WorldWideScience

Sample records for dwpf mb3 frit

  1. Errors of DWPF frit analysis: Final report

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    1993-01-01

    Glass frit will be a major raw material for the operation of the Defense Waste Processing Facility. The frit will be controlled by certificate of conformance and a confirmatory analysis from a commercial analytical laboratory. The following effort provides additional quantitative information on the variability of frit chemical analyses at two commercial laboratories. Identical samples of IDMS Frit 202 were chemically analyzed at two commercial laboratories and at three different times over a period of four months. The SRL-ADS analyses, after correction with the reference standard and normalization, provided confirmatory information, but did not detect the low silica level in one of the frit samples. A methodology utilizing elliptical limits for confirming the certificate of conformance or confirmatory analysis was introduced and recommended for use when the analysis values are close but not within the specification limits. It was also suggested that the lithia specification limits might be reduced as long as CELS is used to confirm the analysis

  2. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  3. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  4. Lot No. 1 of Frit 202 for DWPF cold runs

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    1993-01-01

    This report was prepared at the end of 1992 and summarizes the evaluation of the first lot sample of DWPF Frit 202 from Cataphote Inc. Publication of this report was delayed until the results from the carbon analyses could be included. To avoid confusion the frit specifications presented in this report were those available at the end of 1992. The specifications were slightly modified early in 1993. The frit was received and evaluated for moisture, particle size distribution, organic-inorganic carbon and chemical composition. Moisture content and particle size distribution were determined on a representative sample at SRTC. These properties were within the DWPF specifications for Frit 202. A representative sample was submitted to Corning Engineering Laboratory Services for chemical analyses. The sample was split and two dissolutions prepared. Each dissolution was analyzed on two separate days. The results indicate that there is a high probability (>95%) that the silica content of this frit is below the specification limit of 77.0 ± 1.0 wt %. The average of the four analyzed values was 75.1 wt % with a standard deviation of 0.28 wt %. All other oxides were within the elliptical two sigma limits. Control standard frit samples were submitted and analyzed at the same time and the results were very similar to previous analyses of these materials

  5. Impact of Spherical Frit Beads on Simulated DWPF Slurries

    International Nuclear Information System (INIS)

    SMITH, MICHAEL

    2005-01-01

    It has been shown that the rheological properties of simulated Defense Waste Processing Facility (DWPF) melter feed with the glass former frit as mostly (90 weight percent) solid spherical particles (referred to as beads) were improved as the feed was less viscous as compared to DWPF melter feed that contained the normal irregular shaped frit particles. Because the physical design of the DWPF Slurry Mix Evaporator (SME), Melter Feed Tank (MFT), and melter feed loop are fixed, the impact of changing the rheology might be very beneficial. Most importantly, higher weight percent total solids feed might be processed by reducing the rheological properties (specifically yield stress) of the feed. Additionally, if there are processing problems, such as air entrainment or pumping, these problems might be alleviated by reducing the rheological properties, while maintaining targeted throughputs. Rheology modifiers are chemical, physical, or a combination of the two and can either thin or thicken the rheology of the targeted slurry. The beads are classified as a physical rheological modifier in this case. Even though the improved rheological properties of the feed in the above mentioned DWPF tanks could be quite beneficial, it is the possibility of increased melt rate that is the main driver for the use of beaded glass formers. By improving the rheological properties of the feed, the weight percent solids of the feed could be increased. This higher weight percent solids (less water) feed could be processed faster by the melter as less energy would be required to evaporate the water, and more would be available for the actual melting of the waste and the frit. In addition, the use of beads to thin the feed could possibly allow for the use of a lower targeted acid stoichiometry in the feed preparation process (if in fact acid stoichiometry is being driven by feed rheology as opposed to feed chemistry). Previous work by the Savannah River National Laboratory (SRNL) with the lab

  6. Relaxation of the lower frit loading constraint for DWPF process control

    International Nuclear Information System (INIS)

    Brown, K.G.

    2000-01-01

    The lower limit on the frit loading parameter when measurement uncertainty is introduced has impacted DWPF performance during immobilization of Tank 42 Sludge; therefore, any defensible relaxation or omission of this constraint should correspondingly increase DWPF waste loading and efficiency. Waste loading should be increased because the addition of frit is the current remedy for exceeding the lower frit loading constraint. For example, frit was added to DWPF SME Batches 94, 97 and 98 to remedy these batches for low frit loading. Attempts were also made to add frit in addition to the optimum computed to assure the lower frit loading constraint would be satisfied; however, approximately half of the SME Batches produced after Batch 98 have violated the lower frit loading constraint. If the DWPF batches did not have to be remediated and additional frit added because of the lower frit loading limit, then both, the performance of the DWPF process and the waste loading in the glass produced would be increased. Before determining whether or not the lower frit loading limit can be relaxed or omitted, the origin of this and the other constraints related to durability prediction must be examined. The lower limit loading constraint results from the need to make highly durable glass in DWPF. It is required that DWPF demonstrate that the glass produced would have durability that is at least two standard deviations greater than that of the Environmental Assessment (EA) glass. Glass durability cannot be measured in situ, it must be predicted from composition which can be measured. Fortunately, the leaching characteristics of homogeneous waste glasses is strongly related to the total molar free energy of the constituent species. Thus the waste acceptance specification has been translated into a requirement that the total molar free energy associated with the glass composition that would be produced from a DWPF melter feed batch be less than that of the EA glass accounting for

  7. THE USE OF DI WATER TO MITIGATE DUSTING FOR ADDITION OF DWPF FRIT TO THE SLURRY MIX EVAPORATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.

    2010-07-21

    The Defense Waste Processing Facility (DPWF) presently is in the process to determine means to reduce water utilization in the Slurry Mix Evaporator (SME) process, thus reducing effluent and processing times. The frit slurry addition system mixes the dry frit with water, yielding approximately a 50 weight percent slurry containing frit and the other fraction water. This slurry is discharged into the SME and excess water is removed via boiling. To reduce this water load to the SME, DWPF has proposed using a pneumatic system in conveying the frit to the SME, in essence a dry delivery system. The problem associated with utilizing a dry delivery system with the existing frit is the generation of dust when discharged into the SME. The use of water has been shown to be effective in the mining industry as well in the DOE complex to mitigate dusting. The method employed by SRNL to determine the quantity of water to mitigate dusting in dry powders was effective, between a lab and bench scale tests. In those tests, it was shown that as high as five weight percent (wt%) of water addition was required to mitigate dust from batches of glass forming minerals used by the Waste Treatment Plant at Hanford, Washington. The same method used to determine the quantity of water to mitigate dusting was used in this task to determine the quantity of water to mitigate this dusting using as-received frit. The ability for water to mitigate dusting is due to its adhesive properties as shown in Figure 1-1. Wetting the frit particles allows for the smaller frit particles (including dust) to adhere to the larger frit particles or to agglomerate into large particles. Fluids other than water can also be used, but their adhesive properties are different than water and the quantity required to mitigate dusting is different, as was observed in reference 1. Excessive water, a few weight percentages greater than that required to mitigate dusting can cause the resulting material not to flow. The primary

  8. Glass Frit Clumping And Dusting

    International Nuclear Information System (INIS)

    Steimke, J. L.

    2013-01-01

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  9. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  10. The potential impacts of sodium management on Frit Development for Coupled Operations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-10

    In this report, Section 2.0 provides a description of sodium management and its impact on the glass waste form, Section 3.0 provides background information on phase separation, Section 4.0 provides the impact of sodium management on SB9 frit development efforts and the results of a limited scoping study investigating phase separation in potential DWPF frits, and Section 5.0 discusses potential technical issues associated with using a phase separated frit for DWPF operations.

  11. Sludge Batch 5 Slurry Fed Melt Rate Furnace Test with Frits 418 and 550

    International Nuclear Information System (INIS)

    Miller, Donald; Pickenheim, Bradley

    2009-01-01

    Based on Melt Rate Furnace (MRF) testing for the Sludge Batch 5 (SB5) projected composition and assessments of the potential frits with reasonable operating windows, the Savannah River National Laboratory (SRNL) recommended Slurry Fed Melt Rate Furnace (SMRF) testing with Frits 418 and 550. DWPF is currently using Frit 418 with SB5 based on SRNL's recommendation due to its ability to accommodate significant sodium variation in the sludge composition. However, experience with high boron containing frits in DWPF indicated a potential advantage for Frit 550 might exist. Therefore, SRNL performed SMRF testing to assess Frit 550's potential advantages. The results of SMRF testing with SB5 simulant indicate that there is no appreciable difference in melt rate between Frit 418 and Frit 550 at a targeted 34 weight % waste loading. Both batches exhibited comparable behavior when delivered through the feed tube by the peristaltic pump. Limited observation of the cold cap during both runs showed no indication of major cold cap mounding. MRF testing, performed after the SMRF runs due to time constraints, with the same two Slurry Mix Evaporator (SME) dried products led to the same conclusion. Although visual observations of the cross-sectioned MRF beakers indicated differences in the appearance of the two systems, the measured melt rates were both ∼0.6 in/hr. Therefore, SRNL does not recommend a change from Frit 418 for the initial SB5 processing in DWPF. Once the actual SB5 composition is known and revised projections of SB5 after the neptunium stream addition and any decants is provided, SRNL will perform an additional compositional window assessment with Frit 418. If requested, SRNL can also include other potential frits in this assessment should processing of SB5 with Frit 418 result in less than desirable melter throughput in DWPF. The frits would then be subjected to melt rate testing at SRNL to determine any potential advantages

  12. SCIX IMPACT ON DWPF CPC

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2011-07-14

    A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheet includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not

  13. Sludge Batch Variability Study With Frit 418

    International Nuclear Information System (INIS)

    Johnson, F.; Edwards, T.

    2010-01-01

    The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO 2 resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass regardless of

  14. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  15. Yield Stress Reduction of DWPF Melter Feed Slurries

    International Nuclear Information System (INIS)

    Stone, M.E.; Smith, M.E.

    2007-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame

  16. DWPF simulant CPC studies for SB8

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  17. DWPF simulant CPC studies for SB8

    International Nuclear Information System (INIS)

    Koopman, D. C.; Zamecnik, J. R.

    2013-01-01

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  18. Analysis of high-level radioactive slurries as a method to reduce DWPF turnaround times

    International Nuclear Information System (INIS)

    Coleman, C.J.; Bibler, N.E.; Ferrara, D.M.; Hay, M.S.

    1996-01-01

    Analysis of Defense Waste Processing Facility (DWPF) samples as slurries rather than as dried or vitrified samples is an effective way to reduce sample turnaround times. Slurries can be dissolved with a mixture of concentrated acids to yield solutions for elemental analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Slurry analyses can be performed in eight hours, whereas analyses of vitrified samples require up to 40 hours to complete. Analyses of melter feed samples consisting of the DWPF borosilicate frit and either simulated or actual DWPF radioactive sludge were typically within a range of 3--5% of the predicted value based on the relative amounts of sludge and frit added to the slurry. The results indicate that the slurry analysis approach yields analytical accuracy and precision competitive with those obtained from analyses of vitrified samples. Slurry analyses offer a viable alternative to analyses of solid samples as a simple way to reduce analytical turnaround times

  19. Parametric testing of a DWPF glass

    International Nuclear Information System (INIS)

    Bazan, F.; Rego, J.

    1985-03-01

    A series of tests has been performed to characterize the chemical stability of a DWPF borosilicate glass sample as part of the Waste Package Task of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. This material was prepared at the Savannah River Laboratory for the purpose of testing the 165-frit matrix doped with a simulated nonradioactive waste. All tests were conducted at 90 0 C using deionized water and J-13 water (a tuffaceous formation ground water). In the deionized water tests, both monoliths and crushed glass were tested at various ratios of surface area of the sample to volume of water in order to compare leach rates for different sample geometries or leaching times. Effects on the leach rates as a result of the presence of crushed tuff and stainless steel material were also investigated in the tests with J-13 water. 3 refs., 12 figs., 7 tabs

  20. A pilot scale demonstration of the DWPF process control and product verification strategy

    International Nuclear Information System (INIS)

    Hutson, N.D.; Jantzen, C.M.; Beam, D.C.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) has been designed and constructed to immobilize Savannah River Site high level liquid waste within a durable borosilicate glass matrix for permanent storage. The DWPF will be operated to produce a glass product which must meet a number of product property constraints which are dependent upon the final product composition. During actual operations, the DWPF will control the properties of the glass product by the controlled blending of the waste streams with a glass-forming frit to produce the final melter feed slurry. The DWPF will verify control of the glass product through analysis of vitrified samples of slurry material. In order to demonstrate the DWPF process control and product verification strategy, a pilot-scale vitrification research facility was operated in three discrete batches using simulated DWPF waste streams. All of the DWPF process control methodologies were followed and the glass produce from each experiment was leached according to the Product Consistency Test. Results of the campaign are summarized

  1. A pilot scale demonstration of the DWPF process control and product verification strategy

    International Nuclear Information System (INIS)

    Hutson, N.D.; Jantzen, C.M.; Beam, D.C.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) has been designed and constructed to immobilize Savannah River Site high level liquid waste within a durable borosilicate glass matrix for permanent storage. The DWPF will be operated to produce a glass product which must meet a number of product property constraints which are dependent upon the final product composition. During actual operations, the DWPF will control the properties of the glass product by the controlled blending of the waste streams with a glass-forming frit to produce the final melter feed slurry. The DWPF will verify control of the glass product through analysis of vitrified samples of slurry material. In order to demonstrate the DWPF process control and product verification strategy, a pilot-scale vitrification research facility was operated in three discrete batches using simulated DWPF waste streams. All of the DWPF process control methodologies were followed and the glass product from each experiment was leached according to the Product Consistency Test. In this paper results of the campaign are summarized

  2. Radioactive demonstration of DWPF product control strategy

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.

    1994-01-01

    The Defense Waste Processing Facility at the Savannah River Site (SRS) will vitrify high-level nuclear waste into borosilicate glass. The waste will be mixed with properly formulated glass-making frit and fed to a melter at 1150 degrees C. Process reliability and product quality are ensured by proper control of the melter feed composition. The effectiveness of the product and process control strategies that will be utilized by the Defense Waste Processing Facility (DWPF) was demonstrated during a campaign in the Shielded Cells Facility of the Savannah River Technology Center (SRTC). The remotely operated process included the preparation of the melter feed, vitrification in a slurry-fed 1/100th scale melter an analysis of the glass product both for its composition an durability. The campaign processed approximately 10 kg (on a dry basis) of radioactive sludge from Tank 51. This sludge is representative of the first batch of sludge that will be sent to the DWPF for immobilization into borosilicate glass. Additions to the sludge were made based on calculations using the Product Composition Control System (PCCS). Analysis of the glass produced during the campaign showed that a durable glass was produced with a composition very close to that predicted using the PCCS. 10 refs., 4 tabs

  3. SLUDGE BATCH 4 BASELINE MELT RATE FURNACE AND SLURRY-FED MELT RATE FURNACE TESTS WITH FRITS 418 AND 510 (U)

    International Nuclear Information System (INIS)

    Smith, M; Timothy Jones, T; Donald02 Miller, D

    2007-01-01

    Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418, 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters

  4. The Impact of Waste Loading on Viscosity in the Frit 418-SB3 System

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    In this report, data are provided to gain insight into the potential impact of a lower viscosity glass on melter stability (i.e., pressure spikes, cold cap behavior) and/or pour stream stability. High temperature viscosity data are generated for the Frit 418-SB3 system as a function of waste loading (from 30 to 45 percent) and compared to similar data from other systems that have been (or are currently being) processed through the Defense Waste Processing Facility (DWPF) melter. The data are presented in various formats to potentially align the viscosity data with physical observations at various points in the melter system or critical DWPF processing unit operations. The expectations is that the data will be provided adequate insight into the vitrification parameters which might evolve into working solutions as DWPF strives to maximize waste throughput. This report attempts to provide insight into a physical interpretation of the data from a DWPF perspective. The theories present ed are certainly not an all inclusive list and the order in which they are present does imply a ranking, probability, or likelihood that the proposed theory is even plausible. The intent of this discussion is to provide a forum in which the viscosity data can be discussed in relation to possible mechanisms which could potentially lead to a workable solution as discussed in relation to possible solution as higher overall attainment is striven for during processing of the current or future sludge batches

  5. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF

  6. The DWPF: Results of full scale qualification runs leading to radioactive operations

    International Nuclear Information System (INIS)

    Marra, S.L.; Elder, H.H.; Occhipinti, J.H.; Snyder, D.E.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC will immobilize high-level radioactive liquid waste, currently stored in underground carbon steel tanks, in borosilicate glass. The radioactive waste is transferred to the DWPF in two forms: precipitate slurry and sludge slurry. The radioactive waste is pretreated and then combined with a borosilicate glass frit in the DWPF. This homogeneous slurry is fed to a Joule-heated melter which operates at approximately 1150 degrees C. The glass is poured into stainless steel canisters for eventual disposal in a geologic repository. The DWPF product (i.e. the canistered waste form) must comply with the Waste Acceptance Product Specifications (WAPS) in order to be acceptable for disposal. The DWPF has completed Waste Qualification Runs which demonstrate the facility's ability to comply with the waste acceptance specifications. During the Waste Qualification Runs seventy-one canisters of simulated waste glass were produced in preparation for Radioactive Operations. These canisters of simulated waste glass were produced during five production campaigns which also exercised the facility prior to beginning Radioactive Operations. The results of the Waste Qualification Runs are presented

  7. DWPF process control

    International Nuclear Information System (INIS)

    Heckendoin, F.M. II

    1983-01-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant (SRP) is in the final design stage. Instrumentation to provide the parameter sensing required to assure the quality of the two-foot-diameter, ten-foot-high waste canister is in the final stage of development. All step of the process and instrumentation are now operating as nearly full-scale prototypes at SRP. Quality will be maintained by assuring that only the intended material enters the canisters, and by sensing the resultant condition of the filled canisters. Primary emphasis will be on instrumentation of the process

  8. Potter's Industries tests of spherical frit

    International Nuclear Information System (INIS)

    Graf, P.L.; Rankin, W.N.

    1982-01-01

    Potter's Industries has been collaborating with Savannah River Laboratory (SRL) concerning application of glass beads in the Defense Waste Processing Facility. Potter's has previously supplied SRL with 2000 lbs of spheroidized Frit 131 for experimental development. Representatives of Potter's Industries visited SRL recently to discuss results of blasting tests and pumpability tests comparing beads to frit. These tests were conducted at their laboratory facilities in New Jersey. Their blasting work suggested speed of cleaning was higher with frit media than with bead media; however, metal-to-oxide removal ratios were also higher with frit media. Fracture rate of beads used in dry blasting tests was excessive. Low fracture rates were found in -80 +200 mesh beads used in wet blasting tests. Blasting with bead media produced a shiny peened surface while frit media produced a dull matte surface. Some frit impregnation was noted in blasting with -20 +80 frit. Pumpability of bead/water slurries was superior to frit/water slurries at 40 wt % concentrations. 4 tables

  9. DWPF Development Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Holtzscheiter, E.W.

    1994-05-09

    The DWPF Development Plan is based on an evaluation process flowsheet and related waste management systems. The scope is shown in Figure 1 entitled ``DWPF Process Development Systems.`` To identify the critical development efforts, each system has been analyzed to determine: The identification of unresolved technology issues. A technology issue (TI) is one that requires basic development to resolve a previously unknown process or equipment problem and is managed via the Technology Assurance Program co-chaired by DWPF and SRTC. Areas that require further work to sufficiently define the process basis or technical operating envelop for DWPF. This activity involves the application of sound engineering and development principles to define the scope of work required to complete the technical data. The identification of the level of effort and expertise required to provide process technical consultation during the start-up and demonstration of this first of a kind plant.

  10. DWPF Development Plan. Revision 1

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.

    1994-01-01

    The DWPF Development Plan is based on an evaluation process flowsheet and related waste management systems. The scope is shown in Figure 1 entitled ''DWPF Process Development Systems.'' To identify the critical development efforts, each system has been analyzed to determine: The identification of unresolved technology issues. A technology issue (TI) is one that requires basic development to resolve a previously unknown process or equipment problem and is managed via the Technology Assurance Program co-chaired by DWPF and SRTC. Areas that require further work to sufficiently define the process basis or technical operating envelop for DWPF. This activity involves the application of sound engineering and development principles to define the scope of work required to complete the technical data. The identification of the level of effort and expertise required to provide process technical consultation during the start-up and demonstration of this first of a kind plant

  11. TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS FOR THE SLUDGE BATCH 3 - FRIT 418 GLASS SYSTEM

    International Nuclear Information System (INIS)

    Billings, A.; Edwards, Tommy

    2009-01-01

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the phase stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (Tg) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The Tg of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP). These measurements were performed before DWPF start-up and the results were incorporated in Volume 7 of the Waste Form Qualification Report (WQR). Additional information exists for other projected compositions, but overall these compositions did not consider some of the processing scenarios now envisioned for DWPF to accelerate throughput. Changes in DWPF processing strategy have required this WAPS specification to be revisited to ensure that the resulting phases have been bounded. Frit 418 was primarily used to process HLW Sludge Batch 3 (SB3) at 38% waste loading (WL) through the DWPF. The Savannah River National Laboratory (SRNL) fabricated a cache of glass from reagent grade oxides to simulate the SB3-Frit 418 system at a 38 wt % WL for glass

  12. DWPF MATERIALS EVALUATION SUMMARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Gee, T.; Chandler, G.; Daugherty, W.; Imrich, K.; Jankins, C.

    1996-09-12

    To better ensure the reliability of the Defense Waste Processing Facility (DWPF) remote canyon process equipment, a materials evaluation program was performed as part of the overall startup test program. Specific test programs included FA-04 ('Process Vessels Erosion/Corrosion Studies') and FA-05 (melter inspection). At the conclusion of field testing, Test Results Reports were issued to cover the various test phases. While these reports completed the startup test requirements, DWPF-Engineering agreed to compile a more detailed report which would include essentially all of the materials testing programs performed at DWPF. The scope of the materials evaouation programs included selected equipment from the Salt Process Cell (SPC), Chemical Process Cell (CPC), Melt Cell, Canister Decon Cell (CDC), and supporting facilities. The program consisted of performing pre-service baseline inspections (work completed in 1992) and follow-up inspections after completion of the DWPF cold chemical runs. Process equipment inspected included: process vessels, pumps, agitators, coils, jumpers, and melter top head components. Various NDE (non-destructive examination) techniques were used during the inspection program, including: ultrasonic testing (UT), visual (direct or video probe), radiography, penetrant testing (PT), and dimensional analyses. Finally, coupon racks were placed in selected tanks in 1992 for subsequent removal and corrosion evaluation after chemical runs.

  13. The Impact Of The Mcu Life Extension Solvent On Dwpf Glass Formulation Efforts

    International Nuclear Information System (INIS)

    Peeler, D.; Edwards, T.

    2011-01-01

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NG-CSSX), a new strip acid, and modified monosodium titanate (mMST) will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing with the next generation solvent and mMST is required to determine the impact of these changes in 512-S operations as well as Chemical Process Cell (CPC), Defense Waste Processing Facility (DWPF) glass formulation activities, and melter operations at DWPF. To support programmatic objectives, the downstream impacts of the boric acid strip effluent (SE) to the glass formulation activities and melter operations are considered in this study. More specifically, the impacts of boric acid additions to the projected SB7b operating windows, potential impacts to frit production temperatures, and the potential impact of boron volatility are evaluated. Although various boric acid molarities have been reported and discussed, the baseline flowsheet used to support this assessment was 0.01M boric acid. The results of the paper study assessment indicate that Frit 418 and Frit 418-7D are robust to the implementation of the 0.01M boric acid SE into the SB7b flowsheet (sludge-only or ARP-added). More specifically, the projected operating windows for the nominal SB7b projections remain essentially constant (i.e., 25-43 or 25-44% waste loading (WL)) regardless of the flowsheet options (sludge-only, ARP added, and/or the presence of the new SE). These results indicate that even if SE is not transferred to the Sludge Receipt and Adjustment Tank (SRAT), there would be no need to add boric acid (from a trim tank) to compositionally compensate for the absence of the boric acid SE in either a sludge-only or ARP-added SB7b flowsheet. With respect to boron volatility, the Measurement Acceptability Region (MAR) assessments also

  14. DWPF recycle minimization: Brainstorming session

    International Nuclear Information System (INIS)

    Jacobs, R.A.; Poirier, M.R.

    1993-01-01

    The recycle stream from the DWPF constitutes a major source of water addition to the High Level Waste evaporator system. As now designed, the entire flow of 3.5 to 6.5 gal/min (at sign 25% and 75% attainment, respectively), or 2 gal/min during idling, flow to the 2H evaporator system (Tank 43). Substantial improvement in the HLW water balance and tank volume management is expected if the DWPF recycle to the HLW evaporator system can be significantly reduced. A task team has been appointed to study alternatives for reducing the flow to the HLW evaporator system and make recommendations for implementation and/or further study and evaluation. The brainstorming session detailed in this report was designed to produce the first cut options for the task team to further evaluate

  15. Glass frits coated with silver nanoparticles for silicon solar cells

    International Nuclear Information System (INIS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-01-01

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells

  16. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  17. Dissolution rates of DWPF glasses from long-term PCT

    International Nuclear Information System (INIS)

    Ebert, W.L.; Tam, S.W.

    1996-01-01

    We have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 per m at 90 degrees C in tuff groundwater at pH values near 12 for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively

  18. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  19. Examination Of Sulfur Measurements In DWPF Sludge Slurry And SRAT Product Materials

    International Nuclear Information System (INIS)

    Bannochie, C. J.; Wiedenman, B. J.

    2012-01-01

    Savannah River National Laboratory (SRNL) was asked to re-sample the received SB7b WAPS material for wt. % solids, perform an aqua regia digestion and analyze the digested material by inductively coupled plasma - atomic emission spectroscopy (ICP-AES), as well as re-examine the supernate by ICP-AES. The new analyses were requested in order to provide confidence that the initial analytical subsample was representative of the Tank 40 sample received and to replicate the S results obtained on the initial subsample collected. The ICP-AES analyses for S were examined with both axial and radial detection of the sulfur ICP-AES spectroscopic emission lines to ascertain if there was any significant difference in the reported results. The outcome of this second subsample of the Tank 40 WAPS material is the first subject of this report. After examination of the data from the new subsample of the SB7b WAPS material, a team of DWPF and SRNL staff looked for ways to address the question of whether there was in fact insoluble S that was not being accounted for by ion chromatography (IC) analysis. The question of how much S is reaching the melter was thought best addressed by examining a DWPF Slurry Mix Evaporator (SME) Product sample, but the significant dilution of sludge material, containing the S species in question, that results from frit addition was believed to add additional uncertainty to the S analysis of SME Product material. At the time of these discussions it was believed that all S present in a Sludge Receipt and Adjustment Tank (SRAT) Receipt sample would be converted to sulfate during the course of the SRAT cycle. A SRAT Product sample would not have the S dilution effect resulting from frit addition, and hence, it was decided that a DWPF SRAT Product sample would be obtained and submitted to SRNL for digestion and sample preparation followed by a round-robin analysis of the prepared samples by the DWPF Laboratory, F/H Laboratories, and SRNL for S and sulfate. The

  20. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-08-28

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions

  1. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    International Nuclear Information System (INIS)

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-01-01

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions

  2. The DWPF waste form qualification program

    International Nuclear Information System (INIS)

    Marra, S.L.; Plodinec, M.J.

    1994-01-01

    Prior to the introduction of radioactive feed into the Defense Waste Processing Facility for immobilization in borosilicate glass an extensive waste qualification program must be completed. The DWPF must demonstrate its ability to comply with the Waste Acceptance Product Specifications. This ability is being demonstrated through laboratory and pilot scale work and will be completed after the full operation of the DWPF using various simulated feeds

  3. Technical bases for the DWPF testing program

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the first production facility in the United States for the immobilization of high-level nuclear waste. Production of DWPF canistered wasteforms will begin prior to repository licensing, so decisions on facility startup will have to be made before the final decisions on repository design are made. The Department of Energy's Office of Civilian Radioactive Waste Management (RW) has addressed this discrepancy by defining a Waste Acceptance Process. This process provides assurance that the borosilicate-glass wasteform, in a stainless-steel canister, produced by the DWPF will be acceptable for permanent storage in a federal repository. As part of this process, detailed technical specifications have been developed for the DWPF product. SRS has developed detailed strategies for demonstrating compliance with each of the Waste Acceptance Process specifications. An important part of the compliance is the testing which will be carried out in the DWPF. In this paper, the bases for each of the tests to be performed in the DWPF to establish compliance with the specifications are described, and the tests are detailed. The results of initial tests relating to characterization of sealed canisters are reported

  4. The role of frit in nuclear waste vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.; Hrma, P.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202) and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant

  5. Calibration and Measurement of the Viscosity of DWPF Start-Up Glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2001-01-01

    The Harrop, High-Temperature Viscometer has been in operation at the Savannah River Technology Center (SRTC) for several years and has proven itself to be reasonably accurate and repeatable. This is particularly notable when taking into consideration the small amount of glass required to make the viscosity determination. The volume of glass required is only 2.60 cc or about 6 to 7 grams of glass depending on the glass density. This may be compared to the more traditional viscosity determinations, which generally require between 100 to 1000 grams of glass. Before starting the present investigation, the unit was re-aligned and the furnace thermal gradients measured. The viscometer was again calibrated with available NIST Standard Reference Material glasses (717a and 710a) and a spindle constant equation was determined. Standard DWPF Waste Compliance Glasses (Purex, HM, and Batch 1) were used to provide additional verification for the determinations at low temperature. The Harrop, High-Temperature Viscometer was then used to determine the viscosity of three random samples of ground and blended DWPF, Black, Start -Up Frit, which were obtained from Pacific Northwest National Laboratory (PNNL). The glasses were in powder form and required melting prior to the viscosity determination. The results from this evaluation will be compared to ''Round Robin'' measurements from other DOE laboratories and a number of commercial laboratories

  6. An Assessment of the Sulfate Solubility Limit for the FRIT 418 - Sludge Batch 2/3 System

    International Nuclear Information System (INIS)

    PEELER, D.K.

    2004-01-01

    The objective of this report is to establish a ''single point'' sulfate solubility limit or constraint for the Frit 418 - Sludge Batch 2/3 (SB2/3) system. Based on the results of this study, it is recommended that the glass limit in the Product Composition Control System (PCCS) for the Frit 418 - SB2/3 system be set at 0.60 wt%. The new limit has been set based solely on sealed crucible scale data and does not take credit or account for potential volatilization that may occur in the Defense Waste Processing Facility (DWPF) melter. Although the limit is established based on sealed crucible scale tests, supplementary testing using the Slurry-Fed Melt Rate Furnace (SMRF) provides a measure of confidence that applying the 0.6 wt% limit in PCCS will prevent the formation of a salt layer in the melter. The critical data point that was used to define the solubility limit for this system was from a ''spiked'' 30% waste loading (WL) glass targeting 0.65 wt%. The measured content in this glass was 0.62 wt%. Applying the Savannah River Technology Center - Mobile Laboratory (SRTCML) inductively coupled plasma (ICP) atomic emission spectroscopy (AES) uncertainties to establish a solubility limit for the Frit 418 - SB2/3 system of 0.60 wt% (in glass) provides a ''single point'' limit that covers the anticipated WL interval of interest. It is noted that there are glasses above the 0.60 wt% limit that were homogeneous, thus reinforcing the theory of a compositional effect on solubility within this specific system. In general, higher solubilities were observed at higher targeted waste loadings

  7. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R

  8. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01

    below the DWPF target with 750 g of steam per g of mercury. However, rheological properties did not improve and were above the design basis. Hydrogen generation rates did not exceed DWPF limits during the SRAT and Slurry Mix Evaporator (SME) cycles. However, hydrogen generation during the SRAT cycle approached the DWPF limit. The glass fabricated with the Tank 51 SB6 SME product and Frit 418 was acceptable with respect to chemical durability as measured by the Product Consistency Test (PCT). The PCT response was also predictable by the current durability models of the DWPF Product Composition Control System (PCCS). It should be noted, however, that in the first attempt to make glass from the SME product, the contents of the fabrication crucible foamed over. This may be a result of the SME product's REDOX (Reduction/Oxidation - Fe{sup 2+}/{Sigma}Fe) of 0.08 (calculated from SME product analytical results). The following are recommendations drawn from this demonstration. In this demonstration, at the request of DWPF, SRNL caustic boiled the SRAT contents prior to acid addition to remove water (to increase solids concentration). During the nearly five hours of caustic boiling, 700 ppm of antifoam was required to control foaming. SRNL recommends that DWPF not caustic boil/concentrate SRAT receipt prior to acid addition until further studies can be performed to provide a better foaming control strategy or a new antifoam is developed for caustic boiling. Based on this set of runs and a recently completed demonstration with the SB6 Waste Acceptance Product Specifications (WAPS) sample, it is recommended that DWPF not add formic acid at the design addition rate of two gallons per minute for this sludge batch. A longer acid addition time appears to be helpful in allowing slower reaction of formic acid with the sludge and possibly decreases the chance of a foam over during acid addition.

  9. DWPF remotable television and cell lighting facilities

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1984-01-01

    The Defense Waste Processing Facility (DWPF) for radioactive waste vitrification at the Savannah River Plant (SRP) is now under construction. Development of specialized low cost television (TV) viewing equipment for in-cell and within-melter applications is now complete. High resolution TV cameras not originally designed for high radiation environments have been demonstrated in crane remotable packages to be well suited to the DWPF. High intensity in-cell lighting has also been demonstrated in crane remotable assemblies. These dual 1000 W units (2000 W total) are used to support the multiplicity of TV and cell window viewing requirements. 8 figures

  10. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  11. Frit Development Efforts for Sludge Batch 4 (SB4): Operating Window Assessments of Scenarios Leading Up to the Selected Preparation Plan for SB4

    International Nuclear Information System (INIS)

    Peeler, D

    2006-01-01

    The objective of this report is to document technical information that has been provided to Defense Waste Processing Facility (DWPF) and Closure Business Unit (CBU) personnel as part of the frit development support for Sludge Batch 4 (SB4). The information presented in this report includes projected operating windows (expressed in terms of waste loading) for various sludge blending and/or washing options coupled with candidate frits of interest. Although the Nominal Stage assessment serves as the primary tool for these evaluations, select systems were also evaluated using a Variation Stage assessment in which compositional variations were introduced. In addition, assessments of the impacts of nepheline formation potential and the SO 4 - solubility limit on the projected operating windows are also provided. Although this information was used as part of the technical basis leading to CBU's development of the preferred SB4 preparation plan, none of the options presented in this report was selected as the preferred plan. Therefore, the information is presented without significant interpretation of the resulting operating windows, but the projected windows are provided so additional insight can be explored if desired. Detailed assessments of the projected operating windows (using both Nominal and Variation Stage assessments) of the preferred sludge preparation plan with candidate frits are to be documented elsewhere. The information provided in this report is focused solely on model-based projections of the operating windows for various SB4 blending strategies of interest. Although nepheline formation potential is monitored via model predictions as a part of this assessment, experimental work investigating the impact of nepheline on glass quality is also being addressed in a parallel study. The results of this paper study and the experimental assessments of melt rate, SO 4 solubility, and/or nepheline formation potential are all critical components of the inputs into

  12. Research on Glass Frit Deposition Based on the Electrospray Process

    Directory of Open Access Journals (Sweden)

    Yifang Liu

    2016-04-01

    Full Text Available In this paper, the electrospray technology is used to easily deposit the glass frit into patterns at a micro-scale level. First, far-field electrospray process was carried out with a mixture of glass frit in the presence of ethanol. A uniform, smooth, and dense glass frit film was obtained, verifying that the electrospray technology was feasible. Then, the distance between the nozzle and the substrate was reduced to 2 mm to carry out near-field electrospray. The experimental process was improved by setting the range of the feed rate of the substrate to match both the concentration and the flow rate of the solution. Spray diameter could be less at the voltage of 2 kV, in which the glass frit film was expected to reach the minimum line width. A uniform glass frit film with a line width within the range of 400–500 μm was prepared when the speed of the substrate was 25 mm/s. It indicates that electrospray is an efficient technique for the patterned deposition of glass frit in wafer-level hermetic encapsulation.

  13. DWPF Simulant CPC Studies For SB8

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51 heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected

  14. Preliminary Evaluation Of DWPF Impacts Of Boric Acid Use In Cesium Strip FOR SWPF And MCU

    International Nuclear Information System (INIS)

    Stone, M.

    2010-01-01

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the

  15. Radioactive demonstration of DWPF product control strategy

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.

    1992-01-01

    The effectiveness of the product and process control strategies that will be utilized by the Defense Waste Processing Facility (DWPF) was demonstrated during a campaign in the Shielded Cells Facility (SCF) of the Savannah River Technology Center (SRTC). The remotely operated process included the preparation of the melter feed, vitrification in a slurry-fed 1/100th scale melter and analysis of the glass product both for its composition and durability. The campaign processed approximately 10 kg (on a dry basis) of radioactive sludge from Tank 51. This sludge is representative of the first batch of sludge that will be sent to the DWPF for immobilization into borosilicate glass. Additions to the sludge were made based on calculations using the Product Composition Control System (PCCS). Analysis of the glass produced during the campaign showed that a durable glass was produced with a composition similar to that predicted using the PCCS

  16. Liquidus Temperature Data for DWPF Glass

    International Nuclear Information System (INIS)

    Piepel, G.F.; Vienna, J.D.; Crum, J.V.; Mika, M.; Hrma, P.

    1999-01-01

    This report provides new liquidus temperature (T L ) versus composition data that can be used to reduce uncertainty in T L calculation for DWPF glass. According to the test plan and test matrix design PNNL has measured T L for 53 glasses within and just outside of the current DWPF processing composition window. The T L database generated under this task will directly support developing and enhancing the current T L process-control model. Preliminary calculations have shown a high probability of increasing HLW loading in glass produced at the SRS and Hanford. This increase in waste loading will decrease the life-cycle tank cleanup costs by decreasing process time and the volume of waste glass produced

  17. Bounding estimate of DWPF mercury emissions

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1992-01-01

    Purges required for H2 flammability control and verification of elevated Formic Acid Vent Condenser (FAVC) exit temperatures due to NO x reactions have lead to significant changes in Chemical Process Cell (CPC) operating conditions. Accordingly, mercury emissions estimates have been updated based upon the new operating requirements, IDMS (Integrated DWPF Melter System) experience, and development of an NO x /FAVC model which predicts FAVC exit temperatures. Using very conservative assumptions and maximum purge rates, the maximum calculated Hg emissions is approximately 130 lbs/yr. A range of 100 to 120 lbs/yr is conservatively predicted for other operating conditions. Defense Waste Processing Facility (DWPF) permitted Hg emissions are 175 lbs/yr (0.02 lbs/hr annual average)

  18. Microcolumns with self-assembled particle frits for proteomics

    DEFF Research Database (Denmark)

    Ishihama, Yasushi; Rappsilber, Juri; Andersen, Jens S

    2002-01-01

    LC-MS-MS experiments in proteomics are usually performed with packed microcolumns employing frits or outlets smaller than the particle diameter to retain the packing material. We have developed packed microcolumns using self-assembled particles (SAPs) as frits that are smaller than the size...... of the outlet. A five to one ratio of outlet size to particle diameter appears to be the upper maximum. In these situations the particles assembled into an arch over the outlet like the stones in a stone bridge. When 3 microm particles were packed into a tapered column with an 8 microm outlet, two particles...

  19. Special Frits for Direct-On Enamelling of Pipelines

    International Nuclear Information System (INIS)

    Berdzenishvili, I.; Siradze, M.; Erokhin, V.; Kldiashvili, R.

    2010-01-01

    The compositions of low-melting zirconium-strontium frits have been developed for direct-on enamelling of pipes. Owing to the given combination of active cations, toxic fluorine and expensive nickel and lithium were eliminated from glass frit compositions. The enamels were subjected to firing by the induction method. In the synthesized enamels, the optimal complex of properties combining high corrosion-resistant and thermo-mechanic indices, adhesive strength and required specifications was realized. These enamels are recommended for testing on pipelines. (author)

  20. DWPF waste form compliance plan (Draft Revision)

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Marra, S.L.

    1991-01-01

    The Department of Energy currently has over 100 million liters of high-level radioactive waste in storage at the Savannah River Site (SRS). In the late 1970's, the Department of Energy recognized that there were significant safety and cost advantages associated with immobilizing the high-level waste in a stable solid form. Several alternative waste forms were evaluated in terms of product quality and reliability of fabrication. This evaluation led to a decision to build the Defense Waste Processing Facility (DWPF) at SRS to convert the easily dispersed liquid waste to borosilicate glass. In accordance with the NEPA (National Environmental Policy Act) process, an Environmental Impact Statement was prepared for the facility, as well as an Environmental Assessment of the alternative waste forms, and issuance of a Record of Decision (in December, 1982) on the waste form. The Department of Energy, recognizing that start-up of the DWPF would considerably precede licensing of a repository, instituted a Waste Acceptance Process to ensure that these canistered waste forms would be acceptable for eventual disposal at a federal repository. This report is a revision of the DWPF compliance plan

  1. Analysis Of DWPF Sludge Batch 7A (Macrobatch 8) Pour Stream Samples

    International Nuclear Information System (INIS)

    Johnson, F.

    2012-01-01

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed. The following conclusions were drawn from the analytical results provided in this report: (1) The sum of oxides for the official SB7a pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%). (2) The average calculated Waste Dilution Factor (WDF) for SB7a is 2.3. In general, the measured radionuclide content of the official SB7a pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7a Waste Acceptance Program Specification (WAPS) sample. (3) As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the official SB7a pour stream sample. (4) The Product Consistency Test (PCT) results indicate that the official SB7a pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.64 g/L, which is an order of magnitude less than the Environmental

  2. Evaluation Of The Impact Of The Defense Waste Processing Facility (DWPF) Laboratory Germanium Oxide Use On Recycle Transfers To The H-Tank Farm

    International Nuclear Information System (INIS)

    Jantzen, C.; Laurinat, J.

    2011-01-01

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO 3 ), germanium (IV) oxide (GeO 2 ) and cesium carbonate (Cs 2 CO 3 ) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to ∼12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO 2 /year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO 2 may increase to 4 kg/yr when improvements are implemented to attain an annual canister production

  3. DWPF liquid sample station: Status of equipment development

    International Nuclear Information System (INIS)

    Caplan, J.R.

    1987-01-01

    This report summarizes operating experience and equipment status of the DWPF liquid sample cell. Operation hours to date, results of equipment inspections and problems encountered and their solutions are discussed. An equipment and instrumentation status updating DPST-85-592, DWPF LIQUID SAMPLE CELL MOCK-UP, is presented. Remaining development items are also outlined

  4. Conditions for precipitation of copper phases in DWPF waste glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Ramsey, W.G.

    1993-01-01

    The Defense Waste Processing Facility (DWPF) precipitate hydrolysis process requires the use of copper formate catalyst. The expected absorbed radiation doses to the precipitate require levels of copper formate that increase the potential for the precipitation of metallic copper in the DWPF Melter. The conditions required to avoid the precipitation of copper are described

  5. DWPF Sample Vial Insert Study-Statistical Analysis of DWPF Mock-Up Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.P. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-09-18

    This report is prepared as part of Technical/QA Task Plan WSRC-RP-97-351 which was issued in response to Technical Task Request HLW/DWPF/TTR-970132 submitted by DWPF. Presented in this report is a statistical analysis of DWPF Mock-up test data for evaluation of two new analytical methods which use insert samples from the existing HydragardTM sampler. The first is a new hydrofluoric acid based method called the Cold Chemical Method (Cold Chem) and the second is a modified fusion method.Either new DWPF analytical method could result in a two to three fold improvement in sample analysis time.Both new methods use the existing HydragardTM sampler to collect a smaller insert sample from the process sampling system. The insert testing methodology applies to the DWPF Slurry Mix Evaporator (SME) and the Melter Feed Tank (MFT) samples.The insert sample is named after the initial trials which placed the container inside the sample (peanut) vials. Samples in small 3 ml containers (Inserts) are analyzed by either the cold chemical method or a modified fusion method. The current analytical method uses a HydragardTM sample station to obtain nearly full 15 ml peanut vials. The samples are prepared by a multi-step process for Inductively Coupled Plasma (ICP) analysis by drying, vitrification, grinding and finally dissolution by either mixed acid or fusion. In contrast, the insert sample is placed directly in the dissolution vessel, thus eliminating the drying, vitrification and grinding operations for the Cold chem method. Although the modified fusion still requires drying and calcine conversion, the process is rapid due to the decreased sample size and that no vitrification step is required.A slurry feed simulant material was acquired from the TNX pilot facility from the test run designated as PX-7.The Mock-up test data were gathered on the basis of a statistical design presented in SRT-SCS-97004 (Rev. 0). Simulant PX-7 samples were taken in the DWPF Analytical Cell Mock

  6. Analyses and Comparison of Bulk and Coil Surface Samples from the DWPF Slurry Mix Evaporator

    International Nuclear Information System (INIS)

    Hay, M.; Nash, C.; Stone, M.

    2012-01-01

    Sludge samples from the DWPF Slurry Mix Evaporator (SME) heating coil frame and coil surface were characterized to identify differences that might help identify heat transfer fouling materials. The SME steam coils have seen increased fouling leading to lower boil-up rates. Samples of the sludge were taken from the coil frame somewhat distant from the coil (bulk tank material) and from the coil surface (coil surface sample). The results of the analysis indicate the composition of the two SME samples are very similar with the exception that the coil surface sample shows ∼5-10X higher mercury concentration than the bulk tank sample. Elemental analyses and x-ray diffraction results did not indicate notable differences between the two samples. The ICP-MS and Cs-137 data indicate no significant differences in the radionuclide composition of the two SME samples. Semi-volatile organic analysis revealed numerous organic molecules, these likely result from antifoaming additives. The compositions of the two SME samples also match well with the analyzed composition of the SME batch with the exception of significantly higher silicon, lithium, and boron content in the batch sample indicating the coil samples are deficient in frit relative to the SME batch composition.

  7. Bounding estimate of DWPF mercury emissions

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1993-01-01

    Two factors which have substantial impact on predicted Mercury emissions are the air flows in the Chemical Process Cell (CPC) and the exit temperature of the Formic Acid Vent Condenser (FAVC). The discovery in the IDMS (Integrated DWPF Melter System) of H 2 generation by noble metal catalyzed formic acid decomposition and the resultant required dilution air flow has increased the expected instantaneous CPC air flow by as much as a factor of four. In addition, IDMS has experienced higher than design (10 degrees C) FAVC exit temperatures during certain portions of the operating cycle. These temperatures were subsequently attributed to the exothermic reaction of NO to NO 2 . Moreover, evaluation of the DWPF FAVC indicated it was undersized and unless modified or replaced, routine exit temperatures would be in excess of design. Purges required for H 2 flammability control and verification of elevated FAVC exit temperatures due to NO x reactions have lead to significant changes in CPC operating conditions. Accordingly, mercury emissions estimates have been updated based upon the new operating requirements, IDMS experience, and development of an NO x /FAVC model which predicts FAVC exit temperatures. Using very conservative assumptions and maximum purge rates, the maximum calculated Hg emissions is approximately 130 lbs/yr. A range of 100 to 120 lbs/yr is conservatively predicted for other operating conditions. The peak emission rate calculated is 0.027 lbs/hr. The estimated DWPF Hg emissions for the construction permit are 175 lbs/yr (0.02 lbs/hr annual average)

  8. The corrosion behavior of DWPF glasses

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.

    1995-01-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed

  9. Glass sampling program during DWPF Integrated Cold Runs

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1990-01-01

    The described glass sampling program is designed to achieve two objectives: To demonstrate Defense Waste Processing Facility (DWPF) ability to control and verify the radionuclide release properties of the glass product; To confirm DWPF's readiness to obtain glass samples during production, and SRL's readiness to analyze and test those samples remotely. The DWPF strategy for control of the radionuclide release properties of the glass product, and verification of its acceptability are described in this report. The basic approach of the test program is then defined

  10. DWPF Sample Vial Insert Study-Statistical Analysis of DWPF Mock-Up Test Data

    International Nuclear Information System (INIS)

    Harris, S.P.

    1997-01-01

    This report is prepared as part of Technical/QA Task Plan WSRC-RP-97-351 which was issued in response to Technical Task Request HLW/DWPF/TTR-970132 submitted by DWPF. Presented in this report is a statistical analysis of DWPF Mock-up test data for evaluation of two new analytical methods which use insert samples from the existing HydragardTM sampler. The first is a new hydrofluoric acid based method called the Cold Chemical Method (Cold Chem) and the second is a modified fusion method.Both new methods use the existing HydragardTM sampler to collect a smaller insert sample from the process sampling system. The insert testing methodology applies to the DWPF Slurry Mix Evaporator (SME) and the Melter Feed Tank (MFT) samples. Samples in small 3 ml containers (Inserts) are analyzed by either the cold chemical method or a modified fusion method. The current analytical method uses a HydragardTM sample station to obtain nearly full 15 ml peanut vials. The samples are prepared by a multi-step process for Inductively Coupled Plasma (ICP) analysis by drying, vitrification, grinding and finally dissolution by either mixed acid or fusion. In contrast, the insert sample is placed directly in the dissolution vessel, thus eliminating the drying, vitrification and grinding operations for the Cold chem method. Although the modified fusion still requires drying and calcine conversion, the process is rapid due to the decreased sample size and that no vitrification step is required.A slurry feed simulant material was acquired from the TNX pilot facility from the test run designated as PX-7.The Mock-up test data were gathered on the basis of a statistical design presented in SRT-SCS-97004 (Rev. 0). Simulant PX-7 samples were taken in the DWPF Analytical Cell Mock-up Facility using 3 ml inserts and 15 ml peanut vials. A number of the insert samples were analyzed by Cold Chem and compared with full peanut vial samples analyzed by the current methods. The remaining inserts were analyzed by

  11. Task technical plan: DWPF air permit/dispersion modeling

    International Nuclear Information System (INIS)

    Lambert, D.P.

    1993-01-01

    This Task Technical Plan summarizes work required to project the benzene emissions from the Late Wash Facility (LWF) as well as update the benzene, mercury, and NO x emissions from the remainder of the Defense Waste Processing Facility (DWPF). These calculations will reflect (1) the addition of the LWF and (2) the replacement of formic acid with nitric acid in the melter preparation process. The completed calculations will be used to assist DWPF in applying for the LWF Air Quality Permit

  12. Chemical compatibility of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.

    1993-01-01

    The Waste Acceptance Preliminary Specifications (WAPS) require that the contents of the canistered waste form are compatible with one another and the stainless steel canister. The canistered waste form is a closed system comprised of a stainless steel vessel containing waste glass, air, and condensate. This system will experience a radiation field and an elevated temperature due to radionuclide decay. This report discusses possible chemical reactions, radiation interactions, and corrosive reactions within this system both under normal storage conditions and after exposure to temperatures up to the normal glass transition temperature, which for DWPF waste glass will be between 440 and 460 degrees C. Specific conclusions regarding reactions and corrosion are provided. This document is based on the assumption that the period of interim storage prior to packaging at the federal repository may be as long as 50 years

  13. Statistical analysis of the DWPF prototypic sampler

    International Nuclear Information System (INIS)

    Postles, R.L.; Reeve, C.P.; Jenkins, W.J.; Bickford, D.F.

    1991-01-01

    The DWPF process will be controlled using assay measurements on samples of feed slurry. These slurries are radioactive, and thus will be sampled remotely. A Hydraguard trademark pump-driven sampler system will be used as the remote sampling device. A prototype Hydraguard trademark sampler has been studied in a full-scale mock-up of a DWPF process vessel. Two issues were of dominant interest: (1) what accuracy and precision can be provided by such a pump-driven sampler in the face of the slurry rheology; and, if the Hydraguard trademark sample accurately represents the slurry in its local area, (2) is the slurry homogeneous enough throughout for it to represent the entire vessel? To determine Hydraguard trademark Accuracy, a Grab Sampler of simpler mechanism was used as reference. This (Low) Grab Sampler was located as near to the intake port of the Hydraguard trademark as could be arranged. To determine Homogeneity, a second (High) Grab Sampler was located above the first. The data necessary to these determinations comes from the measurement system, so its important variables also affect the results. Thus, the design of the test involved not just Sampling variables, but also some of the Measurement variables as well. However, the main concern was the Sampler and not the Measurement System, so the test design included only such measurement variables as could not be circumvented (Vials, Dissolution Method, and Aliquoting). The test was executed by, or under the direct oversight of, expert technologists. It thus did not explore the many important particulars of ''routine'' plant operations (such as Remote Sample Preparation or Laboratory Shift Operation)

  14. Review of Statistical Analyses Resulting from Performance of HLDWD-DWPF-005

    International Nuclear Information System (INIS)

    Beck, R.S.

    1997-01-01

    The Engineering Department at the Defense Waste Processing Facility (DWPF) has reviewed two reports from the Statistical Consulting Section (SCS) involving the statistical analysis of test results for analysis of small sample inserts (references 1 ampersand 2). The test results cover two proposed analytical methods, a room temperature hydrofluoric acid preparation (Cold Chem) and a sodium peroxide/sodium hydroxide fusion modified for insert samples (Modified Fusion). The reports support implementation of the proposed small sample containers and analytical methods at DWPF. Hydragard sampler valve performance was typical of previous results (reference 3). Using an element from each major feed stream. lithium from the frit and iron from the sludge, the sampler was determined to deliver a uniform mixture in either sample container.The lithium to iron ratios were equivalent for the standard 15 ml vial and the 3 ml insert.The proposed method provide equivalent analyses as compared to the current methods. The biases associated with the proposed methods on a vitrified basis are less than 5% for major elements. The sum of oxides for the proposed method compares favorably with the sum of oxides for the conventional methods. However, the average sum of oxides for the Cold Chem method was 94.3% which is below the minimum required recovery of 95%. Both proposed methods, cold Chem and Modified Fusion, will be required at first to provide an accurate analysis which will routinely meet the 95% and 105% average sum of oxides limit for Product Composition Control System (PCCS).Issued to be resolved during phased implementation are as follows: (1) Determine calcine/vitrification factor for radioactive feed; (2) Evaluate covariance matrix change against process operating ranges to determine optimum sample size; (3) Evaluate sources for low sum of oxides; and (4) Improve remote operability of production versions of equipment and instruments for installation in 221-S.The specifics of

  15. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  16. Silica frit formulation for low temperature co-fired ceramic tapes (LTCC)

    International Nuclear Information System (INIS)

    Nor Hayati Alias; Che Seman Mahmood

    2006-01-01

    Glassifier agents or so called fluxes could function to lower down the melting temperature of a ceramic material. Two types of silica based glass frits have been formulated to undergo vitrification at temperature lower than 1000 degree C. Frit A powder is composing of 11% Sodium Carbonate, 11% Calcium Oxide,15% Plumbum Oxide and 10% MgO while Frit B is composing of 12% Boron Oxide, 5% Ceria, 11% Sodium Carbonate and 2% Magnesium Oxide as glassifier agent in Silica powder. Two different ceramic slurries were made from a-alumina powder with addition of either Frit A or Frit B and also dispersant, binder and plasticizers, followed by casting into 0.04 mm thickness alumina green tapes. The tapes were then fired at temperature 1000 degree C to burn out plastic binder system and to vitrify the glass frits. Scanning Electron Microscopy (SEM)/EDX techniques were carried out to observe the changes in microstructure of the tape due to vitrication of glass frits. Comparisons were made with alumina green tapes without any glass frit component and with Commercial LTCC DuPont 951 tape. (Author)

  17. Influence of milling process in the surface energy of glass tile frits

    International Nuclear Information System (INIS)

    Tamayo, A.; Rubio, F.; Otero, J. L.; Rubio, J.

    2013-01-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO 2 by 5% of B 2 O 3 and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A 2 if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m - 2) and the less acidic constant (0.13 kJ.mol - 1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author)

  18. Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone

    Science.gov (United States)

    Xiang, Feng; Gan, Weiping

    2018-01-01

    In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.

  19. Analysis of frit by sodium peroxide fusion and flow injection analysis

    International Nuclear Information System (INIS)

    Walker, N.; Whitaker, M.

    1990-01-01

    Test runs for the immobilization of radioactive wastes in glass are now underway at the TNX Facility of the Savannah River Site. The wastes are immobilized by the Integrated Defense Waste Processing Facility Melter System (IDMS) process. The IDMS makes a borosilicate glass. To make the glass, certain quantities of boron and silicate must be maintained in the melter. The silicate is added to the melter in a substance called frit. To determine the amount of frit to add, it is necessary to calculate the percent silicate in the frit. The present method of determining the silicate content of frit has yielded inconsistent results. The focus of this project was to develop and implement a new process for determining the silicate content of frit. The author chose to achieve this goal using a colormetric method

  20. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non

  1. RECENT PROCESS IMPROVEMENTS TO INCREASE HLW THROUGHPUT AT THE DWPF

    International Nuclear Information System (INIS)

    Herman, C

    2007-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  2. Evaluation of vitrification factors from DWPF's macro-batch 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    2000-01-01

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ''glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015

  3. The DWPF strategy for producing an acceptable product

    International Nuclear Information System (INIS)

    Goldston, W.T.; Plodinec, M.J.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will convert the 130 million liters of high-level nuclear waste at SRS into stable borosilicate glass. Production of canistered waste forms by the DWPF is scheduled to begin well before submission of the license application for the first repository. The Department of Energy has defined waste acceptance specifications to ensure that DWPF canistered waste forms will be acceptable for eventual disposal. To ensure that canistered waste forms meet those specifications, a program is being carried out to qualify the waste form and those aspects of the production process which affect product quality. This program includes: Pre-production qualification testing of simulated and actual waste forms; Disciplined demonstrations of the ability to produce an acceptable product during startup testing; and Application of a rigorous product control program during production

  4. Can-in-canister cold demonstration in DWPF (U)

    International Nuclear Information System (INIS)

    Kuehn, N.H.

    1996-07-01

    The Department of Energy Fissile Materials Disposition Program is evaluating a number of options for disposition of weapons-usable plutonium surplus to national defense needs. One of the immobilization options is the Can-In-Canister approach. In this option small cans of a plutonium glass, which contains a neutron absorber, are placed on a support structure in a large Savannah River Site Defense Waste Processing Facility (DWPF) canister. The top is then welded onto the canister. This canister is filled with High Level Waste (HLW) glass at the DWPF. The HLW glass provides the radiation source for proliferation resistance. These canisters are to be placed in a Federal Repository. To provide information on the technical feasibility of this option prior to the Record of Decision on plutonium disposition, the Department of Energy Fissile Materials Disposition Program funded a demonstration in the DWPF. This demonstration was conducted before the start of radioactive operations. Two test canisters containing cans of surrogate (non- radioactive) plutonium glass were successfully filled with simulated HLW glass at the DWPF using standard pouring procedures. One canister had twenty cans of surrogate plutonium glass. The other had eight cans of surrogate plutonium glass. After the canisters were filled, the contents of the canisters were examined to provide data on the effect of the rack and cans on the filling of the DWPF canister, the effect of the pour on the surrogate plutonium glass and the effect of the rack and cans on the simulated HLW glass. There was no deformation of the support racks during the pour. The simulated HLW glass filled all the regions around the rack and cans and the regions between the cans and the wall of the canister. This report discusses the design of the racks and cans, the modification of the DWPF canisters to accommodate the rack and cans, the conditions during the pours and the results of the post pour analysis

  5. SME Acceptability Determination For DWPF Process Control (U)

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-12

    The statistical system described in this document is called the Product Composition Control System (PCCS). K. G. Brown and R. L. Postles were the originators and developers of this system as well as the authors of the first three versions of this technical basis document for PCCS. PCCS has guided acceptability decisions for the processing at the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) since the start of radioactive operations in 1996. The author of this revision to the document gratefully acknowledges the firm technical foundation that Brown and Postles established to support the ongoing successful operation at the DWPF. Their integration of the glass propertycomposition models, developed under the direction of C. M. Jantzen, into a coherent and robust control system, has served the DWPF well over the last 20+ years, even as new challenges, such as the introduction into the DWPF flowsheet of auxiliary streams from the Actinide Removal Process (ARP) and other processes, were met. The purpose of this revision is to provide a technical basis for modifications to PCCS required to support the introduction of waste streams from the Salt Waste Processing Facility (SWPF) into the DWPF flowsheet. An expanded glass composition region is anticipated by the introduction of waste streams from SWPF, and property-composition studies of that glass region have been conducted. Jantzen, once again, directed the development of glass property-composition models applicable for this expanded composition region. The author gratefully acknowledges the technical contributions of C.M. Jantzen leading to the development of these glass property-composition models. The integration of these models into the PCCS constraints necessary to administer future acceptability decisions for the processing at DWPF is provided by this sixth revision of this document.

  6. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  7. Glass-ceramics frits for high mechanical resistance glazes

    International Nuclear Information System (INIS)

    Gajek, M.; Lis, J.; Partyka, J.; Wojczyk, M.

    2004-01-01

    The obtaining and application of glass-ceramics frits for glazes were discussed by many authors. This glazes are characterized by raised mechanical parameters and chemical resistance. Factors, that determines crystallization process are initial composition, heat treatment and nucleation agents. The kind of crystalline phases, crystal habit and the content of residual glass phase play the decisive role in the strengthening of the glaze. In this paper are shown results of investigation over controlled crystallization in the ternary systems; Li 2 O-Al 2 O 3 -SiO 2 , CaO-Al 2 O 3 -SiO 2 , ZnO-Al 2 O 3 -SiO 2 , MgO-Al 2 O 3 -SiO 2 , with or without nucleation agents. (author)

  8. Estimation of Total Error in DWPF Reported Radionuclide Inventories

    International Nuclear Information System (INIS)

    Edwards, T.B.

    1995-01-01

    This report investigates the impact of random errors due to measurement and sampling on the reported concentrations of radionuclides in DWPF's filled canister inventory resulting from each macro-batch. The objective of this investigation is to estimate the variance of the total error in reporting these radionuclide concentrations

  9. DWPF PCCS version 2.0 test case

    International Nuclear Information System (INIS)

    Brown, K.G.; Pickett, M.A.

    1992-01-01

    To verify the operation of the Product Composition Control System (PCCS), a test case specific to DWPF operation was developed. The values and parameters necessary to demonstrate proper DWPF product composition control have been determined and are presented in this paper. If this control information (i.e., for transfers and analyses) is entered into the PCCS as illustrated in this paper, and the results obtained correspond to the independently-generated results, it can safely be said that the PCCS is operating correctly and can thus be used to control the DWPF. The independent results for this test case will be generated and enumerated in a future report. This test case was constructed along the lines of the normal DWPF operation. Many essential parameters are internal to the PCCS (e.g., property constraint and variance information) and can only be manipulated by personnel knowledgeable of the Symbolics reg-sign hardware and software. The validity of these parameters will rely on induction from observed PCCS results. Key process control values are entered into the PCCS as they would during normal operation. Examples of the screens used to input specific process control information are provided. These inputs should be entered into the PCCS database, and the results generated should be checked against the independent, computed results to confirm the validity of the PCCS

  10. Remotely replaceable jumpers and embedded wiring for the DWPF

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1984-01-01

    The Defense Waste Processing Facility (DWPF) for radioactive waste vitrification at the Savannah River Plant (SRP) is now under construction. Development of specialized electrical/instrument inter-connectors, or jumpers, is now complete. Remote replacement of the associated through-wall wiring using a standard canyon crane has also been demonstrated. 8 figures

  11. Glass formulation requirements for DWPF coupled operations using crystalline silicotitanates

    International Nuclear Information System (INIS)

    Harbour, J.R.; Andrews, M.K.

    1997-01-01

    The design basis DWPF flowsheet couples the vitrification of two waste streams: (1) a washed sludge and (2) a hydrolyzed sodium tetraphenylborate precipitate product, PHA. The PHA contains cesium-137 which had been precipitated from the tank supernate with sodium tetraphenylborate. Smaller amounts of strontium and plutonium adsorbed on sodium titanate are also present with the PHA feed. Currently, DWPF is running a sludge-only flowsheet while working towards solutions to the problems encountered with In Tank Precipitation (ITP). The sludge loading for the sludge-only flowsheet and for the anticipated coupled operations is 28 wt% on an oxide basis. For the coupled operation, it is essential to balance the treatment of the two waste streams such that no supernate remains after immobilization of all the sludge. An alternative to ITP and sodium titanate is the removal of Cs-137, Sr-90, and plutonium from the tank supernate by ion exchange using crystalline silicotitanate (CST). This material has been shown to effectively sorb these elements from the supernate. It is also known that CST sorbs plutonium. The loaded CST could then be immobilized with the sludge during vitrification. It has recently been demonstrated that CST loadings approaching 70 wt% for a CST-only glass can be achieved using a borosilicate glass formulation which can be processed by the DWPF melter. Initial efforts on coupled waste streams with simulated DWPF sludge show promise that a borosilicate glass formulation can incorporate both sludge and CST. This paper presents the bases for research efforts to develop a glass formulation which will incorporate sludge and CST at loadings appropriate for DWPF operation

  12. Microwave melt and offgas analysis results from a Ferro Corporation reg-sign glass frit

    International Nuclear Information System (INIS)

    Phillips, J.A.; Hoffman, C.R.; Knutson, P.T.

    1995-03-01

    In support of the Residue Treatment Technology (RTT) Microwave Solidification project, Waste Projects and Surface Water personnel conducted a series of experiments to determine the feasibility of encapsulating a surrogate sludge waste using the microwave melter. The surrogate waste was prepared by RTT and melted with five varying compositions of low melting glass frit supplied by the Ferro Corporation. Samples were melted using a 50% waste/50% glass frit and a 47.5% waste/47.5% glass frit/5% carbon powder. This was done to evaluate the effectiveness of carbon at reducing a sulfate-based surface scale which has been observed in previous experiments and in full-scale testing. These vitrified samples were subsequently submitted to Environmental Technology for toxicity characteristic leaching procedure (TCLP) testing. Two of the five frits tested in this experiment merit further evaluation as raw materials for the microwave melter. Ferro frit 3110 with and without carbon powder produced a crystalline product which passed TCLP testing. The quality of the melt product could be improved by increasing the melting temperature from 900 degrees C to approximately 1150-1200 degrees C. Ferro frit 3249 produced the optimal quality of glass based on visual observations, but failed TCLP testing for silver when melted without carbon powder. This frit requires a slightly higher melting temperature (≥ 1200 degrees C) compared to frit 3110 and produces a superior product. In conjunction with this work, Surface Water personnel conducted offgas analyses using a Thermal Desorption Mass Spectrometer (TDMS) on selected formulations. The offgas analyses identified and quantified water vapor (H 2 O), oxygen (O 2 ) and carbon oxides (CO and CO 2 ), sulfur (S) and sulfur oxides (SO and SO 2 ), and nitrogen (N 2 ) and nitrogen oxides (NO and NO 2 ) that volatilized during glass formation

  13. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    Science.gov (United States)

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    International Nuclear Information System (INIS)

    Shine, E. P.; Poirier, M. R.

    2013-01-01

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  15. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  16. Corrosion impact of reductant on DWPF and downstream facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilderman, J. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing was recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels

  17. Translating DWPF design criteria into an engineered facility design

    International Nuclear Information System (INIS)

    Kemp, J.B.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) takes radioactive defense waste sludge and the radioactive nuclides, cesium and strontium, from the salt solution, and incorporates them in borosilicate glass in stainless steel canisters, for subsequent disposal in a deep geologic repository. The facility was designed by Bechtel National, Inc. under a subcontract from E.I. DuPont de Nemurs and Co., the prime contractor for the Department of Energy, for the design, construction and commissioning of the plant. The design criteria were specified by the DuPont Company, based upon their extensive experience as designer, and operator since the early 1950's, of the existing Savannah River Plant facilities. Some of the design criteria imposed unusual or new requirements on the detailed design of the facilities. This paper describes some of these criteria, encompassing several engineering disciplines, and discusses the solutions and designs which were developed for the DWPF

  18. Copper solubility in DWPF, Batch 1 waste glass: Update report

    International Nuclear Information System (INIS)

    Schumacker, R.F.

    1992-01-01

    The ''Late Washing'' Step in the processing of precipitate will require the use of additional copper formate in the Precipitate Reactor to catalyze the hydrolysis reaction. The increased copper concentration in the melter feed increases the potential for metal precipitation during the vitrification of the melter feed. This report describes recent results with a conservative glass selected from the DWPF acceptable region in the Batch 1 Variability Study

  19. Analysis of the DWPF glass pouring system using neural networks

    International Nuclear Information System (INIS)

    Calloway, T.B. Jr.; Jantzen, C.M.

    1997-01-01

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of ± 0.35 inwc ( 2 = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R 2 = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers

  20. Canister disposition plan for the DWPF Startup Test Program

    International Nuclear Information System (INIS)

    Harbour, J.R.; Payne, C.H.

    1990-01-01

    This report details the disposition of canisters and the canistered waste forms produced during the DWPF Startup Test Program. The six melter campaigns (DWPF Startup Tests FA-13, WP-14, WP-15, WP-16, WP-17, and FA-18) will produce 126 canistered waste forms. In addition, up to 20 additional canistered waste forms may be produced from glass poured during the transition between campaigns. In particular, this canister disposition plan (1) assigns (by alpha-numeric code) a specific canister to each location in the six campaign sequences, (2) describes the method of access for glass sampling on each canistered waste form, (3) describes the nature of the specific tests which will be carried out, (4) details which tests will be carried out on each canistered waste form, (5) provides the sequence of these tests for each canistered waste form, and (6) assigns a storage location for each canistered waste form. The tests are designed to provide evidence, as detailed in the Waste Form Compliance Plan (WCP 1 ), that the DWPF product will comply with the Waste Acceptance Product Specifications (WAPS 2 ). The WAPS must be met before the canistered waste form is accepted by DOE for ultimate disposal at the Federal Repository. The results of these tests will be included in the Waste Form Qualification Report (WQR)

  1. Freeze and restart of the DWPF Scale Glass Melter

    International Nuclear Information System (INIS)

    Choi, A.S.

    1989-01-01

    After over two years of successful demonstration of many design and operating concepts of the DWPF Melter system, the last Scale Glass Melter campaign was initiated on 6/9/88 and consisted of two parts; (1) simulation of noble metal buildup and (2) freeze and subsequent restart of the melter under various scenarios. The objectives were to simulate a prolonged power loss to major heating elements and to examine the characteristics of transient melter operations during a startup with a limited supply of lid heat. Experimental results indicate that in case of a total power loss to the lower electrodes such as due to noble metal deposition, spinel crystals will begin to form in the SRL 165 composite waste glass pool in 24 hours. The total lid heater power required to initiate joule heating was the same as that during slurry-feeding. Results of a radiative heat transfer analysis in the plenum indicate that under the identical operating conditions, the startup capabilities of the SGM and the DWPF Melter are quite similar, despite a greater lid heater to melt surface area ratio in the DWPF Melter

  2. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSHILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2006-11-21

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs

  3. Estimation of total error in DWPF reported radionuclide inventories. Revision 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is required to determine and report the radionuclide inventory of its glass product. For each macro-batch, the DWPF will report both the total amount (in curies) of each reportable radionuclide and the average concentration (in curies/gram of glass) of each reportable radionuclide. The DWPF is to provide the estimated error of these reported values of its radionuclide inventory as well. The objective of this document is to provide a framework for determining the estimated error in DWPF's reporting of these radionuclide inventories. This report investigates the impact of random errors due to measurement and sampling on the total amount of each reportable radionuclide in a given macro-batch. In addition, the impact of these measurement and sampling errors and process variation are evaluated to determine the uncertainty in the reported average concentrations of radionuclides in DWPF's filled canister inventory resulting from each macro-batch

  4. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2006-11-15

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs

  5. Maximum total organic carbon limit for DWPF melter feed

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T ampersand E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit

  6. DWPF integrated cold runs revised technical bases for precipitate hydrolysis

    International Nuclear Information System (INIS)

    Landon, L.F.

    1992-01-01

    The report defines new precipitate hydrolysis process operating parameters for DWPF Chemical runs assuming the precipitate feed simulants to be processed reflect the decision to implement a final wash of the tetraphenylborate slurry before transfer to DWPF (i.e. the Late Wash Facility). Control of the nitrite content of the tetraphenylborate slurry to 0.01M or less has eliminated the need for hydroxylamine nitrate (HAN) during hydrolysis. Consequently, the oxidant nitrous oxide will not be generated. However, nitric oxide (NO) is expected to be generated (reaction of formic acid with nitrite) and some fraction of the NO can be expected to be oxidized to nitrogen dioxide. The rate of NO generation with low nitrite feed has not been quantified at this time nor is the extent to which the NO is oxidized to NO 2 known. A mass spectrometer is being installed in the Precipitate Hydrolysis Experimental Facility (PHEF) which will enable the NO generation rate to be defined as well as the extent to which the NO is oxidized to NO 2 . There is some undocumented data available for C 6 H 6 /NO and C 6 H 6 /NO 2 with N 2 as the diluent but no similar data for CO 2 . Development of test data in the required time frame is not possible. However, MOC's will be estimated for benzene/NO/NO 2 /CO 2 gas mixtures (the MOC is expected to be approximately 60% less than for the HAN process). Once these data are obtained, and NO/NO 2 concentration profiles are obtained from PHEF hydrolysis process demonstrations, a flammability control strategy for the DWPF Salt Processing Cell will be developed. Implementation of the HAN process purge strategy upon startup of the SPC with the late wash process would be conservative

  7. DWPF Melter No.2 Prototype Bus Bar Test Report

    International Nuclear Information System (INIS)

    Gordon, J.

    2003-01-01

    Characterization and performance testing of a prototype DWPF Melter No.2 Dome Heater Bus Bar are described. The prototype bus bar was designed to address the design features of the existing system which may have contributed to water leaks on Melter No.1. Performance testing of the prototype revealed significant improvement over the existing design in reduction of both bus bar and heater connection maximum temperature, while characterization revealed a few minor design and manufacturing flaws in the bar. The prototype is recommended as an improvement over the existing design. Recommendations are also made in the area of quality control to ensure that critical design requirements are met

  8. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    International Nuclear Information System (INIS)

    Gupta, N.K.; Gong, Chung.

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B ampersand PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels

  9. ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Hera, K.; Coleman, C.; Jones, M.; Wiedenman, B.

    2011-12-05

    Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1). This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from

  10. DWPF glass transition temperatures: What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.; Ramsey, A.A.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site will immobilize high-level radioactive liquid waste in borosilicate glass. The glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  11. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In

  12. Elimination Of The Characterization Of DWPF Pour Stream Sample And The Glass Fabrication And Testing Of The DWPF Sludge Batch Qualification Sample

    International Nuclear Information System (INIS)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-01-01

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the

  13. Development Of Remote Hanford Connector Gasket Replacement Tooling For DWPF

    International Nuclear Information System (INIS)

    Krementz, D.; Coughlin, Jeffrey

    2009-01-01

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manually or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and

  14. Initial demonstration of DWPF process and product control strategy using actual radioactive waste

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.; Jantzen, C.M.; Beam, D.C.

    1991-01-01

    The Defense Waste Processing Facility at the Savannah River Site (SRS) will vitrify high-level nuclear waste into borosilicate glass. The waste will be mixed with properly formulated glass-making frit and fed to a melter at 1150 degrees C. Process control and product quality are ensured by proper control of the melter feed composition. Algorithms have been developed to predict the processability of the melt and the durability of the final glass based on this feed composition. To test these algorithms, an actual radioactive waste contained in a shielded facility at SRS was analyzed and a frit composition formulated using a simple computer spreadsheet which contained the algorithms. This frit was then mixed with the waste and the resulting slurry fed to a research scale joule-heated melter operated remotely. Approximately 24 kg of glass were successfully prepared. This paper will describe the frit formulation, the vitrification process, and the glass durability

  15. DWPF glass transition temperatures - What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Applewhite-Ramsey, A.L.; Jantzen, C.M.

    1991-01-01

    The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the first geologic repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  16. DWPF upgrade, immobilization Programmatic Environmental Impact Statement input. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, I.K.; Bignell, D.

    1994-01-01

    This Programmatic Environmental Impact Statement (PEIS) addresses the immobilization of plutonium by vitrification. Existing engineering documents, analyses, EIS, and technical publications were used and incorporated wherever possible to provide a timely response to this support effort. Although the vitrification technology is proven for the immobilization of high-level radioactive waste, more study and technical detail will be necessary to provide a comprehensive EIS that fully addresses all aspects of introduction of plutonium to the vitrification process. This document describes the concept(s) of plutonium processing as it relates to the upgrade of the DWPF and is therefore conceptual in nature. These concepts are based on technical data and experience at the Savannah River Site and will be detailed and finalized to support execution of this immobilization option

  17. Program plan: DWPF/HLWDP stirred Melter Program Plan

    International Nuclear Information System (INIS)

    Smith, M.E.

    1994-01-01

    Slurry Fed Melters (SFM) have been developed in the United States, Europe, and Japan for the conversion of high-level radioactive waste (HLW) to borosilicate glass for permanent disposal. The newest design, the stirred melter, combines the high production rates and high glass quality features of the Joule-heated melters with the low-cost, compact, simple maintenance features of the pot melters. However, further engineering design and demonstrations are needed to operate the stirred melter on a large scale. This document outlines the program which develops a full scale stirred melter for the DWPF (240 pph), and provides a basis which will allow further scale-up of the technology for use in the Hanford High Level Waste Disposal Program (HLWDP) for up to four times the reference capacity

  18. Characterization of a glass frit free TiCuAg-thick film metallization applied on aluminium nitride

    International Nuclear Information System (INIS)

    Reicher, R.; Smetana, W.; Adlassnig, A.; Schuster, J. C.; Gruber, U.

    1997-01-01

    The metallization of aluminium nitride substrates by glass frit free Ti CuAg-thick film pastes were investigated. Adhesion properties of the conductor paste were tested by measuring tensile strength and compared with commercial Cu-thick film pastes (within glass frit). Also numerical analysis of temperature-distribution and thermal extension of metallized aluminium nitride ceramic, induced by a continuous and a pulsed working electronic device were made with a finite element program. (author)

  19. Two 24-hour Studies of Water Quality in the Ala Wai Canal during March and July, 1994 for the Mamala Bay Study, Pollutant Source Identification Project MB-3 (NODC Accession 0001188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pollutant Source Identification Project (MB-3) sought to provide a summary and analysis of pollutant loads to Mamala Bay from both point and nonpoint sources....

  20. Lateral variations of the Guerrero-Oaxaca subduction zone (Mexico) derived from weak seismicity (Mb3.5+) detected on a single array at teleseismic distance

    Science.gov (United States)

    Letort, Jean; Retailleau, Lise; Boué, Pierre; Radiguet, Mathilde; Gardonio, Blandine; Cotton, Fabrice; Campillo, Michel

    2018-05-01

    Detections of pP and sP phase arrivals (the so-called depth phases) at teleseismic distance provide one of the best ways to estimate earthquake focal depth, as the P-pP and the P-sP delays are strongly dependent on the depth. Based on a new processing workflow and using a single seismic array at teleseismic distance, we can estimate the depth of clusters of small events down to magnitude Mb 3.5. Our method provides a direct view of the relative variations of the seismicity depth from an active area. This study focuses on the application of this new methodology to study the lateral variations of the Guerrero subduction zone (Mexico) using the Eielson seismic array in Alaska (USA). After denoising the signals, 1232 Mb 3.5 + events were detected, with clear P, pP, sP and PcP arrivals. A high-resolution view of the lateral variations of the depth of the seismicity of the Guerero-Oaxaca area is thus obtained. The seismicity is shown to be mainly clustered along the interface, coherently following the geometry of the plate as constrained by the receiver-function analysis along the Meso America Subduction Experiment profile. From this study, the hypothesis of tears on the western part of Guerrero and the eastern part of Oaxaca are strongly confirmed by dramatic lateral changes in the depth of the earthquake clusters. The presence of these two tears might explain the observed lateral variations in seismicity, which is correlated with the boundaries of the slow slip events.

  1. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses

  2. Erosion Modeling Analysis For Modified DWPF SME Tank

    International Nuclear Information System (INIS)

    LEE, SI

    2004-01-01

    In support of an erosion evaluation for the modified cooling coil guide and its supporting structure in the DWPF SME vessel, a computational model was developed to identify potential sites of high erosion using the same methodology established by previous work. The erosion mechanism identified in the previous work was applied to the evaluation of high erosion locations representative of the actual flow process in the modified coil guide of the SME vessel, abrasive erosion which occurs by high wall shear of viscous liquid. The results show that primary locations of the highest erosion due to the abrasive wall erosion are at the leading edge of the guide, external surface of the insert plate, the tank floor next to the insert plate of the coil guide support, and the upstream lead-in plate. The present modeling results show a good comparison between the original and the modified cases in terms of high erosion sites, as well as the degree of erosion and the calculated shear stress. Wall she ar of the tank floor is reduced by about 30 per cent because of the new coil support plate. Calculations for the impeller speed lower than 103 rpm in the SME showed similar erosion patterns but significantly reduced wall shear stresses and reduced overall erosion. Comparisons of the 103 rpm results with SME measurements indicated that no significant erosion of the tank floor in the SME is to be expected. Thus, it is recommended that the agitator speed of SME does not exceed 103 rpm

  3. Preliminary Analysis of Species Partitioning in the DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kesterson, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-15

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas entrainment rates from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream compositions and timeaveraged melter operating data over the duration of one canister-filling cycle. The only case considered in this study involved the SB6 pour stream sample taken while Canister #3472 was being filled over a 20-hour period on 12/20/2010, approximately three months after the bubblers were installed. The analytical results for that pour stream sample provided the necessary glass composition data for the mass balance calculations. To estimate the “matching” feed composition, which is not necessarily the same as that of the Melter Feed Tank (MFT) batch being fed at the time of pour stream sampling, a mixing model was developed involving three preceding MFT batches as well as the one being fed at that time based on the assumption of perfect mixing in the glass pool but with an induction period to account for the process delays involved in the calcination/fusion step in the cold cap and the melter turnover.

  4. Remote process cell mercury transfer pumps for DWPF

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Vaughn, V.G.

    1986-01-01

    Final design and the results of the testing performed thus far show that the water displacement of mercury to a height of 40 feet is feasible with just 6 gallons of motive water. Control of the transfer is achieved by monitoring the pump discharge pressure. An air actuated plug valve configuration successfully contained the required discharge pressure of 260 psi. The requirements of low flow and maximum separation of mercury from particulates are achieved due to the configuration of the pressure canister. The pump is capable of transferring a discrete amount of mercury with little additional slurry particulates. The success of this new pumping configuration is highlighted by the fact that it was the inspiration for other remote transfer applications tested at SRP. These application include the dual canister sample pump shown in Figure 7, as well as a successful prototype pump designed at Pacific Northwest Laboratories (PNL). The PNL pump was designed for the purpose of metering waste slurries to an electric melter. Upon completion of final pump fabrication, the Defense Waste Processing facility (DWPF) facility will have a simple and highly reliable method of remotely transferring small discrete batches of mercury as required from radioactive process vessels. 3 refs., 7 figs., 1 tab

  5. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO2-, Na2O-, and Cs2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and

  6. Frit screening for Rocky Flats ash and sand, slag, and crucible vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Li, Hong; Darab, J.G.

    1997-06-01

    Pacific Northwest National Laboratory (PNNL) is developing vitrified waste forms for plutonium-bearing ash and plutonium-bearing sand, slag, and crucible (SS ampersand C) materials from Rocky Flats. Waste forms are to meet product criteria (e.g., safeguard termination limits, storage criteria, and target plutonium loading) and processing constraints (e.g., upper temperature limits, processing time, and equipment compatibility). The target waste form for ash is an agglomerated product, while that for SS ampersand C is a fully encapsulated product. Laboratory scoping studies were conducted on glass formulations from six different glass families: (1) antimony vanadium phosphate, (2) iron vanadium phosphate, (3) tin zinc phosphate, (4) soda-lime silicate, (5) alkali borosilicate, and (6) alkali borate. Glass families were selected due to viscosity behavior in the temperature range of interest (< 800C). Scoping study tests included gradient furnace tests to determine processing range and sintering temperature, thermogravimetric analysis to determine weight loss as a function of temperature, and crucible tests to determine frit compositions tolerance to variations in processing temperature, waste loading, and waste type. The primary screening criterion for the selection of frits for future studies was processing temperature below 400C to minimize the potential for foaming in ash caused by the release of gases (main source of gas is combustion of carbon species) and to minimize processing cycle times. Based on this criterion, glass formulations from the tin zinc phosphate and alkali borosilicate families were selected for future variability testing. Variability testing will include final product evaluation, glass system tolerance to waste loading and composition variation, and identification of parameters impacting time/temperature profiles. Variability testing results will give a final frit formulation for ash and SS ampersand C, and identify key processing parameters

  7. Fabrication of remote steam atomized scrubbers for DWPF off-gas system

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Lafferty, J.D.

    1988-01-01

    The defense waste processing facility (DWPF) is being constructed for the purpose of processing high-level waste from sludge to a vitrified borosilicate glass. In the operation of continuous slurry-fed melters, off-gas aerosols are created by entrainment of feed slurries and the vaporization of volatile species from the molten glass mixture. It is necessary to decontaminate these aerosols in order to minimize discharge of airborne radionuclide particulates. A steam atomized scrubber (SAS) has been developed for DWPF which utilizes a patented hydro- sonic system gas scrubbing method. The Hydro-Sonic System utilizes a steam aspirating-type venturi scrubber that requires very precise fabrication tolerances in order to obtain acceptable decontamination factors. In addition to the process-related tolerances, precision mounting and nozzle tolerances are required for remote service at DWPF

  8. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith III, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how the varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.

  9. Assessment of combustion and related issues in the DWPF and ITP waste tanks

    International Nuclear Information System (INIS)

    Ginsberg, T.

    1994-04-01

    This report presents a review of the safety analyses described in the DWPF Safety Analysis Report, the combustion analysis of the ITP Tanks 48 and 49, and presents conclusions drawn from interviews staff on issues related to accident analysis, in particular on issues related to combustion phenomena. The major objectives of this report are to clarify the issues related to the modes of combustion and expected loads on process vessels and structures and, in addition, to offer recommendations which would improve the defense-in-depth posture of the DWPF

  10. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  11. Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory

    International Nuclear Information System (INIS)

    Shanahan, K.L.

    1992-02-01

    A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning

  12. Influence of milling process in the surface energy of glass tile frits; Influencia de la molienda en la energia superficial de fritas para esmaltes

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, A.; Rubio, F.; Oteo, J. L.; Rubio, J.

    2013-05-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO{sub 2} by 5% of B{sub 2}O{sub 3} and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A{sup 2} if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m{sup -}2) and the less acidic constant (0.13 kJ.mol{sup -}1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author) 30 refs.

  13. Influence of milling process in the surface energy of glass tile frits; Influencia de la molienda en la energia superficial de fritas para esmaltes

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, A.; Rubio, F.; Otero, J. L.; Rubio, J.

    2013-06-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO{sub 2} by 5% of B{sub 2}O{sub 3} and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A{sup 2} if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m{sup -}2) and the less acidic constant (0.13 kJ.mol{sup -}1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author)

  14. Polyether ether ketone encased monolith frits made of polyether ether ketone tubing with a 0.25 mm opening resulting in an improved separation performance in liquid chromatography.

    Science.gov (United States)

    Park, Sin Young; Cheong, Won Jo

    2016-05-01

    Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Final Report - Glass Formulation Development and Testing for DWPF High AI2O3 HLW Sludges, VSL-10R1670-1, Rev. 0, dated 12/20/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The principal objective of the work described in this Final Report is to develop and identify glass frit compositions for a specified DWPF high-aluminum based sludge waste stream that maximizes waste loading while maintaining high production rate for the waste composition provided by ORP/SRS. This was accomplished through a combination of crucible-scale, vertical gradient furnace, and confirmation tests on the DM100 melter system. The DM100-BL unit was selected for these tests. The DM100-BL was used for previous tests on HLW glass compositions that were used to support subsequent tests on the HLW Pilot Melter. It was also used to process compositions with waste loadings limited by aluminum, bismuth, and chromium, to investigate the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition, to process glass formulations at compositional and property extremes, and to investigate crystal settling on a composition that exhibited one percent crystals at 963{degrees}C (i.e., close to the WTP limit). The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. The tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Specific objectives for the melter tests are as follows: Determine maximum glass production rates without bubbling for a simulated SRS Sludge Batch 19 (SB19). Demonstrate a feed rate equivalent to 1125 kg/m{sup 2}/day glass production using melt pool bubbling. Process a high waste loading glass composition with the simulated SRS SB19 waste and measure the quality of the glass product. Determine the effect of argon as a bubbling gas on waste processing and the glass product including feed processing rate, glass redox, melter emissions, etc.. Determine differences in feed processing and glass characteristics for SRS SB19 waste simulated by the co-precipitated and direct

  16. Development of the DWPF canister temporary shrink-fit seal

    International Nuclear Information System (INIS)

    Kelker, J.W. Jr.

    1986-04-01

    The Defense Waste Processing Facility is being constructed at The Savannah River Plant for the containerization of high-level nuclear waste in a wasteform for eventual permanent disposal. The waste will be incorporated in molten glass and solidified in type 304L stainless steel canisters, 2-feet in diameter x 9-feet 10-inches long, containing a flanged 6-in.-diam pipe fill-nozzle. The canisters have a minimum wall thickness of 3/8 in. Utilizing the heat from the glass filling operation, a shrink-fit seal for a plug in the end of the canister fill nozzle was developed that: will withstand the radioactive environment; will prevent the spread of contamination, and will keep moisture and water from entering the canister during storage and decontamination of the canister by wet-frit blasting to remove smearable and oxide-film fixed radioactive nuclides; is removable and can be replaced by a new oversize plug in the event the seal fails the pressure decay leakage test ( -4 atm cc/sec helium); will keep the final weld closure clean and free of nuclear contamination; will withstand being pressed into the nozzle without exposing external contamination or completely breaking the seal; is reliable; and is easily installed. The seal consists of: a removable sleeve (with a tapered bore) which is shrink-fitted into the nozzle bore during canister fabrication; and a tapered plug which is placed into the sleeved nozzle after the canister is filled with radioactive molten glass. A leak-tight shrink-fit seal is formed between the nozzle, sleeve, and plug upon temperature equilibrium. The temporarily sealed canister is transferred from the Melt cell to the Decon cell, and the surface is decontaminated. Next it is transferred to the Weld/Test cell where the temporary seal is pressed down into the nozzle, revealing a clean cavity where the canister final closure weld is made

  17. Comparison of fine particle colemanite and boron frit in concrete for time-strength relationship

    International Nuclear Information System (INIS)

    Volkman, D.E.; Bussolini, P.L.

    1992-01-01

    This paper reports that the element boron, when added to concrete, has proved effective in shielding neutron particles by absorbing the neutron and emitting a low-energy gamma ray. The various boron additives used with concrete can severely retard the set time and strength gain. An advantage to using small particle size boron is that the smaller grain size provides better boron disbursement within the concrete matrix to absorb neutrons. However, boron additives of powder consistency are usually not used due to the greater potential of forming chemical solutions that act as a retarder in the concrete. Research has shown that the amount of boron additives in concrete can be reduced significantly if fine grain particles can be successfully incorporated into the concrete matrix. The purpose of this study is to compare strength gain characteristics of concrete mixes containing various quantities of fine grain boron additive. The boron additive colemanite, a natural mineral, is compared with two brands of manufactured aggregate, boron frit. Concrete test cylinders are molded for testing the compressive strength of the mix after 4, 7, 28, and 56 days. Tested are five different quantities of colemanite as well as five comparable amounts of boron frit for each brand of the material. The test values are compared with a control concrete specimen containing no boron additive. Results of this study can be used to optimize the cost and effectiveness of boron additives in radiation shielding concrete

  18. Neptunium sorption and co-precipitation of strontium in simulated DWPF salt solution

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Orebaugh, E.G.; King, C.M.

    1988-01-01

    Batch experiments performed using crushed slag saltstone (∼40 mesh) removed >80% of 237 Np from simulated Defense Waste Processing Facility (DWPF) salt solution. The concentration of 237 Np (110 pCi/ml) used was 1000x greater than levels in actual DWPF solutions. Neptunium-239 was used as a tracer and was formed by neutron activation of uranyl nitrate. Results showed that small amounts of crushed saltstone (as little as 0.05 grams), removed >80% of neptunium from 15 ml of simulated DWPF solution after several hours equilibration. The neptunium is sorbed on insoluble carbonates formed in and on the saltstone matrix. Further testing showed that addition of 0.01 and 0.10 ml of 1 molar Ca +2 (ie. Ca (NO 3 ) 2 , CaCl 2 ) into 15 ml of simulated DWPF solution yielded a white carbonate precipitate which also removed >80% of the neptunium after 1 hour equilibration. Further experiments were performed to determine the effectiveness of this procedure to co-precipitate strontium

  19. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  20. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  1. Hvor frit er egentlig frit?

    DEFF Research Database (Denmark)

    Wierød, Lea Maria; Spang-Hanssen, Ulrik

    2011-01-01

    of these limits, in which the authors arrive at some percentages of the amount of rubato fl uctuations, which in many ways are surprisingly high. Not least, it is astonishing that a large majority of subjects preferred an unmusical rubato rather than a complete metronomic approach and that the average...

  2. Microcolumn high pressure liquid chromatography with a glass-frit nebulizer interface for plasma emission detection

    International Nuclear Information System (INIS)

    Ibrahim, M.; Nisamaneepong, W.; Caruso, J.

    1985-01-01

    Microcolumn high pressure liquid chromatography (micro-HPLC) is rapidly gaining recognition as a practical separation tool for organometallic compounds. The use of the inductively coupled plasma (ICP) as a detector for micro-HPLC is studied. Several miniaturized glass-frit nebulizers are investigated as interfaces between the output of the microbore column and the ICP torch. Their performance with aqueous and methanolic solutions is evaluated by direct nebulization and flow injection analysis. The most efficient of these nebulizers is used in the micro-HPLC/ICP study of some Cd, Pb, and Zn organometallic compounds. Detection limits of 1.92 ng of Pb for tetramethyllead and 5.01 ng of Pb for tetraethyllead are obtained and compared with regular HPLC/ICP of these same compounds. Approximately equivalent detection limits were obtained when using a microwave induced plasma as an alternate plasma source

  3. IFSA: a microfluidic chip-platform for frit-based immunoassay protocols

    Science.gov (United States)

    Hlawatsch, Nadine; Bangert, Michael; Miethe, Peter; Becker, Holger; Gärtner, Claudia

    2013-03-01

    Point-of-care diagnostics (POC) is one of the key application fields for lab-on-a-chip devices. While in recent years much of the work has concentrated on integrating complex molecular diagnostic assays onto a microfluidic device, there is a need to also put comparatively simple immunoassay-type protocols on a microfluidic platform. In this paper, we present the development of a microfluidic cartridge using an immunofiltration approach. In this method, the sandwich immunoassay takes place in a porous frit on which the antibodies have immobilized. The device is designed to be able to handle three samples in parallel and up to four analytical targets per sample. In order to meet the critical cost targets for the diagnostic market, the microfluidic chip has been designed and manufactured using high-volume manufacturing technologies in mind. Validation experiments show comparable sensitivities in comparison with conventional immunofiltration kits.

  4. Projekt Frit Sind hjælper mennesker med social angst

    DEFF Research Database (Denmark)

    Moutamid, Mina El

    2017-01-01

    Social angst er en almindelig, men overset lidelse, som ofte er forbundet med isolation. Mange fortæller ikke om den angst, de oplever, til andre og kommer til at leve et liv med begrænsninger, som de kunne være foruden, hvis de fik hjælp. Angsten betyder også, at det kan være svært at komme...... hjemmefra og opsøge hjælp hos SIND eller andre rådgivninger. Frit Sind er et nyt tilbud i København til disse mennesker og har fokus på de specifikke behov, mennesker med social angst har....

  5. Performance of carbon-based hot frit substrates: I, Low pressure helium and hydrogen testing

    International Nuclear Information System (INIS)

    Barletta, R.; Adams, J.; Svandrlik, J.; Powell, J.R.

    1993-07-01

    The performance of various carbon-based materials in flowing, high-temperature helium and hydrogen is described. These materials which are candidate hot frit substrates for possible application in a PBR include various grades of graphite, carbon-carbon and vitreous carbon. Vitreous carbon showed extremely good performance in helium, while that of the various graphite grades was quite variable and, in some cases, poor. Purified grades performed better than unpurified grades, but in all cases large sample-to-sample variations in weight loss were observed. For carbon-carbon samples, the performance was intermediate. Since the weight loss in these samples was in large measure due to the loss of the densification media, improvements in the performance of carbon-carbon may be possible. With respect to the performance in hydrogen, high weight losses were observed, re-enforcing the need for coating carbon-based materials for service in a flowing hydrogen environment

  6. Low-Li2O Frits: Selecting Glasses that Support the Melt Rate Studies and Challenge the Current Durability Model

    International Nuclear Information System (INIS)

    Peeler, D. K.; Edwards, T. B.

    2005-01-01

    During the progressive development of the cold cap model (as it applies to a potential melt rate predictive tool), the formation of an Al-Li-silicate phase was identified as an intermediate reaction phase that could possibly hinder melt rate for SB4. To test this theory, six glasses were designed (using Frit 320's composition as the baseline) to maintain a constant 20 wt% sum of alkali content (in frit) by varying Na 2 O to Li 2 O ratios. The Li 2 O concentration ranged from 8 wt% down to 0% in either 2% or 1% increments with the differences being accounted for by an increase in Na 2 O concentration. Although the primary objective of the ''lower Li 2 O'' frits was to evaluate the potential for melt rate improvements, assessments of durability (as measured by the Product Consistency Test (PCT)) were also performed. The results suggest that durable glasses can be produced with these ''lower Li 2 O'' frits should it be necessary to pursue this option for improving melt rate. In addition to the series of glasses to support melt rate assessments, a series of frits were also developed to challenge the current durability model based on the limits proposed by Edwards et al. (2004). Although the ''new'' limits allow access into compositional regions of interest (i.e., higher alkali systems) which can improve melt rate and/or waste loading, there may still be ''additional'' conservatism. In this report, two series of glasses were developed to challenge the ''new'' durability limits for the SB4 system. In the first series, the total alkali of the Frit 320-based glasses (designed to support the melt rate program) was increased from 20 wt% to 21 wt% (in the frit), but the series also evaluated the possible impact of various Na 2 O and Li 2 O mass ratio differences. The second series pushed the alkali limit in the frit even further with frits containing either 22 or 24 wt% total alkali as well as various Na 2 O and Li 2 O mass ratios. The results of the PCT evaluation indicated

  7. Integrated DWPF Melter System (IDMS) campaign report: The first two noble metals operations

    International Nuclear Information System (INIS)

    Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D.H.; Ritter, J.A.

    1991-01-01

    The Integrated DWPF Melter System (IDMS) is designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas systems. The facility is the first pilot-scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to characterize the processing of noble metals (Pd, Rh, Ru, and Ag) on a large scale, the IDMS will be operated batchstyle for at least nine feed preparation cycles. The first two of these operations are complete. The major observation to date occurred during the second run when significant amounts of hydrogen were evolved during the feed preparation cycle. The runs were conducted between June 7, 1990 and March 8, 1991. This time period included nearly six months of ''fix-up'' time when forced air purges were installed on the SRAT MFT and other feed preparation vessels to allow continued noble metals experimentation

  8. Hazards analyses of hydrogen evolution and ammonium nitrate accumulation in DWPF -- Revision 1

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.

    1994-01-01

    This revision consists of two reports, the first of which is an analysis of potential ammonium nitrate explosion hazards in the DWPF (Defense Waste Processing Facility). Sections describe the effect of impurities (organic and inorganic (chlorides, chromates, metals and oxides)); the consequences of a hydrogen deflagration or detonation; the role of confinement; the action of heat on ammonium nitrate; the thermal decomposition of ammonium nitrate; the hazard of spontaneous heating; and the explosive decomposition of ammonium nitrate. The second report, Hazard analysis of hydrogen evolution in DWPF: Process vessels and vent system for the late wash/nitric acid flowsheet, contains a description of a revised model for hydrogen generation based on the late wash/nitric acid process. The second part of the report is a sensitivity analysis of the base case conditions and the hydrogen generation model

  9. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction.

  10. Spray nozzle pattern test for the DWPF HEME Task QA Plan

    International Nuclear Information System (INIS)

    Lee, L.

    1991-01-01

    The DWPF melter off-gas systems have two High Efficiency Mist Eliminators (HEME) upstream of the High-Efficiency Particulates Air filters (HEPA) to remove fine mists and particulates from the off-gas. To have an acceptable filter life and an efficient operation, an air atomized water is spray on the HEME. The water spray keeps the HEME wet and dissolves the soluble particulates and enhances and HEME efficiency. DWPF Technical asked SRL to determine the conditions which will give satisfactory atomization and distribution of water so that the HEME will operate efficiently. The purpose of this document is to identify, QA controls to be applied in the pursuit of this task (WSRC-RP-91-1151)

  11. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    Weisman, A.F.; Knight, J.R.; McIntosh, D.L.; Papouchado, L.M.

    1988-01-01

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  12. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  13. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    International Nuclear Information System (INIS)

    Smith, M.E.; Bickford, D.F.

    1997-01-01

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy's Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program

  14. Projected radionuclide inventories of DWPF glass from current waste at time of production

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1993-01-01

    The Waste Acceptance Preliminary Specifications (WAPS) require that the DWPF estimate the inventory of long-lived radionuclides present in the waste glass, and report the values in the Waste Form Qualification Report. In this report, conservative (biased high) estimates of the radionuclide inventory of glass produced from waste currently in the Tank Farm are provided. In most cases, these calculated values compare favorably with actual data. In those cases where the agreement is not good, the values reported here are conservative

  15. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  16. Leaching TC-99 from DWPF glass in simulated geologic repository groundwaters

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jurgensen, A.R.

    1986-01-01

    The purpose was to determine if DWPF glass in geologic groundwaters would immobilize Tc-99 as well as it does other elements. A previous study (using a borosilicate glass of a very different composition from DWPF glass) indicated that Tc-99 leached rapidly from the glass suggesting that glass may not be a good matrix for immobilizing Tc-99. It was suggested that the Tc-99 had migrated to vesicles in the glass while the glass was still molten. To determine if borosilicate glass was a good immobilizing matrix for Tc-99, this study was performed using DWPF glass. The leaching of Tc-99 was compared to other elements in the glass. It was shown that rapid leaching will not occur with SRP glass. The leach rate for Tc-99 was nearly identical to that for B, a matrix element in the glass. Another objective was to compare the release of Tc-99 under oxidizing and reducing conditions with other elements in the glass. In the tests described here, even though the glass was dissolving more under reducing conditions as a result of abnormally high pH values, less Tc-99 appeared in solution

  17. Standard test method for linear thermal expansion of glaze frits and ceramic whiteware materials by the interferometric method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the interferometric determination of linear thermal expansion of premelted glaze frits and fired ceramic whiteware materials at temperatures lower than 1000°C (1830°F). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Synthesis of TiCuAg thick film inks for glass frit free metallization of aluminium nitride

    International Nuclear Information System (INIS)

    Adlassnig, A.; Schuster, J. C.; Smetana, W.; Reicher, R.

    1997-01-01

    A glas frit free screen printing ink for metallization of AIN was developed. Bonding to the substrate is achieved by active metal additives. The metallic component consists of Cu and Ag powder synthesized from inorganic salts by the polyol process, and Cu-Ti powder synthesized by arc melting, milling and ultracentrifugation. This ternary powder mixture was introduced to a specifically developed organic vehicle and screen printed onto AIN. The detailed development process and the results will be presented. (author)

  19. Glass frit bonding with controlled width and height using a two-step wet silicon etching procedure

    Science.gov (United States)

    Yifang, Liu; Daner, Chen; Liwei, Lin; Gaofeng, Zheng; Jianyi, Zheng; Lingyun, Wang; Daoheng, Sun

    2016-03-01

    A simple and versatile two-step silicon wet etching technique for the control of the width and height of the glass frit bonding layer has been developed to improve bonding strength and reliability in wafer-level microelectromechanical systems (MEMS) packaging processes. The height of the glass frit bonding layer is set by the design of a vertical reference wall which regulates the distance between the silicon wafer and the encapsulation capping substrate. On the other hand, the width of the bonding layer is constrained between two micro grooves which are used to accommodate the spillages of extra glass frit during the bonding process. An optimized thermal bonding process, including the formation of glass liquid, removal of gas bubbles under vacuum and the filling of voids under normal atmospheric condition has been developed to suppress the formation of the bubbles/voids. The stencil printing and pre-sintering processes for the glass frit have been characterized before the thermal bonding process under different magnitudes of bonding pressure. The bonding gap thickness is found to be equal to the height of the reference wall of 10 μm in the prototype design. The bubbles/voids are found to be suppressed effectively and the bonding strength increases from 10.2 to 19.1 MPa as compared with a conventional thermal annealing process in air. Experimentally, prototype samples are measured to have passed the high hermetic sealing leakage tests of 5  ×  10-8 atm cc s-1.

  20. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    retention of mercury in the slurry. Both recovery of mercury in the offgas system and removal (segregation + recovery) from the slurry correlate with slurry consistency. Higher slurry consistency results in better retention of Hg in the slurry (less segregation) and better recovery in the offgas system, but the relationships of recovery and retention with consistency are sludge dependent. Some correlation with slurry yield stress and acid stoichiometry was also found. Better retention of mercury in the slurry results in better recovery in the offgas system because the mercury in the slurry is stripped more easily than the segregated mercury at the bottom of the vessel. Although better retention gives better recovery, the time to reach a particular slurry mercury content (wt%) is longer than if the retention is poorer because the segregation is faster. The segregation of mercury is generally a faster process than stripping. The stripping factor (mass of water evaporated per mass of mercury stripped) of mercury at the start of boiling were found to be less than 1000 compared to the assumed design basis value of 750 (the theoretical factor is 250). However, within two hours, this value increased to at least 2000 lb water per lb Hg. For runs with higher mercury recovery in the offgas system, the stripping factor remained around 2000, but runs with low recovery had stripping factors of 4000 to 40,000. DWPF data shows similar trends with the stripping factor value increasing during boiling. These high values correspond to high segregation and low retention of mercury in the sludge. The stripping factor for a pure Hg metal bead in water was found to be about 10,000 lb/lb. About 10-36% of the total Hg evaporated in a SRAT cycle was refluxed back to the SRAT during formic acid addition and boiling. Mercury is dissolved as a result of nitric acid formation from absorption of NO{sub x}. The actual solubility of dissolved mercury in the acidic condensate is about 100 times higher than

  1. Material compatibility evaluataion for DWPF nitric-glycolic acid - literature review

    International Nuclear Information System (INIS)

    Mickalonis, J.I; Skidmore, T.E.

    2013-01-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction: For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 deg C; For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 deg C); For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available; and, For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the aggressive

  2. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  3. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  4. Reconfirmation of frit 803 based on the January 2016 sludge batch 9 reprojection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-10

    On January 11, 2016, Savannah River Remediation (SRR) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 9 (SB9) reprojection that was developed from the analyzed composition of a Tank 51 sample. This sample was collected after field washing had been completed in Tank 51 to support the alternate reductant task. Based on this reprojection, Frit 803 is still a viable option for the processing of SB9 under sludge-only operations and coupled (Actinide Removal Process (ARP) product with and without monosodium titanate (MST)) operations. The maximum projected volumes of ARP product that can be transferred from the Precipitate Reactor Feed Tank (PRFT) per Sludge Receipt and Adjustment Tank (SRAT) batch and the resulting Na2O concentrations in the SRAT for coupled operations were determined. The Na2O concentrations in the SRAT resulting from the maximum projected ARP product transfer volumes are consistent with those from the previous assessments that were based on the August 2015 projections. Regardless of the presence or absence of MST in the ARP product, the contribution of Na2O to the resulting glass will be similar at the same waste loading (WL). These projected volumes of ARP product are not anticipated to be an issue for SB9. The actual transfer volumes from the PRFT to the SRAT are determined based upon the analyzed Na2O concentrations in the PRFT samples, which has resulted in larger transfer volumes than those allowed by the projections for Sludge Batch 8 (SB8). An operating window of 32-40% WL around the nominal WL of 36% is achievable for both sludge-only and coupled operations; however, each of the glass systems studied does become limited by waste form affecting constraints (durability) at higher volumes of ARP product and WLs of 41-42%.

  5. Estudo colorimétrico de fritas feldspáticas Colorimetric study of feldsphatic frits

    Directory of Open Access Journals (Sweden)

    S. F Santos

    2010-03-01

    Full Text Available As fritas cerâmicas são materiais de natureza vítrea preparadas por fusão em temperaturas elevadas (~1500 ºC, a partir de uma mistura de matérias-primas minerais. Os vidrados preparados exclusivamente a partir de fritas são utilizados principalmente em peças cerâmicas nas quais a componente estética é mais importante que a componente técnica, como no caso de azulejos, objetos decorativos e em restaurações odontológicas. Para um efeito decorativo mais eficiente, é necessário que o revestimento cerâmico seja estável o suficiente para não alterar significativamente a cor apresentada pelo pigmento e, dessa forma, possibilitar uma reprodutibilidade da cor obtida. Nesse contexto, este trabalho mostra um estudo de cor desenvolvida por pigmentos cerâmicos em fritas transparentes, obtidas a partir de feldspato da região Borborema-Seridó (PB/RN. A análise química do feldspato evidenciou que este mineral cumpre os requisitos necessários à aplicação como cerâmica (ou vidrado de cobertura, pois apresenta teores mínimos de impurezas (minerais portadores de ferro e outros óxidos corantes que deterioram a qualidade da frita obtida. O mineral foi caracterizado ainda por difração de raios X (albita e monoclínio e quanto à granulometria (abaixo de 100 µm. A avaliação colorimétrica de acordo com os padrões CIElab e por medidas de refletância possibilitou caracterização da cor dos revestimentos obtidos em diferente fontes e iluminantes. Os resultados permitiram avaliar que o feldspato do Seridó apresenta potencial para aplicação como revestimento cerâmico colorido e futuramente poderia ser aplicado na área de restauração cerâmica odontológica, tendo em vista que esse mineral é um dos principais componentes das porcelanas odontológicas, porém, até o presente, todo material de restauração odontológica utilizado no Brasil é de origem estrangeira.Ceramic frits are vitreous materials prepared by melting of

  6. Formation rate of ammonium nitrate in the off-gas line of SRAT and SME in DWPF

    International Nuclear Information System (INIS)

    Lee, L.

    1992-01-01

    A mathematical model for the formation rate of ammonium nitrate in the off-gas line of the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mixed Evaporator (SME) in DWPF has been developed. The formation rate of ammonium nitrate in the off-gas line depends on pH, temperature, volume and total concentration of ammonia and ammonium ion. Based on a typical SRAT and SME cycle in DWPF, this model predicts the SRAT contributes about 50 lbs of ammonium nitrate while SME contributes about 60 lbs of ammonium nitrate to the off-gas line

  7. The behavior and effects of the noble metals in the DWPF melter system

    International Nuclear Information System (INIS)

    Hutson, N.D.; Smith, M.E.

    1992-01-01

    Fission-product noble metals have caused severe operating problems in numerous worldwide waste vitrification facilities. These dense, highly conductive noble metals have tended to accumulate on the floor of joule-heated glass melters causing electrical distortions which have, in some occurrences, rendered the melter inoperable. A pilot scale vitrification research facility at the U.S. Department of Energy's Savannah River Laboratory has been operated for more than a year with simulated feed streams containing noble metals. In this paper the behavior of these noble metals in the melter system and final glass product and their effects on the scaled DWPF-type melter are discussed

  8. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  9. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-12

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.

  10. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-20

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.

  11. Formulation of special glass frit and its use for decontamination of Joule melter employed for vitrification of high level and radioactive liquid waste

    International Nuclear Information System (INIS)

    Valsala, T.P.; Mishra, P.K.; Thakur, D.A.; Ghongane, D.E.; Jayan, R.V.; Dani, U.; Sonavane, M.S.; Kulkarni, Y.

    2012-01-01

    Advanced vitrification system at TWMP Tarapur was used for successful vitrification of large volume of HLW stored in waste tank farm. After completion of the operational life of the joule melter, dismantling was planned. Prior to the dismantling, the hold up inventory of active glass product from the melter was flushed out using specially formulated inactive glass frit to reduce the air activity buildup in the cell during dismantling operations. The properties of the special glass frit prepared are comparable with that of the regular product glass. More than 94% of holdup activity was flushed out from the joule melter prior to the dismantling of the melter. (author)

  12. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  13. Hydrogen generation and foaming during tests in the GFPS simulating DWPF operations with Tank 42 sludge and CST

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.C.

    1999-12-08

    This report summarizes the pilot-scale research requested by the salt disposition team to examine the effect of crystalline silicotitanate (CST) resin with adsorbed noble metals on the maximum hydrogen generation rate produced during the DWPF melter feed preparation processes.

  14. Hydrogen generation and foaming during tests in the GFPS simulating DWPF operations with Tank 42 sludge and CST

    International Nuclear Information System (INIS)

    Koopman, D.C.

    1999-01-01

    This report summarizes the pilot-scale research requested by the salt disposition team to examine the effect of crystalline silicotitanate (CST) resin with adsorbed noble metals on the maximum hydrogen generation rate produced during the DWPF melter feed preparation processes

  15. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD

  16. An Evaluation of Liquidus Temperature as a Function of Waste Loading for a Tank 42 ''Sludge Only''/Frit 200 Flowsheet

    International Nuclear Information System (INIS)

    Peeler, D.

    1999-01-01

    'The waste glass produced in the SRS Defense Waste Processing Faiclity (DWPF) process must comply with Waste Acceptance Product Specifications (WAPS) and process control requirements by demonstrating, to a high degree of confidence, that melter feed will produce glass satisfying all quality and processing requirements.'

  17. Maximum total organic carbon limits at different DWPF melter feed maters (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1996-01-01

    The document presents information on the maximum total organic carbon (TOC) limits that are allowable in the DWPF melter feed without forming a potentially flammable vapor in the off-gas system were determined at feed rates varying from 0.7 to 1.5 GPM. At the maximum TOC levels predicted, the peak concentration of combustible gases in the quenched off-gas will not exceed 60 percent of the lower flammable limit during a 3X off-gas surge, provided that the indicated melter vapor space temperature and the total air supply to the melter are maintained. All the necessary calculations for this study were made using the 4-stage cold cap model and the melter off-gas dynamics model. A high-degree of conservatism was included in the calculational bases and assumptions. As a result, the proposed correlations are believed to by conservative enough to be used for the melter off-gas flammability control purposes

  18. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  19. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  20. Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs) 2 SO 4 , (Na, K, Cs)BF 4 , (Na, K) 2 B 4 O 7 and (Na,K)CrO 4 species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK) 2 SO 4 , (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na 2 BF 4 ) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur

  1. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  2. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  3. Corrosion testing of a plutonium-loaded lanthanide borosilicate glass made with Frit B.

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L.; Chemical Engineering

    2006-09-30

    Laboratory tests were conducted with a lanthanide borosilicate (LaBS) glass made with Frit B and added PuO2 (the glass is referred to herein as Pu LaBS-B glass) to measure the dependence of the glass dissolution rate on pH and temperature. These results are compared with the dependencies used in the Defense HLW Glass Degradation Model that was developed to account for HLW glasses in total system performance assessment (TSPA) calculations for the Yucca Mountain repository to determine if that model can also be used to represent the release of radionuclides from disposed Pu LaBS glass by using either the same parameter values that are used for HLW glasses or parameter values specific for Pu LaBS glass. Tests were conducted by immersing monolithic specimens of Pu LaBS-B glass in six solutions that imposed pH values between about pH 3.5 and pH 11, and then measuring the amounts of glass components released into solution. Tests were conducted at 40, 70, and 90 C for 1, 2, 3, 4, and 5 days at low glass-surface-area-to-solution volume ratios. As intended, these test conditions maintained sufficiently dilute solutions that the impacts of solution feedback effects on the dissolution rates were negligible in most tests. The glass dissolution rates were determined from the concentrations of Si and B measured in the test solutions. The dissolution rates determined from the releases of Si and B were consistent with the 'V' shaped pH dependence that is commonly seen for borosilicate glasses and is included in the Defense HLW Glass Degradation Model. The rate equation in that model (using the coefficients determined for HLW glasses) provides values that are higher than the Pu LaBS-B glass dissolution rates that were measured over the range of pH and temperature values that were studied (i.e., an upper bound). Separate coefficients for the rate expression in acidic and alkaline solutions were also determined from the test results to model Pu LaBS-B glass dissolution

  4. Phase II of a Six sigma Initiative to Study DWPF SME Analytical Turnaround Times: SRNL's Evaluation of Carbonate-Based Dissolution Methods

    International Nuclear Information System (INIS)

    Edwards, Thomas

    2005-01-01

    The Analytical Development Section (ADS) and the Statistical Consulting Section (SCS) of the Savannah River National Laboratory (SRNL) are participating in a Six Sigma initiative to improve the Defense Waste Processing Facility (DWPF) Laboratory. The Six Sigma initiative has focused on reducing the analytical turnaround time of samples from the Slurry Mix Evaporator (SME) by developing streamlined sampling and analytical methods [1]. The objective of Phase I was to evaluate the sub-sampling of a larger sample bottle and the performance of a cesium carbonate (Cs 2 CO 3 ) digestion method. Successful implementation of the Cs 2 CO 3 fusion method in the DWPF would have important time savings and convenience benefits because this single digestion would replace the dual digestion scheme now used. A single digestion scheme would result in more efficient operations in both the DWPF shielded cells and the inductively coupled plasma--atomic emission spectroscopy (ICP-AES) laboratory. By taking a small aliquot of SME slurry from a large sample bottle and dissolving the vitrified SME sample with carbonate fusion methods, an analytical turnaround time reduction from 27 hours to 9 hours could be realized in the DWPF. This analytical scheme has the potential for not only dramatically reducing turnaround times, but also streamlining operations to minimize wear and tear on critical shielded cell components that are prone to fail, including the Hydragard(trademark) sampling valves and manipulators. Favorable results from the Phase I tests [2] led to the recommendation for a Phase II effort as outlined in the DWPF Technical Task Request (TTR) [3]. There were three major tasks outlined in the TTR, and SRNL issued a Task Technical and QA Plan [4] with a corresponding set of three major task activities: (1) Compare weight percent (wt%) total solids measurements of large volume samples versus peanut vial samples. (2) Evaluate Cs 2 CO 3 and K 2 CO 3 fusion methods using DWPF simulated

  5. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  6. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 4 MACROBATCH 5

    International Nuclear Information System (INIS)

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-01-01

    The Waste Acceptance Product Specifications (WAPS)1 1.2 require that 'The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115'. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP)2 and Waste Form Qualification Report (WQR)3. However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the previous contents of Tank 40 (Sludge Batch 3) and the sludge that was transferred to Tank 40 from Tank 51. The blend of sludge from Tank 51 and Tank 40 defines Sludge Batch 4 (also referred to as Macrobatch 5 (MB5)). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of

  7. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  8. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    International Nuclear Information System (INIS)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-01-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  9. IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES

    International Nuclear Information System (INIS)

    Eibling, R; Michael Stone, M

    2006-01-01

    The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress (∼10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report focuses

  10. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    International Nuclear Information System (INIS)

    Edwards, T. B.

    2013-01-01

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF's melter operation during the processing of Sludge Batch 8 (SB8). SRNL's support has been in response to technical task requests that have been made by SRR's Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF's strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy

  11. Determination of Reportable Radionuclides for DWPF Sludge Batch 2 (Macro Batch 3)

    International Nuclear Information System (INIS)

    Bibler, N.E.

    2002-01-01

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the greater than 0.01 percent criterion for Curie content

  12. Integration of SWPF into the DWPF Flowsheet: Gap Analysis and Test Matrix Development

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-10

    Based on Revision 19 of the High Level Waste (HLW) System Plan, it is anticipated that the Salt Waste Processing Facility (SWPF) will be integrated into the Defense Waste Processing Facility (DWPF) flowsheet in October 2018 (or with Sludge Batch 11 (SB11)). Given that, Savannah River Remediation (SRR) has requested a technical basis be developed that validates the current Product Composition Control System (PCCS) models for use during the processing of the SWPF-based coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that the models may be used during the processing of the SWPF-based coupled flowsheet. To support this objective, Savannah River National Laboratory (SRNL) has completed three key interim activities prior to validation of the current or development of refined PCCS models over the anticipated glass composition region for SWPF processing. These three key activities include: (1) defining the glass compositional region over which SWPF is anticipated to be processed, (2) comparing the current PCCS model validation ranges to the SWPF glass compositional region from which compositional gaps can be identified, and (3) developing a test matrix to cover the compositional gaps.

  13. ALTERNATIVE ANALYTICAL DIGESTION SCHEME FOR THE DEFENSE WASTE PROCESSING FACILITY (DWPF) SLURRY RECEIPT AND ADJUSTMENT TANK (SRAT) ANALYSES

    International Nuclear Information System (INIS)

    Click, D; Charles02 Coleman, C; Frank Pennebaker, F; Kristine Zeigler, K; Tommy Edwards, T

    2007-01-01

    As part of the radioactive sludge batch qualification, Savannah River National Laboratory (SRNL) performs a verification of the digestion methods to be used by the Defense Waste Processing Facility (DWPF) Lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt process control samples and SRAT product process control samples. Verification of these methods on Sludge Batch 4 (SB4) radioactive sludge slurry indicated SB4 contains a higher concentration of aluminum (Al) than previous sludge batches. Aluminum plays a direct role in vitrification chemistry. At moderate levels, Al assists in glass forming, but at elevated levels Al can increase the viscosity of the molten glass which can adversely impact glass production rate and the volume of glass produced via limiting waste loading.3 Most of the Al present in SB4 is in the form of Al hydroxide as a mixture of gibbsite [α-aluminum trihydroxide, α-Al(OH) 3 ] and boehmite (α-aluminum oxyhydroxide, α-AlOOH) in an unknown ratio. Testing done at SRNL indicates Gibbsite is soluble at low pH but boehmite has limited solubility in the acid mixture (DWPF Cold Chem Method (CC), 25 mL nitric acid (HNO 3 ) and 25 mL hydrofluoric acid (HF)) used by DWPF to digest process control samples. Because Al plays such an important part in vitrification chemistry, it is necessary to have a robust digestion method that will dissolve all forms of Al present in the radioactive sludge while not increasing the analytical lab turnaround time. SRNL initially suggested that the DWPF lab use the sodium peroxide/hydroxide fusion (PF) digestion method4 to digest SRAT receipt and SRAT product radioactive sludge as an alternative to the acid digestion method to ensure complete digestion based on results obtained from digesting a SB4 radioactive sample.2 However, this change may have a significant impact on the DWPF lab analytical turnaround time due to the inefficiency in drying the radioactive sludge contained in a peanut

  14. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  15. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  16. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.

    2013-04-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case

  17. An Assessment of Using Vibrational Compaction of Calcined HLW and LLW in DWPF Canisters

    International Nuclear Information System (INIS)

    Yi, Yun-Bo; Amme, Robert C.; Shayer, Zeev

    2008-01-01

    Since 1963, the INEL has calcined almost 8 million gallons of liquid mixed waste and liquid high-level waste, converting it to some 1.1 million gallons of dry calcine (about 4275.0 m3), which consists of alumina-and zirconia-based calcine and zirconia-sodium blend calcine. In addition, if all existing and projected future liquid wastes are solidified, approximately 2,000 m3 of additional calcine will be produced primarily from sodium-bearing waste. Calcine is a more desirable material to store than liquid radioactive waste because it reduces volume, is much less corrosive, less chemically reactive, less mobile under most conditions, easier to monitor and more protective of human health and the environment. This paper describes the technical issue involved in the development of a feasible solution for further volume reduction of calcined nuclear waste for transportation and long term storage, using a standard DWPF canister. This will be accomplished by developing a process wherein the canisters are transported into a vibrational machine, for further volume reduction by about 35%. The random compaction experiments show that this volume reduction is achievable. The main goal of this paper is to demonstrate through computer modeling that it is feasible to use volume reduction vibrational machine without developing stress/strain forces that will weaken the canister integrity. Specifically, the paper presents preliminary results of the stress/strain analysis of the DWPF canister as a function of granular calcined height during the compaction and verifying that the integrity of the canister is not compromised. This preliminary study will lead to the development of better technology for safe compactions of nuclear waste that will have significant economical impact on nuclear waste storage and treatment. The preliminary results will guide us to find better solutions to the following questions: 1) What are the optimum locations and directions (vertical versus horizontal or

  18. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    International Nuclear Information System (INIS)

    Koopman, David C.:Eibling, Russel E

    2005-01-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Chemical Process Cell of the Defense Waste Processing Facility, DWPF. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Parallel preparations of two sludge simulants targeting the composition of Sludge Batch 3 were performed in order to evaluate the impact of the form of noble metals. Identical steps were used except that one simulant had dissolved palladium, rhodium, and ruthenium present during the precipitation of the insoluble solids. Noble metals were trimmed into the other stimulant prior to process tests. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The simulants were used as feeds for Sludge Receipt and Adjustment Tank, SRAT, process simulations. The following conclusions were drawn from the simulant preparation work: (1) The first preparation of a waste slurry simulant with co-precipitated noble metals was successful, based on the data obtained. It appears that 99+% of the noble metals were retained in the simulant. (2) Better control of carbonate, hydroxide, and post-wash trim chemical additions is needed before the new method of simulant preparation will be as reproducible as the old method. (3) The two new

  19. Recommendations for rheological testing and modelling of DWPF melter feed slurries

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1994-08-01

    The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed system and the sampling system, this slurry is pumped at a wide range of flow rates through pipes of various diameters. Both laminar and turbulent flows are encountered. Good rheology models of the melter feed slurries are necessary for useful hydraulic models of the melter feed and sampling systems. A concentric cylinder viscometer is presently used to characterize the stress/strain rate behavior of the melter feed slurries, and provide the data for developing rheology models of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short of the entire laminar flow range, and therefore hydraulic modelling applications of the present rheology models frequently require considerable extrapolation beyond the range of the data base. Since the rheology models are empirical, this cannot be done with confidence in the validity of the results. Axial pressure drop versus flow rate measurements in a straight pipe can easily fill in the rest of the laminar flow range with stress/strain rate data. The two types of viscometer tests would be complementary, with the concentric cylinder viscometer providing accurate data at low strain rates, near the yield point if one exists, and pipe flow tests providing data at high strain rates up to and including the transition to turbulence. With data that covers the laminar flow range, useful rheological models can be developed. In the Bingham plastic model, linear behavior of the shear stress as a function of the strain rate is assumed once the yield stress is exceeded. Both shear thinning and shear thickening behavior have been observed in viscometer tests. Bingham plastic models cannot handle this non-linear behavior, but a slightly more complicated yield/power law model can

  20. Measurement of the volatility and glass transition temperatures of glasses produced during the DWPF startup test program

    International Nuclear Information System (INIS)

    Marra, J.C.; Harbour, J.R.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize high-level radioactive waste currently stored in underground tanks at the Savannah River Site by incorporating the waste into a glass matrix. The molten waste glass will be poured into stainless steel canisters which will be welded shut to produce the final waste form. One specification requires that any volatiles produced as a result of accidentally heating the waste glass to the glass transition temperature be identified. Glass samples from five melter campaigns, run as part of the DWPF Startup Test Program, were analyzed to determine glass transition temperatures and to examine the volatilization (by weight loss). Glass transition temperatures (T g ) for the glasses, determined by differential scanning calorimetry (DSC), ranged between 445 C and 474 C. Thermogravimetric analysis (TGA) scans showed that no overall weight loss occurred in any of the glass samples when heated to 500 C. Therefore, no volatility will occur in the final glass product when heated up to 500 C

  1. Dew point, internal gas pressure, and chemical composition of the gas within the free volume of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.; Herman, D.T.; Crump, S.; Miller, T.J.; McIntosh, J.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) produced 55 canistered waste forms containing simulated waste glass during the four Waste Qualification campaigns of the DWPF Startup Test Program. Testing of the gas within the free volume of these canisters for dew point, internal gas pressure, and chemical composition was performed as part of a continuing effort to demonstrate compliance with the Waste Acceptance Product Specifications. Results are presented for six glass-filled canisters. The dew points within the canisters met the acceptance criterion of < 20 degrees C for all six canisters. Factors influencing the magnitude of the dew point are presented. The chemical composition of the free volume gas was indistinguishable from air for all six canisters. Hence, no foreign materials were present in the gas phase of these canisters. The internal gas pressures within the sealed canisters were < 1 atm at 25 degrees C for all six canisters which readily met the acceptance criterion of an internal gas pressure of less than 1.5 atm at 25 degrees C. These results provided the evidence required to demonstrate compliance with the Waste Acceptance Product Specifications

  2. Initial results from the canistered waste forms produced during the first campaign of the DWPF Startup Test Program

    International Nuclear Information System (INIS)

    Harbour, J.R.

    1995-01-01

    As part of the Defense Waste Processing Facility (DWPF) Startup Test Program, approximately 90 canisters will be filled with glass containing simulated radioactive waste during five separate campaigns. The first campaign is a facility acceptance test to demonstrate the operability of the facility and to collect initial data on the glass and the canistered waste forms. During the next four campaigns (the waste qualification campaigns) data will be obtained which will be used to demonstrate that the DWPF product meets DOE's Waste Acceptance Product Specifications (WAPS). Currently 12 of the 16 canisters have been filled with glass during the first campaign (FA-13). This paper describes the tests that have been carried out on these 12 glass-filled canisters and presents the data with reference to the acceptance criteria of the WAPS. These tests include measurement of canister dimensions prior to and after glass filling. dew point, composition, and pressure of the gas within the free volume of the canister, fill height, free volume, weight, leak rates of welds and temporary seals, and weld parameters

  3. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  4. Studies on upgrading quality of zircon concentrate to meet the standard for frit by a combination of using a screen plate electrostatic separator and other beneficiation methods

    International Nuclear Information System (INIS)

    Nguyen Duc Hung

    2003-01-01

    In the present work, researches on qualitative upgrade of zircon concentrate in order to meet the standard for frit were carried out by combinations of a screen plate type electrostatic separator with other physical beneficiation methods such as magnetic separation, flotation, gravity by air-table along with chemical treatment on laboratory scale was itself manufactured for studied scopes, after that zircon concentrate about 63.9-64.8% of ZrO 2 , less than 0.13% of TiO 2 and 0.128% of Fe 2 O 3 values were recovered. (NDH)

  5. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludge – Sludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  6. DWPF Flowsheet Studies with Simulants to Determine Modular Caustic Side Solvent Extraction Unit Solvent Partitioning and Verify Actinide Removal Process Incorporation Strategy

    International Nuclear Information System (INIS)

    Herman, C

    2006-01-01

    The Actinide Removal Process (ARP) facility and the Modular Caustic Side Solvent Extraction Unit (MCU) are scheduled to begin processing salt waste in fiscal year 2007. A portion of the streams generated in the salt processing facilities will be transferred to the Defense Waste Processing Facility (DWPF) to be incorporated in the glass matrix. Before the streams are introduced, a combination of impact analyses and research and development studies must be performed to quantify the impacts on DWPF processing. The Process Science and Engineering (PS and E) section of the Savannah River National Laboratory (SRNL) was requested via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 to evaluate the impacts on DWPF processing. Simulant Chemical Process Cell (CPC) flowsheet studies have been performed using previous composition and projected volume estimates for the ARP sludge/monosodium titanate (MST) stream. Due to changes in the flammability control strategy for DWPF for salt processing, the incorporation strategy for ARP has changed and additional ARP flowsheet tests were necessary to validate the new processing strategy. The last round of ARP testing included the incorporation of the MCU stream and identified potential processing issues with the MCU solvent. The identified issues included the potential carry-over and accumulation of the MCU solvent components in the CPC condensers and in the recycle stream to the Tank Farm. Therefore, DWPF requested SRNL to perform additional MCU flowsheet studies to better quantify the organic distribution in the CPC vessels. The previous MCU testing used a Sludge Batch 4 (SB4) simulant since it was anticipated that both of these facilities would begin salt processing during SB4 processing. The same sludge simulant recipe was used in this round of ARP and MCU testing to minimize the number of changes between the two phases of testing so a better comparison could be made. ARP and MCU stream simulants were made for this phase of

  7. Computer Modeling Of High-Level Waste Glass Temperatures Within DWPF Canisters During Pouring And Cool Down

    International Nuclear Information System (INIS)

    Amoroso, J.

    2011-01-01

    This report describes the results of a computer simulation study to predict the temperature of the glass at any location inside a DWPF canister during pouring and subsequent cooling. These simulations are an integral part of a larger research focus aimed at developing methods to predict, evaluate, and ultimately suppress nepheline formation in HLW glasses. That larger research focus is centered on holistically understanding nepheline formation in HLW glass by exploring the fundamental thermal and chemical driving forces for nepheline crystallization with respect to realistic processing conditions. Through experimental work, the goal is to integrate nepheline crystallization potential in HLW glass with processing capability to ultimately optimize waste loading and throughput while maintaining an acceptable product with respect to durability. The results of this study indicated severe temperature gradients and prolonged temperature dwell times exist throughout different locations in the canister and that the time and temperatures that HLW glass is subjected to during processing is a function of pour rate. The simulations indicate that crystallization driving forces are not uniform throughout the glass volume in a DWPF (or DWPF-like) canister and illustrate the importance of considering overall kinetics (chemical and thermal driving forces) of nepheline formation when developing methods to predict and suppress its formation in HLW glasses. The intended path forward is to use the simulation data both as a driver for future experimental work and, as an investigative tool for evaluating the impact of experimental results. Simulation data will be used to develop laboratory experiments to more acutely evaluate nepheline formation in HLW glass by incorporating the simulated temperatures throughout the canister into the laboratory experiments. Concurrently, laboratory experiments will be performed to identify nepheline crystallization potential in HLW glass as a function of

  8. A technical basis to relax the dew point specification for the environment in the vapor space in DWPF canisters

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1995-05-01

    This memorandum establishes the technical basis to conclude that relaxing, from 0 C to 20 C, the dew point specification for the atmosphere in the vapor space (free volume) of a DWPF canister will not provide an environment that will cause significant amounts of corrosion induced degradation of the canister wall. The conclusion is based on engineering analysis, experience and review of the corrosion literature. The basic assumptions underlying the conclusion are: (1) the canister was fabricated from Type 304L stainless steel; (2) the corrosion behavior of the canister material, including base metal, fusion zones and heat effected zones, is typified by literature data for, and industrial experience with, 300 series austenitic stainless steels; and (3) the glass-metal crevices created during the pouring operation will not alter the basic corrosion resistance of the steel although such crevices might serve as sites for the initiation of minor amounts of corrosion on the canister wall

  9. Final Report - Engineering Study for DWPF Bubblers, VSL-10R1770-1, Rev. 0, dated 12/22/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Joseph, I.; Matlack, K. S.; Kot, W. K.; Diener, G. A.; Pegg, I. L.; Callow, R. A.

    2013-11-13

    The objective of this work was to perform an engineering assessment of the impact of implementation of bubblers to improve mixing of the glass pool, and thereby increase throughput, in the Defense Waste Processing Facility (DWPF) on the melter and off-gas system. Most of the data used for this evaluation were from extensive melter tests performed on non-SRS feeds. This information was supplemented by more recent results on SRS HLW simulants that were tested on a melter system at VSL under contracts from ORP and SRR. Per the work scope, the evaluation focused on the following areas: Glass production rate; Corrosion of melter components; Power requirements; Pouring stability; Off-gas characteristics; Safety and flammability.

  10. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    International Nuclear Information System (INIS)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

    2013-01-01

    This report contains the results and comparison of data generated from inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition

  11. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT01, KT02, KT03, AND KT04-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2010-11-01

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT01 and KT02-series of glasses were chosen to allow for the identification of the influence of the concentrations of major components of the glass on the retention of TiO{sub 2}. The KT03 series of glasses was chosen to allow for the identification of these influences when higher Nb{sub 2}O{sub 5} and ZrO{sub 2} concentrations are included along with TiO2. The KT04 series of glasses was chosen to investigate the properties and performance of glasses based on the best available projections of actual compositions to be processed at the DWPF (i.e., future sludge batches including the SCIX streams).

  12. Late Wash/Nitric Acid flowsheet hydrogen generation bases for simulation of a deflagration/detonation in the DWPF CPC

    International Nuclear Information System (INIS)

    Ritter, J.A.

    1993-01-01

    Hydrogen generation data obtained from IDMS runs PX4 and PX5 will be used to determine a bases for a deflagration/detonation simulation in the DWPF CPC. This simulation is necessary due to the new chemistry associated with the Late Wash/ Nitric Acid flowsheet and process modifications associated with the presence of H 2 in the offgas. The simulation will be performed by Professor Van Brunt from the University of South Carolina. The scenario which leads up to the deflagration/detonation simulation will be chosen such that the following conditions apply. The SRAT is filled to its maximum operating level with 9,600 gal of sludge, which corresponds to the minimum vapor space above the sludge. The SRAT is at the boiling point, producing H 2 at a very low rate (about 10 % of the peak) and 15 scfm of air inleakage is entering the SRAT. Then, the H 2 generation rate will be allowed to increase exponentially (catalyst activation) until it readies the peak H 2 generation rate of the IDMS run, after which the H 2 generation rate will be allowed to decay exponentially (catalyst deactivation) until the total amount of H2 produced is between 85 and 100% of that produced during the IDMS run

  13. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    International Nuclear Information System (INIS)

    Clemons, J.S.

    1993-01-01

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51

  14. REMOTE IN-CELL SAMPLING IMPROVEMENTS PROGRAM AT THESAVANNAH RIVER SITE (SRS) DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Marzolf, A

    2007-01-01

    Remote Systems Engineering (RSE) of the Savannah River National Lab (SRNL) in combination with the Defense Waste Processing Facility(DWPF) Engineering and Operations has evaluated the existing equipment and processes used in the facility sample cells for 'pulling' samples from the radioactive waste stream and performing equipment in-cell repairs/replacements. RSE has designed and tested equipment for improving remote in-cell sampling evolutions and reducing the time required for in-cell maintenance of existing equipment. The equipment within the present process tank sampling system has been in constant use since the facility start-up over 17 years ago. At present, the method for taking samples within the sample cells produces excessive maintenance and downtime due to frequent failures relative to the sampling station equipment and manipulator. Location and orientation of many sampling stations within the sample cells is not conducive to manipulator operation. The overextension of manipulators required to perform many in-cell operations is a major cause of manipulator failures. To improve sampling operations and reduce downtime due to equipment maintenance, a Portable Sampling Station (PSS), wireless in-cell cameras, and new commercially available sampling technology has been designed, developed and/or adapted and tested. The uniqueness of the design(s), the results of the scoping tests, and the benefits relative to in-cell operation and reduction of waste are presented

  15. Potentiality of a frit waste from ceramic sector as raw material to glass-ceramic material production; Potencialidad de un residuo de frita procedente del sector ceramico como materia prima para la produccion de material vitroceramico

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina Albert, E.; Llop Pla, J.; Notari Abad, M. D.; Carda Castello, J. B.

    2015-10-01

    This work consists of studying the devitrification capacity of a residue from sodium-calcium frit, using the vitreous powder sintering method, which follows the traditional ceramic processing route, including a specific heat treatment to generate the appearance of crystals from the original glass phase. Initially the frit residue has been characterized by instrumental techniques such as XRF, XRD and DTA/TG. Furthermore, the chemical analysis (XRF) has allowed the prediction of devitrification potentiality of this residue by theoretical approaches represented by Gingsberg, Raschin-Tschetverikov and Lebedeva ternary diagrams. Then, this residue was subjected to traditional ceramic method, by changing the grinding time, the pressing pressure and prepared samples were obtained at different temperatures. In this part, the techniques for measuring particle size by laser diffraction and XRD and SEM to evaluate the generated crystalline phases, were applied. Finally, it has been found that this frit residue works as glass-ceramic precursor, devitrifying in wollastonite crystals as majority phase and without being subjected to the melting step of the glass-ceramic typical method. (Author)

  16. DWPF SB6 Initial CPC Flowsheet Testing SB6-1 TO SB6-4L Tests Of SB6-A And SB6-B Simulants

    International Nuclear Information System (INIS)

    Lambert, D.; Pickenheim, B.; Best, D.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing in late fiscal year 2010. Tests were conducted using non-radioactive simulants of the expected SB6 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2008-0043, Rev.0 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT and QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. These studies were conducted with the estimated SB6 composition at the time of the study. This composition assumed a blend of 101,085 kg of Tank 4 insoluble solids and 179,000 kg of Tank 12 insoluble solids. The current plans are to subject Tank 12 sludge to aluminum dissolution. Liquid Waste Operations assumed that 75% of the aluminum would be dissolved during this process. After dissolution and blending of Tank 4 sludge slurry, plans included washing the contents of Tank 51 to ∼1M Na. After the completion of washing, the plan assumes that 40 inches on Tank 40 slurry would remain for blending with the qualified SB6 material. There are several parameters that are noteworthy concerning SB6 sludge: (1) This is the second batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution; (2) The sludge is high in mercury, but the projected concentration is lower than SB5; (3) The sludge is high in noble metals, but the projected concentrations are lower than SB5; and(4) The sludge is high in U and Pu - components that are not added in sludge simulants. Six DWPF process simulations were completed in 4-L laboratory-scale equipment using

  17. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-25

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  18. Glass Frit Dissolution Influenced by Material Composition and the Water Content in Iodide/Triiodide Electrolyte of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Katrine Flarup Jensen

    2013-01-01

    Full Text Available To ensure long-term stable dye-sensitized solar cells (DSCs and modules, a hermetic sealing is required. This research investigates the chemical stability of I-/I3- redox electrolyte and four different glass frits (GFs. Sintered GF layers were openly exposed to nonaqueous redox electrolyte and redox electrolyte with 1, 5, and 10 wt% H2O in thin, encapsulated cells. The change in I3− absorbance was assigned to a reaction between the GF and I-/I3- electrolyte and was used to evaluate the chemical stability of the different GFs. The I3− absorbance change was monitored over 100 days. Two out of the four GFs were unstable when H2O was added to the redox electrolyte. The H2O caused metal ion leaching which was determined from EDX analysis of the inorganic remains of electrolyte samples. A GF based on Bi2O3–SiO2–B2O3 with low bond strength leached bismuth into electrolyte and formed the BiI3- complex. A ZnO–SiO2–Al2O3-based GF also became unstable when H2O was added to the redox electrolyte. Leaching of zinc ions due to exchange with H+ resulted in the formation of a zinc-iodine compound which caused I3− depletion. By applying the test design to different types of GFs, the material suitability in the DSC working environment was investigated.

  19. The determination of nitrogen dioxide in ambient air with free hanging filters as passive samplers, and a new calibration method using fritted bubblers.

    Science.gov (United States)

    Heeres, Paul; Setiawan, Rineksa; Krol, Maarten Cornelis; Adema, Eduard Hilbrand

    2009-12-01

    This paper describes two new methods for the determination of NO(2) in the ambient air. The first method consists of free hanging filters with a diameter of 2.5 cm as passive samplers. The filters are impregnated with triethanolamine to bind NO(2). With standard colorimetrical analysis, the amount of NO(2) on the filters is determined. The second method is performed with fritted bubblers filled with Saltzman reagent, where, with a special procedure the absorption efficiencies of the bubblers are determined using ambient air, without the use of standard gases and electronic analytical instruments. The results of the bubblers are used to calibrate the free hanging filters. The two methods were applied simultaneously in the city of Yogyakarta, Indonesia. The methods are inexpensive and very well suited for use in low-budget situations. A characteristic of the free filter is the Sampling Volume, SV. This is the ratio of the amount of NO(2) on the filter and the ambient concentration. With the filter used in this study, the amount of triethanolamine and exposure time, the SV is 0.0166 m(3). The sampling rate (SR) of the filter, 4.6 cm(3)/s, is high. Hourly averaged measurements are performed for 15 hours per day in four busy streets. The measured amounts of NO(2) on the filters varied between 0.57 and 2.02 microg NO(2), at ambient air concentrations of 32 to 141 microg/m(3) NO(2). During the experiments the wind velocity was between 0.2 and 2.0 m/s, the relative humidity between 24 and 83 % and the temperature between 295 K and 311 K. These variations in weather conditions have no influence on the uptake of NO(2).

  20. Technical Report on the Impact of MgO on Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Schultz, R.L.

    2000-01-01

    The purpose of this study was to determine the effect(s) of removing MgO from DWPF frits to assess the impact on liquidus temperature and the durability of the glass product. Removal of MgO from the frit was hypothesized to lead to a decrease in liquidus temperature and thereby allow increased waste loading

  1. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  2. Decontamination of Savannah River Plant waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant (SRP) liquid, high-level radioactive waste into a solid form, such as borosilicate glass. The outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF to prevent the spread of radioactivity. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated byproducts which are difficult to immobilize by vitrification

  3. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  4. Glassceramics frits attainment from industrial solid wastes

    International Nuclear Information System (INIS)

    Ferreira, Matheus Chianca

    2006-01-01

    This work studies the residue obtained from the process of aluminum metal extraction activities, a great interest process, because of Brazil own some of the biggest bauxite mineral reserves in all the world. As a useful choice for no residue generation, and a support for environmentally friendly technologies, this work studies the white dross residue (WDR), from the process of aluminum metal reduction by thermal plasma. The phase equilibrium diagram of Al 2 O 3 -Ca O-SiO 2 system was used to calculate the compositions. The WDR were incorporated in a ceramic product without modifying its principal characteristics. The fusion and devitrification treatments were studied. XRD (X-ray diffractometry), SEM (scanning electron microscopy) and FTIR (transformed Fourier infrared) were used to investigate the glass and glassceramic samples. These techniques showed that is possible to get glassceramic with up to 30 mass% of WDR after molten at 1300 deg C and annealed at 900 deg C. In addition, the WDR showed to be a promising material in attainment of crystalline phases in less times of heat treatment for annealing. (author)

  5. The impact of the MCU life extension solvent on sludge batch 8 projected operating windows

    International Nuclear Information System (INIS)

    Peeler, D.K.; Edwards, T.B.

    2013-01-01

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01 M) boric acid stream into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B203 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 - SB8 flowsheet to additions of B203 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 - SB8 system regardless of the presence or absence of

  6. TECHNOLOGY DEMONSTRATION OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION: GLASS FORMULATION PROCESSING WINDOW PREDICTIONS FOR SB5

    International Nuclear Information System (INIS)

    Fox, K.; Tommy Edwards, T.; David Peeler, D.

    2007-01-01

    Composition projections for Sludge Batch 5 (SB5) were developed, based on a modeling approach at the Savannah River National Laboratory (SRNL), to evaluate possible impacts of the Al-dissolution process on the availability of viable frit compositions for vitrification at the Defense Waste Processing Facility (DWPF). The study included two projected SB5 compositions that bound potential outcomes (or degrees of effectiveness) of the Al-dissolution process, as well as a nominal SB5 composition projection based on the results of the recent Al-dissolution demonstration at SRNL. The three SB5 projections were the focus of a two-stage paper study assessment. A Nominal Stage assessment combined each of the SB5 composition projections with an array of 19,305 frit compositions over a wide range of waste loading (WL) values and evaluated them against the DWPF process control models. The Nominal Stage results allowed for the down-selection of a small number of frits that provided reasonable projected operating windows (typically 27 to 42 wt% WL). The frit/sludge systems were mostly limited by process related constraints, with only one system being limited by predictions of nepheline crystallization, a waste form affecting constraint. The criteria applied in selecting the frit compositions somewhat restricted the compositional flexibility of the candidate frits for each individual SB5 composition projection, which may limit the ability to further tailor the frit for improved melt rate. Variation Stage assessments were then performed using the down-selected frits and the three SB5 composition projections with variation applied to each sludge component. The Variation Stage results showed that the operating windows were reduced in width, as expected when variation in the sludge composition is applied. However, several of the down-selected frits exhibited a relatively high degree of robustness to the applied sludge variation, providing WL windows of approximately 30 to 39 wt%. The

  7. DWPF Glass Melter Technology Manual: Volume 4

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter

  8. DWPF Glass Melter Technology Manual: Volume 1

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs

  9. Control of DWPF melter feed composition

    International Nuclear Information System (INIS)

    Brown, K.G.; Edwards, R.E.; Postles, R.L.; Randall, C.T.

    1989-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility

  10. DWPF Glass Melter Technology Manual: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  11. DWPF Glass Melter Technology Manual: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  12. DWPF Glass Melter Technology Manual: Volume 3

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs

  13. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  14. MB3-Miner: efficiently mining eMBedded subTREEs using Tree Model Guided candidate generation

    NARCIS (Netherlands)

    Tan, H.; Dillon, T.; Hadzic, F.; Chang, E.; Feng, L.

    2005-01-01

    Tree mining has many useful applications in areas such as Bioinformatics, XML mining, Web mining, etc. In general, most of the formally represented information in these domains is a tree structured form. In this paper we focus on mining frequent embedded subtrees from databases of rooted labeled

  15. The Impact of the Source of Alkali on Sludge Batch 3 Melt Rate

    International Nuclear Information System (INIS)

    Smith, M

    2005-01-01

    Previous Savannah River National Laboratory (SRNL) melt rate tests in support of the Defense Waste Processing Facility (DWPF) have indicated that improvements in melt rate can be achieved through an increase in the total alkali of the melter feed. Higher alkali can be attained by the use of an ''underwashed'' sludge, a high alkali frit, or a combination of the two. Although the general trend between melt rate and total alkali (in particular Na 2 O content) has been demonstrated, the question of ''does the source of alkali (SOA) matter?'' still exists. Therefore the purpose of this set of tests was to determine if the source of alkali (frit versus sludge) can impact melt rate. The general test concept was to transition from a Na 2 O-rich frit to a Na 2 O-deficient frit while compensating the Na 2 O content in the sludge to maintain the same overall Na 2 O content in the melter feed. Specifically, the strategy was to vary the amount of alkali in frits and in the sludge batch 3 (SB3) sludge simulant (midpoint or baseline feed was SB3/Frit 418 at 35% waste loading) so that the resultant feeds had the same final glass composition when vitrified. A set of SOA feeds using frits ranging from 0 to 16 weight % Na 2 O (in 4% increments) was first tested in the Melt Rate Furnace (MRF) to determine if indeed there was an impact. The dry-fed MRF tests indicated that if the alkali is too depleted from either the sludge (16% Na 2 O feed) or the frit (the 0% Na 2 O feed), then melt rate was negatively impacted when compared to the baseline SB3/Frit 418 feed currently being processed at DWPF. The MRF melt rates for the 4 and 12% SOA feeds were similar to the baseline SB3/Frit 418 (8% SOA) feed. Due to this finding, a smaller subset of SOA feeds that could be processed in the DWPF (4 and 12% SOA feeds) was then tested in the Slurry-fed Melt Rate Furnace (SMRF). The results from a previous SMRF test with SB3/Frit 418 (Smith et al. 2004) were used as the SMRF melt rate of the baseline

  16. High-level waste processing at the Savannah River Site: An update

    International Nuclear Information System (INIS)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ''sludge-only'' composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ''coupled'' feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates

  17. SLUDGE MASS REDUCTION: PRIMARY COMPOSITIONAL FACTORS THAT INFLUENCE MELT RATE FOR FUTURE SLUDGE BATCH PROJECTIONS

    International Nuclear Information System (INIS)

    Newell, J; Miller, D; Stone, M; Pickenheim, B

    2008-01-01

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets. Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe 2+ /ΣFe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit

  18. New cementitious system: The case of glass frit

    Science.gov (United States)

    Fares, Galal

    Canada ranks as the world's third largest aluminium producer, and more than 80% of its aluminum industry is concentrated in Quebec. However, the spent pot-liner waste produced by the aluminium smelters accumulates with time into a considerable amount threatening the Canadian environment, especially that of Quebec. A new-engineered material, known as glass fit (GF) has been developed through the chemical treatment of such waste. GF shows potential hydraulic and pozzolanic properties. GF has been studied as a binder itself and as a supplementary cementitious material (SCM). The activation of industrial by-products into clinkerless binders is a novel trend that has attracted the attention of many researchers. The activation of GF into binder to produce paste, mortar and concrete was the first aim of this study. Potential activation of GF using different types and combinations of inorganic activators and temperatures of activation was successfully achieved and high strength concretes were obtained. Moreover, mortars with high compressive strength were obtained with well-formulated activators at ambient temperature. On the other hand, the utilization of industrial by-products as a partial replacement for cement in concrete is a widespread practice. As GF contains a high concentration of sodium in its structure, there is a concern as to the effect of sodium content on the development of alkali-silica reaction (ASR) expansion of concrete. Therefore, this study also aimed to investigate the effect of GF sodium content in the enhancement of ASR expansion and to find new synergistic mixtures that can effectively mitigate ASR expansion in the long term. We observed that ASR expansion decreases with the replacement level of GF. Different synergistic diagrams containing known SCM (silica fume, fly ash, and slag) were achieved from which different effective mixtures can effectively alleviate ASR expansion. In conclusion, the use of GF in the manufacture of concrete has great benefits. Economically, it could save millions of Canadian dollars needed for the treatment and landfilling of spent pot-liner waste. Ecologically, it could reduce GHG emissions associated with the production of cement clinkers. In this study, most of the well-known by-products are used according to the sustainability theory.

  19. Nikolaj K. Andersen: USA skal ikke give kineserne frit spil

    DEFF Research Database (Denmark)

    Andersen, Nikolaj K.

    2016-01-01

    Den amerikanske rebalancering til Asien har haft større betydning, end mange anerkender. Og det er godt, for USA skal fortsat holde sig engageret i Sydøstasien og lægge pres på Kina. Muligheden for en amerikansk-kinesisk krig kan nemlig ikke afskrives.......Den amerikanske rebalancering til Asien har haft større betydning, end mange anerkender. Og det er godt, for USA skal fortsat holde sig engageret i Sydøstasien og lægge pres på Kina. Muligheden for en amerikansk-kinesisk krig kan nemlig ikke afskrives....

  20. The product composition control system at Savannah River: Statistical process control algorithm

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be used to immobilize the approximately 130 million liters of high-level nuclear waste currently stored at the site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive insoluble sludge and precipitate and less radioactive water soluble salts. In DWPF, precipitate (PHA) is blended with insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in an geologic repository. Described here is the Product Composition Control System (PCCS) process control algorithm. The PCCS is the amalgam of computer hardware and software intended to ensure that the melt will be processable and that the glass wasteform produced will be acceptable. Within PCCS, the Statistical Process Control (SPC) Algorithm is the means which guides control of the DWPF process. The SPC Algorithm is necessary to control the multivariate DWPF process in the face of uncertainties arising from the process, its feeds, sampling, modeling, and measurement systems. This article describes the functions performed by the SPC Algorithm, characterization of DWPF prior to making product, accounting for prediction uncertainty, accounting for measurement uncertainty, monitoring a SME batch, incorporating process information, and advantages of the algorithm. 9 refs., 6 figs

  1. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  2. Demonstration of the Defense Waste Processing Facility vitrification process for Tank 42 radioactive sludge -- Glass preparation and characterization

    International Nuclear Information System (INIS)

    Bibler, N.E.; Fellinger, T.L.; Marshall, K.M.; Crawford, C.L.; Cozzi, A.D.; Edwards, T.B.

    1999-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is currently processing and immobilizing the radioactive high level waste sludge at SRS into a durable borosilicate glass for final geological disposal. The DWPF has recently finished processing the first radioactive sludge batch, and is ready for the second batch of radioactive sludge. The second batch is primarily sludge from Tank 42. Before processing this batch in the DWPF, the DWPF process flowsheet has to be demonstrated with a sample of Tank 42 sludge to ensure that an acceptable melter feed and glass can be made. This demonstration was recently completed in the Shielded Cells Facility at SRS. An earlier paper in these proceedings described the sludge composition and processes necessary for producing an acceptable melter fee. This paper describes the preparation and characterization of the glass from that demonstration. Results substantiate that Tank 42 sludge after mixing with the proper amount of glass forming frit (Frit 200) can be processed to make an acceptable glass

  3. VIDRIADO CON LÁSER DE Nd: YAG SOBRE AZULEJOS RECUBIERTOS DE BARNICES DE COBALTO CON FRITA BORÁCICA Y SIN FRITA VIDRADO COM Laser De Nd: YAG SOBRE AZULEJOS RECOBERTOS DE VERNIZES DE COBALTO COM FRITA BORÁCICA E SEM FRITA Nd: YAG LASER ENAMELING ON GLAZED TILES COATED WITH COBALT VARNISHES WITH AND WITHOUT BORAX FRIT

    Directory of Open Access Journals (Sweden)

    Maryory Astrid Gómez

    2010-07-01

    ças durante o processo sem requerer longas paradas, e a geração de resíduos é mínima ou quase nula. Neste estudo se apresentam os resultados obtidos no vidrado com laser Nd:YAG (l=1064 nm, sobre as superfícies esmaltadas de azulejos, as quais foram previamente recobertas com pigmento preto de cobalto e um verniz constituído com este mesmo pigmento e frita borácica. Com o laser operando em modo contínuo (CW, marcaram-se uma série de linhas, cujo largo e profundidade evidenciaram uma dependência direta com a variação da potência e velocidade de deslocamento do feixe laser sobre a superfície do azulejo. Finalmente, estas linhas vidradas foram analisadas por microscopia óptica, espectroscopia de dispersão de energia (EDS e difração de raios X.Ceramic and architectonic materials industries employ different marking techniques with two classical applications, identification and decoration of manufactured objects. Laser techniques using for these proposes are been implemented in growing way, due to theirs advantages with regard to the conventional baking such as: heat is concentrated only on the radiated zone which involves a smaller energy consumption without affecting significantly the rest of the piece; graphic patterns with of highly spatial resolution are obtained; it permits to introduce changes during the process no requiring long stops and low or almost none generation of residues. In this study the results obtained from Nd:YAG (l=1064 nm laser glazing on the enameled surfaces of glazed tiles, which were previously covered with cobalt black pigment and an enamel constituted with this same pigment and borax frit, are presented. With the laser operating in continuous wave (CW, a series of lines were marked, whose width and depth showed a direct dependence with the variation in the power and scan speed of the laser beam on the glazed tile surface. Finally, these glazed lines were characterized by optical microscopy, energy dispersion spectroscopy (EDS, and X

  4. High Level Waste (HLW) Processing Experience with Increased Waste Loading

    International Nuclear Information System (INIS)

    JANTZEN, CAROL

    2004-01-01

    The Defense Waste Processing Facility (DWPF) Engineering requested characterization of glass samples that were taken after the second melter had been operational for about 5 months. After the new melter had been installed, the waste loading had been increased to about 38 weight percentage after a new quasicrystalline liquidus model had been implemented. The DWPF had also switched from processing with refractory Frit 200 to a more fluid Frit 320. The samples were taken after DWPF observed very rapid buildup of deposits in the upper pour spout bore and on the pour spout insert while processing the high waste loading feedstock. These samples were evaluated using various analytical techniques to determine the cause of the crystallization. The pour stream sample was homogeneous, amorphous, and representative of the feed batch from which it was derived. Chemical analysis of the pour stream sample indicated that a waste loading of 38.5 weight per cent had been achieved. The data analysis indicated that surface crystallization, induced by temperature and oxygen fugacity gradients in the pour spout, caused surface crystallization to occur in the spout and on the insert at the higher waste loadings even though there was no crystallization in the pour stream

  5. The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows

    International Nuclear Information System (INIS)

    Peeler, D. K.; Edwards, T. B.; Stone, M. E.

    2013-01-01

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01M) boric acid stream into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B2O3 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 - SB8 flowsheet to additions of B2O3 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 - SB8 system regardless of the presence or absence of

  6. DWPF Stage 2: precipitation test program at Mott

    International Nuclear Information System (INIS)

    Schmitz, M.A.

    1981-01-01

    This memorandum covers the results of the test program conducted at Mott Metallurgical to determine cross-flow filter performance on potassium/cesium tetraphenylborate (K/Cs TPB)-sodium titanate slurries. The test program was designed to provide essential basic operating data to supplement the 1000-gallon cold process tests planned at TNX and the shielded cell tests with actual waste supernate planned by Chemical Technology. The specific Mott Metallurgical test objectives are outlined in DPST-81-722. During the Mott Metallurgical test program an average filtrate flow rate of approximately 0.05 gpm/ft 2 was repeatedly demonstrated over an 8-hr run with 0.5 micron filter elements. Initial Fe/Al sludge concentrations up to 150 ppM did not affect filter performance. Rheologies of the K/Cs TPB-sodium titanate slurries up to 13% by weight, the maximum concentration achieved, are summarized. Several recommendations are made to act as a guide for optimal filter performance

  7. Task plan: Temperatures in DWPF Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Hardy, B.J.

    1993-01-01

    The Bechtel National, Inc. Detailed Design Instructions for Structural Design (DDI-02) requires that concrete components of the GWSB not exceed 150 degrees F for structural elements and 200 degrees F locally over a 24 hour period. In addition, the Waste Acceptance Product Specifications (WAPS) sets the maximum post cooldown temperature of the glass waste-form at 400 degrees C. Various scenarios can be postulated which result in elevated glass and concrete temperatures in the GWSB. Therefore, it is important to determine the concrete and glass temperatures during both normal and off-normal conditions. This document details specific tasks required to develop a technically defensible and verifiable methodology for determining maximum temperatures for the waste-forms and the GWSB concrete structures. All models used in this analysis will satisfy Quality Assurance requirements and be defensible to review and oversight committees

  8. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    International Nuclear Information System (INIS)

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  9. Proposed Strategies for DWPF Melter Off-Gas Surge Control

    International Nuclear Information System (INIS)

    CHOI, ALEXANDERS.

    2004-01-01

    Off-gas surging is inherent to the operation of slurry-fed melters. Although the melter design and the feed chemistry are both known to significantly affect off-gas surging, the frequency and intensity of surges are in essence unpredictable. In typical off-gas surges, both condensable and non condensable flows spike simultaneously. Condensable or steam surges have been observed to occur as the boiling water layer occasionally falls into the crevices of the cold cap or flows over the edges of the cold cap, thereby coming in contact with the melt surface. The resulting steam surges can pressurize the melter considerably and, therefore, are responsible for the bulk of pressure transients that propagate throughout the off-gas system. The non condensable surges occur as the calcine gases that have been accumulating within the cold cap finally build up enough pressure to be released through the temporary openings of the cold cap. The analysis of off-gas data has shown that over 90 of the gas released during a surge is due to steam.1 Therefore, it is essential to have a large inventory of water in the cold cap for any significant pressure spikes to occur. With the Melter 2 vapor space temperature typically running at 720C, the water layer in the cold cap will quickly evaporate once the feeding stops, and the potential for any large pressure spikes should practically cease to exist. The analysis also showed that large pressure spikes well above 2 inches H2O cannot occur under the steam surge scenarios described above. More severe conditions should prevail and one such condition would be that the feed materials form a mound with a growing lake on top, while the melt below remains very fluidic due to its low viscosity, thus resulting in greater movements both in the lateral as well as vertical directions. Once the mound begins to grow, its rate should accelerate, since the heat transfer rate to the upper regions of the cold cap is inversely proportional to the cold cap thickness. Then, when the mound reaches some critical mass, it may begin sink into the bulk melt or tip over, thereby creating a condition almost like a steam explosion

  10. Quality Assurance Program description, Defense Waste Processing Facility (DWPF)

    International Nuclear Information System (INIS)

    Maslar, S.R.

    1992-01-01

    This document describes the Westinghouse Savannah River Company's (WSRC) Quality Assurance Program for Defense Waste Processing at the Savannah River Site (SRS). WSRC is the operating contractor for the US Department of Energy (DOE) at the SRS. The following objectives are achieved through developing and implementing the Quality Assurance Program: (1) Ensure that the attainment of quality (in accomplishing defense high-level waste processing objectives at the SRS) is at a level commensurate with the government's responsibility for protecting public health and safety, the environment, the public investment, and for efficiently and effectively using national resources. (2) Ensure that high-level waste from qualification and production activities conform to requirements defined by OCRWM. These activities include production processes, equipment, and services; and products that are planned, designed, procured, fabricated, installed, tested, operated, maintained, modified, or produced

  11. High Sodium Simulant Testing To Support SB8 Sludge Preparation

    International Nuclear Information System (INIS)

    Newell, J. D.

    2012-01-01

    Scoping studies were completed for high sodium simulant SRAT/SME cycles to determine any impact to CPC processing. Two SRAT/SME cycles were performed with simulant having sodium supernate concentration of 1.9M at 130% and 100% of the Koopman Minimum Acid requirement. Both of these failed to meet DWPF processing objectives related to nitrite destruction and hydrogen generation. Another set of SRAT/SME cycles were performed with simulant having a sodium supernate concentration of 1.6M at 130%, 125%, 110%, and 100% of the Koopman Minimum Acid requirement. Only the run at 110% met DWPF processing objectives. Neither simulant had a stoichiometric factor window of 30% between nitrite destruction and excessive hydrogen generation. Based on the 2M-110 results it was anticipated that the 2.5M stoichiometric window for processing would likely be smaller than from 110-130%, since it appeared that it would be necessary to increase the KMA factor by at least 10% above the minimum calculated requirement to achieve nitrite destruction due to the high oxalate content. The 2.5M-130 run exceeded the DWPF hydrogen limits in both the SRAT and SME cycle. Therefore, testing of this wash endpoint was halted. This wash endpoint with this minimum acid requirement and mercury-noble metal concentration profile appears to be something DWPF should not process due to an overly narrow window of stoichiometry. The 2M case was potentially processable in DWPF, but modifications would likely be needed in DWPF such as occasionally accepting SRAT batches with undestroyed nitrite for further acid addition and reprocessing, running near the bottom of the as yet ill-defined window of allowable stoichiometric factors, potentially extending the SRAT cycle to burn off unreacted formic acid before transferring to the SME cycle, and eliminating formic acid additions in the frit slurry

  12. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9 by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.

  13. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  14. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  15. Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

    1997-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life

  16. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  17. Results from tests of TFL Hydragard sampling loop

    International Nuclear Information System (INIS)

    Steimke, J.L.

    1995-03-01

    When the Defense Waste Processing Facility (DWPF) is operational, processed radioactive sludge will be transferred in batches to the Slurry Mix Evaporator (SME), where glass frit will be added and the contents concentrated by boiling. Batches of the slurry mixture are transferred from the SME to the Melter Feed Tank (MFT). Hydragard reg-sign sampling systems are used on the SME and the MFT for collecting slurry samples in vials for chemical analysis. An accurate replica of the Hydragard sampling system was built and tested in the thermal Fluids Laboratory (TFL) to determine the hydragard accuracy. It was determined that the original Hydragard valve frequently drew a non-representative sample stream through the sample vial that ranged from frit enriched to frit depleted. The Hydragard valve was modified by moving the plunger and its seat backwards so that the outer surface of the plunger was flush with the inside diameter of the transfer line when the valve was open. The slurry flowing through the vial accurately represented the composition of the slurry in the reservoir for two types of slurries, different dilution factors, a range of transfer flows and a range of vial flows. It was then found that the 15 ml of slurry left in the vial when the Hydragard valve was closed, which is what will be analyzed at DWPF, had a lower ratio of frit to sludge as characterized by the lithium to iron ratio than the slurry flowing through it. The reason for these differences is not understood at this time but it is recommended that additional experimentation be performed with the TFL Hydragard loop to determine the cause

  18. Impact of Alkali Source on Vitrification of SRS High Level Waste

    International Nuclear Information System (INIS)

    LAMBERT, D. P.; MILLER, D. H.; PEELER, D. K.; SMITH, M. E.; STONE, M. E.

    2005-01-01

    The Defense Waste Processing Facility (DWPF) Savannah River Site is currently immobilizing high level nuclear waste sludge by vitrification in borosilicate glass. The processing strategy involves blending a large batch of sludge into a feed tank, washing the sludge to reduce the amount of soluble species, then processing the large ''sludge batch'' through the DWPF. Each sludge batch is tested by the Savannah River National Laboratory (SRNL) using simulants and tests with samples of the radioactive waste to ''qualify'' the batch prior to processing in the DWPF. The DWPF pretreats the sludge by first acidifying the sludge with nitric and formic acid. The ratio of nitric to formic acid is adjusted as required to target a final glass composition that is slightly reducing (the target is for ∼20% of the iron to have a valence of two in the glass). The formic acid reduces the mercury in the feed to elemental mercury which is steam stripped from the feed. After a concentration step, the glass former (glass frit) is added as a 50 wt% slurry and the batch is concentrated to approximately 50 wt% solids. The feed slurry is then fed to a joule heated melter maintained at 1150 C. The glass must meet both processing (e.g., viscosity and liquidus temperature) and product performance (e.g., durability) constraints The alkali content of the final waste glass is a critical parameter that affects key glass properties (such as durability) as well as the processing characteristics of the waste sludge during the pretreatment and vitrification processes. Increasing the alkali content of the glass has been shown to improve the production rate of the DWPF, but the total alkali in the final glass is limited by constraints on glass durability and viscosity. Two sources of alkali contribute to the final alkali content of the glass: sodium salts in the waste supernate and sodium and lithium oxides in the glass frit added during pretreatment processes. Sodium salts in the waste supernate can

  19. RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.

    2010-02-08

    The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution of SiO{sub 2}, the major frit component. It is likely that the observed precipitation of Mg

  20. Paper Study Evaluations Of The Introduction Of Small Column Ion Exchange Waste Streams To The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-01-01

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb 2 O 5 , TiO 2 , and ZrO 2 , to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is targeted for Sludge

  1. Sampling data summary for the ninth run of the Large Slurry Fed Melter

    International Nuclear Information System (INIS)

    Sabatino, D.M.

    1983-01-01

    The ninth experimental run of the Large Slurry Fed Melter (LSFM) was completed June 27, 1983, after 63 days of continuous operation. During the run, the various melter and off-gas streams were sampled and analyzed to determine melter material balances and to characterize off-gas emissions. Sampling methods and preliminary results were reported earlier. The emphasis was on the chemical analyses of the off-gas entrainment, deposits, and scrubber liquid. The significant sampling results from the run are summarized below: Flushing the Frit 165 with Frit 131 without bubbler agitation required 3 to 4.5 melter volumes. The off-gas cesium concentration during feeding was on the order of 36 to 56 μgCs/scf. The cesium concentration in the melter plenum (based on air in leakage only) was on the order of 110 to 210 μgCs/scf. Using <1 micron as the cut point for semivolatile material 60% of the chloride, 35% of the sodium and less than 5% of the managanese and iron in the entrainment are present as semivolatiles. A material balance on the scrubber tank solids shows good agreement with entrainment data. An overall cesium balance using LSFM-9 data and the DWPF production rate indicates an emission of 0.11 mCi/yr of cesium from the DWPF off-gas. This is a factor of 27 less than the maximum allowable 3 mCi/yr

  2. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    International Nuclear Information System (INIS)

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-01-01

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy's Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product

  3. EVALUATION OF MIXING IN THE SLURRY MIX EVAPORATOR AND MELTER FEED TANK

    International Nuclear Information System (INIS)

    MARINIK, ANDREW

    2004-01-01

    The Defense Waste Processing Facility (DWPF) vitrifies High Level radioactive Waste (HLW) currently stored in underground tanks at the Savannah River Site (SRS). The HLW currently being processed is a waste sludge composed primarily of metal hydroxides and oxides in caustic slurry. These slurries are typically characterized as Bingham Plastic fluids. The HLW undergoes a pretreatment process in the Chemical Process Cell (CPC) at DWPF. The processed HLW sludge is then transferred to the Sludge Receipt and Adjustment Tank (SRAT) where it is acidified with nitric and formic acid then evaporated to concentrate the solids. Reflux boiling is used to strip mercury from the waste and then the waste is transferred to the Slurry Mix Evaporator tank (SME). Glass formers are added as a frit slurry to the SME to prepare the waste for vitrification. This mixture is evaporated in the SME to the final concentration target. The frit slurry mixture is then transferred to the Melter Feed Tank (MFT) to be fed to the melter

  4. DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE

    International Nuclear Information System (INIS)

    Click, D; Tommy Edwards, T; Henry Ajo, H

    2008-01-01

    sample by SRNL which consists of the final composition of the sludge (the SB5 Blend); (2) Given the heel of SB4 in Tank 40, the DWPF lab should monitor the aluminum concentration in the first 10 SRAT Receipt batches of SB5 using both CC and sodium peroxide/hydroxide fusion to evaluate the adequacy of aluminum recovery by the CC method for this sludge batch; and (3) SRNL and the DWPF lab should investigate if comparisons between the elemental concentrations of the SME product glass (adjusted for frit addition) obtained by the mixed acid and peroxide fusion digestion and the SRAT Receipt and SRAT Product elemental concentrations obtained via the DWPF CC method provide insight into the adequacy of the CC method for analysis of the SRAT Product. The DWPF lab would need to calcine the SRAT product at 1050 C for the best comparison. If a consistent difference in elemental concentrations is revealed, another type of digestion (i.e. sodium peroxide/hydroxide fusion) should be used to determine the concentration of the element in question. Particular emphasis should be placed on monitoring the aluminum concentration in SB5

  5. Evaluation of borax solid wastes in production of frits suitable for fast ...

    Indian Academy of Sciences (India)

    Administrator

    production cost limiting zircon usage as a raw material at an industrial scale. Therefore ... toxic components is of special interest (Moreva and. Levitskii .... Chemical composition of the borax concentrator waste (CW) used in the study (in wt. %).

  6. Improved conversion rates in drug screening applications using miniaturized electrochemical cells with frit channels.

    Science.gov (United States)

    Odijk, Mathieu; Olthuis, Wouter; van den Berg, A; Qiao, Liang; Girault, Hubert

    2012-11-06

    This paper reports a novel design of a miniaturized three-electrode electrochemical cell, the purpose of which is aimed at generating drug metabolites with a high conversion efficiency. The working electrode and the counter electrode are placed in two separate channels to isolate the reaction products generated at both electrodes. The novel design includes connecting channels between these two electrode channels to provide a uniform distribution of the current density over the entire working electrode. In addition, the effect of ohmic drop is decreased. Moreover, two flow resistors are included to ensure an equal flow of analyte through both electrode channels. Total conversion of fast reacting ions is achieved at flow rates up to at least 8 μL/min, while the internal chip volume is only 175 nL. Using this electrochemical chip, the metabolism of mitoxantrone is studied by microchip electrospray ionization-mass spectrometry. At an oxidation potential of 700 mV, all known metabolites from direct oxidation are observed. The electrochemical chip performs equally well, compared to a commercially available cell, but at a 30-fold lower flow of reagents.

  7. Improved Conversion Rates in Drug Screening Applications sing Miniaturized Electrochemical Cells with Frit Channels

    NARCIS (Netherlands)

    Odijk, Mathieu; Olthuis, Wouter; van den Berg, Albert; Qiao, L.; Girault, H.

    2012-01-01

    This paper reports a novel design of a miniaturized three-electrode electrochemical cell, the purpose of which is aimed at generating drug metabolites with a high conversion efficiency. The working electrode and the counter electrode are placed in two separate channels to isolate the reaction

  8. Brasiliens regering og økonomi - og demokrati - i frit fald

    DEFF Research Database (Denmark)

    Damgaard, Mads; Kolling, Marie

    2016-01-01

    Vidneudsagn og bevismateriale om systematisk korruption hober sig op imod den brasilianske regering, ledet af præsident Dilma Rousseff fra Arbejderpartiet (Partido dos Trabalhadores). Selvom hele det politiske spektrum i Brasiliens kongres er under efterforskernes lup har de nationale medier...

  9. Fake news kan leve længe i et frit marked

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Lundorff Rasmusen, Jan

    2017-01-01

    Der er tydelige ligheder mellem optakten til finanskrisen og "fake news"-boblen, som vi ser i dag......Der er tydelige ligheder mellem optakten til finanskrisen og "fake news"-boblen, som vi ser i dag...

  10. Numeric Simulation of Oxygen Enriched Combustion in a Frit Melting Kiln

    Directory of Open Access Journals (Sweden)

    Bernardo A. Herrera-Múnera

    2013-11-01

    Full Text Available In this paper, a numerical study of air enriched combustion on a natural gas rotary furnace for frita melting is presented. This study was done with the aim of determining an oxygen concentration to ensure economic feasibility of the process without affecting quality requirements. The simulations were conducted using the commercial software ANSYS FLUENT as a design tool to predict the behavior of the thermal system and to establish operations conditions with different oxygen enrichment levels. Finite Rate / Eddy Dissipation model was used for combustion simulation, while k - ε Realizable and Discrete Ordinates models were utilized for turbulence and radiation simulation, respectively. It was found that an enrichment level close to 31% of oxygen in the air allows for reaching temperatures for frita melting larger than 1700 K. In this way, current consumption of high purity oxygen can be diminished without affecting the production levels and the quality of the product.

  11. Materials performance in a high-level radioactive waste vitrification system

    International Nuclear Information System (INIS)

    Imrich, K.J.; Chandler, G.T.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) is a Department of Energy Facility designed to vitrify highly radioactive waste. An extensive materials evaluation program has been completed on key components in the DWPF after twelve months of operation using nonradioactive simulated wastes. Results of the visual inspections of the feed preparation system indicate that the system components, which were fabricated from Hastelloy C-276, should achieve their design lives. Significant erosion was observed on agitator blades that process glass frit slurries; however, design modifications should mitigate the erosion. Visual inspections of the DWPF melter top head and off gas components, which were fabricated from Inconel 690, indicated that varying degrees of degradation occurred. Most of the components will perform satisfactorily for their two year design life. The components that suffered significant attack were the borescopes, primary film cooler brush, and feed tubes. Changes in the operation of the film cooler brush and design modifications to the feed tubes and borescopes is expected to extend their service lives to two years. A program to investigate new high temperature engineered materials and alloys with improved oxidation and high temperature corrosion resistance will be initiated

  12. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be

  13. Two 24-hour Studies of Water Quality in the Ala Wai Canal during March and July, 1994 for the Mamala Bay Study, Pollutant Source Identification Project MB-3, (NODC Accession 0001188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset focuses on studies of water quality in the Ala Wai Canal in order to determine its role of point and non point source disharge into Mamala Bay. The...

  14. MAR Assessments Of The High Level Waste System Plan Revision 16

    International Nuclear Information System (INIS)

    Peeler, D.; Edwards, T.

    2011-01-01

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit of time) is primarily a function of two critical parameters: waste loading (WL) and melt rate. For the Defense Waste Processing Facility (DWPF), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). Significant increases in waste throughput have been achieved at DWPF since initial radioactive operations began in 1996. Key technical and operational initiatives that supported increased waste throughput included improvements in facility attainment, the Chemical Processing Cell (CPC) flowsheet, process control models and frit formulations. As a result of these key initiatives, DWPF increased WLs from a nominal 28% for Sludge Batch 2 (SB2) to ∼34 to 38% for SB3 through SB6 while maintaining or slightly improving canister fill times. Although considerable improvements in waste throughput have been obtained, future contractual waste loading targets are nominally 40%, while canister production rates are also expected to increase (to a rate of 325 to 400 canisters per year). Although implementation of bubblers have made a positive impact on increasing melt rate for recent sludge batches targeting WLs in the mid30s, higher WLs will ultimately make the feeds to DWPF more challenging to process. Savannah River Remediation (SRR) recently requested the Savannah River National Laboratory (SRNL) to perform a paper study assessment using future sludge projections to evaluate whether the current Process Composition Control System (PCCS) algorithms would provide projected operating windows to allow future contractual WL targets to be met. More specifically, the objective of this study was to evaluate future sludge batch projections (based on Revision 16 of the HLW Systems Plan) with respect to projected operating windows using current PCCS models and associated constraints. Based on the assessments, the waste loading interval over

  15. IMPACT OF REDUCING THE 100 C LIQUIDUS TEMPERATURE OFFSET ON WASTE LOADING TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.; Edwards, T.

    2010-11-11

    The objective of this report is to assess the potential impact of reducing conservatism in the implementation of the current liquidus temperature (TL) model in the Product Composition Control System (PCCS) on the ability to target higher waste loadings (WLs) for future sludge batches. No changes to the TL model or the associated uncertainties (model or measurement) are proposed, rather only changes in the magnitude of the offset used between the nominal melt pool temperature (1150 C) and the Property Acceptance Region (PAR) value (1050 C). This strategy is consistent with that outlined and initially assessed by Brown et al. (2001). In that report, the authors stated even a fairly conservative change in this safety factor could have a significant impact on waste loading. The results of this study clearly indicate that the implementation of an 1100 C TL PAR criterion (which translates into a reduction in the TL offset from 100 C to 50 C) can have significantly positive impacts on the ability to gain access to WLs exceeding 45%. This is especially true for those frit and sludge systems that are TL limited using the current 1050 C TL criterion, and are not limited by a second constraint (such as viscosity, nepheline, or durability) until much higher WLs. Examples of various glass forming systems are provided that are currently limited to maximum WLs in the mid-40s, but could be processed in the lower 50s through implementation of this new strategy. One example is in the Sludge Batch 10 (SB10) system, where for a specific glass forming system the projected operating window of 38-41% WL (using the current constraints) became 38-52% WL with the use of an 1100 C TL PAR value. This change both provided access to significantly higher WLs, and transitioned a once infeasible flowsheet to a system that could potentially be processed in the Defense Waste Processing Facility (DWPF). This potential change in the TL constraint also provides access to frit compositions (or glass

  16. Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Tosten, M.H.; Beam, D.C.

    1989-01-01

    The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 x 10 10 rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90 degree C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs

  17. Nitric-glycolic flowsheet reduction/oxidation (redox) model for the defense waste processing facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ramsey, W. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-14

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, retains radionuclides in the melt and thus the final glass. Specifically, long-lived radioactive 99Tc species are less volatile in the reduced Tc4+ state as TcO2 than as NaTcO4 or Tc2O7, and ruthenium radionuclides in the reduced Ru4+ state are insoluble RuO2 in the melt which are not as volatile as NaRuO4 where the Ru is in the +7 oxidation state. Similarly, hazardous volatile Cr6+ occurs in oxidized melt pools as Na2CrO4 or Na2Cr2O7, while the Cr+3 state is less volatile and remains in the melt as NaCrO2 or precipitates as chrome rich spinels. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam.

  18. Pengaruh Frit Gelas Terhadap Karakteristik Keramik Film Tebal FeTiO3 dari Mineral Yarosit untuk Aplikasi Termistor NTC

    Directory of Open Access Journals (Sweden)

    Yus Rama Denny

    2016-03-01

    Full Text Available Pembuatan Dan Karakterisasi Keramik Film Tebal Berbasis FeTiO3 Dari Mineral Yarosit Untuk Aplikasi Termistor NTC. Telah dilakukan studi pembuatan dan karakterisasi termistor NTC dari bahan mineral yarosit. Bahan mineral yarosit dari alam dimurnikan dengan larutan HCl, diendapkan dengan menggunakan NH4OH dan dipanaskan pada suhu kalsinasi 700oC selama 2 jam. Pembuatan termistor NTC dilakukan dengan mecampurkan serbuk yarosit hasil pemurnian dan pengendapan dengan TiO2. Pasta termistor FeTiO3 dicetak dipermukaan alumina substrat dengan metode screen printing, kemudian dilakukan pemanasan pada suhu 500oC selama 1 jam diruangan udara dilanjutkan disinter pada suhu 1100oC selama 1 jam diruangan hidrogen. Sifat listrik keramik film tebal hasil sinter diukur pada berbagai suhu. Struktur kristal dievaluasi dengan difraksi sinar x (XRD, dan struktur mikro dievaluasi dengan menggunakan SEM (Scanning Electron Microscope. Data analisis XRD memperlihatkan bahwa seluruh keramik film tebal berstruktur heksagonal (Illiminite. Data struktur mikro dan sifat listrik memperlihatkan bahwa termistor dari yarosit memenuhi kebutuhan pasar.

  19. Glassceramics frits attainment from industrial solid wastes; Obtencao de fritas vitroceramicas a partir de residuos solidos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Matheus Chianca

    2006-07-01

    This work studies the residue obtained from the process of aluminum metal extraction activities, a great interest process, because of Brazil own some of the biggest bauxite mineral reserves in all the world. As a useful choice for no residue generation, and a support for environmentally friendly technologies, this work studies the white dross residue (WDR), from the process of aluminum metal reduction by thermal plasma. The phase equilibrium diagram of Al{sub 2}O{sub 3}-Ca O-SiO{sub 2} system was used to calculate the compositions. The WDR were incorporated in a ceramic product without modifying its principal characteristics. The fusion and devitrification treatments were studied. XRD (X-ray diffractometry), SEM (scanning electron microscopy) and FTIR (transformed Fourier infrared) were used to investigate the glass and glassceramic samples. These techniques showed that is possible to get glassceramic with up to 30 mass% of WDR after molten at 1300 deg C and annealed at 900 deg C. In addition, the WDR showed to be a promising material in attainment of crystalline phases in less times of heat treatment for annealing. (author)

  20. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  1. Nuclear hazardous waste cost control management

    International Nuclear Information System (INIS)

    Selg, R.A.

    1991-01-01

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes

  2. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R and D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

  3. Glass formulation development and testing for the vitrification of DWPF HLW sludge coupled with crystalline silicotitanate (CST)

    International Nuclear Information System (INIS)

    Andrews, M.K.; Workman, P.J.

    1997-01-01

    An alternative to the In Tank Precipitation and sodium titanate processes at the Savannah River Site is the removal of cesium, strontium, and plutonium from the tank supernate by ion exchange using crystalline silicotitanate (CST). This inorganic material has been shown to effectively and selectively sorb these elements from supernate. The loaded CST could then be immobilized with High-Level Waste (HLW) sludge during vitrification. Initial efforts on the development of a glass formulation for a coupled waste stream indicate that reasonable loadings of both sludge and CST can be achieved in glass

  4. Methods of Off-Gas Flammability Control for DWPF Melter Off-Gas System at Savannah River Site

    International Nuclear Information System (INIS)

    Choi, A.S.; Iverson, D.C.

    1996-01-01

    Several key operating variables affecting off-gas flammability in a slurry-fed radioactive waste glass melter are discussed, and the methods used to prevent potential off-gas flammability are presented. Two models have played a central role in developing such methods. The first model attempts to describe the chemical events occurring during the calcining and melting steps using a multistage thermodynamic equilibrium approach, and it calculates the compositions of glass and calcine gases. Volatile feed components and calcine gases are fed to the second model which then predicts the process dynamics of the entire melter off-gas system including off-gas flammability under both steady state and various transient operating conditions. Results of recent simulation runs are also compared with available data

  5. Analysis of mercury in simulated nuclear waste

    International Nuclear Information System (INIS)

    Policke, T.A.; Johnson, L.C.; Best, D.R.

    1991-01-01

    Mercury, Hg, is a non-radioactive component in the High Level Waste at the Savannah River Site (SRS). Thus, it is a component of the Defense Waste Processing Facility's (DWPF) process streams. It is present because mercuric nitrate (Hg(NO 3 ) 2 ) is used to dissolve spent fuel rods. Since mercury halides are extremely corrosive, especially at elevated temperatures such as those seen in a melter (1150 degrees C), its concentration throughout the process needs to be monitored so that it is at an acceptable level prior to reaching the melter off-gas system. The Hg can be found in condensates and sludge feeds and throughout the process and process lines, i.e., at any sampling point. The different samples types that require Hg determinations in the process streams are: (1) sludges, which may be basic or acidic and may or may not include aromatic organics, (2) slurries, which are sludges with frit and will always contain organics (formate and aromatics), and (3) condensates, from feed prep and melter off-gas locations. The condensates are aqueous and the mercury may exist as a complex mixture of halides, oxides, and metal, with levels between 10 and 100 ppm. The mercury in the sludges and slurries can be Hg 0 , Hg +1 , or Hg +2 , with levels between 200 and 3000 ppm, depending upon the location, both time and position, of sampling. For DWPF, both total and soluble Hg concentrations need to be determined. The text below describes how these determinations are being made by the Defense Waste Processing Technology (DWPT) Analytical Laboratory at the Savannah River Site. Both flame atomic absorption (FAA) and cold vapor atomic (CVAA) measurements are discussed. Also, the problems encountered in the steps toward measuring HG in these samples types of condensates and sludges are discussed along with their solutions

  6. The determination of nitrogen dioxide in ambient air with free hanging filters as passive samplers, and a new calibration method using fritted bubblers

    NARCIS (Netherlands)

    Heeres, P.; Setiawan, R.; Krol, M.C.; Adema, E.H.

    2009-01-01

    This paper describes two new methods for the determination of NO2 in the ambient air. The first method consists of free hanging filters with a diameter of 2.5 cm as passive samplers. The filters are impregnated with triethanolamine to bind NO2. With standard colorimetrical analysis, the amount of

  7. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste

  8. Reduction Of Constraints For Coupled Operations

    International Nuclear Information System (INIS)

    Raszewski, F.; Edwards, T.

    2009-01-01

    The homogeneity constraint was implemented in the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) to help ensure that the current durability models would be applicable to the glass compositions being processed during DWPF operations. While the homogeneity constraint is typically an issue at lower waste loadings (WLs), it may impact the operating windows for DWPF operations, where the glass forming systems may be limited to lower waste loadings based on fissile or heat load limits. In the sludge batch 1b (SB1b) variability study, application of the homogeneity constraint at the measurement acceptability region (MAR) limit eliminated much of the potential operating window for DWPF. As a result, Edwards and Brown developed criteria that allowed DWPF to relax the homogeneity constraint from the MAR to the property acceptance region (PAR) criterion, which opened up the operating window for DWPF operations. These criteria are defined as: (1) use the alumina constraint as currently implemented in PCCS (Al 2 O 3 (ge) 3 wt%) and add a sum of alkali constraint with an upper limit of 19.3 wt% (ΣM 2 O 2 O 3 constraint to 4 wt% (Al 2 O 3 (ge) 4 wt%). Herman et al. previously demonstrated that these criteria could be used to replace the homogeneity constraint for future sludge-only batches. The compositional region encompassing coupled operations flowsheets could not be bounded as these flowsheets were unknown at the time. With the initiation of coupled operations at DWPF in 2008, the need to revisit the homogeneity constraint was realized. This constraint was specifically addressed through the variability study for SB5 where it was shown that the homogeneity constraint could be ignored if the alumina and alkali constraints were imposed. Additional benefit could be gained if the homogeneity constraint could be replaced by the Al 2 O 3 and sum of alkali constraint for future coupled operations processing based on projections from Revision 14 of

  9. Waste removal sequencing using ProdMod

    International Nuclear Information System (INIS)

    Paul, P.K.; Gregory, M.V.; Davis, N.R.; Brooke, J.N.

    1996-01-01

    The Savannah River Site (SRS) is starting to solidify its accumulated high-level radioactive waste into borosilicate glass in stainless steel canisters for eventual permanent storage. The in-tank precipitation process (ITP) and extended sludge processing (ESP) are two key operations in the waste processing complex. The supernate and dissolved salt from the waste storage tanks are transferred to the ITP process tank where the solution is decontaminated in batch processes. Soluble radioactive cesium is precipitated with sodium tetraphenylborate and strontium, uranium, and plutonium are adsorbed on monosodium titanate. The precipitate and adsorbent solids, which now contain the radionuclides, are concentrated using crossflow filters. The concentrated solids are sent to the high-level waste vitrification process. The decontaminated salt solution is sent to the low-level waste solidification process to form cement grout. In parallel with the precipitate operations, insoluble sludges that settled originally to the bottom of the waste tanks are reslurried and sent to ESP to undergo washing to reduce soluble salt content and aluminum dissolution, if required. In the vitrification process in the Defense Waste Processing Facility (DWPF), the concentrated precipitate from the ITP is mixed with the washed sludge from ESP and glass frit in proportion to form a stable borosilicate glass. A novel and fast-running Production Planning Model (ProdMod) has been developed to simulate the waste processing operation. This paper describes the application of ProdMod in sequencing the ITP batches and scheduling the ESP batches

  10. A summary report on feed preparation offgas and glass redox data for Hanford waste vitrification plant: Letter report

    International Nuclear Information System (INIS)

    Merz, M.D.

    1996-03-01

    Tests to evaluate feed processing options for the Hanford Waste Vitrification Plant (HWVP) were conducted by a number of investigators, and considerable data were acquired for tests of different scale, including recent full-scale tests. In this report, a comparison was made of the characteristics of feed preparation observed in tests of scale ranging from 57 ml to full-scale of 28,000 liters. These tests included Pacific Northwest Laboratory (PNL) laboratory-scale tests, Kernforschungszentrums Karlsruhe (KfK) melter feed preparation, Research Scale Melter (RSM) feed preparation, Integrated DWPF Melter System (IDMS) feed preparation, Slurry Integrated Performance Testing (SIPT) feed preparation, and formic acid addition to Hanford Neutralized Current Acid Waste (NCAW) care samples.' The data presented herein were drawn mainly from draft reports and include system characteristics such as slurry volume and depth, sweep gas flow rate, headspace, and heating and stirring characteristics. Operating conditions such as acid feed rate, temperature, starting pH, final pH, quantities and type of frit, nitrite, nitrate, and carbonate concentrations, noble metal content, and waste oxide loading were tabulated. Offgas data for CO 2 , NO x , N 2 O, NO 2 , H 2 and NH 3 were tabulated on a common basis. Observation and non-observation of other species were also noted

  11. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  12. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  13. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  14. The Impact of the Proposed delta Gp Limits on Glass Formulation Efforts: Part II. Experimental Results

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    The Savannah River National Laboratory (SRNL) has initiated studies to assess alternative durability options that may provide access to compositional regions of interest in support of the accelerated cleanup mission at the Defense Waste Processing Facility (DWPF). One of the options being pursued is the redefinition of the durability model acceptability limits. Some of the conservative steps used in establishing the current limits without compromising the high confidence required for meeting the specification on the waste form quality were identified and eliminated. The results led to a set of three new Property Acceptability Region (PAR) values for the preliminary glass dissolution estimator that has the potential to allow access to compositional regions of interest to improve melt rate or waste loading. Although these limits are available for implementation, there is no driving force to do so with the current sludge batch (i.e., the current Frit 418 - Sludge Batch 3 (SB3) system is TL limited). The objectives of this task were to investigate (and generate) the incentive of applying the proposed durability limits in the Product Composition Control System (PCCS) from a glass formulation perspective. Glass compositions were identified or developed to transition into and through the region of GP acceptability as defined by the current and proposed durability limits. The progression through the newly defined acceptability region was accomplished by increasing the total alkali in the glass via higher alkali frits and/or waste loading (WL). The focus of this report is on the measured durability response as it compares to model predictions to assess the applicability and/or potential conservatism of the various limits or durability approaches. The normalized boron release values (NL [B] g/L) for the study glasses ranged from approximately 1.0 g/L to 2.0 g/L. The Product Consistency Test (PCT) responses provide evidence that implementation of the proposed GP limits will

  15. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    The purpose of the high-level waste (HLW) glass melt rate study is two-fold: (1) to gain a better understanding of the impact of feed chemistry on melt rate through bench-scale testing, and (2) to develop a predictive tool for melt rate in support of the on-going frit development efforts for the Defense Waste Processing Facility (DWPF). In particular, the focus is on predicting relative melt rates, not the absolute melt rates, of various HLW glass formulations solely based on feed chemistry, i.e., the chemistry of both waste and glass-forming frit for DWPF. Critical to the successful melt rate modeling is the accurate determination of the melting rates of various HLW glass formulations. The baseline procedure being used at the Savannah River National Laboratory (SRNL) is to; (1) heat a 4 inch-diameter stainless steel beaker containing a mixture of dried sludge and frit in a furnace for a preset period of time, (2) section the cooled beaker along its diameter, and (3) measure the average glass height across the sectioned face using a ruler. As illustrated in Figure 1-1, the glass height is measured for each of the 16 horizontal segments up to the red lines where relatively large-sized bubbles begin to appear. The linear melt rate (LMR) is determined as the average of all 16 glass height readings divided by the time during which the sample was kept in the furnace. This 'visual' method has proved useful in identifying melting accelerants such as alkalis and sulfate and further ranking the relative melt rates of candidate frits for a given sludge batch. However, one of the inherent technical difficulties of this method is to determine the glass height in the presence of numerous gas bubbles of varying sizes, which is prevalent especially for the higher-waste-loading glasses. That is, how the red lines are drawn in Figure 1-1 can be subjective and, therefore, may influence the resulting melt rates significantly. For example, if the red lines are drawn too low

  16. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

  17. Modeling and simulation of large scale stirred tank

    Science.gov (United States)

    Neuville, John R.

    The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the

  18. Defense Waste Processing Facility (DWPF): The vitrification of high-level nuclear waste. (Latest citations from the Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning a production-scale facility and the world's largest plant for the vitrification of high-level radioactive nuclear wastes (HLW) located in the United States. Initially based on the selection of borosilicate glass as the reference waste form, the citations present the history of the development including R ampersand D projects and the actual construction of the production facility at the DOE Savannah River Plant (SRP). (Contains a minimum of 177 citations and includes a subject term index and title list.)

  19. Viscosity of glasses containing simulated Savannah River Plant waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1978-08-01

    The viscosity of glass melts containing four simulated sludge types and two frit candidates (Frits 18 and 21) was measured over the temperature range 750 to 1200 0 C. The viscosity of melts made with either frit was reduced by the addition of high iron sludge, unchanged by average sludge, and increased by composite and high aluminum sludge. High aluminium sludge greatly increased the viscosity. Frit 21 (containing 4 wt % Li 2 O substituted for 4 wt % Na 2 O in Frit 18) was clearly better than Frit 18 in terms of its low viscosity. However, further reductions in viscosity are desirable, especially for glasses containing high aluminum sludge. Changing any frit component by 1 wt % did not significantly affect the viscosity of the glasses. Therefore, variability of 1 wt % in any frit component can be tolerated

  20. A new high temperature resistant glass–ceramic coating for gas ...

    Indian Academy of Sciences (India)

    Unknown

    resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs ... processing of two novel glass–ceramic coating materials, ... stainless steel tray to yield frit (a friable glassy material). .... Frit (– 20 mesh) powder.

  1. ANL technical support program for DOE Office of Environmental Management. Annual report, October 1994--September 1995

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.; Dietz, N.L.; DiSanto, T.; Ebert, W.L.

    1996-07-01

    A program was established for the DOE Office of Environmental Management (EM) to evaluate factors that are anticipated to affect waste glass reaction during repository disposal, especially in an unsaturated environment typical of what may be expected for the proposed Yucca Mountain repository site. This report covers progress in FY 1995 on the following tasks: (1) Tests are ongoing to evaluate and compare the reactivity of fully radioactive glasses with that of glasses having the same compositions except for the absence of radionuclides under conditions representative of a high-level waste repository environment. Data from these tests will be used to evaluate the effect of radionuclides on the glass corrosion behavior and to determine the disposition of the radionuclides as the glass corrodes. Static dissolution tests and unsaturated tests are being conducted with several Defense Waste Processing Facility (DWPF) and West Valley Demonstration Project (WVDP) glasses. (2) A series of static dissolution tests is being performed to compare the corrosion behavior of nuclear waste glasses made with SRL 131 and SRL 202 frits at different S/V ratios. The S/V ratio affects the extent to which dissolved glass species are diluted; the solution chemistry then affects continued glass dissolution. The solutions generated in tests at high S/V ratios are conducive to the formation of alteration phases that may be deleterious to the glass. After long time periods, the glass dissolution rates of both glasses increase coincidentally with the formation of analcime and other alteration phases. However, the release of radionuclides from the glasses into solution is controlled by their individual solubilities

  2. Fabrication and characterization of MCC approved testing material: ATM-9 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1986-06-01

    The Materials Characterization Center ATM-9 glass is designed to be representative of glass to be produced by the Defense Waste Processing Facility at the Savannah River Plant, Aiken, South Carolina. ATM-9 glass contains all of the major components of the DWPF glass and corresponds to a waste loading of 29 wt %. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 Black Frit to which was added Ba, Cs, Md, Nd, Zr, as well as 99 Tc, depleted U, 237 Np, 239+240 Pu, and 243 Am. The glass was produced under reducing conditions by the addition of 0.7 wt % graphite during the final melting process. Three kilograms of the glass were produced from April to May of 1984. On final melting, the glass was formed into stress-annealed rectangular bars of two sizes: 1.9 x 1.9 x 10 cm and 1.3 x 1.3 x 10 cm. Seventeen bars of each size were made. The analyzed composition of ATM-9 glass is listed. Examination by optical microscopy of a single transverse section from one bar showed random porosity estimated at 0.36 vol % with nominal pore diameters ranging from approx. 5 μm to 200 μm. Only one distinct second phase was observed and it was at a low concentraction level in the glass matrix. The phase appeared as spherical metallic particles. X-ray diffraction analysis of this same sample did not show any diffraction peaks from crystalline components, indicating that the glass contained less than 5 wt % of crystalline devitrification products. The even shading on the radiograph exposure indicated a generally uniform distribution of radioactivity throughout the glass matrix, with no distinct high-concentration regions

  3. Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus x canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Doležal, Karel; Tarkowski, Petr; Astot, C.; Holub, Jan; Fuksová, K.; Schmülling, T.; Sandberg, G.; Strnad, Miroslav

    2003-01-01

    Roč. 117, č. 4 (2003), s. 579-590 ISSN 0031-9317 R&D Projects: GA ČR GA522/01/0275 Grant - others:Volkswagen Stiftung(DE) I/76 865 Institutional research plan: CEZ:AV0Z5038910; CEZ:MSM 153100008 Keywords : 9--D-ribofuranosyl derivatives * Agrobacterium tumefaciens * bombardment-mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 1.767, year: 2003

  4. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  5. Large-scale continuous process to vitrify nuclear defense waste: operating experience with nonradioactive waste

    International Nuclear Information System (INIS)

    Cosper, M.B.; Randall, C.T.; Traverso, G.M.

    1982-01-01

    The developmental program underway at SRL has demonstrated the vitrification process proposed for the sludge processing facility of the DWPF on a large scale. DWPF design criteria for production rate, equipment lifetime, and operability have all been met. The expected authorization and construction of the DWPF will result in the safe and permanent immobilization of a major quantity of existing high level waste. 11 figures, 4 tables

  6. Nuclear criticality safety analysis summary report: The S-area defense waste processing facility

    International Nuclear Information System (INIS)

    Ha, B.C.

    1994-01-01

    The S-Area Defense Waste Processing Facility (DWPF) can process all of the high level radioactive wastes currently stored at the Savannah River Site with negligible risk of nuclear criticality. The characteristics which make the DWPF critically safe are: (1) abundance of neutron absorbers in the waste feeds; (2) and low concentration of fissionable material. This report documents the criticality safety arguments for the S-Area DWPF process as required by DOE orders to characterize and to justify the low potential for criticality. It documents that the nature of the waste feeds and the nature of the DWPF process chemistry preclude criticality

  7. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Choi, A.; Marra, J.; Billings, A.

    2011-02-07

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting the melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling

  8. Glass formulation requirements for Hanford coupled operations using crystalline silicotitanates (CST)

    International Nuclear Information System (INIS)

    Andrews, M.K.; Harbour, J.R.

    1997-01-01

    The U.S. Department of Energy (DOE) through the Richland Operations Office has requested proposals from the private sector for the treatment of waste from the Hanford Waste Tanks. Phase I of this privatization initiative may include a demonstration for treatment and immobilization of both low activity and high-level waste. If the demonstration includes high-level waste, then the Cs-137 waste stream most likely will be combined with the high-level waste sludge to produce a coupled feed for immobilization (most likely vitrification using a borosilicate glass). It appears that pretreatment will involve the removal of cesium (and perhaps strontium and some transuranic radionuclides) from the supernate using an ion exchange material such as crystalline silicotitanate (CST). The ion exchange sorbent (or the eluted Cs-137) can then be combined with the sludge and vitrified in a coupled operation similar to the DWPF process. Alternatively, the cesium-loaded ion exchange sorbent can be vitrified directly to produce a separate glass waste form. SRTC has been involved in an Office of Science and Technology (EM-50) funded project to determine if Cs-137 loaded CST can be successfully incorporated into glass at significant levels. 1 For a waste form which would include only Cs-137 loaded CST, concentrations up to 60 wt% of CST in glass have been achieved. 2 The glass produced from this demonstration is both processable and durable. This CST-only waste form could be used at Hanford if the cesium-loaded CST is vitrified in a separate melter. For coupled feed operations, the CST would be mixed with high-level radioactive sludge from the Hanford tanks. This report provides the basis and the path forward for SRTC's efforts at developing a glass frit formulation which will incorporate both Hanford sludge and cesium-loaded CST for a coupled flowsheet. The goal of this work is to demonstrate the feasibility of vitrification as a method for immobilization of coupled feed (specifically

  9. Defense waste processing facility at Savannah River Plant. Instrument and power jumpers

    International Nuclear Information System (INIS)

    Heckendorm, F.M. II.

    1983-06-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant is in the final design stage. Development of equipment interconnecting devices or jumpers for use within the remotely operated processing canyon is now complete. These devices provide for the specialized instrument and electrical requirements of the DWPF process for low-voltage, high-frequency, and high-power interconnections

  10. Leidlikud lahendused : uus elamuehitus Amsterdamis = Enforcing Ingenuity New Housing in Amsterdam / Hans Ibelings ; hollandi keelest tõlk. eesti keelde Katrin Laiapea ja inglise keelde Robyn de Jong-Dalziel

    Index Scriptorium Estoniae

    Ibelings, Hans

    2001-01-01

    Amsterdami kahe elamurajooni planeeringust. Borneo-Sporenburgi (1994-2001) planeeringu tegi Adriaan Geuze ja tema büroo West 8. Kolm hiigelelamut projekteerisid Koen van Velsen, Frits van Dongen ja Kees Christiaanse. Valmimisjärgus IJburgi planeeringu autorid Felix Claus, Frits van Dongen ja Ton Schaap. 13 ill

  11. Subversive Foundations

    DEFF Research Database (Denmark)

    Thomsen, Mads Rosendahl

    2010-01-01

    www.frit.ucsb.edu/WorldLitConf/video.php?id=007 ; video af konferencebidrag UC Santa Barbara 19.11.2009.......www.frit.ucsb.edu/WorldLitConf/video.php?id=007 ; video af konferencebidrag UC Santa Barbara 19.11.2009....

  12. StuDIY Online

    DEFF Research Database (Denmark)

    2015-01-01

    StuDIY Online er kurser i akademisk argumentation, problemformulering, analyse og akademisk sprog. Kurserne er frit tilgængelige for alle via Blackboard på AU......StuDIY Online er kurser i akademisk argumentation, problemformulering, analyse og akademisk sprog. Kurserne er frit tilgængelige for alle via Blackboard på AU...

  13. StuDIY Online - in english

    DEFF Research Database (Denmark)

    2016-01-01

    StuDIY Online er engelske kurser i akademisk argumentation, problemformulering, analyse og akademisk sprog. Kurserne er frit tilgængelige for alle via Blackboard på AU......StuDIY Online er engelske kurser i akademisk argumentation, problemformulering, analyse og akademisk sprog. Kurserne er frit tilgængelige for alle via Blackboard på AU...

  14. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    International Nuclear Information System (INIS)

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-01-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy's DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H 2 generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H 2 generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H 2 in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H 2 monitors were recommended to the DWPF to control the generation of H 2 during melter feed preparation by fuel dilution

  15. Supplemental environmental impact statement - defense waste processing facility

    International Nuclear Information System (INIS)

    1994-11-01

    This document supplements the Final Environmental Impact Statement (EIS) DOE Issued in 1982 (DOE/EIS-0082) to construct and operate the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), a major DOE installation in southwestern South Carolina. That EIS supported the decision to construct and operate the DWPF to immobilize high-level waste generated as a result of nuclear materials processing at SRS. The DWPF would use a vitrification process to incorporate the radioactive waste into borosilicate glass and seal it in stainless steel canisters for eventual disposal at a permanent geologic repository. The DWPF is now mostly constructed and nearly ready for full operation. However, DOE has made design changes to the DWPF since the 1982 EIS to improve efficiency and safety of the facility. Each of these modifications was subjected to appropriate NEPA review. The purpose of this Supplemental EIS is to assist DOE in deciding whether and how to proceed with operation of the DWPF as modified since 1982 while ensuring appropriate consideration of potential environmental effects. In this document, DOE assesses the potential environmental impacts of completing and operating the DWPF in light of these design changes, examines the impact of alternatives, and identifies potential actions to be taken to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socioeconomics, and health and safety of onsite workers and the public are included in the assessment

  16. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  17. Release of ammonia from HAN-type PHA

    International Nuclear Information System (INIS)

    Zamecnik, J.R.

    1992-01-01

    A preliminary design basis for ammonia scrubbers in the DWPF has been issued. This design basis is based on a theoretical model of ammonia evolution from the SRAT, SME and RCT. It is desirable to acquire actual process data on ammonia evolution prior to performing detailed design of scrubbers for DWPF. The evolution of ammonia from the SRAT and SME in the Integrated DWPF Melter System (IDMS) was investigated during the HM4 run. In this run, Precipitate Hydrolysis Aqueous (PHA), which was made in the Precipitate Hydrolysis Experimental Facility (PHEF) using the HAN (hydroxylamine nitrate) process was used, thus resulting in PHA with a high concentration of ammonium ion

  18. Pilot scale processing of simulated Savannah River Site high level radioactive waste

    International Nuclear Information System (INIS)

    Hutson, N.D.; Zamecnik, J.R.; Ritter, J.A.; Carter, J.T.

    1991-01-01

    The Savannah River Laboratory operates the Integrated DWPF Melter System (IDMS), which is a pilot-scale test facility used in support of the start-up and operation of the US Department of Energy's Defense Waste Processing Facility (DWPF). Specifically, the IDMS is used in the evaluation of the DWPF melter and its associated feed preparation and offgass treatment systems. This article provides a general overview of some of the test work which has been conducted in the IDMS facility. The chemistry associated with the chemical treatment of the sludge (via formic acid adjustment) is discussed. Operating experiences with simulated sludge containing high levels of nitrite, mercury, and noble metals are summarized

  19. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  20. Feed Preparation for Source of Alkali Melt Rate Tests

    International Nuclear Information System (INIS)

    Stone, M. E.; Lambert, D. P.

    2005-01-01

    The purpose of the Source of Alkali testing was to prepare feed for melt rate testing in order to determine the maximum melt-rate for a series of batches where the alkali was increased from 0% Na 2 O in the frit (low washed sludge) to 16% Na 2 O in the frit (highly washed sludge). This document summarizes the feed preparation for the Source of Alkali melt rate testing. The Source of Alkali melt rate results will be issued in a separate report. Five batches of Sludge Receipt and Adjustment Tank (SRAT) product and four batches of Slurry Mix Evaporator (SME) product were produced to support Source of Alkali (SOA) melt rate testing. Sludge Batch 3 (SB3) simulant and frit 418 were used as targets for the 8% Na 2 O baseline run. For the other four cases (0% Na 2 O, 4% Na 2 O, 12% Na 2 O, and 16% Na 2 O in frit), special sludge and frit preparations were necessary. The sludge preparations mimicked washing of the SB3 baseline composition, while frit adjustments consisted of increasing or decreasing Na and then re-normalizing the remaining frit components. For all batches, the target glass compositions were identical. The five SRAT products were prepared for testing in the dry fed melt-rate furnace and the four SME products were prepared for the Slurry-fed Melt-Rate Furnace (SMRF). At the same time, the impacts of washing on a baseline composition from a Chemical Process Cell (CPC) perspective could also be investigated. Five process simulations (0% Na 2 O in frit, 4% Na 2 O in frit, 8% Na 2 O in frit or baseline, 12% Na 2 O in frit, and 16% Na 2 O in frit) were completed in three identical 4-L apparatus to produce the five SRAT products. The SRAT products were later dried and combined with the complementary frits to produce identical glass compositions. All five batches were produced with identical processing steps, including off-gas measurement using online gas chromatographs. Two slurry-fed melter feed batches, a 4% Na 2 O in frit run (less washed sludge combined with

  1. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  2. Final examination of IDMS corrosion coupons

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    The metallurgical examination of corrosion coupons removed from the Integrated DWPF Melter System (IDMS) was performed as part of the IDMS Materials Evaluation Program. The findings and conclusions of the evaluation program are presented in this report

  3. Demonstration of a Solution Film Leak Test Technique and Equipment for the S00645 Canister Closure

    International Nuclear Information System (INIS)

    Cannell, G.R.

    1999-01-01

    The purpose of this effort was to demonstrate that the SFT technique, when adapted to a DWPF canister nozzle, is capable of detecting leaks not meeting the Waste Acceptance Product Specifications (WAPS) acceptance criterion

  4. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    International Nuclear Information System (INIS)

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage

  5. Phase 2 Report--Mercury Behavior In The Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River Site (SRS), Aiken, SC (United States); Fellinger, T. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-27

    The purpose of this report is to provide a summary of the DWPF processing history in regards to mercury, document the mercury results obtained on the product and condensate samples, and provide further recommendations based on the data obtained.

  6. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs

  7. Design of glass-ceramic complex microstructure with using onset point of crystallization in differential thermal analysis

    International Nuclear Information System (INIS)

    Hwang, Seongjin; Kim, Jinho; Shin, Hyo-Soon; Kim, Jong-Hee; Kim, Hyungsun

    2008-01-01

    Two types of frits with different compositions were used to develop a high strength substrate in electronic packaging using a low temperature co-fired ceramic process. In order to reveal the crystallization stage during heating to approximately 900 deg. C, a glass-ceramic consisting of the two types of frits, which had been crystallized to diopside and anorthite after firing, was tested at different mixing ratios of the frits. The exothermal peaks deconvoluted by a Gauss function in the differential thermal analysis curves were used to determine the onset point of crystallization of diopside or anorthite. The onset points of crystallization were affected by the mixing ratio of the frits, and the microstructure of the glass-ceramic depended on the onset point of crystallization. It was found that when multicrystalline phases appear in the microstructure, the resulting complex microstructure could be predicted from the onset point of crystallization obtained by differential thermal analysis

  8. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. FY 1989--1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  9. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  10. Liquid level measurement in high level nuclear waste slurries

    International Nuclear Information System (INIS)

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs

  11. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1991 and FY-1992

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Chazel, A.C.; Pechmann, J.H.K.; Estes, R.A.

    1993-06-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  12. The defense waste processing facility: A status report

    International Nuclear Information System (INIS)

    Cowan, S.P.; Fulmer, D.C.

    1987-01-01

    The Defense Waste Processing Fascility (DWPF) will be the nation's first production scale facility for immobilizing high-level waste for disposal. It will also be the largest facility of its kind in the world. The technology, design, and construction efforts are on schedule for ''hot'' operation in fiscal year 1990. This paper provides a status report on the DWPF technology, design, and construction, and describes some of the challenges that have arisen during design and construction

  13. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    Scott, D.E.; Chazel, A.C.; Pechmann, J.H.K.; Estes, R.A.

    1993-06-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ''refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022)

  14. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  15. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K.

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of ''refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs

  16. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  17. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K. (ed.)

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  18. Remote instrument/electrical wall nozzle replaement in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1983-09-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant is in the final design stage. Development of remotely replaceable instrument and electrical through-wall wiring is now complete. These assemblies connect the power and control signals from the high radiation environment to the personnel access areas. The ability to replace them will extend the life and lower the cost of the DWPF. 3 references, 22 figures, 2 tables

  19. Process arrangement options for Defense waste immobilization

    International Nuclear Information System (INIS)

    1980-02-01

    Current plans are to immobilize the SRP high-level liquid wastes in a high integrity form. Borosilicate glass was selected in 1977 as the reference waste form and a mjaor effort is currently underway to develop the required technology. A large new facility, referred to as the Defense Waste Processing Facility (DWPF) is being designed to carry out this mission, with project authorization targeted for 1982 and plant startup in 1989. However, a number of other process arrangements or manufacturing strategies, including staging the major elements of the project or using existing SRP facilities for some functions, have been suggested in lieu of building the reference DWPF. This study assesses these various options and compares them on a technical and cost basis with the DWPF. Eleven different manufacturing options for SRP defense waste solidification were examined in detail. These cases are: (1) vitrification of acid waste at current generation rate; (2) vitrification of current rate acid waste and caustic sludge; (3 and 4) vitrification of the sludge portion of neutralized waste; (5) decontamination of salt cake and storage of concentrated cesium and strontium for later immobilization; (6) processing waste in a facility with lower capacity than the DWPF; (7) processing waste in a combination of existing and new facilities; (8) waste immobilization in H Canyon; (9) vitrification of both sludge and salt; (10) DWPF with onsite storage; (11) deferred authorization of DWPF

  20. Preliminary technical data summary defense waste processing facility stage 2

    International Nuclear Information System (INIS)

    1980-12-01

    This Preliminary Technical Data Summary presents the technical basis for design of Stage 2 of the Staged Defense Waste Processing Facility (DWPF). Process changes incorporated in the staged DWPF relative to the Alternative DWPF described in PTDS No. 3 (DPSTD-77-13-3) are the result of ongoing research and development and are aimed at reducing initial capital investment and developing a process to efficiently immobilize the radionuclides in Savannah River Plant (SRP) high-level liquid waste. The radionuclides in SRP waste are present in sludge that has settled to the bottom of waste storage tanks and in crystallized salt and salt solution (supernate). Stage 1 of the DWPF receives washed, aluminum dissolved sludge from the waste tank farms and immobilizes it in a borosilicate glass matrix. The supernate is retained in the waste tank farms until completion of Stage 2 of the DWPF at which time it is filtered and decontaminated by ion exchange in the Stage 2 facility. The decontaminated supernate is concentrated by evaporation and mixed with cement for burial. The radioactivity removed from the supernate is fixed in borosilicate glass along with the sludge. This document gives flowsheets, material and curie balances, material and curie balance bases, and other technical data for design of Stage 2 of the DWPF. Stage 1 technical data are presented in DPSTD-80-38

  1. APET methodology for Defense Waste Processing Facility: Mode C operation

    International Nuclear Information System (INIS)

    Taylor, R.P. Jr.; Massey, W.M.

    1995-04-01

    Safe operation of SRS facilities continues to be the highest priority of the Savannah River Site (SRS). One of these facilities, the Defense Waste Processing Facility or DWPF, is currently undergoing cold chemical runs to verify the design and construction preparatory to hot startup in 1995. The DWPFF is a facility designed to convert the waste currently stored in tanks at the 200-Area tank farm into a form that is suitable for long term storage in engineered surface facilities and, ultimately, geologic isolation. As a part of the program to ensure safe operation of the DWPF, a probabilistic Safety Assessment of the DWPF has been completed. The results of this analysis are incorporated into the Safety Analysis Report (SAR) for DWPF. The usual practice in preparation of Safety Analysis Reports is to include only a conservative analysis of certain design basis accidents. A major part of a Probabilistic Safety Assessment is the development and quantification of an Accident Progression Event Tree or APET. The APET provides a probabilistic representation of potential sequences along which an accident may progress. The methodology used to determine the risk of operation of the DWPF borrows heavily from methods applied to the Probabilistic Safety Assessment of SRS reactors and to some commercial reactors. This report describes the Accident Progression Event Tree developed for the Probabilistic Safety Assessment of the DWPF

  2. Development of an Alternative Glass Formulation for Vitrification of Excess Plutonium

    International Nuclear Information System (INIS)

    MARRA, JAMES

    2006-01-01

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (La 2 O 3 -B 2 O 3 -SiO 2 (LaBS))-Frit B) was developed and testing with the LaBS Frit B composition is underway to provide data to support the Yucca Mountain License Application process. The objective of this task was to investigate alternative frit compositions and/or processing conditions that may improve the performance of the reference Frit B-LaBS glass in the repository. The current LaBS Frit B composition was used as the baseline for alternative glass formulation development efforts. A review of the literature and past high actinide concentration glass development efforts was conducted to formulate candidate compositions for testing. Glass science principles were also utilized to determine candidate frit components that may meet task objectives. Additionally, glass processing methods (e.g. slow cooling or induced heat treatment) were investigated as potential means to improve the glass durability and/or minimize fissile material and neutron absorber separation. Based on these analyses, a series of candidate surrogate glasses were fabricated and analyzed. One composition was then selected for fabrication with PuO 2 and subsequently analyzed. A phase equilibrium approach, developed from the assessment of previous high lanthanide glass formulations, was used to recommend modifications to the SRNL Frit B composition. A specific recommendation to increase Ln 2 O 3 content with concurrent reduction of Al 2 O 3 and SiO 2 content proved to be successful in improving the melting behavior and component solubility of the glass. This change moved the formulation from a

  3. Preliminary analysis of projected construction employment effects of building the defense waste processing facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Garey, R.B.; Blair, L.M.; Craig, R.L.; Stevenson, W.

    1981-09-01

    This study estimates the probable effects of constructing the DWPF on the surrounding labor markets. Analyses are based on data from the local and regional labor markets, information from experts on local construction activities, information on the labor requirements of the Vogtle Power Plant (two nuclear reactors) being built by Georgia Power Company in Burke County, Georgia, and an econometric model of the construction labor market, based on several surveys of workers building three Tennessee Valley Authority nuclear power plants. The results of this study are reported in three parts. In Part I, completed in May 1980, we describe the 1979 (base year) employment levels within the local and regional labor markets surrounding SRP, from which most DWPF construction workers are likely to be drawn. In Part II, completed in June 1980, we define the four local sources of construction employment that will compete for craftsmen when DWPF is built. Also in Part II, most of the projected impacts of the DWPF reference immobilization alternative (one of several alternatives that may be chosen) are reported. Several construction schedules and labor demand scenarios for the reference alternative are considered. In Part III, completed in January 1981, most of the estimated impacts of the DWPF alternative referred to as the staged process alternative are reported. Several construction schedules and labor demand scenarios for this alternative are considered

  4. Corrosion study for a radioactive waste vitrification facility

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE's Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200 degree C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack

  5. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    Energy Technology Data Exchange (ETDEWEB)

    Ray, J.W. [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  6. Overview - Defense Waste Processing Facility Operating Experience

    International Nuclear Information System (INIS)

    Norton, M.R.

    2002-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the world's largest radioactive waste vitrification facility. Radioactive operations began in March 1996 and over 1,000 canisters have been produced. This paper presents an overview of the DWPF process and a summary of recent facility operations and process improvements. These process improvements include efforts to extend the life of the DWPF melter, projects to increase facility throughput, initiatives to reduce the quantity of wastewater generated, improved remote decontamination capabilities, and improvements to remote canyon equipment to extend equipment life span. This paper also includes a review of a melt rate improvement program conducted by Savannah River Technology Center personnel. This program involved identifying the factors that impacted melt rate, conducting small scale testing of proposed process changes and developing a cost effective implementation plan

  7. Design and construction of the defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility

  8. Defense waste processing facility radioactive operations. Part 1 - operating experience

    International Nuclear Information System (INIS)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and the world's largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge trademark level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs

  9. Impact Of Melter Internal Design On Off-Gas Flammability

    International Nuclear Information System (INIS)

    Choi, A. S.; Lee, S. Y.

    2012-01-01

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good

  10. Environmental information document defense waste processing facility

    International Nuclear Information System (INIS)

    1981-07-01

    This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed

  11. Rheology of Savannah River Site Tank 42 radioactive sludges. Revision 1

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1995-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site (SRS), Tank 42 sludge represents one of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility (DWPF). The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer. Rheological properties of Tank 42 radioactive sludge were measured as a function of weight percent total solids to ensure that the first DWPF radioactive sludge batch can be pumped and processed in the DWPF with the current design bases. The yield stress and consistency of the sludge slurries were determined by assuming a Bingham plastic fluid model

  12. Materials evaluation programs at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided

  13. Defense waste processing facility startup progress report

    International Nuclear Information System (INIS)

    Iverson, D.C.; Elder, H.H.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing

  14. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form

  15. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  16. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  17. Tests of candidate materials for particle bed reactors

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Wales, D.

    1987-01-01

    Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (∼500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength

  18. Particle bed reactor nuclear rocket concept

    International Nuclear Information System (INIS)

    Ludewig, H.

    1991-01-01

    The particle bed reactor nuclear rocket concept consists of fuel particles (in this case (U,Zr)C with an outer coat of zirconium carbide). These particles are packed in an annular bed surrounded by two frits (porous tubes) forming a fuel element; the outer one being a cold frit, the inner one being a hot frit. The fuel element are cooled by hydrogen passing in through the moderator. These elements are assembled in a reactor assembly in a hexagonal pattern. The reactor can be either reflected or not, depending on the design, and either 19 or 37 elements, are used. Propellant enters in the top, passes through the moderator fuel element and out through the nozzle. Beryllium used for the moderator in this particular design to withstand the high radiation exposure implied by the long run times

  19. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  20. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  1. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: defense waste processing facility

    International Nuclear Information System (INIS)

    Huang, J.C.; Wright, W.V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built at the Savannah River Plant (SRP). High level waste is produced when SRP reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld-sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The present document compares the risks associated with the manufacture and interim storage of these two forms in the DWPF. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information. To perform the comparative risk assessments, consequences of the postulated accidents are calculated in terms of: (1) the maximum dose to an off-site individual; and (2) the dose to off-site population within 80 kilometers of the DWPF, both taken in terms of the 50-year inhalation dose commitment. The consequences are then multiplied by the estimated accident probabilities to obtain the risks. The analyses indicate that the maximum exposure risk to an individual resulting from the accidents postulated for both the production and interim storage of either waste form represents only an insignificant fraction of the natural background radiation of about 90 mrem per year per person in the local area. They also show that there is no disaster potential to the off-site population. Therefore, the risks from abnormal events in the production and the interim storage of the DWPF waste forms should not be considered as a dominant factor in the selection of the final waste form

  2. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  3. Formulation Efforts for Direct Vitrification of INEEL Blend Calcine Waste Simulate: Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Vienna, John D.; Peeler, David K.; Reamer, I. A.

    2001-03-30

    This report documents the results of glass formulation efforts for Idaho National Engineering and Environmental Laboratory (INEEL) high level waste (HWL) calcine. Two waste compositions were used during testing. Testing started by using the Run 78 calcine composition and switched to simulated Blend calcine composition when it became available. The goal of the glass formulation efforts was to develop a frit composition that will accept higher waste loading that satisfies the glass processing and product acceptance constraints. 1. Melting temperature of 1125 ? 25?C 2. Viscosity between 2 and 10 Pa?s at the melting temperature 3. Liquidus temperature at least 100?C below the melting temperature 4. Normalized release of B, Li and Na each below 1 g/m2 (per ASTM C 1285-97) Glass formulation efforts tested several frit compositions with variable waste loadings of Run 78 calcine waste simulant. Frit 107 was selected as the primary candidate for processing since it met all process and performance criteria up to 45 mass% waste loading. When the simulated Blend calcine waste composition became available Frits 107 and 108 compositions were retested and again Frit 107 remained the primary candidate. However, both frits suffered a decrease in waste loading when switching from the Run 78 calcine to simulated Blend calcine waste composition. This was due to increase concentrations of both F and Al2O3 along with a decrease in CaO and Na2O in the simulate Blend calcine waste all of which have strong impacts on the glass properties that limit waste loading of this type of waste.

  4. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  5. Development of Syringe/Bottle Hybrids for Sampling Slurries

    International Nuclear Information System (INIS)

    Coleman, C.J.

    1998-01-01

    A convenient and effective sample bottle system based on simple modifications of disposable plastic syringes and bottles has been devised and tested for slurry samples. Syringe/ bottle hybrids (hereafter referred to as syringe bottles) have the convenience of regular flat-bottom bottles with screw cap closures. In addition, the syringe imparts a sliding and adjustable bottom to the bottle that forces the entire contents from the bottle. The system was designed especially to collect samples for high temperature work-ups of DWPF slurry samples. The syringe bottles together with fixed-bottom sample vial inserts would provide the DWPF with convenient and reliable methods for dealing with slurry samples

  6. History of the small cylindrical melter

    International Nuclear Information System (INIS)

    Allen, T.L.; Iverson, D.C.; Plodinec, M.J.

    1985-08-01

    The small cylindrical melter (SCM) was designed to provide engineering data useful for operation and design of full-scale glass melters for vitrification of high-level radioactive waste. This melter was part of the research and development program for the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Extensive corrosion testing of melter materials of construction (Monofrax K3, Inconel 690), simulated radioactive waste glass characterization, and melter component development were conducted in support of the DWPF full-scale melter design. 66 figs., 14 tabs

  7. Plutonium Immobilization Can Loading Conceptual Design

    International Nuclear Information System (INIS)

    Kriikku, E.

    1999-01-01

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  8. Antifoam degradation testing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Newell, D. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  9. Plutonium Immobilization Can Loading Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  10. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  11. Process technology for vitrification of defense high-level waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boersma, M.D.

    1984-01-01

    Vitrification in borosilicate glass is now the leading worldwide process for immobilizing high-level radioactive waste. Each vitrification project, however, has its unique mission and technical challenges. The Defense Waste Vitrification Facility (DWPF) now under construction at the Savannah River Plant will concentrate and vitrify a large amount of relatively low-power alkaline waste. Process research and development for the DWPF have produced significant advances in remote chemical operations, glass melting, off-gas treatment, slurry handling, decontamination, and welding. 6 references, 1 figure, 5 tables

  12. Criticality assessment of initial operations at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ha, B.C.; Williamson, T.G.

    1993-01-01

    At the Savannah River Site (SRS), high level radioactive wastes will be immobilized into borosilicate glass for long term storage and eventual disposal. Since the waste feed streams contain uranium and plutonium, the Defense Waste Processing Facility (DWPF) process has been evaluated to ensure that a subcritical condition is maintained. It was determined that the risk of nuclear criticality in the DWPF during initial, sludge-only operations is minimal due to the dilute concentration of fissile material in the sludge combined with excess neutron absorbers

  13. Late washing filter cleaning cycle demonstration

    International Nuclear Information System (INIS)

    Meyer, M.L.; McCabe, D.J.

    1992-01-01

    The DWPF Late Washing Facility will filter cesium and potassium tetraphenyl borate (TPB) solids using a Mott sintered metal filter, identical to the filter now used in the In-tank Precipitation Facility. The purpose of the late wash step is primarily to remove the nitrite salts from the slurry prior to delivery to DWPF. Periodic chemical cleaning of the filter will be required, presumably after each batch although the actual required frequency could not be determined on the lab-scale. Minimization of chemical cleaning solution volumes is key to maximizing the attainment of the Late Wash facility. This report summarizes work completed in experiments designed to identify minimum cleaning solution requirements

  14. Controlling Vapor Pressure In Hanging-Drop Crystallization

    Science.gov (United States)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  15. Development of technique for air coating and nickel and copper metalization of solar cells

    Science.gov (United States)

    1982-01-01

    Solar cells were made with a variety of base metal screen printing inks applied over silicon nitride AR coating and copper electroplated. Fritted and fritless nickel and fritless tin base printing inks were evaluated. Conversion efficiencies as high as 9% were observed with fritted nickel ink contacts, however, curve shapes were generally poor, reflecting high series resistance. Problems encountered in addition to high series reistance included loss of adhesion of the nickel contacts during plating and poor adhesion, oxidation and inferior curve shapes with the tin base contacts.

  16. Particle bed reactor modeling

    Science.gov (United States)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  17. Comparison between mixed and spatially separated remote phosphor fabricated via a screen-printing process

    Science.gov (United States)

    Kim, Byung-Ho; Hwang, Jonghee; Lee, Young Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Mi Jai

    2016-08-01

    We developed a fabrication method for remote phosphor by a screen-printing process, using green phosphor, red phosphor, and thermally stable glass frit. The glass frit was introduced for long-term stability. The optical properties of the remote phosphor were observed via an integrating sphere; the photoluminescence spectrum dramatically changed on incorporating a minor amount of the red phosphor. These unique optical properties were elucidated using four factors: phosphor ratio, scattering induced by packing density, light intensity per unit volume, and reabsorption. The thermal stability of the remote phosphor was investigated at 500°C, demonstrating its outstanding thermal properties.

  18. Studies of direct electroinsulating enamels

    International Nuclear Information System (INIS)

    Siwulski, S.; Gruszka, B.; Nocun, M.

    1998-01-01

    The results of studies on the influence of chemical composition of direct electroinsulating enamel on its properties were presented. The influence of alkaline Li 2 O, Na 2 O, K 2 O and adhesion promoting oxides CoO, NiO, CuO, MoO 3 on the frits properties were estimated. The characteristic temperature T g and T m as well as flowability were measured. The dielectric properties of frits and prepared enamels were also measured. Enamel substrates were prepared and tested for application in thick hybrid circuit technology. (author)

  19. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    International Nuclear Information System (INIS)

    1992-07-01

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to ''review process technology issues preventing start up of the DWPF.'' This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992

  20. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Glover, T.

    1999-01-01

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task

  1. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  2. Radioactive demonstration of the ''late wash'' Precipitate Hydrolysis Process

    International Nuclear Information System (INIS)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-01-01

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ''late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests

  3. Preliminary technical data summary for the Defense Waste Processing Facility, Stage 1

    International Nuclear Information System (INIS)

    1980-09-01

    This Preliminary Technical Data Summary presents the technical basis for design of Stage 1 of the Staged Defense Waste Processing Facility (DWPF), a process to efficiently immobilize the radionuclides in Savannah River Plant (SRP) high-level liquid waste. The radionuclides in SRP waste are present in sludge that has settled to the bottom of waste storage tanks and in crystallized salt and salt solution (supernate). Stage 1 of the DWPF receives washed, aluminum dissolved sludge from the waste tank farms and immobilizes it in a borosilicate glass matrix. The supernate is retained in the waste tank farms until completion of Stage 2 of the DWPF at which time it filtered and decontaminated by ion exchange in the Stage 2 facility. The decontaminated supernate is concentrated by evaporation and mixed with cement for burial. The radioactivity removed from the supernate is fixed in borosilicate glass along with the sludge. This document gives flowsheets, material, and curie balances, material and curie balance bases, and other technical data for design of the Stage 1 DWPF

  4. 77 FR 1920 - Second Amended Notice of Intent To Modify the Scope of the Surplus Plutonium Disposition...

    Science.gov (United States)

    2012-01-12

    ... essential elements required to provide a pit disassembly and/or conversion capability at one or more of the... as transuranic waste at WIPP, provided that the material would meet the WIPP waste acceptance... activities, including storage of DWPF canisters and transuranic waste pending disposal. Impacts of the...

  5. Off-gas system data summary for the ninth run of the large slurry fed melter

    International Nuclear Information System (INIS)

    Colven, W.P.

    1983-01-01

    The ninth melter campaign successfully demonstrated extended operation of both melter and off-gas systems. Two critical problem areas associated with the handling of melter off-gases were resolved leading to firm definition of the DWPF Off-Gas Treatment System. These two concerns, wet scrubber decontamination efficiency and the reduction of solids deposition at the off-gas line entrance, were the primary focus of off-gas system studies during the 63-day run (LSFM-9). The Hydro-Sonic Scrubber was confirmed to be the superior candidate for wet scrubbing by outperforming all other scrubbers tested at the Equipment Test Facility (ETF). The two stage, steam-driven scrubber achieved consistent decontamination factors for cesium exceeding the required DWPF flowsheet DF of 50. As a result, the device was selected as the reference wet scrubber for the DWPF. The Off-Gas Film Cooling device continued to show promising results for reducing three accumulation of solid deposits at the entrance to the off-gas line. In addition, a rotating wire brush cleaning device provided easy and efficient removal of deposits which had accumulated. The combination of the two has adequately resolved the deposit accumulation problem and both devices have been incorporated in the DWPF design

  6. Nitric-glycolic flowsheet evaluation with the slurry-fed melt rate furnace

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-01

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previously to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.

  7. Nitric acid flowsheet with late wash PHA testing

    International Nuclear Information System (INIS)

    Zamecnik, J.R.

    1993-01-01

    This Task Technical Plan outlines the activities to be conducted in the Integrated DWPF Melter System (IDMS) in ongoing support of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) utilizing the Nitric Acid Flowsheet in the Sludge Receipt and Adjustment Tank (SRAT) and Precipitate Hydrolysis Aqueous (PHA) produced by the Late Wash Flowsheet. The IDMS facility is to be operated over a series of runs (2 to 4) using the Nitric Acid Flowsheet. The PHA will be produced with the Late Wash Flowsheet in the Precipitate Hydrolysis Experimental Facility (PHEF). All operating conditions shall simulate the expected DWPF operating conditions as closely as possible. The task objectives are to perform at least two IDMS runs with as many operating conditions as possible at nominal DWPF conditions. The major purposes of these runs are twofold: verify that the combined Late Wash and Nitric Acid flowsheets produce glass of acceptable quality without additional changes to process equipment, and determine the reproducibility of data from run to run. These runs at nominal conditions will be compared to previous runs made with PHA produced from the Late Wash flowsheet and with the Nitric Acid flowsheet in the SRAT (Purex 4 and Purex 5)

  8. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  9. Hydrogen generation in SRAT with nitric acid and late washing flowsheets

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    Melter feed preparation processes, incorporating a final wash of the precipitate slurry feed to Defense Waste Processing Facility (DWPF) and a partial substitution of the SRAT formic acid requirement with nitric acid, should not produce peak hydrogen generation rates during Cold Chemical Runs (CCR's) and radioactive operation greater than their current, respective hydrogen design bases of 0.024 lb/hr and 1.5 lb/hr. A single SRAT bench-scale process simulation for CCR-s produced a DWPF equivalent peak hydrogen generation rate of 0.004 lb/hr. During radioactive operation, the peak hydrogen generation rate will be dependent on the extent DWPF deviates from the nominal precipitate hydrolysis and melter feed preparation process operating parameters. Two actual radioactive sludges were treated according to the new flowsheets. The peak hydrogen evolution rates were equivalent to 0.038 and 0.20 lb/hr (DWPF scale) respectively. Compared to the formic acid -- HAN hydrolysis flowsheets, these peak rates were reduced by a factor of 2.5 and 3.4 for Tank 15 and Tank 11 sludges, respectively

  10. SPEEDUP modeling of the defense waste processing facility at the SRS

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1997-01-01

    A computer model has been developed for the dynamic simulation of batch process operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF chemically treats high level waste materials from the site tank farm and vitrifies the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. A fully integrated model of these process units has been developed using the SPEEDUP trademark software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since SPEEDUP is designed for dynamic modeling of continuous processes, considerable effort was required to device batch process algorithms. This effort was successful and the model is able to simulate batch operations and the dynamic behavior of the process. The model also includes an optimization calculation that maximizes the waste content in the final glass product. In this paper, we will describe the process model in some detail and present preliminary results from a few simulation studies

  11. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  12. Augustin gør kravet om lydighed absolut

    DEFF Research Database (Denmark)

    Thyssen, Ole

    2017-01-01

    En af Luthers inspirationskilder var Augustin. Han mente, at Gud er god og skaber gode ting, mens synden opstår i kraft af den onde vilje. Mennesker handler frit, men alligevel kender Gud udfaldet, så friheden skyldes mangel på indsigt i de kræfter, som styrer viljen....

  13. Project Avatar

    DEFF Research Database (Denmark)

    Juhlin, Jonas Alastair

    'Project Avatar' tager udgangspunkt i den efterretningsdisciplin, der kaldes Open Source Intelligence og indebærer al den information, som ligger frit tilgængeligt i åbne kilder. Med udbredelsen af sociale medier åbners der op for helt nye typer af informationskilder. Spørgsmålet er; hvor nyttig er...

  14. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures

  15. Strukturreform og ældreomsorg

    DEFF Research Database (Denmark)

    Dahl, Hanne Marlene

    2008-01-01

    Strukturreformen er så ny, at der endnu ikke er udført forskning omkring dens effekter på ældreområdet. Reformen har direkte konsekvenser for udskrivning, genoptræning og uddannelse, samt mere indirekte for udbredelsen af udlicitering og frit valg. Organisatoriske forandringer kræver en del tid o...

  16. Jah, härra Euroopa Komisjoni volinik / Argo Ideon

    Index Scriptorium Estoniae

    Ideon, Argo, 1966-

    2007-01-01

    Euroopa Komisjoni Hollandi voliniku Frits Bolkesteini kabinetisekretärina töötanud Derk-Jan Eppinki raamatus "Euroopa mandariini elu" avaldatakse naljakaid seiku ametnike toimetamisest Brüsseli ja Strasbourg'i hästilõhnavates koridorides

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2. Evaluation of borax solid wastes in production of frits suitable for fast single-fired wall tile opaque glass–ceramic glazes. K Pekkan B Karasu. Ceramics and Glasses Volume 33 Issue 2 April 2010 pp 135-144 ...

  18. Process for solidifying high-level nuclear waste

    Science.gov (United States)

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  19. Combustion gas cleaning in the ceramic tile industry: technical guide; Nettoyage des fumees de combustion dans l'industrie ceramique: guide technique

    Energy Technology Data Exchange (ETDEWEB)

    Lezaun, F.J. [ENAGAS-Grupo Gas Natural (Spain); Mallol, G.; Monfort, E. [instituto de Tecnologia Ceramica, ITC (Spain); Busani, G. [Agenzia Regionale per la Prevenzione e l' Amiente, ARPA (Spain)

    2000-07-01

    This document presents a summary of a technical guide drawn up on combustion gas cleaning systems in ceramic frit and tile production. The guide describes the method to be followed for selecting the best possible solutions for reducing pollutant concentrations in different emission sources, in accordance with current regulatory requirements and the CET recommendation. There are three sources of combustion gas air emissions that need to be cleaned in ceramic tile and frit production and they are usually related to the following process stages: slip spray drying, tile firing and frit melting. The different nature of the emissions means that different substances will need to be cleaned in each emission. Thus, in spray drying and frit melting, the only species to be cleaned are suspended particles, while in tile firing, it is also necessary to reduce the fluorine concentration. The systems analysed in this guide are mainly wet cleaning systems, bag filters and electrostatic precipitators. In the study, the efficiency of these cleaning systems is compared at each emission source from a technical and economic point of view, and concrete solutions are put forward in each case, together with a list of suppliers of the technologies involved. (authors)

  20. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  1. Rational behavior in decision making. A comparison between humans, computers and fast and frugal strategies

    NARCIS (Netherlands)

    Snijders, C.C.P.

    2007-01-01

    Rational behavior in decision making. A comparison between humans, computers, and fast and frugal strategies Chris Snijders and Frits Tazelaar (Eindhoven University of Technology, The Netherlands) Real life decisions often have to be made in "noisy" circumstances: not all crucial information is

  2. The effect of slurry rheology on cold cap formation

    International Nuclear Information System (INIS)

    Yasuda, D.D.; Hrma, P.

    1991-01-01

    Yield stress, viscosity, and flow distance were measured on three simulated nuclear waste feeds at different temperatures and oxide loadings. Hydroxide, formate, and frit feeds, to produce glass of identical composition, were tested. Application of the results to a slurry fed waste glass melter is discussed

  3. Method for calcining radioactive wastes

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; McElroy, J.L.; Mendel, J.E.

    1979-01-01

    A method for the preparation of radioactive wastes in a low leachability form involves calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix

  4. Anker Jørgensen

    DEFF Research Database (Denmark)

    Thurah, Thomas

    Fra omslaget: Søster Irma, onkel Oscar, Frits Clausen, PH, John F. Kennedy, månelandingen, Ingrid og børnene, Mogens Glistrup, bilfrie søndage, Margaret Thatcher, Mikhail Gorbatjov, formandsopgøret i Socialdemokratiet og Barack Obama. Forhenværende svajer, tillidsmand, forbundsformand og...

  5. 3D printed glass: surface finish and bulk properties as a function of the printing process

    Science.gov (United States)

    Klein, Susanne; Avery, Michael P.; Richardson, Robert; Bartlett, Paul; Frei, Regina; Simske, Steven

    2015-03-01

    It is impossible to print glass directly from a melt, layer by layer. Glass is not only very sensitive to temperature gradients between different layers but also to the cooling process. To achieve a glass state the melt, has to be cooled rapidly to avoid crystallization of the material and then annealed to remove cooling induced stress. In 3D-printing of glass the objects are shaped at room temperature and then fired. The material properties of the final objects are crucially dependent on the frit size of the glass powder used during shaping, the chemical formula of the binder and the firing procedure. For frit sizes below 250 μm, we seem to find a constant volume of pores of less than 5%. Decreasing frit size leads to an increase in the number of pores which then leads to an increase of opacity. The two different binders, 2- hydroxyethyl cellulose and carboxymethylcellulose sodium salt, generate very different porosities. The porosity of samples with 2-hydroxyethyl cellulose is similar to frit-only samples, whereas carboxymethylcellulose sodium salt creates a glass foam. The surface finish is determined by the material the glass comes into contact with during firing.

  6. IMAGING MOLECULAR FRAME DYNAMICS

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche

    2012-01-01

    Molekylererikkeblotfastestrukturersomnårdetegnespåetstykkepapir. Tværtimod er de altid i bevægelse, hvilket betyder at selv stive molekyler på gasform vil kunne rotere frit i forhold til hinanden. En sådan samling af molekyler betegnes som tilfældigt orienterede. I mange eksperimenter er denne ti...

  7. Manufacturing method of enamel substrate for solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Jun; Fukamachi, Kazuhiko; Takahashi, Hiroshi

    1987-12-01

    This invention is an inexpensive manufacturing method of an enamel substrate which improved such defects as crack and stripping, and gives both flatness and pliability of the substrate surface. In other words, in forming a glass layer fritted on at least one surface of a stainless steel strake, frit with the content of SiO/sub 2/ 40-65%, Na/sub 2/O 10-30%, B/sub 2/O/sub 3/ 6-20%, PbO 10-35% is used, wherein SiO/sub 2/ gives flexibility, Na/sub 2/O and B/sub 2/O/sub 3/ increases thermal expansion coefficient, and B/sub 2/O/sub 3/ further endows elastic flexibility to the baked surface. PbO enhances the elasticity of the glass layer. Frit with additional content of K/sub 2/O (2-5%), TiO/sub 2/ (5-8%), CaO (0.5-3.0%) gives further effect. Addition of 1-5 parts of colloidal silica per 100 pts of frit gives an effect with good flatness in spite of thin glass layer. ( 3 tabs )

  8. A short life history of Prof. Dr. F.P. Jonker

    NARCIS (Netherlands)

    Janssen, C.R.

    1978-01-01

    This year Prof. Dr. F.P. Jonker, Frits as he is known among his friends, will retire from the formal academic life at the State University of Utrecht: a long and busy life of 49 years, devoted to teaching, administration, and scientific research. Looking back on all these years, one realises the

  9. Vejen til Vesten

    DEFF Research Database (Denmark)

    Ladegaard, Jakob

    2012-01-01

    Den kommunistiske Østbloks sammenbrud blev af mange hyldet som indledningen på en ny epoke domineret af liberale demokratier og et frit globalt marked. En række vestlige film peger dog på, at overgangen også har skabt nye magtrelationer og ofre, herunder en del af de østeuropæiske kvinder, der...

  10. Hydrogen generation during melter feed preparation of Tank 42 sludge and salt washed loaded CST in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Daniel, W.E.

    1999-01-01

    The main objective of these scoping tests was to measure the rate of hydrogen generation in a series of experiments designed to duplicate the expected SRAT and SME processing conditions in laboratory scale vessels. This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, loaded CST [crystalline silicotitanate], and frit

  11. Simple principper for livet

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2010-01-01

    fremmer folks oplevelse af at kunne handle frit, ansvarligt, engageret og meningsfuldt - uanset hvem de er - hvilket betyder, at alle får mere energi, mere glæde, bedre processer og bedre resultater ved hjælp af princippet. Og hvis det forekommer besværligt at skulle bekæmpe meningsløsheden, kan man jo...

  12. Facebook og privatliv

    DEFF Research Database (Denmark)

    Nielsen, Jøren Ullits Olai

    2015-01-01

    Hvornår har vi privatliv på de sociale medier? Kan journalister frit anvende informationer fra åbne profiler på nettet, herunder personfølsomme oplysninger? Hvad hvis profilen er lukket? Betyder det, at oplysningerne ikke må anvendes, fordi de er private? Og hvis det er tilfældet, er profilen så ...

  13. Estudio de algunos factores que afectan a la solubilidad de fritas en suspensiones de esmaltes

    Directory of Open Access Journals (Sweden)

    Gazulla, M. F.

    2001-04-01

    Full Text Available In view of the importance of certain problems relating to frit solubility in ceramic tile manufacture, a study was undertaken to determine how a set of different factors affect frit solubility. It was determined how the solubility of two frits was modified of the type of raw material used to make the frits and a series of variables relating to the glazes prepared from these frits. Relevant information was thus obtained regarding the industrial use of the frits, which is where the problems occur. The influence was specifically studied of milling time, suspension temperature, standing time, stirring intensity and the chemical composition of certain additives (binders and deflocculants on solubility. They were all found to substantially affect frit solobility, specially for certain elements (calcium, magnesium and cinc.

    Dada la importancia que revisten algunos problemas relacionados con la solubilidad de fritas en el proceso de fabricación de baldosas cerámicas, se ha abordado la realización de un trabajo destinado a conocer la influencia que ejercen sobre aquella un conjunto de factores de diferente naturaleza. Se ha determinado cómo se modifica la solubilidad de dos fritas en función del tipo de materia prima empleada para fabricarlas y de una serie de variables relacionadas con los esmaltes que se preparan a partir de aquellas. De esta forma se ha obtenido información relevante desde el punto de vista del uso industrial que se hace de las fritas, que es donde aparecen los problemas a que se ha hecho referencia anteriormente. Concretamente se ha estudiado la influencia sobre la solubilidad del tiempo de molturación, la temperatura de la suspensión, el tiempo de reposo, la intensidad de la agitación y la composición química de algunos aditivos (ligantes y desfloculantes. Se ha constatado que todas ellas inciden sustancialmente en la propiedad estudiada, especialmente para algunos elementos (calcio, magnesio y cinc.

  14. Remote telerobotic replacement for master-slave manipulator

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Iverson, D.C.; LaValle, D.R.

    1997-01-01

    A remotely replaceable telerobotic manipulator (TRM) has been developed and deployed at the Defense Waste Processing Facility (DWPF) in support of its radioactive operation. The TRM replaces a Master-Slave Manipulator (MSM). The TRM is in use for both routine and recovery operations for the radioactive waste vitrification melter, the primary production device within the DWPF. The arm was designed for deployment and operation using an existing MSM penetration. This replacement of an existing MSM with a high power robotic device demonstrates the capability to perform similar replacement in other operating facilities. The MSM's were originally deployed in the DWPF to perform routine light capacity tasks. During the testing phase of the DWPF, prior to its radioactive startup in 5/96, the need to remove glass deposits that can form at the melter discharge during filling of glass containment canisters was identified. The combination of high radiation and contamination in the DWPF melter cell during radioactive operation eliminated personnel entry as a recovery option. Therefore remote cleaning methods had to be devised. The MSM's had neither the reach nor the strength required for this task. It became apparent that a robust manipulator arm would be required for recovery from these potential melter discharge pluggage events. The existing wall penetrations, used for the MSM's, could not be altered for seismic and radiological reasons. The new manipulator was required to be of considerable reach, due to existing physical layout, and strength, due to the glass removal requirement. Additionally, the device would have to compatible with high radiation and remote crane installation. The physical size of the manipulator and the weight of components must be consistent with the existing facilities. It was recognized early-on that a manipulator of sufficient strength to recover from a pluggage event would require robotic functions to constrain undesirable motions

  15. Analysis of cesium extracting solvent using GCMS and HPLC

    International Nuclear Information System (INIS)

    White, T.L.; Herman, C.C.; Crump, S.L.; Marinik, A.R.; Lambert, D.P.; Eibling, R.E.

    2007-01-01

    A high-level waste (HLW) remediation process scheduled to begin in 2007 at the Savannah River Site is the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The MCU will use a hydrocarbon solvent (diluent) containing a cesium extractant, a calix[4]arene compound, to extract radioactive cesium from caustic HLW. The resulting decontaminated HLW waste or raffinate will be processed into grout at the Saltstone Production Facility (SPF). The cesium containing CSSX stream will undergo washing with dilute nitric acid followed by stripping of the cesium nitrate into a very dilute nitric acid or the strip effluent stream and the CSSX solvent will be recycled. The Defense Waste Processing Facility (DWPF) will receive the strip effluent stream and immobilize the cesium into borosilicate glass. Excess CSSX solvent carryover from the MCU creates a potential flammability problem during DWPF processing. Bench-scale DWPF process testing was performed with simulated waste to determine the fate of the CSSX solvent components. A simple high performance liquid chromatography (HPLC) method was developed to identify the modifier (which is used to increase Cs extraction and extractant solubility) and extractant within the DWPF process. The diluent and trioctylamine (which is used to suppress impurity effect and ion-pair disassociation) were determined using gas chromatography mass spectroscopy (GCMS). To close the organic balance, two types of sample preparation methods were needed. One involved extracting aqueous samples with methylene chloride or hexane, and the second was capturing the off gas of the DWPF process using carbon tubes and rinsing the tubes with carbon disulfide for analysis. This paper addresses the development of the analytical methods and the bench-scale simulated waste study results. (author)

  16. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  17. 1/6TH SCALE STRIP EFFLUENT FEED TANK-MIXING RESULTS USING MCU SOLVENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E

    2006-02-01

    The purpose of this task was to determine if mixing was an issue for the entrainment and dispersion of the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) solvent in the Defense Waste Processing Facility (DWPF) Strip Effluent Feed Tank (SEFT). The MCU strip effluent stream containing the Cs removed during salt processing will be transferred to the DWPF for immobilization in HLW glass. In lab-scale DWPF chemical process cell testing, mixing of the solvent in the dilute nitric acid solution proved problematic, and the Savannah River National Laboratory (SRNL) was requested to perform scaled SEFT mixing tests to evaluate whether the problem was symptomatic of the lab-scale set-up or of the solvent. The solvent levels tested were 228 and 235 ppm, which represented levels near the estimated DWPF solvent limit of 239 ppm in 0.001M HNO{sub 3} solution. The 239 ppm limit was calculated by Norato in X-CLC-S-00141. The general approach for the mixing investigation was to: (1) Investigate the use of fluorescent dyes to aid in observing the mixing behavior. Evaluate and compare the physical properties of the fluorescent dyed MCU solvents to the baseline Oak Ridge CSSX solvent. Based on the data, use the dyed MCU solvent that best approximates the physical properties. (2) Use approximately a 1/6th linear scale of the SEFT to replicate the internal configuration for DWPF mixing. (3) Determine agitator speed(s) for scaled testing based on the DWPF SEFT mixing speed. (4) Perform mixing tests using the 1/6th SEFT and determine any mixing issues (entrainment/dispersion, accumulation, adhesion) through visual observations and by pulling samples to assess uniformity. The mixing tests used MCU solvent fabricated at SRNL blended with Risk Reactor DFSB-K43 fluorescent dye. This dyed SRNL MCU solvent had equivalent physical properties important to mixing as compared to the Oak Ridge baseline solvent, blended easily with the MCU solvent, and provided an excellent visual aid.

  18. Chemical reactivity of precursor materials during synthesis of glasses used for conditioning high-level radioactive waste: Experiments and models

    International Nuclear Information System (INIS)

    Monteiro, A.

    2012-01-01

    The glass used to store high-level radioactive waste is produced by reaction of a solid waste residue and a glassy precursor (glass frit). The waste residue is first dried and calcined (to lose water and nitrogen respectively), then mixed with the glass frit to enable vitrification at high temperature. In order to obtain a good quality glass of constant composition upon cooling, the chemical reactions between the solid precursors must be complete while in the liquid state, to enable incorporation of the radioactive elements into the glassy matrix. The physical and chemical conditions during glass synthesis (e.g. temperature, relative proportions of frit and calcine, amount of radioactive charge) are typically empirically adjusted to obtain a satisfactory final product. The aim of this work is to provide new insights into the chemical and physical interactions that take place during vitrification and to provide data for a mathematical model that has been developed to simulate the chemical reactions. The consequences of the different chemical reactions that involve solid, liquid and gaseous phases are described (thermal effects, changes in crystal morphology and composition, variations in melt properties and structure). In a first series of experiments, a simplified analogue of the calcine (NaNO 3 -Al 2 O 3 ± MoO 3 /Nd 2 O 3 ) has been studied. In a second series of experiments, the simplified calcines have been reacted with a simplified glass frit (SiO 2 -Na 2 O-B 2 O 3 -Al 2 O 3 ) at high temperature. The results show that crystallization of the calcine may take place before interaction with the glass frit, but that the reactivity with the glass at high temperature is a function of the nature and stoichiometry of the crystalline phases which form at low temperature. The results also highlight how the mixing of the starting materials, the physical properties of the frit (viscosity, glass transition temperature) and the Na 2 O/Al 2 O 3 of the calcine but also its

  19. Characterization and decant of Tank 42H sludge sample ESP-200

    International Nuclear Information System (INIS)

    Hay, M.S.

    2000-01-01

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H

  20. Plutonium Immobilization Can Loading Concepts

    International Nuclear Information System (INIS)

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

    1998-05-01

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item

  1. Study on eliminating fire dampers to maintain process confinement

    International Nuclear Information System (INIS)

    Walling, R.C.; Patel, J.B.; Strunk, A.J.

    1991-01-01

    The DOE General Design Criteria for the Defense Waste Processing Facility (DWPF) at the Westinghouse Savannah River Site (WSRS) requires the NFPA National Fire Codes to be incorporated into the design and simultaneously maintain process confinement integrity to prevent the release of radioactivity. Although the NFPA Standard for the Installation of Air Conditioning and Ventilation Systems, NFPA 90, requires fire dampers (FD) in HVAC duct penetrations of two hour rated fire barriers, closure of fire dampers at DWPF may compromise the integrity of the process confinement system. This leads to the need for an overall risk assessment to determine the value of 39 fire dampers that are identified later in the study as capable of a confinement system upset

  2. Nuclear waste glass product consistency test (PCT), Version 5.0

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached

  3. Effect of canister size on costs of disposal of SRP high-level wastes

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1982-01-01

    The current plan for managing the high-level nuclear wastes at the Savannah River Plant (SRP) calls for processing them into solid forms contained in stainless steel canisters for eventual disposal in a federal geologic repository. A new SRP facility called the Defense Waste Processing Facility (DWPF) is being designed for the onsite waste processing operations. Preliminary evaluations indicate that costs of the overall disposal operation will depend significantly on the size of the canisters, which determines the number of waste forms to be processed. The objective of this study was to evaluate the effects of canister size on costs of DWPF process operations, including canister procurement, waste solidification, and interim storage, on offsite transport, and on repository costs of disposal, including provision of suitable waste packages

  4. Characterization and decant of Tank 42H sludge sample ESP-200

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.S.

    2000-04-25

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H.

  5. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  6. Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Baker, W.H.; Wittman, R.S.; Amos, C.N.

    1993-01-01

    The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility

  7. Analytical study plan: Shielded Cells batch 1 campaign; Revision 1

    International Nuclear Information System (INIS)

    Bibler, N.E.; Ha, B.C.; Hay, M.S.; Ferrara, D.M.; Andrews, M.K.

    1993-01-01

    Radioactive operations in the Defense Waste Processing Facility (DWPF) will require that the Savannah River Technology Center (SRTC) perform analyses and special studies with actual Savannah River Site (SRS) high-level waste sludge. SRS Tank 42 and Tank 51 will comprise the first batch of sludge to be processed in the DWPF. Approximately 25 liters of sludge from each of these tanks will be characterized and processed in the Shielded Cells of SRTC. During the campaign, processes will include sludge characterization, sludge washing, rheology determination, mixing, hydrogen evolution, feed preparation, and vitrification of the waste. To complete the campaign, the glass will be characterized to determine its durability and crystallinity. This document describes the types of samples that will be produced, the sampling schedule and analyses required, and the methods for sample and analytical control

  8. The remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) is a complete production area being constructed at the Savannah River Plant for the immobilization of nuclear waste in glass. The remote handling of canisters filled with nuclear waste in glass is an essential part of the process of the DWPF at the Savannah River Plant. The canisters are filled with nuclear waste containing up to 235,000 curies of radioactivity. Handling and movement of these canisters must be accomplished remotely since they radiate up to 5000 R/h. Within the Vitrification Building during filling, cleaning, and sealing, canisters are moved using standard cranes and trolleys and a specially designed grapple. During transportation to the Glass Waste Storage Building, a one-of-a-kind, specially designed Shielded Canister Transporter (SCT) is used. 8 figs

  9. Composition and redox control of waste glasses: Recommendation for process control limit

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1986-01-01

    An electrochemical series of redox couples, originally developed for Savannah River Laboratory glass frit 131 (SRL-131) as a reference composition, has been extended to two other alkali borosilicate compositions that are candidate glasses for nuclear waste immobilization. Since no dramatic differences were ascertained in the redox chemistry of selected multivalent elements in SRL-131 versus that in Savannah River Laboratory glass frit 165 (SRL-165) and in West Valley glass number-sign 205 (WV-205), the comprehensive electrochemical series can readily be applied to a range of nuclear waste glass compositions. In order to alleviate potential problems with foaming and precipitation of insolubles during the processing of the nuclear waste in these glass melts, the [Fe 2+ ]/[Fe 3+ ] ratio of the melt should be between 0.1 and 0.5. 27 refs., 4 figs., 2 tabs

  10. Electron beam welding of iridium heat source capsules

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed

  11. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  12. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-01-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  13. Extraction of zirconium from zircon (A new process)

    International Nuclear Information System (INIS)

    Shahid, K.A.; Saeed, D.; Jan, S.; Masood, A.; Akhtar, J.

    1985-10-01

    A new process has been used for the extraction of zirconium from zircon. Caustic fritting was done in the presence of magnesium hydroxide carbonate and magnesium oxide. These additives decrease the amount of nitric acid soluble silica less than 1000 ppm. Caustic fritting without any additions results in some nitric acid soluble silica, which is removed by dehydration with concentrated sulphuric acid. The present process eliminates the sulphuric acid dissolution and subsequent precipitation with ammonia which involves difficulty in washing of sulphate ions from the geletinous hydroxide cake and hence makes the direct nitric acid dissolution an attractive option. The effect of excess magnesium was studied and extraction does not seem to be effected by excess magnesium. How the reaction proceeds is not exactly understood but a probable mechanism has been postulated. (authors)

  14. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  15. A Glass-Ceramic Waste Forms for the Immobilization of Rare Earth Oxides from the Pyroprocessing Waste salt

    International Nuclear Information System (INIS)

    Ahn, Byung-Gil; Park, Hwan-Seo; Kim, Hwan-Young; Kim, In-Tae

    2008-01-01

    The fission product of rare earth (RE) oxide wastes are generates during the pyroprocess . Borosilicate glass or some ceramic materials such as monazite, apatite or sodium zirconium phosphate (NZP) have been a prospective host matrix through lots of experimental results. Silicate glasses have long been the preferred waste form for the immobilization of HLW. In immobilization of the RE oxides, the developed process on an industrial scale involves their incorporation into a glass matrix, by melting under 1200 ∼ 1300 .deg. C. Instead of the melting process, glass powder sintering is lower temperature (∼ 900 .deg. C) required for the process which implies less demanding conditions for the equipment and a less evaporation of volatile radionuclides. This study reports the behaviors, direct vitrification of RE oxides with glass frit, glass powder sintering of REceramic with glass frit, formation of RE-apatite (or REmonazite) ceramic according to reaction temperature, and the leach resistance of the solidified waste forms

  16. Molybdenum-tin as a solar cell metallization system

    Science.gov (United States)

    Boyd, D. W.; Radics, C.

    1981-01-01

    The operations of solar cell manufacture are briefly examined. The formation of reliable, ohmic, low-loss, and low-cost metal contacts on solar cells is a critical process step in cell manufacturing. In a commonly used process, low-cost metallization is achieved by screen printing a metal powder-glass frit ink on the surface of the Si surface and the conductive metal powder. A technique utilizing a molybdenum-tin alloy for the metal contacts appears to lower the cost of materials and to reduce process complexity. The ink used in this system is formulated from MoO3 with Sn powder and a trace amount of titanium resonate. Resistive losses of the resulting contacts are low because the ink contains no frit. The MoO3 is finally melted and reduced in forming gas (N2+H2) to Mo metal. The resulting Mo is highly reactive which facilitates the Mo-Si bonding.

  17. Radioactive waste vitrification: A review

    International Nuclear Information System (INIS)

    Cole, L.L.; Fields, D.E.

    1989-08-01

    The research and development of an immobilization process for the containment of nuclear high-level liquid waste has been underway for well-over the past four decades. The method that has become the state-of-the-art is the liquid-fed ceramic melter process which converts a mixture of high-level liquid waste and glass forming frit to a borosilicate glass product. This report gives a chronological review of the various vitrification processes starting with the very first reported process in 1960. Information on the early methods of frit selection as well as information on the currently computerized method are presented. The importance of all these parameters is discussed with regard to product durability. 26 refs., 8 figs., 1 tab

  18. Development of technique for AR coating and nickel and copper metallization of solar cells. FPS Project: Product development

    Science.gov (United States)

    Taylor, W.

    1982-01-01

    Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.

  19. Influencia de la molienda en la energía superficial de fritas para esmaltes

    Directory of Open Access Journals (Sweden)

    Tamayo, A.

    2013-04-01

    Full Text Available In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO2 by 5% of B2O3 and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID. By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A2 if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m-2 and the less acidic constant (0.13 kJ.mol-1. Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results.Se ha estudiado el proceso de molienda en dos fritas de la industria cerámica. Las dos fritas, de composiciones similares pero en una se ha sustituido parte de la sílice por 5% de óxido de boro, fueron molidas por vía seca o húmeda y se caracterizaron mediante FT-IR, valoración Karl-Fischer e IGC-ID. Mediante valoración se han determinado los contenidos en moléculas de agua e hidroxilos. El mayor contenido en hidroxilos lo posee la frita sin boro seguida de la de boro ambas molidas en húmedo, poseyendo 28 y 26 grupos OH por cada 100 A2, respectivamente. Estos resultados coinciden con IGC-ID, sin embargo es la frita sin boro molida en seco la de mayor energía superficial (44 mJ.m-2 y constante ácida (0.13 kJ.mol-1. Aunque las dos fritas tienen

  20. Sodium Aluminosilicate Formation in Tank 43H Simulants

    International Nuclear Information System (INIS)

    Wilmarth, W.R.; Walker, D.D.; Fink, S.D.

    1997-11-01

    This work studied the formation of a sodium aluminosilicate, Na 8 Al 6 Si 6 O 24 (NO 3 ) 2?4 H 2 O, at 40 degree 110 degree C in simulated waste solutions with varied amounts of silicon and aluminum. The data agree well with literature solubility data for sodalite, the analogous chloride salt. The following conclusions result from this work: (1) The study shows, by calculation and experiments, that evaporation of the September 1997 Tank 43H inventory will only form minor quantities of the aluminosilicate. (2) The data indicate that the rate of formation of the nitrate enclathrated sodalite solid at these temperatures falls within the residence time (<; 4 h) of liquid in the evaporator. (3) The silicon in entrained Frit 200 transferred to the evaporator with the Tank 43H salt solution will quantitatively convert to the sodium aluminosilicate. One kilogram of Frit 200 produces 2.1 kg of the sodium aluminosilicate

  1. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-07-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  2. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  3. Understanding the influence of tellurium oxide in front Ag paste for contacting silicon solar cells with homogeneous high sheet resistance emitter

    Science.gov (United States)

    Ebong, Abasifreke; Bezawada, Nirupama; Batchu, Kartheek

    2017-08-01

    This paper investigates TeO2, one of the front Ag paste additives, to understand its role in low contact and gridline resistances for screen-printed Si solar cell. It is concluded that TeO2 aids the reduction of molten glass frit viscosity during contact co-firing. This in turn, leads to uniform flow of molten glass frit, both in the gridline bulk and interface of gridline and SiN x . Therefore, the uniform wetting and etching of SiN x and consequently larger contact area of metal to Si compared to its counterpart without TeO2. Hence, the current transport mechanism from Si to gridline can be said to be both direct and tunneling. The Raman spectra showed a blue shift in the phase of the TeO2 after contact co-firing in the gridline bulk confirming a crystalline γ-TeO2.

  4. Modellen

    DEFF Research Database (Denmark)

    Om genopførelsen af Palle Nielsens (f. 1942) værk Modellen fra 1968: en kæmpe legeplads til børn i museet, hvor de kan boltre sig frit: klatre i tove, kravle i trækonstruktioner, arbejde med værktøjer, kaste sig ud i skumgummipuder, male med fingermaling og klæde sig ud i kostumer......Om genopførelsen af Palle Nielsens (f. 1942) værk Modellen fra 1968: en kæmpe legeplads til børn i museet, hvor de kan boltre sig frit: klatre i tove, kravle i trækonstruktioner, arbejde med værktøjer, kaste sig ud i skumgummipuder, male med fingermaling og klæde sig ud i kostumer...

  5. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  6. Borated concrete for ZPPR fuel storage

    International Nuclear Information System (INIS)

    Gasidlo, J.M.

    1985-01-01

    Fuel handling at the Zero Power Plutonium Reactor (ZPPR) led to two requirements for storage of ZPPR fuel: a low neutron multiplication and shielded storage to minimize personnel doses. Boron-poisoned concrete was chosen as the storge medium with boron frit as the poisoning agent. The calculated effects of water content and boron concentration led to specifying a concrete with a water content that was higher than ordinary concrete. The finite size of the boron frit particles caused concern about reduced effectiveness due to self-shielding. The self-shielding was evaluated using optical path lengths for spheres and tabulated self-shielding for slabs. The results showed that the finite-sized particles were at least 80% as effective as infinitely dilute absorption. Neutron and gamma dose rates measured in the vault verified that personnel could work in the vault on a regular basis without exceeding personnel dose limits. 4 refs., 3 figs., 7 tabs

  7. Sample vial inserts: A better approach for sampling heterogeneous slurry samples in the SRS Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Goode, S.R.

    1996-01-01

    A convenient and effective new approach for analyzing DWPF samples involves the use of inserts with volumes of 1.5--3 ml placed in the neck of 14 ml sample vials. The inserts have rims that conform to the rim of the vials so that they sit straight and stable in the vial. The DWPF tank sampling system fills the pre-weighed insert rather than the entire vial, so the vial functions only as the insert holder. The shielded cell operator then removes the vial cap and decants the insert containing the sample into a plastic bottle, crucible, etc., for analysis. Inert materials such as Teflon, plastic, and zirconium are used for the insert so it is unnecessary to separate the insert from the sample for most analyses. The key technique advantage of using inserts to take DWPF samples versus filling sample vials is that it provides a convenient and almost foolproof way of obtaining and handling small volumes of slurry samples in a shielded cell without corrupting the sample. Since the insert allows the entire sample to be analyzed, this approach eliminates the errors inherent with subsampling heterogeneous slurries that comprise DWPF samples. Slurry samples can then be analyzed with confidence. Analysis times are dramatically reduced by eliminating the drying and vitrification steps normally used to produce a homogeneous solid sample. Direct dissolution and elemental analysis of slurry samples are achieved in 8 hours or less compared with 40 hours for analysis of vitrified slurry samples. Comparison of samples taken in inserts versus full vials indicate that the insert does not significantly affect sample composition

  8. Remote viewing of melter interior Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1986-01-01

    A remote system has been developed and demonstrated for continuous reviewing of the interior of a glass melter, which is used to vitrify highly radioactive waste. The system is currently being implemented with the Defense Waste Processing Facility (DWPF) now under construction at the Savannah River Plant (SRP). The environment in which the borescope/TV unit is implemented combines high temperature, high ionizing radiation, low light, spattering, deposition, and remote maintenance

  9. TTP SR1-6-WT-31, Milestone C.3-2 annual report on Clemson/INEEL melter work. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1999-12-17

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  10. TTP SR1-6-WT-31, Milestone C.3-2 Annual Report on Clemson/INEEL Melter Work

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1999-10-20

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements.

  11. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  12. TTP SR1-6-WT-31, Milestone C.3-2 annual report on Clemson/INEEL melter work. Revision 1

    International Nuclear Information System (INIS)

    Bickford, D.F.

    1999-01-01

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements

  13. TTP SR1-6-WT-31, Milestone C.3-2 Annual Report on Clemson/INEEL Melter Work

    International Nuclear Information System (INIS)

    Bickford, D.F.

    1999-01-01

    This work is performed in collaboration with RL37WT31-C and ID77WT31-B. During the first two years of radioactive operation of the DWPF process, several areas for improvement in melter design have been identified. The continuing scope of this task is to address performance limitations and deficiencies identified by the user. SRS will design and test several configurations of the melter pour spout and associated equipment to improve consistency of performance and recommend design improvements

  14. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  15. Yield Stress Reduction of Radioactive Waste Slurries by Addition of Surfactants

    International Nuclear Information System (INIS)

    MICHAEL, STONE

    2005-01-01

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass while the facilities at the Hanford site are in the design/construction phase. Both processes utilize slurry-fed joule heated melters to vitrify the waste slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and melter feed processes. The use of a surface active agent, or surfactant, to increase the solids loading that can be fed to the melters would increase melt rate by reducing the heat load on the melter required to evaporate the water in the feed. The waste slurries are non-Newtonian fluids with rheological properties that were modeled using the Bingham Plastic mod el (this model is typically used by SRNL when studying the DWPF process1).The results illustrate that altering the surface chemistry of the particulates in the waste slurries can lead to a reduction in the yield stress. Dolapix CE64 is an effective surfactant over a wide range of pH values and was effective for all simulants tested. The effectiveness of the additive increased in DWPF simulants as the concentration of the additive was increased. No maxi main effectiveness was observed. Particle size measurements indicate that the additive acted as a flocculant in the DWPF samples and as a dispersant in the RPP samples

  16. Savannah River waste plant takes another broadside

    International Nuclear Information System (INIS)

    Setzer, S.W.

    1992-01-01

    This article is a discussion of Government Accounting Office findings related to the high-level waste disposal facilities, and in particular the Defense Waste Processing Facility, at Savannah River. Cost and schedule problems are noted, and the report concluded that ineffective management, both by DOE personnel and M ampersand AO contractor personnel, was a principal factor contributing to these problems at the DWPF and supporting facilities

  17. Plutonium Immobilization Program cold pour tests

    International Nuclear Information System (INIS)

    Hovis, G.L.; Stokes, M.W.; Smith, M.E.; Wong, J.W.

    1999-01-01

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory to carry out the disposition of excess weapons-grade plutonium. This program uses the can-in-canister (CIC) approach. CIC involves encapsulating plutonium in ceramic forms (or pucks), placing the pucks in sealed stainless steel cans, placing the cans in long cylindrical magazines, latching the magazines to racks inside Defense Waste Processing Facility (DWPF) canisters, and filling the DWPF canisters with high-level waste glass. This process puts the plutonium in a stable form and makes it attractive for reuse. At present, the DWPF pours glass into empty canisters. In the CIC approach, the addition of a stainless steel rack, magazines, cans, and ceramic pucks to the canisters introduces a new set of design and operational challenges: All of the hardware installed in the canisters must maintain structural integrity at elevated (molten-glass) temperatures. This suggests that a robust design is needed. However, the amount of material added to the DWPF canister must be minimized to prevent premature glass cooling and excessive voiding caused by a large internal thermal mass. High metal temperatures, minimizing thermal mass, and glass flow paths are examples of the types of technical considerations of the equipment design process. To determine the effectiveness of the design in terms of structural integrity and glass-flow characteristics, full-scale testing will be conducted. A cold (nonradioactive) pour test program is planned to assist in the development and verification of a baseline design for the immobilization canister to be used in the PIP process. The baseline design resulting from the cold pour test program and CIC equipment development program will provide input to Title 1 design for second-stage immobilization. The cold pour tests will be conducted in two

  18. Final flush of the shielded cells melter

    International Nuclear Information System (INIS)

    Marshall, K.M.; Fellinger, T.L.; Harbour, J.R.

    1997-01-01

    A flush of the Savannah River Technology Center (SRTC) Shielded Cells melter was performed after the completion of a campaign to vitrify loaded crystalline silicotitanate (CST) ion exchange medium. The purpose of the flush was to lower levels of radioisotopes accumulated during the campaign and to lower the level of titanium dioxide present in the glass. This in turn would ready the melter for future campaigns involving the Defense Waste Processing Facility (DWPF)

  19. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  20. Incorporating functional requirements into the structural design of the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Hsiu, F.J.; Ng, C.K.; Almuti, A.M.

    1986-01-01

    Vitrification Building-type structures have unique features and design needs. The structural design requires new concepts and custom detailing. The above special structural designs have demonstrated the importance of the five design considerations listed in the introduction. Innovative ideas and close coordination are required to achieve the design objectives. Many of these innovations have been applied to the DWPF facility which is a first of a kind

  1. Design of agitation systems in Bingham slurries by pilot simulation

    International Nuclear Information System (INIS)

    Nielsen, M.G.

    1987-01-01

    A method was required to determine the optimum agitator speed needed to produce overall motion of the Defense Waste Processing Facility (DWPF) high-level waste slurries in remote process cell vessels. Project schedule and limited process space required an accurate determination of agitator horsepower and size without the benefit of full-scale testing. The small scale testing of unique clear rheologically similar fluid is described along with tests and scale-up procedures. 2 refs., 3 figs

  2. SRS SLUDGE BATCH QUALIFICATION AND PROCESSING; HISTORICAL PERSPECTIVE AND LESSONS LEARNED

    Energy Technology Data Exchange (ETDEWEB)

    Cercy, M.; Peeler, D.; Stone, M.

    2013-09-25

    This report provides a historical overview and lessons learned associated with the SRS sludge batch (SB) qualification and processing programs. The report covers the framework of the requirements for waste form acceptance, the DWPF Glass Product Control Program (GPCP), waste feed acceptance, examples of how the program complies with the specifications, an overview of the Startup Program, and a summary of continuous improvements and lessons learned. The report includes a bibliography of previous reports and briefings on the topic.

  3. Genome analysis methods: Carica papaya [PGDBj Registered plant list, Marker list, QTL list, Plant DB link and Genome analysis methods[Archive

    Lifescience Database Archive (English)

    Full Text Available Carica papaya Draft 2n=18 372 Mb 2008 Sanger (WGS) 1.6M reads 370 Mb 3x ... 17,764 47...,483 TIGR Eukaryotic Annotation Pipeline 13,311 CpGDB; http://www.plantgdb.org/CpGDB/ Cpapaya_113 Cpapaya_113 10.1038/nature06856 18432245 ...

  4. First test of a CMS DT chamber equipped with full electronics in a muon beam

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    A CMS DT chamber of MB3 type, equipped with the final version of a minicrate (containing all on-chamber trigger and readout electronics), was tested in a muon beam for the first time. The beam was bunched in 25 ns spills, allowing an LHC-like response of the chamber trigger. This test confirmed the excellent performance of the trigger design.

  5. Reductions in Aprotic Media. I. Cathodic Reduction Limits in Acetonitrile at a Platinum Electrode.

    Science.gov (United States)

    1981-08-15

    specifically; (1) The difference in the effect of water on lithium solutions and tetraalkylammonium solutions, (2) the passivation of a platinum electrode...solutions. 5 EXPERIMENTAL Procedure for Controlled Potential Electrolysis The electrolyses were performed in a glass H-cell. The anode and cathode...fine porous glass frit from the Luggin section. The electrolyses were run in constant potential mode. After electrolysis, the catholyte was removed and

  6. Byudvikling og boligplanlægning i Sydafrika

    DEFF Research Database (Denmark)

    Eskemose Andersen, Jørgen; Andreasen, Jørgen

    1996-01-01

    Sydafrika har den størest urbanisering gad i Sydafrika. To tredjedele af befolkningen bor i byerne og er koncentreret i fem metropoler. Under apartheid blev byplanlægning anvendt som et yderst effektivt middel til at adskille racerne. Med et frit Sydafrika fra 1990 og et formelt demokrati fra 199...... dramitisk med 16 millioner der lever under kummerlige vilkår i skurlignede slum bebyggelser. Udgivelsesdato: 1996...

  7. Interview

    DEFF Research Database (Denmark)

    Sarauw, Laura Louise; Hollesen, Laika

    2011-01-01

    Det såkaldte humboldtske universitetsideal står i frit fald. Så det burde ikke komme som nogen overraskelse, at det demokratiske fundament slår revner. Det kommer i hvert fald ikke bag på Laura Louise Sarauw fra Københavns Universitet, der i sin ph.d.-afhandling har sat stort spørgsmålstegn ved d...

  8. NEPHELINE FORMATION STUDY FOR SLUDGE BATCH 4: PHASE 3 EXPERIMENTAL RESULTS

    International Nuclear Information System (INIS)

    Fox, K

    2006-01-01

    This Phase 3 study was undertaken to complement the previous phases of the nepheline formation studies1, 2 by continuing the investigation into the ability of the nepheline discriminator to predict the occurrence of nepheline crystallization in Sludge Batch 4 (SB4) glasses and into the impact of such phases on the durability of the SB4 glasses. The Phase 3 study had two primary objectives. The first was to continue to demonstrate the ability of the discriminator value to adequately predict the nepheline formation potential for specific glass systems of interest. The second was to generate additional data that have a high probability of supporting the SB4 variability study. To support these two objectives, sixteen glasses were selected based on the most recent SB4 compositional projection, Case 15C Blend 1.3 Four different frits were included, based on previous assessments of projected operating windows and melt rate,4, 5 with four WLs selected for each frit. Eight of these frit-sludge combinations covered WLs which tightly bound the nepheline discriminator value of 0.62, with the intent of refining this value to a level of confidence where it can be incorporated into offline administrative controls and/or the Process Composition Control System (PCCS) to support Slurry Mix Evaporator (SME) acceptability decisions. The remaining eight frit-sludge combinations targeted lower WLs (35 and 40%) and were prepared and analyzed to contribute needed data to the ComPro database6 to support a potential variability study for SB4

  9. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    International Nuclear Information System (INIS)

    Powell, J.; Reich, M.; Barletta, R.

    1996-01-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small (∼1 m 3 ) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ''secondary.'' The induced current in the ''secondary'' heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., ∼1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature

  10. Børn og familieliv. Send Bertel Haarder ind i den familiepolitiske manege

    DEFF Research Database (Denmark)

    Grumløse, Sine Penthin

    2017-01-01

    I 30 år har Venstre lovprist forældres såkaldte ”frie valg”. Så snart der er blevet debatteret familiepolitiske emner, har svaret været, at en god hverdag er sikret af de frit vælgende forældre. Samtidig har man undladt at forholde sig til, om forældres frihed til at tilrettelægge hverdagen godt ...

  11. Sensors and Micromachined Devices for the Automotive and New Markets: The Delphi Delco Electronics MEMS Story.

    Science.gov (United States)

    Logsdon, James

    2002-03-01

    This presentation will provide a brief history of the development of MEMS products and technology, beginning with the manifold absolute pressure sensor in the late seventies through the current variety of Delphi Delco Electronics sensors available today. The technology development of micromachining from uncompensated P plus etch stops to deep reactive ion etching and the technology development of wafer level packaging from electrostatic bonding to glass frit sealing and silicon to silicon direct bonding will be reviewed.

  12. Sinter recrystalization and properties evaluation of glass-ceramic from waste glass bottle and magnesite for extended application

    Directory of Open Access Journals (Sweden)

    As'mau Ibrahim Gebi

    2016-12-01

    Full Text Available In a bid to address environmental challenges associated with the management of waste Coca cola glass bottle, this study set out to develop glass ceramic materials using waste coca cola glass bottles and magnesite from Sakatsimta in Adamawa state. A reagent grade chrome (coloring agent were used to modify the composition of the coca cola glass bottle;  X-ray fluorescence(XRF, X-ray diffraction (XRD and Thermo gravimetric analysis (TGA were used to characterize raw materials, four batches GC-1= Coca cola glass frit +1%Cr2O3, GC-2=97% Coca cola glass frit+ 2% magnesite+1%Cr2O3, GC-3=95% Coca cola glass frit+ 4%magnesite+1%Cr2O3, GC-4=93%Coca cola glass frit+ 6%magnesite+ 1%Cr2O3 were formulated and prepared. Thermal Gradient Analysis (TGA results were used as a guide in selection of three temperatures (7000C, 7500C and 8000C used for the study, three particle sizes -106+75, -75+53, -53µm and 2 hr sintering time were also used, the sinter crystallization route of glass ceramic production was adopted. The samples were characterized by X-ray diffraction (XRD and Scanning Electron Microscope (SEM, the density, porosity, hardness and flexural strength of the resulting glass ceramics were also measured. The resulting glass ceramic materials composed mainly of wollastonite, diopside and anorthite phases depending on composition as indicated by XRD and SEM, the density of the samples increased with increasing sintering temperature and decreasing particle size. The porosity is minimal and it decreases with increasing sintering temperature and decreasing particle size. The obtained glass ceramic materials possess appreciable hardness and flexural strength with GC-3 and GC-4 having the best combination of both properties.

  13. Remediation of Perfluoroalkyl Contaminated Aquifers Using an In-situ Two-layer Barrier: Laboratory Batch and Column Study

    Science.gov (United States)

    2013-04-01

    brown rot fungi , including lignin peroxidase, manganese peroxidase and laccases, etc. (Bollag 1992, Dec and Bollag 2000). These enzymes effectively...The sorption isotherm experiment for PFOA was conducted in 250 mL polyethylene bottles that contained 10 mg GAC and 100 mL of HPLC water spiked with... polyethylene frit on one end was first wetted with HPLC water and then filled with 0.1 g GAC that was prior saturated with HPLC water. The column was

  14. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    SK Sundaram; JM Perez, Jr.

    2000-09-06

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement.

  15. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  16. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    International Nuclear Information System (INIS)

    Kitchen, B.G.

    1989-01-01

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance

  17. Production and remediation of low sludge simulated Purex waste glasses, 2: Effects of sludge oxide additions on glass durability

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated DWPF Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but was less durable than most other simulated SRS high-level waste glasses. Further, the measured durability of Purex 4 glass was not as well correlated with the durability predicted from the DWPF process control algorithm, probably because the algorithm was developed to predict the durability of SRS high-level waste glasses with higher sludge content than Purex 4. A melter run, designated Purex 4 Remediation, was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by the DWPF glass durability algorithm. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the glass durability was determined by the Product Consistency Test method. This document details the durability data and subsequent analysis

  18. Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and Vicinity, Savannah River Plant, South Carolina

    International Nuclear Information System (INIS)

    Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

    1989-01-01

    The purposes of this report are two-fold: (1) to define the hydrogeologic conditions in the vicinity of the defense waste processing facility (DWPF) and, (2) to evaluate the potential for movement of a concentrated salt-solution waste if released at or near the DWPF. These purposes were accomplished by assembling and evaluating existing hydrogeologic data; collecting additional geologic, hydrologic, and water-quality data; developing a local geologic framework; developing a conceptual model of the local ground-water flow system; and by performing laboratory experiments to determine the mobility of salt-solution waste in surface and near-surface sediments. Although the unconsolidated sediments are about 1000 ft thick in the study area, only the Tertiary age sediments, or upper 300 ft are discussed in this report. The top of the Ellenton Formation acts as the major confining unit between the overlying aquifers in Tertiary sediments and the underlying aquifers in Cretaceous sediments; therefore, the Ellenton Formation is the vertical limit of our hydrogeologic investigation. The majority of the hydrologic data for this study come from monitoring wells at the saltstone disposal site (SDS) in Z Area (fig. 3). No recent water-level data were collected in S Area owing to the removal of S Area monitoring wells prior to construction at the DWPF. 46 refs., 26 figs., 7 tabs

  19. Evaluation of a high-level waste radiological maintenance facility

    International Nuclear Information System (INIS)

    Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation''s first and world''s largest high level waste vitrification facility. DWPF began, operations in March 1996 to process radioactive waste, consisting of a matrixed predominantly 137 Cs precipitate and a predominately 90 Sr and alpha emitting sludge, into boro-silicate glass for long term storage. Presently, DWPF is processing only sludge waste and is preparing to process a combination of sludge and precipitate waste. During precipitate operations, canister dose rates are expected to exceed 10 Sv hr -1 (1000 rem hr -1 ). In sludge-only operations, canister contact gamma dose rates are approximately 15 mSv hr -1 (1500 mrem hr -1 ). Transferable contamination levels have been greater than 10 mSv hr -1 (100 cm 2 ) -1 for beta-gamma emitters and into the millions of Bq (100 cm 2 ) -1 for the alpha emitting radionuclides. This paper presents an evaluation of the radiological maintenance areas and their ability to support radiological work

  20. Analytical methods and laboratory facility for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Dewberry, R.A.; Lethco, A.J.; Denard, C.D.

    1985-01-01

    This paper describes the analytical methods, instruments, and laboratory that will support vitrification of defense waste. The Defense Waste Processing Facility (DWPF) is now being constructed at Savannah River Plant (SRP). Beginning in 1989, SRP high-level defense waste will be immobilized in borosilicate glass for disposal in a federal repository. The DWPF will contain an analytical laboratory for performing process control analyses. Additional analyses will be performed for process history and process diagnostics. The DWPF analytical facility will consist of a large shielded sampling cell, three shielded analytical cells, a laboratory for instrumental analysis and chemical separations, and a counting room. Special instrumentation is being designed for use in the analytical cells, including microwave drying/dissolution apparatus, and remote pipetting devices. The instrumentation laboratory will contain inductively coupled plasma, atomic absorption, Moessbauer spectrometers, a carbon analyzer, and ion chromatography equipment. Counting equipment will include intrinsic germanium detectors, scintillation counters, Phoswich alpha, beta, gamma detectors, and a low-energy photon detector

  1. The Product Composition Control System at Savannah River: The statistical process control algorithm

    International Nuclear Information System (INIS)

    Brown, K.G.

    1993-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, South Carolina, will be used to immobilize the approximately 130 million liters of high-level nuclear waste currently stored at the site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive insoluble sludge and precipitate and less radioactive water soluble salts. (In a separate facility, the soluble salts are disposed of as low-level waste in a mixture of cement, slag, and flyash.) In DWPF, precipitate (PHA) is blended with insoluble sludge and ground glass tit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The repository requires that the glass wasteform be resistant to leaching by underground water that might contact it. In addition, there are processing constraints on melt viscosity, liquidus temperature, and waste solubility

  2. Accident Fault Trees for Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  3. Prevention for possible microbiologically influenced corrosion (MIC) in RHLWE flush water system

    International Nuclear Information System (INIS)

    Hsu, T.C.; Jenkins, C.F.

    1995-01-01

    This report is in response to the request to provide a recommendation for the prevention of possible microbiologically influenced corrosion (MIC) for the RHLWE (Replacement High-Level Waste Evaporator) flush water (FW) system. The recent occurrences of MIC at DWPF prompted HLWE to evaluate the possibility of MIC occurring in this 304L stainless steel RHLWE flush water system. Concern was heightened by the fact that the well water used and the other conditions at H-Tank Farm are similar to those at DWPF. However, only one known leak has occurred in the existing 304L evaporator flush water systems in either tank farm (in 1H system), and no MIC Corrosion has been confirmed in the tank farm area. The design of the RHLWE flush water system (completed long before the occurrence of MIC at DWPF) was modeled after the existing evaporator flush water systems and did not specifically include MIC prevention considerations. Therefore, MIC prevention was not specifically considered during the design phase of this flush water system. The system is presently being installed. After an extensive evaluation, a task team concluded that the best biocide to prevent the occurrence of MIC would be NaOH at fairly low concentration. Sodium hydroxide (NaOH) is optimal in this application, because of its effectiveness, low cost, and familiarity to the Operations personnel (see Appendix A). However, it is the opinion of the task group that application should be withheld until MIC corrosion is demonstrated in the system

  4. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  5. Behavior of mercury in the formic acid vent condenser. Final report

    International Nuclear Information System (INIS)

    Zamecnik, J.R.

    1996-01-01

    The concentrations of mercury at the FAVC inlet and exit were measured during the BL1 and PX6 runs of the Integrated DWPF Melter System (IDMS) with the HEME bypassed and without the ammonia scrubber. The results showed that mercury concentrations of approximately 1.02-12.7 (mean 5.74) times saturation occurred at the FAVC exit. The concentration of mercury at the FAVC inlet was found to be 0.66-6.2 times the saturation value (based on the SRAT condenser exit). In the PX7 run, the ammonia scrubber was used and the FAVC HEME was not bypassed. The results from this run showed that the FAVC inlet concentrations again were above saturation (1.45-15.5 times saturation), but that the FAVC exit concentrations were only 0.02-0.41 times saturation (except for one data point at 1.61 times saturation). Operation of the FAVC without the HEME could therefore result in FAVC exit mercury concentrations of greater than 5.74 times saturation, which would result in DWPF emitting greater than 405 lb/yr of mercury at 100 percent attainment; this quantity is well in excess of the permit limit of 175 lb/yr (for all of DWPF). However, with the HEME in place, the emissions are predicted to be only about 40 lb/yr for an FAVC exit temperature of 10 degrees C. The experimental results also indicate that the ammonia scrubbers have little effect on the removal of mercury

  6. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    International Nuclear Information System (INIS)

    Sundaram, S.K.; Perez, J.M. Jr.

    2000-01-01

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement

  7. Reduction of Constraints: Applicability of the Homogeneity Constraint for Macrobatch 3

    International Nuclear Information System (INIS)

    Peeler, D.K.

    2001-01-01

    The Product Composition Control System (PCCS) is used to determine the acceptability of each batch of Defense Waste Processing Facility (DWPF) melter feed in the Slurry Mix Evaporator (SME). This control system imposes several constraints on the composition of the contents of the SME to define acceptability. These constraints relate process or product properties to composition via prediction models. A SME batch is deemed acceptable if its sample composition measurements lead to acceptable property predictions after accounting for modeling, measurement and analytic uncertainties. The baseline document guiding the use of these data and models is ''SME Acceptability Determination for DWPF Process Control (U)'' by Brown and Postles [1996]. A minimum of three PCCS constraints support the prediction of the glass durability from a given SME batch. The Savannah River Technology Center (SRTC) is reviewing all of the PCCS constraints associated with durability. The purpose of this review is to revisit these constraints in light of the additional knowledge gained since the beginning of radioactive operations at DWPF and to identify any supplemental studies needed to amplify this knowledge so that redundant or overly conservative constraints can be eliminated or replaced by more appropriate constraints

  8. Bonding of radioactive contamination. III. Auger electron spectroscopic investigation

    International Nuclear Information System (INIS)

    Rankin, W.N.; Whitkop, P.G.

    1983-01-01

    The mechanisms by which radioactive contamination would be bonded to a DWPF canister surface are being investigated. Tests with low pressure water and air-injected water decontamination of radioactive specimens showed that bonding of contamination increases rapidly with postoxidation temperature. Even with the least severe temperature conditions expected on the waste glass canister, bonding is so great that decontamination cannot be affected by water-only techniques. A preoxidation film increased rather than decreased bonding. This memorandum describes detailed surface analyses of coupons simulating DWPF canister surfaces. Based on this examination we conclude: contamination will be dispersed throughout the oxide film on DWPF canisters. Contamination is concentrated at the surface, decreasing farther into the oxide film; some samples contain sludge contamination at the steel/oxide interface. This was not the case for semi-volatile (Cs 2 O) contamination; in samples with contamination at the steel/oxide interface, at least 80% of the contamination is usually in the oxide layer; no difference in contamination dispersion between preoxidized and non-preoxidized samples was found; and postoxidation atmosphere had no effect on the contamination dispersion within the oxide layer. 6 references, 9 figures

  9. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  10. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1994 and FY-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Savannah River Ecology Laboratory initiated ecological studies related to the construction of the DWPF on the SRS in FY-1979. Two areas have been used for biological surveys and long-term monitoring: the DWPF construction site (S-Area and Z-Area), and two control sites (Rainbow Bay and Tinker Creek). The Rainbow Bay study area and S-Area are located within 5 km of each other on the SRS, and both once contained Carolina bays which were very similar ecologically. One goal of the SREL`s faunal studies is to compare the natural variation in amphibian populations at the Rainbow Bay control site to the variation observed at the human-altered site (Sun Bay, formerly on the DWPF construction site). Pre-construction biological surveys included data on vegetation, birds, mammals, amphibians, reptiles, fish and several invertebrate groups. No species on the Federal Endangered or Threatened lists were found on either site, but several plants and animals of threatened or special-concern status in South Carolina were present and the gopher frog (Rana areolata) currently is being considered for federal listing. Continuing studies are directed towards assessing construction impacts on the biota and towares modeling the effects of alteration of wetland hydroperiod on the biota. Primary emphasis is being paced on evaluation the effectiveness of mitigation measures undertaken by DOE.

  11. Evaluation of quartz melt rate furnace with the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-03

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the Nitric-Glycolic (NG) flowsheet. The work is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 20141 and the Slurry-fed Melt Rate Furnace (SMRF) testing conducted in 20162 that supported Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR).3 The Quartz Melt Rate Furnace (QMRF) was evaluated as a bench-scale scoping tool to potentially be used in lieu of or simply prior to the use of the larger-scale SMRF or CEF. The QMRF platform has been used previously to evaluate melt rate behavior and offgas compositions of DWPF glasses prepared from the Nitric-Formic (NF) flowsheet but not for the NG flowsheet and not with continuous feeding.4 The overall objective of the 2016-2017 testing was to evaluate the efficacy of the QMRF as a lab-scale platform for steady state, continuously fed melter testing with the NG flowsheet as an alternative to more expensive and complex testing with the SMRF or CEF platforms.

  12. Steady-state thermal-hydraulic analysis of the pellet-bed reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Morley, N.J.; Yang, J.Y.

    1992-01-01

    The pellet-bed reactor (PBR) for nuclear thermal propulsion is a hydrogen-cooled, BeO-reflected, fast reactor, consisting of an annular core region filled with randomly packed, spherical fuel pellets. The fuel pellets in the PBR are self-supported, eliminating the need for internal core structure, which simplifies the core design and reduces the size and mass of the reactor. Each spherical fuel pellet is composed of hundreds of fuel microspheres embedded in a zirconium carbide (ZrC) matrix. Each fuel microsphere is composed of a UC-NbC fuel kernel surrounded by two consecutive layers of the NbC and ZrC. Gaseous hydrogen serves both as core coolant and as the propellant for the PBR rocket engine. The cold hydrogen flows axially down the inlet channel situated between the core and the external BeO reflector and radially through the orifices in the cold frit, the core, and the orifices in the hot frit. Finally, the hot hydrogen flows axially out the central channel and exits through converging-diverging nozzle. A thermal-hydraulic analysis of the PBR core was performed with an emphasis on optimizing the size and axial distribution of the orifices in the hot and cold frits to ensure that hot spots would not develop in the core during full-power operation. Also investigated was the validity of the assumptions of neglecting the axial conduction and axial cross flow in the core

  13. Production of muscovite-feldspathic glass composite: scanning electron microscopy and X-ray diffraction analysis; Producao de composito moscovita-vidro feldspatico: microscopia eletronica de varredura e analise de difracao de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.P.F.; Ogasawara, T.; Santos, S.F. [Universidade Federal do Rio de Janeiro (PEMM/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia. Programa de Engenharia Metalurgica e de Materiais; Franca, S.C.A.; Barbato, C.N [Centro de Tecnologia Mineral(CETEM/MCT), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The objective of this work was to find the sintering conditions for the feldspathic glass + muscovite mixture to produce a dense composite block for manufacturing dental prosthesis by using CAD-CAM. Each 20g of the glass-frit had : 15.55g of Armil-feldspar; 0.53g of Al{sub 2}O{sub 3}; 1.56g of Na{sub 2}CO{sub 3}; 0.5g of borax; 1.74g of K{sub 2}CO{sub 3}; 0.13g of CeO{sub 2}. Frit's powder finer than 350 Tyler mesh was mixed with 0 wt%, 10 wt%, 20 wt% and 100 wt% of muscovite pressed cylinders (5600 pounds force) 16mm in diameter and sintered under vacuum Vacumat (VITA) furnace at 850 deg C, 900 deg C, 950 deg C, 1000 deg C, 1050 deg C, 1100 deg C and 1150 deg C. X-ray diffraction analysis and scanning electron microscopy were carried out. The necessary temperature for high densification depended on the composition of the mixture: 850 deg C (for pure frit); 1050 deg C (for 10 wt% mica) and 1150 deg C (for 20 wt% mica); pure mica degraded during sintering. (author)

  14. Wetting and surface tension of bismate glass melt

    International Nuclear Information System (INIS)

    Shim, Seung-Bo; Kim, Dong-Sun; Hwang, Seongjin; Kim, Hyungsun

    2009-01-01

    Lead oxide glass frits are used widely in the electronics industry for low-temperature firing. On the other hand, one of the low-sintering and low-melting lead-free glass systems available, the bismate glass system, is considered to be an alternative to lead oxide glass. In order to extend the applications of Bi 2 O 3 glasses, this study examined the thermophysical properties of low-melting Bi 2 O 3 -B 2 O 3 -ZnO-BaO-Al 2 O 3 -SiO 2 glass frits with various ZnO/B 2 O 3 ratios. The fundamental thermal properties, such as glass transition temperature and softening point, were examined by differential thermal analysis and a glass softening point determination system. The wetting angles, viscosities and surface tension of the various bismate glasses on an alumina substrate were measured using hot-stage microscopy and the sessile drop method. These thermophysical properties will be helpful in understanding the work of adhesion and the liquid spread kinetics of glass frits.

  15. The formation mechanism for printed silver-contacts for silicon solar cells.

    Science.gov (United States)

    Fields, Jeremy D; Ahmad, Md Imteyaz; Pool, Vanessa L; Yu, Jiafan; Van Campen, Douglas G; Parilla, Philip A; Toney, Michael F; van Hest, Maikel F A M

    2016-04-01

    Screen-printing provides an economically attractive means for making Ag electrical contacts to Si solar cells, but the use of Ag substantiates a significant manufacturing cost, and the glass frit used in the paste to enable contact formation contains Pb. To achieve optimal electrical performance and to develop pastes with alternative, abundant and non-toxic materials, a better understanding the contact formation process during firing is required. Here, we use in situ X-ray diffraction during firing to reveal the reaction sequence. The findings suggest that between 500 and 650 °C PbO in the frit etches the SiNx antireflective-coating on the solar cell, exposing the Si surface. Then, above 650 °C, Ag(+) dissolves into the molten glass frit - key for enabling deposition of metallic Ag on the emitter surface and precipitation of Ag nanocrystals within the glass. Ultimately, this work clarifies contact formation mechanisms and suggests approaches for development of inexpensive, nontoxic solar cell contacting pastes.

  16. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M, E-mail: mgajek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramic, al. Mickiewicza 30, 30-059 Cracow (Poland)

    2011-10-29

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al{sub 2}O{sub 3}-SiO{sub 2}, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO{sub 2}, ZrO{sub 2}, V{sub 2}O{sub 5} on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6{approx}8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm{sup 2} (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5{approx}6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO{sub 2}-Al{sub 2}O{sub 3}, were examined with use of DTA, XRD and SEM methods.

  17. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  18. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    International Nuclear Information System (INIS)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M

    2011-01-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al 2 O 3 -SiO 2 , have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO 2 , ZrO 2 , V 2 O 5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6∼8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm 2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5∼6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO 2 -Al 2 O 3 , were examined with use of DTA, XRD and SEM methods.

  19. Production of muscovite-feldspathic glass composite: scanning electron microscopy and X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Costa, F.P.F.; Ogasawara, T.; Santos, S.F.

    2009-01-01

    The objective of this work was to find the sintering conditions for the feldspathic glass + muscovite mixture to produce a dense composite block for manufacturing dental prosthesis by using CAD-CAM. Each 20g of the glass-frit had : 15.55g of Armil-feldspar; 0.53g of Al 2 O 3 ; 1.56g of Na 2 CO 3 ; 0.5g of borax; 1.74g of K 2 CO 3 ; 0.13g of CeO 2 . Frit's powder finer than 350 Tyler mesh was mixed with 0 wt%, 10 wt%, 20 wt% and 100 wt% of muscovite pressed cylinders (5600 pounds force) 16mm in diameter and sintered under vacuum Vacumat (VITA) furnace at 850 deg C, 900 deg C, 950 deg C, 1000 deg C, 1050 deg C, 1100 deg C and 1150 deg C. X-ray diffraction analysis and scanning electron microscopy were carried out. The necessary temperature for high densification depended on the composition of the mixture: 850 deg C (for pure frit); 1050 deg C (for 10 wt% mica) and 1150 deg C (for 20 wt% mica); pure mica degraded during sintering. (author)

  20. Properties and Fluxes of Primary Marine Aerosol Generated Via Detrainment of Turbulence-Modulated Bubble Plumes from Fresh North Atlantic Seawater

    Science.gov (United States)

    Keene, W. C.; Long, M. S.; Duplessis, P.; Kieber, D. J.; Maben, J. R.; Frossard, A. A.; Kinsey, J. D.; Beaupre, S. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    During a September-October 2016 cruise of the R/V Endeavor in the western North Atlantic Ocean, primary marine aerosol (PMA) was produced in a high capacity generator during day and night via detrainment of bubbles from biologically productive and oligotrophic seawater. The turbulent mixing of clean air and seawater in a Venturi nozzle produced bubble plumes with tunable size distributions. Physicochemical characteristics of size-resolved PMA and seawater were measured. PMA number production efficiencies per unit air detrained (PEnum) increased with increasing detainment rate. For given conditions, PEnum values summed over size distributions were roughly ten times greater than those for frits whereas normalized size distributions were similar. Results show that bubble size distributions significantly modulated number production fluxes but not relative shapes of corresponding size distributions. In contrast, mass production efficiencies (PEmass) decreased with increasing air detrainment and were similar to those for frits, consistent with the hypothesis that bubble rafts on the seawater surface modulate emissions of larger jet droplets that dominate PMA mass production. Production efficiencies of organic matter were about three times greater than those for frits whereas organic enrichment factors integrated over size distributions were similar.