(III) over a wide pH range (4-10). Thus, in the presence of ferrihydrite and under redox conditions, which allow the presence of both Sb species, Sb(V) should be the dominant species in aquatic environments, since Sb(III) is adsorbed preferentially and at the same time oxidized to Sb(V). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Chemical Substitution-Induced and Competitive Formation of 6H and 3C Perovskite Structures in Ba3-xSrxZnSb2O9: The Coexistence of Two Perovskites in 0.3 ≤ x ≤ 1.0.

    Science.gov (United States)

    Li, Jing; Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao

    2017-11-20

    6H and 3C perovskites are important prototype structures in materials science. We systemically studied the structural evolution induced by the Sr 2+ -to-Ba 2+ substitution to the parent 6H perovskite Ba 3 ZnSb 2 O 9 . The 6H perovskite is only stable in the narrow range of x ≤ 0.2, which attributes to the impressibility of [Sb 2 O 9 ]. The preference of 90° Sb-O-Sb connection and the strong Sb 5+ -Sb 5+ electrostatic repulsion in [Sb 2 O 9 ] are competitive factors to stabilize or destabilize the 6H structure when chemical pressure was introduced by Sr 2+ incorporation. Therefore, in the following, a wide two-phase region containing 1:2 ordered 6H-Ba 2.8 Sr 0.2 ZnSb 2 O 9 and rock-salt ordered 3C-Ba 2 SrZnSb 2 O 9 was observed (0.3 ≤ x ≤ 1.0). In the final, the successive symmetry descending was established from cubic (Fm3̅m, 1.3 ≤ x ≤ 1.8) to tetragonal (I4/m, 2.0 ≤ x ≤ 2.4), and finally to monoclinic (I2/m, 2.6 ≤ x ≤ 3.0). Here we proved that the electronic configurations of B-site cations, with either empty, partially, or fully filled d-shell, would also affect the structure stabilization, through the orientation preference of the B-O covalent bonding. Our investigation gives a deeper understanding of the factors to the competitive formation of perovskite structures, facilitating the fine manipulation on their physical properties.

  9. MAR Assessments Of The High Level Waste System Plan Revision 16

    International Nuclear Information System (INIS)

    Peeler, D.; Edwards, T.

    2011-01-01

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit of time) is primarily a function of two critical parameters: waste loading (WL) and melt rate. For the Defense Waste Processing Facility (DWPF), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). Significant increases in waste throughput have been achieved at DWPF since initial radioactive operations began in 1996. Key technical and operational initiatives that supported increased waste throughput included improvements in facility attainment, the Chemical Processing Cell (CPC) flowsheet, process control models and frit formulations. As a result of these key initiatives, DWPF increased WLs from a nominal 28% for Sludge Batch 2 (SB2) to ∼34 to 38% for SB3 through SB6 while maintaining or slightly improving canister fill times. Although considerable improvements in waste throughput have been obtained, future contractual waste loading targets are nominally 40%, while canister production rates are also expected to increase (to a rate of 325 to 400 canisters per year). Although implementation of bubblers have made a positive impact on increasing melt rate for recent sludge batches targeting WLs in the mid30s, higher WLs will ultimately make the feeds to DWPF more challenging to process. Savannah River Remediation (SRR) recently requested the Savannah River National Laboratory (SRNL) to perform a paper study assessment using future sludge projections to evaluate whether the current Process Composition Control System (PCCS) algorithms would provide projected operating windows to allow future contractual WL targets to be met. More specifically, the objective of this study was to evaluate future sludge batch projections (based on Revision 16 of the HLW Systems Plan) with respect to projected operating windows using current PCCS models and associated constraints. Based on the assessments, the waste loading interval over

  10. Synthesis and thermoelectric properties of Sb{sub 0.20}CoSb{sub 2.80} skutterudite

    Energy Technology Data Exchange (ETDEWEB)

    Figueirêdo, C.A., E-mail: camila_fig@hotmail.com [Universidade Federal do Rio Grande do Sul, PGCIMAT, Instituto de Física, 91501-970 Porto Alegre, RS (Brazil); Gallas, M.R. [Universidade Federal do Rio Grande do Sul, PGCIMAT, Instituto de Física, 91501-970 Porto Alegre, RS (Brazil); Institute for Multiscale Simulations, Friedrich-Alexander-Universität, Nägelsbachstrasse 49b, 91052 Erlangen (Germany); Zorzi, J.E. [Universidade de Caxias do Sul, Instituto de Materiais Cerâmicos, 95765-000 Bom Princípio, RS (Brazil); Perottoni, C.A. [Universidade Federal do Rio Grande do Sul, PGCIMAT, Instituto de Física, 91501-970 Porto Alegre, RS (Brazil); Universidade de Caxias do Sul, Instituto de Materiais Cerâmicos, 95765-000 Bom Princípio, RS (Brazil)

    2014-06-15

    Highlights: • A HP-HT Sb{sub 0.20}CoSb{sub 2.80} phase was prepared by processing cobalt antimonide at 7.7 GPa and 550 °C, for (at least) 5 min. • The mechanism of formation of this phase involves (i) decomposition of cobalt antimonide into CoSb{sub 2} and Sb, and (ii) insertion of Sb into the remaining cobalt antimonide. • The mechanism of formation is qualitatively different from that responsible for the formation of the high pressure (greater than 20 GPa) phase. - Abstract: Polycrystalline samples of cobalt antimonide (CoSb{sub 2.79}) were submitted to different conditions of pressure, temperature and processing time, in a high-pressure toroidal-type chamber, aiming to maximize the production of the high pressure phase previously observed in experiments with a diamond anvil cell. Rietveld refinements of X-ray powder diffraction data were performed to determine the phase composition and structural parameters. The maximum yield, 89(2) wt.% of Sb{sub x}CoSb{sub 3−x} phase, was obtained at 7.7 GPa, 550 °C and (at least) 5 min of processing time. The mechanism behind the formation of Sb{sub x}CoSb{sub 3−x} at high pressure and high temperature is actually not the same as that previously inferred from experiments at higher pressures (20 GPa) and room temperature with the diamond anvil cell. Indeed, evidences suggest that, at high pressure and high temperature, Sb{sub x}CoSb{sub 3−x} is formed by insertion of Sb resulting from decomposition of cobalt antimonide. Thermal conductivity, Seebeck coefficient and electrical conductivity were estimated for CoSb{sub 2.79} and Sb{sub 0.20}CoSb{sub 2.80}. The thermoelectric figure of merit at room temperature for Sb{sub 0.20}CoSb{sub 2.80} resulted 33% greater than that for CoSb{sub 2.79}.

  11. The impact of the MCU life extension solvent on sludge batch 8 projected operating windows

    International Nuclear Information System (INIS)

    Peeler, D.K.; Edwards, T.B.

    2013-01-01

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01 M) boric acid stream into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B203 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 - SB8 flowsheet to additions of B203 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 - SB8 system regardless of the presence or absence of

  12. DWPF upgrade, immobilization Programmatic Environmental Impact Statement input. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, I.K.; Bignell, D.

    1994-01-01

    This Programmatic Environmental Impact Statement (PEIS) addresses the immobilization of plutonium by vitrification. Existing engineering documents, analyses, EIS, and technical publications were used and incorporated wherever possible to provide a timely response to this support effort. Although the vitrification technology is proven for the immobilization of high-level radioactive waste, more study and technical detail will be necessary to provide a comprehensive EIS that fully addresses all aspects of introduction of plutonium to the vitrification process. This document describes the concept(s) of plutonium processing as it relates to the upgrade of the DWPF and is therefore conceptual in nature. These concepts are based on technical data and experience at the Savannah River Site and will be detailed and finalized to support execution of this immobilization option

  13. Redundant Sb condensation on GaSb epilayers grown by molecular beam epitaxy during cooling procedure

    International Nuclear Information System (INIS)

    Arpapay, B.; Şahin, S.; Arıkan, B.; Serincan, U.

    2014-01-01

    The effect of four different cooling receipts on the surface morphologies of unintentionally-doped GaSb epilayers on GaSb (100) substrates grown by molecular beam epitaxy is reported. Those receipts include three different Sb beam equivalent pressure (BEP) levels and two different termination temperatures. Surface morphologies of epilayers were examined by wet etching, surface profiler, atomic force microscopy, scanning electron microscopy and Raman spectroscopy. The results demonstrate that during the cooling period, a Sb BEP of 4.00 × 10 −4 Pa at a termination temperature of 400 °C induces a smooth surface without Sb condensation whereas same Sb BEP at a termination temperature of 350 °C forms a 300 nm thick Sb layer on the surface. In addition, it is revealed that by applying a wet etching procedure and using a surface profiler it is possible to identify this condensed layer from the two-sloped feature of mesa profile. - Highlights: • Sb beam flux termination temperature is crucial for redundant Sb condensation. • Sb beam flux level has a role on the thickness of redundant condensed Sb layer. • Redundant Sb layer thickness can be measured by two-sloped mesa structure

  14. Bi-induced band gap reduction in epitaxial InSbBi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Alaria, J.; Veal, T. D., E-mail: T.Veal@liverpool.ac.uk [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, University of Liverpool, Liverpool L69 7ZF (United Kingdom); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bomphrey, J. J.; Jones, T. S.; Ashwin, M. J., E-mail: M.J.Ashwin@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Sallis, S.; Piper, L. F. J. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb{sub 1−x}Bi{sub x} alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb{sub 0.976}Bi{sub 0.024}, a reduction of ∼35 meV/%Bi.

  15. Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [68Ga]SB3 and PET/CT

    International Nuclear Information System (INIS)

    Maina, Theodosia; Charalambidis, David; Nock, Berthold A.; Bergsma, Hendrik; Krenning, Eric P.; Kulkarni, Harshad R.; Mueller, Dirk; Baum, Richard P.; Jong, Marion de

    2016-01-01

    Gastrin-releasing peptide receptors (GRPR) represent attractive targets for tumor diagnosis and therapy because of their overexpression in major human cancers. Internalizing GRPR agonists were initially proposed for prolonged lesion retention, but a shift of paradigm to GRPR antagonists has recently been made. Surprisingly, radioantagonists, such as [ 99m Tc]DB1 ( 99m Tc-N 4 '-DPhe 6 ,Leu-NHEt 13 BBN(6-13)), displayed better pharmacokinetics than radioagonists, in addition to their higher inherent biosafety. We introduce here [ 68 Ga]SB3, a [ 99m Tc]DB1 mimic-carrying, instead of the 99m Tc-binding tetraamine, the chelator DOTA for labeling with the PET radiometal 68 Ga. Competition binding assays of SB3 and [ nat Ga]SB3 were conducted against [ 125 I-Tyr 4 ]BBN in PC-3 cell membranes. Blood samples collected 5 min postinjection (pi) of the [ 67 Ga]SB3 surrogate in mice were analyzed using high-performance liquid chromatography (HPLC) for degradation products. Likewise, biodistribution was performed after injection of [ 67 Ga]SB3 (37 kBq, 100 μL, 10 pmol peptide) in severe combined immunodeficiency (SCID) mice bearing PC-3 xenografts. Eventually, [ 68 Ga]SB3 (283 ± 91 MBq, 23 ± 7 nmol) was injected into 17 patients with breast (8) and prostate (9) cancer. All patients had disseminated disease and had received previous therapies. PET/CT fusion images were acquired 60-115 min pi. SB3 and [ nat Ga]SB3 bound to the human GRPR with high affinity (IC 50 : 4.6 ± 0.5 nM and 1.5 ± 0.3 nM, respectively). [ 67 Ga]SB3 displayed good in vivo stability (>85 % intact at 5 min pi). [ 67 Ga]SB3 showed high, GRPR-specific and prolonged retention in PC-3 xenografts (33.1 ± 3.9%ID/g at 1 h pi - 27.0 ± 0.9%ID/g at 24 h pi), but much faster clearance from the GRPR-rich pancreas (∼160%ID/g at 1 h pi to <17%ID/g at 24 h pi) in mice. In patients, [ 68 Ga]SB3 elicited no adverse effects and clearly visualized cancer lesions. Thus, 4 out of 8 (50 %) breast cancer and 5 out of 9

  16. Electrochemical performance of Sn-Sb-Cu film anodes prepared by layer-by-layer electrodeposition

    International Nuclear Information System (INIS)

    Jiang Qianlei; Xue Ruisheng; Jia Mengqiu

    2012-01-01

    A novel layer-by-layer electrodeposition and heat-treatment approach was attempted to obtain Sn-Sb-Cu film anode for lithium ion batteries. The preparation of Sn-Sb-Cu anodes started with galvanostatic electrochemically depositing antimony and tin sequentially on the substrate of copper foil collector. Sn-Sb and Cu-Sb alloys were formed when heated. The SEM analysis showed that the crystalline grains become bigger and the surface of the Sn-Sb-Cu anode becomes more denser after annealing. The energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis showed the antimony, tin and copper were alloyed to form SnSb and Cu 2 Sb after heat treatment. The X-ray photoelectron spectroscopy (XPS) analysis showed the surface of the Sn-Sb-Cu electrode was covered by a thin oxide layer. Electrochemical measurements showed that the annealed Sn-Sb-Cu anode has high reversible capacity and good capacity retention. It exhibited a reversible capacity of about 962 mAh/g in the initial cycle, which still remained 715 mAh/g after 30 cycles.

  17. Antimony Redox Biotransformation in the Subsurface: Effect of Indigenous Sb(V) Respiring Microbiota.

    Science.gov (United States)

    Wang, Liying; Ye, Li; Yu, Yaqin; Jing, Chuanyong

    2018-02-06

    Anaerobic microbiological antimonate [Sb(V)] respiration is a newly discovered process regulating the Sb redox transformation in soils. However, little is known about the role microbiological Sb(V) respiration plays in the fate of Sb in the subsurface, especially in the presence of sulfate and electron shuttles. Herein, we successfully enriched a Sb(V) reducing microbiota (SbRM) from the subsurface near an active Sb mine. SbRM was dominated by genus Alkaliphilus (18-36%), Clostridiaceae (17-18%), Tissierella (24-27%), and Lysinibacillus (16-37%). The incubation results showed that SbRM reduced 88% of dissolved Sb(V) to Sb(III), but the total Sb mobility remained the same as in the abiotic control, indicating that SbRM alone did not increase the total Sb release but regulated the Sb speciation in the subsurface. Micro X-ray fluorescence (μ-XRF) analysis suggested the association of Sb and Fe, and electron shuttles such as anthraquinone-2,6-disulfonic disodium salt (AQDS) markedly enhanced the Sb release due to its ability to facilitate Fe mineral dissolution. Sb L-edge and S K-edge X-ray absorption near edge structure (XANES) results demonstrated that indigenous SbRM immobilized Sb via Sb 2 S 3 formation, especially in a sulfur-rich environment. The insights gained from this study shed new light on Sb mobilization and its risk assessment in the subsurface environment.

  18. Zr3NiSb7: a new antimony-enriched ZrSb2 derivative

    Directory of Open Access Journals (Sweden)

    V. Romaka

    2008-08-01

    Full Text Available Single crystals of trizirconium nickel heptaantimonide were synthesized from the constituent elements by arc-melting. The compound crystallizes in a unique structure type and belongs to the family of two-layer structures. All crystallographically unique atoms (3 × Zr, 1 × Ni and 7 × Sb are located at sites with m symmetry. The structure contains `Zr2Ni2Sb5' and `Zr4Sb9' fragments and might be described as a new ZrSb2 derivative with a high Sb content.

  19. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.

    Science.gov (United States)

    Guo, San-Dong; Liu, Jiang-Tao

    2017-12-06

    Phonon transport in group-VA element (As, Sb and Bi) monolayer semiconductors has been widely investigated in theory, and, of them, monolayer Sb (antimonene) has recently been synthesized. In this work, phonon transport in monolayer SbAs is investigated with a combination of first-principles calculations and the linearized phonon Boltzmann equation. It is found that the lattice thermal conductivity of monolayer SbAs is lower than those of both monolayer As and Sb, and the corresponding sheet thermal conductance is 28.8 W K -1 at room temperature. To understand the lower lattice thermal conductivity in monolayer SbAs than those in monolayer As and Sb, the group velocities and phonon lifetimes of monolayer As, SbAs and Sb are calculated. The calculated results show that the group velocities of monolayer SbAs are between those of monolayer As and Sb, but that the phonon lifetimes of SbAs are smaller than those of both monolayer As and Sb. Hence, the low lattice thermal conductivity in monolayer SbAs is attributed to very small phonon lifetimes. Unexpectedly, the ZA branch has very little contribution to the total thermal conductivity, only 2.4%, which is obviously different from those of monolayer As and Sb with very large contributions. This can be explained by very small phonon lifetimes for the ZA branch of monolayer SbAs. The lower lattice thermal conductivity of monolayer SbAs compared to that of monolayer As or Sb can be understood by the alloying of As (Sb) with Sb (As), which should introduce phonon point defect scattering. We also consider the isotope and size effects on the lattice thermal conductivity. It is found that isotope scattering produces a neglectful effect, and the lattice thermal conductivity with a characteristic length smaller than 30 nm can reach a decrease of about 47%. These results may offer perspectives on tuning the lattice thermal conductivity by the mixture of multiple elements for applications of thermal management and

  20. Investigation of Rheological Impacts on Sludge Batch 3 as Insoluble Solids and Wash Endpoints are Adjusted

    International Nuclear Information System (INIS)

    Fellinger, T. L.

    2005-01-01

    The Defense Waste Processing Facility (DWPF) is currently processing and immobilizing radioactive sludge slurry into a durable borosilicate glass. The DWPF has already processed three sludge batches (Sludge Batch 1A, Sludge Batch 1B, and Sludge Batch 2) and is currently processing the fourth sludge batch (Sludge Batch 3). A sludge batch is defined as a single tank of sludge slurry or a combination of sludge slurries from different tanks that has been or will be qualified before being transferred to DWPF. As a part of the Sludge Batch 3 (SB3) qualification task, rheology measurements of the sludge slurry were requested at different insoluble solids loadings. These measurements were requested in order to gain insight into potential processing problems that may occur as the insoluble solids are adjusted up or down (by concentration or dilution) during the process. As a part of this study, a portion of the ''as received'' SB3 sample was washed with inhibited water (0.015 M NaOH and 0.015 M NaNO2) to target 0.5M Na versus a measured 1M Na in the supernate. The purpose of the ''washing'' step was to allow a comparison of the SB3 rheological data to the rheological data collected for Sludge Batch 2 (SB2) and to determine if there was a dependence of the yield stress and consistency as a function of washing. The ''as received'' SB3 rheology data was also compared to SB3 simulants prepared by the Simulant Development Program in order to provide guidance for selecting a simulant that is more representative of the rheological properties of the radioactive sludge slurry. A summary of the observations, conclusions are: (1) The yield stress and plastic viscosity increased as the weight percent insoluble solids were increased for the ''as received'' and ''washed'' SB3 samples, at a fixed pH. (2) For the same insoluble solids loading, the yield stress for the SB2 sample is approximately a factor of three higher than the ''as received'' SB3 sample. There also appears to be small

  1. Masses of the components of SB2 binaries observed with Gaia - IV. Accurate SB2 orbits for 14 binaries and masses of three binaries*

    Science.gov (United States)

    Kiefer, F.; Halbwachs, J.-L.; Lebreton, Y.; Soubiran, C.; Arenou, F.; Pourbaix, D.; Famaey, B.; Guillout, P.; Ibata, R.; Mazeh, T.

    2018-02-01

    The orbital motion of non-contact double-lined spectroscopic binaries (SB2s), with periods of a few tens of days to several years, holds unique, accurate information on individual stellar masses, which only long-term monitoring can unlock. The combination of radial velocity measurements from high-resolution spectrographs and astrometric measurements from high-precision interferometers allows the derivation of SB2 component masses down to the percent precision. Since 2010, we have observed a large sample of SB2s with the SOPHIE spectrograph at the Observatoire de Haute-Provence, aiming at the derivation of orbital elements with sufficient accuracy to obtain masses of components with relative errors as low as 1 per cent when the astrometric measurements of the Gaia satellite are taken into account. In this paper, we present the results from 6 yr of observations of 14 SB2 systems with periods ranging from 33 to 4185 days. Using the TODMOR algorithm, we computed radial velocities from the spectra and then derived the orbital elements of these binary systems. The minimum masses of the 28 stellar components are then obtained with an average sample accuracy of 1.0 ± 0.2 per cent. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 61100, HIP 95995 and HIP 101382 with relative errors for components (A,B) of, respectively, (2.0, 1.7) per cent, (3.7, 3.7) per cent and (0.2, 0.1) per cent. Using the CESAM2K stellar evolution code, we constrained the initial He abundance, age and metallicity for HIP 61100 and HIP 95995.

  2. Computer Modeling Of High-Level Waste Glass Temperatures Within DWPF Canisters During Pouring And Cool Down

    International Nuclear Information System (INIS)

    Amoroso, J.

    2011-01-01

    This report describes the results of a computer simulation study to predict the temperature of the glass at any location inside a DWPF canister during pouring and subsequent cooling. These simulations are an integral part of a larger research focus aimed at developing methods to predict, evaluate, and ultimately suppress nepheline formation in HLW glasses. That larger research focus is centered on holistically understanding nepheline formation in HLW glass by exploring the fundamental thermal and chemical driving forces for nepheline crystallization with respect to realistic processing conditions. Through experimental work, the goal is to integrate nepheline crystallization potential in HLW glass with processing capability to ultimately optimize waste loading and throughput while maintaining an acceptable product with respect to durability. The results of this study indicated severe temperature gradients and prolonged temperature dwell times exist throughout different locations in the canister and that the time and temperatures that HLW glass is subjected to during processing is a function of pour rate. The simulations indicate that crystallization driving forces are not uniform throughout the glass volume in a DWPF (or DWPF-like) canister and illustrate the importance of considering overall kinetics (chemical and thermal driving forces) of nepheline formation when developing methods to predict and suppress its formation in HLW glasses. The intended path forward is to use the simulation data both as a driver for future experimental work and, as an investigative tool for evaluating the impact of experimental results. Simulation data will be used to develop laboratory experiments to more acutely evaluate nepheline formation in HLW glass by incorporating the simulated temperatures throughout the canister into the laboratory experiments. Concurrently, laboratory experiments will be performed to identify nepheline crystallization potential in HLW glass as a function of

  3. Crystal and magnetic study of the disordered perovskites Ca(Mn0.5Sb0.5)O3 and Ca(Fe0.5Sb0.5)O3

    International Nuclear Information System (INIS)

    Retuerto, M.; Martinez-Lope, M.J.; Garcia-Hernandez, M.; Munoz, A.; Fernandez-Diaz, M.T.; Alonso, J.A.

    2010-01-01

    We have investigated the double perovskites Ca 2 MSbO 6 (M = Mn, Fe) that have been prepared by solid-state reaction (M = Fe) and wet chemistry procedures (M = Mn). The crystal and magnetic structures have been studied from X-ray (XRD) and neutron powder diffraction (NPD) data. Rietveld refinements show that the crystal structures are orthorhombic (space group Pbnm) with complete disorder of M and Sb cations, so the formula should be rewritten as Ca(M 0.5 Sb 0.5 )O 3 . Due to this disorder no evidences of Jahn-Teller distortion can be observed in the MnO 6 octahedra of Ca(Mn 0.5 Sb 0.5 )O 3 , in contrast with the ordered double perovskite Sr 2 MnSbO 6 . Ca(Fe 0.5 Sb 0.5 )O 3 behaves as an antiferromagnet with an ordered magnetic moment for Fe 3+ of 1.53(4)μ B and a propagation vector k = 0, as investigated by low-temperature NPD. The antiferromagnetic ordering is a result of the high degree of Fe/Sb anti-site disorder of the sample, which originates the spontaneous formation of Fe-rich islands, characterized by the presence of strong Fe-O-Fe antiferromagnetic couplings with enough long-range coherence to produce a magnetic contribution perceptible by NPD. By contrast, the magnetic structure of Ca(Mn 0.5 Sb 0.5 )O 3 cannot be observed by low-temperature NPD because the magnitude of the ordered magnetic moments is below the detection threshold for neutrons.

  4. Tetrahedral 1B4Sb nanoclusters in GaP:(B, Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Elyukhin, V A, E-mail: elyukhin@cinvestav.m [Departamento de Ingenieria Electrica-SEES, CINVESTAV-IPN, Avenida IPN 2508, Col. San Pedro Zacatenco, C. P. 07360, Mexico, D. F. (Mexico)

    2009-05-01

    Self-assembling conditions of 1B4Sb tetrahedral nanoclusters in GaP doped with boron and Sb isoelectronic impurities are represented in the ultradilute and dilute limits of the boron and Sb contents, respectively. The fulfilled estimates demonstrated the preferential complete or almost complete allocation of boron atoms in 1B4Sb nanoclusters at temperatures of 500 {sup 0}C and 900 {sup 0}C, respectively. The significant decrease of the sum of the free energies of the constituent compounds is the main origin of self-assembling. The reduction of the strain energy is the additional cause of this phenomenon.

  5. Preliminary Evaluation Of DWPF Impacts Of Boric Acid Use In Cesium Strip FOR SWPF And MCU

    International Nuclear Information System (INIS)

    Stone, M.

    2010-01-01

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the

  6. Electronic Structure of the Double Perovskite Ba2Er(Nb,Sb)O6

    International Nuclear Information System (INIS)

    Rebaza, A V Gil; Toro, C E Deluque; Téllez, D A Landínez; Roa-Rojas, J

    2014-01-01

    In this work, we present a detailed study of the structural and the electronic structure of the double perovskite Ba 2 Er(Nb,Sb)O 6 . All calculations were performed with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) based on the Density Functional Theory (DFT). From the minimization of energy as a function of volume using the Murnaghan's state equation has been obtained the equilibrium lattice parameter and the bulk modulus of these compounds. The study of the electronic structure was based in the analysis of the electronic density of states (DOS), and the density of charge, showing that these compounds have a total magnetic moment of 3.0 μ B per formula unit due to Er atoms

  7. Experimental determination of the energy levels of the antimony atom (Sb II), ions of the antimony (Sb II, Sb III), mercury (Hg IV) and cesium (Cs X)

    International Nuclear Information System (INIS)

    Arcimowicz, B.

    1993-01-01

    The thesis concerns establishing the energy scheme of the electronic levels, obtained from the analysis of the investigated spectra of antimony atom and ions (Sb I, Sb II, Sb III) and higher ionized mercury (Hg IV) and cesium (Cs X) atoms. The experimental studies were performed with optical spectroscopy methods. The spectra of the elements under study obtained in the spectral range from visible (680 nm) to vacuum UV (40 nm) were analysed. The classification and spectroscopic designation of the experimentally established 169 energy levels were obtained on the basis of the performed calculations and the fine structure analysis. The following configurations were considered: 5s 2 5p 2 ns, 5s 2 5p 2 n'd, 5s5p 4 of the antimony atom, 5s 2 5pns, 5s 2 5pn'd, 5s5p 3 of the ion Sb II, 5s 2 ns, 5s 2 n'd, 5s5p 2 of the on Sb III, 5d 8 6p of the ion Hg IV 4d 9 5s and 4d 9 5p Cs X. A reclassification was performed and some changes were introduced to the existing energy level scheme of the antimony atom, with the use of the information obtained from the absorption spectrum taken in the VUV region by the ''flash pyrolysis'' technique. The measurements of the hyperfine splittings in 19 spectral lines belonging to the antimony atom and ions additionally confirmed the assumed classification of the levels involved in these lines. The energy level scheme, obtained for Sb III, was compared to the other ones in the isoelectronic sequence starting with In I. On the basis of the analysis of the Hg IV spectrum it was proved that ground configuration of the three times ionized mercury atom is 5d 9 not 5d 8 6s as assumed until now. The fine structure, established from the analysis of the spectra of the elements under study was examined in multiconfiguration approximation. As a result of the performed calculations the fine structure parameters and wavefunctions were determined for the levels whose energy values were experimentally established in the thesis. (author). 140 refs, 22 figs, 17

  8. Subsolidus phase relations of the SrO–SbOx–CuO system at 1140K in air

    DEFF Research Database (Denmark)

    Grivel, J.-C.; Norby, Poul; Andersen, Niels Hessel

    2014-01-01

    The subsolidus phase relations of the SrO–SbOx–CuO system were investigated in air. The samples were equilibrated at 1140K. Under these conditions, 7 binary oxide phases are stable: Sr2CuO3, SrCuO2, Sr14Cu24O41−δ, CuSb2O6, SrSb2O6, Sr2Sb2O7 and Sr7Sb2O12. The ternary section contains 10 three...

  9. Synthesis and thermoelectric performance of a p-type Bi0.4Sb1.6Te3 material developed via mechanical alloying

    International Nuclear Information System (INIS)

    Jimenez, Sandra; Perez, Jose G.; Tritt, Terry M.; Zhu, Song; Sosa-Sanchez, Jose L.; Martinez-Juarez, Javier; López, Osvaldo

    2014-01-01

    Highlights: • This paper shows a Bi 1.6 Sb 0.4 Te 3 alloy prepared by MA-SPS process. • A ZT value of about 1.2–1.3 around 360 K was achieved for this compound. • The lower sintering process was carried out in a short time. • The resulting material has a very fine microstructure and high density. - Abstract: A p-type Bi 0.4 Sb 1.6 Te 3 thermoelectric compound was fabricated via mechanical alloying of bismuth, antimony and tellurium elemental powders as starting materials. The mechanically alloyed compositions were sintered through a spark-plasma sintering (SPS) process. The effect of the milling time was investigated. In order to characterize the powders obtained via mechanical alloying, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis were used. The morphological evolution was studied by scanning electron microscopy (SEM). Results showed that the p-type Bi 0.4 Sb 1.6 Te 3 compound was formed after 2 h of milling. Further, the variation of milling time showed that the synthesized phase was stable. All the powders exhibit the same morphology albeit with slight differences. Measurements of the electrical resistivity, Seebeck coefficient and thermal conductivity were performed in the temperature range 300–520 K for the SPS samples. The resulting thermoelectric figure of merit ZT reaches a maximum of 1.2 at 360 K for the p-type bulk material with a 5 h milling time. This study demonstrates the possibility of preparing thermoelectric materials of high performance and short processing time

  10. Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [⁶⁸Ga]SB3 and PET/CT.

    Science.gov (United States)

    Maina, Theodosia; Bergsma, Hendrik; Kulkarni, Harshad R; Mueller, Dirk; Charalambidis, David; Krenning, Eric P; Nock, Berthold A; de Jong, Marion; Baum, Richard P

    2016-05-01

    Gastrin-releasing peptide receptors (GRPR) represent attractive targets for tumor diagnosis and therapy because of their overexpression in major human cancers. Internalizing GRPR agonists were initially proposed for prolonged lesion retention, but a shift of paradigm to GRPR antagonists has recently been made. Surprisingly, radioantagonists, such as [(99m)Tc]DB1 ((99m)Tc-N4'-DPhe(6),Leu-NHEt(13)]BBN(6-13)), displayed better pharmacokinetics than radioagonists, in addition to their higher inherent biosafety. We introduce here [(68)Ga]SB3, a [(99m)Tc]DB1 mimic-carrying, instead of the (99m)Tc-binding tetraamine, the chelator DOTA for labeling with the PET radiometal (68)Ga. Competition binding assays of SB3 and [(nat)Ga]SB3 were conducted against [(125)I-Tyr(4)]BBN in PC-3 cell membranes. Blood samples collected 5 min postinjection (pi) of the [(67)Ga]SB3 surrogate in mice were analyzed using high-performance liquid chromatography (HPLC) for degradation products. Likewise, biodistribution was performed after injection of [(67)Ga]SB3 (37 kBq, 100 μL, 10 pmol peptide) in severe combined immunodeficiency (SCID) mice bearing PC-3 xenografts. Eventually, [(68)Ga]SB3 (283 ± 91 MBq, 23 ± 7 nmol) was injected into 17 patients with breast (8) and prostate (9) cancer. All patients had disseminated disease and had received previous therapies. PET/CT fusion images were acquired 60-115 min pi. SB3 and [(nat)Ga]SB3 bound to the human GRPR with high affinity (IC50: 4.6 ± 0.5 nM and 1.5 ± 0.3 nM, respectively). [(67)Ga]SB3 displayed good in vivo stability (>85 % intact at 5 min pi). [(67)Ga]SB3 showed high, GRPR-specific and prolonged retention in PC-3 xenografts (33.1 ± 3.9%ID/g at 1 h pi - 27.0 ± 0.9%ID/g at 24 h pi), but much faster clearance from the GRPR-rich pancreas (≈160%ID/g at 1 h pi to <17%ID/g at 24 h pi) in mice. In patients, [(68)Ga]SB3 elicited no adverse effects and clearly visualized cancer lesions. Thus, 4 out of 8 (50 %) breast

  11. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO2-, Na2O-, and Cs2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and

  12. Crystal structures of [SbF{sub 6}]{sup -} salts of di- and tetrahydrated Ag{sup +}, tetrahydrated Pd{sup 2+} and hexahydrated Cd{sup 2+} cations

    Energy Technology Data Exchange (ETDEWEB)

    Mazej, Zoran; Goreshnik, Evgeny [Jozef Stefan Institute, Ljubljana (Slovenia). Dept. of Inorganic Chemistry and Technology

    2017-07-01

    The [Ag(H{sub 2}O){sub 2}]SbF{sub 6}, is triclinic, P anti 1 (No. 2), with a=6.6419(3) Aa, b=7.6327(3) Aa, c=11.1338(3) Aa, α=95.492(3) , β=96.994(3) , γ=113.535(4) , V=507.13(4) Aa{sup 3} at 150 K, and Z=3. There are two crystallographically non-equivalent Ag{sup +} cations. The Ag1 is coordinated by two water molecules with Ag-OH{sub 2} distances equal to 2.271(2) Aa forming in that way a discrete linear [Ag(H{sub 2}O){sub 2}]{sup +} cation. Additionaly, it forms two short Ag..F contacts (2.630(2) Aa), resulting in AgO{sub 2}F{sub 2} plaquette, and four long ones (2 x 3.001(2) Aa and 2 x 3.095(2) Aa) with fluorine atoms located below and above the AgO{sub 2}F{sub 2} plaquette. The H{sub 2}O molecules bridge Ag2 atoms into {-[Ag(μ-OH_2)_2]-}{sub n} infinite chains, with Ag-O distances of 2.367(2)-2.466(2) Aa. The [Pd(H{sub 2}O){sub 4}](SbF{sub 6}){sub 2}.4H{sub 2}O is monoclinic, P2{sub 1}/a (No.14), with a=8.172(2) Aa, b=13.202(3) Aa, c=8.188(3) Aa, β=115.10(1) , V=799.9(4) Aa{sup 3} at 200 K, and Z=2. Its crystal structure can be described as an alternation of layers of [Pd(H{sub 2}O){sub 4}]{sup 2+} cations (interconnected by H{sub 2}O molecules) and [SbF{sub 6}]{sup -} anions. It represents the first example where [Pd(H{sub 2}O){sub 4}]{sup 2+} has been structurally determined in the solid state. Four oxygen atoms provided by H{sub 2}O molecules are in almost ideal square-planar arrangement with Pd-O bond lengths 2 x 2.004(5) Aa and 2 x 2.022(6) Aa. The [Cd(H{sub 2}O){sub 6}](SbF{sub 6}){sub 2}, is orthorhombic, Pnnm (No.58), with a=5.5331(2) Aa, b=14.5206(4) Aa, c=8.9051(3) Aa, V=715.47(4) Aa{sup 3} at 200 K, and Z=2. It consists of [Cd(H{sub 2}O){sub 6}]{sup 2+} cations and [SbF{sub 6}]{sup -} anions.

  13. The Quantum Chemistry Calculation and Thermoelectrics of Bi-Sb-Te Series

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The density function theory and discrete variation method(DFT-DVM) was used to study correlation between composition, structure, chemical bond,and property of thermoelectrics of Bi-Sb-Te series.8 models of Bi20-xSbxTe32(x=0,2,6,8,12,14,18 and 20) were calculated.The results show that there is less difference in the ionic bonds between Te(Ⅰ)-Bi(Sb) and Te(Ⅱ)-Bi(Sb), but the covalent bond of Te(Ⅰ)-Bi(Sb) is stronger than that of Te(Ⅱ)-Bi(Sb).The interaction between Te(Ⅰ) and Te(Ⅰ) in different layers is the weakest and the interaction should be Van Der Waals power.The charge of Sb is lower than that of Bi,and the ionic bond of Te-Sb is weaker than that of Te-Bi.The covalent bond of Te-Sb is also weaker than that of Te-Bi.Therefore,the thermoelectric property may be improved by adjusting the electrical conductivity and thermal conductivity through changing the composition in the compounds of Bi-Sb-Te. The calculated results are consistent with the experiments.

  14. Roles of spin fluctuation and frustration in the superconductivity of β-(BDA-TTP)2X (X=SbF6,AsF6) under uniaxial compression

    Science.gov (United States)

    Ito, Hiroshi; Ishihara, Tetsuo; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Suzuki, Takeo; Onari, Seiichiro; Tanaka, Yukio; Yamada, Jun-Ichi; Kikuchi, Koichi

    2008-11-01

    β -type BDA-TTP [ BDA-TTP=2,5 -bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] salts possess high transition temperatures TC reaching 7 K among organic superconductors. TC of β-(BDA-TTP)2X (X=SbF6,AsF6) is studied by resistive measurements under uniaxial compression. TC once increases and takes a maximum under compression parallel to the donor stack while it decreases under compression perpendicular to the donor stack. These results are in agreement with the half-filled Hubbard model on the triangular lattice in which the compression controls the spin fluctuation and frustration in the weak pressure region.

  15. Peculiarities of thermoelectric half-Heusler phase formation in Zr–Co–Sb ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V., E-mail: romakav@lp.edu.ua [Department of Applied Material Science and Materials Engineering, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Institut für Physikalische Chemie, Universität Wien, Währingerstr. 42, A-1090 Wien (Austria); Romaka, L. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Rogl, P. [Institut für Physikalische Chemie, Universität Wien, Währingerstr. 42, A-1090 Wien (Austria); Stadnyk, Yu. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Melnychenko, N. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Army Academy named after Hetman Petro Sahaydachnyi, Gvardijska Str. 32, 79012 Lviv (Ukraine); Korzh, R.; Duriagina, Z. [Department of Applied Material Science and Materials Engineering, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Horyn, A. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine)

    2014-02-05

    Highlights: • Phase relations for the Zr–Co–Sb system at 500 °C. • Homogeneity region for half-Heusler phase. • The distribution of DOS for Zr{sub 1+x}Co{sub 1−x}Sb predicts transition from semiconductor (x = 0) to metallic (x = 0.13) like behavior. • The existence of the solid solution Zr{sub 5}Co{sub x}Sb{sub 3+y} (x = 0.0–1.0, y = 0.0–1.0). -- Abstract: The phase equilibria in the Zr–Co–Sb ternary system were studied at 873 K by means of X-ray and metallographic analyses in the whole concentration range. The interaction between the elements results the formation of four ternary compounds at investigated temperature: ZrCoSb (MgAgAs-type), Zr{sub 6}CoSb{sub 2} (K{sub 2}UF{sub 6}-type), Zr{sub 5}CoSb{sub 3} (Hf{sub 5}CuSn{sub 3}-type) and Zr{sub 5}Co{sub 0.5}Sb{sub 2.5} (W{sub 5}Si{sub 3}-type). The limited composition Zr{sub 5}CoSb{sub 3} of the solid solution based on the Zr{sub 5}Sb{sub 3−4} binaries is considered as compound with Hf{sub 5}CuSn{sub 3} structure type. The influence of the disordering and defects in the crystal structure of ZrCoSb on the physical properties was analyzed. The performed electronic structure calculations are in good agreement with electrical and magnetic studies.

  16. Ordered perovskites with cationic vacancies. 7. Structural investigations on Ba/sub 2/Zrsub(3/4)vacantsub(1/4)SbO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, U; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-11-01

    The ochre coloured Ba/sub 2/Zrsub(3/4)vacantsub(1/4)SbO/sub 6/ belongs to the group of oxygen perovskites with an ordered distribution of the vacancies. It crystallizes tetragonal (a = 11.68/sub 5/ A; c = 16.60/sub 6/ A) with 16 formula units in the cell: Ba/sub 32/Zr/sub 12/vacant/sub 4/Sb/sub 16/O/sub 96/. For the space group P 4/mmm intensity calculations on powder data gave a refined, intensity related R' value of 4.8%. In the structure the Zr and Ba atoms are ordered (1:1 order); the four cationic vacancies are located in a face centered arrangement in the zirconium sublattice. The Ba atoms are displaced by approximately 0.20 A in direction of the neighbouring vacancy, while the other cations maintain their ideal positions.

  17. Syntheses, and crystal and electronic structures of the new Zintl phases Na2ACdSb2 and K2ACdSb2 (A=Ca, Sr, Ba, Eu, Yb): Structural relationship with Yb2CdSb2 and the solid solutions Sr2-xAxCdSb2, Ba2-xAxCdSb2 and Eu2-xYbxCdSb2

    International Nuclear Information System (INIS)

    Saparov, Bayrammurad; Saito, Maia; Bobev, Svilen

    2011-01-01

    Presented are the details of the syntheses, crystal and electronic structures of a new family of Zintl phases Na 2 ACdSb 2 and K 2 ACdSb 2 (A=Ca, Sr, Ba, Eu, Yb), as well as the solid solutions Sr 2-x A x CdSb 2 , Ba 2-x A x CdSb 2 and Eu 2-x Yb x CdSb 2 . The structures of Na 2 ACdSb 2 and K 2 ACdSb 2 (A=Ca, Sr, Ba, Eu, Yb) were determined to be of a new type with the non-centrosymmetric space group Pmc2 1 (no. 26), Pearson symbol oP12, with lattice parameters a=4.684(1)-4.788(1) A; b=9.099(3)-9.117(2) A; c=7.837(1)-8.057(2) A for the Na 2 ACdSb 2 series, and a=4.6637(9)-5.0368(8) A; b=9.100(2)-9.8183(15) A; and c=7.7954(15)-8.4924(13) A for K 2 ACdSb 2 , respectively. The solid solutions Sr 2-x A x CdSb 2 , Ba 2-x A x CdSb 2 and Eu 2-x Yb x CdSb 2 (x∼1) are isostructural and isoelectronic to the recently reported Yb 2 CdSb 2 (space group Cmc2 1 (no. 36), Pearson symbol cP20). All discussed structures are based upon CdSb 2 4- polyanionic layers, similar to the ones observed in Yb 2 CdSb 2 , with various alkali- and/or alkaline-earth cations coordinated to them. Magnetic susceptibility and Seebeck coefficient measurements on selected Eu 2-x Yb x CdSb 2 samples, taken at low temperatures up to 300 K, are also reported. -- Graphical abstract: The quaternary Zintl phases Na 2 ACdSb 2 and K 2 ACdSb 2 (A=Ca, Sr, Ba, Eu, Yb) with novel layered structures have been synthesized for the first time and structurally characterized by single-crystal X-ray diffraction. Reported as well are the results from crystallographic and property studies of the closely related solid solutions Sr 2-x A x CdSb 2 , Ba 2-x A x CdSb 2 (x∼1), and Eu 2-x Yb x CdSb 2 (1 2 ACdSb 2 and K 2 ACdSb 2 (A=Ca, Sr, Ba, Eu, Yb) are new quaternary Zintl phases. → Sr 2-x A x CdSb 2 , Ba 2-x A x CdSb 2 (x∼1), and Eu 2-x Yb x CdSb 2 (1 4 tetrahedra. → Eu 2-x Yb x CdSb 2 (1< x<2) exhibit high Seebeck coefficient (217 μV/K at RT).

  18. Crystallographic study of the intermediate compounds SbZn, Sb3Zn4 and Sb2Zn3

    International Nuclear Information System (INIS)

    Adjadj, Fouzia; Belbacha, El-djemai; Bouharkat, Malek; Kerboub, Abdellah

    2006-01-01

    The processes of development of semiconductor ceramics made up of bismuth, antimony and zinc often require during their preparation to know the nature of the involved phases. For that, it is always essential to refer to the diagrams of balance between phases of the binary systems or ternary. We presented in this work the study by X-rays diffraction relating to the intermediate compounds SbZn, Sb 3 Zn 4 and Sb 2 Zn 3 . The analysis by X-rays is often useful to give supplement the results of the other experimental methods

  19. Sb-related defects in Sb-doped ZnO thin film grown by pulsed laser deposition

    Science.gov (United States)

    Luo, Caiqin; Ho, Lok-Ping; Azad, Fahad; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kuznetsov, Andrej; Zhu, Hai; Su, Shichen; Ling, Francis Chi-Chung

    2018-04-01

    Sb-doped ZnO films were fabricated on c-plane sapphire using the pulsed laser deposition method and characterized by Hall effect measurement, X-ray photoelectron spectroscopy, X-ray diffraction, photoluminescence, and positron annihilation spectroscopy. Systematic studies on the growth conditions with different Sb composition, oxygen pressure, and post-growth annealing were conducted. If the Sb doping concentration is lower than the threshold ˜8 × 1020 cm-3, the as-grown films grown with an appropriate oxygen pressure could be n˜4 × 1020 cm-3. The shallow donor was attributed to the SbZn related defect. Annealing these samples led to the formation of the SbZn-2VZn shallow acceptor which subsequently compensated for the free carrier. For samples with Sb concentration exceeding the threshold, the yielded as-grown samples were highly resistive. X-ray diffraction results showed that the Sb dopant occupied the O site rather than the Zn site as the Sb doping exceeded the threshold, whereas the SbO related deep acceptor was responsible for the high resistivity of the samples.

  20. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-25

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  1. Phase diagram of the Sb-Se-I system and thermodynamic properties of SbSeI

    International Nuclear Information System (INIS)

    Aliev, Z.S.; Musaeva, S.S.; Babanly, D.M.; Shevelkov, A.V.; Babanly, M.B.

    2010-01-01

    The Sb-Se-I system was investigated by using the DTA and XRD analyses and EMF measurements with an antimony electrode. The T-x diagram of the binary Sb-I system was accurately redefined. A number of polythermal sections and the projection of the liquidus surface were constructed. The fields of the primary crystallization, as well as the types and coordinates of non- and monovariant equilibria were determined. It is shown that the quasi-binary sections Sb 2 Se 3 -SbI 3 , Sb-SbSeI, SbI 3 -Se, and SbSeI-Se triangulate the Sb-Se-I system, leading to five independent subsystems. A broad area of immiscibility, that overlaps a certain part of the antimony primary crystallization field, was found. From the EMF measurements, the partial molar functions of antimony (ΔG-bar, ΔH-bar, ΔS-bar) as well as standard integral thermodynamic functions of SbSeI were calculated. The latter were found to have the following values: ΔG f,298 0 =-80.12±1.81kJ/mol; ΔH f,298 0 =-77.3±1.8kJ/mol; S 298 0 =155.2±9.5J/(molK).

  2. Phase diagram of the Sb-Se-I system and thermodynamic properties of SbSeI

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Z S; Musaeva, S S; Babanly, D M [Baku State University, General and Inorganic Chemistry Department (Azerbaijan); Shevelkov, A.V., E-mail: shev@inorg.chem.msu.r [Moscow Lomonosov State University, Chemistry Department (Russian Federation); Babanly, M.B., E-mail: Babanly_mb@rambler.r [Baku State University, General and Inorganic Chemistry Department (Azerbaijan)

    2010-09-03

    The Sb-Se-I system was investigated by using the DTA and XRD analyses and EMF measurements with an antimony electrode. The T-x diagram of the binary Sb-I system was accurately redefined. A number of polythermal sections and the projection of the liquidus surface were constructed. The fields of the primary crystallization, as well as the types and coordinates of non- and monovariant equilibria were determined. It is shown that the quasi-binary sections Sb{sub 2}Se{sub 3}-SbI{sub 3}, Sb-SbSeI, SbI{sub 3}-Se, and SbSeI-Se triangulate the Sb-Se-I system, leading to five independent subsystems. A broad area of immiscibility, that overlaps a certain part of the antimony primary crystallization field, was found. From the EMF measurements, the partial molar functions of antimony ({Delta}G-bar, {Delta}H-bar, {Delta}S-bar) as well as standard integral thermodynamic functions of SbSeI were calculated. The latter were found to have the following values: {Delta}G{sub f,298}{sup 0}=-80.12{+-}1.81kJ/mol; {Delta}H{sub f,298}{sup 0}=-77.3{+-}1.8kJ/mol; S{sub 298}{sup 0}=155.2{+-}9.5J/(molK).

  3. Effect of InSb/In0.9Al0.1Sb superlattice buffer layer on the structural and electronic properties of InSb films

    Science.gov (United States)

    Zhao, Xiaomeng; Zhang, Yang; Guan, Min; Cui, Lijie; Wang, Baoqiang; Zhu, Zhanping; Zeng, Yiping

    2017-07-01

    The effect of InSb/In0.9Al0.1Sb buffer layers on InSb thin films grown on GaAs (0 0 1) substrate by molecular beam epitaxy (MBE) is investigated. The crystal quality and the surface morphology of InSb are characterized by XRD and AFM. The carrier transport property is researched through variable temperature hall test. The sharp interface between InSb/In0.9Al0.1Sb is demonstrated important for the high quality InSb thin film. We try different superlattice buffer layers by changing ratios, 2-0.5, thickness, 300-450 nm, and periods, 20-50. According to the function of the dislocation density to the absolute temperature below 150 K with different periods of SL buffers, we can find that the number of periods of superlattice is a major factor to decrease the density of threading dislocations. With the 50 periods SL buffer layer, the electron mobility of InSb at the room temperature and liquid nitrogen cooling temperature is ∼63,000 and ∼4600 cm2/V s, respectively. We deduce that the interface in the SL structure works as a filter layer to prevent the dislocation propagating to the upper InSb thin films.

  4. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

    Science.gov (United States)

    Douglas, Stephen A; Behm, David J; Aiyar, Nambi V; Naselsky, Diane; Disa, Jyoti; Brooks, David P; Ohlstein, Eliot H; Gleason, John G; Sarau, Henry M; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Wixted, William E; Widdowson, Katherine; Riley, Graham; Jin, Jian; Gallagher, Timothy F; Schmidt, Stanley J; Ridgers, Lance; Christmann, Lisa T; Keenan, Richard M; Knight, Steven D; Dhanak, Dashyant

    2005-01-01

    SB-706375 potently inhibited [125I]hU-II binding to both mammalian recombinant and ‘native' UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). Prior exposure to SB-706375 (1 μM, 30 min) did not alter [125I]hU-II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. The novel, nonpeptidic radioligand [3H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U-II isopeptides and SB-706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. SB-706375 was a potent, competitive hU-II antagonist across species with pKb 7.29–8.00 in HEK293-UT receptor cells (inhibition of [Ca2+]i-mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (Kapp∼20 nM). SB-706375 was a selective U-II antagonist with ⩾100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 μM). In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals. PMID:15852036

  5. SLUDGE MASS REDUCTION: PRIMARY COMPOSITIONAL FACTORS THAT INFLUENCE MELT RATE FOR FUTURE SLUDGE BATCH PROJECTIONS

    International Nuclear Information System (INIS)

    Newell, J; Miller, D; Stone, M; Pickenheim, B

    2008-01-01

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets. Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe 2+ /ΣFe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit

  6. Electrochemical Degradation of Rhodamine B over Ti/SnO2-Sb Electrode.

    Science.gov (United States)

    Maharana, Dusmant; Niu, Junfeng; Gao, Ding; Xu, Zesheng; Shi, Jianghong

    2015-04-01

    Electrochemical degradation of rhodamine B (C28H31ClN2O3) over Ti/SnO2-Sb anode was investigated in a rectangular cell. The degradation reaction follows pseudo-first-order kinetics. The degradation efficiency of rhodamine B attained >90.0% after 20 minutes of electrolysis at initial concentrations of 5 to 200 mg/L at a constant current density of 20 mA/cm2 with a 10 mmol/L Na2SO4 supporting electrolyte solution. Rhodamine B (50 mg/L) degradation and total organic carbon (TOC) removal ratio achieved 99.9 and 86.7%, respectively, at the optimal conditions after 30 minutes of electrolysis. The results showed that the energy efficiency of rhodamine B (50 mg/L) degradation at the optimal current densities from 2 to 30 mA/cm2 were 23.2 to 84.6 Wh/L, whereas the electrolysis time for 90% degradation of rhodamine B with Ti/SnO2-Sb anode was 36.6 and 7.3 minutes, respectively. The electrochemical method can be an advisable option for the treatment of dyes such as rhodamine B in wastewater.

  7. Structures and magnetic properties of rare earth double perovskites containing antimony or bismuth Ba{sub 2}LnMO{sub 6} (Ln=rare earths; M=Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Shumpei, E-mail: m-nis-s-o@ec.hokudai.ac.jp; Hinatsu, Yukio

    2015-07-15

    A series of double perovskite-type oxides Ba{sub 2}LnMO{sub 6} (Ln=lanthanides; M=Sb, Bi) were synthesized and their structures were studied. The Ln and M are structurally ordered in the rock-salt type at the B-site of the perovskite ABO{sub 3}. For Ba{sub 2}PrBiO{sub 6} and Ba{sub 2}TbBiO{sub 6}, it has been found that the disordering between Ln ion and Bi ion occurs at the B-site of the double perovskite and both the Pr (Tb) and Bi exist in two oxidation state in the same compound from the analysis of the X-ray diffraction and magnetic susceptibility data. Magnetic susceptibility measurements show that all these compounds are paramagnetic and have no magnetic ordering down to 1.8 K. - Graphical abstract: Tolerance factor for Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) plotted against the ionic radius of Ln{sup 3+}. We have found that there is a clear relation between crystal structures and tolerance factors. - Highlights: • The Ln and M ions are structurally ordered in the rock-salt type at the B-site. • The disordering between Pr (Tb) ion and Bi ion occurs at the B-site. • Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) have no magnetic ordering down to 1.8 K.

  8. Minority-carrier transport in InGaAsSb thermophotovoltaic diodes

    International Nuclear Information System (INIS)

    Charache, G.; Martinelli, R.U.; Garbuzov, D.Z.; Lee, H.; Morris, N.; Odubanjo, T.; Connolly, J.C.

    1997-05-01

    Uncoated InGaAsSb/GaSb thermophotovoltaic (TPV) diodes with 0.56 eV (2.2 microm) bandgaps exhibit external quantum efficiencies of 59% at 2 microm. The devices have electron diffusion lengths as long as 29 microm in 8-microm-wide p-InGaAsSb layers and hole diffusion lengths of 3 microm in 6-microm-wide n-InGaAsSb layers. The electron and hole diffusion lengths appear to increase with increasing p- and n-layer widths. At 632.8 nm the internal quantum efficiencies of diodes with 1- to 8-microm-wide p-layers are above 89% and are independent of the p-layer width, indicating long electron diffusion lengths. InGaAsSb has, therefore, excellent minority carrier transport properties that are well suited to efficient TPV diode operation. The structures were grown by molecular-beam epitaxy

  9. Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [{sup 68}Ga]SB3 and PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Maina, Theodosia; Charalambidis, David; Nock, Berthold A. [INRASTES, NCSR ' ' Demokritos' ' , Molecular Radiopharmacy, Athens (Greece); Bergsma, Hendrik; Krenning, Eric P. [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Kulkarni, Harshad R.; Mueller, Dirk; Baum, Richard P. [Zentralklinik, Molecular Radiotherapy and Molecular Imaging, Bad Berka (Germany); Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Erasmus MC, Department of Radiology, Rotterdam (Netherlands)

    2016-05-15

    Gastrin-releasing peptide receptors (GRPR) represent attractive targets for tumor diagnosis and therapy because of their overexpression in major human cancers. Internalizing GRPR agonists were initially proposed for prolonged lesion retention, but a shift of paradigm to GRPR antagonists has recently been made. Surprisingly, radioantagonists, such as [{sup 99m}Tc]DB1 ({sup 99m}Tc-N{sub 4}'-DPhe{sup 6},Leu-NHEt{sup 13}BBN(6-13)), displayed better pharmacokinetics than radioagonists, in addition to their higher inherent biosafety. We introduce here [{sup 68}Ga]SB3, a [{sup 99m}Tc]DB1 mimic-carrying, instead of the {sup 99m}Tc-binding tetraamine, the chelator DOTA for labeling with the PET radiometal {sup 68}Ga. Competition binding assays of SB3 and [{sup nat}Ga]SB3 were conducted against [{sup 125}I-Tyr{sup 4}]BBN in PC-3 cell membranes. Blood samples collected 5 min postinjection (pi) of the [{sup 67}Ga]SB3 surrogate in mice were analyzed using high-performance liquid chromatography (HPLC) for degradation products. Likewise, biodistribution was performed after injection of [{sup 67}Ga]SB3 (37 kBq, 100 μL, 10 pmol peptide) in severe combined immunodeficiency (SCID) mice bearing PC-3 xenografts. Eventually, [{sup 68}Ga]SB3 (283 ± 91 MBq, 23 ± 7 nmol) was injected into 17 patients with breast (8) and prostate (9) cancer. All patients had disseminated disease and had received previous therapies. PET/CT fusion images were acquired 60-115 min pi. SB3 and [{sup nat}Ga]SB3 bound to the human GRPR with high affinity (IC{sub 50}: 4.6 ± 0.5 nM and 1.5 ± 0.3 nM, respectively). [{sup 67}Ga]SB3 displayed good in vivo stability (>85 % intact at 5 min pi). [{sup 67}Ga]SB3 showed high, GRPR-specific and prolonged retention in PC-3 xenografts (33.1 ± 3.9%ID/g at 1 h pi - 27.0 ± 0.9%ID/g at 24 h pi), but much faster clearance from the GRPR-rich pancreas (∼160%ID/g at 1 h pi to <17%ID/g at 24 h pi) in mice. In patients, [{sup 68}Ga]SB3 elicited no adverse effects and

  10. Near-surface depletion of antimony during the growth of GaAsSb and GaAs/GaAsSb nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kauko, H.; Helvoort, A. T. J. van, E-mail: a.helvoort@ntnu.no [Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Fimland, B. O.; Munshi, A. M. [Department of Electronics and Telecommunications, NTNU, Trondheim (Norway); Grieb, T.; Müller, K.; Rosenauer, A. [Institut für Festkörperphysik, Universität Bremen, Bremen (Germany)

    2014-10-14

    The near-surface reduction of the Sb mole fraction during the growth of GaAsSb nanowires (NWs) and GaAs NWs with GaAsSb inserts has been studied using quantitative high-angle annular dark field scanning transmission electron microscopy (STEM). A model for diffusion of Sb in the hexagonal NWs was developed and employed in combination with the quantitative STEM analysis. GaAsSb NWs grown by Ga-assisted molecular beam epitaxy (MBE) and GaAs/GaAsSb NWs grown by Ga- and Au-assisted MBE were investigated. At the high temperatures employed in the NW growth, As-Sb exchange at and outward diffusion of Sb towards the surface take place, resulting in reduction of the Sb concentration at and near the surface in the GaAsSb NWs and the GaAsSb inserts. In GaAsSb NWs, an increasing near-surface depletion of Sb was observed towards the bottom of the NW due to longer exposure to the As beam flux. In GaAsSb inserts, an increasing change in the Sb concentration profile was observed with increasing post-insert axial GaAs growth time, resulting from a combined effect of radial GaAs overgrowth and diffusion of Sb. The effect of growth temperature on the diffusion of Sb in the GaAsSb inserts was identified. The consequences of these findings for growth optimization and the optoelectronic properties of GaAsSb are discussed.

  11. Temperature dependent lattice constant of InSb above room temperature

    Science.gov (United States)

    Breivik, Magnus; Nilsen, Tron Arne; Fimland, Bjørn-Ove

    2013-10-01

    Using temperature dependent X-ray diffraction on two InSb single crystalline substrates, the bulk lattice constant of InSb was determined between 32 and 325 °C. A polynomial function was fitted to the data: a(T)=6.4791+3.28×10-5×T+1.02×10-8×T2 Å (T in °C), which gives slightly higher values than previously published (which go up to 62 °C). From the fit, the thermal expansion of InSb was calculated to be α(T)=5.062×10-6+3.15×10-9×T K-1 (T in °C). We found that the thermal expansion coefficient is higher than previously published values above 100 °C (more than 10% higher at 325 °C).

  12. Epitaxial growth of Ge-Sb-Te based phase change materials

    International Nuclear Information System (INIS)

    Perumal, Karthick

    2013-01-01

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb 2 Te 3 thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb 2 Te 3 to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  13. Coexistence of charge order and antiferromagnetism in (TMTTF){sub 2}SbF{sub 6}: NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, K., E-mail: knmr@phys.sci.hokudai.ac.jp; Yamamoto, M.; Matsunaga, N.; Hirose, S.; Shimohara, N.; Satoh, T.; Isome, T.; Liu, Y.; Kawamoto, A.

    2015-03-01

    The electronic state of (TMTTF){sub 2}SbF{sub 6} was investigated by the {sup 1}H and {sup 13}C NMR measurements. The temperature dependence of T{sub 1}{sup −1} in {sup 1}H NMR shows a sharp peak associated with the antiferromagnetic transition at T{sub AF}=6 K. The temperature dependence of T{sub 1}{sup −1} is described by the power law T{sup 2.4} below T{sub AF}. This suggests the nodal gapless spin wave excitation in antiferromagnetic phase. In {sup 13}C NMR, two sharp peaks at high temperature region, associated with the inner and the outer carbon sites in TMTTF dimer, split into four peaks below 150 K. It indicates that the charge disproportionation occurs. The degree of charge disproportionation Δρ is estimated as (0.25±0.09)e from the chemical shift difference. This value of Δρ is consistent with that obtained from the infrared spectroscopy. In the antiferromagnetic state (AFI), the observed line shape is well fitted by eight Lorentzian peaks. This suggests that the charge order with the same degree still remains in the AF state. From the line assignment, the AF staggered spin amplitude is obtained as 0.70 μ{sub B} and 0.24 μ{sub B} at the charge rich and the poor sites, respectively. These values corresponding to almost 1 μ{sub B} per dimer are quite different from 0.11 μ{sub B} of another AF (AFII) state in (TMTTF){sub 2}Br with effective higher pressure. As a result, it is understood that the antiferromagnetic staggered spin order is stabilized on the CO state in the AFI phase of (TMTTF){sub 2}SbF{sub 6}.

  14. The equilibrium diagram and some properties of alloys Gd5Sb3-Tb5Sb3 system

    International Nuclear Information System (INIS)

    Azizov, Yu.S.; Abulkhaev, V.D.; Ganiev, I.N.

    2001-01-01

    The purpose of present work is investigation equilibrium diagram of Gd 5 Sb 3 -Tb 5 Sb 3 system in total range of concentrations. Equilibrium diagram of Gd 5 Sb 3 -Tb 5 Sb 3 system investigated by methods of difference-thermal, roentgen-phase and metallographic analyses. For the first time on the base of difference-thermal, roentgen-phase and metallographic analyses was formed the equilibrium diagram of Gd 5 Sb 3 -Tb 5 Sb 3 system. Was determined the cristal-chemical parameters of solid solutions with general formula Gd x Tb 5 - x Sb 3

  15. The Impact of the Source of Alkali on Sludge Batch 3 Melt Rate

    International Nuclear Information System (INIS)

    Smith, M

    2005-01-01

    Previous Savannah River National Laboratory (SRNL) melt rate tests in support of the Defense Waste Processing Facility (DWPF) have indicated that improvements in melt rate can be achieved through an increase in the total alkali of the melter feed. Higher alkali can be attained by the use of an ''underwashed'' sludge, a high alkali frit, or a combination of the two. Although the general trend between melt rate and total alkali (in particular Na 2 O content) has been demonstrated, the question of ''does the source of alkali (SOA) matter?'' still exists. Therefore the purpose of this set of tests was to determine if the source of alkali (frit versus sludge) can impact melt rate. The general test concept was to transition from a Na 2 O-rich frit to a Na 2 O-deficient frit while compensating the Na 2 O content in the sludge to maintain the same overall Na 2 O content in the melter feed. Specifically, the strategy was to vary the amount of alkali in frits and in the sludge batch 3 (SB3) sludge simulant (midpoint or baseline feed was SB3/Frit 418 at 35% waste loading) so that the resultant feeds had the same final glass composition when vitrified. A set of SOA feeds using frits ranging from 0 to 16 weight % Na 2 O (in 4% increments) was first tested in the Melt Rate Furnace (MRF) to determine if indeed there was an impact. The dry-fed MRF tests indicated that if the alkali is too depleted from either the sludge (16% Na 2 O feed) or the frit (the 0% Na 2 O feed), then melt rate was negatively impacted when compared to the baseline SB3/Frit 418 feed currently being processed at DWPF. The MRF melt rates for the 4 and 12% SOA feeds were similar to the baseline SB3/Frit 418 (8% SOA) feed. Due to this finding, a smaller subset of SOA feeds that could be processed in the DWPF (4 and 12% SOA feeds) was then tested in the Slurry-fed Melt Rate Furnace (SMRF). The results from a previous SMRF test with SB3/Frit 418 (Smith et al. 2004) were used as the SMRF melt rate of the baseline

  16. A technical basis to relax the dew point specification for the environment in the vapor space in DWPF canisters

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1995-05-01

    This memorandum establishes the technical basis to conclude that relaxing, from 0 C to 20 C, the dew point specification for the atmosphere in the vapor space (free volume) of a DWPF canister will not provide an environment that will cause significant amounts of corrosion induced degradation of the canister wall. The conclusion is based on engineering analysis, experience and review of the corrosion literature. The basic assumptions underlying the conclusion are: (1) the canister was fabricated from Type 304L stainless steel; (2) the corrosion behavior of the canister material, including base metal, fusion zones and heat effected zones, is typified by literature data for, and industrial experience with, 300 series austenitic stainless steels; and (3) the glass-metal crevices created during the pouring operation will not alter the basic corrosion resistance of the steel although such crevices might serve as sites for the initiation of minor amounts of corrosion on the canister wall

  17. Review of Statistical Analyses Resulting from Performance of HLDWD-DWPF-005

    International Nuclear Information System (INIS)

    Beck, R.S.

    1997-01-01

    The Engineering Department at the Defense Waste Processing Facility (DWPF) has reviewed two reports from the Statistical Consulting Section (SCS) involving the statistical analysis of test results for analysis of small sample inserts (references 1 ampersand 2). The test results cover two proposed analytical methods, a room temperature hydrofluoric acid preparation (Cold Chem) and a sodium peroxide/sodium hydroxide fusion modified for insert samples (Modified Fusion). The reports support implementation of the proposed small sample containers and analytical methods at DWPF. Hydragard sampler valve performance was typical of previous results (reference 3). Using an element from each major feed stream. lithium from the frit and iron from the sludge, the sampler was determined to deliver a uniform mixture in either sample container.The lithium to iron ratios were equivalent for the standard 15 ml vial and the 3 ml insert.The proposed method provide equivalent analyses as compared to the current methods. The biases associated with the proposed methods on a vitrified basis are less than 5% for major elements. The sum of oxides for the proposed method compares favorably with the sum of oxides for the conventional methods. However, the average sum of oxides for the Cold Chem method was 94.3% which is below the minimum required recovery of 95%. Both proposed methods, cold Chem and Modified Fusion, will be required at first to provide an accurate analysis which will routinely meet the 95% and 105% average sum of oxides limit for Product Composition Control System (PCCS).Issued to be resolved during phased implementation are as follows: (1) Determine calcine/vitrification factor for radioactive feed; (2) Evaluate covariance matrix change against process operating ranges to determine optimum sample size; (3) Evaluate sources for low sum of oxides; and (4) Improve remote operability of production versions of equipment and instruments for installation in 221-S.The specifics of

  18. Structural and Electronic Features of Sb-Based Electrode Materials: 121Sb Moessbauer Spectrometry

    International Nuclear Information System (INIS)

    Ionica, C. M.; Aldon, L.; Lippens, P. E.; Morato, F.; Olivier-Fourcade, J.; Jumas, J.-C.

    2004-01-01

    Lithium insertion mechanisms in two antimony based compounds: CoSb 3 and CoSb have been studied by means of 121 Sb Moessbauer spectrometry. Structural and electronic modifications induced by insertion of lithium have been characterised for different depths of discharge. In all cases the insertion mechanisms can be described from several steps. In the first step antimony is partially dispersed in the metallic matrix with amorphisation of the electrode material and in a second step we can observe the alloy forming (Li 3 Sb). However this amorphous alloy remains in interaction with the matrix allowing then a good reversibility.

  19. NMR studies in the half-Heusler type compound YbPtSb

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T; Abe, M; Mito, T; Ueda, K; Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Suzuki, H S, E-mail: t-koyama@sci.u-hyogo.ac.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2011-01-01

    {sup 121}Sb and {sup 19B}Pt nuclear magnetic resonance (NMR) has been studied in the half-Heusler type compound YbPtSb to obtain information on local magnetic behavior. The characteristics of the localized 4f spins are observed in the Cuire-Weiss type behavior of the Knight shifts K for both {sup 121}Sb and {sup 19B}Pt. From the slope of K-{sub {chi}} plots we estimated hyperfine coupling constants of -3.8 and -4.6 kOe/{mu}{sub B} at Sb and Pt sites, respectively. It was found that the spin-echo decay rate 1/T{sub 2} of {sup 121}Sb shows a clear peaks at 10 K. Similar tendency was also observed in case of {sup 19B}Pt. However, static properties do not show any anomalies near 10 K.

  20. Effects of Ge- and Sb-doping and annealing on the tunable bandgaps of SnS films

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsuan-Tai; Chiang, Ming-Hung; Huang, Chen-Hao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Wen-Tai, E-mail: wtlin@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Fu, Yaw-Shyan [Department of Greenergy, National University of Tainan, Tainan 700, Taiwan (China); Guo, Tzung-Fang [Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-06-01

    SnS, Ge- and Sb-doped SnS films with single orthorhombic SnS phase were fabricated via solvothermal routes and subsequent spin-coating, respectively. The substitution solubilities of Ge and Sb in SnS are about 6 and 5 at.%, respectively. The bandgaps of Ge- and Sb-doped SnS films can be tuned in the ranges of 1.25–1.35 and 1.30–1.39 eV, respectively. The possible mechanisms for the tunable bandgaps of Ge- and Sb-doped SnS films are discussed. For the Ge- and Sb-doped SnS films subjected to annealing at 200–350 °C in N{sub 2}, the bandgaps of 200 °C-annealed films remain unchanged, while those of 300 °C- and 350 °C-annealed films decrease with the annealing temperature because of the evaporation of Ge and Sb respectively. - Highlights: • Ge- and Sb-doped SnS films were fabricated via spin-coating. • The solubilities of Ge and Sb in SnS are about 6 and 5 at.%, respectively. • The bandgaps of SnS films can be tuned by Ge and Sb doping respectively. • Annealing above 300 °C reduces the bandgaps of Ge- and Sb-doped SnS films.

  1. The behavior and effects of the noble metals in the DWPF melter system

    International Nuclear Information System (INIS)

    Hutson, N.D.; Smith, M.E.

    1992-01-01

    Fission-product noble metals have caused severe operating problems in numerous worldwide waste vitrification facilities. These dense, highly conductive noble metals have tended to accumulate on the floor of joule-heated glass melters causing electrical distortions which have, in some occurrences, rendered the melter inoperable. A pilot scale vitrification research facility at the U.S. Department of Energy's Savannah River Laboratory has been operated for more than a year with simulated feed streams containing noble metals. In this paper the behavior of these noble metals in the melter system and final glass product and their effects on the scaled DWPF-type melter are discussed

  2. Investigation of environmental friendly Te-free SiSb material for applications of phase-change memory

    International Nuclear Information System (INIS)

    Zhang Ting; Song Zhitang; Liu Bo; Feng Songlin

    2008-01-01

    Te-free environmental friendly Si x Sb 100−x phase-change materials are investigated. The binary material, which is compatible with the complementary metal-oxide-semiconductor manufacturing process, is outstanding in various properties. Si x Sb 100−x shows a much better data retention as compared with Ge 2 Sb 2 Te 5 . The density change for Si 10 Sb 90 and Si 16 Sb 84 is only about 3% and 3.8%, respectively. The failure times for Si 10 Sb 90 and Si 16 Sb 84 are about 10 3 and 10 6 times longer than that of Ge 2 Sb 2 Te 5 at 110 °C. The crystallization temperature of Si x Sb 100−x increases with silicon content within the material. Si x Sb 100−x materials are good candidates for the phase-change memory applications

  3. New organic superconductors beta-(BDA-TTP)2X [BDA-TTP + 2,5-bis(1,3-dithian-2ylidene)-1,3,4,6-tetrathiapentalene; X(-) = SbF6(-), AsF6(-), and PF6(-)].

    Science.gov (United States)

    Yamada, J; Watanabe, M; Akutsu, H; Nakatsuji, S; Nishikawa, H; Ikemoto, I; Kikuchi, K

    2001-05-09

    The synthesis, electrochemical properties, and molecular structure of a new pi-electron donor, 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP), is described. In contrast to the hitherto-known tetrachalcogenafulvalene pi-donors providing organic superconductors, this donor contains only the bis-fused 1,3-dithiole-2-ylidene unit as a pi-electron system, yet produces a series of ambient-pressure superconductors beta-(BDA-TTP)2X [X = SbF6 (magnetic T(c) = 6.9 K, resistive T(c) = 7.5 K), AsF6 (magnetic T(c) = 5.9 K, resistive T(c) = 5.8 K), and PF6 (magnetic T(c) = 5.9 K)], which are isostructural. The values of the intermolecular overlap integrals calculated on the donor layers of these superconductors suggest a two-dimensional (2D) electronic structure with loose donor packing. Tight-binding band calculations also indicate that these superconductors have the 2D band dispersion relations and closed Fermi surfaces.

  4. Magnetic structure of the YbMn2SbBi compound

    International Nuclear Information System (INIS)

    Morozkin, A.V.; Manfrinetti, P.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → A neutron diffraction investigation in zero applied field of La 2 O 2 S-type YbMn 2 SbBi shows antiferromagnetic ordering below 138(3) K and ferrimagnetic ordering below 112(3) K. → Between 138 and 112 K, the magnetic structure of YbMn 2 SbBi consists of antiferromagnetically coupled ab-plane magnetic moments of the manganese atoms (D 1d magnetic point group). → Below 112(3) K, the magnetic structure of YbMn 2 SbBi becames the sum antiferromagnetic component with D 1d magnetic point group and ferromagnetic one with C 2 magnetic point group. → The magnitude of Yb and Mn magnetic moments in YbMn 2 SbBi at 2 K (M Yb = 3.6(2) μ B , M Mn = 3.5(2) μ B ) correspond to the trivalent state of the Yb ions and tetravalent state of the Mn ions. - Abstract: A neutron diffraction investigation has been carried out on the trigonal La 2 O 2 S-type (hP5, space group P3-bar ml, No. 164; also CaAl 2 Si 2 -type) YbMn 2 SbBi intermetallic compound. The YbMn 2 SbBi presents antiferromagnetic ordering below 138(3) K and ferrimagnetic ordering below 112(3) K. Between 138 and 112 K, the magnetic structure of YbMn 2 SbBi consists of antiferromagnetically coupled ab-plane magnetic moments of the manganese atoms (D 1d magnetic point group). Below 112(3) K, the ferromagnetic components of Yb and Mn begin to develop, and the magnetic structure of YbMn 2 SbBi becames the sum antiferromagnetic component with D 1d magnetic point group and ferromagnetic one with C 2 magnetic point group. The magnitude of Yb and Mn magnetic moments in YbMn 2 SbBi at 2 K (M Yb = 3.6(2) μ B , M Mn = 3.5(2) μ B ) correspond to the trivalent state of the Yb ions and tetravalent state of the Mn ions.

  5. Electrodeposition and electrochemical characterisation of thick and thin coatings of Sb and Sb/Sb2O3 particles for Li-ion battery anodes

    International Nuclear Information System (INIS)

    Bryngelsson, Hanna; Eskhult, Jonas; Edstroem, Kristina; Nyholm, Leif

    2007-01-01

    The possibilities to electrodeposit thick coatings composed of nanoparticles of Sb and Sb 2 O 3 for use as high-capacity anode materials in Li-ion batteries have been investigated. It is demonstrated that the stability of the coatings depends on their Sb 2 O 3 concentrations as well as microstructure. The electrodeposition reactions in electrolytes with different pH and buffer capacities were studied using chronopotentiometry and electrochemical quartz crystal microbalance measurements. The obtained deposits, which were characterised with XRD and SEM, were also tested as anode materials in Li-ion batteries. The influence of the pH and buffer capacity of the deposition solution on the composition and particle size of the deposits were studied and it is concluded that depositions from a poorly buffered solution of antimony-tartrate give rise to good anode materials due to the inclusion of precipitated Sb 2 O 3 nanoparticles in the Sb coatings. Depositions under conditions yielding pure Sb coatings give rise to deposits composed of large crystalline particles with poor anode stabilities. The presence of a plateau at about 0.8 V versus Li + /Li due to SEI forming reactions and the origin of another plateau at about 0.4 V versus Li + /Li seen during the lithiation of thin Sb coatings are also discussed. It is demonstrated that the 0.4 V plateau is present for Sb coatings for which the (0 1 2) peak is the main peak in the XRD diffractogram

  6. Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    International Nuclear Information System (INIS)

    M Dashiell; J Beausang; H Ehsani; G Nichols; D DePoy; L Danielson; P Talamo; K Rahner; E Brown; S Burger; P Fourspring; W Topper; P Baldasaro; C Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryl

    2005-01-01

    Thermophotovoltaic (TPV) diodes fabricated from InGaAsSb alloys lattice-matched to GaSb substrates are grown by Metal Organic Vapor Phase Epitaxy (MOVPE). 0.53eV InGaAsSb TPV diodes utilizing front-surface spectral control filters have been tested in a vacuum cavity and a TPV thermal-to-electric conversion efficiency (η TPV ) and a power density (PD) of η TPV = 19% and PD=0.58 W/cm 2 were measured for T radiator = 950 C and T diode = 27 C. Recombination coefficients deduced from minority carrier measurements and the theory reviewed in this article predict a practical limit to the maximum achievable conversion efficiency and power density for 0.53eV InGaAsSb TPV. The limits for the above operating temperatures are projected to be η TPV = 26% and PD = 0.75 W/cm 2 . These limits are extended to η TPV = 30% and PD = 0.85W/cm 2 if the diode active region is bounded by a reflective back surface to enable photon recycling and a two-pass optical path length. The internal quantum efficiency of the InGaAsSb TPV diode is close to the theoretically predicted limits, with the exception of short wavelength absorption in GaSb contact layers. Experiments show that the open circuit voltage of the 0.53eV InGaAsSb TPV diodes is not strongly dependent on the device architectures studied in this work where both N/P and P/N double heterostructure diodes have been grown with various acceptor and donor doping levels, having GaSb and AlGaAsSb confinement, and also partial back surface reflectors. Lattice matched InGaAsSb TPV diodes were fabricated with bandgaps ranging from 0.6 to 0.5eV without significant degradation of the open circuit voltage factor, quantum efficiency, or fill factor as the composition approached the miscibility gap. The key diode performance parameter which is limiting efficiency and power density below the theoretical limits in InGaAsSb TPV devices is the open circuit voltage. The open circuit voltages of state-of-the-art 0.53eV InGaAsSb TPV diode are ∼10

  7. The Cu-Sb-Se phase system at temperatures between 350 and 700 degree C

    DEFF Research Database (Denmark)

    Karup-Møller, Sven

    1999-01-01

    Phase relations were determined in the Cu-Sb-Se phase system at 300o, 400o, 450o, 500o, 600o and 700oC. Five three-component phases are present at 300oC: permingeatite (Cu3SbSe4), phase A (Cu3SbSe3, the Se-equivalent to skinnerite Cu3SbS3), phase B (CuSbSe2, the Se-equivalent to chalcostibite Cu......SbS2), phase C (Cu5.04Sb35.9Se59.1) and phase D (Cu38.8Sb6.10Se55.1). An X-ray crystallographic study is currently in progress on phase C. Phase D is present in insufficient amounts for such a study. At 400oC phase C and D does not exist and at 500oC all solid ternary phase are absent. At 450oC two...

  8. Quaternary InGaAsSb Thermophotovoltaic Diodes

    International Nuclear Information System (INIS)

    MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

    2006-01-01

    In x Ga 1-x As y Sb 1-y thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E G = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of η TPV = 19.7% and PD =0.58 W/cm 2 respectively for a radiator temperature of T radiator = 950 C, diode temperature of T diode = 27 C, and diode bandgap of E G = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is η TPV = 28% and PD = 0.85W/cm 2 at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V OC is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V OC and thus efficiency is limited by extrinsic recombination processes such as through bulk defects

  9. In As{sub 1–x}Sb{sub x} heteroepitaxial structures on compositionally graded GaInSb and AlGaInSb buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Guseynov, R. R.; Tanriverdiyev, V. A. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan); Kipshidze, G., E-mail: gela.kishidze@stonybrook.ede [Stony Brook, Stony Brook University (United States); Aliyeva, Ye. N.; Aliguliyeva, Kh. V.; Abdullayev, N. A., E-mail: abnadir@mail.ru; Mamedov, N. T. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

    2017-04-15

    Unrelaxed InAs{sub 1–x}Sb{sub x} (x = 0.43 and 0.38) alloy layers are produced by molecular-beam epitaxy on compositionally graded GaInSb and AlGaInSb buffer layers. The high quality of the thin films produced is confirmed by the results of high-resolution X-ray diffraction analysis and micro-Raman studies. The twomode type of transformation of the phonon spectra of InAs{sub 1–x}Sb{sub x} alloys is established.

  10. Limiting scattering processes in high-mobility InSb quantum wells grown on GaSb buffer systems

    Science.gov (United States)

    Lehner, Ch. A.; Tschirky, T.; Ihn, T.; Dietsche, W.; Keller, J.; Fält, S.; Wegscheider, W.

    2018-05-01

    We present molecular beam epitaxial grown single- and double-side δ -doped InAlSb/InSb quantum wells with varying distances down to 50 nm to the surface on GaSb metamorphic buffers. We analyze the surface morphology as well as the impact of the crystalline quality on the electron transport. Comparing growth on GaSb and GaAs substrates indicates that the structural integrity of our InSb quantum wells is solely determined by the growth conditions at the GaSb/InAlSb transition and the InAlSb barrier growth. The two-dimensional electron gas samples show high mobilities of up to 349 000 cm2/Vs at cryogenic temperatures and 58 000 cm2/Vs at room temperature. With the calculated Dingle ratio and a transport lifetime model, ionized impurities predominantly remote from the quantum well are identified as the dominant source of scattering events. The analysis of the well-pronounced Shubnikov-de Haas oscillations reveals a high spin-orbit coupling with an effective g -factor of -38.4 in our samples. Along with the smooth surfaces and long mean free paths demonstrated, our InSb quantum wells are increasingly competitive for nanoscale implementations of Majorana mode devices.

  11. Graphene supported Sn-Sb rate at carbon core-shell particles as a superior anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuangqiang; Chen, Peng; Wang, Yong [Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University (China); Wu, Minghong; Pan, Dengyu [Institute of Nanochemistry and Nanobiology, Shanghai Univ. (China)

    2010-10-15

    This paper reports the preparation and Li-storage properties of graphene nanosheets(GNS), GNS supported Sn-Sb rate at carbon (50-150 nm) and Sn-Sb nanoparticles (5-10 nm). The best cycling performance and excellent high rate capabilities were observed for GNS-supported Sn-Sb rate at carbon core-shell particles, which exhibited initial capacities of 978, 850 and 668 mAh/g respectively at 0.1C, 2C and 5C (1C = 800 mA/g) with good cyclability. Besides the GNS support, the carbon skin around Sn-Sb particles is believed to be a key factor to improve electrochemical properties of Sn-Sb. (author)

  12. Mineralogical and geochemical study of contaminated soils on abandoned Sb deposits Dubrava and Poproc

    International Nuclear Information System (INIS)

    Klimko, T.; Jurkovic, L.

    2010-01-01

    In this paper we present initial results of mineralogical and geochemical study of secondary mineral phases, often with a high content of Sb and As, resulting from oxidation of sulphide minerals in the soil environment on two, now abandoned Sb deposits. Dubrava deposit is situated on the northern slopes of the Dumbier Low Tatras and Poproc deposit is located in the eastern part of Spis-Gemer Rudohorie. Both studied sites were in the past (second half of 20 th century) significant producers of antimony ore and Dubrava deposit belonged to medium-sized Sb deposits in the world.

  13. Application of oxide fine-mesh electrodes composed of Sb-SnO2 for the electrochemical oxidation of Cibacron Marine FG using an SPE filter-press reactor

    International Nuclear Information System (INIS)

    Da Silva, Leonardo M.; Gonçalves, Ismael C.; Teles, José J.S.; Franco, Débora V.

    2014-01-01

    Highlights: • Oxide fine-mesh electrodes composed of Sb-SnO 2 (OFM-Sb-SnO 2 ) were fabricated and applied to the decolourisation and mineralisation of dye solutions using an SPE filter-press reactor. • An electrode mechanism was proposed for the irreversible parallel reactions comprising the oxygen evolution reaction (OER) and the electrochemical advanced oxidation process (EAOP) during the electrolysis of electrolyte-free dye solutions. • The reduction in current efficiency for the OER during the oxidation of Cibacron Marine FG (CMFG) increased the electrode stability. - Abstract: Oxide fine-mesh electrodes composed of tin dioxide doped with antimony (OFM-Sb-SnO 2 ), which had different percentages of Sb, were prepared using the thermal decomposition method on a stainless steel fine-mesh support for application in a solid polymer electrolyte (SPE) filter-press reactor. The electrochemical oxidation of Cibacron ® Marine FG (CMFG) was carried out during recirculation through a plug-flow reactor, using electrolyte-free dye solutions. An influence of the Sb content on the electrochemical oxidation of CMFG was verified. The highest combustion rate of CMFG was obtained using an electrode containing 6.57 mol% Sb. Studies were carried out as a function of the initial dye concentration (IDC) and the applied current density (j) for this particular electrode composition. It was verified that the decolourisation and mineralisation reactions were affected considerably by IDC and j. In trying to interpret the experimental findings, an electrode mechanism was proposed for the irreversible parallel reactions comprising the oxygen evolution reaction (OER) and the advanced oxidation process (EAOP). The instantaneous current efficiency (ICE) for the mineralisation reaction was calculated for the different cases using the average mass-transport coefficient () and the initial limiting current (j L 0 ) values. The energy consumption (EC) was also calculated for the

  14. Study of conformational changes and protein aggregation of bovine serum albumin in presence of Sb(III) and Sb(V).

    Science.gov (United States)

    Verdugo, Marcelo; Ruiz Encinar, Jorge; Costa-Fernández, José Manuel; Menendez-Miranda, Mario; Bouzas-Ramos, Diego; Bravo, Manuel; Quiroz, Waldo

    2017-01-01

    Antimony is a metalloid that affects biological functions in humans due to a mechanism still not understood. There is no doubt that the toxicity and physicochemical properties of Sb are strongly related with its chemical state. In this paper, the interaction between Sb(III) and Sb(V) with bovine serum albumin (BSA) was investigated in vitro by fluorescence spectroscopy, and circular dichroism (CD) under simulated physiological conditions. Moreover, the coupling of the separation technique, asymmetric flow field-flow fractionation, with elemental mass spectrometry to understand the interaction of Sb(V) and Sb(III) with the BSA was also used. Our results showed a different behaviour of Sb(III) vs. Sb(V) regarding their effects on the interaction with the BSA. The effects in terms of protein aggregates and conformational changes were higher in the presence of Sb(III) compared to Sb(V) which may explain the differences in toxicity between both Sb species in vivo. Obtained results demonstrated the protective effect of GSH that modifies the degree of interaction between the Sb species with BSA. Interestingly, in our experiments it was possible to detect an interaction between BSA and Sb species, which may be related with the presence of labile complex between the Sb and a protein for the first time.

  15. Contamination of Soil with Pb and Sb at a Lead-Acid Battery Dumpsite and Their Potential Early Uptake by Phragmites australis

    Directory of Open Access Journals (Sweden)

    Abraham Jera

    2017-01-01

    Full Text Available Recycling of spent Lead-Acid Batteries (LABs and disposal of process slag potentially contaminate soil with Pb and Sb. Total and available concentrations of Pb and Sb in three soil treatments and parts of Phragmites australis were determined by atomic absorption spectrophotometry. Soil with nonrecycled slag (NR had higher total metal concentrations than that with recycled slag (RS. Low available fractions of Pb and Sb were found in the soil treatments before planting P. australis. After 16 weeks of growth of P. australis, the available fractions of Pb had no statistical difference from initial values (p>0.05 while available Sb fractions were significantly lower when compared with their initial values (p<0.05. Metal transfer factors showed that P. australis poorly accumulate Pb and Sb in roots and very poorly translocate them to leaves after growing for 8 and 16 weeks. It may be a poor phytoextractor of Pb and Sb in metal-contaminated soil at least for the 16 weeks of its initial growth. However, the plant established itself on the metalliferous site where all vegetation had been destroyed. This could be useful for potential ecological restoration. The long-term phytoextraction potential of P. australis in such environments as LABs may need further investigation.

  16. Crystal growth and characterization of bulk Sb2Te3 topological insulator

    Science.gov (United States)

    Sultana, Rabia; Gurjar, Ganesh; Patnaik, S.; Awana, V. P. S.

    2018-04-01

    The Sb2Te3 crystals are grown using the conventional self flux method via solid state reaction route, by melting constituent elements (Sb and Te) at high temperature (850 °C), followed by slow cooling (2 °C/h). As grown Sb2Te3 crystals are analysed for various physical properties by x-ray diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) coupled with Energy Dispersive x-ray Spectroscopy (EDAX) and electrical measurements under magnetic field (6 Tesla) down to low temperature (2.5 K). The XRD pattern revealed the growth of synthesized Sb2Te3 sample along (00l) plane, whereas the SEM along with EDAX measurements displayed the layered structure with near stoichiometric composition, without foreign contamination. The Raman scattering studies displayed known ({{{{A}}}1{{g}}}1, {{{{E}}}{{g}}}2 and {{{{A}}}1{{g}}}2) vibrational modes for the studied Sb2Te3. The temperature dependent electrical resistivity measurements illustrated the metallic nature of the as grown Sb2Te3 single crystal. Further, the magneto—transport studies represented linear positive magneto-resistance (MR) reaching up to 80% at 2.5 K under an applied field of 6 Tesla. The weak anti localization (WAL) related low field (±2 Tesla) magneto-conductance at low temperatures (2.5 K and 20 K) has been analysed and discussed using the Hikami—Larkin—Nagaoka (HLN) model. Summarily, the short letter reports an easy and versatile method for crystal growth of bulk Sb2Te3 topological insulator (TI) and its brief physical property characterization.

  17. Pressure-induced phase transition and octahedral tilt system change of Ba2BiSbO6

    International Nuclear Information System (INIS)

    Lufaso, Michael W.; Macquart, Rene B.; Lee, Yongjae; Vogt, Thomas; Loye, Hans-Conrad zur

    2006-01-01

    High-resolution X-ray synchrotron powder diffraction studies under high-pressure conditions are reported for the ordered double perovskite Ba 2 BiSbO 6 . Near 4GPa, the oxide undergoes a pressure-induced phase transition. The symmetry of the material changes during the phase transition from space group R3-bar to space group I2/m, which is consistent with a change in the octahedral tilting distortion from an a - a - a - type to a 0 b - b - type using the Glazer notation. A fit of the volume-pressure data using the Birch-Murnagaham equation of state yielded a bulk modulus of 144(8)GPa for the rhombohedral phase

  18. Dimensional Crossover and Its Interplay with In-Plane Anisotropy of Upper Critical Field in β-(BDA-TTP)2SbF6

    Science.gov (United States)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-08-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (Hc2) for β-(BDA-TTP)2SbF6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, Hc2 shows twofold symmetry: Hc2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to Hc2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of Hc2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of Hc2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)2SbF6.

  19. Dimensional crossover and its interplay with in-plane anisotropy of upper critical field in β-(BDA-TTP)_2SbF_6

    International Nuclear Information System (INIS)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-01-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (H_c_2) for β-(BDA-TTP)_2SbF_6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, H_c_2 shows twofold symmetry: H_c_2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to H_c_2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of H_c_2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of H_c_2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)_2SbF_6. (author)

  20. Epitaxial growth of Ge-Sb-Te based phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Perumal, Karthick

    2013-07-30

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb{sub 2}Te{sub 3} thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb{sub 2}Te{sub 3} to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  1. Isolating GaSb Membranes Grown Metamorphically on GaAs Substrates Using Highly Selective Substrate Removal Etch Processes

    Science.gov (United States)

    Renteria, E. J.; Muniz, A. J.; Addamane, S. J.; Shima, D. M.; Hains, C. P.; Balakrishnan, G.

    2015-05-01

    The etch rates of NH4OH:H2O2 and C6H8O7:H2O2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH4OH:H2O2 solution has a greater etch rate differential for the GaSb/GaAs material system than C6H8O7:H2O2 solution. The selectivity of NH4OH:H2O2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11,000 ± 2000, whereas that of C6H8O7:H2O2 has been measured up to 143 ± 2. The etch contrast has been verified by isolating 2- μm-thick GaSb epilayers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high- resolution x-ray diffraction and atomic force microscopy.

  2. Can iron plaque affect Sb(III) and Sb(V) uptake by plants under hydroponic conditions

    NARCIS (Netherlands)

    Ji, Ying; Lenz, Markus; Lenz, Markus; Schulin, Rainer; Tandy, Susan

    2018-01-01

    Antimony (Sb) contamination of soils is of concern due to h uman activities such as recycling of Sb containing Pb acid batteries, shooting and mining. However Sb uptake by plants is poorly documented, especially when plants are growing on waterlogged soils and iron plaques form on their roots. The

  3. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    Science.gov (United States)

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  4. Polarity-dependent resistance switching in GeSbTe phase-change thin films : The importance of excess Sb in filament formation

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Oosthoek, Jasper L. M.; van den Dool, Pim; Palasantzas, George; Pauza, Andrew

    2009-01-01

    We show that polarity-dependent resistance switching in GeSbTe thin films depends strongly on Sb composition by comparing current-voltage characteristics in Sb-excess Ge(2)Sb(2+x)Te(5) and stoichiometric Ge(2)Sb(2)Te(5) samples. This type of switching in Ge(2)Sb(2+x)Te(5) films is reversible with

  5. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  6. Gas Sensing Properties of NiSb2O6 Micro- and Nanoparticles in Propane and Carbon Monoxide Atmospheres

    Directory of Open Access Journals (Sweden)

    Verónica-M. Rodríguez-Betancourtt

    2017-01-01

    Full Text Available Micro- and nanoparticles of NiSb2O6 were synthesized by the microwave-assisted colloidal method. Nickel nitrate, antimony chloride, ethylenediamine, and ethyl alcohol were used. The oxide was obtained at 600°C and was analyzed by X-ray diffraction (XRD and Raman spectroscopy, showing a trirutile-type structure with cell parameters a = 4.641 Å, c = 9.223 Å, and a space group P42/mnm (136. Average crystal size was estimated at ~31.19 nm, according to the XRD-peaks. The microstructure was scrutinized by scanning electron microscopy (SEM, observing microrods measuring ~3.32 μm long and ~2.71 μm wide, and microspheres with an average diameter of ~8 μm; the size of the particles shaping the microspheres was measured in the range of ~0.22 to 1.8 μm. Transmission electron microscopy (TEM revealed that nanoparticles were obtained with sizes in the range of 2 to 20 nm (~10.7 nm on average. Pellets made of oxide’s powders were tested in propane (C3H8 and carbon monoxide (CO atmospheres at different concentrations and temperatures. The response of the material increased significantly as the temperature and the concentration of the test gases rose. These results show that NiSb2O6 may be a good candidate for gas sensing applications.

  7. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  8. Molecular beam epitaxy of GeTe-Sb2Te3 phase change materials studied by X-ray diffraction

    International Nuclear Information System (INIS)

    Shayduk, Roman

    2010-01-01

    The integration of phase change materials into semiconductor heterostructures may lead to the development of a new generation of high density non-volatile phase change memories. Epitaxial phase change materials allow to study the detailed structural changes during the phase transition and to determine the scaling limits of the memory. This work is dedicated to the epitaxial growth of Ge-Sb-Te phase change alloys on GaSb(001). We deposit Ge-Sb-Te (GST) films on GaSb(001) substrates by means of molecular beam epitaxy (MBE). The film orientation and lattice constant evolution is determined in real time during growth using grazing incidence X-ray diffraction (GID). The nucleation stage of the growth is studied in situ using reflection high energy electron diffraction (RHEED). Four growth regimes of GST on GaSb(001) were observed: amorphous, polycrystalline, incubated epitaxial and direct epitaxial. Amorphous film grows for substrate temperatures below 100 C. For substrate temperatures in the range 100-160 C, the film grows in polycrystalline form. Incubated epitaxial growth is observed at temperatures from 180 to 210 C. This growth regime is characterized by an initial 0.6nm thick amorphous layer formation, which crystallizes epitaxially as the film thickness increases. The determined lattice constant of the films is 6.01 A, very close to that of the metastable GST phase. The films predominantly possess an epitaxial cube-on-cube relationship. At higher temperatures the films grow epitaxially, however the growth rate is rapidly decreasing with temperature. At temperatures above 270 C the growth rate is zero. The composition of the grown films is close to 2:2:5 for Ge, Sb and Te, respectively. The determined crystal structure of the films is face centered cubic (FCC) with a rhombohedral distortion. The analysis of X-ray peak widths gives a value for the rhombohedral angle of 89.56 . We observe two types of reflections in reciprocal space indicating two FCC sublattices in

  9. Ba{sub 4}In{sub 8}Sb{sub 16}: Thermoelectric properties of a new layered Zintl phase with infinite zigzag Sb chains and pentagonal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S J; Hu, S; Uher, C; Kanatzidis, M G

    1999-11-01

    A new Zintl phase Ba{sub 4}In{sub 8}Sb{sub 16} was obtained from a direct element combination reaction of the elements in a sealed graphite tube at 700 C, and its structure was determined by single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group Pnma (No. 62) with a = 10.166(3) {angstrom}, b = 4.5239(14) {angstrom}, c = 19.495(6) {angstrom}, and Z = 1. Ba{sub 4}In{sub 8}Sb{sub 16} has a two-dimensional structure with thick corrugated (In{sub 8}Sb{sub 16}){sup 8{minus}} layers separated by Ba{sup 2+} ions. In the layer, InSb{sub 4} tetrahedra are connected by sharing three corners and by bridging the fourth corner in such a manner that infinite pentagonal tubes are formed. The compound is a narrow band gap ({approximately} 0.10 eV) semiconductor and satisfies the classical Zintl rule. Band structure calculations confirm that the material is a semiconductor and indicate that it has optimized In-Sb bonding interactions. Polycrystalline ingots of Ba{sub 4}In{sub 8}Sb{sub 16} show room-temperature electrical conductivity of 135 S/cm and a Seebeck coefficient of 70 {micro}V/K. The thermal conductivity of Ba{sub 4}In{sub 8}Sb{sub 16} is about 1.7 W/m{sm{underscore}bullet}K in the temperature range 150--300 K.

  10. Photo-induced effects of the virgin Ge{sub 24.9}Sb{sub 11.6}S{sub 63.5} film

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, P., E-mail: petr.knotek@upce.cz [University of Pardubice, Faculty of Chemical Technology, Department of General and Inorganic Chemistry, Studentska 573, 532 10 Pardubice (Czech Republic); Tichy, L. [Institute of Macromolecular Chemistry, AS CR, Heyrovskeho sq. 2, 162 06 Prague (Czech Republic); Kutalek, P. [University of Pardubice, Faculty of Chemical Technology, Joint Laboratory of Solid State Chemistry of Institute of Macromolecular Chemistry of Academy of Sciences of the Czech Republic, v.v.i., and University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic)

    2015-11-02

    Amorphous Ge{sub 24.9}Sb{sub 11.6}S{sub 63.5} film was prepared through thermal evaporation. A blue shift of the optical band gap by approximately 100 meV was observed as a result of self-bleaching process of protected film aged for two years. The magnitude of the light induced blue shift of the optical band of the virgin film is primarily dependent on the light penetration depth and on the light intensity. The kinetics of photo-bleaching follows the stretch exponential function with a formal rate of bleaching depending on the light intensity while the saturated state is independent from the light intensity. The far infrared spectra indicate that ageing, illumination by over-band gap-photons and annealing of the virgin film are mainly accompanied by the film network ordering. Illumination by UV light photons led to a blue shift accompanied by the significant oxidation as evidenced by the results of the far infrared spectra and the energy dispersive analysis. - Highlights: • “Giant” photo-induced effects in virgin Ge{sub 24.9}Sb{sub 11.6}S{sub 63.5} film • The role of the film thickness, the wavelengths and intensity of excitation photons • The changes of the photo-sensitivity due to the self-ageing process • The high-intensity illumination (> 10 W/cm{sup 2}) led to the different processes.

  11. Direct synthesis of Sb{sub 2}O{sub 3} nanoparticles via hydrolysis-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yuehua [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China); Zhang, Huihui [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China); Yang, Huaming [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China)]. E-mail: hmyang@mail.csu.edu.cn

    2007-01-31

    Antimony oxide (Sb{sub 2}O{sub 3}) has wide applications as conductive materials, effective catalyst, functional filler and optical materials. Nanocrystalline Sb{sub 2}O{sub 3} has been successfully synthesized by hydrolysis-precipitation method. The samples were characterized by means of transmission electron microscopy (TEM), high-resolution TEM (HRTEM) images, X-ray diffraction (XRD) and differential thermal analysis (DTA). The average crystal size of the Sb{sub 2}O{sub 3} nanoparticles increases with increasing the reaction temperature. TEM image of the as-synthesized nanocrystalline Sb{sub 2}O{sub 3} shows rod-like structure. HRTEM images indicate a preferred directional growth of the Sb{sub 2}O{sub 3} nanoparticles. The electrochemical behaviors of Sb{sub 2}O{sub 3} electrodes have been primarily investigated by cyclic voltammetry (CV) in lithium hexafluorophosphate (LiPF{sub 6}) solution. Sb{sub 2}O{sub 3} nanocrystallite phase has prominent effect on the electrochemical properties. The results indicate that nanocrystalline Sb{sub 2}O{sub 3} synthesized by hydrolysis-precipitation method shows potential application in the field of the electrode materials.

  12. Structural, vibrational and electrical properties of ordered double perovskite oxide BaLaMnSbO6

    International Nuclear Information System (INIS)

    Bharti, Chandrahas; Sen, A.; Chanda, Sadhan; Sinha, T.P.

    2014-01-01

    Graphical abstract: Raman spectrum with group theoretical analysis -- Highlights: • BaLaMnSbO 6 (BLMS) is synthesized in tetragonal phase (TP). • Rietveld refinement and Raman spectroscopy confirms the TP. • The presence of cation ordering is observed. • The electrical activation energy is ∼0.5 eV. • BLMS shows polaron hopping. -- Abstract: BaLaMnSbO 6 (BLMS) has been successfully synthesized by solid-state reaction technique. In contrast to earlier reports, Rietveld refinement of powder X-ray diffraction (XRD) data of BLMS shows tetragonal structure having space group I4/m. The octahedral tilt about the direction of the c-axis is found to be 8.99° and the superlattice line (0 1 1) indicates the presence of cation ordering. FT-IR and Raman analysis as well as group theoretical investigation confirm the ordered tetragonal structure of BLMS with I4/m space group. The anti-phase distortions appear to be sufficiently large as detected by infrared and Raman spectroscopies, which give rise to the degeneracy and breaking of the symmetries of the normal modes. Impedance spectroscopy is used to investigate the dielectric relaxation and ac electrical conductivity in the temperature range of 303–403 K and in the frequency range of 0.1 kHz–1 MHz. Experimental electric modulus data are fitted to the Cole–Cole model in order to analyse the dielectric relaxation in BLMS. The frequency dependence ac electrical conductivity data are fitted to Jonscher’s universal power law at various temperatures. The dc conductivity follows Arrhenius law with activation energy (E a ) 0.51 eV suggesting the polaron hopping. The complex impedance plane plots of BLMS indicate the presence of both grain and grain boundary effects and are analyzed by the electrical equivalent circuit consisting of a resistance and capacitance

  13. AgSbSe2 and AgSb(S,Se)2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Garza, J.G.; Shaji, S.; Rodriguez, A.C.; Das Roy, T.K.; Krishnan, B.

    2011-01-01

    Silver antimony selenide (AgSbSe 2 ) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb 2 S 3 ), silver selenide (Ag 2 Se), selenium (Se) and silver (Ag). Sb 2 S 3 thin film was prepared from a chemical bath containing SbCl 3 and Na 2 S 2 O 3 , Ag 2 Se from a solution containing AgNO 3 and Na 2 SeSO 3 and Se thin films from an acidified solution of Na 2 SeSO 3 , at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10 -3 Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe 2 or AgSb(S,Se) 2 depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe 2 /Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V oc = 435 mV and J sc = 0.08 mA/cm 2 under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe 2 as an absorber material by a non-toxic selenization process is achieved.

  14. Reactive ion etching of GaSb, (Al,Ga)Sb, and InAs for novel device applications

    International Nuclear Information System (INIS)

    LaTulipe, D.C.; Frank, D.J.; Munekata, H.

    1991-01-01

    Although a variety of novel device proposals for GaSb/(Al,Ga)Sb/InAs heterostructures have been made, relatively little is known about processing these materials. The authors of this paper have studied the reactive ion etching characteristics of GaSb, (Al,Ga)Sb, and InAs in both methane/hydrogen and chlorine gas chemistries. At conditions similar to those reported elsewhere for RIE of InP and GaAs in CH 4 /H 2 , the etch rate of (Al,Ga)Sb was found to be near zero, while GaSb and InAs etched at 200 Angstrom/minute. Under conditions where the etch mechanism is primarily physical sputtering, the three compounds etch at similar rates. Etching in Cl 2 was found to yield anistropic profiles, with the etch rate of (Al,Ga)Sb increasing with Al mole fraction, while InAs remains unetched. Damage to the InAs stop layer was investigated by sheet resistance and mobility measurements. These etching techniques were used to fabricate a novel InAs- channel FET composed of these materials. Several scanning electron micrographs of etching results are shown along with preliminary electrical characteristics

  15. Dew point, internal gas pressure, and chemical composition of the gas within the free volume of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.; Herman, D.T.; Crump, S.; Miller, T.J.; McIntosh, J.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) produced 55 canistered waste forms containing simulated waste glass during the four Waste Qualification campaigns of the DWPF Startup Test Program. Testing of the gas within the free volume of these canisters for dew point, internal gas pressure, and chemical composition was performed as part of a continuing effort to demonstrate compliance with the Waste Acceptance Product Specifications. Results are presented for six glass-filled canisters. The dew points within the canisters met the acceptance criterion of < 20 degrees C for all six canisters. Factors influencing the magnitude of the dew point are presented. The chemical composition of the free volume gas was indistinguishable from air for all six canisters. Hence, no foreign materials were present in the gas phase of these canisters. The internal gas pressures within the sealed canisters were < 1 atm at 25 degrees C for all six canisters which readily met the acceptance criterion of an internal gas pressure of less than 1.5 atm at 25 degrees C. These results provided the evidence required to demonstrate compliance with the Waste Acceptance Product Specifications

  16. Crystal and magnetic study of the disordered perovskites Ca(Mn{sub 0.5}Sb{sub 0.5})O{sub 3} and Ca(Fe{sub 0.5}Sb{sub 0.5})O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Retuerto, M., E-mail: mretuerto@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC, Energia, Medio Ambiente y Tecnologias Sostenibles, Sor Juana Ines de la Cruz 3, Cantoblanco, E-28049 Madrid (Spain); Martinez-Lope, M.J.; Garcia-Hernandez, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, Energia, Medio Ambiente y Tecnologias Sostenibles, Sor Juana Ines de la Cruz 3, Cantoblanco, E-28049 Madrid (Spain); Munoz, A. [Departamento de Fisica Aplicada, EPS, Universidad Carlos III, Avda. Universidad 30, E-28911 Leganes-Madrid (Spain); Fernandez-Diaz, M.T. [Institut Max Von Laue Paul Langevin, F-38042 Grenoble (France); Alonso, J.A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Energia, Medio Ambiente y Tecnologias Sostenibles, Sor Juana Ines de la Cruz 3, Cantoblanco, E-28049 Madrid (Spain)

    2010-10-15

    We have investigated the double perovskites Ca{sub 2}MSbO{sub 6} (M = Mn, Fe) that have been prepared by solid-state reaction (M = Fe) and wet chemistry procedures (M = Mn). The crystal and magnetic structures have been studied from X-ray (XRD) and neutron powder diffraction (NPD) data. Rietveld refinements show that the crystal structures are orthorhombic (space group Pbnm) with complete disorder of M and Sb cations, so the formula should be rewritten as Ca(M{sub 0.5}Sb{sub 0.5})O{sub 3}. Due to this disorder no evidences of Jahn-Teller distortion can be observed in the MnO{sub 6} octahedra of Ca(Mn{sub 0.5}Sb{sub 0.5})O{sub 3}, in contrast with the ordered double perovskite Sr{sub 2}MnSbO{sub 6}. Ca(Fe{sub 0.5}Sb{sub 0.5})O{sub 3} behaves as an antiferromagnet with an ordered magnetic moment for Fe{sup 3+} of 1.53(4){mu}{sub B} and a propagation vector k = 0, as investigated by low-temperature NPD. The antiferromagnetic ordering is a result of the high degree of Fe/Sb anti-site disorder of the sample, which originates the spontaneous formation of Fe-rich islands, characterized by the presence of strong Fe-O-Fe antiferromagnetic couplings with enough long-range coherence to produce a magnetic contribution perceptible by NPD. By contrast, the magnetic structure of Ca(Mn{sub 0.5}Sb{sub 0.5})O{sub 3} cannot be observed by low-temperature NPD because the magnitude of the ordered magnetic moments is below the detection threshold for neutrons.

  17. Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications

    International Nuclear Information System (INIS)

    Harris, James S. Jr.; Kudrawiec, R.; Yuen, H.B.; Bank, S.R.; Bae, H.P.; Wistey, M.A.; Jackrel, D.; Pickett, E.R.; Sarmiento, T.; Goddard, L.L.; Lordi, V.; Gugov, T.

    2007-01-01

    In the past few years, GaInNAsSb has been found to be a potentially superior material to both GaInNAs and InGaAsP for communications wavelength laser applications. It has been observed that due to the surfactant role of antimony during epitaxy, higher quality material can be grown over the entire 1.2-1.6 μm range on GaAs substrates. In addition, it has been discovered that antimony in GaInNAsSb also works as a constituent that significantly modifies the valence band. These findings motivated a systematic study of GaInNAsSb alloys with widely varying compositions. Our recent progress in growth and materials development of GaInNAsSb alloys and our fabrication of 1.5-1.6 μm lasers are discussed in this paper. We review our recent studies of the conduction band offset in (Ga,In) (N,As,Sb)/GaAs quantum wells and discuss the growth challenges of GaInNAsSb alloys. Finally, we report record setting long wavelength edge emitting lasers and the first monolithic VCSELs operating at 1.5 μm based on GaInNAsSb QWs grown on GaAs. Successful development of GaInNAsSb alloys for lasers has led to a much broader range of potential applications for this material including: solar cells, electroabsorption modulators, saturable absorbers and far infrared optoelectronic devices and these are also briefly discussed in this paper. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Harris, James S. Jr.; Kudrawiec, R.; Yuen, H.B.; Bank, S.R.; Bae, H.P.; Wistey, M.A.; Jackrel, D.; Pickett, E.R.; Sarmiento, T.; Goddard, L.L.; Lordi, V.; Gugov, T. [Solid State and Photonics Laboratory, Stanford University, CIS-X 328, Via Ortega, Stanford, California 94305-4075 (United States)

    2007-08-15

    In the past few years, GaInNAsSb has been found to be a potentially superior material to both GaInNAs and InGaAsP for communications wavelength laser applications. It has been observed that due to the surfactant role of antimony during epitaxy, higher quality material can be grown over the entire 1.2-1.6 {mu}m range on GaAs substrates. In addition, it has been discovered that antimony in GaInNAsSb also works as a constituent that significantly modifies the valence band. These findings motivated a systematic study of GaInNAsSb alloys with widely varying compositions. Our recent progress in growth and materials development of GaInNAsSb alloys and our fabrication of 1.5-1.6 {mu}m lasers are discussed in this paper. We review our recent studies of the conduction band offset in (Ga,In) (N,As,Sb)/GaAs quantum wells and discuss the growth challenges of GaInNAsSb alloys. Finally, we report record setting long wavelength edge emitting lasers and the first monolithic VCSELs operating at 1.5 {mu}m based on GaInNAsSb QWs grown on GaAs. Successful development of GaInNAsSb alloys for lasers has led to a much broader range of potential applications for this material including: solar cells, electroabsorption modulators, saturable absorbers and far infrared optoelectronic devices and these are also briefly discussed in this paper. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Evaporation of tetramers in Sb4n clusters and conditions for the formation of Sb2n+1 clusters

    International Nuclear Information System (INIS)

    Rayane, D.; Tribollet, B.; Broyer, M.; Melinon, P.; Cabaud, B.; Hoareau, A.

    1989-01-01

    Antimony clusters are produced by the inert gas condensation technique. They are found to be built from Sb 4 units. The fragmentation by evaporation of Sb 4 units is studied as a function of the excess energy in the cluster. By this way the binding energy of the Sb 4 units in the cluster is found to be about 1.5 eV, well below the binding energy of a Sb atom in the bulk and in Sb 4 (≅3 eV). The evolution of ionization potentials of Sb 4n clusters confirms that their structure is probably non metallic. Finally the possible metastable character of this Sb 4n structure is discussed. (orig.)

  20. 6 CFR 13.37 - Initial Decision.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Initial Decision. 13.37 Section 13.37 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.37 Initial Decision. (a) The ALJ will issue an Initial Decision based only on the record, which will contain...

  1. Optimization of growth parameters for MOVPE-grown GaSb and Ga1−xInxSb

    International Nuclear Information System (INIS)

    Miya, S.S.; Wagener, V.; Botha, J.R.

    2012-01-01

    The triethylgallium/trimethylantimony (TEGa/TMSb) precursor combination was used for the metal-organic vapour phase epitaxial growth of GaSb at a growth temperature of 520 °C at atmospheric pressure. Trimethylindium was added in the case of Ga 1−x In x Sb growth. The effects of group V flux to group III flux ratio (V/III ratio) on the crystallinity and optical properties of GaSb layers are reported. It has been observed from the crystalline quality and optical properties that nominal V/III ratios of values greater than unity are required for GaSb epitaxial layers grown at this temperature. It has also been shown that Ga 1−x In x Sb can be grown using TEGa as a source of gallium species at atmospheric pressure. The relationship between Ga 1−x In x Sb vapour composition and solid composition has been studied at a V/III ratio of 0.78.

  2. Hydroxyurea decreases hospitalizations in pediatric patients with Hb SC and Hb SB+ thalassemia

    Directory of Open Access Journals (Sweden)

    Lebensburger JD

    2015-12-01

    Full Text Available Jeffrey D Lebensburger, Rakeshkumar J Patel, Prasannalaxmi Palabindela, Christina J Bemrich-Stolz, Thomas H Howard, Lee M HilliardDivision of Pediatric Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USAPurpose: Patients with hemoglobin SC (Hb SC and hemoglobin SB+ (Hb SB+ thalassemia suffer from frequent hospitalizations yet strong evidence of a clinical benefit of hydroxyurea (HU in this population is lacking. Patients with recurrent hospitalizations for pain crisis are offered HU at our institution based on small cohort data and anecdotal benefit. This study identifies outcomes from a large cohort of patients with Hb SC and SB+ thalassemia who were treated with HU for 2 years.Materials and methods: A retrospective review was conducted of 32 patients with Hb SC and SB+ thalassemia who were treated with HU. We reviewed the number, and reasons for hospitalization in the 2 years prior to, and 2 years post-HU treatment as well as laboratory changes from baseline, over 1 year.Results: Patients with Hb SC and SB+ thalassemia started on HU for frequent pain, had a significant reduction in hospitalizations over 2 years as compared to the 2 years prior to HU initiation (mean total hospitalizations/year: pre-HU: 1.6 vs post-HU 0.4 hospitalizations, P<0.001; mean pain hospitalizations/year: pre-HU 1.5 vs post-HU 0.3 hospitalizations, P<0.001. Patients demonstrated hematologic changes including an increase in percent fetal hemoglobin (%HbF pre–post HU (4.5% to 7.7%, P=0.002, mean corpuscular volume (74 to 86 fL, P<0,0001, and decrease in absolute neutrophil count (5.0 to 3.2×109/L, P=0.007. Patients with higher doses of HU demonstrated the greatest reduction in hospitalizations but this was unrelated to absolute neutrophil count.Conclusion: This cohort of patients with Hb SC and SB+ thalassemia provides additional support for using HU in patients with recurrent hospitalizations for pain. A large randomized multicenter trial of

  3. In situ study of the formation kinetics of InSb quantum dots grown in an InAs(Sb) matrix

    International Nuclear Information System (INIS)

    Semenov, A. N.; Lyublinskaya, O. G.; Solov’ev, V. A.; Mel’tser, B. Ya.; Ivanov, S. V.

    2008-01-01

    Formation of InSb quantum dots grown in an InAs matrix by molecular-beam epitaxy that does not involve forced deposition of InSb is studied. Detection of intensity oscillations in the reflection of high-energy electron diffraction patterns was used to study in situ the kinetics of the formation of InSb quantum dots and an InAsSb wetting layer. The effects of the substrate temperature, the shutter operation sequence, and the introduction of growth interruptions on the properties of the array of InSb quantum dots are examined. Introduction of a growth interruption immediately after completing the exposure of the InAs surface to the antimony flux leads to a reduction in the nominal thickness of InSb and to an enhancement in the uniformity of the quantum-dot array. It is shown that, in the case of deposition of submonolayer-thickness InSb/InAs quantum dots, the segregation layer of InAsSb plays the role of the wetting layer. The Sb segregation length and segregation ratio, as well as their temperature dependences, are determined.

  4. Intrinsic Instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study.

    Science.gov (United States)

    Xiao, Zewen; Du, Ke-Zhao; Meng, Weiwei; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2017-05-03

    Recently, there has been substantial interest in developing double-B-cation halide perovskites, which hold the potential to overcome the toxicity and instability issues inherent within emerging lead halide-based solar absorber materials. Among all double perovskites investigated, In(I)-based Cs 2 InBiCl 6 and Cs 2 InSbCl 6 have been proposed as promising thin-film photovoltaic absorber candidates, with computational examination predicting suitable materials properties, including direct bandgap and small effective masses for both electrons and holes. In this study, we report the intrinsic instability of Cs 2 In(I)M(III)X 6 (M = Bi, Sb; X = halogen) double perovskites by a combination of density functional theory and experimental study. Our results suggest that the In(I)-based double perovskites are unstable against oxidation into In(III)-based compounds. Further, the results show the need to consider reduction-oxidation (redox) chemistry when predicting stability of new prospective electronic materials, especially when less common oxidation states are involved.

  5. 121Sb-NMR study of filled skutterudite CeOs4Sb12

    International Nuclear Information System (INIS)

    Yogi, M.; Niki, H.; Mukuda, H.; Kitaoka, Y.; Sugawara, H.; Sato, H.

    2007-01-01

    121 Sb nuclear magnetic resonance (NMR) of filled skutterudite compound CeOs 4 Sb 12 has been carried out to investigate a spin fluctuation below T∼25K. In spite of a powdered sample, many sharp peaks, similar to a data for single crystal, were observed because of an orientation of the sample from the anisotropy of the magnetization. A numerical calculation well reproduces resonance fields for Sb(1) sites with H parallel V zz . The nuclear spin-lattice relaxation rate divided by temperature 1/T 1 T shows continuous decrease with increasing magnetic field, indicating a suppression of the spin fluctuation by the field

  6. Interface between Sn-Sb-Cu solder and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sebo, P., E-mail: Pavel.Sebo@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Svec, P. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janickovic, D.; Illekova, E. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine)

    2011-07-15

    Highlights: {yields} New lead-free solder materials based on Sn-Sb-Cu were designed and prepared. {yields} Melting and solidification temperatures of the solders have been determined. {yields} Cu-substrate/solder interaction has been analyzed and quantified. {yields} Phases formed at the solder-substrate interface have been identified. {yields} Composition and soldering atmospheres were correlated with joint strength. - Abstract: Influence of antimony and copper in Sn-Sb-Cu solder on the melting and solidification temperatures and on the microstructure of the interface between the solder and copper substrate after wetting the substrate at 623 K for 1800 s were studied. Microstructure of the interface between the solder and copper substrates in Cu-solder-Cu joints prepared at the same temperature for 1800 s was observed and shear strength of the joints was measured. Influence of the atmosphere - air with the flux and deoxidising N{sub 2} + 10H{sub 2} gas - was taken into account. Thermal stability and microstructure were studied by differential scanning calorimetry (DSC), light microscopy, scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). Melting and solidification temperatures of the solders were determined. An interfacial transition zone was formed by diffusion reaction between solid copper and liquid solder. At the interface Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} phases arise. Cu{sub 3}Sn is adjacent to the Cu substrate and its thickness decreases with increasing the amount of copper in solder. Scallop Cu{sub 6}Sn{sub 5} phase is formed also inside the solder drop. The solid solution Sn(Sb) and SbSn phase compose the interior of the solder drop. Shear strength of the joints measured by push-off method decreases with increasing Sb concentration. Copper in the solder shows even bigger negative effect on the strength.

  7. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  8. Modeling The Impact Of Elevated Mercury In Defense Waste Processing Facility Melter Feed On The Melter Off-Gas System - Preliminary Report

    International Nuclear Information System (INIS)

    Zamecnik, J.; Choi, A.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl 2 , and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg 2 Cl 2 ) to HgCl 2 with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of

  9. Phase equilibria melt-solid in the systems Pb-InSb-CaSb and Pb-InCs-GaAs

    International Nuclear Information System (INIS)

    Grebenyuk, A.M.; Charykov, N.A.; Puchkov, L.V.

    1992-01-01

    Results of experimental investigation and thermodynamic calculation of fusibility curves of Pb-InSb-GaSb and Pb-InAs-GaAs thernary systems, which haven't been investigated earlier, are presented. Fusibility curves of Pb-InSb-GaSb and Pb-InAs-GaAs systems contain two crystallization fields: solid solutions of In x Ga 1-x Sb and Pb, In x Ga 1-x As and Pb. The latter fields are retained against Pb figurative point and conform to 582 K < T < 593 K crystallization temperatures

  10. Formation Mechanism of Self Assembled Horizontal ErSb Nanowires Embedded in a GaSb(001) Matrix

    Science.gov (United States)

    Wilson, Nathaniel; Kraemer, Stephan; PalmstrøM, Chris

    The ErxGa1-xSb exhibits a variety of self-assembling nanostructures. In order to harness these nanostructures for use in devices and other material systems it is important to understand their formation. We have characterized the growth mechanism of self-assembled horizontal ErSb nanowires in a GaSb(001) matrix through the use of in-situ Scanning Tunneling Microscopy (STM) as well as ex-situ Transmission Electron Microscopy (TEM). We observe large GaSb macrosteps on the growth surface of Er.3Ga.7Sb samples. The areas near the ledge and base of the macrosteps show significant differences in size and distribution of ErSb nanowires. Results suggest that the formation of macrosteps drives the transition from vertical to horizontal nanowires in the ErxGa1-xSb system. We also observe a low temperature growth mode, which results in horizontal nanowire formation under a wide range of flux conditions. This new growth mode does not exhibit the embedded growth observed in the formation of nanowires at higher temperatures and may allow for horizontal nanowire formation without the presence of macrosteps, as well as the formation of smaller nanoparticles which may be useful for achieving smaller nanoparticle dimensions and electron confinement effects. This work was supported by NSF-DMR under 1507875.

  11. Hot corrosion resistance of a Pb-Sb alloy for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil); Aoki, Claudia S.C. [Research and Development Centre - CPqD Foundation, Rod. Campinas/Mogi, km 118.5, 13086-912 Campinas, SP (Brazil)

    2008-12-01

    The aim of this study was to evaluate the effects of the microstructural morphologies of a Pb-6.6 wt%Sb alloy on the resulting corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at different temperatures: environment temperature, 50 C and 70 C. A water-cooled unidirectional solidification system was employed permitting a wide range of microstructures to be analyzed. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the corrosion behavior of the Pb-Sb alloy samples. It was found that with increasing temperatures the general corrosion resistance of Pb-Sb dendritic alloys decreases, and that independently of the working temperature finer dendritic spacings exhibit better corrosion resistance than coarser ones. (author)

  12. Old friends in a new light: 'SnSb' revisited

    International Nuclear Information System (INIS)

    Noren, Lasse; Withers, Ray L.; Schmid, Siegbert; Brink, Frank J.; Ting, Valeska

    2006-01-01

    The binary pnictide 'SnSb' has been re-investigated using a combination of X-ray, synchrotron and electron diffraction as well as electron microprobe analysis. Its structure was found to be incommensurately modulated with an underlying rhombohedral parent structure of space group symmetry R3-bar m (No. 166), unit cell parameters a h =b h =4.3251(4)A, c h =5.3376(6)A in the hexagonal setting. The incommensurate primary modulation wave vector q h =1.3109(9)c h * and the superspace group symmetry is R3-bar m (0, 0, ∼1.311) (No. 166.1). The refinement of the incommensurate structure indicates that the satellite reflections arise from displacive shifts of presumably essentially pure Sn and Sb layers along the hexagonal c-axis, with increasing distance between the Sn-layers and decreasing distance between the Sb layers

  13. Effect of Sb content on the thermoelectric properties of annealed CoSb_3 thin films deposited via RF co-sputtering

    International Nuclear Information System (INIS)

    Ahmed, Aziz; Han, Seungwoo

    2017-01-01

    Graphical abstract: The X-ray diffraction patterns and temperature dependence of the Seebeck coefficient of the annealed Co–Sb thin films. - Highlights: • CoSb_3 phase thin films were prepared using RF co sputtering method. • Thin film thermoelectric properties were hugely dependent on Sb content. • All thin films shows n-type conduction behavior at high temperatures. • The thin films with excess Sb possess the largest Seebeck coefficient. • The thin films with CoSb_2 phase possess the largest power factor. - Abstract: A series of CoSb_3 thin films with Sb contents in the range 70–79 at.% were deposited at room temperature via RF co-sputtering. The thin films were amorphous in the as-deposited state and annealed at 300 °C for 3 h to obtain crystalline samples. The annealed thin films were characterized using scanning electron microscopy and X-ray diffraction (XRD), and these data indicate that the films exhibited good crystallinity. The XRD patterns indicate single-phase CoSb_3 thin films in the Sb-rich samples. For the Sb-deficient samples, however, mixed-phase thin films consisting of CoSb_2 and CoSb_3 components were obtained. The electrical and thermoelectric properties were measured at temperatures up to 760 K and found to be highly sensitive to the phases that were present. We observed a change in the thermoelectric properties of the films from p-type at low temperatures to n-type at high temperatures, which indicates potential applications as n-type thermoelectric thin films. A large Seebeck coefficient and power factor was obtained for the single-phase CoSb_3 thin films. The CoSb_2 phase thin films were also found to possess a significant Seebeck coefficient, which coupled with the much smaller electrical resistivity, provided a larger power factor than the single-phase CoSb_3 thin films. We report maximum power factor of 7.92 mW/m K"2 for the CoSb_2-containing mixed phase thin film and 1.26 mW/m K"2 for the stoichiometric CoSb_3 thin film.

  14. Anisotropic superconductivity in β-(BDA-TTP)2SbF6: STM spectroscopy

    Science.gov (United States)

    Nomura, K.; Muraoka, R.; Matsunaga, N.; Ichimura, K.; Yamada, J.

    2009-03-01

    We have investigated the gap symmetry in the superconducting phase of β-(BDA-TTP)2SbF6 with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to κ-(BEDT-TTF)2X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and π. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d like superconducting pair is formed in this system as the case of κ-(BEDT-TTF)2X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet.

  15. Anisotropic superconductivity in β-(BDA-TTP)2SbF6: STM spectroscopy

    International Nuclear Information System (INIS)

    Nomura, K.; Muraoka, R.; Matsunaga, N.; Ichimura, K.; Yamada, J.

    2009-01-01

    We have investigated the gap symmetry in the superconducting phase of β-(BDA-TTP) 2 SbF 6 with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to κ-(BEDT-TTF) 2 X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and π. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d x 2 -y 2 like superconducting pair is formed in this system as the case of κ-(BEDT-TTF) 2 X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet

  16. Effect of antimony nano-scale surface-structures on a GaSb/AlAsSb distributed Bragg reflector

    International Nuclear Information System (INIS)

    Husaini, S.; Shima, D.; Ahirwar, P.; Rotter, T. J.; Hains, C. P.; Dang, T.; Bedford, R. G.; Balakrishnan, G.

    2013-01-01

    Effects of antimony crystallization on the surface of GaSb during low temperature molecular beam epitaxy growth are investigated. The geometry of these structures is studied via transmission electron and atomic force microscopies, which show the surface metal forms triangular-shaped, elongated nano-wires with a structured orientation composed entirely of crystalline antimony. By depositing antimony on a GaSb/AlAsSb distributed Bragg reflector, the field is localized within the antimony layer. Polarization dependent transmission measurements are carried out on these nano-structures deposited on a GaSb/AlAsSb distributed Bragg reflector. It is shown that the antimony-based structures at the surface favor transmission of light polarized perpendicular to the wires.

  17. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  18. Crystal structure of owyheeite, Ag1.5Pb4.43Sb6.07S14

    DEFF Research Database (Denmark)

    Laufek, Frantisek; Pazout, Richard; Makovicky, Emil

    2007-01-01

    to form lone electron pair micelles. Electron probe microanalysis gives (mean of 10 point analyses in wt. %): Ag 6.51(12), Cu 0.18(2), Pb 45.03(24), Sb 28.69(33), S 19.66(19), Total 100.08. Owyheeite belongs to a broad family of rod-based sulphosalt structures with the chess-board arrangement of the rods....

  19. Molecular beam epitaxy of GeTe-Sb{sub 2}Te{sub 3} phase change materials studied by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shayduk, Roman

    2010-05-20

    The integration of phase change materials into semiconductor heterostructures may lead to the development of a new generation of high density non-volatile phase change memories. Epitaxial phase change materials allow to study the detailed structural changes during the phase transition and to determine the scaling limits of the memory. This work is dedicated to the epitaxial growth of Ge-Sb-Te phase change alloys on GaSb(001). We deposit Ge-Sb-Te (GST) films on GaSb(001) substrates by means of molecular beam epitaxy (MBE). The film orientation and lattice constant evolution is determined in real time during growth using grazing incidence X-ray diffraction (GID). The nucleation stage of the growth is studied in situ using reflection high energy electron diffraction (RHEED). Four growth regimes of GST on GaSb(001) were observed: amorphous, polycrystalline, incubated epitaxial and direct epitaxial. Amorphous film grows for substrate temperatures below 100 C. For substrate temperatures in the range 100-160 C, the film grows in polycrystalline form. Incubated epitaxial growth is observed at temperatures from 180 to 210 C. This growth regime is characterized by an initial 0.6nm thick amorphous layer formation, which crystallizes epitaxially as the film thickness increases. The determined lattice constant of the films is 6.01 A, very close to that of the metastable GST phase. The films predominantly possess an epitaxial cube-on-cube relationship. At higher temperatures the films grow epitaxially, however the growth rate is rapidly decreasing with temperature. At temperatures above 270 C the growth rate is zero. The composition of the grown films is close to 2:2:5 for Ge, Sb and Te, respectively. The determined crystal structure of the films is face centered cubic (FCC) with a rhombohedral distortion. The analysis of X-ray peak widths gives a value for the rhombohedral angle of 89.56 . We observe two types of reflections in reciprocal space indicating two FCC sublattices in

  20. Sorption of V and VI group metalloids (As, Sb, Te on modified peat sorbents

    Directory of Open Access Journals (Sweden)

    Ansone-Bertina Linda

    2016-01-01

    Full Text Available The present work investigates arsenic, antimony and tellurium sorption using iron modified peat. The results were obtained using batch tests and the sorption was studied as a function of initial metalloid concentration, pH and sorption time, as well as the presence of competing substances. The obtained results indicate that modification of peat with Fe compounds significantly enhances the sorption capacity of the sorbents used for sorption of arsenic, antimony and tellurium. The optimal pH interval for the sorption of Sb(III is 6.5–9 and for As(V and Sb(V – 3–6, while As(III and tellurium sorption using Fe-modified peat is favourable in a wider interval of 3–9. The presence of competing ions as well as HA affect sorption of metalloids on Fe-modified peat. A minor impact on the reduction of metalloid sorption was detected in the presence of nitrate, sulphate, carbonate and tartrate ions, while in the presence of phosphate and HA the sorption ability of metalloids can be considerably reduced. The obtained results of kinetic experiments indicate that sorption of metalloids on Fe-modified peat mainly occurs relying on mechanisms of physical sorption processes.

  1. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    International Nuclear Information System (INIS)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-01-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  2. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  3. Experimental and theoretical investigation of topological and energetic characteristics of Sb complexes reversibly binding molecular oxygen.

    Science.gov (United States)

    Fukin, Georgy K; Baranov, Evgenii V; Jelsch, Christian; Guillot, Benoît; Poddel'sky, Andrey I; Cherkasov, Vladimir K; Abakumov, Gleb A

    2011-07-28

    The experimental distribution of electron density in Ph(3)(4,5-OMe-3,6-Bu(t)-Cat)Sb·MeCN (1*) and Ph(3)(4,5-N(2)C(4)H(6)-3,6-Bu(t)-Cat)Sb·MeOH (2*) complexes was studied. According to atoms in molecules theory, the Sb-C(Ph), Sb-O(catecholate), and Sb···N(O) bonds are intermediate, whereas the O-C and C-C bonds are covalent, respectively. The energy of the Sb···N(MeCN) and Sb···O(MeOH) bonds are 7.0 and 11.3 kcal/mol according to the Espinosa equation. Density functional theory and Hartree-Fock calculations were carried out for a series of catecholate and amidophenolate complexes of antimony(V). It was shown that such calculations reliably reproduce geometrical and topological parameters and therefore can be used for a criterion search of dioxygen reversible binding by the catecholate and amidophenolate complexes of antimony(V). It was found that the "critical" value of the HOMO energy vary in the range from -5.197 to -5.061 eV for reversible binding of dioxygen complexes. This can serve as a thermodynamic criterion to predict the possibility of the dioxygen reversible binding by the catecholate and amidophenolate complexes of Sb(V). The HOMO energies correlate with the conversion of the catecholate and amidophenolate complexes in corresponding spiroendoperoxide derivatives as well. The contribution of the atom orbitals of the carbon atoms in the five-membered metallocycle to HOMO in complexes with different substitutes in the 4- and 5-positions of the catecholate ligand allows predicting the place of dioxygen addition. © 2011 American Chemical Society

  4. Structural, vibrational and electrical properties of ordered double perovskite oxide BaLaMnSbO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Chandrahas, E-mail: bhartic@cgcri.res.in [Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja SC Mullick Road, Kolkata 700032 (India); Sen, A. [Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja SC Mullick Road, Kolkata 700032 (India); Chanda, Sadhan; Sinha, T.P. [Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2014-03-25

    Graphical abstract: Raman spectrum with group theoretical analysis -- Highlights: • BaLaMnSbO{sub 6} (BLMS) is synthesized in tetragonal phase (TP). • Rietveld refinement and Raman spectroscopy confirms the TP. • The presence of cation ordering is observed. • The electrical activation energy is ∼0.5 eV. • BLMS shows polaron hopping. -- Abstract: BaLaMnSbO{sub 6} (BLMS) has been successfully synthesized by solid-state reaction technique. In contrast to earlier reports, Rietveld refinement of powder X-ray diffraction (XRD) data of BLMS shows tetragonal structure having space group I4/m. The octahedral tilt about the direction of the c-axis is found to be 8.99° and the superlattice line (0 1 1) indicates the presence of cation ordering. FT-IR and Raman analysis as well as group theoretical investigation confirm the ordered tetragonal structure of BLMS with I4/m space group. The anti-phase distortions appear to be sufficiently large as detected by infrared and Raman spectroscopies, which give rise to the degeneracy and breaking of the symmetries of the normal modes. Impedance spectroscopy is used to investigate the dielectric relaxation and ac electrical conductivity in the temperature range of 303–403 K and in the frequency range of 0.1 kHz–1 MHz. Experimental electric modulus data are fitted to the Cole–Cole model in order to analyse the dielectric relaxation in BLMS. The frequency dependence ac electrical conductivity data are fitted to Jonscher’s universal power law at various temperatures. The dc conductivity follows Arrhenius law with activation energy (E{sub a}) 0.51 eV suggesting the polaron hopping. The complex impedance plane plots of BLMS indicate the presence of both grain and grain boundary effects and are analyzed by the electrical equivalent circuit consisting of a resistance and capacitance.

  5. Sb(V reactivity with human blood components: redox effects.

    Directory of Open Access Journals (Sweden)

    Silvana López

    Full Text Available We assessed the reactivity of Sb(V in human blood. Sb(V reactivity was determined using an HPLC-HG-AFS hyphenated system. Sb(V was partially reduced to Sb(III in blood incubation experiments; however, Sb(III was a highly unstable species. The addition of 0.1 mol L(-1 EDTA prevented Sb(III oxidation, thus enabling the detection of the reduction of Sb(V to Sb(III. The transformation of Sb(V to Sb(III in human whole blood was assessed because the reduction of Sb(V in human blood may likely generate redox side effects. Our results indicate that glutathione was the reducing agent in this reaction and that Sb(V significantly decreased the GSH/GSSG ratio from 0.32 ± 0.09 to 0.07 ± 0.03. Moreover, the presence of 200 ng mL(-1 of Sb(V increased the activity of superoxide dismutase from 4.4 ± 0.1 to 7.0 ± 0.4 U mL(-1 and decreased the activity of glutathione peroxidase from 62 ± 1 to 34 ± 2 nmol min(-1 mL(-1.

  6. Effect of Sb content on the thermoelectric properties of annealed CoSb{sub 3} thin films deposited via RF co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Aziz, E-mail: aziz_ahmed@ust.ac.kr [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350 (Korea, Republic of); Department of Nano-Mechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Han, Seungwoo, E-mail: swhan@kimm.re.kr [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350 (Korea, Republic of); Department of Nano-Mechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2017-06-30

    Graphical abstract: The X-ray diffraction patterns and temperature dependence of the Seebeck coefficient of the annealed Co–Sb thin films. - Highlights: • CoSb{sub 3} phase thin films were prepared using RF co sputtering method. • Thin film thermoelectric properties were hugely dependent on Sb content. • All thin films shows n-type conduction behavior at high temperatures. • The thin films with excess Sb possess the largest Seebeck coefficient. • The thin films with CoSb{sub 2} phase possess the largest power factor. - Abstract: A series of CoSb{sub 3} thin films with Sb contents in the range 70–79 at.% were deposited at room temperature via RF co-sputtering. The thin films were amorphous in the as-deposited state and annealed at 300 °C for 3 h to obtain crystalline samples. The annealed thin films were characterized using scanning electron microscopy and X-ray diffraction (XRD), and these data indicate that the films exhibited good crystallinity. The XRD patterns indicate single-phase CoSb{sub 3} thin films in the Sb-rich samples. For the Sb-deficient samples, however, mixed-phase thin films consisting of CoSb{sub 2} and CoSb{sub 3} components were obtained. The electrical and thermoelectric properties were measured at temperatures up to 760 K and found to be highly sensitive to the phases that were present. We observed a change in the thermoelectric properties of the films from p-type at low temperatures to n-type at high temperatures, which indicates potential applications as n-type thermoelectric thin films. A large Seebeck coefficient and power factor was obtained for the single-phase CoSb{sub 3} thin films. The CoSb{sub 2} phase thin films were also found to possess a significant Seebeck coefficient, which coupled with the much smaller electrical resistivity, provided a larger power factor than the single-phase CoSb{sub 3} thin films. We report maximum power factor of 7.92 mW/m K{sup 2} for the CoSb{sub 2}-containing mixed phase thin film and 1

  7. Photoluminescence properties of a new orange-red-emitting Sm(3+)-La3SbO7 phosphor.

    Science.gov (United States)

    Li, Zeng-Mei; Deng, Li-Gang; Zhao, Shan-Cang; Zhang, Shu-Qiu; Guo, Chang-Ying; Liang, Jing-Yun; Yue, Hui; Wan, Chun-Yan

    2016-03-01

    The antimonate compound La3SbO7 has high chemical stability, lattice stiffness and thermal stability. Orange-red-emitting antimonate-based phosphors La3SbO7:xSm(3+) (x = 0.02, 0.05, 0.08, 0.10, 0.15, 0.20 and 0.25) were synthesized. The phase structure and photoluminescence properties of these phosphors were investigated. The emission spectrum obtained on excitation at 407 nm contained exclusively the characteristic emissions of Sm(3+) at 568, 608, 654 and 716 nm, which correspond to the transitions from (4)G5/2 to (6)H5/2, (6)H7/2, (6)H9/2 and (6)H11/2 of Sm(3+), respectively. The strongest emission was located at 608 nm due to the (4)G5/2→(6)H7/2 transition of Sm(3+), generating bright orange-red light. The critical quenching concentration of Sm(3+) in La3SbO7:Sm(3+) phosphor was determined as 10% and the energy transfer between Sm(3+) was found to be through an exchange interaction. The International Commission on Illumination chromaticity coordinates of the La3SbO7:0.10Sm(3+) phosphors are located in the orange-red region. The La3SbO7:Sm(3+) phosphors may be potentially used as red phosphors for white light-emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Ultrasonic dispersion and off-center rattling in heavy fermion superconductor PrOs4Sb12

    International Nuclear Information System (INIS)

    Nemoto, Yuichi; Ueno, Takafumi; Takeda, Naoya; Yamaguchi, Takashi; Yanagisawa, Tatsuya; Goto, Terutaka; Sugawara, Hitoshi; Sato, Hideyuki

    2006-01-01

    Ultrasonic attenuation measurements have been firstly performed for a large single crystal of PrOs 4 Sb 12 with the dimensions of 5.97x0.6x0.6mm 3 . Remarkable frequency dependence around 20-40K has been observed in the elastic constant and attenuation coefficient of the longitudinal C 11 mode associated with E g symmetry strain in part, which results from a thermally activated off-center rattling with E g symmetry of a Pr ion inside a Sb icosahedron cage. Parameters of a characteristic time τ 0 =3.1x10 -11 s and an activation energy E=225K were obtained. This E g rattling involving a local charge fluctuation inside a Sb cage periodically arranged may couple to the conduction electrons. As a result, the electron-phonon coupling would lead to heavy fermion and its superconductivity in PrOs 4 Sb 12

  9. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  10. Analysis of the 4d9-(4d86p + 4p54d10) transitions of Sb VII and the strongest transitions of the 4d9-4d84f array of Sb VII and Te VIII

    International Nuclear Information System (INIS)

    Kildiyarova, R.R.; Churilov, S.S.; Joshi, Y.N.; Ryabtsev, A.N.

    1995-01-01

    The spectra of antimony and tellurium were photographed in the 100-200 A region on grazing incidence spectrographs at Moscow, Russia and NIST, U.S.A. laboratories. The 4d 9 -[4d 8 6p + 4p 5 4d 10 ] transition array of Sb VII was analyzed. 31 levels in Sb VII were established. 41 new lines in Sb VII belonging to the 4d 9 -(4p 5 4d 10 + 4d 8 6p) transition array have been classified. Seven lines each in Sb VII and Te VIII belonging to the 4d 9 -4d 8 4f transition array have been classified. Parametric least-squares-fitted calculations involving configuration interaction have been carried out to interpret the spectrum satisfactorily. (orig.)

  11. Thermoelectric properties of p-type pseudo-binary (Ag0.365Sb0.558Te) x -(Bi0.5Sb1.5Te3)1-x (x=0-1.0) alloys prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Cui, J.L.; Xue, H.F.; Xiu, W.J.; Jiang, L.; Ying, P.Z.

    2006-01-01

    In this paper, pseudo-binary (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys were prepared using spark plasma sintering technique, and the composition-dependent thermoelectric properties were evaluated. Electrical conductivities range from 7.9x10 4 to 15.6x10 4 Ω -1 m -1 at temperatures of 507 and 318 K, respectively, being about 3.0 and 8.5 times those of Bi 0.5 Sb 1.5 Te 3 alloy at the corresponding temperatures. The optimal dimensionless figure of merit (ZT) of the sample with molar fraction x=0.025 reaches 1.1 at 478 K, whereas that of the ternary Bi 0.5 Sb 1.5 Te 3 alloy is 0.58 near room temperature. The results also reveal that a direct introduction of Ag 0.365 Sb 0.558 Te in the Bi-Sb-Te system is much more effective to the property improvement than naturally precipitated Ag 0.365 Sb 0.558 Te in the Ag-doped Ag-Bi-Sb-Te system. - Graphical abstract: The temperature dependence of the dimensionless thermoelectric figure of merit ZT for different (Ag 0.365 Sb 0.558 Te) x -(Bi 0.5 Sb 1.5 Te 3 ) 1- x (x=0-1.0) alloys prepared by spark plasma sintering

  12. Optimization of growth parameters for MOVPE-grown GaSb and Ga{sub 1-x}In{sub x}Sb

    Energy Technology Data Exchange (ETDEWEB)

    Miya, S.S.; Wagener, V. [Department of Physics, Private Bag X 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6001 (South Africa); Botha, J.R., E-mail: reinhardt.botha@nmmu.ac.za [Department of Physics, Private Bag X 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6001 (South Africa)

    2012-05-15

    The triethylgallium/trimethylantimony (TEGa/TMSb) precursor combination was used for the metal-organic vapour phase epitaxial growth of GaSb at a growth temperature of 520 Degree-Sign C at atmospheric pressure. Trimethylindium was added in the case of Ga{sub 1-x}In{sub x}Sb growth. The effects of group V flux to group III flux ratio (V/III ratio) on the crystallinity and optical properties of GaSb layers are reported. It has been observed from the crystalline quality and optical properties that nominal V/III ratios of values greater than unity are required for GaSb epitaxial layers grown at this temperature. It has also been shown that Ga{sub 1-x}In{sub x}Sb can be grown using TEGa as a source of gallium species at atmospheric pressure. The relationship between Ga{sub 1-x}In{sub x}Sb vapour composition and solid composition has been studied at a V/III ratio of 0.78.

  13. Liquidus Projection and Isothermal Section of the Sb-Se-Sn System

    Science.gov (United States)

    Chang, Jui-shen; Chen, Sinn-wen

    2017-12-01

    Sb-Se-Sn ternary alloys are promising chalcogenide materials. The liquidus projection and 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system are determined. Numerous Sb-Se-Sn alloys are prepared, and their primary solidification phases are examined. In addition to the three terminal phases, (Sb), (Se) and (Sn), there are Sb2Sn3, SbSn, SnSe, SnSe2, Sb2Se3, Sn2Sb9Se9, and SnSb2Se4 phases. In addition, there are two miscibility gaps along the Sb-Se and Se-Sn and sides. There are ten invariant reactions in the Sb-Se-Sn ternary system, and seven of them are experimentally determined in this study. The lowest reaction temperature of determined invariant reaction is L + SbSn = (Sn) + SnSe at 515.4 K ± 5 K (242.2 °C ± 5 °C). There are nine tie-triangles, which are Liquid + SbSn + SnSe, SbSn + SnSe + (Sb), SnSe + (Sb) + Sn2Sb9Se9, (Sb) + Sb2Se3 + Sn2Sb9Se9, SnSe + Sn2Sb9Se9 + SnSb2Se4, Sb2Se3 + Sn2Sb9Se9 + SnSb2Se4, SnSe + SnSe2 + SnSb2Se4, SnSe2 + SnSb2Se4 + Sb2Se3, and SnSe2 + Sb2Se3 + Liquid in the 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system.

  14. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics

    Institute of Scientific and Technical Information of China (English)

    Chao CHEN; Matthew C.BEARD; Jiang TANG; David C.BOBELA; Ye YANG; Shuaicheng LU; Kai ZENG; Cong GE; Bo YANG; Liang GAO; Yang ZHAO

    2017-01-01

    Antimony selenide (Sb2Se3) is a promising absorber material for thin film photovoltaics because of its attractive material,optical and electrical properties.In recent years,the power conversion efficiency (PCE) of Sb2Se3 thin film solar cells has gradually enhanced to 5.6%.In this article,we systematically studied the basic physical properties of Sb2Se3 such as dielectric constant,anisotropic mobility,carrier lifetime,diffusion length,defect depth,defect density and optical band tail states.We believe such a comprehensive characterization of the basic physical properties of Sb2Se3 lays a solid foundation for further optimization of solar device performance.

  15. Isolating GaSb membranes grown metamorphically on GaAs substrates using highly selective substrate removal etch processes

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Center for High Technology Materials; Balakrishnan, Ganesh [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Center for High Technology Materials

    2017-02-24

    The etch rates of NH4OH:H2O2 and C6H8O7:H2O2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH4OH:H2O2 solution has a greater etch rate differential for the GaSb/GaAs material system than C6H8O7:H2O2 solution. The selectivity of NH4OH:H2O2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11471 ± 1691 whereas that of C6H8O7:H2O2 has been measured up to 143 ± 2. The etch contrast has been verified by isolating 2 μm thick GaSb epi-layers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high-resolution X-Ray diffraction (HR-XRD) and atomic force microscopy (AFM).

  16. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Garwood, Tristan [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Modine, Normand A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Krishna, S. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials

    2016-12-18

    The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.

  17. Reduction in thermal conductivity of BiSbTe lump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Kaleem [King Saud University, Sustainable Energy Technologies Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia); Wan, C. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Beijing (China); Al-Eshaikh, M.A.; Kadachi, A.N. [King Saud University, Research Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia)

    2017-03-15

    In this work, systematic investigations on the thermal conductivities of BiSbTe lump, microstructured pristine BiSbTe bulk and single wall carbon nanotubes (SWCNTs)/BiSbTe bulk nanocomposites were performed. BiSbTe lumps were crushed to form a coarse powder (200 μm) and effect of particle size reduction on the effective thermal conductivity of BiSbTe (200 μm) bulk were analyzed. For further reduction in the conductivity, a two pronged strategy has been employed. First, additional refinement of BiSbTe (200 μm) were performed through ball milling in an inert environment. Second, SWCNTs in 0.75, and 1.0 vol% were distributed uniformly in the fine BiSbTe ball milled powder. The results showed that the effective thermal conductivities decrease with the reduction in the particle size from lump to BiSbTe (200 μm) bulk as well as with the addition of SWCNTs accompanied by further refinement of BiSbTe particles. The significant reduction in thermal conductivities of the lump was achieved for pure BiSbTe (200 μm) bulk and 0.75 vol% of SWCNTs/BiSbTe composite. This can be ascribed to the enhanced phonon scattering by the grain boundaries between the nanostructured BiSbTe particles as well as the interfaces between BiSbTe and the low dimensional carbon nanotubes. (orig.)

  18. Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm

    International Nuclear Information System (INIS)

    Bachmann, Alexander; Arafin, Shamsul; Kashani-Shirazi, Kaveh

    2009-01-01

    Vertical-cavity surface-emitting lasers (VCSELs) are perfect light sources for spectroscopic applications, where properties such as continuous-wave (cw) operation, single-mode emission, high lifetime and often low power consumption are crucial. For applications such as tunable diode laser absorption spectroscopy (TDLAS), there is a growing interest in laser devices emitting in the near- to mid-infrared wavelength range, where many environmentally and technologically important gases show strong absorption lines. The (AlGaIn)(AsSb) material system based on GaSb is the material of choice for covering the 2.0-3.3 μm range. In this paper, we report on electrically pumped single-mode VCSELs with emission wavelengths of 2.4 and 2.6 μm, operating cw at room temperature and beyond. By (electro-) thermal tuning, the emission wavelength can be tuned mode-hop free over a range of several nanometers. In addition, low threshold currents of several milliamperes promise mobile application. In the devices, a structured buried tunnel junction with subsequent overgrowth has been used in order to achieve efficient current confinement, reduced optical losses and increased electrical conductivity. Furthermore, strong optical confinement is introduced in the lasers due to laterally differing cavity lengths.

  19. Low-temperature synthesis of single-phase Co7Sb2O12

    International Nuclear Information System (INIS)

    Brito, M.S.L.; Escote, M.T.; Santos, C.O.P.; Lisboa-Filho, P.N.; Leite, E.R.; Oliveira, J.B.L.; Gama, L.; Longo, E.

    2004-01-01

    Polycrystalline Co 7 Sb 2 O 12 compounds have been synthesized by a chemical route, which is based on a modified polymeric precursor method. In order to study the physical properties of the samples, X-ray diffraction (XRD), thermal analyses (TG and DSC), infrared spectroscopy (IR), specific surface area (BET), and magnetization measurements were performed on these materials. Characterization through XRD revealed that the samples are single-phase after a heat-treatment at 1100 deg. C for 2 h, while the X-ray patterns of the samples heat-treated at lower temperatures revealed the presence of additional Bragg reflections belonging to the Co 6 Sb 2 O 6 phase. These data were analyzed by means of Rietveld refinement and further analyze showed that Co 7 Sb 2 O 12 displays an inverse spinel crystalline structure. In this structure, the Co 2+ ions occupy the eight tetrahedral positions, and the sixteen octahedral positions are randomly occupied by the Sb 5+ and Co 2+ ions. IR studies disclosed two strong absorption bands, ν 1 and ν 2 , in the expected spectral range for a spinel-type binary oxide with space group Fd3m. Exploratory studies concerning the magnetic properties indicated that this sample presents a spin-glass transition at T f ∼ 64 K

  20. Whole genome sequencing of Mycobacterium tuberculosis SB24 isolated from Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Noraini Philip

    2016-09-01

    Full Text Available Mycobacterium tuberculosis (M. tuberculosis is the causative agent of tuberculosis (TB that causes millions of death every year. We have sequenced the genome of M. tuberculosis isolated from cerebrospinal fluid (CSF of a patient diagnosed with tuberculous meningitis (TBM. The isolated strain was referred as M. tuberculosis SB24. Genomic DNA of the M. tuberculosis SB24 was extracted and subjected to whole genome sequencing using PacBio platform. The draft genome size of M. tuberculosis SB24 was determined to be 4,452,489 bp with a G + C content of 65.6%. The whole genome shotgun project has been deposited in NCBI SRA under the accession number SRP076503.

  1. Optical and structural characterization of GaSb and Te-doped GaSb single crystals

    International Nuclear Information System (INIS)

    Tirado-Mejia, L.; Villada, J.A.; Rios, M. de los; Penafiel, J.A.; Fonthal, G.; Espinosa-Arbelaez, D.G.; Ariza-Calderon, H.; Rodriguez-Garcia, M.E.

    2008-01-01

    Optical and structural properties of GaSb and Te-doped GaSb single crystals are reported herein. Utilizing the photoreflectance technique, the band gap energy for doped samples was obtained at 0.814 eV. Photoluminescence (PL) spectra showed a peak at 0.748 eV that according to this research, belongs to electronic states of pure GaSb and not to the longitudinal optical (LO) phonon replica as has been reported by other authors. Analysis of the full width at half maximum (FWHM) values of X-ray diffraction, as well as micro-Raman peaks showed that the inclusion of Te decreases the crystalline quality

  2. Enhancing electrocatalytic performance of Sb-doped SnO ₂ electrode by compositing nitrogen-doped graphene nanosheets.

    Science.gov (United States)

    Duan, Tigang; Wen, Qing; Chen, Ye; Zhou, Yiding; Duan, Ying

    2014-09-15

    An efficient Ti/Sb-SnO2 electrode modified with nitrogen-doped graphene nanosheets (NGNS) was successfully fabricated by the sol-gel and dip coating method. Compared with Ti/Sb-SnO2 electrode, the NGNS-modified electrode possesses smaller unite crystalline volume (71.11Å(3) vs. 71.32Å(3)), smaller electrical resistivity (13Ωm vs. 34Ωm), and lower charge transfer resistance (10.91Ω vs. 21.01Ω). The accelerated lifetime of Ti/Sb-SnO2-NGNS electrode is prolonged significantly, which is 4.45 times as long as that of Ti/Sb-SnO2 electrode. The results of X-ray photoelectron spectroscopy measurement and voltammetric charge analysis indicate that introducing NGNS into the active coating can increase more reaction active sites to enhance the electrocatalytic efficiency. The electrochemical dye decolorization analysis demonstrates that Ti/Sb-SnO2-NGNS presents efficient electrocatalytic performance for methylene blue and orange II decolorization. And its pseudo-first order kinetic rate constants for methylene blue and orange II decolorization are 36.6 and 44.0 min(-1), respectively, which are 6.0 and 7.1 times as efficient as those of Ti/Sb-SnO2, respectively. Considering the significant electrocatalytic activity and low resistivity of Ti/Sb-SnO2-NGNS electrode, the cost of wastewater treatment can be expected to be reduced obviously and the application prospect is broad. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis and electrochemical characteristics of Sn-Sb-Ni alloy composite anode for Li-ion rechargeable batteries

    International Nuclear Information System (INIS)

    Guo Hong; Zhao Hailei; Jia Xidi; Qiu Weihua; Cui Fenge

    2007-01-01

    Micro-scaled Sn-Sb-Ni alloy composite was synthesized from oxides of Sn, Sb and Ni via carbothermal reduction. The phase composition and electrochemical properties of the Sn-Sb-Ni alloy composite anode material were studied. The prepared alloy composite electrode exhibits a high specific capacity and a good cycling stability. The lithiation capacity was 530 mAh g -1 in the first cycle and maintained at 370-380 mAh g -1 in the following cycles. The good electrochemical performance may be attributed to its relatively large particle size and multi-phase characteristics. The former reason leads to the lower surface impurity and thus the lower initial capacity loss, while the latter results in a stepwise lithiation/delithiation behavior and a smooth volume change of electrode in cycles. The Sn-Sb-Ni alloy composite material shows a good candidate anode material for the rechargeable lithium ion batteries

  4. Sb(III)-Imprinted Organic-Inorganic Hybrid Sorbent Prepared by Hydrothermal-Assisted Surface Imprinting Technique for Selective Adsorption of Sb(III)

    Science.gov (United States)

    Zhang, Dan; Zhao, Yue; Xu, Hong-Bo

    2018-03-01

    Sb(III)-imprinted organic-inorganic hybrid sorbent was prepared by hydrothermal-assisted surface imprinting technique and was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy coupled to an energy dispersive spectrometer and N2 adsorption/desorption isotherms. Hydrothermal-assisted process can improve the selectivity of the Sb(III)-imprinted hybrid sorbent for Sb(III) due to stable control of temperature and pressure. The Sb(III)-imprinted hybrid sorbent IIS indicated higher selectivity for Sb(III), had high static adsorption capacity of 37.3 mg g-1 for Sb(III), displayed stable adsorption capacity in pH range from 4 to 8, reached an rapid adsorption equilibrium within 30 min. According to the correlation coefficient ( r 2 > 0.99), the experimental data fitted better the pseudo-second-order kinetic model and Langmuir equilibrium isotherm.

  5. The new Zintl phases Eu{sub 21}Cd{sub 4}Sb{sub 18} and Eu{sub 21}Mn{sub 4}Sb{sub 18}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Darone, Gregory M.; Bobev, Svilen, E-mail: bobev@udel.edu

    2016-06-15

    Crystals of two new Zintl compounds, Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} have been synthesized using the molten metal flux method, and their structures have been established by single-crystal X-ray diffraction. Both compounds are isotypic and crystallize in the monoclinic space group C2/m (No. 12, Z=4). The structures are based on edge- and corner-shared MnSb{sub 4} or CdSb{sub 4} tetrahedra, which make octameric [Mn{sub 8}Sb{sub 22}] or [Cd{sub 8}Sb{sub 22}] polyanions. Homoatomic Sb–Sb bonds are present in both structures. The Eu atoms take the role of Eu{sup 2+}cations with seven unpaired 4f electrons, as suggested by the temperature-dependent magnetization measurements. The magnetic susceptibilities of Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} indicate that both phases order anti-ferromagnetically with Néel temperatures of ca. 7 K and ca. 10 K, respectively. The unpaired 3d electrons of the Mn atoms in Eu{sub 21}Mn{sub 4}Sb{sub 18} do contribute to the magnetic response, however, the bulk magnetization measurements do not provide evidence for long-range ordering of the Mn spins down to 5 K. Electrical resistivity measurements suggest that both compounds are narrow band gap semiconductors. - Graphical abstract: Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} have complex monoclinic structures, based on MnSb{sub 4} and CdSb{sub 4} tetrahedra, both edge- and corner-shared. A perspective of the crystal structure is shown, as viewed along the b axis. Display Omitted - Highlights: • Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} are novel compounds in the respective ternary phase diagrams. • For both structures, the Zintl-Klemm rules are followed, and both are small gap semiconductors. • Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} are air-stable Zintl phases and could be new thermoelectric materials.

  6. AgSbSe{sub 2} and AgSb(S,Se){sub 2} thin films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garza, J.G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Shaji, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Rodriguez, A.C.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Facultad de Ingenieria Mecanica y Electrica, CIIDIT - Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-10-01

    Silver antimony selenide (AgSbSe{sub 2}) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb{sub 2}S{sub 3}), silver selenide (Ag{sub 2}Se), selenium (Se) and silver (Ag). Sb{sub 2}S{sub 3} thin film was prepared from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}, Ag{sub 2}Se from a solution containing AgNO{sub 3} and Na{sub 2}SeSO{sub 3} and Se thin films from an acidified solution of Na{sub 2}SeSO{sub 3}, at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10{sup -3} Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe{sub 2} or AgSb(S,Se){sub 2} depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe{sub 2}/Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V{sub oc} = 435 mV and J{sub sc} = 0.08 mA/cm{sup 2} under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe{sub 2} as an absorber material by a non-toxic selenization process is achieved.

  7. Analysis of the 4d7 (4f + 6p) and 4p54d9 configurations of Sn VII, Sb VIII and Te IX

    International Nuclear Information System (INIS)

    Azarov, V.I.; Joshi, Y.N.; Churilov, S.S.; Ryabtsev, A.N.

    1994-01-01

    The spectra of tin, antimony and tellerium were photographed in the 120-200 A region on 10.7 m and 3 m grazing incidence spectrographs using a triggered spark source. The 4d 8 -4d 7 (4f + 6p) + 4p 5 4d 9 transitions of Sn VII, Sb VIII and Te IX were investigated. In the Sn VII spectrum 109 new lines were classified in the 152-192 A region and 34 new levels were established, in the Sb VIII spectrum 78 new lines were classified in the 138-158 A region and 21 new levels were established, and in the Te IX 76 new lines were classified in the 121-139 A region and 21 new levels were established. Strong configuration interaction among the 4d 7 (np + mf), and 4p 5 4d 9 (n = 5, 6; m = 4, 5) configurations was observed. Least-squares-fitting (LSF) parametric calculations involving configuration interaction were carried out to interpret the observed spectra. (orig.)

  8. Thermodynamic stability studies of Ce-Sb compounds with Fe

    Science.gov (United States)

    Xie, Yi; Zhang, Jinsuo; Benson, Michael T.; Mariani, Robert D.

    2018-02-01

    Lanthanide fission products can migrate to the fuel periphery and react with cladding, causing fuel-cladding chemical interaction (FCCI). Adding a fuel additive dopant, such as Sb, can bind lanthanide, such as Ce, into metallic compounds and thus prevent migration. The present study focuses on the thermodynamic stability of Ce-Sb compounds when in contact with the major cladding constituent Fe by conducting diffusion couple tests. Ce-Sb compounds have shown high thermodynamic stability as they did not react with Fe. When Fe-Sb compounds contacted with Ce, Sb was separated out of Fe-Sb compounds and formed the more stable Ce-Sb compounds.

  9. Crystalline-electric field of Pr(Os1-xRux)4Sb12

    International Nuclear Information System (INIS)

    Akita, H.; Yoshino, G.; Ochiai, A.

    2006-01-01

    High-quality single crystals of Pr(Os 1-x Ru x ) 4 Sb 12 were grown by the Sb self-flux method. Magnetic susceptibility χ(T) was measured precisely. The characteristic temperature T max , where χ(T) exhibits a maximum, varies as a function of Ru-content x but its functional form changes at around x=0.6 where competition of two types of superconductivity is suggested. Since T max is thought to be relevant to the splitting energy between a ground state and a first excited state, we analyzed χ(T) considering the crystalline electric field (CEF) of the T h symmetry. χ(T) is well fitted assuming a Γ 1 singlet ground state for all x values. As expected from T max , the energy of the first excited state (Γ 4 (2) ) changes its functional form at around x=0.6. Furthermore, the energies of the second and third excited states (Γ 4 (1) and Γ 23 ) exhibit a minimum at almost the same value of x=0.6. These results suggest that the CEF is related to the superconductivity in Pr(Os 1-x Ru x ) 4 Sb 12

  10. New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays.

    Science.gov (United States)

    Ren, Dingding; Dheeraj, Dasa L; Jin, Chengjun; Nilsen, Julie S; Huh, Junghwan; Reinertsen, Johannes F; Munshi, A Mazid; Gustafsson, Anders; van Helvoort, Antonius T J; Weman, Helge; Fimland, Bjørn-Ove

    2016-02-10

    Ternary semiconductor nanowire arrays enable scalable fabrication of nano-optoelectronic devices with tunable bandgap. However, the lack of insight into the effects of the incorporation of Vy element results in lack of control on the growth of ternary III-V(1-y)Vy nanowires and hinders the development of high-performance nanowire devices based on such ternaries. Here, we report on the origins of Sb-induced effects affecting the morphology and crystal structure of self-catalyzed GaAsSb nanowire arrays. The nanowire growth by molecular beam epitaxy is changed both kinetically and thermodynamically by the introduction of Sb. An anomalous decrease of the axial growth rate with increased Sb2 flux is found to be due to both the indirect kinetic influence via the Ga adatom diffusion induced catalyst geometry evolution and the direct composition modulation. From the fundamental growth analyses and the crystal phase evolution mechanism proposed in this Letter, the phase transition/stability in catalyst-assisted ternary III-V-V nanowire growth can be well explained. Wavelength tunability with good homogeneity of the optical emission from the self-catalyzed GaAsSb nanowire arrays with high crystal phase purity is demonstrated by only adjusting the Sb2 flux.

  11. Maximum total organic carbon limits at different DWPF melter feed maters (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1996-01-01

    The document presents information on the maximum total organic carbon (TOC) limits that are allowable in the DWPF melter feed without forming a potentially flammable vapor in the off-gas system were determined at feed rates varying from 0.7 to 1.5 GPM. At the maximum TOC levels predicted, the peak concentration of combustible gases in the quenched off-gas will not exceed 60 percent of the lower flammable limit during a 3X off-gas surge, provided that the indicated melter vapor space temperature and the total air supply to the melter are maintained. All the necessary calculations for this study were made using the 4-stage cold cap model and the melter off-gas dynamics model. A high-degree of conservatism was included in the calculational bases and assumptions. As a result, the proposed correlations are believed to by conservative enough to be used for the melter off-gas flammability control purposes

  12. Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics

    Directory of Open Access Journals (Sweden)

    Han Li

    2017-12-01

    Full Text Available Thermoelectric semiconductors based on CoSb3 hold the best promise for recovering industrial or automotive waste heat because of their high efficiency and relatively abundant, lead-free constituent elements. However, higher efficiency is needed before thermoelectrics reach economic viability for widespread use. In this study, n-type InxCeyCo4Sb12+z skutterudites with high thermoelectric performance are produced by combining several phonon scattering mechanisms in a panoscopic synthesis. Using melt spinning followed by spark plasma sintering (MS-SPS, bulk InxCeyCo4Sb12+z alloys are formed with grain boundaries decorated with nano-phase of InSb. The skutterudite matrix has grains on a scale of 100–200 nm and the InSb nano-phase with a typical size of 5–15 nm is evenly dispersed at the grain boundaries of the skutterudite matrix. Coupled with the presence of defects on the Sb sublattice, this multi-scale nanometer structure is exceptionally effective in scattering phonons and, therefore, InxCeyCo4Sb12/InSb nano-composites have very low lattice thermal conductivity and high zT values reaching in excess of 1.5 at 800 K.

  13. GaSb solar cells grown on GaAs via interfacial misfit arrays for use in the III-Sb multi-junction cell

    Science.gov (United States)

    Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh B.; Huffaker, Diana L.; Hubbard, Seth M.

    2017-12-01

    Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration.

  14. Evaluation of the grass mixture (Faestuca Rubra, Cynodon Dactylon, Lolium Multiflorum and Pennisetum sp.) as Sb phyto-stabilizer in tailings and Sb-rich soils.

    Science.gov (United States)

    Aurora Armienta, M.; Beltrán-Villavicencio, Margarita; Ruiz-Villalobos, Carlos E.; Labastida, Israel; Ceniceros, Nora; Cruz, Olivia; Aguayo, Alejandra

    2017-04-01

    Green house experiments were carried out to evaluate the growth and Sb assimilation of a grass assemblage: Faestuca Rubra, Cynodon Dactylon, Lolium Multiflorum and Pennisetum sp, in tailings and Sb-rich soils. Tailings and soil samples were obtained at the Mexican historical mining zone of Zimapán, Central México. More than 6 tailings impoundments are located at the town outskirts and constitute a contamination source from windblown and waterborne deposit on soils, besides acid mine drainage. Four substrates were used in the experiments: 100% tailings, 20% tailings + 80% soil, 50% tailings + 50% soil , and a soil sample far from tailings as a background. Concentrations of Sb ranged from 310 mg/kg to 413 mg/kg in tailings. A pH of 7.43, 1.27% organic matter, and high concentrations of N, K and P indicated adequate conditions for plant growth. The grass assemblage was raised during 21 days as indicated by OECD (Organisation for Economic Co-operation and Development) Guideline 208 Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. The highest Sb concentrations were measured in plants grown on tailings with 139 mg/kg in the aerial part and 883 mg/kg in roots. Concentrations of Sb decreased as the proportion of tailings diminished with 22.1 mg/kg in the aerial part and 10 mg/kg in roots corresponding to the plants grown in the 20 % tailings + 80% soil . Bioaccumulation (BAC) and bioconcentration factors (BF) of plants grown on tailings (BAC= 0.42, BCF=3.93) indicated their suitability as a phyto-stabilization option. The grass mixture may be thus applied to control windblown particulate tailings taking advantage to their tolerance to high Sb levels.

  15. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    Science.gov (United States)

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-02-23

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current.

  16. Fluoride ion donor properties of cis-OsO(2)F(4): synthesis, raman spectroscopic study, and X-ray crystal structure of [OsO(2)F(3)][Sb(2)F(11)].

    Science.gov (United States)

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-01-04

    The salt, [OsO(2)F(3)][Sb(2)F(11)], has been synthesized by dissolution of cis-OsO(2)F(4) in liquid SbF(5), followed by removal of excess SbF(5) at 0 degrees C to yield orange, crystalline [OsO(2)F(3)][Sb(2)F(11)]. The X-ray crystal structure (-173 degrees C) consists of an OsO(2)F(3)(+) cation fluorine bridged to an Sb(2)F(11)(-) anion. The light atoms of OsO(2)F(3)(+) and the bridging fluorine atom form a distorted octahedron around osmium in which the osmium atom is displaced from its center toward an oxygen atom and away from the trans-fluorine bridge atom. As in other transition metal dioxofluorides, the oxygen ligands are cis to one another and the fluorine bridge atom is trans to an oxygen ligand and cis to the remaining oxygen ligand. The Raman spectrum (-150 degrees C) of solid [OsO(2)F(3)][Sb(2)F(11)] was assigned on the basis of the ion pair observed in the low-temperature crystal structure. Under dynamic vacuum, [OsO(2)F(3)][Sb(2)F(11)] loses SbF(5), yielding the known [mu-F(OsO(2)F(3))(2)][Sb(2)F(11)] salt with no evidence for [OsO(2)F(3)][SbF(6)] formation. Attempts to synthesize [OsO(2)F(3)][SbF(6)] by the reaction of [OsO(2)F(3)][Sb(2)F(11)] with an equimolar amount of cis-OsO(2)F(4) or by a 1:1 stoichiometric reaction of cis-OsO(2)F(4) with SbF(5) in anhydrous HF yielded only [mu-F(OsO(2)F(3))(2)][Sb(2)F(11)]. Quantum-chemical calculations at the SVWN and B3LYP levels of theory and natural bond orbital analyses were used to calculate the gas-phase geometries, vibrational frequencies, natural population analysis charges, bond orders, and valencies of OsO(2)F(3)(+), [OsO(2)F(3)][Sb(2)F(11)], [OsO(2)F(3)][SbF(6)], and Sb(2)F(11)(-). The relative thermochemical stabilities of [OsO(2)F(3)][SbF(6)], [OsO(2)F(3)][Sb(2)F(11)], [OsO(2)F(3)][AsF(6)], [mu-F(OsO(2)F(3))(2)][SbF(6)], [mu-F(OsO(2)F(3))(2)][Sb(2)F(11)], and [mu-F(OsO(2)F(3))(2)][AsF(6)] were assessed using the appropriate Born-Haber cycles to account for the preference for [mu-F(OsO(2)F(3

  17. Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs3Sb2I9.

    Science.gov (United States)

    Singh, Anupriya; Boopathi, Karunakara Moorthy; Mohapatra, Anisha; Chen, Yang Fang; Li, Gang; Chu, Chih Wei

    2018-01-24

    The presence of toxic lead (Pb) remains a major obstruction to the commercial application of perovskite solar cells. Although antimony (Sb)-based perovskite-like structures A 3 M 2 X 9 can display potentially useful photovoltaic behavior, solution-processed Sb-based perovskite-like structures usually favor the dimer phase, which has poor photovoltaic properties. In this study, we prepared a layered polymorph of Cs 3 Sb 2 I 9 through solution-processing and studied its photovoltaic properties. The exciton binding energy and exciton lifetime of the layer-form Cs 3 Sb 2 I 9 were approximately 100 meV and 6 ns, respectively. The photovoltaic properties of the layered polymorph were superior to those of the dimer polymorph. A solar cell incorporating the layer-form Cs 3 Sb 2 I 9 exhibited an open-circuit voltage of 0.72 V and a power conversion efficiency of 1.5%-the highest reported for an all-inorganic Sb-based perovskite.

  18. High pressure monoclinic phases of Sb{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Souza, S.M.; Poffo, C.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Polian, A.; Gauthier, M. [Physique des Milieux Denses, IMPMC, CNRS-UMR 7590, Universite Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2012-09-15

    The effect of pressure on nanostructured rhombohedral {alpha}-Sb{sub 2}Te{sub 3} (phase I) was investigated using X-ray diffraction (XRD) and Raman spectroscopy (RS) up to 19.2 and 25.5 GPa, respectively. XRD patterns showed two new high pressure phases (named phases II and III). From a Rietveld refinement of XRD patterns of {alpha}-Sb{sub 2}Te{sub 3}, the unit cell volume as a function of pressure was obtained and the values were fitted to a Birch-Murnaghan equation of state (BM-EOS). The best fit was obtained for bulk modulus B{sub 0}=36.1{+-}0.9 GPa and its derivative B{sub 0}{sup Prime }=6.2{+-}0.4 (not fixed). Using the refined structural data for {alpha}-Sb{sub 2}Te{sub 3}, for pressures up to 9.8 GPa, changes in the angle of succession [Te-Sb-Te-Sb-Te], in the interaromic distances of Sb and Te atoms belonging to this angle of succession and in the interatomic distances of atoms located on the c axis were examined. This analysis revealed an electronic topological transition (ETT) along the a and c axes at close to 3.7 GPa. From the RS spectra, the full widths at half maximum (FWHM) of the Raman active modes of {alpha}-Sb{sub 2}Te{sub 3} were plotted as functions of pressure and showed an ETT along the a and c axes at close to 3.2 GPa. The XRD patterns of phases II and III were well reproduced assuming {beta}-Bi{sub 2}Te{sub 3} and {gamma}-Bi{sub 2}Te{sub 3} structures similar to those reported in the literature for {alpha}-Bi{sub 2}Te{sub 3}.

  19. Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki [Graduate School of Science and Engineering, Ehime University, Ehime (Japan); Sano, Sakae [Faculty of Education, Ehime University, Ehime (Japan); Ha, Nguyen Thi Hoang

    2009-09-15

    Sb, As, Cu, and Zn toxicity and contamination have become a growing concern in recent years. Phytoremediation, a plant based and cost effective technology, may be an effective approach in the cleanup of water contaminated by these metals. In this study, the aquatic macrophyte Eleocharis acicularis was used in laboratory and field experiments to assess its capability to accumulate Sb, As, Cu, and Zn, and thereby investigate its potential application in phytoremediation. The results showed that E. acicularis adapted well to water contaminated by these metals. The removal rates of Sb, As, Cu, and Zn in the laboratory experiment were 3.04, 2.75, 0.417, and 1.49 {mu}g/L/day, respectively. The highest concentrations of these metals accumulated in E. acicularis after 10 days of the laboratory experiment were 6.29, 6.44, 20.5, and 73.5 mg/kg dry weight, respectively. Only 8% of As, 12% of Sb, 87% of Cu and 93% of Zn removed from the water were used by E. acicularis. The highest concentrations of Sb, As, Cu, and Zn accumulated in E. acicularis after 10 wk of the field experiment were 76.0, 22.4, 33.9, and 266 mg/kg dry weight, respectively. The results indicate that E. acicularis has the ability to accumulate Sb, As, Cu, and Zn from contaminated water. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. First-principles study of electronic structure of CuSbS{sub 2} and CuSbSe{sub 2} photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, T., E-mail: tmaeda@ad.ryukoku.ac.jp; Wada, T.

    2015-05-01

    We studied the features of CuSbS{sub 2} (CAS) and CuSbSe{sub 2} (CASe), two proposed photovoltaic compounds, and clarified their electronic structures by first-principles calculations and compared them to the chalcopyrite-type CuInSe{sub 2} results. For both CAS and CASe, the calculated enthalpies of formation of the chalcostibite phases were considerably lower than those of the chalcopyrite phases. Therefore, we considered that the chalcostibite phase is more stable for CAS and CASe. In their band structure calculated with the HSE06 hybrid functional, the valence band maxima of CAS and CASe were located at the Γ-point, and the conduction band minima were located at the R-point. Their second lowest conduction band was located at the Γ-point, whose energy level nearly equaled the R-point. For CAS (CASe), the partial density of the states shows the character of the Cu 3d and S 3p (Se 4p) orbitals at the top of the valence bands and the Sb 5p and S 3p (Se 4p) orbitals at the bottom of the conduction bands. The conduction bands of CAS and CASe have a p-orbital character (Sb 5p) that differs from the s-orbital character (In 5s) of CuInSe{sub 2}. It is for the reason that CAS and CASe do not have a chalcopyrite structure but a chalcostibite-type structure. The calculated absorption coefficient of CuSbS{sub 2} (10{sup 4}-10{sup 5} cm{sup −1}) is comparable to that of CuInSe{sub 2}. - Highlights: • We studied the features of CuSbS{sub 2} and CuSbSe{sub 2}, newly proposed photovoltaic compounds. • Chalcostibite phase is more stable in CuSbS{sub 2} and CuSbSe{sub 2}. • Band structures of CuSbS{sub 2} and CuSbS{sub 2} were calculated with HSE06 hybrid functional. • Absorption coefficient of chalcostibite-type CuSbS{sub 2} is comparable to that of CuInSe{sub 2}.

  1. Effects upon metabolic pathways and energy production by Sb(III and As(III/Sb(III-oxidase gene aioA in Agrobacterium tumefaciens GW4.

    Directory of Open Access Journals (Sweden)

    Jingxin Li

    Full Text Available Agrobacterium tumefaciens GW4 is a heterotrophic arsenite [As(III]/antimonite [Sb(III]-oxidizing strain. The As(III oxidase AioAB is responsible for As(III oxidation in the periplasm and it is also involved in Sb(III oxidation in Agrobacterium tumefaciens 5A. In addition, Sb(III oxidase AnoA and cellular H2O2 are also responsible for Sb(III oxidation in strain GW4. However, the deletion of aioA increased the Sb(III oxidation efficiency in strain GW4. In the present study, we found that the cell mobility to Sb(III, ATP and NADH contents and heat release were also increased by Sb(III and more significantly in the aioA mutant. Proteomics and transcriptional analyses showed that proteins/genes involved in Sb(III oxidation and resistance, stress responses, carbon metabolism, cell mobility, phosphonate and phosphinate metabolism, and amino acid and nucleotide metabolism were induced by Sb(III and were more significantly induced in the aioA mutant. The results suggested that Sb(III oxidation may produce energy. In addition, without periplasmic AioAB, more Sb(III would enter bacterial cells, however, the cytoplasmic AnoA and the oxidative stress response proteins were significantly up-regulated, which may contribute to the increased Sb(III oxidation efficiency. Moreover, the carbon metabolism was also activated to generate more energy against Sb(III stress. The generated energy may be used in Sb transportation, DNA repair, amino acid synthesis, and cell mobility, and may be released in the form of heat.

  2. Electronic and magnetic properties of SmCrSb3 and GdCrSb3: A first principles study

    International Nuclear Information System (INIS)

    Sandeep; Ghimire, M.P.; Thapa, R.K.

    2011-01-01

    The density of states (DOS) and the magnetic moments of SmCrSb 3 and GdCrSb 3 have been studied by first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the local-spin density approximations with correlation energy (LSDA+U) method have been used. Total and partial DOS have been computed using the WIEN2k code. DOS result shows the exchange-splittings of Cr-3d and rare-earth (R) 4f states electrons, which are responsible for the ground state ferromagnetic (FM) behavior of the systems. The FM behavior of these systems is strongly influenced by the average number of Cr-3d and Sm (Gd) 4f-electrons. The effective moment of SmCrSb 3 is found to be 7.07 μ B while for GdCrSb 3 it is 8.27 μ B . The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p states. - Highlights: → DOS and the magnetic moments of SmCrSb 3 and GdCrSb 3 are studied by full-FP-LAPW method. → Exchange splitting of eg and t2g of Cr-3d states and the rare-earth 4f state electrons are responsible for ground state ferromagnetism. → Rare-earth magnetic moments are greater than Cr moment indicating presence of 4f states.

  3. TRAC-PF1 MOD1 post test calculations of the OECD LOFT Experiment LP-SB-1

    International Nuclear Information System (INIS)

    Allen, E.J.

    1990-04-01

    Analysis of the small, hot leg break, OECD LOFT Experiment LP-SB-1. using the ''best-estimate'' computer code TRAC-PF1/MOD1 is presented. Descriptions of the LOFT facility and the LP-SB-1 experiment are given and development of the TRAC-PF1/MOD1 input model is detailed. The calculations performed in achieving the steady state conditions, from which the experiment was initiated, and the specification of experimental boundary conditions are outlined. 24 refs., 66 figs., 12 tabs

  4. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    Science.gov (United States)

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.

  5. Producción y caracterización de la perovskita NdBa2SbO6 como sustrato para una película superconductora de YBa2Cu3O(7-δ

    Directory of Open Access Journals (Sweden)

    Queeny Madueño Pinto

    2002-07-01

    Full Text Available Las propiedades de las películas superconductores de alta temperatura crítica son dependientes de parámetros cristalográficos y de la estabilidad química entre sustrato y película. Por lo tanto, con el fin de producir una perovskita cúbica compleja policristalina de NdBa2SbO6, en forma de pastilla, por medio de la técnica de reacción de estado sólido. Este material no conductor fue mezclado con el policristal superconductor YBa2CuO(7-δ en proporciones volumétricas. Se encontró un buen acoplamiento de los parámetros de red a través de la técnica experimental de difracción de rayos X. La influencia de los porcentajes de volumen del NdBa2SbO6 sobre las propiedades superconductoras del YBa2CuO(7-δ fue estudiada a través de las medidas de magnetización dc. Los resultados obtenidos muestran que el material NdBa2SbO6 es un excelente candidato a sustrato para crecer películas superconductoras de YBa2CuO(7-δ.

  6. Behavior of GaSb (100) and InSb (100) surfaces in the presence of H{sub 2}O{sub 2} in acidic and basic cleaning solutions

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dongwan; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr

    2017-03-31

    Highlights: • Surface behavior of GaSb and InSb was investigated in acidic and basic solutions. • H{sub 2}O{sub 2} plays a key role in the surface oxidation of GaSb and InSb in acidic hydrochloric acid/hydrogen peroxide mixture (HPM) solution. • GaSb and InSb surfaces were hardly oxidized in basic ammonium hydroxide/hydrogen peroxide mixture (APM) solution in the presence of H{sub 2}O{sub 2}. • The effect of dilution of APM solution on the oxidation of the InSb surface was minimal. • Surface characteristics of GaSb and InSb in HPM and APM solutions are mainly determined by the behaviors of the group III elements rather than the group V element. - Abstract: Gallium antimonide (GaSb) and indium antimonide (InSb) have attracted strong attention as new channel materials for transistors due to their excellent electrical properties and lattice matches with various group III–V compound semiconductors. In this study, the surface behavior of GaSb (100) and InSb (100) was investigated and compared in hydrochloric acid/hydrogen peroxide mixture (HPM) and ammonium hydroxide/hydrogen peroxide mixture (APM) solutions. In the acidic HPM solution, surface oxidation was greater and the etching rates of the GaSb and InSb surfaces increased when the solution is concentrated, which indicates that H{sub 2}O{sub 2} plays a key role in the surface oxidation of GaSb and InSb in acidic HPM solution. However, the GaSb and InSb surfaces were hardly oxidized in basic APM solution in the presence of H{sub 2}O{sub 2} because gallium and indium are in the thermodynamically stable forms of H{sub 2}GaO{sub 3}{sup −} and InO{sub 2}{sup −}, respectively. When the APM solution was diluted, however, the Ga on the GaSb surface was oxidized by H{sub 2}O, increasing the etching rate. However, the effect of dilution of the APM solution on the oxidation of the InSb surface was minimal; thus, the InSb surface was less oxidized than the GaSb surface and the change in the etching rate of InSb

  7. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-08-01

    Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads to the isolation of Li3Sb particles and a consequent formation of Sb. Improved cycling stability of both types of electrodes was obtained when cells were cycled between 0.65 and 1.4 V. A low-capacity lithium-ion cell with Cu2Sb and LiNi0.8Co0.15Al0.05O2 electrodes, laminated from powders, shows excellent cycling stability over the voltage range 3.15 - 2.2 V, the potential difference corresponding to approximately 0.65-1.4 V for the Cu2Sb electrode vs. Li/Li+. Chemical self-discharge of lithiated Cu2Sb electrodes by reaction with the electrolyte was severe when cells were allowed to relax on open circuit after reaching a lower voltage limit of 0.1 V. The solid electrolyte interphase (SEI) layer formed on Cu2Sb electrodes after cells had been cycled between 1.4 and 0.65 V vs. Li/Li+ was characterized by Fourier-transform infrared spectroscopy; the SEI layer contributes to the large irreversible capacity loss on the initial cycle of these cells. The data contribute to a better understanding of the electrochemical behavior of intermetallic electrodes in rechargeable lithium batteries.

  8. The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures

    DEFF Research Database (Denmark)

    Makovicky, Emil; Topa, Dan

    2014-01-01

    arsenic. The crystal structure of ferdowsiite is a superstructure of a PbS like motif. The {100} planes of the PbS-like substructure are the (105̅), (301) and (010) planes in terms of the ferdowsiite lattice. The structure contains zig-zag chains of Sb1 connected via short Sb-S bonds and flanked by (Sb...

  9. Study of Sb/SnO{sub 2} bi-layer films prepared by ion beam sputtering deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Min [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Chun-Chieh [Department of Electrical Engineering, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Township, Kaohsiung 833, Taiwan, ROC (China); Kuo, Jui-Chao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2014-11-03

    In the present work, bi-layer thin films of Sb/SnO{sub 2} were produced on unheated glass substrates using ion beam sputtering (IBS) technique without post annealing treatment. The thickness of Sb layers was varied from 2 to 10 nm and the Sb layers were deposited on SnO{sub 2} layers having thicknesses of 40 nm to 115 nm. The effect of thickness was studied on the morphological, electrical and optical properties. The Sb/SnO{sub 2} bi-layer resulted in lowering the electrical resistivity as well as reducing the optical transmittance. However, the optical and electrical properties of the bi-layer films were mainly influenced by the thickness of Sb layers due to progressive transfer in structures from aggregate to continuous films. The bi-layer films show the electrical resistivity of 1.4 × 10{sup −3} Ω cm and an optical transmittance of 26% for Sb film having 10 nm thickness. - Highlights: • Bi-layer Sb/SnO{sub 2} structures were synthesized by ion beam sputtering (IBS) technique. • The 6 nm-thick Sb film is a transition region in this study. • The conductivity of the bi-layer films is increased as Sb thickness increases. • The transmittance of the bi-layer films is decreased as Sb thickness increases.

  10. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah Mohammed Abdullah; Singh, Nirpendra; Schwingenschlö gl, Udo

    2016-01-01

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

  11. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah Mohammed Abdullah

    2017-01-08

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

  12. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah M.

    2016-09-26

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

  13. Polarity-sensitive nanocarrier for oral delivery of Sb(V and treatment of cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Lanza JS

    2016-05-01

    Full Text Available Juliane S Lanza,1 Flaviana R Fernandes,1 José D Corrêa-Júnior,2 José MC Vilela,3 Rogério Magalhães-Paniago,4 Lucas AM Ferreira,5 Margareth S Andrade,3 Cynthia Demicheli,6 Maria N Melo,7 Frédéric Frézard1 1Department of Physiology and Biophysics, 2Department of Morphology, Instituto de Ciências Biológicas (ICB, Universidade Federal de Minas Gerais (UFMG, 3Innovation and Technology Center SENAI FIEMG – Campus CETEC, 4Department of Physics, Instituto de Ciências Exatas (ICEX, 5Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG, 6Department of Chemistry, Instituto de Ciências Exatas (ICEX, 7Department of Parasitology, Instituto de Ciências Biológicas (ICB, Universidade Federal de Minas Gerais (UFMG, Belo Horizonte, Brazil Abstract: There is a great need for orally active drugs for the treatment of the neglected tropical disease leishmaniasis. Amphiphilic Sb(V complexes, such as 1:3 Sb–N-octanoyl-N-methylglucamide complex (SbL8, are promising drug candidates. It has been previously reported that SbL8 forms kinetically stabilized nanoassemblies in water and that this simple dispersion exhibits antileishmanial activity when given by oral route to a murine model of visceral leishmaniasis. The main objective of the present work was to interfere in the structural organization of these nanoassemblies so as to investigate their influence on the oral bioavailability of Sb, and ultimately, optimize an oral formulation of SbL8 for the treatment of cutaneous leishmaniasis. The structural organization of SbL8 nanoassemblies was manipulated through addition of propylene glycol (PG to the aqueous dispersion of SbL8. The presence of 50% (v/v PG resulted in the loss of hydrophobic microenvironment, as evidenced by fluorescence probing. However, nanostructures were still present, as demonstrated by dynamic light scattering, small-angle X-ray scattering, and atomic force microscopy (AFM. A

  14. X-ray photoelectron spectra and electronic structure of quasi-one-dimensional SbSeI crystals

    Directory of Open Access Journals (Sweden)

    J.Grigas

    2007-01-01

    Full Text Available The paper presents the X-ray photoelectron spectra (XPS of the valence band (VB and of the principal core levels from the (110 and (001 crystal surfaces for the quasi-one-dimensional high permittivity SbSeI single crystal isostructural to ferroelectric SbSI. The XPS were measured with monochromatized Al Ka radiation in the energy range of 0-1400 eV at room temperature. The VB is located from 1.6 to 20 eV below the Fermi level. Experimental energies of the VB and core levels are compared with the results of theoretical ab initio calculations of the molecular model of the SbSeI crystal. The electronic structure of the VB is revealed. Shifts in the core-level binding energies of surface atoms relative to bulk ones, which show a dependency on surface crystallography, have been observed. The chemical shifts of the core levels (CL in the SbSeI crystal for the Sb, I and Se states are obtained.

  15. New superconductor LaRhSb

    International Nuclear Information System (INIS)

    Nishigori, S.; Moriwaki, H.; Suzuki, T.; Fujita, T.; Tanaka, H.; Takabatake, T.; Fujii, H.

    1994-01-01

    Superconductivity in LaRhSb was newly found below the transition temperature T c = 2.67 K by the measurements of the electrical resistivity, magnetic susceptibility and specific heat in magnetic fields. The characteristics of the superconductivity determined in this study indicate that LaRhSb is a type II superconductor following the BCS theory. (orig.)

  16. Thermoelectrical properties of the compounds ScM{sup VIII}Sb and YM{sup VIII}Sb (M{sup VIII} = Ni, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Oestreich, J; Probst, U; Richardt, F; Bucher, E [University of Konstanz, PO Box X916, D-78457 Konstanz (Germany)

    2003-02-05

    The research into new materials with good thermoelectric properties has revealed new compounds consisting of metallic elements (Bando Y, Suemitsu T, Takagi K, Tokushima H, Echizen Y, Katoh K, Umeo K, Maeda Y and Takabatake T 2000 J. Alloys Compounds 313 1-6, Ghelani N, Loo S, Chung D, Sportouch S, Nardi S, Kanatzidis M, Hogan T and Nolas G 2000 Mater. Res. Soc. 626 Z8.6.1). The half-Heusler compound ZrNiSn, in particular, shows promising thermoelectric properties and has been studied by many scientists during recent years (Uher C, Hu S, Yang J, Meisner G P and Morelli D T 1997 Proc. ICT'97: 16th Int. Conf. on Thermoelectrics pp 485-8, Romaka L P, Stadnyk Yu V, Goryn A M, Gorelenko Yu K and Skolozdra R V 1997 Proc. ICT'97: 16th Int. Conf. on Thermoelectrics pp 516-19, Hohl H, Ramirez A P, Goldmann C, Ernst G, Woelfing B and Bucher E 1998 J. Phys.: Condens. Matter 11 1697-709, Oestreich J, Kaefer W, Richardt F, Probst U and Bucher E 1999 Proc. 5th European Workshop on Thermoelectrics pp 192-5). In an effort to find new thermoelectric materials, the half-Heusler compounds of the groups ScM{sup VIII}Sb and YM{sup VIII}Sb (M{sup VIII} = Ni, Pd, Pt) were synthesized by arc melting and the thermoelectric properties were examined by standard characterization methods. Doping experiments showed that it is possible to change the electrical properties of the compounds while retaining the half-Heusler structure. Within the two groups, YPtSb showed the best thermoelectrical properties. At a temperature of 400 K the electrical conductivity of YPtSb is 748{omega}{sup -1} cm{sup -1} and the Seebeck coefficient is 116.3{mu}V K{sup -1}. The thermal conductivity at 400 K extrapolated using the Wiedemann-Franz law is 2.87 W K{sup -1} m{sup -1}. This leads to a dimensionless figure of merit of 0.14.

  17. Microbiological reduction of Sb(V) in anoxic freshwater sediments

    Science.gov (United States)

    Oremland, Ronald S.; Kulp, Thomas R.; Miller, Laurence G.; Braiotta, Franco; Webb, Samuel M.; Kocar, Benjamin D; Blum, Jodi S.

    2014-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-14C-acetate to Stibnite Mine microcosms resulted in the production of 14CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  18. Synthesis and Characterization of Sb2S3 Nanorods via Complex Decomposition Approach

    Directory of Open Access Journals (Sweden)

    Abdolali Alemi

    2011-01-01

    Full Text Available Based on the complex decomposition approach, a simple hydrothermal method has been developed for the synthesizing of Sb2S3 nanorods with high yield in 24 h at 150∘C. The powder X-ray diffraction pattern shows the Sb2S3 crystals belong to the orthorhombic phase with calculated lattice parameters a=1.120 nm, b=1.128 nm, and c=0.383 nm. The quantification of energy dispersive X-ray spectrometric analysis peaks give an atomic ratio of 2 : 3 for Sb : S. TEM and SEM studies reveal that the appearance of the as-prepared Sb2S3 is rod-like which is composed of nanorods with the typical width of 30–160 nm and length of up to 6 μm. High-resolution transmission electron microscopic (HRTEM studies reveal that the Sb2S3 is oriented in the [10-1] growth direction. The band gap calculated from the absorption spectra is found to be 3.29 ev, indicating a considerable blue shift relative to the bulk. The formation mechanism of Sb2S3 nanostructures is proposed.

  19. First-principles study of the amorphous In3SbTe2 phase change compound

    Science.gov (United States)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-11-01

    Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In3SbTe2 by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448-5.75 g/cm3 that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In3SbTe2, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those present in the crystalline phase of the two binary compounds InTe and InSb that the ternary system can be thought to be made of. We show that the different ratio between octahedral-like and tetrahedral-like bonding geometries has fingerprints in the optical and vibrational spectra.

  20. Analysis of the Structures and Properties of (GaSb)n (n = 4-9) Clusters through Density Functional Theory.

    Science.gov (United States)

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo

    2016-07-07

    An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.

  1. Precise measurement of the densities of liquid Bi, Sn, Pb and Sb

    International Nuclear Information System (INIS)

    Wang Lianwen; Wang Qiang; Xian Aiping; Lu Kunquan

    2003-01-01

    The densities of liquid Bi, Sn, Pb and Sb have been precisely measured from the melting point up to about 1100 K using an improved Archimedean method. The densities at the melting point for liquid Bi, Sn, Pb and Sb are 10.042 x 10 3 , 6.983 x 10 3 , 10.635 x 10 3 and 6.454 x 10 3 kg m -3 , respectively. Comparisons between our data and those from the literature have been made and they show the present results to be more reliable. Rather than a linear fit for the temperature dependence of the density, a slight deviation from linearity in the temperature dependence of the densities has been observed

  2. Optical response of confined excitons in GaInAsSb/GaSb Quantum Dots heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, R [Departamento de Fisica, Universidad Autonoma de Occidente, A.A. 2790, Cali (Colombia); Tirado-Mejia, L; Fonthal, G; Ariza-Calderon, H [Laboratorio de Optoelectronica, Universidad del Quindio, A.A. 4603 Armenia (Colombia); Porras-Montenegro, N, E-mail: rsanchez40@gmail.co [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    The narrow-gap Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y} compounds are suitable materials for heterostructure devices operating in the infrared wavelength range. In these compounds grown by liquid phase epitaxy over GaSb single crystals, for x and y values in the range of 0.10 to 0.14 for both variables, the photoluminescence optical response at 12K is blue-shifted by 20 meV related to the photoreflectance response. We believe this behavior is due to possible higher electronic confinement in some places of the heterostructure, possibly formed in the interface during the growth process. In order to explain this behavior, in this work we study the exciton recombination energy in spherical Quantum Dots (QDs) on Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y}/GaSb, using the variational procedure within the effective-mass approximation and considering an electron in a Type I band alignment formed by two semiconductors with similar parabolic conduction bands. Our results are in good agreement with recent experimental results.

  3. Thermoelectric properties of ZnSb films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasubramanian, R; Watko, E; Colpitts, T

    1997-07-01

    The thermoelectric properties of ZnSb films grown by metallorganic chemical vapor deposition (MOCVD) are reported. The growth conditions necessary to obtain stoichiometric ZnSb films and the effects of various growth parameters on the electrical conductivity and Seebeck coefficients of the films are described. The as-grown ZnSb films are p-type. It was observed that the thicker ZnSb films offer improved carrier mobilities and lower free-carrier concentration levels. The Seebeck coefficient of ZnSb films was found to rise rapidly at approximately 160 C. The thicker films, due to the lower doping levels, indicate higher Seebeck coefficients between 25 to 200 C. A short annealing of the ZnSb film at temperatures of {approximately}200 C results in reduced free-carrier level. Thermal conductivity measurements of ZnSb films using the 3-{omega} method are also presented.

  4. Electronic structure and high pressure phase transition in LaSb and CeSb

    International Nuclear Information System (INIS)

    Mathi Jaya, S.; Sanyal, S.P.

    1992-09-01

    The electronic structure and high pressure structural phase transition in cerium and lanthanum antimonides have been investigated using the tight binding LMTO method. The calculation of total energy reveals that the simple tetragonal structure is found to be stable at high pressures for both the compounds. In the case of LaSb, the calculated value of the equilibrium cell volume and the cell volume at which phase transition occurs are found to have a fairly good agreement with the experimental results. However, in the case of CeSb, the agreement is not as good as in LaSb. We also predicted the most favoured c/a value in the high pressure phase (simple tetragonal) for these compounds. Further we present the calculated results on the electronic structure of these systems at the equilibrium as well as at the reduced cell volumes. (author). 8 refs, 11 figs, 1 tab

  5. Photoluminescence and structural properties of unintentional single and double InGaSb/GaSb quantum wells grown by MOVPE

    Science.gov (United States)

    Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.

    2018-04-01

    The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.

  6. Effects of Sb-doping on the formation of (K, Na)(Nb, Sb)O3 solid solution under hydrothermal conditions

    International Nuclear Information System (INIS)

    Su Likui; Zhu Kongjun; Bai Lin; Qiu Jinhao; Ji Hongli

    2010-01-01

    (K, Na)(Nb, Sb)O 3 (KNNS) lead-free peizoceramic powders were successfully synthesized by hydrothermal treatment at 240 o C for 8 h using the KOH, NaOH, Nb 2 O 5 and Sb 2 O 3 as raw materials. Effects of Sb-doping on the crystal structure and morphology of the as-prepared powders were investigated by powder X-ray diffraction (XRD), Raman spectra (Raman), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The Sb element was successfully doped into the alkaline niobate perovskite structure to form crystalline (K 0.7 Na 0.3 )(Nb 0.95 Sb 0.05 )O 3 lead-free piezoelectric ceramic powder, which has a hexagonal morphology due to the aggregation growth of small grains. Phase and morphology evolutions with the reaction time were also studied, and a possible formation mechanism was proposed.

  7. A Novel Framework Antimony (III) Phosphate: Synthesis and Structure of NaSb 3O 2(PO 4) 2

    Science.gov (United States)

    Adair, Brian A.; de Delgado, Graciela Díaz; Miguel Delgado, J.; Cheetham, Anthony K.

    2000-04-01

    The antimony (III) phosphate, NaSb3O2(PO4)2, is a framework structure built from SbIII and PV centers; orthorhombic, space group Pca21 (No. 29), a=13.944(3), b=6.6822(13), c=20.886(4) Å, V=1946.1(7) Å3, Z=8. Stereochemically active lone pairs of electrons associated with SbIIIO5 and SbIIIO4 polyhedra point into eight-ring channels, approximately 5×7 Å2, which dominate the architecture of the title compound. Charge-compensating sodium cations occupy the remaining space in the channels.

  8. Microstructure and thermoelectric properties of doped p-type CoSb3 under TGZM effect

    Science.gov (United States)

    Wang, Hongqiang; Li, Shuangming; Li, Xin; Zhong, Hong

    2017-05-01

    The Co-96.9 wt% Sb hypoeutectic alloy doped by 0.12 wt% YbFe was solidified in a Bridgman-type furnace based on temperature gradient zone melting (TGZM) effect. A mushy zone was observed between the complete liquid zone and the solid zone at different thermal stabilization time ranging from 15 min to 40 h. The mushy-zone solidified microstructures of the alloy only consist of CoSb3 and Sb phase. After 40 h thermal stabilization time, the volume fraction of CoSb3 in the mushy zone increases significantly up to 99.6% close to the solid-liquid interface. The hardness and fracture toughness of doped CoSb3 can reach 7.01 ± 0.69 GPa and 0.78 ± 0.08 MPa·m1/2, respectively. Meanwhile, the thermoelectric properties of the alloy were measured ranging from room temperature (RT) to 850 K. The Seebeck coefficient of the specimen prepared by TGZM effect after 40 h could reach 155 μV/K and the ZT value is 0.47 at 660 K, showing that it is feasible to prepare CoSb3 bulk material via TGZM effect. As a simple and one-step solidification method, the TGZM technique could be applied in the preparation of skutterudite compounds.

  9. Topotactic Fluorine Insertion into the Channels of FeSb2O4-Related Materials.

    Science.gov (United States)

    de Laune, Benjamin P; Rees, Gregory J; Marco, José F; Hah, Hien-Yoong; Johnson, Charles E; Johnson, Jacqueline A; Berry, Frank J; Hanna, John V; Greaves, Colin

    2017-08-21

    This paper discusses the fluorination characteristics of phases related to FeSb 2 O 4 , by reporting the results of a detailed study of Mg 0.50 Fe 0.50 Sb 2 O 4 and Co 0.50 Fe 0.50 Sb 2 O 4 . Reaction with fluorine gas at low temperatures (typically 230 °C) results in topotactic insertion of fluorine into the channels, which are an inherent feature of the structure. Neutron powder diffraction and solid state NMR studies show that the interstitial fluoride ions are bonded to antimony within the channel walls to form Sb-F-Sb bridges. To date, these reactions have been observed only when Fe 2+ ions are present within the chains of edge-linked octahedra (FeO 6 in FeSb 2 O 4 ) that form the structural channels. Oxidation of Fe 2+ to Fe 3+ is primarily responsible for balancing the increased negative charge associated with the presence of the fluoride ions within the channels. For the two phases studied, the creation of Fe 3+ ions within the chains of octahedra modify the magnetic exchange interactions to change the ground-state magnetic symmetry to C-type magnetic order in contrast to the A-type order observed for the unfluorinated oxide parents.

  10. Formation, atomic structure, and electronic properties of GaSb quantum dots in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Timm, R.

    2007-12-14

    In this work, cross-sectional scanning tunneling microscopy and spectroscopy are used for the first time to study the shape, size, strain, chemical composition, and electronic properties of capped GaSb/GaAs QDs at the atomic scale. By evaluating such structural results on a variety of nanostructures built using different epitaxy methods and growth conditions, details on the underlying QD formation processes can be revealed. A cross-over from flat quantum wells (QWs) to optically active QDs can be observed in samples grown by metalorganic chemical vapor deposition (MOCVD) with increasing amount of GaSb, including self-assembled Sb accumulations within a still two-dimensional layer and tiny three-dimensional GaSb islands probably acting as precursor structures. The QWs consist of significantly intermixed material with stoichiometries of maximally 50% GaSb, additionally exhibiting small gaps filled with GaAs. A higher GaSb content up to nearly pure material is found in the QDs, being characterized by small sizes of up to 8 nm baselength and about 2 nm height. In spite of the intermixing, all nanostructures have rather abrupt interfaces, and no significant Sb segregation in growth direction is observed. This changes completely when molecular beam epitaxy (MBE) is used as growth method, in which case individual Sb atoms are found to be distributed over several nm above the nanostructures. Massive group-V atomic exchange processes are causing this strong inter-mixing and Sb segregation during GaAs overgrowth. In combination with the large strain inherent to GaSb/GaAs QDs, this segregation upon overgrowth is assumed to be the reason for a unique structural phenomenon: All MBE-grown QDs, independent of the amount of deposited GaSb, exhibit a ring structure, consisting of a ring body of high GaSb content and a more or less extended central gap filled with GaAs. These rings have formed in a self-assembled way even when the initial GaSb layer was overgrown considerably fast

  11. Thermoelectric and mechanical properties of spark plasma sintered Cu3SbSe3 and Cu3SbSe4: Promising thermoelectric materials

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Toutam, Vijaykumar; Sharma, Sakshi; Singh, Niraj Kumar; Dhar, Ajay

    2014-12-01

    We report the synthesis of thermoelectric compounds, Cu3SbSe3 and Cu3SbSe4, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu3SbSe4 exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu3SbSe3, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu3SbSe4 was found to be ˜1.2 as compared to 0.2 V-1 for Cu3SbSe3 at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracture toughness values were far superior to the other competing state-of-the-art thermoelectric materials.

  12. Radiation-modified structure of Ge25Sb15S60 and Ge35Sb5S60 glasses

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Shpotyuk, O.; Kaban, I.; Hoyer, W.

    2008-01-01

    Atomic structures of Ge 25 Sb 15 S 60 and Ge 35 Sb 5 S 60 glasses are investigated in the γ-irradiated and annealed after γ-irradiation states by means of high-energy synchrotron x-ray diffraction technique. The first sharp diffraction peak (FSDP) is detected at around 1.1 A -1 in the structure factors of both alloys studied. The FSDP position is found to be stable for radiation/annealing treatment of the samples, while the FSDP intensity shows some changes between γ-irradiated and annealed states. The peaks in the pair distribution functions observed between 2 and 4 A are related to the Ge-S, Ge-Sb, and Sb-Sb first neighbor correlations and Ge-Ge second neighbor correlations in the edge-shared GeS 4/2 tetrahedra, and S-S and/or Ge-Ge second neighbor correlations in the corner-shared GeS 4/2 tetrahedra. Three mechanisms of the radiation-/annealing-induced changes are discussed in the framework of coordination topological defect formation and bond-free solid angle concepts

  13. Sodium antimony sulfide (NaSbS2: Turning an unexpected impurity into a promising, environmentally friendly novel solar absorber material

    Directory of Open Access Journals (Sweden)

    Siti Utari Rahayu

    2016-11-01

    Full Text Available We present a novel absorber material—NaSbS2—for solar cells. NaSbS2 is formed as an unexpected byproduct in the chemical synthesis of Sb2S3. However, NaSbS2 has many attractive features for a solar material. Here single phase NaSbS2 nanoparticles were synthesized through solution processing. NaSbS2 semiconductor-sensitized solar cells were demonstrated for the first time. The best cell yielded Jsc = 10.76 mA/cm2, Voc = 0.44 V, FF = 48.6%, and efficiency η = 2.30% under 1 sun. At the reduced 0.1 sun, the η increased to 3.18%—a respectable η for a new solar material.

  14. Preparation, characterization of Sb-doped ZnO nanocrystals and their excellent solar light driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Nasser, Ramzi; Othmen, Walid Ben Haj [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, University of Tunis El Manar 2092 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, University of Tunis El Manar 2092 (Tunisia); Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia)

    2017-01-30

    Highlights: • Sb-ZnO was obtained by modified sol-gel method using citric acid as stabilizing agent. • Sb incorporated both in lattice and interstitial sites. • The formation of (Sb{sub Zn}–2 V{sub Zn}) acceptor level was revealed by photoluminescence studies. • Optimum Sb content to show higher photocatalytic activity was found to be 3%. - Abstract: In the present study, undoped and antimony (Sb) doped ZnO nanocrystals (NCs) were prepared by a simple and economical sol-gel method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed the purity of the obtained phase and its high crystallinity. Raman analysis confirms the hexagonal Wurtzite ZnO structure. According to the diffuse reflectance results, the band gap was found to decrease up to 3% of Sb doping (ZSb3 sample). The results of X-ray photoelectron spectroscopy (XPS) measurements reveal that Sb ions occupied both Zn and interstitials sites. The successful substitution of antimony in ZnO lattice suggests the formation of the complex (Sb{sub Zn}–2 V{sub Zn}) acceptor level above the valence band. Particularly for ZSb3 sample, the UV photoluminescence (PL) band presents an obvious red-shift attributed to the formation of this complex. Rhodamine B (RhB) was used to evaluate the photocatalytic activity of Sb-doped ZnO NCs under sunlight irradiation. It was found that oxygen vacancies play a major role in the photocatalytic process by trapping the excited electrons and inhibiting the radiative recombination. During the photocatalytic mechanism, the Sb doping, expressed through the apparition of the (Sb{sub Zn}–2 V{sub Zn}) correspondent acceptor level, enhances the sunlight absorption within the ZnO band gap, which stimulates the generation of hydroxyl radicals and promotes the photocatalytics reaction rates. Such important contribution of the hydroxyl radicals was confirmed experimentally when using ethanol as scavenger in the photocatalytic reaction. The photodegradation

  15. Influence of low-temperature annealing on InSb properties

    International Nuclear Information System (INIS)

    Tsitsina, N.P.; Fadeeva, A.P.; Vdovkina, E.E.; Baryshev, N.S.; Aver'yanov, I.S.

    1975-01-01

    Annealing at 200 deg C during 6 days does not cause inversion of conductivity in n-InSb, leads to the increase of the carrier concentration and the decrease of the specific resistance in samples both of n- and of p-type; these variations being more significant in the material of n-type. The existence of a level at a distance of 0.15-0.17 eV from the ceiling of the valency zone in non-annealed samples of InSb is confirmed. The level is of acceptor type and disappears with low-temperature annealing. The low-temperature annealing practically does not influence the lifetime in p-type samples and results in the 5-20-fold increase in the lifetime in n-type samples

  16. Unusual crystallization behavior in Ga-Sb phase change alloys

    Directory of Open Access Journals (Sweden)

    Magali Putero

    2013-12-01

    Full Text Available Combined in situ X-ray scattering techniques using synchrotron radiation were applied to investigate the crystallization behavior of Sb-rich Ga-Sb alloys. Measurements of the sheet resistance during heating indicated a reduced crystallization temperature with increased Sb content, which was confirmed by in situ X-ray diffraction. The electrical contrast increased with increasing Sb content and the resistivities in both the amorphous and crystalline phases decreased. It was found that by tuning the composition between Ga:Sb = 9:91 (in at.% and Ga:Sb = 45:55, the change in mass density upon crystallization changes from an increase in mass density which is typical for most phase change materials to a decrease in mass density. At the composition of Ga:Sb = 30:70, no mass density change is observed which should be very beneficial for phase change random access memory (PCRAM applications where a change in mass density during cycling is assumed to cause void formation and PCRAM device failure.

  17. Erosion Modeling Analysis For Modified DWPF SME Tank

    International Nuclear Information System (INIS)

    LEE, SI

    2004-01-01

    In support of an erosion evaluation for the modified cooling coil guide and its supporting structure in the DWPF SME vessel, a computational model was developed to identify potential sites of high erosion using the same methodology established by previous work. The erosion mechanism identified in the previous work was applied to the evaluation of high erosion locations representative of the actual flow process in the modified coil guide of the SME vessel, abrasive erosion which occurs by high wall shear of viscous liquid. The results show that primary locations of the highest erosion due to the abrasive wall erosion are at the leading edge of the guide, external surface of the insert plate, the tank floor next to the insert plate of the coil guide support, and the upstream lead-in plate. The present modeling results show a good comparison between the original and the modified cases in terms of high erosion sites, as well as the degree of erosion and the calculated shear stress. Wall she ar of the tank floor is reduced by about 30 per cent because of the new coil support plate. Calculations for the impeller speed lower than 103 rpm in the SME showed similar erosion patterns but significantly reduced wall shear stresses and reduced overall erosion. Comparisons of the 103 rpm results with SME measurements indicated that no significant erosion of the tank floor in the SME is to be expected. Thus, it is recommended that the agitator speed of SME does not exceed 103 rpm

  18. Optical and structural properties of MOVPE-grown GaInSb/GaSb quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, Viera, E-mail: viera.wagener@nmmu.ac.z [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Olivier, E.J.; Botha, J.R. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2009-12-15

    This paper reports on the optical and structural properties of strained type-I Ga{sub 1-x}In{sub x}Sb quantum wells embedded in GaSb from a metal-organic vapour phase epitaxial growth perspective. Photoluminescence measurements and transmission electron microscopy were used to evaluate the effect of the growth temperature on the quality of Ga{sub 1-x}In{sub x}Sb strained layers with varied alloy compositions and thicknesses. Although the various factors contributing to the overall quality of the strained layers are difficult to separate, the quantum well characteristics are significantly altered by the growth temperature. Despite the high growth rates (approx2 nm/s), quantum wells grown at 607 deg. C display photoluminescence emissions with full-width at half-maximum of 3.5-5.0 meV for an indium solid content (x) up to 0.15.

  19. Optical and structural properties of MOVPE-grown GaInSb/GaSb quantum wells

    International Nuclear Information System (INIS)

    Wagener, Viera; Olivier, E.J.; Botha, J.R.

    2009-01-01

    This paper reports on the optical and structural properties of strained type-I Ga 1-x In x Sb quantum wells embedded in GaSb from a metal-organic vapour phase epitaxial growth perspective. Photoluminescence measurements and transmission electron microscopy were used to evaluate the effect of the growth temperature on the quality of Ga 1-x In x Sb strained layers with varied alloy compositions and thicknesses. Although the various factors contributing to the overall quality of the strained layers are difficult to separate, the quantum well characteristics are significantly altered by the growth temperature. Despite the high growth rates (∼2 nm/s), quantum wells grown at 607 deg. C display photoluminescence emissions with full-width at half-maximum of 3.5-5.0 meV for an indium solid content (x) up to 0.15.

  20. Physics of bandgap formation in Cu-Sb-Se based novel thermoelectrics: the role of Sb valency and Cu d levels.

    Science.gov (United States)

    Do, Dat; Ozolins, Vidvuds; Mahanti, S D; Lee, Mal-Soon; Zhang, Yongsheng; Wolverton, C

    2012-10-17

    In this paper we discuss the results of ab initio electronic structure calculations for Cu(3)SbSe(4) (Se4) and Cu(3)SbSe(3) (Se3), two narrow bandgap semiconductors of thermoelectric interest. We find that Sb is trivalent in both the compounds, in contrast to a simple nominal valence (ionic) picture which suggests that Sb should be 5 + in Se4. The gap formation in Se4 is quite subtle, with hybridization between Sb 5s and the neighboring Se 4s, 4p orbitals, position of Cu d states, and non-local exchange interaction, each playing significant roles. Thermopower calculations show that Se4 is a better p-type system. Our theoretical results for Se4 agree very well with recent experimental results obtained by Skoug et al (2011 Sci. Adv. Mater. 3 602).

  1. GaSb and GaSb/AlSb Superlattice Buffer Layers for High-Quality Photodiodes Grown on Commercial GaAs and Si Substrates

    Science.gov (United States)

    Gutiérrez, M.; Lloret, F.; Jurczak, P.; Wu, J.; Liu, H. Y.; Araújo, D.

    2018-05-01

    The objective of this work is the integration of InGaAs/GaSb/GaAs heterostructures, with high indium content, on GaAs and Si commercial wafers. The design of an interfacial misfit dislocation array, either on GaAs or Si substrates, allowed growth of strain-free devices. The growth of purposely designed superlattices with their active region free of extended defects on both GaAs and Si substrates is demonstrated. Transmission electron microscopy technique is used for the structural characterization and plastic relaxation study. In the first case, on GaAs substrates, the presence of dopants was demonstrated to reduce several times the threading dislocation density through a strain-hardening mechanism avoiding dislocation interactions, while in the second case, on Si substrates, similar reduction of dislocation interactions is obtained using an AlSb/GaSb superlattice. The latter is shown to redistribute spatially the interfacial misfit dislocation array to reduce dislocation interactions.

  2. Structure and Chemical Bond of Thermoelectric Ce-Co-Sb Skutterudites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The correlations among composition,structure,chemical bond and thermoelectric property of skutterudites CoSb3 and CeCo5Fe3Sb12 have been studied by using density function and discrete variation (DFT-DVM) method.Three models for this study were proposed and calculated by which the "rattling" pattern was described.Model 1 is with Ce in the center,model 2 is with Ce away the center and near to Sb,and model 3 is also with Ce away the center but near to Fe.The calculated results show that in model 3,the ionic bond is the strongest,but the covalent bond is the weakest.Due to the different changes between ionic and covalent bond,there is less difference in the stability among the models 1,2 and 3.Therefore,these different models can exist at the same time,or can translate from one to another more easily.In other words,the "rattling" pattern has taken place.Unfilled model of CoSb3,without Ce and Fe,is called model 4.The covalent bond of Co-Sb or Fe-Sb in models 1,2 and 3 is weaker than that of Co-Sb in model 4,as some electrical cloud of Sb takes part in the covalent bond of Ce-Sb in the filled models.The result is consistent with the experimental result that the thermal conductivity of CeCo5Fe3Sb12 is lower than that of CoSb3,and the thermoelectric property of CeCo5Fe3Sb12 is superior to that of CoSb3.

  3. Ferro electrical properties of GeSbTe thin films; Propiedades ferroelectricas de peliculas delgadas de GeSbTe

    Energy Technology Data Exchange (ETDEWEB)

    Gervacio A, J. J.; Prokhorov, E.; Espinoza B, F. J., E-mail: jgervacio@qro.cinvestav.m [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico)

    2011-07-01

    The aim of this work is to investigate and compare ferro electrical properties of thin GeSbTe films with composition Ge{sub 4}Sb{sub 1}Te{sub 5} (with well defined ferro electrical properties) and Ge{sub 2}Sb{sub 2}Te{sub 5} using impedance, optical reflection, XRD, DSc and Piezo response Force Microscopy techniques. The temperature dependence of the capacitance in both materials shows an abrupt change at the temperature corresponding to ferroelectric-paraelectric transition and the Curie-Weiss dependence. In Ge{sub 2}Sb{sub 2}Te{sub 5} films this transition corresponds to the end from a NaCl-type to a hexagonal transformation. Piezo response Force Microscopy measurements found ferroelectric domains with dimension approximately equal to the dimension of grains. (Author)

  4. Molecular magnetism of M6 hexagon ring in D(3d) symmetric [(MCl)6(XW9O33)2](12-) (M = Cu(II) and Mn(II), X = Sb(III) and As(III)).

    Science.gov (United States)

    Yamase, Toshihiro; Ishikawa, Hirofumi; Abe, Hiroko; Fukaya, Keisuke; Nojiri, Hiroyuki; Takeuchi, Hideo

    2012-04-16

    Ferromagnetic [n-BuNH(3)](12)[(CuCl)(6)(SbW(9)O(33))(2)]·6H(2)O (1) and antiferromagnetic [n-BuNH(3)](12)[(MnCl)(6)(AsW(9)O(33))(2)]·6H(2)O (4) have been synthesized and structurally and magnetically characterized. Two complexes are structural analogues of [n-BuNH(3)](12)[(CuCl)(6)(AsW(9)O(33))(2)]·6H(2)O (2) and [n-BuNH(3)](12)[(MnCl)(6)(SbW(9)O(33))(2)]·6H(2)O (3) with their ferromagnetic interactions, first reported by us in 2006. (1) When variable temperature (T) direct current (dc) magnetic susceptibility (χ(M)) data are analyzed with the isotropic exchange Hamiltonian for the magnetic exchange interactions, χ(M)T vs T curves fitted by a full matrix diagonalization (for 1) and by the Kambe vector coupling method/Van Vleck's approximation (for 4) yield J = +29.5 and -0.09 cm(-1) and g = 2.3 and 1.9, respectively. These J values were significantly distinguished from +61.0 and +0.14 cm(-1) for 2 and 3, respectively. The magnetization under the pulsed field (up to 10(3) T/s) at 0.5 K exhibits hysteresis loops in the adiabatic process, and the differential magnetization (dM/dB) plots against the pulsed field display peaks characteristic of resonant quantum tunneling of magnetization (QTM) at Zeeman crossed fields, indicating single-molecule magnets for 1-3. High-frequency ESR (HFESR) spectroscopy on polycrystalline samples provides g(∥) = 2.30, g(⊥) = 2.19, and D = -0.147 cm(-1) for 1 (S = 3 ground state), g(∥) = 2.29, g(⊥) = 2.20, and D = -0.145 cm(-1) for 2 (S = 3), and g(∥) = 2.03 and D = -0.007 cm(-1) for 3 (S = 15). An attempt to rationalize the magnetostructural correlation among 1-4, the structurally and magnetically modified D(3d)-symmetric M (=Cu(II) and Mn(II))(6) hexagons sandwiched by two diamagnetic α-B-[XW(9)O(33)](9-) (X = Sb(III) and As(III)) ligands through M-(μ(3)-O)-W linkages, is made. The strongest ferromagnetic coupling for the Cu(6) hexagon of 2, the structure of which approximately provides the Cu(6)(μ(3)-O)(12

  5. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1

    Science.gov (United States)

    Leal, Paulo C.; Bhasin, Manoj K.; Zenatti, Priscila Pini; Nunes, Ricardo J.; Yunes, Rosendo A.; Nowill, Alexandre E.; Libermann, Towia A.; Zerbini, Luiz Fernando; Yunes, José Andrés

    2015-01-01

    Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002. PMID:26302043

  6. Three-Dimensional Reduced Graphene Oxide Coupled with Mn3O4 for Highly Efficient Removal of Sb(III) and Sb(V) from Water.

    Science.gov (United States)

    Zou, Jian-Ping; Liu, Hui-Long; Luo, Jinming; Xing, Qiu-Ju; Du, Hong-Mei; Jiang, Xun-Heng; Luo, Xu-Biao; Luo, Sheng-Lian; Suib, Steven L

    2016-07-20

    Highly porous, three-dimensional (3D) nanostructured composite adsorbents of reduced graphene oxides/Mn3O4 (RGO/Mn3O4) were fabricated by a facile method of a combination of reflux condensation and solvothermal reactions and systemically characterized. The as-prepared RGO/Mn3O4 possesses a mesoporous 3D structure, in which Mn3O4 nanoparticles are uniformly deposited on the surface of the reduced graphene oxide. The adsorption properties of RGO/Mn3O4 to antimonite (Sb(III)) and antimonate (Sb(V)) were investigated using batch experiments of adsorption isotherms and kinetics. Experimental results show that the RGO/Mn3O4 composite has fast liquid transport and superior adsorption capacity toward antimony (Sb) species in comparison to six recent adsorbents reported in the literature and summarized in a table in this paper. Theoretical maximum adsorption capacities of RGO/Mn3O4 toward Sb(III) and Sb(V) are 151.84 and 105.50 mg/g, respectively, modeled by Langmuir isotherms. The application of RGO/Mn3O4 was demonstrated by using drinking water spiked with Sb (320 μg/L). Fixed-bed column adsorption experiments indicate that the effective breakthrough volumes were 859 and 633 mL bed volumes (BVs) for the Sb(III) and Sb(V), respectively, until the maximum contaminant level of 5 ppb was reached, which is below the maximum limits allowed in drinking water according to the most stringent regulations. The advantages of being nontoxic, highly stable, and resistant to acid and alkali and having high adsorption capacity toward Sb(III) and Sb(V) confirm the great potential application of RGO/Mn3O4 in Sb-spiked water treatment.

  7. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    International Nuclear Information System (INIS)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-01-01

    The new metastable compound Cr 1+x Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni 2 In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr 1+x Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr 1+x Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr 1.6 Sb in Ni 2 In-type structure. • The new Cr-rich phase shows half-metallic behavior

  8. Synthesis and electrochemistry properties of Sn-Sb ultrafine particles as anode of lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Zhong; Tian, Wenhuai; Li, Xingguo

    2007-01-01

    Ultrafine particles of Sn-Sb alloys with different chemical composition have been prepared by hydrogen plasma-metal reaction. Structure, morphology, size and chemical composition of the Sn-Sb ultrafine particles were investigated by transmission electron microscopy, X-ray diffraction, BET gas adsorption, and induction-coupled plasma spectroscopy. It was found that all the particles have spherical shapes, with average particle size in the range of 100-300 nm. The electrochemistry properties as an alternative anode material for lithium-ion batteries have been characterized by constant current cycling and cyclic voltammetry. Electrochemical measurements showed that the alloys with Sn-46.5 at.% Sb have best reversible capacity and capacity retention. It exhibited a high reversible lithium-ion storage capacity of 701 mAh g -1 in the initial cycle, which has remained at 81% (i.e., 566 mAh g -1 ) of its original capacity after 20 cycles

  9. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO{sub 2})/TiO{sub 2} heterojunction semiconductors with varied Sb doping concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Long [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Ma, Wen-Hai [School of Physical Education, Henan University, Kaifeng 475004 (China); Mao, Yan-Li, E-mail: ylmao1@163.com [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China)

    2014-09-07

    In this paper, antimony-doped tin oxide (Sb-SnO{sub 2}) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO{sub 2}/TiO{sub 2} heterojunction semiconductors were prepared with Sb-SnO{sub 2} and TiO{sub 2}. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO{sub 2} and TiO{sub 2}, Sb-SnO{sub 2}/TiO{sub 2} presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO{sub 2} and TiO{sub 2} in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO{sub 2} and TiO{sub 2} were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO.

  10. Crystal structure, magnetism, {sup 89}Y solid state NMR, and {sup 121}Sb Moessbauer spectroscopic investigations of YIrSb

    Energy Technology Data Exchange (ETDEWEB)

    Benndorf, Christopher [Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Heletta, Lukas; Block, Theresa; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Eckert, Hellmut [Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Institute of Physics in Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil)

    2017-02-15

    The ternary antimonide YIrSb was synthesized from the binary precursor YIr and elemental antimony by a diffusion controlled solid-state reaction. Single crystals were obtained by a flux technique with elemental bismuth as an inert solvent. The YIrSb structure (TiNiSi type, space group Pnma) was refined from single-crystal X-ray diffractometer data: a = 711.06(9), b = 447.74(5), c = 784.20(8) pm, wR{sub 2} = 0.0455, 535 F{sup 2} values, 20 variables. {sup 89}Y solid state MAS NMR and {sup 121}Sb Moessbauer spectra show single resonance lines in agreement with single-crystal X-ray data. YIrSb is a Pauli paramagnet. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. The system Sb2Te3-InS

    International Nuclear Information System (INIS)

    Safarov, M.G.; Gamidov, R.S.; Poladov, P.M.

    1991-01-01

    The system Sb 2 Te 3 -InS was investigated by the methods of physicochemical analysis. Its state diagram was constructed. It represents the stable diagonal of the mutual ternary system InTe-Sb 2 Te 3 -Sb 2 S 3 -InS. It was established that limited regions of α- and β-solid solutions on the basis of Sb 2 Te 3 and InS, achieving 15.5 and 8 mol.% respectively, formed in the system. Lattice periods of α- and β-solid solutions, their lattice volumes, number of atoms in them and densities were calculated

  12. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah Mohammed Abdullah; Singh, Nirpendra; Schwingenschlö gl, Udo

    2017-01-01

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling

  13. Estimation of the magnetic entropy change by means of Landau theory and phenomenological model in La0.6Ca0.2 Sr0.2MnO3/Sb2O3 ceramic composites

    Science.gov (United States)

    Nasri, M.; Dhahri, E.; Hlil, E. K.

    2018-06-01

    In this paper, magnetocaloric properties of La0.6Ca0.2Sr0.2MnO3/Sb2O3 oxides have been investigated. The composite samples were prepared using the conventional solid-state reaction method. The second-order phase transition can be testified with the positive slope in Arrott plots. An excellent agreement has been found between the -ΔSM values estimated by Landau theory and those obtained using the classical Maxwell relation. The field dependence of the magnetic entropy change analysis shows a power law dependence,|ΔSM|≈Hn , with n(TC) = 0.65. Moreover, the scaling analysis of magnetic entropy change exhibits that ΔSM(T) curves collapse into a single universal curve, indicating that the observed paramagnetic to ferromagnetic phase transition is an authentic second-order phase transition. The maximum value of magnetic entropy change of composites is found to decrease slightly with the further increasing of Sb2O3 concentration. A phenomenological model was used to predict magnetocaloric properties of La0.6Ca0.2Sr0.2MnO3/Sb2O3 composites. The theoretical calculations are compared with the available experimental data.

  14. Density functional/molecular dynamics simulations of nucleus-driven crystallization of amorphous Ge2Sb2Te5

    Energy Technology Data Exchange (ETDEWEB)

    Akola, Jaakko [Department of Physics, Tampere University of Technology (Finland); COMP Centre of Excellence, Department of Applied Physics, Aalto University (Finland); GRSS and PGI-1, Forschungszentrum Juelich (Germany); Kalikka, Janne; Larrucea, Julen [Nanoscience Center, Department of Physics, University of Jyvaeskylae (Finland); Jones, Robert O. [GRSS and PGI-1, Forschungszentrum Juelich (Germany)

    2013-07-01

    Early stages of nucleus-driven crystallization of the prototype phase change material Ge{sub 2}Sb{sub 2}Te{sub 5} have been studied by massively-parallel density functional/molecular dynamics simulations for amorphous samples (460 and 648 atoms) at 500, 600, and 700 K. All systems assumed a fixed cubic seed of 58 atoms and 6 vacancies in order to achieve sub-nanosecond phase transition. Crystallization occurs within 600 ps for the 460-atom system at 600 and 700 K, and signs of crystallization (nucleus growth, percolation) are present in the others. Crystallization is accompanied by an increase in the number of ABAB squares (A: Ge,Sb, B: Te), and atoms of all elements move significantly. The evolution of cavities/vacancies is closely monitored. The existence of Te-Te, Ge-Ge, Ge-Sb, and Sb-Sb (wrong) bonds is an inevitable consequence of rapid crystallization.

  15. Raman spectra, microstructure and superconducting properties of Sb(III)-YBCO composite superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Elsabawy, Khaled M. [Chemistry Department, Faculty of Science, Tanta University, Tanta (Egypt)]. E-mail: ksabawy@yahoo.com

    2005-11-15

    The pure YBCO (YBa{sub 2}Cu{sub 3}O{sub 7}) and its variant antimony containing composites with general formula; Y{sub 1+x}Sb {sub x}Ba{sub 2}Cu{sub 3}O {sub z}, where x = 0.1, 0.2, 0.4 and 0.6 mol%, respectively, were prepared by the solid-state reaction route. X-ray measurements indicated that Sb{sup 3+} ions have a negligible effect on the main crystalline structure and substitutes Y-sites successfully in lattice structure of 123-YBCO at low concentrations of doping (x = 0.1 {sup {yields}} 0.2). From SE-microscopy mapping and EDX elemental analysis, Sb{sup 3+} was detected qualitatively with good approximation to the actual molar ratio but not observed at 123-YBCO grain boundaries which confirm that antimony (III) has diffused regularly into material bulk of superconducting 123-YBCO-phase at low concentrations. Additions of Sb(III) affected sharply on the main vibrating modes of YBCO regime particularly, on the apical oxygen (O{sub 4}) vibrational mode A {sub 1g}. Magnetic susceptibility measurements proved that antimony oxide additions have slight effect on the transport properties of YBCO-composites regime.

  16. Role of hydrogen in Sb film deposition and characterization of Sb and GexSby films deposited by cyclic plasma enhanced chemical vapor deposition using metal-organic precursors

    International Nuclear Information System (INIS)

    Kim, Hyung Keun; Jung, Jin Hwan; Choi, Doo Jin

    2012-01-01

    To meet increasing demands for chemical vapor deposition methods for high performance phase-change memory, cyclic plasma enhanced chemical vapor deposition of Sb and Ge x Sb y phase-change films and characterization of their properties were performed. Two cycle sequences were designed to investigate the role of hydrogen gas as a reduction gas during Sb film deposition. Hydrogen gas was not introduced into the reaction chamber during the purge step in cycle sequence A and was introduced during the purge step for cycle sequence B. The role of hydrogen gas was investigated by comparing the results obtained from these two cycle sequences and was concluded to exert an effect by a combination of precursor decomposition, surface maintenance as a hydrogen termination agent, and surface etching. These roles of hydrogen gas are discussed through consideration of changes in deposition rates, the oxygen concentration on the surface of the Sb film, and observations of film surface morphology. Based on these results, Ge x Sb y phase-change films were deposited with an adequate flow rate of hydrogen gas. The Ge and Sb composition of the film was controlled with the designed cycle sequences. A strong oxygen affinity for Ge was observed during the X-ray photoelectron spectroscopy analysis of Sb 3d, Sb 4d, and Ge 3d orbitals. Based on the XPS results, the ratios of Ge to Sb were calculated to be Ge 0.32 Sb 0.68 , Ge 0.38 Sb 0.62 , Ge 0.44 Sb 0.56 , Ge 0.51 Sb 0.49 and Ge 0.67 Sb 0.33 for the G1S7, G1S3, G1S2, G1S1, and G2S1 cycles, respectively. Crystal structures of Sb, Ge, and the GeSb metastable phase were observed with various Ge x Sb y film compositions. Sb crystallinity decreased with respect to Ge crystallinity by increasing the Ge fraction. A current–voltage curve was introduced, and an electro-switching phenomenon was clearly generated at a typical voltage, V th . V th values increased in conjunction with an increased proportion of Ge. The Sb crystallinity decrease and V

  17. Improved structural and electrical properties in native Sb2Te3/GexSb2Te3+x van der Waals superlattices due to intermixing mitigation

    Directory of Open Access Journals (Sweden)

    Stefano Cecchi

    2017-02-01

    Full Text Available Superlattices made of Sb2Te3/GeTe phase change materials have demonstrated outstanding performance with respect to GeSbTe alloys in memory applications. Recently, epitaxial Sb2Te3/GeTe superlattices were found to feature GexSb2Te3+x blocks as a result of intermixing between constituting layers. Here we present the epitaxy and characterization of Sb2Te3/GexSb2Te3+x van der Waals superlattices, where GexSb2Te3+x was intentionally fabricated. X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and lateral electrical transport data are reported. The intrinsic 2D nature of both sublayers is found to mitigate the intermixing in the structures, significantly improving the interface sharpness and ultimately the superlattice structural and electrical properties.

  18. New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays

    DEFF Research Database (Denmark)

    Ren, Dingding; Dheeraj, Dasa L.; Jin, Chengjun

    2016-01-01

    and thermodynamically by the introduction of Sb. An anomalous decrease of the axial growth rate with increased Sb2 flux is found to be due to both the indirect kinetic influence via the Ga adatom diffusion induced catalyst geometry evolution and the direct composition modulation. From the fundamental growth analyses...

  19. Production of 122Sb for the study of environmental pollution

    International Nuclear Information System (INIS)

    Mahdi Sadeghi; Mohammadreza Aboudzadeh; Parvin Sarabadani; Milad Enferadi

    2011-01-01

    This article presents, 122 Sb (T 1/2 = 2.723 days, I β- 97.59%) was produced via the nat Sn(p,xn) nuclear process at the AMIRS (Cyclone-30, IBA, Belgium). The electrodeposition experiments were carried out by potassium stannate trihydrate (K 2 Sn(OH) 6 ) and potassium hydroxide. The optimum conditions of the electrodeposition of tin were as follows: 40 g/L nat Sn, 20 g/L KOH, 115 g/L K 2 Sn(OH) 6 , DC current density of 5 A/dm 2 with a bath temperature of 75 deg C. The electroplated Tin-target was irradiated with 26.5 MeV protons at current of 180 μA for 20 min. Solvent extraction of no-carrier-added 122 Sb from irradiated Tin-natural target hydrochloric solution was investigated using di-n-butyl ether (C 8 H 18 O). Yields of about 3.61 MBq/μAh were experimentally obtained.