WorldWideScience

Sample records for dwpf mb3 frit

  1. Melt Rate Improvement for DWPF MB3: Summary and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.P.

    2001-07-11

    The objective for this task is to understand and apply the control of glass batch chemistry (frit composition) and/or changes in chemical processing strategies to improve the overall melting process for Macrobatch 3 (MB3) (Defense Waste Processing Facility (DWPF) sludge-only processing). For melt rate limited systems, a small increase in melting efficiency translates into substantial savings by reducing operational costs without compromising the quality of the final waste product. This report summarizes the key information collected during the FY01 melt-rate testing completed to support the conclusion that switching from Frit 200, the frit currently used to prepare all the glass produced in radioactive processing, to Frit 320 should improve the melt rate during processing of DWPF MB3 sludge (Note: MB3 is referred to as Sludge Batch 2 in the High-Level Waste System Plan). The report also includes recommendations that should be addressed prior to implementation of the new frit and future research that should be completed to further improve melt rate. No analysis has been completed to determine if Frit 320 can be used in processing of other sludge macrobatches. The testing in this report is based on dried-slurry testing of a MB3 melter feed prepared from nonradioactive simulants. Additional testing, particularly with a melter feed slurry and actual waste, would be required before implementing the new frit in DWPF, and a variability study would also be necessary. The work to date, at most, provides relative data until actual melter data can be obtained and compared.

  2. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  3. Melt Rate Improvement for DWPF MB3: Foaming Theory and Mitigation Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.K.

    2001-07-24

    The objective of this research is to enhance the basic understanding of the role of glass chemistry, including the chemical kinetics of pre-melting, solid state reactions, batch melting, and the reaction pathways in glass and/or acid addition strategy changes on the overall melting process for the Defense Waste Processing Facility (DWPF) Macrobatch 3 (MB3).

  4. Melt Rate Improvement for DWPF MB3: Melt Rate Furnace Testing

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M.E.

    2001-07-24

    The Defense Waste Processing Facility (DWPF) would like to increase its canister production rate. The goal of this study is to improve the melt rate in DWPF specifically for Macrobatch 3. However, the knowledge gained may result in improved melting efficiencies translating to future DWPF macrobatches and in higher throughput for other Department of Energy's (DOE) melters. Increased melting efficiencies decrease overall operational costs by reducing the immobilization campaign time for a particular waste stream. For melt rate limited systems, a small increase in melting efficiency translates into significant hard dollar savings by reducing life cycle operational costs.

  5. THE USE OF DI WATER TO MITIGATE DUSTING FOR ADDITION OF DWPF FRIT TO THE SLURRY MIX EVAPORATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.

    2010-07-21

    The Defense Waste Processing Facility (DPWF) presently is in the process to determine means to reduce water utilization in the Slurry Mix Evaporator (SME) process, thus reducing effluent and processing times. The frit slurry addition system mixes the dry frit with water, yielding approximately a 50 weight percent slurry containing frit and the other fraction water. This slurry is discharged into the SME and excess water is removed via boiling. To reduce this water load to the SME, DWPF has proposed using a pneumatic system in conveying the frit to the SME, in essence a dry delivery system. The problem associated with utilizing a dry delivery system with the existing frit is the generation of dust when discharged into the SME. The use of water has been shown to be effective in the mining industry as well in the DOE complex to mitigate dusting. The method employed by SRNL to determine the quantity of water to mitigate dusting in dry powders was effective, between a lab and bench scale tests. In those tests, it was shown that as high as five weight percent (wt%) of water addition was required to mitigate dust from batches of glass forming minerals used by the Waste Treatment Plant at Hanford, Washington. The same method used to determine the quantity of water to mitigate dusting was used in this task to determine the quantity of water to mitigate this dusting using as-received frit. The ability for water to mitigate dusting is due to its adhesive properties as shown in Figure 1-1. Wetting the frit particles allows for the smaller frit particles (including dust) to adhere to the larger frit particles or to agglomerate into large particles. Fluids other than water can also be used, but their adhesive properties are different than water and the quantity required to mitigate dusting is different, as was observed in reference 1. Excessive water, a few weight percentages greater than that required to mitigate dusting can cause the resulting material not to flow. The primary

  6. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  7. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  8. The potential impacts of sodium management on Frit Development for Coupled Operations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-10

    In this report, Section 2.0 provides a description of sodium management and its impact on the glass waste form, Section 3.0 provides background information on phase separation, Section 4.0 provides the impact of sodium management on SB9 frit development efforts and the results of a limited scoping study investigating phase separation in potential DWPF frits, and Section 5.0 discusses potential technical issues associated with using a phase separated frit for DWPF operations.

  9. MELT RATE FURNACE TESTING FOR SLUDGE BATCH 5 FRIT OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D; Fox, K; Pickenheim, B; Stone, M

    2008-10-03

    Savannah River National Laboratory (SRNL) was requested to provide the Defense Waste Processing Facility (DWPF) with a frit composition for Sludge Batch 5 (SB5) to optimize processing. A series of experiments were designed for testing in the Melt Rate Furnace (MRF). This dry fed tool can be used to quickly determine relative melt rates for a large number of candidate frit compositions and lead to a selection for further testing. Simulated Sludge Receipt and Adjustment Tank (SRAT) product was made according to the most recent SB5 sludge projections and a series of tests were conducted with frits that covered a range of boron and alkali ratios. Several frits with relatively large projected operating windows indicated melt rates that would not severely impact production. As seen with previous MRF testing, increasing the boron concentration had positive impacts on melt rate on the SB5 system. However, there appears to be maximum values for both boron and sodium above which the there is a negative effect on melt rate. Based on these data and compositional trends, Frit 418 and a specially designed frit (Frit 550) have been selected for additional melt rate testing. Frit 418 and Frit 550 will be run in the Slurry Fed Melt Rate Furnace (SMRF), which is capable of distinguishing rheological properties not detected by the MRF. Frit 418 will be used initially for SB5 processing in DWPF (given its robustness to compositional uncertainty). The Frit 418-SB5 system will provide a baseline from which potential melt rate advantages of Frit 550 can be gauged. The data from SMRF testing will be used to determine whether Frit 550 should be recommended for implementation in DWPF.

  10. FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2009-01-28

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  11. FRIT DEVELOPMENT FOR SLUDGE BATCH 6

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.; Zamecnik, J.

    2010-05-13

    The Savannah River National Laboratory (SRNL) evaluated a large number of Sludge Batch 6 (SB6) composition projections to support frit optimization for SB6 vitrification at the Defense Waste Processing Facility (DWPF). The evaluations discussed in this report occurred over a period of about 4 months, and included about 40 composition projections, developed by both Savannah River Remediation (SRR) and SRNL. Paper study assessments were used to evaluate the sludge composition projections with arrays of potential frit compositions using the predictive models in the DWPF Product Composition Control System (PCCS). Both nominal sludge compositions and sludge compositions with anticipated compositional variation were considered. The model predictions were used to identify candidate frit compositions for each SB6 projection and to provide some guidance to SRR on washing and blending strategies for SB6 preparation. This report presents a chronological review of this process and summarizes the findings at each stage. Following initial feedback from this work, the number of washes in Tank 51 was reduced to increase the projected sodium concentration in SB6. Analyses of predicted frit performance before and after a potential decant of Tank 40 showed that the post-decant SB6 composition would be difficult to process with any frit composition and that this scenario should be avoided. Based on the most recent SB6 projections (February 2010 SB6 composition projections developed at SRNL using the measured SB6 qualification sample composition and the revised Tank Farm washing plan), Frit 418 appears to be viable for SB6 processing at a target waste loading of 36%. A Nominal Stage PCCS Measurement Acceptability Region (MAR) assessment gave projected operating windows of 25-41% waste loading, limited by predictions of nepheline crystallization. The projected operating window is reduced to 25-38% waste loading when anticipated compositional variation is considered, again limited by

  12. SCIX IMPACT ON DWPF CPC

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2011-07-14

    A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheet includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not

  13. SLUDGE BATCH VARIABILITY STUDY WITH FRIT 418

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Edwards, T.

    2010-11-29

    The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO{sub 2} resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass

  14. MB3a Infrasound Sensor Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J.; McDowell, Kyle D.

    2014-11-01

    Sandia National Laboratories has tested and evaluated a new infrasound sensor, the MB3a, manufactured by Seismo Wave. These infrasound sensors measure pressure output by a methodology developed by researchers at the French Alternative Energies and Atomic Energy Commission (CEA) and the technology was recently licensed to Seismo Wave for production and sales. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, seismic sensitivity, and self- calibration ability. The MB3a infrasound sensors are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  15. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-07-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  16. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  17. Water soluble decontamination coating for Defense Waste Processing Facility (DWPF) canisters

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.L.

    1986-12-17

    Water soluble sodium borate glass coating was successfully codeveloped by Clemson University (Dr. H.G. Lefort) and Du Pont as an alternative decontamination process to frit slurry blasting of Defense Waste Processing Facility (DWPF) canisters. Slurry blasting requires transport of abrasive slurries, might cause galling by entrapped frit particles, and could result in frit slurry freezeup in pumps and retention basins. Contamination can be removed from precoated canisters with a gentle hot water rinse. Glass waste spilled on a coated canister will spall off spontaneously during canister cooling. A glass coating appears to prevent transfer of contamination to the Canister Decontamination Cell (CDC) guides and cradle. 1 ref., 5 tabs.

  18. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit

  19. DWPF simulant CPC studies for SB8

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  20. THE SLUDGE BATCH 7A GLASS VARIABILITY STUDY WITH FRIT 418 AND FRIT 702

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D; Edwards, T

    2011-03-24

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing of Sludge Batch 7a (SB7a) in May 2011. To support qualification of SB7a, the Savannah River National Laboratory (SRNL) was requested to execute a variability study (VS) to assess the applicability of the current Product Composition Control System (PCCS) durability models for the Frit 418-SB7a compositional region of interest. The objective of this study was to demonstrate applicability of the current durability models to the SB7a compositional region of interest and acceptability of the SB7a glasses with respect to the Environmental Assessment (EA) glass in terms of durability as defined by the Product Consistency Test (PCT). To support programmatic objectives, twenty-eight SB7a glasses were selected based on the nominal sludge projections used to support the frit recommendation. Twenty-three of the SB7a VS glasses were based on the use of Frit 418, while 5 glasses were based on the use of Frit 702. Frit 702 was also identified as a viable candidate for SB7a, especially if SO{sub 4} concentrations are found to be higher than anticipated. Frit 702 has shown a higher SO{sub 4} retention capability as compared to Frit 418. With respect to acceptability, the PCT results of the SB7a-VS glasses are acceptable relative to the EA glass regardless of thermal history (quenched or canister centerline cooled) or compositional view (target or measured). More specifically, all of the SB7a glasses have normalized boron release values (NL [B]) less than 0.9 g/L as compared to the benchmark NL [B] value for EA of 16.695 g/L. With respect to the applicability of the current durability models to the SB7a VS compositional region of interest, all of the study glasses (based on target compositions) lie within the 95% confidence intervals of the model predictions. When model applicability is based on the measured compositions, all of the SB7a VS glasses are predictable with the exception of SB7aVS-02 and SB7

  1. SULFATE SOLUBILITY LIMIT VERIFICATION FOR DWPF SLUDGE BATCH 7A

    Energy Technology Data Exchange (ETDEWEB)

    Billings, A.

    2011-04-19

    During processing at the Defense Waste Processing Facility (DWPF), high sulfate concentrations in the feed are a concern to DWPF as it can lead to the formation of a detrimental, sulfate-rich, molten salt phase on the surface of the glass melt pool. To avoid these issues, a sulfate concentration limit was implemented into the Product Composition Control System (PCCS). Related to SB7a frit development efforts, the Savannah River National Laboratory (SRNL) assessed the viability of using the current 0.6 wt % SO{sub 4}{sup 2-} limit set for SB6 (in glass) and the possibility of increasing the SO{sub 4}{sup 2-} solubility limit in PCCS to account for anticipated sulfur concentrations, targeted waste loadings, and inclusion of secondary streams (e.g., Actinide Removal Process (ARP)) with two recommended frits (Frit 418 and Frit 702) for SB7a processing. For a nominal SB7a blend with a 63 inch SB6 heel remaining in Tank 40 (projection SB7a-63), a 0.60 wt% SO{sub 4}{sup 2-} in glass limit was determined for waste loadings of 34 wt% up to 40 wt% with Frit 418 based on crucible melts with batched chemicals. SRNL also examined the inclusion of ARP for the same blending scenario (SB7a-63-ARP) with Frit 418 and at least a 0.6 wt% SO{sub 4}{sup 2-} level, and waste loadings of 34 wt% to 40 wt% were also acceptable. When a visible yellow and/or white sulfate salt layer was visible on the surface of any cooled glass, it was assumed to have surpassed the solubility limit of SO{sub 4}{sup 2-} for that particular composition. All of the glasses fabricated at these concentrations did not exhibit a sulfate rich salt layer on the surface of the glass melt and retained the majority of the batched SO{sub 4}{sup 2-}. At higher levels of SO{sub 4}{sup 2-} 'spiked' into the projected sludge compositions over the aforementioned interval of waste loadings, with Frit 418, low viscosity sulfur layers were observed on the surface of glass melts which confirm exceeding the solubility

  2. DWPF Welder Parametric Study

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, M.J.

    1998-11-20

    After being filled with glass, DWPF canistered waste forms will be welded closed using an upset resistance welding process. This final closure weld must be leaktight, and must remain so during extended storage at SRS. As part of the DWPF Startup Test Program, a parametric study (DWPF-WP-24) has been performed to determine a range of welder operating parameters which will produce acceptable welds. The parametric window of acceptable welds defined by this study is 90,000 + 15,000 lb of force, 248,000 + 22,000 amps of current, and 95 + 15 cycles* for the time of application of the current.

  3. SULFATE SOLUBILITY LIMIT VERIFICATION FOR DWPF SLUDGE BATCH 7B

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2011-10-03

    the targeted values. The results for the SB7b glasses fabricated with Frit 418 showed an apparent trend of increasing sulfate retention with increasing Na{sub 2}O additions to the 5/25/11 sludge projection. This trend appears contradictory to other recent studies of sulfate retention in Defense Waste Processing Facility (DWPF) type glasses. Additional apparent contradictions to this trend were found in the data collected in the present study. Overall, the results for the SB7b sulfate study glasses with Frit 418 and the 5/25/11 projection with Na{sub 2}O additions showed that subtle changes in this complex glass composition impacted the degree of sulfate retention. These results do however provide confidence that a 0.6 wt % sulfate limit in glass is warranted for Frit 418 with the SB7b compositions evaluated in this study. The results for the SB7b glasses fabricated with Frit 702 are consistent with those of the previous SB7a study in that Frit 702 allowed for higher sulfate retention as compared to Frit 418 for the same sludge compositions. It is recommended that the DWPF implement a sulfate concentration limit of 0.6 wt % in glass for SB7b processing with Frit 418. If a higher than projected sulfate concentration is measured when SB7b processing begins (i.e., if a sulfate concentration higher than 0.6 wt % becomes necessary to achieve targeted waste loadings), DWPF should consider a transition to Frit 702. The sulfate limit could likely be raised to 0.8 wt % by transitioning to this frit. However, if DWPF considers transitioning from Frit 418 to Frit 702, additional glasses should be fabricated to confirm this higher limit due to the issues with incorrect B{sub 2}O{sub 3} concentrations for some of the glasses made with Frit 702 in this study. There are several factors other than sulfate retention that must also be carefully considered prior to changing frit compositions.

  4. DWPF SIMULANT CPC STUDIES FOR SB7B

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2011-11-01

    same acid stoichiometric factor. The slow acid addition in MCU seemed to alter the reactions that consumed the small excess acid present such that hydrogen generation was promoted relative to sludge-only processing. The coupled test reached higher wt.% total solids, and this likely contributed to the SME cycle hydrogen limit being exceeded at 110% KMA. It is clear from the trends in the SME processing GC data, however, that the frit slurry formic acid contributed to driving the hydrogen generation rate above the SME cycle limit. Hydrogen generation rates after the second frit addition generally exceeded those after the first frit addition. SRAT formate loss increased with increasing acid stoichiometry (15% to 35%). A substantial nitrate gain which was observed to have occurred after acid addition (and nitrite destruction) was reversed to a net nitrate loss in runs with higher acid stoichiometry (nitrate in SRAT product less than sum of sludge nitrate and added nitric acid). Increased ammonium ion formation was also indicated in the runs with nitrate loss. Oxalate loss on the order 20% was indicated in three of the four acid stoichiometry runs and in the coupled flowsheet run. The minimum acid stoichiometry run had no indicated loss. The losses were of the same order as the official analytical uncertainty of the oxalate concentration measurement, but were not randomly distributed about zero loss, so some actual loss was likely occurring. Based on the entire set of SB7b test data, it is recommended that DWPF avoid concentrating additional sludge solids in single SRAT batches to limit the concentrations of noble metals to SB7a processing levels (on a grams noble metal per SRAT batch basis). It is also recommended that DWPF drop the formic acid addition that accompanies the process frit 418 additions, since SME cycle data showed considerable catalytic activity for hydrogen generation from this additional acid (about 5% increase in stoichiometry occurred from the frit

  5. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J.

    2011-11-14

    mixture of sludge and glass frit. The major component was Si along with Fe, Al, and other elements in the radioactive waste being processed. The deposits analyzed also contained U-235 fission products and actinide elements. Prior to that, deposits in the off-gas system in the DWPF nonradioactive half scale melter and the one-tenth scale integrated DWPF melter system were analyzed and determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides entrained with iron oxides, spinels and frit particles formed by vapor-phase transport and condensation. Additional work was performed in 2007 in which researchers similarly found the deposits to be a combination of sludge and frit particles.

  6. SLUDGE BATCH 5 VARIABILITY STUDY WITH FRIT 418

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-09-29

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 5 (SB5) in early FY 2009. In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 as a transitional frit to initiate processing of SB5. This recommendation was based on the results of assessments on the compositional projections for SB5 available at that time from both the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of the Frit 418-SB5 system, SRNL executed a variability study to assess the acceptability of the Frit 418-SB5 glasses with respect to durability and the applicability of the current durability models. Twenty one glasses were selected for the variability study based on the available SB5 projections primarily spanning a waste loading (WL) range of 25-37%. In order to account for the addition of caustic to Tank 40, which occurred in July 2008, 3 wt% Na2O was added to the original Tank 40 heel projections. The addition of the Actinide Removal Process (ARP) stream to the blend composition was also included. Two of the glasses were fabricated at 25% and 28% WL in order to challenge the homogeneity constraint of the Product Composition Control System (PCCS) for SB5 coupled operations. These twenty one glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD) and the Product Consistency Test (PCT). The results of this study indicate that Frit 418 is a viable option for sludge-only and coupled operations. The addition of ARP did not have any negative impacts on the acceptability and predictability of the variability study glasses. Based on the measured PCT response, all of the glasses were acceptable as compared to the Environmental Assessment (EA) reference glass regardless of the thermal history and were also predictable using the current PCCS model for durability. The homogeneity constraint can

  7. The DWPF Melter proposed heat up sequence

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E.

    1989-08-11

    Per the request of DWPT supervision, a proposed heatup sequence for the DWPF Melter has been documented in this report. DWPF personnel will use this report as a guide to write the detailed DWPF Melter startup plan. 6 refs.

  8. Description of DWPF reference waste form and canister

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This document describes the reference waste form and canister for the Defense Waste Processing Facility (DWPF). The facility is planned for location at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1983. The reference canister is fabricated of 24-in.-OD 304L stainless steel pipe with a dished bottom, domed head, and lifting and welding flanges on the head neck. The overall canister length is 9 ft 10 in., with a wall thickness of 3/8-in. (schedule 20 pipe). The canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected to ensure that a filled canister with its shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be generally compatible with preliminary assessments of repository requirements. The reference waste form is borosilicate glass containing approximately 28 wt % sludge oxides with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains approximately 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. This composition results in a low average leachability in the waste form of approximately 5 x 10/sup -9/ g/cm/sup 2/-day based on /sup 137/Cs over 365 days in 25/sup 0/C water. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approximately 425 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the Stage 1 and Stage 2 processes. The radionuclide content of the canister is about 150,000 curies, with a radiation level of 2 x 10/sup 4/ rem/hour at 1 cm.

  9. DWPF Development Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Holtzscheiter, E.W.

    1994-05-09

    The DWPF Development Plan is based on an evaluation process flowsheet and related waste management systems. The scope is shown in Figure 1 entitled ``DWPF Process Development Systems.`` To identify the critical development efforts, each system has been analyzed to determine: The identification of unresolved technology issues. A technology issue (TI) is one that requires basic development to resolve a previously unknown process or equipment problem and is managed via the Technology Assurance Program co-chaired by DWPF and SRTC. Areas that require further work to sufficiently define the process basis or technical operating envelop for DWPF. This activity involves the application of sound engineering and development principles to define the scope of work required to complete the technical data. The identification of the level of effort and expertise required to provide process technical consultation during the start-up and demonstration of this first of a kind plant.

  10. Cryostable lightweight frit bonded silicon mirror

    Science.gov (United States)

    Anthony, F.; McCarter, D.; Tangedahl, M.; Content, D.

    The excellent polishability, low density and relatively high stiffness of silicon make it an attractive candidate for optical applications that require superior performance. Assembly of silicon details by means of glass frit bonding permits significant light weighting thus enhancing the benefit of silicon mirrors. To demonstrate the performance potential, a small lightweight glass frit bonded silicon mirror was fabricated and tested for cryoability. The test mirror was 12.5cm in diameter with a 60cm spherical radius and a maximum thickness, at the perimeter, of 2.5cm. A machined silicon core was used to stiffen the two face sheets of the silicon sandwich. These three elements were assembled, by glass frit bonding, to form the substrate that was polished. The experimental evaluation in a liquid nitrogen cryostat, demonstrated cryostability performance significantly better than required by the mirror specification. Key WordsCryostable, Lightweight, Silicon, Frit Bond, Spherical, Mirror

  11. ZERNIKE,FRITS - LIFE AND ACHIEVEMENTS

    NARCIS (Netherlands)

    FERWERDA, HA

    1993-01-01

    We present a review of the life and work of Frits Zernike (1888-1966), professor of mathematical and technical physics and theoretical mechanics at Groningen University, The Netherlands, inventor of phase contrast microscopy.

  12. TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS FOR THE SLUDGE BATCH 3 - FRIT 418 GLASS SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Billings, A; Tommy Edwards, T

    2009-03-03

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the phase stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (Tg) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The Tg of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP). These measurements were performed before DWPF start-up and the results were incorporated in Volume 7 of the Waste Form Qualification Report (WQR). Additional information exists for other projected compositions, but overall these compositions did not consider some of the processing scenarios now envisioned for DWPF to accelerate throughput. Changes in DWPF processing strategy have required this WAPS specification to be revisited to ensure that the resulting phases have been bounded. Frit 418 was primarily used to process HLW Sludge Batch 3 (SB3) at 38% waste loading (WL) through the DWPF. The Savannah River National Laboratory (SRNL) fabricated a cache of glass from reagent grade oxides to simulate the SB3-Frit 418 system at a 38 wt % WL for glass

  13. DWPF MATERIALS EVALUATION SUMMARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Gee, T.; Chandler, G.; Daugherty, W.; Imrich, K.; Jankins, C.

    1996-09-12

    To better ensure the reliability of the Defense Waste Processing Facility (DWPF) remote canyon process equipment, a materials evaluation program was performed as part of the overall startup test program. Specific test programs included FA-04 ('Process Vessels Erosion/Corrosion Studies') and FA-05 (melter inspection). At the conclusion of field testing, Test Results Reports were issued to cover the various test phases. While these reports completed the startup test requirements, DWPF-Engineering agreed to compile a more detailed report which would include essentially all of the materials testing programs performed at DWPF. The scope of the materials evaouation programs included selected equipment from the Salt Process Cell (SPC), Chemical Process Cell (CPC), Melt Cell, Canister Decon Cell (CDC), and supporting facilities. The program consisted of performing pre-service baseline inspections (work completed in 1992) and follow-up inspections after completion of the DWPF cold chemical runs. Process equipment inspected included: process vessels, pumps, agitators, coils, jumpers, and melter top head components. Various NDE (non-destructive examination) techniques were used during the inspection program, including: ultrasonic testing (UT), visual (direct or video probe), radiography, penetrant testing (PT), and dimensional analyses. Finally, coupon racks were placed in selected tanks in 1992 for subsequent removal and corrosion evaluation after chemical runs.

  14. THE IMPACT OF THE MCU LIFE EXTENSION SOLVENT ON DWPF GLASS FORMULATION EFFORTS

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D; Edwards, T

    2011-03-24

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NG-CSSX), a new strip acid, and modified monosodium titanate (mMST) will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing with the next generation solvent and mMST is required to determine the impact of these changes in 512-S operations as well as Chemical Process Cell (CPC), Defense Waste Processing Facility (DWPF) glass formulation activities, and melter operations at DWPF. To support programmatic objectives, the downstream impacts of the boric acid strip effluent (SE) to the glass formulation activities and melter operations are considered in this study. More specifically, the impacts of boric acid additions to the projected SB7b operating windows, potential impacts to frit production temperatures, and the potential impact of boron volatility are evaluated. Although various boric acid molarities have been reported and discussed, the baseline flowsheet used to support this assessment was 0.01M boric acid. The results of the paper study assessment indicate that Frit 418 and Frit 418-7D are robust to the implementation of the 0.01M boric acid SE into the SB7b flowsheet (sludge-only or ARP-added). More specifically, the projected operating windows for the nominal SB7b projections remain essentially constant (i.e., 25-43 or 25-44% waste loading (WL)) regardless of the flowsheet options (sludge-only, ARP added, and/or the presence of the new SE). These results indicate that even if SE is not transferred to the Sludge Receipt and Adjustment Tank (SRAT), there would be no need to add boric acid (from a trim tank) to compositionally compensate for the absence of the boric acid SE in either a sludge-only or ARP-added SB7b flowsheet. With respect to boron volatility, the Measurement Acceptability Region (MAR) assessments also

  15. Analysis Of DWPF Sludge Batch 7a (Macrobatch 8) Pour Stream Samples

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C.; Pareizs, J. M.

    2012-10-24

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed.

  16. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  17. DWPF Recycle Evaporator Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted

  18. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-08-28

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions

  19. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-08-28

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions

  20. Examination Of Sulfur Measurements In DWPF Sludge Slurry And SRAT Product Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J.; Wiedenman, B. J.

    2012-11-29

    Savannah River National Laboratory (SRNL) was asked to re-sample the received SB7b WAPS material for wt. % solids, perform an aqua regia digestion and analyze the digested material by inductively coupled plasma - atomic emission spectroscopy (ICP-AES), as well as re-examine the supernate by ICP-AES. The new analyses were requested in order to provide confidence that the initial analytical subsample was representative of the Tank 40 sample received and to replicate the S results obtained on the initial subsample collected. The ICP-AES analyses for S were examined with both axial and radial detection of the sulfur ICP-AES spectroscopic emission lines to ascertain if there was any significant difference in the reported results. The outcome of this second subsample of the Tank 40 WAPS material is the first subject of this report. After examination of the data from the new subsample of the SB7b WAPS material, a team of DWPF and SRNL staff looked for ways to address the question of whether there was in fact insoluble S that was not being accounted for by ion chromatography (IC) analysis. The question of how much S is reaching the melter was thought best addressed by examining a DWPF Slurry Mix Evaporator (SME) Product sample, but the significant dilution of sludge material, containing the S species in question, that results from frit addition was believed to add additional uncertainty to the S analysis of SME Product material. At the time of these discussions it was believed that all S present in a Sludge Receipt and Adjustment Tank (SRAT) Receipt sample would be converted to sulfate during the course of the SRAT cycle. A SRAT Product sample would not have the S dilution effect resulting from frit addition, and hence, it was decided that a DWPF SRAT Product sample would be obtained and submitted to SRNL for digestion and sample preparation followed by a round-robin analysis of the prepared samples by the DWPF Laboratory, F/H Laboratories, and SRNL for S and sulfate. The

  1. Micro-magnetic particles frit for capillary electrochromatography.

    Science.gov (United States)

    Oguri, Shigeyuki; Oga, Chiari; Takeda, Haruna

    2007-07-20

    This paper presents a new method for making frit using soft-ferrite-based micro-magnetic particles (MMPs) in a micro-space, such as in a capillary tube. The MMPs-frit was made by injecting an aliquot of 10 microm (outer diameter; o.d.)-MMPs-suspension in methanol (ca. 1mg/ml) into a capillary tube (75 microm inner diameter (i.d.) x 375 microm o.d. x ca. 35 cm length) that was already sandwiched between a pair of cylindrical Neodium (Nd-Fe-B) magnets (1.5 mm o.d. x 1.5 mm height, 280 mT) at a position where the frit was made. The MMPs were trapped in the capillary tube as a frit due to the attraction of the magnets placed at surface on the capillary tube. With regard to durability, the frit was stable for methanol flow with a flow rate of 400 microl/min at room temperature. Using such a frit, a capillary column (20 cm long) was prepared by injecting a 5 microm (o.d.)-ODS-particle suspension in methanol (ca. 0.4 mg/microl) into the capillary tube. The MMPs-frits-ODS-packed column was stable for methanol for a flow pressure less than 20MPa. When comparing the present column with a conventional sintered-frits-ODS-packed column for the purposes of separating five kinds of biogenic amines by means of an on-column derivatization capillary electrochromatography (CEC), the performance of the MMPs-frits capillary column was almost equivalent to that of the sintered-frits-ODS-packed column.

  2. Characterization of DWPF recycle condensate materials

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Adamson, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to understand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF the Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here.

  3. ANALYSIS OF DWPF SLUDGE BATCH 6 (MACROBATCH 7) POUR STREAM GLASS SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.

    2012-01-20

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 6 (SB6), also referred to as Macrobatch 7 (MB7), in June 2010. SB6 is a blend of the heel of Tank 40 from Sludge Batch 5 (SB5), H-Canyon Np transfers and SB6 that was transferred to Tank 40 from Tank 51.1 SB6 was processed using Frit 418. Sludge is received into the DWPF Chemical Processing Cell (CPC) and is processed through the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator Tank (SME). The treated sludge slurry is then transferred to the Melter Feed Tank (MFT) and fed to the melter. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP) and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. The DWPF requested various analyses of radioactive glass samples obtained from the melter pour stream during processing of SB6 as well as reduction/oxidation (REDOX) analysis of MFT samples to determine the impact of Argon bubbling. Sample analysis followed the Task Technical and Quality Assurance Plan (TTQAP) and an Analytical Study Plan (ASP). Four Pour Stream (PS) glass samples and two MFT slurry samples were delivered to the Savannah River National Laboratory (SRNL) from the DWPF. Table 1-1 lists the sample information for each pour stream glass sample. SB6 PS3 (S03472) was selected as the official pour stream sample for SB6 and full analysis was requested. This report details the visual observations of the as-received SB6 PS No.3 glass sample as well as results for the chemical composition, Product Consistency Test (PCT), radionuclide content, noble metals, and glass density. REDOX results will be provided for all four pour stream samples and vitrified samples of MFT-558 and MFT-568A. Where appropriate, data from other pour stream samples will be provided.

  4. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R

  5. Silver nanoparticles-coated glass frits for silicon solar cells

    Science.gov (United States)

    Li, Yingfen; Gan, Weiping; Li, Biyuan

    2016-04-01

    Silver nanoparticles-coated glass frit composite powders for silicon solar cells were prepared by electroless plating. Silver colloids were used as the activating agent of glass frits. The products were characterized by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The characterization results indicated that silver nanoparticles with the melting temperature of 838 °C were uniformly deposited on glass frit surface. The particle size of silver nanoparticles could be controlled by adjusting the [Ag(NH3)2]NO3 concentration. The as-prepared composite powders were applied in the front side metallization of silicon solar cells. Compared with those based on pure glass frits, the solar cells containing the composite powders had the denser silver electrodes and the better silver-silicon ohmic contacts. Furthermore, the photovoltaic performances of solar cells were improved after the electroless plating.

  6. Glass-ceramic frits from fly ash in terracotta production.

    Science.gov (United States)

    Karamanova, Emilia; Karamanov, Alexander

    2009-02-01

    Preliminary results of an investigation into the possible use of glass-ceramic frits from fly ash and glass cullet in terracotta (stoneware) tile manufacture are reported. Two new ceramics were studied and compared with a plant composition, containing 45 wt.% sodium feldspar. In the first ceramic batch 20% of the feldspar was substituted by frits and in the second the whole amount of feldspar was eliminated and replaced by 35% frits and 10% refractory waste. It was found that the addition of low viscous glass-ceramic frits decreased the sintering temperature by 50-100 degrees C. At the same time, due to formation of an additional crystal phase (i.e. pyroxene or anorthite) the new ceramics showed an improvement of 25-50% in bending strength.

  7. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01

    below the DWPF target with 750 g of steam per g of mercury. However, rheological properties did not improve and were above the design basis. Hydrogen generation rates did not exceed DWPF limits during the SRAT and Slurry Mix Evaporator (SME) cycles. However, hydrogen generation during the SRAT cycle approached the DWPF limit. The glass fabricated with the Tank 51 SB6 SME product and Frit 418 was acceptable with respect to chemical durability as measured by the Product Consistency Test (PCT). The PCT response was also predictable by the current durability models of the DWPF Product Composition Control System (PCCS). It should be noted, however, that in the first attempt to make glass from the SME product, the contents of the fabrication crucible foamed over. This may be a result of the SME product's REDOX (Reduction/Oxidation - Fe{sup 2+}/{Sigma}Fe) of 0.08 (calculated from SME product analytical results). The following are recommendations drawn from this demonstration. In this demonstration, at the request of DWPF, SRNL caustic boiled the SRAT contents prior to acid addition to remove water (to increase solids concentration). During the nearly five hours of caustic boiling, 700 ppm of antifoam was required to control foaming. SRNL recommends that DWPF not caustic boil/concentrate SRAT receipt prior to acid addition until further studies can be performed to provide a better foaming control strategy or a new antifoam is developed for caustic boiling. Based on this set of runs and a recently completed demonstration with the SB6 Waste Acceptance Product Specifications (WAPS) sample, it is recommended that DWPF not add formic acid at the design addition rate of two gallons per minute for this sludge batch. A longer acid addition time appears to be helpful in allowing slower reaction of formic acid with the sludge and possibly decreases the chance of a foam over during acid addition.

  8. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  9. Phase Stability Determinations of DWPF Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  10. Characterization of DWPF recycle condensate tank materials

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to undertand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF the Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here. The composition of the Sludge Batch 8 (SB8) RCT material is largely a low base solution of 0.2M NaNO2 and 0.1M NaNO3 with a small amount of formate present. Insoluble solids comprise only 0.05 wt.% of the slurry. The solids appear to be largely sludge-like solids based on elemental composition and SEM-EDS analysis. The sample contains an elevated concentration of I-129 (38x) and substantial 59% fraction of Tc-99, as compared to the incoming SB8 Tank 40 feed material. The Hg concentration is 5x, when compared to Fe, of that expected based on sludge carryover. The total U and Pu concentrations are reduced significantly, 0.536 wt.% TS and 2.42E-03 wt.% TS, respectively, with the fissile components, U-233, U-235, Pu-239, and Pu-241, an order of magnitude lower in concentration than those in the SB8 Tank 40 DWPF feed material. This report will be revised to include the foaming study requested in the TTR and outlined in the TTQAP when that work is concluded.

  11. Microcolumns with self-assembled particle frits for proteomics

    DEFF Research Database (Denmark)

    Ishihama, Yasushi; Rappsilber, Juri; Andersen, Jens S;

    2002-01-01

    LC-MS-MS experiments in proteomics are usually performed with packed microcolumns employing frits or outlets smaller than the particle diameter to retain the packing material. We have developed packed microcolumns using self-assembled particles (SAPs) as frits that are smaller than the size...... of the outlet. A five to one ratio of outlet size to particle diameter appears to be the upper maximum. In these situations the particles assembled into an arch over the outlet like the stones in a stone bridge. When 3 microm particles were packed into a tapered column with an 8 microm outlet, two particles...

  12. DWPF Simulant CPC Studies For SB8

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51 heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected

  13. Evaluation of Microstructure and Mechanical Property of FSW Welded MB3 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Kuai-she; SHEN Yang; YANG Xi-rong; WANG Xun-hong; XU Ke-wei

    2006-01-01

    An experiment was carried out on the friction stir welding of MB3 magnesium alloy to determine welding parameters for obtaining an excellent weld appearance without void, cracking, or distortion. Frictional heat and plastic flow created fine and equiaxed grains in the weld nugget, and the elongated and recovered grains in the thermomechanically affected zone (TMAZ). The grains in the heat affected zone (HAZ) grow slightly. The mechanical property results show that maximum joint tensile strength can reach 97.2% of the parent material, which is stronger than that of fusion joints; and the failure almost occurs in the heat affected zone.

  14. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C.; Crawford, C.

    2013-06-18

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  15. Liquidus Temperature Data for DWPF Glass

    Energy Technology Data Exchange (ETDEWEB)

    GF Piepel; JD Vienna; JV Crum; M Mika; P Hrma

    1999-05-21

    This report provides new liquidus temperature (TL) versus composition data that can be used to reduce uncertainty in TL calculation for DWPF glass. According to the test plan and test matrix design PNNL has measured TL for 53 glasses within and just outside of the current DWPF processing composition window. The TL database generated under this task will directly support developing and enhancing the current TL process-control model. Preliminary calculations have shown a high probability of increasing HLW loading in glass produced at the SRS and Hanford. This increase in waste loading will decrease the lifecycle tank cleanup costs by decreasing process time and the volume of waste glass produced.

  16. Technical bases DWPF Late Washing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fish, D.L.; Landon, L.F.

    1992-08-10

    A task force recommended that the technical feasibility of a Late Wash' facility be assessed [1]. In this facility, each batch of tetraphenylborate slurry from Tank 49 would be given a final wash to reduce the concentrations of nitrite and radiolysis products to acceptable levels. Laboratory-scale studies have demonstrated that d the nitrite content of the slurry fed to DWPF is reduced to 0.01 M or less (and at least a 4X reduction in concentration of the soluble species is attained), (1) the need for HAN during hydrolysis is eliminated (eliminating the production of ammonium ion during hydrolysis), (2) hydrolysis may be done with a catalyst concentration that will not exceed the copper solubility in glass and (3) the non-polar organic production during hydrolysis is significantly reduced. The first phase of an aggressive research and development program has been completed and all test results obtained to date support the technical feasibility of Late Washing. Paralleling this research and development effort is an aggressive design study directed by DWPF to scope and cost retrofitting the Auxiliary Pump Pit (APP) to enable performing a final wash of each batch of precipitate slurry before R is transferred into the DWPF Soft Processing Cell (SPC). An initial technical bases for the Late Wash Facility was transmitted to DWPF on June 15, 1992. Research and development activities are continuing directed principally at optimization of the cross-f low fitter decontamination methodology and pilot-scale validation of the recommended benzene stripping metodology.

  17. EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Laurinat, J.

    2011-08-15

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are

  18. Analysis Of The Sludge Batch 7b (Macrobatch 9) DWPF Pour Stream Glass Sample

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C.; Crawford, C. L.; Pareizs, J. M.

    2013-11-18

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7b (SB7b), also referred to as Macrobatch 9 (MB9), in January 2012. SB7b is a blend of the heel of Tank 40 from Sludge Batch 7a (SB7a) and the SB7b material that was transferred to Tank 40 from Tank 51. SB7b was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Form Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Two pour stream glass samples were collected while processing SB7b. The samples were transferred to the Savannah River National Laboratory (SRNL) where one was analyzed and the other was archived. The following conclusions were drawn from the analytical results provided in this report: The sum of oxides for the official SB7b pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%); The average calculated Waste Dilution Factor (WDF) for SB7b is 2.3. In general, the measured radionuclide content of the official SB7b pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7b Waste Acceptance Program Specification (WAPS) sample; As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the SB7b pour stream sample; The Product Consistency Test (PCT) results indicate that the official SB7b pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.8 g/L, which is an order of magnitude less than the Environmental Assessment (EA) glass; The measured density of the SB7b pour stream glass was 2.70 g/cm{sup 3}; The Fe{sup 2+}/ΣFe ratio of the SB7b pour stream samples was 0.07.

  19. ANALYSIS OF DWPF SLUDGE BATCH 7A (MACROBATCH 8) POUR STREAM SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.

    2012-05-01

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed. The following conclusions were drawn from the analytical results provided in this report: (1) The sum of oxides for the official SB7a pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%). (2) The average calculated Waste Dilution Factor (WDF) for SB7a is 2.3. In general, the measured radionuclide content of the official SB7a pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7a Waste Acceptance Program Specification (WAPS) sample. (3) As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the official SB7a pour stream sample. (4) The Product Consistency Test (PCT) results indicate that the official SB7a pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.64 g/L, which is an order of magnitude less than the Environmental

  20. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER AND STEAM ATOMIZED SCRUBBER DEPOSIT SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K; Ned Bibler, N

    2007-06-06

    This report summarizes the results from the characterization of deposits from the inlets of the primary off-gas Quencher and Steam Atomized Scrubber (SAS) in the Defense Waste Processing Facility (DWPF), as requested by a technical assistance request. DWPF requested elemental analysis and compound identification to help determine the potential causes for the substance formation. This information will be fed into Savannah River National Laboratory modeling programs to determine if there is a way to decrease the formation of the deposits. The general approach to the characterization of these samples included x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The following conclusions are drawn from the analytical results found in this report: (1) The deposits are not high level waste glass from the DWPF melt pool based on comparison of the compositions of deposits to the composition of a sample of glass taken from the pour stream of the melter during processing of Sludge Batch 3. (2) Chemical composition results suggest that the deposits are probably a combination of sludge and frit particles entrained in the off-gas. (3) Gamma emitters, such as Co-60, Cs-137, Eu-154, Am-241, and Am-243 were detected in both the Quencher and SAS samples with Cs-137 having the highest concentration of the gamma emitters. (4) No evidence existed for accumulation of fissile material (U-233, U-235, and Pu-239) relative to Fe in either deposit. (5) XRD results indicated both samples were primarily amorphorous and contained some crystals of the iron oxides, hematite and magnetite (Fe{sub 2}O{sub 3} and Fe(Fe{sub 2}O{sub 4})), along with sodium nitrate (NaNO{sub 3}). The other main crystalline compound in the SAS deposit was mercurous chloride. The main crystalline compound in the Quencher deposit was a uranium oxide compound. These are all sludge components. (6) SEM analysis of the Quencher deposit revealed crystalline uranium compounds within the sample

  1. SRAT CHEMISTRY AND ACID CONSUMPTION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D; David Best, D; Bradley Pickenheim, B

    2008-12-03

    Due to higher than expected hydrogen generation during the Tank 51-Sludge Batch 4 (SB4) qualification run, DWPF engineering requested the Savannah River National Laboratory (SRNL) to expand the ongoing catalytic hydrogen generation program. The work presented in this Technical Report was identified as part of SRNL/Liquid Waste Organization (LWO) meetings to define potential causes of catalytic hydrogen generation as well as from an external technical review panel commissioned to evaluate SRNL hydrogen related data and programs. New scope included improving the understanding of SRAT/SME process chemistry, particularly as it related to acid consumption and hydrogen generation. The expanded hydrogen program scope was covered under the technical task request (TTR): HLW-DWPF-TTR-2007-0016. A task technical and quality assurance plan (TT&QAP) was issued to cover focus areas raised in meetings with LWO plus a portion of the recommendations made by the review panel. A supporting analytical study plan was issued. It was also noted in the review of catalytic hydrogen generation that control of the DWPF acid stoichiometry was an important element in controlling hydrogen generation. A separate TTR was issued to investigate ways of improving the determination of the acid requirement during processing: HLWDWPF-TTR-0015. A separate TT&QAP was prepared for this task request. This report discusses some progress on this task related to developing alternative acid equations and to performing experimental work to supplement the existing database. Simulant preparation and preliminary flowsheet studies were already documented. The prior work produced a sufficient quantity of simulant for the hydrogen program and melter feed rheology testing. It also defined a suitable acid addition stoichiometry. The results presented in this report come from samples and process data obtained during sixteen 22-L SRAT/SME simulations that were performed in the second half of 2007 to produce eight SME

  2. DWPF GC FILTER ASSEMBLY SAMPLING AND ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C.; Imrich, K.

    2009-11-11

    On March 18, 2009 a Defense Waste Processing Facility (DWPF) GC Line Filter Assembly was received at the Savannah River National Laboratory (SRNL). This filter assembly was removed from operation following the completion of Sludge Batch 4 processing in the DWPF. Work on this sample was requested in a Technical Assistance Request. This document reports the pictures, observations, samples collected, and analytical results for the assembly. The assembly arrived at SRNL separated into its three component filters: high efficiency particulate air (HEPA)-1, HEPA-2, and a high efficiency mist evaporator (HEME). Each stage of the assembly's media was sampled and examined visually and by scanning electron microscopy (SEM). Solids built up in the filter housing following the first stage HEME, were dissolved in dilute nitric acid and analyzed by ICP-AES and the undissolved white solids were analyzed by x-ray diffraction (XRD). The vast majority of the material in each of the three stages of the DWPF GC Line Filter Assembly appears to be contaminated with a Hg compound that is {approx}59 wt% Hg on a total solids basis. The Hg species was identified by XRD analysis to contain a mixture of Hg{sub 4}(OH)(NO{sub 3}){sub 3} and Hg{sub 10}(OH){sub 4}(NO{sub 3}){sub 6}. Only in the core sample of the second stage HEPA, did this material appear to be completely covering portions of the filter media, possibly explaining the pressure drops observed by DWPF. The fact that the material migrates through the HEME filter and both HEPA filters, and that it was seen collecting on the outlet side of the HEME filter, would seem to indicate that these filters are not efficient at removing this material. Further SRAT off-gas system modeling should help determine the extent of Hg breakthrough past the Mercury Water Wash Tank (MWWT). The SRAT off-gas system has not been modeled since startup of the facility. Improvements to the efficiency of Hg stripping prior to the ammonia scrubber would seem

  3. Novel Ag-doped glass frits for high-efficiency crystalline silicon solar cells.

    Science.gov (United States)

    Yuan, Sheng; Chen, Yongji; Mei, Zongwei; Zhang, Ming-Jian; Gao, Zhou; Wang, Xingbo; Jiang, Xing; Pan, Feng

    2017-06-06

    Glass frits play an important role in the front contact electrodes of crystalline silicon (c-Si) solar cells. In this work, we developed a novel glass frit by doping Ag into a glass frit in the process of high-temperature synthesis. When the Ag paste including this novel glass frit was used as the front contact electrode of silicon solar cells, the conversion efficiency of poly-crystalline silicon (pc-Si) solar cells was improved by 1.9% compared to the glass frit without Ag. Through SEM characterisation and calculation of series resistance, we further found that the interface between Ag and Si was improved and the contact resistance of Ag and Si was greatly reduced, which were believed to be responsible for the improvement of solar cell performance. This work shows great guidance significance to develop novel and highly efficient commercial glass frits applied in solar cells in the future.

  4. Preparation of silver-coated glass frit and its application in silicon solar cells

    Science.gov (United States)

    Feng, Xiang; Biyuan, Li; Yingfen, Li; Jian, Zhou; Weiping, Gan

    2016-07-01

    A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone (PVP) before the electroless plating process. Infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), and x-ray diffraction (XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.

  5. Preparation of silver-coated glass frit and its application in silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    向锋; 李碧渊; 黎应芬; 周健; 甘卫平

    2016-01-01

    A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone (PVP) before the electroless plating process. Infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), and x-ray diffraction (XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.

  6. Synthesis of frits with ZnO made from zamak waste

    OpenAIRE

    Mestre Beltrán, Sergio; Gómez Tena, María Pilar; Agut, P.; Barba Juan, Antonio; Añó, E.

    2008-01-01

    The feasibility of using a zinc oxide obtained from zamak waste recovery as a raw material for frit synthesis has been studied. For this purpose, three widely used types of frit in the ceramic sector, which are characterised by their high ZnO content (a crystalline, a zirconium white, and a zinc matt frit), have been synthesised using ZnO made from zamak waste, and an industrial grade ZnO. The characteristics of these frits and of the glazes they yield have been compared. The results show tha...

  7. PRELIMINARY FRIT DEVELOPMENT AND MELT RATE TESTING FOR SLUDGE BATCH 6 (SB6)

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Miller, D.; Edwards, T.

    2009-07-21

    The Liquid Waste Organization (LWO) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 6 (SB6) composition projection in March 2009. Based on this projection, frit development efforts were undertaken to gain insight into compositional effects on the predicted and measured properties of the glass waste form and to gain insight into frit components that may lead to improved melt rate for SB6-like compositions. A series of Sludge Batch 6 (SB6) based glasses was selected, fabricated and characterized in this study to better understand the ability of frit compositions to accommodate uncertainty in the projected SB6 composition. Acceptable glasses (compositions where the Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) predicted acceptable properties, good chemical durability was measured, and no detrimental nepheline crystallization was observed) can be made using Frit 418 with SB6 over a range of Na{sub 2}O and Al{sub 2}O{sub 3} concentrations. However, the ability to accommodate variation in the sludge composition limits the ability to utilize alternative frits for potential improvements in melt rate. Frit 535, which may offer improvements in melt rate due to its increased B2O3 concentration, produced acceptable glasses with the baseline SB6 composition at waste loadings of 34 and 42%. However, the PCCS MAR results showed that it is not as robust as Frit 418 in accommodating variation in the sludge composition. Preliminary melt rate testing was completed in the Melt Rate Furnace (MRF) with four candidate frits for SB6. These four frits were selected to evaluate the impacts of B{sub 2}O{sub 3} and Na{sub 2}O concentrations in the frit relative to those of Frit 418, although they are not necessarily candidates for SB6 vitrification. Higher concentrations of B{sub 2}O{sub 3} in the frit relative to that of Frit 418 appeared to improve melt rate. However, when a higher concentration of B{sub 2}O{sub 3} was coupled

  8. Liquidus Temperature Data for DWPF Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.(BATTELLE (PACIFIC NW LAB)); Vienna, John D.(BATTELLE (PACIFIC NW LAB)); Mika, Martin (ASSOC WESTERN UNIVERSITY); Crum, Jarrod V.(BATTELLE (PACIFIC NW LAB)); Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB))

    1998-12-01

    A liquidus temperature (T{sub L}) database has been developed at the Pacific Northwest Laboratory (PNNL) for the Defense Waste Processing Facility (DWPF) glass composition region to support DWPF process control schemes. A test matrix consisting of 53 glasses (including two duplicates) was generated at the Savannah River Technology Center (SRTC) using statistical experimental design methods. To ensure homogeneity, glasses were melted twice. Both melts were performed at T = T{sub 5} + {Delta}T, where T{sub 5} is the temperature at which the melt viscosity is 5 Pa{center_dot}s and {Delta}T {ge} 100 C. The T{sub 5} value was estimated using a PNNL viscosity database. Its span for the test matrix was 1007 C to 1284 C. Melting at T > T{sub 5} (from 1107 C to 1400 C) was necessary to dissolve (and possibly volatilize) some of the RuO{sub 2}. All glasses contained a large fraction of 0.09 mass% RuO{sub 2}, which prevented a reliable detection of spinel near the liquidus temperature (T{sub L}) when the melting temperature was T{sub 5}. T{sub L} was measured by heat-treating glass samples over a range of constant temperatures. They used optical microscopy to detect the presence or absence of crystals in the samples. T{sub L} was determined from observing crystallization within the bulk glass (more than 0.5 mm from the glass surface). The T{sub L} values were adjusted by measuring the T{sub L} of an internal PNNL standard glass in each furnace and checked by a National Bureau of Stands (NBS) standard glass. All measured T{sub L} values are summarized in Table I-S. The accuracy of values is estimated at {+-} 10 C, based on the accuracy of calibrated thermocouples and the ability to discern spinel crystals in glass near T{sub L}. Another possible source of error is glass redox connected with the difference between the melting temperature and T{sub L}. The heat treatment period of samples was long enough to ensure equilibrating the glass with atmospheric air. However, repeated

  9. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non

  10. Draft Genome Sequence of Pseudomonas hussainii Strain MB3, a Denitrifying Aerobic Bacterium Isolated from the Rhizospheric Region of Mangrove Trees in the Andaman Islands, India.

    Science.gov (United States)

    Jaiswal, Shubham K; Saxena, Rituja; Mittal, Parul; Gupta, Ankit; Sharma, Vineet K

    2017-02-02

    The genome sequence of Pseudomonas hussainii MB3, isolated from the rhizospheric region of mangroves in the Andaman Islands, is comprised of 3,644,788 bp and 3,159 protein coding genes. Draft genome analysis indicates that MB3 is an aerobic bacterium capable of performing assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification.

  11. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  12. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  13. SME Acceptability Determination For DWPF Process Control (U)

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-12

    The statistical system described in this document is called the Product Composition Control System (PCCS). K. G. Brown and R. L. Postles were the originators and developers of this system as well as the authors of the first three versions of this technical basis document for PCCS. PCCS has guided acceptability decisions for the processing at the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) since the start of radioactive operations in 1996. The author of this revision to the document gratefully acknowledges the firm technical foundation that Brown and Postles established to support the ongoing successful operation at the DWPF. Their integration of the glass propertycomposition models, developed under the direction of C. M. Jantzen, into a coherent and robust control system, has served the DWPF well over the last 20+ years, even as new challenges, such as the introduction into the DWPF flowsheet of auxiliary streams from the Actinide Removal Process (ARP) and other processes, were met. The purpose of this revision is to provide a technical basis for modifications to PCCS required to support the introduction of waste streams from the Salt Waste Processing Facility (SWPF) into the DWPF flowsheet. An expanded glass composition region is anticipated by the introduction of waste streams from SWPF, and property-composition studies of that glass region have been conducted. Jantzen, once again, directed the development of glass property-composition models applicable for this expanded composition region. The author gratefully acknowledges the technical contributions of C.M. Jantzen leading to the development of these glass property-composition models. The integration of these models into the PCCS constraints necessary to administer future acceptability decisions for the processing at DWPF is provided by this sixth revision of this document.

  14. FRIT for Systems with Dead-Zone and Its Application to Ultrasonic Motors

    Science.gov (United States)

    Wakasa, Yuji; Kanagawa, Shinji; Tanaka, Kanya; Nishimura, Yuki

    Ultrasonic motors (USMs) intrinsically have a dead-zone property which is sensitive to load changes. This paper proposes a fictitious reference iterative tuning (FRIT) method for systems with a dead-zone property such as USMs. The standard FRIT method is basically developed for linear systems and may not give a satisfactory control performance for noninvertible nonlinear systems including USMs. In contrast, the proposed FRIT method can achieve such a performance by introducing a right inverse of a dead-zone function as a dead-zone compensator. In the optimization process of FRIT, the so-called covariance matrix adaptation evolution strategy (CMA-ES) is used for simultaneously searching a dead-zone parameter as well as controller parameters. CMA-ES is a kind of stochastic multi-point search techniques and is effective for nondifferentiable and nonconvex optimization problems. Experimental results for a USM are given to show the effectiveness of the proposed method.

  15. Do column frits contribute to the on-column, flow-induced degradation of macromolecules?

    Science.gov (United States)

    Striegel, André M

    2014-09-12

    Flow-induced, on-column degradation is a major hindrance to the accurate characterization of ultra-high molar mass macromolecules and colloids. This degradation is a direct result of the large shear rates which are generated within the column, which cause chain scission to occur both in the interstitial medium and, it has been postulated, at the packing particle pore boundary. An additional putative source of degradation has been the column frits, though little experimental evidence exists to either support or refute this claim. To this effect, the present experiments examine the role of the frits in the degradation of high molar mass macromolecules. Two narrow dispersity polystyrene standards, the molar mass of which differs by a factor of two, were analyzed on three different size-exclusion chromatography (SEC) columns, each with frits of different pore size, at various flow rates. In the smallest pore size column, which also contained the smallest frits and which was packed with the smallest diameter particles, the larger standard was forced to degrade by increasing the flow rate of the mobile phase. During the course of the latter portion of the study, the inlet and the outlet frits were removed from the column, in stepwise fashion. It was concluded that neither frit played any appreciable role in the degradation. Results of our studies were applied to explain previously observed degradation in ultra-high pressure liquid chromatography of polymers. The general conclusion arrived at herein is that the column frits are likely to have a secondary role (as compared to interstitial and pore boundary stresses), or no role at all, in polymer degradation for cases where the frit radius is larger than or equal to the hydraulic radius rcof the column.

  16. Technical bases DWPF Late Washing Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fish, D.L.; Landon, L.F.

    1992-08-10

    A task force recommended that the technical feasibility of a ``Late Wash` facility be assessed [1]. In this facility, each batch of tetraphenylborate slurry from Tank 49 would be given a final wash to reduce the concentrations of nitrite and radiolysis products to acceptable levels. Laboratory-scale studies have demonstrated that d the nitrite content of the slurry fed to DWPF is reduced to 0.01 M or less (and at least a 4X reduction in concentration of the soluble species is attained), (1) the need for HAN during hydrolysis is eliminated (eliminating the production of ammonium ion during hydrolysis), (2) hydrolysis may be done with a catalyst concentration that will not exceed the copper solubility in glass and (3) the non-polar organic production during hydrolysis is significantly reduced. The first phase of an aggressive research and development program has been completed and all test results obtained to date support the technical feasibility of Late Washing. Paralleling this research and development effort is an aggressive design study directed by DWPF to scope and cost retrofitting the Auxiliary Pump Pit (APP) to enable performing a final wash of each batch of precipitate slurry before R is transferred into the DWPF Soft Processing Cell (SPC). An initial technical bases for the Late Wash Facility was transmitted to DWPF on June 15, 1992. Research and development activities are continuing directed principally at optimization of the cross-f low fitter decontamination methodology and pilot-scale validation of the recommended benzene stripping metodology.

  17. Corrosion impact of reductant on DWPF and downstream facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilderman, J. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing was recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels

  18. A glass frit-sealed dye solar cell module with integrated series connections

    Energy Technology Data Exchange (ETDEWEB)

    Sastrawan, R.; Belledin, U. [Freiburg Materials Research Centre, Stefan-Meier Street 21, 79104 Freiburg (Germany); Beier, J.; Vetter, C. [Institut fuer Angewandte Photovoltaik, Munscheidstrasse 14, D-45886 Gelsenkirchen (Germany); Hemming, S. [PSE GmbH, Solar Info Centre, D-79072 Freiburg (Germany); Hinsch, A.; Kern, R. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, D-79110 Freiburg (Germany); Petrat, F.M.; Prodi-Schwab, A. [Degussa AG, Creavis, Paul-Baumann-Strasse 1, D-45764 Marl (Germany); Lechner, P.; Hoffmann, W. [RWE SCHOTT Solar GmbH, Carl-Zeiss-Street 4, 63755 Alzenau (Germany)

    2006-07-06

    As the dye solar cell (DSC) technology progresses from laboratory-scale to large-area applications, long-term stability is one major obstacle. Especially for large-area DSC modules, stability is often a matter of hermetic sealing both between cells and for the whole module. Here we suggest glass frit as sealing material. Glass frit is thermally, mechanically and chemically very stable and can be applied via screen printing. DSC modules of 30x30cm{sup 2} with a glass frit as primary sealing material have been produced. It was shown that glass frit is applicable for the upscaling of the DSC technology to large areas. The thermal stability of the glass frit sealing and the integrated series connections was verified in a thermal cycling from -40 to 80{sup o}C. The colouration process has been scaled up to 30x30cm{sup 2} by pumping the dye solution through the module using only two filling holes. By heating the module to 70{sup o}C the filling of the module with electrolytes based on high viscous ionic liquids was demonstrated. (author)

  19. Analysis of the DWPF glass pouring system using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Calloway, T.B. Jr.; Jantzen, C.M. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Medich, L.; Spennato, N. [Pavillion Technologies, Inc., Austin, TX (United States)

    1997-08-05

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of {+-} 0.35 inwc (< 2% of the instrument`s measured range, R{sup 2} = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R{sub 2} = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers.

  20. Freeze and restart of the DWPF Scale Glass Melter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1989-07-31

    After over two years of successful demonstration of many design and operating concepts of the DWPF Melter system, the last Scale Glass Melter campaign was initiated on 6/9/88 and consisted of two parts; (1) simulation of noble metal buildup and (2) freeze and subsequent restart of the melter under various scenarios. The objectives were to simulate a prolonged power loss to major heating elements and to examine the characteristics of transient melter operations during a startup with a limited supply of lid heat. Experimental results indicate that in case of a total power loss to the lower electrodes such as due to noble metal deposition, spinel crystals will begin to form in the SRL 165 composite waste glass pool in 24 hours. The total lid heater power required to initiate joule heating was the same as that during slurry-feeding. Results of a radiative heat transfer analysis in the plenum indicate that under the identical operating conditions, the startup capabilities of the SGM and the DWPF Melter are quite similar, despite a greater lid heater to melt surface area ratio in the DWPF Melter.

  1. Energy-based adaptive orthogonal FRIT and its application in image denoising

    Institute of Scientific and Technical Information of China (English)

    LIU YunXia; PENG YuHua; QU HuaiJing; YiN Yong

    2007-01-01

    Efficient representation of linear singularities is discussed in this paper. We analyzed the relationship between the "wrap around" effect and the distribution of FRAT (Finite Radon Transform) coefficients first, and then based on study of some properties of the columnwisely FRAT reconstruction procedure, we proposed an energy-based adaptive orthogonal FRIT scheme (EFRIT). Experiments using nonlinear approximation show its superiority in energy concentration over both Discrete Wavelet Transform (DWT) and Finite Ridgelet Transform (FRIT). Furthermore, we have modeled the denoising problem and proposed a novel threshold selecting method. Experiments carried out on images containing strong linear singularities and texture components with varying levels of addictive white Gaussian noise show that our method achieves prominent improvement in terms of both SNR and visual quality as compared with that of DWT and FRIT.

  2. Literature search for offsite data to improve the DWPF melter off-gas model

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W.E.

    2000-05-04

    This report documents the literature search performed and any relevant data that may help relax some of the constraints on the DWPF melter off-gas model. The objective of this task was to look for outside sources of technical data to help reduce some of the conservatism built in the DWPF melter off-gas model.

  3. Silicon strain gages bonded on stainless steel using glass frit for strain sensor applications

    Science.gov (United States)

    Zhang, Zongyang; Cheng, Xingguo; Leng, Yi; Cao, Gang; Liu, Sheng

    2014-05-01

    In this paper, a steel pressure sensor using strain gages bonded on a 17-4 PH stainless steel (SS) diaphragm based on glass frit technology is proposed. The strain gages with uniform resistance are obtained by growing an epi-silicon layer on a single crystal silicon wafer using epitaxial deposition technique. The inorganic glass frits are used as the bonding material between the strain gages and the 17-4 PH SS diaphragm. Our results show that the output performances of sensors at a high temperature of 125 °C are almost equal those at room temperature, which indicates that the glass frit bonding is a good method and may lead to a significant advance in the high temperature applicability of silicon strain gage sensors. Finally, the microstructure of the cured organic adhesive and the fired glass frit are compared. It may be concluded that the defects of the cured organic adhesive deteriorate the hysteresis and repeatability errors of the sensors.

  4. ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Hera, K.; Coleman, C.; Jones, M.; Wiedenman, B.

    2011-12-05

    Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1). This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from

  5. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In

  6. A STATISTICAL REVIEW OF DWPF LABORATORY MEASUREMENTS GENERATED DURING THE PROCESSING OF BATCHES 300 THROUGH 356

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T

    2006-08-31

    In this report, the Statistical Consulting Section (SCS) of the Savannah River National Laboratory (SRNL) provides summaries and comparisons of composition measurements for glass samples that were generated during the processing of batches 300 through 356 at the Defense Waste Processing Facility (DWPF). These analyses, which include measurements of samples from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as samples of glass standards, were provided to SCS by the DWPF Laboratory (DWPF Lab) of Waste Laboratory Services. The comparisons made by SCS were extensive given that these data allowed for contrasts between preparation methods and between the two spectrometers that are currently in use at the DWPF Lab. In addition to general comparisons, specific questions that were posed in the Technical Task Request (TTR) behind this effort were addressed in this report.

  7. Molecularly imprinted polymer grafted to porous polyethylene frits: a new selective solid-phase extraction format.

    Science.gov (United States)

    Barahona, Francisco; Turiel, Esther; Martín-Esteban, Antonio

    2011-10-07

    In this paper, a novel format for selective solid-phase extraction based on a molecularly imprinted polymer (MIP) is described. A small amount of MIP has been synthesized within the pores of commercial polyethylene (PE) frits and attached to its surface using benzophenone (BP), a photo-initiator capable to start the polymerisation from the surface of the support material. Key properties affecting the obtainment of a proper polymeric layer, such as polymerisation time and kind of cross-linker were optimised. The developed imprinted material has been applied as a selective sorbent for cleaning extracts of thiabendazole (TBZ), as model compound, from citrus samples. The use of different solvents for loading the analyte in the imprinted frits was investigated, as well as the binding capacity of the imprinted polymer. Imprinted frits showed good selectivity when loads were performed using toluene and a linear relationship was obtained for the target analyte up to 1000 ng of loaded analyte. Prepared composite material was applied to the SPE of TBZ in real samples extracts, showing an impressive clean-up ability. Calibrations showed good linearity in the concentration range of 0.05-5.00 μg g(-1), referred to the original solid sample, and the regression coefficients obtained were greater than 0.996. The calculated detection limit was 0.016 μg g(-1), low enough to satisfactory analysis of TBZ in real samples. RSDs at different spiking levels ranged below 15% in all the cases and imprinted frits were reusable without loss in their performance.

  8. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF

    Energy Technology Data Exchange (ETDEWEB)

    Krementz, D.; Coughlin, Jeffrey

    2009-05-05

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manually or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired

  9. Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

    1989-11-11

    The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

  10. REPORTABLE RADIONUCLIDES IN DWPF SLUDGE BATCH 7A (MACROBATCH 8)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Diprete, D.; Click, D.; Bannochie, C.

    2011-12-20

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that the waste producer 'shall report the curie inventory of radionuclides that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115.' As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type all radionuclides that have half-lives longer than 10 years and contribute greater than 0.01 percent of the total curie inventory from the time of production through the 1100 year period from 2015 through 3115. The initial list of radionuclides to be reported is based on the design-basis glass identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report. However, it is required that the list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the 'greater than 0.01% of the curie inventory' criterion. Specification 1.6 of the WAPS, International Atomic Energy Agency Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, and U-238; and Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete list of reportable radionuclides must also include these sets of U and Pu isotopes - and the U and Pu isotopic mass distributions must be identified. The DWPF receives HLW sludge slurry from Savannah River Site (SRS) Tank 40. For Sludge Batch 7a (SB7a), the waste in Tank 40 contained a blend of the heel from Sludge Batch 6 (SB6) and the Sludge Batch 7 (SB7) material transferred to Tank 40 from Tank 51. This sludge blend is also referred to as Macrobatch 8. Laboratory analyses of a Tank 40 sludge sample were performed to quantify the concentrations of pertinent radionuclides in the SB7a waste. Subsequently

  11. Silver-cemented frit formation for the stabilization of the packing structure in the microchannel of electrochromatographic microchips.

    Science.gov (United States)

    Park, Jongman; Oh, Hyejin; Jeon, In-Sun

    2011-10-28

    A simple but effective frit formation technique was developed to stabilize the packing structure inside the microchannel of capillary electrochromatographic microchips, utilizing the electroless plating technique. A Ag(NH(3))(2)(+) solution was allowed to diffuse through the colloidal silica packing in the microchannel from the reservoir of the microchip for a limited amount of time, and then it was reduced by an excess amount of formaldehyde solution. A frit structure of ~70 μm in length was formed at the entrance of the microchannel without clogging when treated with 1mM Ag(NH(3))(2)(+) ion and formaldehyde for 30s and 150 s, respectively. The formation of the frit structure was confirmed by a scanning electron microscopy. The stability of the packing structure was tested rigorously and then confirmed by applying alternating electroosmotic flows back and forth with pulsed potential steps on both sides of the frit structure. The effect of the treatment on the electrochromatograms was evaluated after the microchips were repeatedly used and stored for a long period of time. The results indicated that the silver-cemented frit structure extended the lifetime of the fully packed CEC microchips distinctly.

  12. Radiation Evaluation of an Advanced 64Mb 3.3V DRAM and Insights into the Effects of Scaling on Radiation Hardness

    Science.gov (United States)

    Shaw, D. C.; Swift, G. M.; Johnston, A. H.

    1995-01-01

    In this paper, total ionizing dose radiation evaluations of the Micron 64 Mb 3.3 V, fast page mode DRAM and the IBM LUNA-ES 16 Mb DRAM are presented. The effects of scaling on total ionizing dose radiation hardness are studied utilizing test structures and a series of 16 Mb DRAMs with different feature sizes from the same manufacturing line. General agreement was found between the threshold voltage shifts of 16 Mb DRAM test structures and the threshold voltage measured on complete circuits using retention time measurements. Retention time measurement data from early radiation doses are shown that allow internal failure modes to be distinguished.

  13. EVALUATION OF REQUIREMENTS FOR THE DWPF HIGHER CAPACITY CANISTER

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.; Estochen, E.; Jordan, J.; Kesterson, M.; Mckeel, C.

    2014-08-05

    The Defense Waste Processing Facility (DWPF) is considering the option to increase canister glass capacity by reducing the wall thickness of the current production canister. This design has been designated as the DWPF Higher Capacity Canister (HCC). A significant decrease in the number of canisters processed during the life of the facility would be achieved if the HCC were implemented leading to a reduced overall reduction in life cycle costs. Prior to implementation of the change, Savannah River National Laboratory (SRNL) was requested to conduct an evaluation of the potential impacts. The specific areas of interest included loading and deformation of the canister during the filling process. Additionally, the effect of the reduced wall thickness on corrosion and material compatibility needed to be addressed. Finally the integrity of the canister during decontamination and other handling steps needed to be determined. The initial request regarding canister fabrication was later addressed in an alternate study. A preliminary review of canister requirements and previous testing was conducted prior to determining the testing approach. Thermal and stress models were developed to predict the forces on the canister during the pouring and cooling process. The thermal model shows the HCC increasing and decreasing in temperature at a slightly faster rate than the original. The HCC is shown to have a 3°F ΔT between the internal and outer surfaces versus a 5°F ΔT for the original design. The stress model indicates strain values ranging from 1.9% to 2.9% for the standard canister and 2.5% to 3.1% for the HCC. These values are dependent on the glass level relative to the thickness transition between the top head and the canister wall. This information, along with field readings, was used to set up environmental test conditions for corrosion studies. Small 304-L canisters were filled with glass and subjected to accelerated environmental testing for 3 months. No evidence of

  14. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO2-, Na2O-, and Cs2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and

  15. Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, N.D.

    1992-08-10

    Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

  16. Preliminary Analysis of Species Partitioning in the DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kesterson, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-15

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas entrainment rates from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream compositions and timeaveraged melter operating data over the duration of one canister-filling cycle. The only case considered in this study involved the SB6 pour stream sample taken while Canister #3472 was being filled over a 20-hour period on 12/20/2010, approximately three months after the bubblers were installed. The analytical results for that pour stream sample provided the necessary glass composition data for the mass balance calculations. To estimate the “matching” feed composition, which is not necessarily the same as that of the Melter Feed Tank (MFT) batch being fed at the time of pour stream sampling, a mixing model was developed involving three preceding MFT batches as well as the one being fed at that time based on the assumption of perfect mixing in the glass pool but with an induction period to account for the process delays involved in the calcination/fusion step in the cold cap and the melter turnover.

  17. Validation of DWPF Melter Off-Gas Combustion Model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    2000-08-23

    The empirical melter off-gas combustion model currently used in the DWPF safety basis calculations is valid at melter vapor space temperatures above 570 degrees C, as measured in the thermowell. This lower temperature bound coincides with that of the off-gas data used as the basis of the model. In this study, the applicability of the empirical model in a wider temperature range was assessed using the off-gas data collected during two small-scale research melter runs. The first data set came from the Small Cylindrical Melter-2 run in 1985 with the sludge feed coupled with the precipitate hydrolysis product. The second data set came from the 774-A melter run in 1996 with the sludge-only feed prepared with the modified acid addition strategy during the feed pretreatment step. The results of the assessment showed that the data from these two melter runs agreed well with the existing model, and further provided the basis for extending the lower temperature bound of the model to the measured melter vapor space temperature of 445 degrees C.

  18. Anmeldelse af Claus Friisberg: Ideen om et frit Danmark. Den nationalliberale bevægelses ideologi og politik - især i den formative periode (Varde 2003)

    DEFF Research Database (Denmark)

    Busck, Steen

    2003-01-01

    Anmeldelse af Claus Friisberg: Ideen om et frit Danmark. Den nationalliberale bevægelses ideologi og politik - især i den formative periode (Varde 2003)......Anmeldelse af Claus Friisberg: Ideen om et frit Danmark. Den nationalliberale bevægelses ideologi og politik - især i den formative periode (Varde 2003)...

  19. Influence of milling process in the surface energy of glass tile frits; Influencia de la molienda en la energia superficial de fritas para esmaltes

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, A.; Rubio, F.; Oteo, J. L.; Rubio, J.

    2013-05-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO{sub 2} by 5% of B{sub 2}O{sub 3} and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A{sup 2} if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m{sup -}2) and the less acidic constant (0.13 kJ.mol{sup -}1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author) 30 refs.

  20. Influence of milling process in the surface energy of glass tile frits; Influencia de la molienda en la energia superficial de fritas para esmaltes

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, A.; Rubio, F.; Otero, J. L.; Rubio, J.

    2013-06-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO{sub 2} by 5% of B{sub 2}O{sub 3} and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A{sup 2} if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m{sup -}2) and the less acidic constant (0.13 kJ.mol{sup -}1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author)

  1. Two 24-hour Studies of Water Quality in the Ala Wai Canal during March and July, 1994 for the Mamala Bay Study, Pollutant Source Identification Project MB-3 (NODC Accession 0001188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pollutant Source Identification Project (MB-3) sought to provide a summary and analysis of pollutant loads to Mamala Bay from both point and nonpoint sources....

  2. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  3. Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, K.L.

    1992-02-01

    A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning.

  4. Final Report - Glass Formulation Development and Testing for DWPF High AI2O3 HLW Sludges, VSL-10R1670-1, Rev. 0, dated 12/20/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The principal objective of the work described in this Final Report is to develop and identify glass frit compositions for a specified DWPF high-aluminum based sludge waste stream that maximizes waste loading while maintaining high production rate for the waste composition provided by ORP/SRS. This was accomplished through a combination of crucible-scale, vertical gradient furnace, and confirmation tests on the DM100 melter system. The DM100-BL unit was selected for these tests. The DM100-BL was used for previous tests on HLW glass compositions that were used to support subsequent tests on the HLW Pilot Melter. It was also used to process compositions with waste loadings limited by aluminum, bismuth, and chromium, to investigate the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition, to process glass formulations at compositional and property extremes, and to investigate crystal settling on a composition that exhibited one percent crystals at 963{degrees}C (i.e., close to the WTP limit). The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. The tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Specific objectives for the melter tests are as follows: Determine maximum glass production rates without bubbling for a simulated SRS Sludge Batch 19 (SB19). Demonstrate a feed rate equivalent to 1125 kg/m{sup 2}/day glass production using melt pool bubbling. Process a high waste loading glass composition with the simulated SRS SB19 waste and measure the quality of the glass product. Determine the effect of argon as a bubbling gas on waste processing and the glass product including feed processing rate, glass redox, melter emissions, etc.. Determine differences in feed processing and glass characteristics for SRS SB19 waste simulated by the co-precipitated and direct

  5. Hvor frit er egentlig frit?

    DEFF Research Database (Denmark)

    Wierød, Lea Maria; Spang-Hanssen, Ulrik

    2011-01-01

    for en fuldstændig metronomisk tilgang, og at gennemsnittet af deres selvkontrollerede rubato lå så højt som 36%. Til sidst i artiklen viser stikprøver, foretaget hos Bartók og Debussy, at dette tal sandsynligvis er realistisk eller endog lavt målt med virkelighedens verden. This article examines whether...... of their self-controlled rubato was as high as 36%. Finally the article shows, through samples made on Bartók’s and Debussy’s playing, that this number probably is realistic or even low compared to the real world....

  6. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  7. DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2009-07-10

    Significant progress has been made in the past two years in improving the understanding of acid consumption and catalytic hydrogen generation during the Defense Waste Processing Facility (DWPF) processing of waste sludges in the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME). This report reviews issues listed in prior internal reviews, describes progress with respect to the recommendations made by the December 2006 external review panel, and presents a summary of the current understanding of catalytic hydrogen generation in the DWPF Chemical Process Cell (CPC). Noble metals, such as Pd, Rh, and Ru, are historically known catalysts for the conversion of formic acid into hydrogen and carbon dioxide. Rh, Ru, and Pd are present in the DWPF SRAT feed as by-products of thermal neutron fission of {sup 235}U in the original waste. Rhodium appears to become most active for hydrogen as the nitrite ion concentration becomes low (within a factor of ten of the Rh concentration). Prior to hydrogen generation, Rh is definitely active for nitrite destruction to N{sub 2}O and potentially active for nitrite to NO formation. These reactions are all consistent with the presence of a nitro-Rh complex catalyst, although definite proof for the existence of this complex during Savannah River Site (SRS) waste processing does not exist. Ruthenium does not appear to become active for hydrogen generation until nitrite destruction is nearly complete (perhaps less nitrite than Ru in the system). Catalytic activity of Ru during nitrite destruction is significantly lower than that of either Rh or Pd. Ru appears to start activating as Rh is deactivating from its maximum catalytic activity for hydrogen generation. The slow activation of the Ru, as inferred from the slow rate of increase in hydrogen generation that occurs after initiation, may imply that some species (perhaps Ru itself) has some bound nitrite on it. Ru, rather than Rh, is primarily responsible for the

  8. BRIGHT LONG AFTERGLOW PHOSPHORESCENCE GLASS MADE OF SrAl2O4: Eu2+, Dy3+ AND GLASS FRITS

    Institute of Scientific and Technical Information of China (English)

    X.Y. Zhang; Z.F. Cao; L.P. Lu; Z.H. Bai; W.Z. Wang; X.C. Wang

    2005-01-01

    Bright long afterglow phosphorescence glasses were prepared by using SrAl2O4 : Eu2+, Dy3+ phosphors and suitable glass frits together. The SrAl2O4: Eu2+,Dy3+ phosphors were initially prepared by the solid reaction method. Three kinds of glass frits were prepared to match the SrAl2O4: Eu2+,Dy3+ phosphors. Effects of the compositions of the glass frits, the ratios of the phosphors to the frits as well as the firing temperature and firing times on the properties of the samples were discussed. XRD analysis indicated the samples exhibited the typical diffraction peaks of SrAl2O4:Eu2+, Dy3+. The emission spectra of the samples showed broad bands peaking at 510nm. The excitation spectra of the samples showed broad bands ranging from 300 to 480nm. These are believed due to the 5d4f-4f transitions of Eu2+ in the SrAl2O4: Eu2+, Dy3+ phosphors. The afterglow luminescence of the samples excited by a 40W fluorescence lamp for 30min can be observed in the dark for more 10h with the naked eyes. It can find wide applications in many fields.

  9. Stage-frit: A straightforward sub-2 μm nano-liquid chromatography column fabrication for proteomic analysis.

    Science.gov (United States)

    Hsieh, Ming-Yueh; Hsiao, He-Hsuan

    2015-07-30

    In this work we demonstrated a facile method for the fabrication of C18 coordination polymer gel in a capillary, called stage-frit, which was efficiently applied to pack sub-2 μm C18 beads into the capillary by a high pressure bomb for the online separation of proteolytic peptides. The back pressure of the column with 10 cm × 75 μm i.d. is regularly lower than 170 bar at a flow rate of 300 nl/min, which could be operated on a common nanoLC system instead of nanoUPLC system due to the good permeability, low back pressure and high mechanical stress of the frit that will totally reduce the cost for the purchase of instrument. The stage-frit allows long-term continuous flow of the solvent and no significant beads loss or pressure instability was observed during the period. The repeatability of retention time for fifteen BSA tryptic peaks was found to be less than 1.08% (RSD) in six time nanoLC-ESI-MS/MS experiments. The average full width at half maximum (FWHM) of peptide peaks is 5.87 s. The sub-2 μm stage-frit nanoLC column showed better sensitivity than the commercial available for large scale proteomic analysis of total tissue proteins from human spleen. The number of identified peptides is approximately 0.4-fold and 0.2-fold higher than that obtained by utilizing commercial columns packed with 3 μm and 1.8 μm C18 materials, respectively. In the field of analytical chemistry, particularly the use of nanoLC systems, stage-frit nanoLC column offers a great potential for the separation of complex mixtures.

  10. Structural-simulation modeling of the fritting and fracture of a ferroelectric ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Parinov, I.A.; Vasil`eva, Yu.S.

    1995-04-01

    Results are presented from a structural-simulation modeling of the processes that occur during the fritting and fracture of ferroelectric ceramics BaTiO{sub 3} and PbTiO{sub 3}. A study was made of anomalous grain growth and the effect of these grains on the spontaneous cracking of the materials. Also examined are features of the propagation of a macrocrack in the modeled structure with allowance for the microcrack region formed in the neighborhood of the crack tip. Alternative microcrack patterns that lead to a change in the strength of the material are discovered, and estimates are obtained for different strength characteristics: crack density; the dimensions of the prefracture region; the crack resistance of the ceramic; strengthening and shielding of the macrocrack by the microcrack region at its tip.

  11. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith III, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle.

  12. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  13. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  14. DWPF FLOWSHEET STUDIES WITH SIMULANTS TO DETERMINE MCU SOLVENT BUILD-UP IN CONTINOUS RUNS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D; Frances Williams, F; S Crump, S; Russell Eibling, R; Thomas02 White, T; David Best, D

    2006-05-25

    The Actinide Removal Process (ARP) facility and the Modular Caustic Side Solvent Extraction Unit (MCU) are scheduled to begin processing salt waste in fiscal year 2007. A portion of the streams generated in these salt processing facilities will be transferred to the Defense Waste Processing Facility (DWPF) to be incorporated in the glass matrix. Before the streams are introduced, a combination of impact analyses and research and development studies must be performed to quantify the impacts on DWPF processing. The Process Science & Engineering (PS&E) section of the Savannah River National Laboratory (SRNL) was requested via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 to evaluate the impacts on DWPF processing. Simulant Chemical Process Cell (CPC) flowsheet studies have been performed using previous composition and projected volume estimates for the ARP sludge/monosodium titanate (MST) stream. Initial MCU incorporation testing for the DWPF flowsheet indicated unacceptable levels of Isopar{reg_sign}L were collecting in the Sludge Receipt and Adjustment Tank (SRAT) condenser system and unanticipated quantities of modifier were carrying over into the SRAT condenser system. This work was performed as part of Sludge Batch 4 (SB4) flowsheet testing and was reported by Baich et al. Due to changes in the flammability control strategy for DWPF for salt processing, the incorporation strategy for ARP changed and additional ARP flowsheet tests were necessary to validate the new processing strategy. The last round of ARP testing included the incorporation of the MCU stream and identified potential processing issues with the MCU solvent. The identified issues included the potential carry-over and accumulation of the MCU solvent components in the CPC condensers and in the recycle stream to the Tank Farm. Solvent retention in the DWPF condensers contradicts the DWPF solvent control strategy. Therefore, DWPF requested SRNL to perform additional MCU flowsheet studies to better

  15. Microstructure and Characteristics of Ba(Ti,Zr)O3 Ceramics with Addition of Glass Frit

    Science.gov (United States)

    Wang, Chun-Huy

    2002-08-01

    Microstructure and characteristics of Ba(Ti,Zr)O3 ceramics are significantly influenced by the addition of 4PbO.B2O3. The melting temperature of 4PbO.B2O3 was approximately 500°C, and thus it provides a liquid phase during sintering. At low sintering temperatures, the grain growth of Ba(Ti,Zr)O3 ceramics is enhanced by capillary rearrangement and solution-reprecipitation from the liquid phase. At high sintering temperatures, exaggerated grain growth of Ba(Ti,Zr)O3 ceramics is restrained by the presence of a liquid phase. The spreading liquid can penetrate the solid-solid interfaces. Penetration leads to disintegration of the solid and the subsequent rearrangement of fragments. With increasing amounts of 4PbO.B2O3, the tetragonal c/a ratio and Curie point temperature increase, but the dielectric loss tangent is depressed. With a suitable amount of glass frit and temperature for sintering, the density is enhanced and the values of the planar coupling factor and the poled dielectric constant are improved.

  16. Frits Went's atomic age greenhouse: the changing labscape on the lab-field border.

    Science.gov (United States)

    Kingsland, Sharon E

    2009-01-01

    In Landscapes and Labscapes Robert Kohler emphasized the separation between laboratory and field cultures and the creation of new "hybrid" or mixed practices as field sciences matured in the early twentieth century. This article explores related changes in laboratory practices, especially novel designs for the analysis of organism-environment relations in the mid-twentieth century. American ecologist Victor Shelford argued in 1929 that technological improvements and indoor climate control should be applied to ecological laboratories, but his recommendations were too ambitious for the time. In the postwar period Frits W. Went, plant physiologist at the California Institute of Technology, created a new high-tech laboratory, dubbed a "phytotron", in the hope that it would transform plant sciences by allowing for unprecedented control of environmental variables. Went's aspirations, the research conducted in his laboratory, and its impact in initiating an international movement, are considered. Went's laboratory can be seen as a "hybrid culture" evolving in the laboratory, complementing and intersecting with some of the field practices that Kohler describes. It was also a countercultural movement against the reductionist trends of molecular biology in the 1950s and 1960s. By considering the history of the laboratory in relation to field sciences, we can explore how new funding sources and cross-disciplinary relations affected the development of field sciences, especially in the postwar period.

  17. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bickford, D.F.

    1997-11-30

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program.

  18. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  19. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  20. PROCESS CHANGES TO DWPF TO INCREASE THROUGHPUT AND INCORPORATE SALT STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C; David Peeler, D; Tommy Edwards, T; Michael Stone, M; Michael02 Smith, M

    2007-06-13

    The Defense Waste Processing Facility (DWPF) has been vitrifying High Level Waste sludge since 1996. Sludge batch 1a, 1b, 2, and 3 have been successfully stabilized. In the last several years, the Savannah River National Laboratory (SRNL) has worked with DWPF to implement process and compositional changes to improve throughput. These changes allowed significant increases in waste throughput for processing of sludge batch 3 and will be necessary to maintain reasonable throughput for Sludge Batch 4 (SB4). SB4 processing was initiated in June 2007 and will be the first significantly HM-type sludge batch processed. This sludge is high in aluminum and other components troublesome to DWPF processing. In addition, coupled processing is scheduled to start in the next fiscal year, which will also impact throughput. Coupled processing will begin with the incorporation of waste streams from the Actinide Removal Process and the Modular Caustic Side Solvent Extraction Unit and will eventually transition to the feed from the larger scale Salt Waste Processing Facility. A discussion of the programs to improve throughput and implement salt processing will be provided.

  1. Statistical Review of Data from DWPF's Process Samples for Batches 19 Through 30

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.B.

    1999-04-06

    The measurements derived from samples taken during the processing of batches 19 through 30 at the Defense Waste Processing Facility (DWPF) affords an opportunity for review and comparisons. This report has looked at some of the statistics from these data. Only the data reported by the DWPF lab (that is, the data provided by the lab as representative of the samples taken) are available for this analysis. In some cases, the sample results reported may be a subset of the sample results generated by the analytical procedures. A thorough assessment of the DWPF lab's analytical procedures would require the complete set of data. Thus, the statistics reported here, specifically, as they relate to analytical uncertainties, are limited to the reported data for these samples, A fell for the consistency of the incoming slurry is the estimation of the components of variation for the Sludge Receipt and Adjustment Tank (SRAT) receipts. In general, for all of the vessels, the data from batches after 21 show smaller batch-to-batch variation than the data from all the batches. The relative contributions of batch-to-batch versus residual, which includes analytical, are presented in these analyses.

  2. FTIR, DTA and XRD study of sphene (CaTiSiO5)crystallization in a ceramic frit and a non-borate base glass

    Science.gov (United States)

    Chen, S. K.; Liu, H. S.

    1994-06-01

    The primary objective of this study has been the application of Fourier transform infrared (FTi.r.) absorption spectroscopy for both qualitative and quantitative characterization of sphene CaTiSiO5 crystallization in test materials; namely, a CaO-TiO2-B2O3 bearing ceramic frit-S and a similar non-borate base glass-S. Differential thermal analysis (DTA), x ray diffraction (XRD) and scanning electron microscope/electron probe x ray microanalysis (SEM/EPMA) techniques have also been used. FTi.r. absorption spectra have been shown to be capable of providing both qualitative and quantitative characterizations of crystal nucleation and growth in a frit-S and glass-S, being annealed between 800-1100 C. CaTiSiO5 appears as the dominant phase and alpha-cristobalite as the transitional phase in frit-S; whereas, beta-CaSiO3 is dominant, CaTiSiO5 being a minor phase in the non-borate glass-S. As given by DTA data, the intense stage of crystal growth for frit-S is about 120-125 C lower than that of glass-S. B2O3 content and the relative amounts of CaO and TiO2 in the test specimens have been shown to give different modes of phase evolution and the onset temperature of nucleation. The activation energies, E(sub c), of crystal nucleation/growth was estimated by two different methods, namely, via DTA data and FTi.r. absorption spectra under the dominant surface nucleation mode for powder pellet specimens. E(sub c) for CaTiSiO5, beta-CaSiO3 and alpha-cristobalite in the frit-S and the non-borate base glass-S were estimated to be 219.6, 107.2 and 51.5 kJ/mol respectively, parallel to the decreasing order of chemical complexity of the glass-forming system. Similar quantitative FTi.r. studies in the determination of E(sub c) for a broader scope of glass compositions, and compared with that based on XRD and DTA data, are to be encouraged so that the application of FTi.r. spectroscopy in glass-ceramics may be advanced.

  3. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    retention of mercury in the slurry. Both recovery of mercury in the offgas system and removal (segregation + recovery) from the slurry correlate with slurry consistency. Higher slurry consistency results in better retention of Hg in the slurry (less segregation) and better recovery in the offgas system, but the relationships of recovery and retention with consistency are sludge dependent. Some correlation with slurry yield stress and acid stoichiometry was also found. Better retention of mercury in the slurry results in better recovery in the offgas system because the mercury in the slurry is stripped more easily than the segregated mercury at the bottom of the vessel. Although better retention gives better recovery, the time to reach a particular slurry mercury content (wt%) is longer than if the retention is poorer because the segregation is faster. The segregation of mercury is generally a faster process than stripping. The stripping factor (mass of water evaporated per mass of mercury stripped) of mercury at the start of boiling were found to be less than 1000 compared to the assumed design basis value of 750 (the theoretical factor is 250). However, within two hours, this value increased to at least 2000 lb water per lb Hg. For runs with higher mercury recovery in the offgas system, the stripping factor remained around 2000, but runs with low recovery had stripping factors of 4000 to 40,000. DWPF data shows similar trends with the stripping factor value increasing during boiling. These high values correspond to high segregation and low retention of mercury in the sludge. The stripping factor for a pure Hg metal bead in water was found to be about 10,000 lb/lb. About 10-36% of the total Hg evaporated in a SRAT cycle was refluxed back to the SRAT during formic acid addition and boiling. Mercury is dissolved as a result of nitric acid formation from absorption of NO{sub x}. The actual solubility of dissolved mercury in the acidic condensate is about 100 times higher than

  4. Reconfirmation of frit 803 based on the January 2016 sludge batch 9 reprojection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-10

    On January 11, 2016, Savannah River Remediation (SRR) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 9 (SB9) reprojection that was developed from the analyzed composition of a Tank 51 sample. This sample was collected after field washing had been completed in Tank 51 to support the alternate reductant task. Based on this reprojection, Frit 803 is still a viable option for the processing of SB9 under sludge-only operations and coupled (Actinide Removal Process (ARP) product with and without monosodium titanate (MST)) operations. The maximum projected volumes of ARP product that can be transferred from the Precipitate Reactor Feed Tank (PRFT) per Sludge Receipt and Adjustment Tank (SRAT) batch and the resulting Na2O concentrations in the SRAT for coupled operations were determined. The Na2O concentrations in the SRAT resulting from the maximum projected ARP product transfer volumes are consistent with those from the previous assessments that were based on the August 2015 projections. Regardless of the presence or absence of MST in the ARP product, the contribution of Na2O to the resulting glass will be similar at the same waste loading (WL). These projected volumes of ARP product are not anticipated to be an issue for SB9. The actual transfer volumes from the PRFT to the SRAT are determined based upon the analyzed Na2O concentrations in the PRFT samples, which has resulted in larger transfer volumes than those allowed by the projections for Sludge Batch 8 (SB8). An operating window of 32-40% WL around the nominal WL of 36% is achievable for both sludge-only and coupled operations; however, each of the glass systems studied does become limited by waste form affecting constraints (durability) at higher volumes of ARP product and WLs of 41-42%.

  5. Estudo colorimétrico de fritas feldspáticas Colorimetric study of feldsphatic frits

    Directory of Open Access Journals (Sweden)

    S. F Santos

    2010-03-01

    Full Text Available As fritas cerâmicas são materiais de natureza vítrea preparadas por fusão em temperaturas elevadas (~1500 ºC, a partir de uma mistura de matérias-primas minerais. Os vidrados preparados exclusivamente a partir de fritas são utilizados principalmente em peças cerâmicas nas quais a componente estética é mais importante que a componente técnica, como no caso de azulejos, objetos decorativos e em restaurações odontológicas. Para um efeito decorativo mais eficiente, é necessário que o revestimento cerâmico seja estável o suficiente para não alterar significativamente a cor apresentada pelo pigmento e, dessa forma, possibilitar uma reprodutibilidade da cor obtida. Nesse contexto, este trabalho mostra um estudo de cor desenvolvida por pigmentos cerâmicos em fritas transparentes, obtidas a partir de feldspato da região Borborema-Seridó (PB/RN. A análise química do feldspato evidenciou que este mineral cumpre os requisitos necessários à aplicação como cerâmica (ou vidrado de cobertura, pois apresenta teores mínimos de impurezas (minerais portadores de ferro e outros óxidos corantes que deterioram a qualidade da frita obtida. O mineral foi caracterizado ainda por difração de raios X (albita e monoclínio e quanto à granulometria (abaixo de 100 µm. A avaliação colorimétrica de acordo com os padrões CIElab e por medidas de refletância possibilitou caracterização da cor dos revestimentos obtidos em diferente fontes e iluminantes. Os resultados permitiram avaliar que o feldspato do Seridó apresenta potencial para aplicação como revestimento cerâmico colorido e futuramente poderia ser aplicado na área de restauração cerâmica odontológica, tendo em vista que esse mineral é um dos principais componentes das porcelanas odontológicas, porém, até o presente, todo material de restauração odontológica utilizado no Brasil é de origem estrangeira.Ceramic frits are vitreous materials prepared by melting of

  6. Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations

    Energy Technology Data Exchange (ETDEWEB)

    Randall, D. (ed.); Marek, J.C.

    1992-03-01

    The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; Just-in-Time'' precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

  7. Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations

    Energy Technology Data Exchange (ETDEWEB)

    Randall, D. (ed.); Marek, J.C.

    1992-03-01

    The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; Just-in-Time'' precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

  8. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION KT07-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2011-01-12

    This report is the third in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility is also considered in the study. The KT07-series glasses were selected to evaluate any potential impacts of noble metals on their properties and performance. The glasses characterized thus far for the SCIX study have not included noble metals since they are not typically tracked in sludge batch composition projections. However, noble metals can act as nucleation sites in glass melts, leading to enhanced crystallization. This crystallization can potentially influence the properties and performance of the glass, such as chemical durability, viscosity, and liquidus temperature. The noble metals Ag, Pd, Rh, and Ru were added to the KT07-series glasses in concentrations based on recent measurements of Sludge Batch 6, which was considered to contain a high concentration of noble metals. The KT04-series glasses were used as the baseline compositions. After fabrication, the glasses were characterized to determine their homogeneity, chemical composition, durability, and viscosity. Liquidus temperature measurements are also underway but were not complete at the time of this report. The liquidus temperature results for the KT07-series glasses, along with several of the earlier glasses in the SCIX study, will be documented separately. All of the KT07-series glasses, both quenched and slowly cooled, were found to be amorphous by X-ray diffraction. Chemical composition measurements showed that all of the glasses met their targeted compositions. The Product Consistency Test (PCT) results showed that all of the glasses had chemical durabilities that were far better than that of the Environmental Assessment benchmark glass

  9. Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.P.

    2000-03-22

    Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

  10. Results of Hg speciation testing on DWPF SMECT-4, SMECT-6, and RCT-2 samples

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-04

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The fifteenth shipment of samples was designated to include Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) samples from Sludge Receipt and Adjustment Tank (SRAT) Batch 738 and a Recycle Condensate Tank (RCT) sample from SRAT Batch 736. The DWPF sample designations for the three samples analyzed are provided in Table 1. The Batch 738 ‘Baseline’ SMECT sample was taken prior to Precipitate Reactor Feed Tank (PRFT) addition and concentration and therefore, precedes the SMECT-5 sample reported previously. iii The Batch 738 ‘End of SRAT Cycle’ SMECT sample was taken at the conclusion of SRAT operations for this batch (PRFT addition/concentration, acid additions, initial concentration, MCU addition, and steam stripping). Batch 738 experienced a sludge slurry carryover event, which introduced sludge solids to the SMECT that were particularly evident in the SMECT-5 sample, but less evident in the ‘End of SRAT Cycle’ SMECT-6 sample. The Batch 736 ‘After SME’ RCT sample was taken after completion of SMECT transfers at the end of the SME cycle.

  11. Results of Hg speciation testing on DWPF SMECT-8, OGCT-1, AND OGCT-2 samples

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-22

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The sixteenth shipment of samples was designated to include a Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) sample from Sludge Receipt and Adjustment Tank (SRAT) Batch 738 processing and two Off-Gas Condensate Tank (OGCT) samples, one following Batch 736 and one following Batch 738. The DWPF sample designations for the three samples analyzed are provided. The Batch 738 ‘End of SME Cycle’ SMECT sample was taken at the conclusion of Slurry Mix Evaporator (SME) operations for this batch and represents the fourth SMECT sample examined from Batch 738. Batch 738 experienced a sludge slurry carryover event, which introduced sludge solids to the SMECT that were particularly evident in the SMECT-5 sample, but less evident in the ‘End of SME Cycle’ SMECT-8 sample.

  12. Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L.; Diprete, D. P.

    2012-12-17

    The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. Twenty-seven radionuclides have been identified as reportable for DWPF SB7b. Each of these radionuclides has a half-life greater than ten years and contributes more than 0.01% of the radioactivity on a Curie basis at some point from production through the 1100 year period between 2015 and 3115. For SB7b, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100- year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. The radionuclide measurements made for SB7b are the most extensive conducted to date. Some method development/refinement occurred during the conduct of these measurements, leading to lower detection limits and more accurate measurement of some isotopes than was previously possible.

  13. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  14. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  15. An Evaluation of Liquidus Temperature as a Function of Waste Loading for a Tank 42 "Sludge Only"/Frit 200 Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.

    1999-05-10

    'The waste glass produced in the SRS Defense Waste Processing Faiclity (DWPF) process must comply with Waste Acceptance Product Specifications (WAPS) and process control requirements by demonstrating, to a high degree of confidence, that melter feed will produce glass satisfying all quality and processing requirements.'

  16. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD

  17. Wafer level vacuum packaging of scanning micro-mirrors using glass-frit and anodic bonding methods

    Science.gov (United States)

    Langa, S.; Drabe, C.; Kunath, C.; Dreyhaupt, A.; Schenk, H.

    2013-03-01

    In this paper the authors report about the six inch wafer level vacuum packaging of electro-statically driven two dimensional micro-mirrors. The packaging was done by means of two types of wafer bonding methods: anodic and glass frit. The resulting chips after dicing are 4 mm wide, 6 mm long and 1.6 mm high and the residual pressure inside the package after dicing was estimated to be between 2 and 20 mbar. This allowed us to reduce the driving voltage of the micro-mirrors by more than 40% compared to the driving voltage without vacuum packaging. The vacuum stability after 5 months was verified by measurement using the so called "membrane method". Persistence of the vacuum was proven. No getter materials were used for packaging.

  18. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  19. Impact of glycolate anion on aqueous corrosion in DWPF and downstream facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-15

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion.

  20. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  1. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  2. Phase II of a Six sigma Initiative to Study DWPF SME Analytical Turnaround Times: SRNL's Evaluation of Carbonate-Based Dissolution Methods

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Thomas

    2005-09-01

    The Analytical Development Section (ADS) and the Statistical Consulting Section (SCS) of the Savannah River National Laboratory (SRNL) are participating in a Six Sigma initiative to improve the Defense Waste Processing Facility (DWPF) Laboratory. The Six Sigma initiative has focused on reducing the analytical turnaround time of samples from the Slurry Mix Evaporator (SME) by developing streamlined sampling and analytical methods [1]. The objective of Phase I was to evaluate the sub-sampling of a larger sample bottle and the performance of a cesium carbonate (Cs{sub 2}CO{sub 3}) digestion method. Successful implementation of the Cs{sub 2}CO{sub 3} fusion method in the DWPF would have important time savings and convenience benefits because this single digestion would replace the dual digestion scheme now used. A single digestion scheme would result in more efficient operations in both the DWPF shielded cells and the inductively coupled plasma--atomic emission spectroscopy (ICP-AES) laboratory. By taking a small aliquot of SME slurry from a large sample bottle and dissolving the vitrified SME sample with carbonate fusion methods, an analytical turnaround time reduction from 27 hours to 9 hours could be realized in the DWPF. This analytical scheme has the potential for not only dramatically reducing turnaround times, but also streamlining operations to minimize wear and tear on critical shielded cell components that are prone to fail, including the Hydragard{trademark} sampling valves and manipulators. Favorable results from the Phase I tests [2] led to the recommendation for a Phase II effort as outlined in the DWPF Technical Task Request (TTR) [3]. There were three major tasks outlined in the TTR, and SRNL issued a Task Technical and QA Plan [4] with a corresponding set of three major task activities: (1) Compare weight percent (wt%) total solids measurements of large volume samples versus peanut vial samples. (2) Evaluate Cs{sub 2}CO{sub 3} and K{sub 2}CO{sub 3

  3. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  4. DWPF FLOWSHEET STUDIES WITH SIMULANT TO DETERMINE THE IMPACT OF NEXT GENERATION SOLVENT ON THE CPC PROCESS AND GLASS FORMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J.; Peeler, D.; Edwards, T.; Hay, M.; Stone, M.

    2011-06-29

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS), a new strip acid, and modified monosodium titanate (mMST) will be deployed. The NGS is comprised of four components: 0.050 M MaxCalix (extractant), 0.50 M Cs-7SB (modifier), 0.003 M guanidine-LIX-79, with the balance ({approx}74 wt%) being Isopar{reg_sign} L. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing with the next generation solvent and mMST was required to determine the impact of these changes in 512-S and Defense Waste Processing Facility (DWPF) operations, as well as Chemical Process Cell (CPC), glass formulation activities, and melter operations. Because of these changes, experimental testing with the next generation solvent and mMST is required to determine the impact of these changes. A Technical Task Request (TTR) was issued to support the assessments of the impact of the next generation solvent and mMST on the downstream DWPF flowsheet unit. The TTR identified five tasks to be investigated: (1) CPC Flowsheet Demonstration for NGS; (2) Solvent Stability for DWPF CPC Conditions; (3) Glass Formulation Studies; (4) Boron Volatility and Melt Rate; and (5) CPC Flowsheet Demonstration for mMST.

  5. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  6. DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C

    2005-09-01

    The Defense Waste Processing Facility, DWPF, has requested that the Savannah River National Laboratory, SRNL, investigate the factors that contribute to hydrogen generation to determine if current conservatism in setting the DWPF processing window can be reduced. A phased program has been undertaken to increase understanding of the factors that influence hydrogen generation in the DWPF Chemical Process Cell, CPC. The hydrogen generation in the CPC is primarily due to noble metal catalyzed decomposition of formic acid with a minor contribution from radiolytic processes. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Two sludge simulants were obtained, one with co-precipitated noble metals and one without noble metals. Co-precipitated noble metals were expected to better match real waste behavior than using trimmed noble metals during CPC simulations. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The two original and two heat-treated sludge simulants were then used as feeds to Sludge Receipt and Adjustment Tank, SRAT, process simulations. Testing was done at relatively high acid stoichiometries, {approx}175%, and without mercury in order to ensure significant hydrogen generation. Hydrogen generation rates were monitored during processing to assess the impact of the form of noble metals. The following observations were made on the data: (1) Co-precipitated noble metal simulant processed similarly to trimmed noble metal simulant in most respects, such as nitrite to nitrate conversion, formate destruction, and pH, but differently with respect to hydrogen generation: (A

  7. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 7B (MACROBATCH 9)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L.; Diprete, D. P.

    2014-05-01

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu- 242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to

  8. Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L.; DiPrete, D. P.

    2013-08-22

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to

  9. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 7B (MACROBATCH 9)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L.; Diprete, D. P.

    2014-05-01

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu- 242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to

  10. Evaluation of borax solid wastes in production of frits suitable for fast single-fired wall tile opaque glass–ceramic glazes

    Indian Academy of Sciences (India)

    K Pekkan; B Karasu

    2010-04-01

    Zircon (zirconium silicate, ZrSiO4) is the main opacifier of glossy, opaque, white-coloured, fritbased wall tile glazes. However, zirconia containing frits employed in the preparation of these glazes raise the production cost limiting zircon usage as a raw material at an industrial scale. Therefore, there have been several searches on seeking for alternative frit compositions with lower or without zirconia content. Consequently, positive outcomes were recently reported. With the present study, 1.5–5% of borax concentrator waste replaced certain level of acid boric for B2O3 content in a low zircon containing frit recipe. It is confirmed that waste contribution did not distort the surface properties of the fast single-fired wall tile opaque glazes. Zircon was found to be the main crystal phase of the glazes in laboratory trials. Industrial applications revealed that shorter firing cycles lead to zircon and petedunnite (CaZnSi2O6) formation in the CW-4 glaze.

  11. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  12. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a

  13. Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.

    1992-06-30

    The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs){sub 2}SO{sub 4}, (Na, K, Cs)BF{sub 4}, (Na, K){sub 2}B{sub 4}O{sub 7} and (Na,K)CrO{sub 4} species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK){sub 2}SO{sub 4}, (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na{sub 2}BF{sub 4}) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur.

  14. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT05- AND KT06-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2011-01-03

    This report is the second in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT05-series glasses were selected, fabricated, and characterized to further study glass compositions where iron titanate crystals had been previously found to form. The intent was to better understand the mechanisms and compositions that favored the formation of crystals containing titanium. Formation of these crystalline phases was confirmed. Increased Na{sub 2}O concentrations had little if any impact on reducing the propensity for the formation of the iron titanate crystalline phases. Other physical properties of these glasses were not measured since the intent was to focus on crystallization. Additional studies are suggested to investigate the potential impacts of Al{sub 2}O{sub 3} and K{sub 2}O on crystallization in glasses with high TiO{sub 2} concentrations. The KT06-series glasses were selected, fabricated, and characterized to further study glass compositions that, while broader than the current projections for DWPF feeds with SCIX material, are potential candidates for future processing (i.e., the compositions are acceptable for processing by the Product Composition Control System (PCCS) with the exception of the current TiO{sub 2} concentration constraint). The chemical compositions of these glasses matched well with the target values. The chemical durabilities of all the glasses were acceptable relative to the Environmental Assessment (EA) benchmark. Minor crystallization was identified in some of the slowly cooled glasses, although this crystallization did not impact chemical durability. Several of the KT06-series compositions had durability values that, while acceptable, were not accurately predicted by the current durability models

  15. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT05- AND KT06-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2011-01-03

    This report is the second in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT05-series glasses were selected, fabricated, and characterized to further study glass compositions where iron titanate crystals had been previously found to form. The intent was to better understand the mechanisms and compositions that favored the formation of crystals containing titanium. Formation of these crystalline phases was confirmed. Increased Na{sub 2}O concentrations had little if any impact on reducing the propensity for the formation of the iron titanate crystalline phases. Other physical properties of these glasses were not measured since the intent was to focus on crystallization. Additional studies are suggested to investigate the potential impacts of Al{sub 2}O{sub 3} and K{sub 2}O on crystallization in glasses with high TiO{sub 2} concentrations. The KT06-series glasses were selected, fabricated, and characterized to further study glass compositions that, while broader than the current projections for DWPF feeds with SCIX material, are potential candidates for future processing (i.e., the compositions are acceptable for processing by the Product Composition Control System (PCCS) with the exception of the current TiO{sub 2} concentration constraint). The chemical compositions of these glasses matched well with the target values. The chemical durabilities of all the glasses were acceptable relative to the Environmental Assessment (EA) benchmark. Minor crystallization was identified in some of the slowly cooled glasses, although this crystallization did not impact chemical durability. Several of the KT06-series compositions had durability values that, while acceptable, were not accurately predicted by the current durability models

  16. Integration of SWPF into the DWPF Flowsheet: Gap Analysis and Test Matrix Development

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-10

    Based on Revision 19 of the High Level Waste (HLW) System Plan, it is anticipated that the Salt Waste Processing Facility (SWPF) will be integrated into the Defense Waste Processing Facility (DWPF) flowsheet in October 2018 (or with Sludge Batch 11 (SB11)). Given that, Savannah River Remediation (SRR) has requested a technical basis be developed that validates the current Product Composition Control System (PCCS) models for use during the processing of the SWPF-based coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that the models may be used during the processing of the SWPF-based coupled flowsheet. To support this objective, Savannah River National Laboratory (SRNL) has completed three key interim activities prior to validation of the current or development of refined PCCS models over the anticipated glass composition region for SWPF processing. These three key activities include: (1) defining the glass compositional region over which SWPF is anticipated to be processed, (2) comparing the current PCCS model validation ranges to the SWPF glass compositional region from which compositional gaps can be identified, and (3) developing a test matrix to cover the compositional gaps.

  17. Results Of Hg Speciation Testing On DWPF SMECT-1, SMECT-3, And SMECT-5 Samples

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-07

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The thirteenth shipment of samples was designated to include Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) from Sludge Receipt and Adjustment Tank (SRAT) Batch 736 and 738 samples. Triplicate samples of each material were prepared for this shipment. Each replicate was analyzed for seven Hg species: total Hg, total soluble (dissolved) Hg, elemental Hg [Hg(0)], ionic (inorganic) Hg [Hg(I) and Hg(II)], methyl Hg [CH3Hg-X, where X is a counter anion], ethyl Hg [CH3CH2-Hg-X, where X is a counter anion], and dimethyl Hg [(CH3)2Hg]. The difference between the total Hg and total soluble Hg measurements gives the particulate Hg concentration, i.e. Hg adsorbed to the surface of particulate matter in the sample but without resolution of the specific adsorbed species. The average concentrations of Hg species in the aqueous samples derived from Eurofins reported data corrected for dilutions performed by SRNL are tabulated.

  18. Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations. Savannah River Site 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Randall, D. [ed.; Marek, J.C.

    1992-03-01

    The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; ``Just-in-Time`` precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

  19. Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations. Savannah River Site 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Randall, D. [ed.; Marek, J.C.

    1992-03-01

    The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; ``Just-in-Time`` precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

  20. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  1. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  2. DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS WITH TANK 40 AND H CANYON NEPTUNIUM

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M

    2009-04-28

    The Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 5 (SB5) from Tank 40. SB5 contains the contents of Tank 51 from November 2008, qualified by the Savannah River National Laboratory (SRNL) and the heel in Tank 40 remaining from Sludge Batch 4. Current Liquid Waste Operations (LWO) plans are to (1) decant supernatant from Tank 40 to remove excess liquid caused by a leaking slurry pump and (2) receive a Np stream from H Canyon It should be noted that the Np stream contains significant nitrate requiring addition of nitrite to Tank 40 to maintain a high nitrite to nitrate ratio for corrosion control. SRNL has been requested to qualify the proposed changes; determine the impact on DWPF processability in terms of hydrogen generation, rheology, etc.; evaluate antifoam addition strategy; and evaluate mercury stripping. Therefore, SRNL received a 3 L sample of Tank 40 following the transfer of Tank 51 to Tank 40 (Tank Farm Sample HTF-40-08-157 to be used in testing and to perform the required Waste Acceptance Product Specifications radionuclide analyses). Based on Tank Farm projections, SRNL decanted a portion* of the sample, added sodium nitrite, and added a Np solution from H Canyon representative of the Np to be dispositioned to Tank 40 (neutralized to 0.6 M excess hydroxide). The resulting material was used in a DWPF Chemical Process Cell (CPC) demonstration -- a Sludge Receipt and Adjustment Tank (SRAT) cycle and a Slurry Mix Evaporator (SME) cycle. Preliminary data from the demonstration has been reported previously. This report includes discussion of these results and additional results, including comparisons to Tank Farm projections and the SB5 demonstration.

  3. DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Choi, A.

    2010-10-15

    This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have

  4. DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Choi, A.

    2010-10-15

    This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have

  5. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.

    2013-04-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case

  6. MELTER OFF-GAS FLAMMABILITY ASSESSMENT FOR DWPF ALTERNATE REDUCTANT FLOWSHEET OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.

    2011-07-08

    Glycolic acid and sugar are being considered as potential candidates to substitute for much of the formic acid currently being added to the Defense Waste Processing Facility (DWPF) melter feed as a reductant. A series of small-scale melter tests were conducted at the Vitreous State Laboratory (VSL) in January 2011 to collect necessary data for the assessment of the impact of these alternate reductants on the melter off-gas flammability. The DM10 melter with a 0.021 m{sup 2} melt surface area was run with three different feeds which were prepared at SRNL based on; (1) the baseline formic/nitric acid flowsheet, (2) glycolic/formic/nitric acid flowsheet, and (3) sugar/formic/nitric acid flowsheet - these feeds will be called the baseline, glycolic, and sugar flowsheet feeds, respectively, hereafter. The actual addition of sugar to the sugar flowsheet feed was made at VSL before it was fed to the melter. For each feed, the DM10 was run under both bubbled (with argon) and non-bubbled conditions at varying melter vapor space temperatures. The goal was to lower its vapor space temperature from nominal 500 C to less than 300 C at 50 C increments and maintain steady state at each temperature at least for one hour, preferentially for two hours, while collecting off-gas data including CO, CO{sub 2}, and H{sub 2} concentrations. Just a few hours into the first test with the baseline feed, it was discovered that the DM10 vapor space temperature would not readily fall below 350 C simply by ramping up the feed rate as the test plan called for. To overcome this, ambient air was introduced directly into the vapor space through a dilution air damper in addition to the natural air inleakage occurring at the operating melter pressure of -1 inch H{sub 2}O. A detailed description of the DM10 run along with all the data taken is given in the report issued by VSL. The SRNL personnel have analyzed the DM10 data and identified 25 steady state periods lasting from 32 to 92 minutes for all

  7. IMPACT OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION MELT RATE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Miller, D.; Koopman, D.

    2011-04-26

    This study was undertaken to evaluate the potential impacts of the Small Column Ion Exchange (SCIX) streams - particularly the addition of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) - on the melt rate of simulated feed for the Defense Waste Processing Facility (DWPF). Additional MST was added to account for contributions from the Salt Waste Processing Facility (SWPF). The Savannah River National Laboratory (SRNL) Melt Rate Furnace (MRF) was used to evaluate four melter feed compositions: two with simulated SCIX and SWPF material and two without. The Slurry-fed Melt Rate Furnace (SMRF) was then used to compare two different feeds: one with and one without bounding concentrations of simulated SCIX and SWPF material. Analyses of the melter feed materials confirmed that they met their targeted compositions. Four feeds were tested in triplicate in the MRF. The linear melt rates were determined by using X-ray computed tomography to measure the height of the glass formed along the bottom of the beakers. The addition of the SCIX and SWPF material reduced the average measured melt rate by about 10% in MRF testing, although there was significant scatter in the data. Two feeds were tested in the SMRF. It was noted that the ground CST alone (ground CST with liquid in a bucket) was extremely difficult to resuspend during preparation of the feed with material from SCIX and SWPF. This feed was also more difficult to pump than the material without MST and CST due to settling occurring in the melter feed line, although the yield stress of both feeds was high relative to the DWPF design basis. Steady state feeding conditions were maintained for about five hours for each feed. There was a reduction in the feed and pour rates of approximately 15% when CST and MST were added to the feed, although there was significant scatter in the data. Analysis of samples collected from the SMRF pour stream showed that the composition of the glass changed as expected when MST and

  8. CATALYTIC INTERACTIONS OF RHODIUM, RUTHENIUM, AND MERCURY DURING SIMULATED DWPF CPC PROCESSING WITH HYDROGEN GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-10-09

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC) vessels were performed as part of the ongoing investigation into catalytic hydrogen generation. Rhodium, ruthenium, and mercury have been identified as the principal elemental factors affecting the peak hydrogen generation rate in the DWPF Sludge Receipt and Adjustment Tank (SRAT) for a given acid addition. The primary goal of this study is to identify any significant interactions between the three factors. Noble metal concentrations were similar to recent sludge batches. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%. An experimental matrix was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), two duplicate midpoint runs, and two additional replicate runs to assess reproducibility away from the midpoint. Midpoint testing can identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. Six Slurry Mix Evaporator (SME) cycles were performed to supplement the SME hydrogen generation database. Some of the preliminary findings from this study include: (1) Rh was linked to the maximum SRAT hydrogen generation rate in the first two hours after acid addition in preliminary statistical modeling. (2) Ru was linked conclusively to the maximum SRAT hydrogen generation rate in the last four hours of reflux in preliminary statistical modeling. (3) Increasing the ratio of Hg/Rh shifted the noble metal controlling the maximum SRAT hydrogen generation rate from

  9. DWPF saltstone study: Effects of thermal history on leach index and physical integrity

    Energy Technology Data Exchange (ETDEWEB)

    Orebaugh, E.G.

    1992-11-18

    This report summarizes the observations made during the curing and testing of DWPF simulated saltstones which have been cured under isothermal conditions in sealed glass envelopes at temperatures from room temperature to 95[degrees]C. This study was performed to evaluate the effect of curing at and around temperatures representing conditions created within large pours of grout. There appears to be no difference in the leaching resistance of samples cured at the same temperature for varying times to 1 year. Curing at higher temperatures decreases the effective diffusivity of this waste formulation. These results are encouraging in that leaching resistance for samples near the expected maximum vault temperature (55[degrees]C) show effective diffusion coefficients (D[sub effective] [approximately]10[sup [minus]8] cm[sup 2]/sec) that agree with previous work and values that are believed to adequately protect the groundwater. The isothermal conditions of these tests simulate the nearly adiabatic conditions existing near the centerline of the monolith. The elevated temperatures due to hydration heat decrease over long times. This has been simulated by a series (1X) of staged isothermal cures. Since modeling indicated it would take nearly two years for emplaced grout to cool to near ambient temperatures, accelerated (2X) cooling curves were also tested. Specimens cured under these staged-isothermal conditions appear to be no different from specimens cured under isothermal conditions for the same time at the maximum temperature. The unexpected generation of nitrous oxide within saltstone creates internal stresses which cause fracturing when exposed to leaching conditions. Such fracturing is not considered significant for saltstone emplaced in engineered vaults for disposal.

  10. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  11. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO2 containing glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-01

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO2, Na2O, Li2O and Fe2O3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).

  12. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludge – Sludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  13. DWPF Flowsheet Studies with Simulants to Determine Modular Caustic Side Solvent Extraction Unit Solvent Partitioning and Verify Actinide Removal Process Incorporation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C

    2006-04-21

    The Actinide Removal Process (ARP) facility and the Modular Caustic Side Solvent Extraction Unit (MCU) are scheduled to begin processing salt waste in fiscal year 2007. A portion of the streams generated in the salt processing facilities will be transferred to the Defense Waste Processing Facility (DWPF) to be incorporated in the glass matrix. Before the streams are introduced, a combination of impact analyses and research and development studies must be performed to quantify the impacts on DWPF processing. The Process Science & Engineering (PS&E) section of the Savannah River National Laboratory (SRNL) was requested via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 to evaluate the impacts on DWPF processing. Simulant Chemical Process Cell (CPC) flowsheet studies have been performed using previous composition and projected volume estimates for the ARP sludge/monosodium titanate (MST) stream. Due to changes in the flammability control strategy for DWPF for salt processing, the incorporation strategy for ARP has changed and additional ARP flowsheet tests were necessary to validate the new processing strategy. The last round of ARP testing included the incorporation of the MCU stream and identified potential processing issues with the MCU solvent. The identified issues included the potential carry-over and accumulation of the MCU solvent components in the CPC condensers and in the recycle stream to the Tank Farm. Therefore, DWPF requested SRNL to perform additional MCU flowsheet studies to better quantify the organic distribution in the CPC vessels. The previous MCU testing used a Sludge Batch 4 (SB4) simulant since it was anticipated that both of these facilities would begin salt processing during SB4 processing. The same sludge simulant recipe was used in this round of ARP and MCU testing to minimize the number of changes between the two phases of testing so a better comparison could be made. ARP and MCU stream simulants were made for this phase of testing

  14. Final Report - Engineering Study for DWPF Bubblers, VSL-10R1770-1, Rev. 0, dated 12/22/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Joseph, I.; Matlack, K. S.; Kot, W. K.; Diener, G. A.; Pegg, I. L.; Callow, R. A.

    2013-11-13

    The objective of this work was to perform an engineering assessment of the impact of implementation of bubblers to improve mixing of the glass pool, and thereby increase throughput, in the Defense Waste Processing Facility (DWPF) on the melter and off-gas system. Most of the data used for this evaluation were from extensive melter tests performed on non-SRS feeds. This information was supplemented by more recent results on SRS HLW simulants that were tested on a melter system at VSL under contracts from ORP and SRR. Per the work scope, the evaluation focused on the following areas: Glass production rate; Corrosion of melter components; Power requirements; Pouring stability; Off-gas characteristics; Safety and flammability.

  15. WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING POST ALUMINUM DISSOLUTION TANK 51 SLUDGE SLURRY

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Erich Hansen, E; Dan Lambert, D; Michael Stone, M

    2008-04-28

    The remaining contents of Tank 51 from Sludge Batch 4 will be blended with Purex sludge from Tank 7 to constitute Sludge Batch 5 (SB5). The Savannah River Site (SRS) Liquid Waste Organization (LWO) has completed caustic addition to Tank 51 to perform low temperature Al dissolution on the H-Modified (HM) sludge material to reduce the total mass of sludge solids and Al being fed to the Defense Waste Processing Facility (DWPF). The Savannah River National Lab (SRNL) has also completed aluminum dissolution tests using a 3-L sample of Tank 51 sludge slurry through funding by DOE EM-21. This report documents assessment of downstream impacts of the aluminum dissolved sludge, which were investigated so technical issues could be identified before the start of SB5 processing. This assessment included washing the aluminum dissolved sludge to a Tank Farm projected sodium concentration and weight percent insoluble solids content and DWPF Chemical Process Cell (CPC) processing using the washed sludge. Based on the limited testing, the impact of aluminum dissolution on sludge settling is not clear. Settling was not predictable for the 3-L sample. Compared to the post aluminum dissolution sample, settling after the first wash was slower, but settling after the second wash was faster. For example, post aluminum dissolution sludge took six days to settle to 60% of the original sludge slurry height, while Wash 1 took nearly eight days, and Wash 2 only took two days. Aluminum dissolution did impact sludge rheology. A comparison between the as-received, post aluminum dissolution and washed samples indicate that the downstream materials were more viscous and the concentration of insoluble solids less than that of the starting material. This increase in viscosity may impact Tank 51 transfers to Tank 40. The impact of aluminum dissolution on DWPF CPC processing cannot be determined because acid addition for the Sludge Receipt and Adjustment Tank (SRAT) cycle was under-calculated and thus

  16. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT01, KT02, KT03, AND KT04-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2010-11-01

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT01 and KT02-series of glasses were chosen to allow for the identification of the influence of the concentrations of major components of the glass on the retention of TiO{sub 2}. The KT03 series of glasses was chosen to allow for the identification of these influences when higher Nb{sub 2}O{sub 5} and ZrO{sub 2} concentrations are included along with TiO2. The KT04 series of glasses was chosen to investigate the properties and performance of glasses based on the best available projections of actual compositions to be processed at the DWPF (i.e., future sludge batches including the SCIX streams).

  17. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT01, KT02, KT03, AND KT04-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2010-11-01

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT01 and KT02-series of glasses were chosen to allow for the identification of the influence of the concentrations of major components of the glass on the retention of TiO{sub 2}. The KT03 series of glasses was chosen to allow for the identification of these influences when higher Nb{sub 2}O{sub 5} and ZrO{sub 2} concentrations are included along with TiO2. The KT04 series of glasses was chosen to investigate the properties and performance of glasses based on the best available projections of actual compositions to be processed at the DWPF (i.e., future sludge batches including the SCIX streams).

  18. REMOTE IN-CELL SAMPLING IMPROVEMENTS PROGRAM AT THESAVANNAH RIVER SITE (SRS) DEFENSE WASTE PROCESSING FACILITY (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Marzolf, A

    2007-11-26

    Remote Systems Engineering (RSE) of the Savannah River National Lab (SRNL) in combination with the Defense Waste Processing Facility(DWPF) Engineering and Operations has evaluated the existing equipment and processes used in the facility sample cells for 'pulling' samples from the radioactive waste stream and performing equipment in-cell repairs/replacements. RSE has designed and tested equipment for improving remote in-cell sampling evolutions and reducing the time required for in-cell maintenance of existing equipment. The equipment within the present process tank sampling system has been in constant use since the facility start-up over 17 years ago. At present, the method for taking samples within the sample cells produces excessive maintenance and downtime due to frequent failures relative to the sampling station equipment and manipulator. Location and orientation of many sampling stations within the sample cells is not conducive to manipulator operation. The overextension of manipulators required to perform many in-cell operations is a major cause of manipulator failures. To improve sampling operations and reduce downtime due to equipment maintenance, a Portable Sampling Station (PSS), wireless in-cell cameras, and new commercially available sampling technology has been designed, developed and/or adapted and tested. The uniqueness of the design(s), the results of the scoping tests, and the benefits relative to in-cell operation and reduction of waste are presented.

  19. Potentiality of a frit waste from ceramic sector as raw material to glass-ceramic material production; Potencialidad de un residuo de frita procedente del sector ceramico como materia prima para la produccion de material vitroceramico

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina Albert, E.; Llop Pla, J.; Notari Abad, M. D.; Carda Castello, J. B.

    2015-10-01

    This work consists of studying the devitrification capacity of a residue from sodium-calcium frit, using the vitreous powder sintering method, which follows the traditional ceramic processing route, including a specific heat treatment to generate the appearance of crystals from the original glass phase. Initially the frit residue has been characterized by instrumental techniques such as XRF, XRD and DTA/TG. Furthermore, the chemical analysis (XRF) has allowed the prediction of devitrification potentiality of this residue by theoretical approaches represented by Gingsberg, Raschin-Tschetverikov and Lebedeva ternary diagrams. Then, this residue was subjected to traditional ceramic method, by changing the grinding time, the pressing pressure and prepared samples were obtained at different temperatures. In this part, the techniques for measuring particle size by laser diffraction and XRD and SEM to evaluate the generated crystalline phases, were applied. Finally, it has been found that this frit residue works as glass-ceramic precursor, devitrifying in wollastonite crystals as majority phase and without being subjected to the melting step of the glass-ceramic typical method. (Author)

  20. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT08, KT09, AND KT10-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2011-04-26

    This report is the fourth in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. The KT09-series of glasses was designed to study the effect of increasing Al{sub 2}O{sub 3} and K{sub 2}O concentrations on the propensity for crystallization of titanium containing phases in high TiO{sub 2} concentration glasses. Earlier work on the KT05-series glasses recommended that the impact of these two components be studied further. Increased Al{sub 2}O{sub 3} concentrations have been shown to improve the properties and performance of high waste loading glasses, and K{sub 2}O has been reported to improve the retention of TiO{sub 2} in silicate glasses. The KT10-series of compositions was designed to evaluate any impacts of the SCIX components at concentrations 50% higher than currently projected.a The glasses were fabricated in the laboratory and characterized to identify crystallization, to verify chemical compositions, to measure viscosity, and to measure durability. Liquidus temperature measurements for the KT10-series glasses are underway and will be reported separately. All but one of the KT08-series glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which had no practical impact on the durability of the glass and is typically found in DWPF-type glasses. The measured Product Consistency Test (PCT) responses for the KT08-series glasses are well predicted by the DWPF models. The viscosities of the KT08-series glasses were generally

  1. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT08, KT09, AND KT10-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2011-04-26

    This report is the fourth in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. The KT09-series of glasses was designed to study the effect of increasing Al{sub 2}O{sub 3} and K{sub 2}O concentrations on the propensity for crystallization of titanium containing phases in high TiO{sub 2} concentration glasses. Earlier work on the KT05-series glasses recommended that the impact of these two components be studied further. Increased Al{sub 2}O{sub 3} concentrations have been shown to improve the properties and performance of high waste loading glasses, and K{sub 2}O has been reported to improve the retention of TiO{sub 2} in silicate glasses. The KT10-series of compositions was designed to evaluate any impacts of the SCIX components at concentrations 50% higher than currently projected.a The glasses were fabricated in the laboratory and characterized to identify crystallization, to verify chemical compositions, to measure viscosity, and to measure durability. Liquidus temperature measurements for the KT10-series glasses are underway and will be reported separately. All but one of the KT08-series glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which had no practical impact on the durability of the glass and is typically found in DWPF-type glasses. The measured Product Consistency Test (PCT) responses for the KT08-series glasses are well predicted by the DWPF models. The viscosities of the KT08-series glasses were generally

  2. "The awe in which biologists hold physicists": Frits Went's first phytotron at Caltech, and an experimental definition of the biological environment.

    Science.gov (United States)

    Munns, David P D

    2014-01-01

    After Darwin, experimental biology sought to unravel organisms. By the early twentieth century, organisms were broadly conceived as the product of their heredity and their environment. Much historical work has explored the scientific attack on the genotype, particularly through the new science of genetics. This article explores the tandem efforts to assert experimental control over the environment in which plants grew and developed. The case described here concerns the creation of the first phytotron at Caltech by botanist and plant physiologist Frits Went. Opening in 1949, the phytotron was a plant laboratory that, across a series of rooms and chambers, kept genes constant while regulating and maintaining defined ranges of known environments. This article details the context in which the phytotron emerged, how the phytotron gained its sobriquet, and how it served to cement the "environment" as a category of biological knowledge. Describing the institutional context of Caltech, its interdisciplinary culture, and its encouragement of adopting technology into biological science, I argue that the phytotron and the commensurate category of the "environment", were the product of the familiar movement to integrate the physical and biological sciences. In addition, however, the creation of the phytotron was also a broader story of plant physiologists establishing a definition of the "environment" in both physical and technological terms.

  3. Preparation and properties of CaO-Al2O3-SiO2 glass-ceramics by sintered frits particle from mining wastes

    Directory of Open Access Journals (Sweden)

    He F.

    2014-01-01

    Full Text Available The paper reports on some experimental results obtained from the production of glass-ceramics containing gold tailings powder (GTP. Frits particle sintered technology was used to prepare glass ceramic products. SiO2, CaO, ZnO, BaO and B2O3 were selected to adjust the composition of the glass. Based on the results of differential thermal analysis (DTA, the nucleation and crystallization temperature of parent glass samples with different schedule were identified, respectively. X-ray diffraction (XRD analysis of the produced glass-ceramics materials revealed that the main crystalline phase was β-wollastonite. With the increasing of CaO content, the intensity of crystal diffractive peaks also increases. The formation of β-wollastonite crystal could be accelerated by the increasing of CaO. The glass-ceramics with fine microstructure showed better physical, mechanical properties and chemical resistance. Overall results indicated that it was a feasible attempt to produce glass-ceramics for building and decorative materials from waste materials. The amount of GTP used in the glass batches was more than 65 wt% of the whole raw.

  4. Particle size measurements in the submicron range by the differential electromobility technique: comparison of aerosols from thermospray, ultrasonic, pneumatic and frit-type nebulizers

    Science.gov (United States)

    Clifford, Robert H.; Tan, Hsiaoming; Liu, Huiying; Montaser, Akbar; Zarrin, Fahimeh; Keady, Patricia B.

    1993-08-01

    The differential electromobility technique was used for the comparison of droplet- and particle-size distributions in the 0.02-0.8 μm range for six nebulization systems often used in inductively coupled plasma (ICP) spectrometry: a thermospray nebulizer coupled to a membrane separator (TNMS); two ultrasonic nebulizers (USNs) used with desolvation; one pneumatic nebulizer (PN) used with and without desolvation; and a frit-type nebulizer. In general, volume concentration (volume of droplets or particles per cubic centimeter of injector gas) increased with NaCl concentration, and it was greater for TNMS followed by USNs compared to other nebulizers. For the desolvated aerosol produced by PN and USN, volume concentration was found to be independent of the temperature (140-180°C) of the heating tube for the desolvation device. As the nebulizer tip temperature in thermospray nebulization was varied from 160 to 240°C, a larger volume concentration of desolvated aerosol was produced. Size distributions shifted towards larger particles with increasing NaCl concentration. The implications of these observations in plasma spectrochemical measurements are discussed.

  5. DWPF saltstone study: Effects of thermal history on leach index and physical integrity. Part 2, Final report: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Orebaugh, E.G.

    1992-11-18

    This report summarizes the observations made during the curing and testing of DWPF simulated saltstones which have been cured under isothermal conditions in sealed glass envelopes at temperatures from room temperature to 95{degrees}C. This study was performed to evaluate the effect of curing at and around temperatures representing conditions created within large pours of grout. There appears to be no difference in the leaching resistance of samples cured at the same temperature for varying times to 1 year. Curing at higher temperatures decreases the effective diffusivity of this waste formulation. These results are encouraging in that leaching resistance for samples near the expected maximum vault temperature (55{degrees}C) show effective diffusion coefficients (D{sub effective} {approximately}10{sup {minus}8} cm{sup 2}/sec) that agree with previous work and values that are believed to adequately protect the groundwater. The isothermal conditions of these tests simulate the nearly adiabatic conditions existing near the centerline of the monolith. The elevated temperatures due to hydration heat decrease over long times. This has been simulated by a series (1X) of staged isothermal cures. Since modeling indicated it would take nearly two years for emplaced grout to cool to near ambient temperatures, accelerated (2X) cooling curves were also tested. Specimens cured under these staged-isothermal conditions appear to be no different from specimens cured under isothermal conditions for the same time at the maximum temperature. The unexpected generation of nitrous oxide within saltstone creates internal stresses which cause fracturing when exposed to leaching conditions. Such fracturing is not considered significant for saltstone emplaced in engineered vaults for disposal.

  6. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering.

    Science.gov (United States)

    Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee

    2016-01-15

    In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming).

  7. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-25

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  8. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Lambert, D.

    2014-08-27

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments

  9. DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING ARP PRODUCT SIMULANT AND SB4 TANK 40 SLUDGE SLURRY

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D; John Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M; Damon Click, D; Erich Hansen, E; Kim Crapse, K; David Hobbs, D

    2008-05-14

    The radioactive startup of two new SRS processing facilities, the Actinide Removal Process (ARP) and the Modular Caustic-Side-Solvent-Extraction Unit (MCU) will add two new waste streams to the Defense Waste Processing Facility (DWPF). The ARP will remove actinides from the 5.6 M salt solution resulting in a sludge-like product that is roughly half monosodium titanate (MST) insoluble solids and half sludge insoluble solids. The ARP product will be added to the Sludge Receipt and Adjustment Tank (SRAT) at boiling and dewatered prior to pulling a SRAT receipt sample. The cesium rich MCU stream will be added to the SRAT at boiling after both formic and nitric acid have been added and the SRAT contents concentrated to the appropriate endpoint. A concern was raised by an external hydrogen review panel that the actinide loaded MST could act as a catalyst for hydrogen generation (Mar 15, 2007 report, Recommendation 9). Hydrogen generation, and it's potential to form a flammable mixture in the off-gas, under SRAT and Slurry Mix Evaporator (SME) processing conditions has been a concern since the discovery that noble metals catalyze the decomposition of formic acid. Radiolysis of water also generates hydrogen, but the radiolysis rate is orders of magnitude lower than the noble metal catalyzed generation. As a result of the concern raised by the external hydrogen review panel, hydrogen generation was a prime consideration in this experiment. Testing was designed to determine whether the presence of the irradiated ARP simulant containing MST caused uncontrolled or unexpected hydrogen production during experiments simulating the DWPF Chemical Process Cell (CPC) due to activation of titanium. A Shielded Cells experiment, SC-5, was completed using SB4 sludge from Tank 405 combined with an ARP product produced from simulants by SRNL researchers. The blend of sludge and MST was designed to be prototypic of planned DWPF SRAT and SME cycles. As glass quality was not an objective

  10. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  11. The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K.; Edwards, T. B.

    2013-06-26

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01 M) boric acid stream into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B203 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 - SB8 flowsheet to additions of B203 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 - SB8 system regardless of the presence or absence of

  12. DWPF Glass Melter Technology Manual: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs.

  13. DWPF Glass Melter Technology Manual: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  14. DWPF Glass Melter Technology Manual: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  15. High-level waste processing at the Savannah River Site: An update

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-09-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ``sludge-only`` composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ``coupled`` feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates.

  16. New cementitious system: The case of glass frit

    Science.gov (United States)

    Fares, Galal

    Canada ranks as the world's third largest aluminium producer, and more than 80% of its aluminum industry is concentrated in Quebec. However, the spent pot-liner waste produced by the aluminium smelters accumulates with time into a considerable amount threatening the Canadian environment, especially that of Quebec. A new-engineered material, known as glass fit (GF) has been developed through the chemical treatment of such waste. GF shows potential hydraulic and pozzolanic properties. GF has been studied as a binder itself and as a supplementary cementitious material (SCM). The activation of industrial by-products into clinkerless binders is a novel trend that has attracted the attention of many researchers. The activation of GF into binder to produce paste, mortar and concrete was the first aim of this study. Potential activation of GF using different types and combinations of inorganic activators and temperatures of activation was successfully achieved and high strength concretes were obtained. Moreover, mortars with high compressive strength were obtained with well-formulated activators at ambient temperature. On the other hand, the utilization of industrial by-products as a partial replacement for cement in concrete is a widespread practice. As GF contains a high concentration of sodium in its structure, there is a concern as to the effect of sodium content on the development of alkali-silica reaction (ASR) expansion of concrete. Therefore, this study also aimed to investigate the effect of GF sodium content in the enhancement of ASR expansion and to find new synergistic mixtures that can effectively mitigate ASR expansion in the long term. We observed that ASR expansion decreases with the replacement level of GF. Different synergistic diagrams containing known SCM (silica fume, fly ash, and slag) were achieved from which different effective mixtures can effectively alleviate ASR expansion. In conclusion, the use of GF in the manufacture of concrete has great benefits. Economically, it could save millions of Canadian dollars needed for the treatment and landfilling of spent pot-liner waste. Ecologically, it could reduce GHG emissions associated with the production of cement clinkers. In this study, most of the well-known by-products are used according to the sustainability theory.

  17. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be

  18. The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K.; Edwards, T. B.; Stone, M. E.

    2013-08-14

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01M) boric acid stream into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B2O3 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 – SB8 flowsheet to additions of B2O3 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 – SB8 system regardless of the presence or absence

  19. High Sodium Simulant Testing To Support SB8 Sludge Preparation

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D.

    2012-09-19

    Scoping studies were completed for high sodium simulant SRAT/SME cycles to determine any impact to CPC processing. Two SRAT/SME cycles were performed with simulant having sodium supernate concentration of 1.9M at 130% and 100% of the Koopman Minimum Acid requirement. Both of these failed to meet DWPF processing objectives related to nitrite destruction and hydrogen generation. Another set of SRAT/SME cycles were performed with simulant having a sodium supernate concentration of 1.6M at 130%, 125%, 110%, and 100% of the Koopman Minimum Acid requirement. Only the run at 110% met DWPF processing objectives. Neither simulant had a stoichiometric factor window of 30% between nitrite destruction and excessive hydrogen generation. Based on the 2M-110 results it was anticipated that the 2.5M stoichiometric window for processing would likely be smaller than from 110-130%, since it appeared that it would be necessary to increase the KMA factor by at least 10% above the minimum calculated requirement to achieve nitrite destruction due to the high oxalate content. The 2.5M-130 run exceeded the DWPF hydrogen limits in both the SRAT and SME cycle. Therefore, testing of this wash endpoint was halted. This wash endpoint with this minimum acid requirement and mercury-noble metal concentration profile appears to be something DWPF should not process due to an overly narrow window of stoichiometry. The 2M case was potentially processable in DWPF, but modifications would likely be needed in DWPF such as occasionally accepting SRAT batches with undestroyed nitrite for further acid addition and reprocessing, running near the bottom of the as yet ill-defined window of allowable stoichiometric factors, potentially extending the SRAT cycle to burn off unreacted formic acid before transferring to the SME cycle, and eliminating formic acid additions in the frit slurry.

  20. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9 by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.

  1. Factors Potentially Influencing the Tackiness of DWPF Streams

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.C.

    2000-09-13

    This report summarizes a preliminary investigation into the sludge characteristics that could potentially influence properties such as rheology, reactivity toward nitric acid, and surface, or interfacial, tension (or energy) as it relates to adhesion to metallic surfaces. Suggested experiments that could help characterize the tackiness of future sludges are suggested.

  2. Results from tests of TFL Hydragard sampling loop

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.L.

    1995-03-01

    When the Defense Waste Processing Facility (DWPF) is operational, processed radioactive sludge will be transferred in batches to the Slurry Mix Evaporator (SME), where glass frit will be added and the contents concentrated by boiling. Batches of the slurry mixture are transferred from the SME to the Melter Feed Tank (MFT). Hydragard{reg_sign} sampling systems are used on the SME and the MFT for collecting slurry samples in vials for chemical analysis. An accurate replica of the Hydragard sampling system was built and tested in the thermal Fluids Laboratory (TFL) to determine the hydragard accuracy. It was determined that the original Hydragard valve frequently drew a non-representative sample stream through the sample vial that ranged from frit enriched to frit depleted. The Hydragard valve was modified by moving the plunger and its seat backwards so that the outer surface of the plunger was flush with the inside diameter of the transfer line when the valve was open. The slurry flowing through the vial accurately represented the composition of the slurry in the reservoir for two types of slurries, different dilution factors, a range of transfer flows and a range of vial flows. It was then found that the 15 ml of slurry left in the vial when the Hydragard valve was closed, which is what will be analyzed at DWPF, had a lower ratio of frit to sludge as characterized by the lithium to iron ratio than the slurry flowing through it. The reason for these differences is not understood at this time but it is recommended that additional experimentation be performed with the TFL Hydragard loop to determine the cause.

  3. RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.

    2010-02-08

    The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution of SiO{sub 2}, the major frit component. It is likely that the observed precipitation of Mg

  4. SLUDGE BATCH 7B GLASS VARIABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Edwards, T.

    2011-10-25

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not

  5. SLUDGE MASS REDUCTION: PRIMARY COMPOSITIONAL FACTORS THAT INFLUENCE MELT RATE FOR FUTURE SLUDGE BATCH PROJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J; Miller, D; Stone, M; Pickenheim, B

    2008-08-28

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets. Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage

  6. REACTION FRITTING OF NANO-STRUCTURAL COVERINGS OF POW DER MATERIALS

    Directory of Open Access Journals (Sweden)

    V. M. Kovalevski

    2006-01-01

    Full Text Available Thin-film covers of silicon and carbon are received using the method of magnetron spraying of composite cathodes, the conditions of silicon carbide formation on diamond crystals are established. 

  7. Numeric Simulation of Oxygen Enriched Combustion in a Frit Melting Kiln

    Directory of Open Access Journals (Sweden)

    Bernardo A. Herrera-Múnera

    2013-11-01

    Full Text Available In this paper, a numerical study of air enriched combustion on a natural gas rotary furnace for frita melting is presented. This study was done with the aim of determining an oxygen concentration to ensure economic feasibility of the process without affecting quality requirements. The simulations were conducted using the commercial software ANSYS FLUENT as a design tool to predict the behavior of the thermal system and to establish operations conditions with different oxygen enrichment levels. Finite Rate / Eddy Dissipation model was used for combustion simulation, while k - ε Realizable and Discrete Ordinates models were utilized for turbulence and radiation simulation, respectively. It was found that an enrichment level close to 31% of oxygen in the air allows for reaching temperatures for frita melting larger than 1700 K. In this way, current consumption of high purity oxygen can be diminished without affecting the production levels and the quality of the product.

  8. Brasiliens regering og økonomi - og demokrati - i frit fald

    DEFF Research Database (Denmark)

    Damgaard, Mads; Kolling, Marie

    2016-01-01

    Vidneudsagn og bevismateriale om systematisk korruption hober sig op imod den brasilianske regering, ledet af præsident Dilma Rousseff fra Arbejderpartiet (Partido dos Trabalhadores). Selvom hele det politiske spektrum i Brasiliens kongres er under efterforskernes lup har de nationale medier...... ensidigt fokuseret på Rousseff og hendes forgænger Luiz Inácio Lula da Silva. Ubønhørligt mediepres har givet vind i sejlene til oppositionens krav om præsidentens afgang og i marts måned har millioner demonstreret i Brasiliens storbyer mod korruption og mod regeringen....

  9. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.

    2010-10-07

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was an investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory

  10. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is

  11. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be

  12. PERMEABILITY, SOLUBILITY AND DIFFUSIVITY OF HYDROGEN ISOTOPES IN STAINLESS STEELS AT HIGH GAS PRESSURES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Michael Morgan, M

    2005-09-12

    The Defense Waste Processing Facility (DWPF) is about to process High Level Waste (HLW) Sludge Batch 4 (SB4). This sludge batch is high in alumina and nepheline can crystallize readily depending on the glass composition. Large concentrations of crystallized nepheline can have an adverse effect on HLW glass durability. Several studies have been performed to study the potential for nepheline formation in SB4. The Phase 3 Nepheline Formation study of SB4 glasses examined sixteen different glasses made with four different frits. Melt rate experiments were performed by the Process Science and Engineering Section (PS&E) of the Savannah River National Laboratory (SRNL) using the four frits from the Phase 3 work, plus additional high B2O3/high Fe2O3 frits. Preliminary results from these tests showed the potential for significant improvements in melt rate for SB4 glasses using a higher B2O3-containing frit, particularly Frit 503. The main objective of this study was to investigate the durability of SB4 glasses produced with a high B2O3 frit likely to be recommended for SB4 processing. In addition, a range of waste loadings (WLs) was selected to continue to assess the effectiveness of a nepheline discriminator in predicting concentrations of nepheline crystallization that would be sufficient to influence the durability response of the glass. Five glasses were selected for this study, covering a WL range of 30 to 50 wt% in 5 wt% increments. The Frit 503 glasses were batched and melted. Specimens of each glass were heat-treated to simulate cooling along the centerline of a DWPF-type canister (ccc) to gauge the effects of thermal history on product performance. Visual observations on both quenched and ccc glasses were documented. A representative sample from each glass was submitted to the SRNL Process Science Analytical Laboratory (PSAL) for chemical analysis to confirm that the as-fabricated glasses corresponded to the defined target compositions. The Product Consistency Test

  13. MAR ASSESSMENTS OF THE HIGH LEVEL WASTE SYSTEM PLAN REVISION 16

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.; Edwards, T.

    2011-08-05

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit of time) is primarily a function of two critical parameters: waste loading (WL) and melt rate. For the Defense Waste Processing Facility (DWPF), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). Significant increases in waste throughput have been achieved at DWPF since initial radioactive operations began in 1996. Key technical and operational initiatives that supported increased waste throughput included improvements in facility attainment, the Chemical Processing Cell (CPC) flowsheet, process control models and frit formulations. As a result of these key initiatives, DWPF increased WLs from a nominal 28% for Sludge Batch 2 (SB2) to {approx}34 to 38% for SB3 through SB6 while maintaining or slightly improving canister fill times. Although considerable improvements in waste throughput have been obtained, future contractual waste loading targets are nominally 40%, while canister production rates are also expected to increase (to a rate of 325 to 400 canisters per year). Although implementation of bubblers have made a positive impact on increasing melt rate for recent sludge batches targeting WLs in the mid30s, higher WLs will ultimately make the feeds to DWPF more challenging to process. Savannah River Remediation (SRR) recently requested the Savannah River National Laboratory (SRNL) to perform a paper study assessment using future sludge projections to evaluate whether the current Process Composition Control System (PCCS) algorithms would provide projected operating windows to allow future contractual WL targets to be met. More specifically, the objective of this study was to evaluate future sludge batch projections (based on Revision 16 of the HLW Systems Plan) with respect to projected operating windows using current PCCS models and associated constraints. Based on the assessments, the waste loading interval

  14. Savannah River Laboratory monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1985-12-01

    Efforts in the area of nuclear reactors and scientific computations are reported, including: robotics; reactor irradiation of nonend-bonded target slugs; computer link with Los Alamos National Laboratory; L-reactor thermal mitigation; aging of carbon in SRP reactor airborne activity confinement systems; and reactor risk assessment for earthquakes. Activities in chemical processes and environmental technology are reported, including: solids formation in a plutonium product stream; revised safety analysis reporting for F and H-Canyon operations; organic carbon analysis of DWPF samples; applications of Fourier transform infrared spectrometry; water chemistry analyzer for SRP reactors; and study of a biological community in Par Pond. Defense waste and laboratory operations activities include: Pu-238 waste incinerator startup; experimental canister frit blaster; saltstone disposal area design; powder metallurgy core diameter measurement; and a new maintenance shop facility. Nuclear materials planning encompasses decontamination and decommissioning of SRP facilities and a comprehensive compilation of environmental and nuclear safety issues. (LEW)

  15. Glassceramics frits attainment from industrial solid wastes; Obtencao de fritas vitroceramicas a partir de residuos solidos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Matheus Chianca

    2006-07-01

    This work studies the residue obtained from the process of aluminum metal extraction activities, a great interest process, because of Brazil own some of the biggest bauxite mineral reserves in all the world. As a useful choice for no residue generation, and a support for environmentally friendly technologies, this work studies the white dross residue (WDR), from the process of aluminum metal reduction by thermal plasma. The phase equilibrium diagram of Al{sub 2}O{sub 3}-Ca O-SiO{sub 2} system was used to calculate the compositions. The WDR were incorporated in a ceramic product without modifying its principal characteristics. The fusion and devitrification treatments were studied. XRD (X-ray diffractometry), SEM (scanning electron microscopy) and FTIR (transformed Fourier infrared) were used to investigate the glass and glassceramic samples. These techniques showed that is possible to get glassceramic with up to 30 mass% of WDR after molten at 1300 deg C and annealed at 900 deg C. In addition, the WDR showed to be a promising material in attainment of crystalline phases in less times of heat treatment for annealing. (author)

  16. Two 24-hour Studies of Water Quality in the Ala Wai Canal during March and July, 1994 for the Mamala Bay Study, Pollutant Source Identification Project MB-3, (NODC Accession 0001188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset focuses on studies of water quality in the Ala Wai Canal in order to determine its role of point and non point source disharge into Mamala Bay. The...

  17. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  18. Experimental Plan for the Cold Demonstration (Scoping Tests) of Glass Removal Methods from a DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E.

    2001-09-21

    SRS and WVDP currently do not have the capability to size reduce, decontaminate, classify, and dispose of large, failed, highly contaminated equipment. Tanks Focus Area Task 777 was developed to address this problem. The first activity for Task 777 is to develop and demonstrate techniques suitable for removing the solid HLW glass from HLW melters. This experimental plan describes the work that will be performed for this glass removal demonstration.

  19. Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, N.E.; Tosten, M.H.; Beam, D.C.

    1989-01-01

    The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 {times} 10{sup 10} rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90{degree}C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs.

  20. Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, N.E.; Tosten, M.H.; Beam, D.C.

    1989-12-31

    The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 {times} 10{sup 10} rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90{degree}C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs.

  1. Nitric-glycolic flowsheet reduction/oxidation (redox) model for the defense waste processing facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ramsey, W. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-14

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, retains radionuclides in the melt and thus the final glass. Specifically, long-lived radioactive 99Tc species are less volatile in the reduced Tc4+ state as TcO2 than as NaTcO4 or Tc2O7, and ruthenium radionuclides in the reduced Ru4+ state are insoluble RuO2 in the melt which are not as volatile as NaRuO4 where the Ru is in the +7 oxidation state. Similarly, hazardous volatile Cr6+ occurs in oxidized melt pools as Na2CrO4 or Na2Cr2O7, while the Cr+3 state is less volatile and remains in the melt as NaCrO2 or precipitates as chrome rich spinels. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam.

  2. Glass melter off-gas system pluggages: Cause, significance, and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.

    1991-03-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF) where the glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. Experimental glass melters used to develop the vitrification process for immobilization of the waste have experienced problems with pluggage of the off-gas line with solid deposits. Off-gas deposits from the DWPF 1/2 Scale Glass Melter (SGM) and the 1/10th scale Integrated DWPF Melter System (IDMS) were determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides with entrained Fe{sub 2}O{sub 3}, spinel, and frit particles. The distribution and location of the alkali deposits throughout the off-gas system indicate that the deposits form by vapor-phase transport and condensation. Condensation of the alkali-rich phases cement the entrained particulates causing off-gas system pluggages. The identification of vapor phase transport as the operational mechanism causing off-gas system pluggage indicates that deposition can be effectively eliminated by increasing the off-gas velocity. Scale glass melter operating experience indicates that a velocity of >50 fps is necessary in order to transport the volatile species to the quencher to prevent having condensation occur in the off-gas line. Hotter off-gas line temperatures would retain the alkali compounds as vapors so that they would remain volatile until they reach the quencher. However, hotter off-gas temperatures can only be achieved by using less air/steam flow at the off-gas entrance, e.g. at the off-gas film cooler (OGFC). This would result in lower off-gas velocities. Maintaining a high velocity is, therefore, considered to be a more important criterion for controlling off-gas pluggage than temperature control. 40 refs., 16 figs., 5 tabs.

  3. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

  4. Description of Defense Waste Processing Facility reference waste form and canister. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, R.G.

    1983-08-01

    The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. Leachabilities of SRP waste glasses are expected to approach 10/sup -8/ g/m/sup 2/-day based upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references.

  5. HLW flowsheet material balance for DWPF rad operation with Tank 51 sludge and ITP Cycle 1 precipitate

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1995-04-19

    This document presents the details of the Savannah River Plant Flowsheet for the Rad Operation with Tank Sludge and ITP Cycle 1 Precipitate. Topics discussed include: material balance; radiolysis chemistry of tank precipitates; algorithm for ESP washing; chemistry of hydrogen and ammonia generation in CPC; batch sizes for processing feed; and total throughput of a streams during one cycle of operation.

  6. Methods of Off-Gas Flammability Control for DWPF Melter Off-Gas System at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S. [Westinghouse Savannah River Company, AIKEN, SC (United States); Iverson, D.C.

    1996-05-02

    Several key operating variables affecting off-gas flammability in a slurry-fed radioactive waste glass melter are discussed, and the methods used to prevent potential off-gas flammability are presented. Two models have played a central role in developing such methods. The first model attempts to describe the chemical events occurring during the calcining and melting steps using a multistage thermodynamic equilibrium approach, and it calculates the compositions of glass and calcine gases. Volatile feed components and calcine gases are fed to the second model which then predicts the process dynamics of the entire melter off-gas system including off-gas flammability under both steady state and various transient operating conditions. Results of recent simulation runs are also compared with available data

  7. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Stone, M.; Miller, D.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP):  Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models;  Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36

  8. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste

  9. REDUCTION OF CONSTRAINTS FOR COUPLED OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F.; Edwards, T.

    2009-12-15

    The homogeneity constraint was implemented in the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) to help ensure that the current durability models would be applicable to the glass compositions being processed during DWPF operations. While the homogeneity constraint is typically an issue at lower waste loadings (WLs), it may impact the operating windows for DWPF operations, where the glass forming systems may be limited to lower waste loadings based on fissile or heat load limits. In the sludge batch 1b (SB1b) variability study, application of the homogeneity constraint at the measurement acceptability region (MAR) limit eliminated much of the potential operating window for DWPF. As a result, Edwards and Brown developed criteria that allowed DWPF to relax the homogeneity constraint from the MAR to the property acceptance region (PAR) criterion, which opened up the operating window for DWPF operations. These criteria are defined as: (1) use the alumina constraint as currently implemented in PCCS (Al{sub 2}O{sub 3} {ge} 3 wt%) and add a sum of alkali constraint with an upper limit of 19.3 wt% ({Sigma}M{sub 2}O < 19.3 wt%), or (2) adjust the lower limit on the Al{sub 2}O{sub 3} constraint to 4 wt% (Al{sub 2}O{sub 3} {ge} 4 wt%). Herman et al. previously demonstrated that these criteria could be used to replace the homogeneity constraint for future sludge-only batches. The compositional region encompassing coupled operations flowsheets could not be bounded as these flowsheets were unknown at the time. With the initiation of coupled operations at DWPF in 2008, the need to revisit the homogeneity constraint was realized. This constraint was specifically addressed through the variability study for SB5 where it was shown that the homogeneity constraint could be ignored if the alumina and alkali constraints were imposed. Additional benefit could be gained if the homogeneity constraint could be replaced by the Al{sub 2}O{sub 3} and sum of

  10. REDUCTION OF CONSTRAINTS FOR COUPLED OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F.; Edwards, T.

    2009-12-15

    The homogeneity constraint was implemented in the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) to help ensure that the current durability models would be applicable to the glass compositions being processed during DWPF operations. While the homogeneity constraint is typically an issue at lower waste loadings (WLs), it may impact the operating windows for DWPF operations, where the glass forming systems may be limited to lower waste loadings based on fissile or heat load limits. In the sludge batch 1b (SB1b) variability study, application of the homogeneity constraint at the measurement acceptability region (MAR) limit eliminated much of the potential operating window for DWPF. As a result, Edwards and Brown developed criteria that allowed DWPF to relax the homogeneity constraint from the MAR to the property acceptance region (PAR) criterion, which opened up the operating window for DWPF operations. These criteria are defined as: (1) use the alumina constraint as currently implemented in PCCS (Al{sub 2}O{sub 3} {ge} 3 wt%) and add a sum of alkali constraint with an upper limit of 19.3 wt% ({Sigma}M{sub 2}O < 19.3 wt%), or (2) adjust the lower limit on the Al{sub 2}O{sub 3} constraint to 4 wt% (Al{sub 2}O{sub 3} {ge} 4 wt%). Herman et al. previously demonstrated that these criteria could be used to replace the homogeneity constraint for future sludge-only batches. The compositional region encompassing coupled operations flowsheets could not be bounded as these flowsheets were unknown at the time. With the initiation of coupled operations at DWPF in 2008, the need to revisit the homogeneity constraint was realized. This constraint was specifically addressed through the variability study for SB5 where it was shown that the homogeneity constraint could be ignored if the alumina and alkali constraints were imposed. Additional benefit could be gained if the homogeneity constraint could be replaced by the Al{sub 2}O{sub 3} and sum of

  11. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  12. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  13. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    The purpose of the high-level waste (HLW) glass melt rate study is two-fold: (1) to gain a better understanding of the impact of feed chemistry on melt rate through bench-scale testing, and (2) to develop a predictive tool for melt rate in support of the on-going frit development efforts for the Defense Waste Processing Facility (DWPF). In particular, the focus is on predicting relative melt rates, not the absolute melt rates, of various HLW glass formulations solely based on feed chemistry, i.e., the chemistry of both waste and glass-forming frit for DWPF. Critical to the successful melt rate modeling is the accurate determination of the melting rates of various HLW glass formulations. The baseline procedure being used at the Savannah River National Laboratory (SRNL) is to; (1) heat a 4 inch-diameter stainless steel beaker containing a mixture of dried sludge and frit in a furnace for a preset period of time, (2) section the cooled beaker along its diameter, and (3) measure the average glass height across the sectioned face using a ruler. As illustrated in Figure 1-1, the glass height is measured for each of the 16 horizontal segments up to the red lines where relatively large-sized bubbles begin to appear. The linear melt rate (LMR) is determined as the average of all 16 glass height readings divided by the time during which the sample was kept in the furnace. This 'visual' method has proved useful in identifying melting accelerants such as alkalis and sulfate and further ranking the relative melt rates of candidate frits for a given sludge batch. However, one of the inherent technical difficulties of this method is to determine the glass height in the presence of numerous gas bubbles of varying sizes, which is prevalent especially for the higher-waste-loading glasses. That is, how the red lines are drawn in Figure 1-1 can be subjective and, therefore, may influence the resulting melt rates significantly. For example, if the red lines are drawn too low

  14. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

  15. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    The purpose of the high-level waste (HLW) glass melt rate study is two-fold: (1) to gain a better understanding of the impact of feed chemistry on melt rate through bench-scale testing, and (2) to develop a predictive tool for melt rate in support of the on-going frit development efforts for the Defense Waste Processing Facility (DWPF). In particular, the focus is on predicting relative melt rates, not the absolute melt rates, of various HLW glass formulations solely based on feed chemistry, i.e., the chemistry of both waste and glass-forming frit for DWPF. Critical to the successful melt rate modeling is the accurate determination of the melting rates of various HLW glass formulations. The baseline procedure being used at the Savannah River National Laboratory (SRNL) is to; (1) heat a 4 inch-diameter stainless steel beaker containing a mixture of dried sludge and frit in a furnace for a preset period of time, (2) section the cooled beaker along its diameter, and (3) measure the average glass height across the sectioned face using a ruler. As illustrated in Figure 1-1, the glass height is measured for each of the 16 horizontal segments up to the red lines where relatively large-sized bubbles begin to appear. The linear melt rate (LMR) is determined as the average of all 16 glass height readings divided by the time during which the sample was kept in the furnace. This 'visual' method has proved useful in identifying melting accelerants such as alkalis and sulfate and further ranking the relative melt rates of candidate frits for a given sludge batch. However, one of the inherent technical difficulties of this method is to determine the glass height in the presence of numerous gas bubbles of varying sizes, which is prevalent especially for the higher-waste-loading glasses. That is, how the red lines are drawn in Figure 1-1 can be subjective and, therefore, may influence the resulting melt rates significantly. For example, if the red lines are drawn too low

  16. GLASS SELECTION STRATEGY: DEVELOPMENT OF US AND KRI TEST MATRICIES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2007-02-06

    High-level radioactive wastes are stored as liquids in underground storage tanks at the Department of Energy's (DOE) Savannah River Site (SRS) and Hanford Reservation. These wastes are to be prepared for permanent disposition in a geologic repository by vitrification with glass forming additives (e.g., frit), creating a waste form with long-term durability. Wastes at SRS are being vitrified in the Defense Waste Processing Facility (DWPF). Vitrification of the wastes stored at Hanford is planned for the Waste Treatment and Immobilization Plant (WTP) when completed. Some of the wastes at SRS, and particularly those at Hanford, contain high concentrations of aluminum, chromium and sulfate. These elements make it more difficult to produce a waste glass with a high waste loading (WL) without crystallization occurring in the glass (either within the melter or upon cooling of the glass), potentially exceeding the solubility limit of critical components, having negative impacts on durability, and/or resulting in the formation of a sulfate salt layer on the molten glass surface. Although the overall scope of the task is focused on all three critical, chemical components, the current work will primarily address the potential for crystallization (e.g., nepheline and/or spinel) in high level waste (HLW) glasses. Recent work at the Savannah River National Laboratory (SRNL) and by other groups has shown that nepheline (NaAlSiO{sub 4}), which is likely to crystallize in high-alumina glasses, has a detrimental effect on the durability of the glass. The objective of this task is to develop glass formulations for specific SRS and Hanford waste streams to avoid nepheline formation while meeting waste loading and waste throughput expectations, as well as satisfying critical process and product performance related constraints. Secondary objectives of this task are to assess the sulfate solubility limit for the DWPF composition and spinel settling for the WTP composition. SRNL has

  17. Defense Waste Processing Facility (DWPF): The vitrification of high-level nuclear waste. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning a production-scale facility and the world`s largest plant for the vitrification of high-level radioactive nuclear wastes (HLW) located in the United States. Initially based on the selection of borosilicate glass as the reference waste form, the citations present the history of the development including R&D projects and the actual construction of the production facility at the DOE Savannah River Plant (SRP). (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Low-temperature sintering and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.8Ti0.2]3- δ with glass frit added

    Science.gov (United States)

    In, Chi-Seung; Yeo, Dong-Hun; Shin, Hyo-Soon; Nahm, Sahn; Choi, Won-Youl

    2015-04-01

    In accordance with the trend for mobile terminals to be high intensity and to have thinner layers, low temperature co-fired ceramics (LTCC) materials with outstanding dielectric loss characteristics and diverse dielectric constants have been in demand, and the need for high-strength materials that can withstand external shocks has increased. Ca[(Li1/3Nb2/3)1- x Ti x ]O3- δ (CLNT) has a quality factor over 14,000 and τ f ≤ 10 when the dielectric constant is 41 ˜ 46, but its sintering temperature is high at 1150 °C. Therefore, it cannot be used as a LTCC component. This study aimed to lower the sintering temperature to 900 °C by adding a low-melting-point glass such as B2O3·SiO2·BaO and B2O3·SiO2·Al2O3. As the glass content in CLNT was increased from 10 wt% to 20 wt%, the density and the Q·f0 property decreased, and the dielectric constant rose. When B2O3·SiO2·BaO was added to CLNT at 15 wt%, the dielectric constant was found to be 27, the Q·f0 property to be 3470, and the τ f to be -18 ppm/°C. When B2O3·SiO2·Al2O3 was added to CLNT at 10 wt%, the dielectric constant was 20, the Q·f0 property was 3990, and the τ f was -15 ppm/°C. As such, in both cases, excellent dielectric properties were observed.

  19. Nepheline Formation Study for Sludge Batch 4 (SB4): Phase 1 Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K.; Edwards, T. B.; Reamer, I.A.; Workman, R. J.

    2005-09-30

    the impact on durability was of little or no practical concern. When one couples the PCT responses with the X-Ray Diffraction (XRD) results and/or visual observations, one could conclude that the formation of nepheline in these glasses does have a negative impact on durability. However, that impact may be of statistical significance, but the practical impact may not be sufficient to avoid a specific candidate frit for the SB4 glass system. The results of this study not only suggest that the 0.62 value appears to be a reasonable guide to monitor sludge--frit systems with respect to potential nepheline formation, but also that the impact of nepheline, although statistically significant, has little or no practical impact in the SB4 system to durability as measured by the PCT. This latter statement must be qualified to some extent given only two glasses were selected which were actually ''prone to nepheline formation'' based on this general guide and the relatively volume % of nepheline formed based on XRD results ({approx} 0.5 vol%). If the presence of nepheline has no appreciable, adverse impact on durability for the recently revised SB4 systems, then as decisions regarding the viability of the SB4 options and the down select of candidate frits are pursued, little weight will be given to minimizing the likelihood of nepheline and the decisions will be dominated by waste throughput criteria. That is, the frit selection process will not have to consider the impact of nepheline on the ultimate durability of the product and can focus on recommending a frit that when coupled with the sludge can be processed over a waste loading (WL) interval of interest to the Defense Waste Processing Facility (DWPF) with melt rates meeting production expectations.

  20. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  1. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  2. Large-scale continuous process to vitrify nuclear defense waste: operating experience with nonradioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Cosper, M B; Randall, C T; Traverso, G M

    1982-01-01

    The developmental program underway at SRL has demonstrated the vitrification process proposed for the sludge processing facility of the DWPF on a large scale. DWPF design criteria for production rate, equipment lifetime, and operability have all been met. The expected authorization and construction of the DWPF will result in the safe and permanent immobilization of a major quantity of existing high level waste. 11 figures, 4 tables.

  3. Review Of Rheology Modifiers For Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.

    2013-09-30

    As part of Savannah River National Laboratory (SRNL)'s strategic development scope for the Department of Energy - Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed - a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues: The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that

  4. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Choi, A.; Marra, J.; Billings, A.

    2011-02-07

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting the melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling

  5. Performance Characteristics of an Isothermal Freeze Valve

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, A.E.

    2001-08-22

    This document discusses performance characteristics of an isothermal freeze valve. A freeze valve has been specified for draining the DWPF melter at the end of its lifetime. Two freeze valve designs have been evaluated on the Small Cylindrical Melter-2 (SCM-2). In order to size the DWPF freeze valve, the basic principles governing freeze valve behavior need to be identified and understood.

  6. Experimental study of SRAT/SME foaming by Illinois Institute of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.P.; Wasan, D.T.

    1997-11-10

    This report summarizes the results of experiments performed by IIT in an effort to understand the fundamental science involved in the stable foam formation in the Defense Waste Processing Facility`s (DWPF`s) Chemical Processing Cell (CPC). The results of this testing will be confirmed in an experimental apparatus designed to be prototypic of DWPF CPC processing.

  7. StuDIY Online

    DEFF Research Database (Denmark)

    2015-01-01

    StuDIY Online er kurser i akademisk argumentation, problemformulering, analyse og akademisk sprog. Kurserne er frit tilgængelige for alle via Blackboard på AU......StuDIY Online er kurser i akademisk argumentation, problemformulering, analyse og akademisk sprog. Kurserne er frit tilgængelige for alle via Blackboard på AU...

  8. StuDIY Online - in english

    DEFF Research Database (Denmark)

    2016-01-01

    StuDIY Online er engelske kurser i akademisk argumentation, problemformulering, analyse og akademisk sprog. Kurserne er frit tilgængelige for alle via Blackboard på AU......StuDIY Online er engelske kurser i akademisk argumentation, problemformulering, analyse og akademisk sprog. Kurserne er frit tilgængelige for alle via Blackboard på AU...

  9. Solid-phase extraction-thermal desorption-gas chromatography with mass selective detection for the determination of drugs in urine

    NARCIS (Netherlands)

    van Hout, MWJ; de Zeeuw, RA; Franke, JP; de Jong, GJ

    2003-01-01

    Solid-phase extraction (SPE) was combined with thermal desorption (TD) and gas chromatographic (GC) analysis to determine drugs in urine. The extraction was performed inside a fritted GC liner using about 5 mg TENAX that was inserted into the liner on top of the frit. After extraction, the liner was

  10. Leidlikud lahendused : uus elamuehitus Amsterdamis = Enforcing Ingenuity New Housing in Amsterdam / Hans Ibelings ; hollandi keelest tõlk. eesti keelde Katrin Laiapea ja inglise keelde Robyn de Jong-Dalziel

    Index Scriptorium Estoniae

    Ibelings, Hans

    2001-01-01

    Amsterdami kahe elamurajooni planeeringust. Borneo-Sporenburgi (1994-2001) planeeringu tegi Adriaan Geuze ja tema büroo West 8. Kolm hiigelelamut projekteerisid Koen van Velsen, Frits van Dongen ja Kees Christiaanse. Valmimisjärgus IJburgi planeeringu autorid Felix Claus, Frits van Dongen ja Ton Schaap. 13 ill

  11. Leidlikud lahendused : uus elamuehitus Amsterdamis = Enforcing Ingenuity New Housing in Amsterdam / Hans Ibelings ; hollandi keelest tõlk. eesti keelde Katrin Laiapea ja inglise keelde Robyn de Jong-Dalziel

    Index Scriptorium Estoniae

    Ibelings, Hans

    2001-01-01

    Amsterdami kahe elamurajooni planeeringust. Borneo-Sporenburgi (1994-2001) planeeringu tegi Adriaan Geuze ja tema büroo West 8. Kolm hiigelelamut projekteerisid Koen van Velsen, Frits van Dongen ja Kees Christiaanse. Valmimisjärgus IJburgi planeeringu autorid Felix Claus, Frits van Dongen ja Ton Schaap. 13 ill

  12. Subversive Foundations

    DEFF Research Database (Denmark)

    Thomsen, Mads Rosendahl

    2010-01-01

    www.frit.ucsb.edu/WorldLitConf/video.php?id=007 ; video af konferencebidrag UC Santa Barbara 19.11.2009.......www.frit.ucsb.edu/WorldLitConf/video.php?id=007 ; video af konferencebidrag UC Santa Barbara 19.11.2009....

  13. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  14. Phase 2 Report--Mercury Behavior In The Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River Site (SRS), Aiken, SC (United States); Fellinger, T. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-27

    The purpose of this report is to provide a summary of the DWPF processing history in regards to mercury, document the mercury results obtained on the product and condensate samples, and provide further recommendations based on the data obtained.

  15. Phase 2 Report-Mercury Behavior In The Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River Site (SRS), Aiken, SC (United States); Fellinger, T. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-27

    The purpose of this report is to provide a summary of the DWPF processing history in regards to mercury, document the mercury results obtained on the product and condensate samples, and provide further recommendations based on the data obtained.

  16. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  17. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K. (ed.)

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  18. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  19. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. FY 1989--1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  20. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1991 and FY-1992

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Chazel, A.C.; Pechmann, J.H.K.; Estes, R.A.

    1993-06-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  1. Relationship between Liquid Phase Content and the Orientation of PMNT Ceramics by TGG Method

    Institute of Scientific and Technical Information of China (English)

    CAO Minghe; LI Dongliang; HAO Hua; LIU Hanxing

    2007-01-01

    The effects of glass frit on the sintering and electric properties of PMN-PT textured ceramics were investigated. The glass frits, including PbO, Bi2O3 and ZnO, were selected since liquid phase sintering lowered the PMN-PT sintering temperature. The piezoelectric properties of PMN-PT ceramics with glass frit addition are strongly dependent on the densification. The addition of glass frits into PMN-PT matrix reduced the sintering temperature to 1 100 ℃ instead of 1 150 ℃ for samples without glass. The piezoelectric coefficients(d33) of PMN-PT textured ceramics achieved 568 pc/N with 1 wt% excess PbO.

  2. Tüürilt esiettekanded Saksamaal ja Hollandis

    Index Scriptorium Estoniae

    2007-01-01

    Erkki-Sven Tüüri uue teose "Questions..." esiettekandest 5. dets. Frankfurdi Alte Operis, 6. dets. Müncheni Prinzregenten Theateris, 7. dets. Ravensburgi Konzerthausis, 8. dets. Amstardami Muzikgebouw's ja 9. dets. Eindhoveni Frits Philips Music Centeris

  3. High-temperature study of defects and homogeneity in glass

    Science.gov (United States)

    Yoon, Chang Hyun

    Glass frit has many useful applications in the glass and ceramic industries. Several attempts were made in this study to understand the origin of problems that generally occur when using glass frit. The effect of water/glass interactions on the rheology of glass suspension and the final properties of glass and glaze were studied. The dissolution of refractory inclusions and its influence on the bubble evolution, glass structure, and homogeneity of the resulting melt were also studied. The effects of long-term interaction of water with various frit suspensions were considered. The change in suspension rheology is associated with the ion concentration of the frit suspension, which strongly depends on the frit composition, additives, and solid content of frit suspension. Physical property and compositional variations resulted from dealkalization reactions between the frit particles and water. New investigative techniques for continuous monitoring and quantitative analysis of the dissolution of refractory inclusions in glass have been developed utilizing high-temperature microscopy with computer image analysis. The dissolution rates of refractory oxides in glass frit were measured utilizing hot-stage microscopy in the temperature range from 1050°C to 1400°C. The effects of dissolution on the structure of the final glass, were monitored by infrared spectroscopy. Homogenization of the resulting melts was studied using a Christiansen filter. It was found that melting temperature and time strongly influence the dissolution of refractory batch materials and subsequent homogenization rates, leading to large differences in final structures for glass melts and glazes which have not attained equilibrium.

  4. Ultra-lightweight mirror manufacturing and radiation response study

    Science.gov (United States)

    Fitzsimmons, T. C.; Crowe, D. A.

    1981-08-01

    The requirements for making ultra-lightweight mirrors of Ultra-Low Expansion (ULE) fused silica by frit bonding are investigated. A manufacturing assessment of the facilities needed to scale the mirror technology to 4 meters in diameter is included. A front surface flux loading thermal test of a.5M diameter frit bonded ULE mirror is also included. The test was supported by detailed modeling and analysis.

  5. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  6. INCORPORATION OF MONO SODIUM TITANATE AND CRYSTALLINE SILICOTITANATE FEEDS IN HIGH LEVEL NUCLEAR WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Johnson, F.; Edwards, T.

    2010-11-23

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. All of the glasses studied were considerably more durable than the benchmark Environmental Assessment (EA) glass. The measured Product Consistency Test (PCT) responses were compared with the predicted values from the current DWPF durability model. One of the KT01-series and two of the KT03-series glasses had measured PCT responses that were outside the lower bound of the durability model. All of the KT04 glasses had durabilities that were predictable regardless of heat treatment or compositional view. In general, the measured viscosity values of the KT01, KT03, and KT04-series glasses are well predicted by the current DWPF viscosity model. The results of liquidus temperature (T{sub L}) measurements for the KT01-series glasses were mixed with regard to the predictability of the T{sub L} for each glass. All of the measured T{sub L} values were higher than the model predicted values, although most fell within the 95% confidence intervals. Overall, the results of this study show a reasonable ability to incorporate the anticipated SCIX streams into DWPF-type glass compositions with TiO{sub 2} concentrations of 4-5 wt % in glass.

  7. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS MELT RATE ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Marra, J.

    2011-01-19

    A collaborative study has been established under the U.S. Department of Energy (DOE) Office of Environmental Management International Program between the Savannah River National Laboratory (SRNL) and the V. G. Khlopin Radium Institute (KRI) in St. Petersburg, Russia, to investigate potential improvements in melt rate via chemical additions to the glass frit. Researchers at KRI suggested a methodology for selecting frit additives based on empirical coefficients for optimization of glass melting available in the Russian literature. Using these coefficients, KRI identified B{sub 2}O{sub 3}, CuO, and MnO as frit additives that were likely to improve melt rate without having adverse effects on crystallization of the glass or its chemical durability. The results of the melt rate testing in the SMK melter showed that the slurry feed rate (used as a gauge of melt rate) could be significantly increased when MnO or CuO were added to Frit 550 with the SMR-2 sludge. The feed rates increased by about 27% when MnO was added to the frit and by about 26% when CuO was added to the frit, as compared to earlier results for Frit 550 alone. The impact of adding additional B{sub 2}O{sub 3} to the frit was minor when added with CuO. The additional B{sub 2}O{sub 3} showed a more significant, 39% improvement in melt rate when added with MnO. The additional B{sub 2}O{sub 3} also reduced the viscosity of the glasses during pouring. Samples of the glasses from the melt rate testing characterized at SRNL showed that there were no significant impacts on crystallization of the glasses. All of the glasses had very good chemical durability. Chemical composition measurements showed that the frit additives were present in concentrations below the targeted values in some of the glasses. Therefore, it is possible that higher concentrations of these additives may further improve melt rate, although the impacts of higher concentrations of these components on crystallization and durability would need to

  8. Evaluation of column hardware on liquid chromatography-mass spectrometry of phosphorylated compounds.

    Science.gov (United States)

    Sakamaki, Hiroshi; Uchida, Takeharu; Lim, Lee Wah; Takeuchi, Toyohide

    2015-02-13

    The influences of column hardware, such as chromatographic tubes and frits, on liquid chromatography-mass spectrometry (LC-MS) analysis of phosphorylated compounds were evaluated. The signal to noise ratio (S/N) and the intensity of flavin adenine dinucleotide (FAD) using a glass lined tube and polyethylene frit (GL-PE) column was approximately 170 and 90 times higher, respectively, than those using conventional stainless steel tube and stainless steel frit (S-S) column. In addition, the retention time of FAD using GL-PE column was the shortest compared to other columns. Interaction between phosphorylated compounds and metal ions in the flow path in the S-S column was stronger than that between them and the GL-PE column. Thus, the metal ions in the flow path in GL-PE column were low. Since the specific surface area of a pair of frits was 70 times larger than that of a chromatographic tube (150 mm×2.1 mm), the frits were found to have more effective improvement of the S/N as well as the intensity than the chromatographic tubes, when phosphorylated compounds were analyzed by LC-MS. When the evaluated phosphorylated compounds were analyzed by LC-MS(/MS) using a GL-PE column, the intensity and S/N were increased.

  9. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  10. The Defense Waste Processing Facility: Two Years of Radioactive Operation

    Energy Technology Data Exchange (ETDEWEB)

    Marra, S.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Gee, J.T.; Sproull, J.F.

    1998-05-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

  11. Impact Of Melter Internal Design On Off-Gas Flammability

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S.; Lee, S. Y.

    2012-05-30

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good.

  12. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  13. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  14. Numerical analysis of a nuclear fuel element for nuclear thermal propulsion

    Science.gov (United States)

    Wang, Ten-See; Schutzenhofer, Luke

    1991-01-01

    A computational fluid dynamics model with porosity and permeability formulations in the transport equations has been developed to study the concept of nuclear thermal propulsion through the analysis of a pulsed irradiation of a particle bed element (PIPE). The numerical model is a time-accurate pressure-based formulation. An adaptive upwind scheme is employed for spatial discretization. The upwind scheme is based on second- and fourth-order central differencing with adaptive artificial dissipation. Multiblocked porosity regions have been formulated to model the cold frit, particle bed, and hot frit. Multiblocked permeability regions have been formulated to describe the flow shaping effect from the thickness-varying cold frit. Computational results for several zero-power density PIPEs and an elevated-particle-temperature PIPE are presented. The implications of the computational results are discussed.

  15. Screenable contact structure and method for semiconductor devices

    Science.gov (United States)

    Ross, Bernd

    1980-08-26

    An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.

  16. MECHANISMS OF PHASE FORMATION IN THE VITRIFICATION OF HIGH-FERROUS SAVANNAH RIVER SITE SB2 HLW SLUDGE SURROGATE - 9300

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2008-08-27

    Phase formation mechanisms associated with the vitrification of high-ferrous Savannah River Site (SRS) Sludge Batch 2 (SB2) high level waste surrogate were studied by infrared spectroscopy (IRS) and X-ray diffraction (XRD). Two mixtures at 50 wt% waste loading with commercially available Frit 320 (Li{sub 2}O - 8 wt %, B{sub 2}O{sub 3} - 8 wt %, Na{sub 2}O - 12 wt %, SiO{sub 2} - 72 wt %) and batch chemicals (LiOH {center_dot} H{sub 2}O, H{sub 3}BO{sub 3}, NaNO{sub 3}, SiO{sub 2}) to represent the frit formulation were prepared as slurries with a water content of {approx}50 wt%. The mixtures were air-dried at a temperature of 115 C and heat-treated at 500, 700, 900, 1000, 1100, 1200, and 1300 C for 1 hr at each temperature. Infrared spectra and XRD patterns of the products produced at each temperature were recorded. In both mixtures prepared using frit and batch chemicals to represent the frit, phase formation reactions were completed within the temperature range between 900 and 1000 C. However, residual quartz was still present in glass produced from the mixture with batch chemicals even at 1100 C. Although, the phase composition and structure of the glassy products obtained from both mixtures at temperatures over 1000 C were similar, the products obtained from the mixture using actual frit were more homogeneous than those from the mixture with batch chemicals. Thus, the use of frit rather than batch chemicals reduced the temperature range of phase formation and provided for production of higher quality glass.

  17. Controlling the Color of Lead-Free Red Overglaze Enamels and a Process for Preparing High-Quality Red Paints.

    Science.gov (United States)

    Hashimoto, Hideki; Inada, Hirofumi; Okazaki, Yuki; Takaishi, Taigo; Fujii, Tatsuo; Takada, Jun

    2016-05-04

    Akae porcelain, an artistic Japanese traditional overglaze ceramic typically known for Kakiemon-style ware, has fascinated porcelain lovers around the world for over 400 years because of the graceful red color displayed by akae that matches so well with white porcelain bodies. In this work, we clarified the factors that control the color of akae and those that are conventionally controlled by artisans based on empirical experience. Inspired by a recent particle-design method, we also developed a practical facile process to prepare red paints that yields high-quality akae. Various akae samples were prepared from a combination of lead-free alkali borosilicate glass frits with different particle sizes and hematite powders with differing dispersibilities. Polarized light microscopy, scanning electron microscopy, and transmission electron microscopy analyses indicate that considering only the dispersibility of hematite powders is not sufficient, but the frit-particle size must be controlled to obtain high-quality akae with a high reflectance value for ≥580 nm visible light. In addition, we developed a process for preparing high-quality red paints that uses a large-particle frit powder and a strongly aggregated-hematite powder, both of which are easily obtainable. The red paint composed of frit, hematite, and the solvent is mixed until the paint is drying. By adding more solvent and repeating this process three times, we obtained high-quality akae with a higher reflectance value than for the akae prepared from a frit with submicron-sized particles and weakly aggregated-hematite powder. On the basis of transmission electron microscopic observations, we consider the red paint to consist of a core/shell-like composite structure of frit and hematite, forming a three-dimensional network in the akae glass layer. The good dispersibility of these particles leads to high-quality akae.

  18. Antifoam degradation testing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Newell, D. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  19. REAL WASTE TESTING OF SLUDGE BATCH 5 MELTER FEED RHEOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Stone, M.

    2010-03-17

    Clogging of the melter feed loop at the Defense Waste Processing Facility (DWPF) has reduced the throughput of Sludge Batch 5 (SB5) processing. After completing a data review, DWPF attributed the clogging to the rheological properties of the Slurry Mix Evaporator (SME) project. The yield stress of the SB5 melter feed material was expected to be high, based on the relatively high pH of the SME product and the rheological results of a previous Chemical Process Cell (CPC) demonstration performed at the Savannah River National Laboratory (SRNL).

  20. Effect of Mercury-Noble Metal Interactions on SRAT Processing of SB3 Simulants (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Baich, M. A.

    2004-12-31

    Controlling hydrogen generation below the Defense Waste Processing Facility (DWPF) safety basis constrains the range of allowable acid additions in the DWPF Chemical Processing Cell. This range is evaluated in simulant tests at the Savannah River National Laboratory (SRNL). A minimum range of allowable acid additions is needed to provide operational flexibility and to handle typical uncertainties in process and analytical measurements used to set acid additions during processing. The range of allowable acid additions is a function of the composition of the feed to DWPF. Feed changes that lead to a smaller range of allowable acid additions have the potential to impact decisions related to wash endpoint control of DWPF feed composition and to the introduction of secondary waste streams into DWPF. A limited program was initiated in SRNL in 2001 to study the issue of hydrogen generation. The program was reinitiated at the end of fiscal year 2004. The primary motivation for the study is that a real potential exists to reduce the conservatism in the range of allowable acid additions in DWPF. Increasing the allowable range of acid additions can allow decisions on the sludge wash endpoint or the introduction of secondary waste streams to DWPF to be based on other constraints such as glass properties, organic carbon in the melter off-gas, etc. The initial phase of the study consisted of a review of site reports and off-site literature related to catalytic hydrogen generation from formic acid and/or formate salts by noble metals. Many things are already known about hydrogen generation during waste processing. This phase also included the development of an experimental program to improve the understanding of hydrogen generation. This phase is being documented in WSRC-TR-2002-00034. A number of areas were identified where an improved understanding would be beneficial. A phased approach was developed for new experimental studies related to hydrogen generation. The first phase

  1. Deployment of Performance Management Methodology as part of Liquid Waste Program at Savannah River Site - 12178

    Energy Technology Data Exchange (ETDEWEB)

    Prod' homme, A.; Drouvot, O.; Gregory, J. [AREVA, Paris (France); Barnes, B.; Hodges, B.; Hart, M. [SRR, Aiken, SC (United States)

    2012-07-01

    In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) at the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order

  2. Task Technical and Quality Assurance Plan for the Characterization of the Tank 40H Samples

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, W.R.

    2000-07-12

    The High Level Waste Tank Farms store and process high-level liquid wastes from a number of sources including F- and H-Canyons and a recycle stream from the Defense Waste Processing Facility (DWPF). The deposition of sodium aluminosilicate along with sodium diuranate in the 242-16H evaporator system led to the removal of authorization to process High Level Waste containing DWPF recycle. Therefore, High Level Waste Engineering has requested SRTC to perform analysis of the contents of Tank 40H and associated transfers from sludge washing to ensure silicon levels are sufficiently low to allow processing of the supernate through the 3H Evaporator.

  3. Anker Jørgensen

    DEFF Research Database (Denmark)

    Thurah, Thomas

    Fra omslaget: Søster Irma, onkel Oscar, Frits Clausen, PH, John F. Kennedy, månelandingen, Ingrid og børnene, Mogens Glistrup, bilfrie søndage, Margaret Thatcher, Mikhail Gorbatjov, formandsopgøret i Socialdemokratiet og Barack Obama. Forhenværende svajer, tillidsmand, forbundsformand og statsmin......Fra omslaget: Søster Irma, onkel Oscar, Frits Clausen, PH, John F. Kennedy, månelandingen, Ingrid og børnene, Mogens Glistrup, bilfrie søndage, Margaret Thatcher, Mikhail Gorbatjov, formandsopgøret i Socialdemokratiet og Barack Obama. Forhenværende svajer, tillidsmand, forbundsformand og...

  4. Development of technique for air coating and nickel and copper metalization of solar cells

    Science.gov (United States)

    Solar cells were made with a variety of base metal screen printing inks applied over silicon nitride AR coating and copper electroplated. Fritted and fritless nickel and fritless tin base printing inks were evaluated. Conversion efficiencies as high as 9% were observed with fritted nickel ink contacts, however, curve shapes were generally poor, reflecting high series resistance. Problems encountered in addition to high series reistance included loss of adhesion of the nickel contacts during plating and poor adhesion, oxidation and inferior curve shapes with the tin base contacts.

  5. Udskældte EU-regler om krumme agurker gav faktisk god mening

    DEFF Research Database (Denmark)

    Østergaard, Uffe

    2016-01-01

    Historisk set. Utilfredsheden med EU's overregulering breder sig på tværs af politiske skel og landegrænser. Men selvom det kan virke ulogisk, kan regulering være nødvendigt for et frit marked, påpeger historiker Uffe Østergård.......Historisk set. Utilfredsheden med EU's overregulering breder sig på tværs af politiske skel og landegrænser. Men selvom det kan virke ulogisk, kan regulering være nødvendigt for et frit marked, påpeger historiker Uffe Østergård....

  6. Obtaining lipases from byproducts of orange juice processing.

    Science.gov (United States)

    Okino-Delgado, Clarissa Hamaio; Fleuri, Luciana Francisco

    2014-11-15

    The presence of lipases was observed in three byproducts of orange juice processing: peel, core and frit. The enzymes were characterised biochemically over a wide pH range from neutral (6-7) to alkaline (8-9). The optimal temperature for the activity of these byproducts showed wide range at 20°C to 70°C, indicating fairly high thermostability. The activities were monitored on p-NP-butyrate, p-NP-laurate and p-NP-palmitate. For the first time, lipase activity was detected in these residues, reaching 68.5 lipase U/g for the crude extract from fractions called frit.

  7. Nitric-glycolic flowsheet evaluation with the slurry-fed melt rate furnace

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-01

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previously to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.

  8. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  9. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site (SRS) began during FY-1984. The Savannah River Ecology Laboratory (SREL) has completed 15 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Through the long-term census taking of biota at the DWPF site and Rainbow Bay, SREL has been evaluating the impact of construction on the biota and the effectiveness of mitigation efforts. similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  10. Justification for Continued Operation of the SRS Saltstone Facility (Z-Area)

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, W.A.

    1999-01-20

    Saltstone Production and Disposal Facilities (Z-Area) are a part of the Defense Waste Processing Facilities (DWPF). Z-Area facilities are just one segment of an integrated waste management and disposal system located at the Savannah River Site (SRS). The bases for the Justification of Continuing Operations (JCO) of the Saltstone Production and Disposal Facilities (Z-Area) at SRS are provided.

  11. Radioactive demonstration of the ``late wash`` Precipitate Hydrolysis Process

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ``late wash`` flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  12. Radioactive demonstration of the late wash'' Precipitate Hydrolysis Process

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  13. IMPACT OF URANIUM AND THORIUM ON HIGH TIO2 CONCENTRATION NUCLEAR WASTE GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-01-11

    This study focused on the potential impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. All but one of the study glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which is typically found in DWPF-type glasses and had no practical impact on the durability of the glass. The measured Product Consistency Test (PCT) responses for the study glasses and the viscosities of the glasses were well predicted by the current DWPF models. No unexpected issues were encountered when uranium and thorium were added to the glasses with SCIX components.

  14. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn

  15. po_stack_movie

    DEFF Research Database (Denmark)

    2009-01-01

    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset. Reolen kan let ombygges, udvides eller opdeles, når ...

  16. Live Speed Analysis, en app til hastighedsmålinger

    DEFF Research Database (Denmark)

    Bolet, Lars; Christensen, Peter Muhlig; Halskov-Sørensen, Asbjørn;

    2013-01-01

    I et bachelorprojekt har tre studerende udviklet en app, som kan registrere og behandle hastigheder ved den såkaldte spejlmetode. App'en er siden videreudviklet, så registreringerne stedfæstes, tidstemples og uploades til en fæIIes database. App'en er frit tilgængelig. Den kan bruges af...

  17. Hydrogen generation during melter feed preparation of Tank 42 sludge and salt washed loaded CST in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W.E.

    1999-12-08

    The main objective of these scoping tests was to measure the rate of hydrogen generation in a series of experiments designed to duplicate the expected SRAT and SME processing conditions in laboratory scale vessels. This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, loaded CST [crystalline silicotitanate], and frit.

  18. Scientific visualization in virtual reality: interaction techniques and application development

    NARCIS (Netherlands)

    Koutek, M.

    2003-01-01

    The research described in this thesis was carried out in the Computer Graphics & CAD/CAM group at Delft University of Technology. The project was directly supervised by Frits Post. It is the sixth project in a series of PhD projects on data visualization, but the first project concerned with Virtual

  19. Strukturreform og ældreomsorg

    DEFF Research Database (Denmark)

    Dahl, Hanne Marlene

    2008-01-01

    Strukturreformen er så ny, at der endnu ikke er udført forskning omkring dens effekter på ældreområdet. Reformen har direkte konsekvenser for udskrivning, genoptræning og uddannelse, samt mere indirekte for udbredelsen af udlicitering og frit valg. Organisatoriske forandringer kræver en del tid o...

  20. 76 FR 13605 - Notice of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Vitrification...

    Science.gov (United States)

    2011-03-14

    ... waste from reprocessing of spent nuclear fuel and certain treatment material) at the West Valley... a solid glass waste form. DOE used the vitrification melter as part of this process, specifically to melt glass frit (material used in making glass) together with reprocessing waste sludge and...

  1. Antonio Gramsci

    DEFF Research Database (Denmark)

    Bryld, Claus

    2016-01-01

    Artikel, bygget på litteratur og kilder, om den italienske socialist, Antonio Gramsci (1891-1937), især berømt for sine 'fængselsoptegnelser' (Quaderni del carcere), som han skrev som 10-årig politisk fange under Mussolini. Som tænker bevægede Gramsci sig frit mellem republikaneren Niccolo...

  2. Byudvikling og boligplanlægning i Sydafrika

    DEFF Research Database (Denmark)

    Eskemose Andersen, Jørgen; Andreasen, Jørgen

    1996-01-01

    Sydafrika har den størest urbanisering gad i Sydafrika. To tredjedele af befolkningen bor i byerne og er koncentreret i fem metropoler. Under apartheid blev byplanlægning anvendt som et yderst effektivt middel til at adskille racerne. Med et frit Sydafrika fra 1990 og et formelt demokrati fra 1994...

  3. Mullite glass-ceramic glazes synthesized through a sol-gel and ceramic mixed process

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, I.; Hohemberger, J.M.; Carda, J.B. [Universitat Jaume I, Castellon (Spain). Dept. Quimica Inorganica y Organica; Jovani, M.A.; Nebot, A. [Colorobbia Espana S.A. Villafames, Castellon (Spain)

    2002-07-01

    The main objective of the present work is the development of a glass-ceramic glaze with similar properties to the mullite crystalline phase. We have developed new glass-ceramic materials, which are formed through devitrification of mullite. The synthesis process combines the traditional ceramic method and the more innovative sol-gel methodologies. Amorphous precursors for the glass-ceramic glazes were obtained through precalcination of previously synthesized gels. These amorphous materials served as crystallization nuclei when introduced in the enamel composition. Gels were synthesized by the polymeric sol-gel method using AlCl{sub 3}, t-BuOH and TEOS as precursors. Composition of frit was optimized in such a way that a frit rich in aluminum and silicon would have the adequate physical and chemical characteristics for the desired application. Microstructure and structure of all the obtained materials were characterized. DTA-TG profiles and mechanical, chemical and optical properties were evaluated. On the other hand, the glass-ceramic glazes were compared first to glass-crystalline mullite glazes, which were obtained by addition of mullite crystals to the frit and then, to the glaze derived of just the frit. (orig.)

  4. Combustion gas cleaning in the ceramic tile industry: technical guide; Nettoyage des fumees de combustion dans l'industrie ceramique: guide technique

    Energy Technology Data Exchange (ETDEWEB)

    Lezaun, F.J. [ENAGAS-Grupo Gas Natural (Spain); Mallol, G.; Monfort, E. [instituto de Tecnologia Ceramica, ITC (Spain); Busani, G. [Agenzia Regionale per la Prevenzione e l' Amiente, ARPA (Spain)

    2000-07-01

    This document presents a summary of a technical guide drawn up on combustion gas cleaning systems in ceramic frit and tile production. The guide describes the method to be followed for selecting the best possible solutions for reducing pollutant concentrations in different emission sources, in accordance with current regulatory requirements and the CET recommendation. There are three sources of combustion gas air emissions that need to be cleaned in ceramic tile and frit production and they are usually related to the following process stages: slip spray drying, tile firing and frit melting. The different nature of the emissions means that different substances will need to be cleaned in each emission. Thus, in spray drying and frit melting, the only species to be cleaned are suspended particles, while in tile firing, it is also necessary to reduce the fluorine concentration. The systems analysed in this guide are mainly wet cleaning systems, bag filters and electrostatic precipitators. In the study, the efficiency of these cleaning systems is compared at each emission source from a technical and economic point of view, and concrete solutions are put forward in each case, together with a list of suppliers of the technologies involved. (authors)

  5. Hvornår er valg frie og fair?

    DEFF Research Database (Denmark)

    Elklit, Jørgen; Svensson, Palle

    1995-01-01

    Der findes ingen alment accepterede standarder for, hvad der skal til, for at man kan kalde et valg "frit og fair". Det er defor en fordel for analysen af demokratiseringsforløb - og af valg og folkeafstemninger i nye demokratier - at man gør sig klart, hvilke problemer der knytter sig til brugen...

  6. IMAGING MOLECULAR FRAME DYNAMICS

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche

    2012-01-01

    Molekylererikkeblotfastestrukturersomnårdetegnespåetstykkepapir. Tværtimod er de altid i bevægelse, hvilket betyder at selv stive molekyler på gasform vil kunne rotere frit i forhold til hinanden. En sådan samling af molekyler betegnes som tilfældigt orienterede. I mange eksperimenter er denne ti...

  7. Project Avatar

    DEFF Research Database (Denmark)

    Juhlin, Jonas Alastair

    'Project Avatar' tager udgangspunkt i den efterretningsdisciplin, der kaldes Open Source Intelligence og indebærer al den information, som ligger frit tilgængeligt i åbne kilder. Med udbredelsen af sociale medier åbners der op for helt nye typer af informationskilder. Spørgsmålet er; hvor nyttig er...

  8. Koers houden in turbulentie : De rol van de rijksoverheid op het gebied van infrastructuur en milieu internationaal vergeleken

    NARCIS (Netherlands)

    Berg, van den C.F.; Meer, van der F.M.; Mannekes, van M.; Osch, van D.; Porth, J.; Schmidt, A.

    2015-01-01

    Caspar van den Berg, Frits van der Meer, Marije van Mannekes, Danielle van Osch, Jan Porth en Arjen Schmidt hebben een omvangrijk internationaal-vergelijkend onderzoek uitgevoerd naar de veranderde rol van de overheid in België/Vlaanderen, Canada, Denemarken, Duitsland, Finland, Frankrijk en het Ver

  9. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  10. Effect of temperature on the fracture-surface energy of a waste disposal glass

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, I.C.I.; Martin, D.M.

    1982-02-01

    The work-of-fracture of a glass frit designed for nuclear waste disposal was measured at six temperatures, ranging from 298 to 680 K. The fracture-surface energy and toughness went through a minimum at 580 K. Elastic moduli were measured by determining mechanical resonance frequencies. 16 refs.

  11. DDR-økonomerne havde ret i noget

    DEFF Research Database (Denmark)

    Bryld, Claus

    2016-01-01

    Siden Murens fald har der været frit løb for milliardærer og markedsliberalisme. Resultatet peger på, at de kommunistiske økonomer havde ret, når de malede skræmmescenarier af Vestens uhæmmede kapitalisme....

  12. Live Speed Analysis, en app til hastighedsmålinger

    DEFF Research Database (Denmark)

    Bolet, Lars; Christensen, Peter Muhlig; Halskov-Sørensen, Asbjørn

    2013-01-01

    I et bachelorprojekt har tre studerende udviklet en app, som kan registrere og behandle hastigheder ved den såkaldte spejlmetode. App'en er siden videreudviklet, så registreringerne stedfæstes, tidstemples og uploades til en fæIIes database. App'en er frit tilgængelig. Den kan bruges af...

  13. The Study of Optical Properties as Glass Composition of Bi2O3-Based Glass/Phosphor Mixed Paste.

    Science.gov (United States)

    Hwang, M K; Kim, I G; Jung, Y K; Ryu, B K

    2015-10-01

    Recently, White light emitting diodes (WLEDs) have been studied because of many advantages such as lower energy consumption, fast response, high brightness. Glass frit has been interested in LED packages due to their superior properties such as long-term stability and permeability. To maximize the LED light emission characteristic, the glass frit was required a low firing temperature and high refractive index. We selected the bismuth-based glass due to their low melting and high refractive index. This study was investigated characteristics of glass according to the influence of the glass within Bi2O3 content and this glass characteristic change was studied the effects on the optical properties of LED package structure. The properties changes of the glass frit affect the optical property of the mixed paste. With higher contents of Bi203 glass composition, the transmittance and emission intensity of the mixed paste was increased. These results suggest that the difference in refractive index between the phosphor and glass frit is minimized, the loss of light is minimized.

  14. Process for solidifying high-level nuclear waste

    Science.gov (United States)

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  15. Facebook og privatliv

    DEFF Research Database (Denmark)

    Nielsen, Jøren Ullits Olai

    2015-01-01

    Hvornår har vi privatliv på de sociale medier? Kan journalister frit anvende informationer fra åbne profiler på nettet, herunder personfølsomme oplysninger? Hvad hvis profilen er lukket? Betyder det, at oplysningerne ikke må anvendes, fordi de er private? Og hvis det er tilfældet, er profilen så ...

  16. Scaling of Fiber Laser Systems Based on Novel Components and High Power Capable Packaging and Joining Technologies

    Science.gov (United States)

    2010-09-01

    l ri Laser Splicing/ Welding r li i / l i Contact Bonding t t i Wafer Level Bonding Mineralic, Fusion. Anodic, Eutectic, Glass-frit, liquid...diode Bonding and Packaging of Optical Components Solder Bumping Thickfilm Au Metallization Laser diode Fiber Assembly element Asphere Ceramic System

  17. Antonio Gramsci

    DEFF Research Database (Denmark)

    Bryld, Claus

    2016-01-01

    Artikel, bygget på litteratur og kilder, om den italienske socialist, Antonio Gramsci (1891-1937), især berømt for sine 'fængselsoptegnelser' (Quaderni del carcere), som han skrev som 10-årig politisk fange under Mussolini. Som tænker bevægede Gramsci sig frit mellem republikaneren Niccolo...

  18. Environmentally Safe, Large Volume Utilization Applications for Gasification Byproducts

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Groppo; R. Rathbone

    2008-06-30

    Samples of gasification by-products produced at Polk Station and Eastman Chemical were obtained and characterized. Bulk samples were prepared for utilization studies by screening at the appropriate size fractions where char and vitreous frit distinctly partitioned. Vitreous frit was concentrated in the +20 mesh fraction while char predominated in the -20+100 mesh fraction. The vitreous frit component derived from each gasifier slag source was evaluated for use as a pozzolan and as aggregate. Pozzolan testing required grinding the frit to very fine sizes which required a minimum of 60 kwhr/ton. Grinding studies showed that the energy requirement for grinding the Polk slag were slightly higher than for the Eastman slag. Fine-ground slag from both gasifiers showed pozzoalnic activity in mortar cube testing and met the ASTM C618 strength requirements after only 3 days. Pozzolanic activity was further examined using British Standard 196-5, and results suggest that the Polk slag was more reactive than the Eastman slag. Neither aggregate showed significant potential for undergoing alkali-silica reactions when used as concrete aggregate with ASTM test method 1260. Testing was conducted to evaluate the use of the frit product as a component of cement kiln feed. The clinker produced was comprised primarily of the desirable components Ca{sub 3}SiO{sub 5} and Ca{sub 2}SiO{sub 4} after raw ingredient proportions were adjusted to reduce the amount of free lime present in the clinker. A mobile processing plant was designed to produce 100 tons of carbon from the Eastman slag to conduct evaluations for use as recycle fuel. The processing plant was mounted on a trailer and hauled to the site for use. Two product stockpiles were generated; the frit stockpile contained 5% LOI while the carbon stockpile contained 62% LOI. The products were used to conduct recycle fuel tests. A processing plant was designed to separate the slag produced at Eastman into 3 usable products. The coarse frit

  19. Estudio de algunos factores que afectan a la solubilidad de fritas en suspensiones de esmaltes

    Directory of Open Access Journals (Sweden)

    Gazulla, M. F.

    2001-04-01

    Full Text Available In view of the importance of certain problems relating to frit solubility in ceramic tile manufacture, a study was undertaken to determine how a set of different factors affect frit solubility. It was determined how the solubility of two frits was modified of the type of raw material used to make the frits and a series of variables relating to the glazes prepared from these frits. Relevant information was thus obtained regarding the industrial use of the frits, which is where the problems occur. The influence was specifically studied of milling time, suspension temperature, standing time, stirring intensity and the chemical composition of certain additives (binders and deflocculants on solubility. They were all found to substantially affect frit solobility, specially for certain elements (calcium, magnesium and cinc.

    Dada la importancia que revisten algunos problemas relacionados con la solubilidad de fritas en el proceso de fabricación de baldosas cerámicas, se ha abordado la realización de un trabajo destinado a conocer la influencia que ejercen sobre aquella un conjunto de factores de diferente naturaleza. Se ha determinado cómo se modifica la solubilidad de dos fritas en función del tipo de materia prima empleada para fabricarlas y de una serie de variables relacionadas con los esmaltes que se preparan a partir de aquellas. De esta forma se ha obtenido información relevante desde el punto de vista del uso industrial que se hace de las fritas, que es donde aparecen los problemas a que se ha hecho referencia anteriormente. Concretamente se ha estudiado la influencia sobre la solubilidad del tiempo de molturación, la temperatura de la suspensión, el tiempo de reposo, la intensidad de la agitación y la composición química de algunos aditivos (ligantes y desfloculantes. Se ha constatado que todas ellas inciden sustancialmente en la propiedad estudiada, especialmente para algunos elementos (calcio, magnesio y cinc.

  20. Sludge Batch 4 Simulant Flowsheet Studies with ARP and MCU: Impact of MCU Organics

    Energy Technology Data Exchange (ETDEWEB)

    Baich, M. A.; Herman, C. C.; Eibling, R. E.; Williams, M. F.; Smith, F. G.

    2005-07-01

    Two facilities for treating the salt currently being stored in the High Level Waste (HLW) tanks are currently planned to begin operations during the processing of Sludge Batch 4 (SB4). The Immobilization Technology Section (ITS) of the Savannah River National Laboratory (SRNL) was requested by the Defense Waste Processing Facility (DWPF) via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 (Washburn, 2004) to evaluate the impacts on DWPF processing for streams from the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Side Extraction (CSSX) Unit (MCU). In particular, the TTR requests SRNL to validate the existing process flowsheet and establish a coupled operations flowsheet for use with SB4. The flowsheet runs are required so an evaluation of potential chemical processing issues, quantification of the potential hydrogen generation rates, and estimation of the required acid stoichiometry can be made. Previous testing (Baich et. al., 2003) was performed for incorporating ARP/MST in Sludge Batch 3 (SB3) and recommendations were made to DWPF on possible flowsheet options. However, since that time, some changes have occurred to the ARP facility processing strategy, and material balances have been revised (Subosits, 2004). Thus, testing with updated compositions was necessary. Since the MCU is a new design and project, no CPC flowsheet studies have been performed for this stream. This testing will validate the previously recommended ARP stream addition methods based on the new information and based on the need to also incorporate the MCU stream. The basic principle of solvent extraction is to use a sparingly soluble diluent material that carries an extractant that will complex with the cesium ions in the caustic HLW solution. The decontaminated aqueous stream (raffinate) is then sent to Saltstone for disposal. The cesium contained in the organic phase (solvent) can then be stripped into an aqueous phase ready for transfer to the DWPF. The solvent is

  1. Removal of lead from cathode ray tube funnel glass by generating the sodium silicate.

    Science.gov (United States)

    Hu, Biao; Zhao, Shuangshuang; Zhang, Shuhao

    2015-01-01

    In the disposal of electronic waste, cathode ray tube (CRT) funnel glass is an environmental problem of old television sets. Removal of the lead from CRT funnel glass can prevent its release into the environment and allow its reuse. In this research, we reference the dry progress productive technology of sodium silicate, the waste CRT glass was dealt with sodium silicate frit melted and sodium silicate frit dissolved. Adding a certain amount of Na ₂CO₃to the waste CRT glass bases on the material composition and content of it, then the specific modulus of sodium silicate frit is obtained by melting progress. The silicon, potassium and sodium compounds of the sodium silicate frit are dissolved under the conditions of high temperature and pressure by using water as solvent, which shows the tendency that different temperature, pressure, liquid-solid ratio and dissolving time have effect on the result of dissolving. At 175°C(0.75MPa), liquid-solid ratio is 1.5:1, the dissolving time is 1h, the dissolution rate of sodium silicate frit is 44.725%. By using sodium sulfide to separate hydrolysis solution and to collect lead compounds in the solution, the recovery rate of lead in dissolving reached 100% and we can get clean sodium silicate and high purity of lead compounds. The method presented in this research can recycle not only the lead but also the sodium, potassium and other inorganic minerals in CRT glass and can obtain the comprehensive utilization of leaded glass.

  2. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  3. 1/6TH SCALE STRIP EFFLUENT FEED TANK-MIXING RESULTS USING MCU SOLVENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E

    2006-02-01

    The purpose of this task was to determine if mixing was an issue for the entrainment and dispersion of the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) solvent in the Defense Waste Processing Facility (DWPF) Strip Effluent Feed Tank (SEFT). The MCU strip effluent stream containing the Cs removed during salt processing will be transferred to the DWPF for immobilization in HLW glass. In lab-scale DWPF chemical process cell testing, mixing of the solvent in the dilute nitric acid solution proved problematic, and the Savannah River National Laboratory (SRNL) was requested to perform scaled SEFT mixing tests to evaluate whether the problem was symptomatic of the lab-scale set-up or of the solvent. The solvent levels tested were 228 and 235 ppm, which represented levels near the estimated DWPF solvent limit of 239 ppm in 0.001M HNO{sub 3} solution. The 239 ppm limit was calculated by Norato in X-CLC-S-00141. The general approach for the mixing investigation was to: (1) Investigate the use of fluorescent dyes to aid in observing the mixing behavior. Evaluate and compare the physical properties of the fluorescent dyed MCU solvents to the baseline Oak Ridge CSSX solvent. Based on the data, use the dyed MCU solvent that best approximates the physical properties. (2) Use approximately a 1/6th linear scale of the SEFT to replicate the internal configuration for DWPF mixing. (3) Determine agitator speed(s) for scaled testing based on the DWPF SEFT mixing speed. (4) Perform mixing tests using the 1/6th SEFT and determine any mixing issues (entrainment/dispersion, accumulation, adhesion) through visual observations and by pulling samples to assess uniformity. The mixing tests used MCU solvent fabricated at SRNL blended with Risk Reactor DFSB-K43 fluorescent dye. This dyed SRNL MCU solvent had equivalent physical properties important to mixing as compared to the Oak Ridge baseline solvent, blended easily with the MCU solvent, and provided an excellent visual aid.

  4. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  5. SLUDGE BATCH 4 FOLLOW-UP QUALIFICATION STUDIES TO EVALUATE HYDROGEN GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; David Koopman, D; Dan Lambert, D; Cj Bannochie, C

    2007-08-23

    Follow-up testing was conducted to better understand the excessive hydrogen generation seen in the initial Sludge Batch 4 (SB4) qualification Sludge Receipt and Adjustment Tank/Slurry Mix Evaporator (SRAT/SME) simulation in the Savannah River National Laboratory (SRNL) Shielded Cells. This effort included both radioactive and simulant work. The initial SB4 qualification test produced 0.59 lbs/hr hydrogen in the SRAT, which was just below the DWPF SRAT limit of 0.65 lbs/hr, and the test produced over 0.5 lbs/hr hydrogen in the SME cycle on two separate occasions, which were over the DWPF SME limit of 0.223 lbs/hr.

  6. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Vienna, John D.; Peeler, David; Fox, Kevin; Herman, Connie; Kruger, Albert A.

    2014-05-31

    This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.

  7. SRS SLUDGE BATCH QUALIFICATION AND PROCESSING; HISTORICAL PERSPECTIVE AND LESSONS LEARNED

    Energy Technology Data Exchange (ETDEWEB)

    Cercy, M.; Peeler, D.; Stone, M.

    2013-09-25

    This report provides a historical overview and lessons learned associated with the SRS sludge batch (SB) qualification and processing programs. The report covers the framework of the requirements for waste form acceptance, the DWPF Glass Product Control Program (GPCP), waste feed acceptance, examples of how the program complies with the specifications, an overview of the Startup Program, and a summary of continuous improvements and lessons learned. The report includes a bibliography of previous reports and briefings on the topic.

  8. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Vienna, John D.; Peeler, David; Fox, Kevin; Herman, Connie; Kruger, Albert A.

    2014-05-31

    This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.

  9. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jackson, D. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shah, H. B. [Savannah River Remediation, LLC., Aiken, SC (United States); Jain, V. [Savannah River Remediation, LLC., Aiken, SC (United States); Occhipinti, J. E. [Savannah River Remediation, LLC., Aiken, SC (United States); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  10. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  11. Application of multi-resolution analysis in sonar image denoising

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.

  12. High resolution, low cost solar cell contact development. Quarterly technical progress and schedule report, September 28, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Mardesich, N.

    1980-01-01

    The scope of the contract covers the development and evaluation of forming solar cell collector grid contacts by the MIDFILM process. This is a proprietary process developed by the Ferro Corporation which is a subcontractor for the program. The MIDFILM process attains line resolution characteristics of photoresist methods with processing related to screen printing. The surface to be processed is first coated with a thin layer of photoresist material. Upon exposure to ultraviolet light through a suitable mask, the resist in the non-pattern area cross-links and becomes hard. The unexposed pattern areas remain tacky. The conductor material is applied in the form of a dry mixture of metal and frit particles which adhere to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the fritted conductor powder. Effort was concentrated during this period on the establishment, optimization and identification of problem areas of the MIDFILM process. Progress is reported. (WHK)

  13. Array Automated Assembly, Phase 2. Quarterly report for the quarter ending June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, W.E.; Kimberly, W.; Mardesich, N.; Pepe, A.

    1978-08-01

    The Automated Array Assembly Task is a process development task. The overall goal is to advance solar cell and module process technology to meet the 1986 goal of a production capacity of 500 megawatts per year at a cost of less than $500 per kilowatt. Work performed during the quarter ending June 30, 1978 is covered. Discussions are included on diffusion masking dielectric evaluation, P/sup +/ back surface fields formed by firing screen printed aluminum back contacts, screen printable glass systems for use as isolation dielectrics, screen printed front contact metallization and stresses caused by thermal cycling silicon solar cells adhesively bonded to glass superstrates. SEM pictures of the fritted layer at the interface between the front metallization and silicon are presented. Results of an x-ray topographic examination of the silicon under and adjacent to printed and fired patterns of fritted conductor and dielectric pastes are given.

  14. A Simple Design to Realize Micro-column Separation by Conventional Analytical HPLC

    Institute of Scientific and Technical Information of China (English)

    GONG,Wenjun; ZHANG,Junxia; ZHANG,Yuping; ZHANG,Yijun; TIAN,Mengkui; WU,Dafu

    2009-01-01

    The conventional analytical HPLC was successfully developed for micro-column separation by using a simple eluate splitting system,self-preparation of packing column and on-capillary column detector in our laboratory.Porous inlet frit in fused silica capillary was rapidly prepared by sintering stainless steel powders under 500 meshes for about 20 s.The use of such frits or metal meshes in capillary to retain C18 particles of chromatographic packing was demonstrated to be stable and specially robust with continuous packing and long chromatographic runs.Furthermore,the chromatographic behavior was detailedly evaluated by changing the flow rate and the percentage of mobile phase using the prepared capillary column.Under the optimal experimental conditions,baseline separation of the model analytes including thiourea,benzene,toluene,ethylbenzene was obtained with a high column efficiency near 70000N (plates/m) by the developed capillary-HPLC.

  15. Development of technique for AR coating and nickel and copper metallization of solar cells. FPS Project: Product development

    Science.gov (United States)

    Taylor, W.

    1982-01-01

    Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.

  16. Influencia de la molienda en la energía superficial de fritas para esmaltes

    Directory of Open Access Journals (Sweden)

    Tamayo, A.

    2013-04-01

    Full Text Available In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO2 by 5% of B2O3 and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID. By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A2 if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m-2 and the less acidic constant (0.13 kJ.mol-1. Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results.Se ha estudiado el proceso de molienda en dos fritas de la industria cerámica. Las dos fritas, de composiciones similares pero en una se ha sustituido parte de la sílice por 5% de óxido de boro, fueron molidas por vía seca o húmeda y se caracterizaron mediante FT-IR, valoración Karl-Fischer e IGC-ID. Mediante valoración se han determinado los contenidos en moléculas de agua e hidroxilos. El mayor contenido en hidroxilos lo posee la frita sin boro seguida de la de boro ambas molidas en húmedo, poseyendo 28 y 26 grupos OH por cada 100 A2, respectivamente. Estos resultados coinciden con IGC-ID, sin embargo es la frita sin boro molida en seco la de mayor energía superficial (44 mJ.m-2 y constante ácida (0.13 kJ.mol-1. Aunque las dos fritas tienen

  17. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-07-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  18. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  19. Thermal Analysis for Monitoring Effects of Shock-Induced Physical, Mechanical, and Chemical Changes in Materials

    Science.gov (United States)

    2015-01-19

    electronics, furnace control, power supply and electric motor driven furnace hoist as the basic system. It has three magnetic valves and gas frits for...evaluation and operation of the DSC and DTA.  The system includes two furnaces including an accessory kit for furnace hoist , with manual pivoting...coefficient of friction , high corrosion, oxidation and wear resistance, and excellent magnetic properties. 7 However, the desirable properties of

  20. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

    OpenAIRE

    Claudia Schinke; José Carlos Germani

    2013-01-01

    Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100  μ m), air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters....

  1. Fracture Toughness Testing of a Ceramic Matrix Composite.

    Science.gov (United States)

    1987-12-01

    See Figure 18). The Mode I surfaces exhibited much more destruction to the fibers than was evident in the Mode II failures. 47 . " tanq C7- Figure 18...making the unitape begins with the mixing of a liquid slurry. The slurry is composed of a mixture of glass, binder and water . The specific...combination used was: 80 grams 1723 Corning Glass Frit 210 milliliters Distilled Water 90 milliliters R Hoplex Binder 52 Winding After the slurry has been well

  2. Censor ved de faglige prøver i erhvervsuddannelserne

    DEFF Research Database (Denmark)

    Guldberg, Stig; Jørgensen, Claus Bo

    Denne publikation, som indeholder en filmsekvens og et arbejdshæfte, kan vejlede censorer og skuemestre ved faglige prøver i erhvervsuddannelserne. Arbejdshæftet indeholder både gode råd og henvisninger til de relevante regler for prøver og bedømmelser. Filmsekvensen er på cirka ni minutter og me...... kopieres. Materialet kan frit downloades og installeres på den enkelte skoles intranet....

  3. Sinter recrystalization and properties evaluation of glass-ceramic from waste glass bottle and magnesite for extended application

    Directory of Open Access Journals (Sweden)

    As'mau Ibrahim Gebi

    2016-12-01

    Full Text Available In a bid to address environmental challenges associated with the management of waste Coca cola glass bottle, this study set out to develop glass ceramic materials using waste coca cola glass bottles and magnesite from Sakatsimta in Adamawa state. A reagent grade chrome (coloring agent were used to modify the composition of the coca cola glass bottle;  X-ray fluorescence(XRF, X-ray diffraction (XRD and Thermo gravimetric analysis (TGA were used to characterize raw materials, four batches GC-1= Coca cola glass frit +1%Cr2O3, GC-2=97% Coca cola glass frit+ 2% magnesite+1%Cr2O3, GC-3=95% Coca cola glass frit+ 4%magnesite+1%Cr2O3, GC-4=93%Coca cola glass frit+ 6%magnesite+ 1%Cr2O3 were formulated and prepared. Thermal Gradient Analysis (TGA results were used as a guide in selection of three temperatures (7000C, 7500C and 8000C used for the study, three particle sizes -106+75, -75+53, -53µm and 2 hr sintering time were also used, the sinter crystallization route of glass ceramic production was adopted. The samples were characterized by X-ray diffraction (XRD and Scanning Electron Microscope (SEM, the density, porosity, hardness and flexural strength of the resulting glass ceramics were also measured. The resulting glass ceramic materials composed mainly of wollastonite, diopside and anorthite phases depending on composition as indicated by XRD and SEM, the density of the samples increased with increasing sintering temperature and decreasing particle size. The porosity is minimal and it decreases with increasing sintering temperature and decreasing particle size. The obtained glass ceramic materials possess appreciable hardness and flexural strength with GC-3 and GC-4 having the best combination of both properties.

  4. Growth and physiological responses of creeping bentgrass (Agrostis stolonifera) to elevated carbon dioxide concentrations

    OpenAIRE

    Patrick Burgess; Bingru Huang

    2014-01-01

    The atmospheric carbon dioxide level has increased and is predicted to continue increasing, which may affect various aspects of plant growth. The objective of this study was to investigate the effects of doubling the carbon dioxide level on the growth and physiological activities of a widely utilized cool-season turfgrass species, creeping bentgrass (Agrostis stolonifera L. ‘Penncross’). ‘Penncross’ plants were established in fritted clay medium and maintained under well-irrigated and well-fe...

  5. Mobilens (u)muligheder

    DEFF Research Database (Denmark)

    Elf, Nikolaj Frydensbjerg

    Hvad sker der når en gymnasieklasses lærere og elever får udleveret en iPhone kvit og frit til brug i undervisningen? Mobilens (u)muligheder afrapporterer forsøgs- og udviklingsprojektet M-læring i gymnasiet, som foregik på IBC Business College. Rapporten er henvendt til lærere, ledere, forskere ...

  6. Mobilens (u)muligheder

    DEFF Research Database (Denmark)

    Elf, Nikolaj Frydensbjerg

    Hvad sker der når en gymnasieklasses lærere og elever får udleveret en iPhone kvit og frit til brug i undervisningen? Mobilens (u)muligheder afrapporterer forsøgs- og udviklingsprojektet M-læring i gymnasiet, som foregik på IBC Business College. Rapporten er henvendt til lærere, ledere, forskere ...

  7. Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR) Ceramifiable Composites

    OpenAIRE

    Rafał Anyszka; Dariusz M. Bieliński; Zbigniew Pędzich; Przemysław Rybiński; Mateusz Imiela; Mariusz Siciński; Magdalena Zarzecka-Napierała; Tomasz Gozdek; Paweł Rutkowski

    2016-01-01

    Ceramifiable styrene-butadiene (SBR)-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite) and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their t...

  8. Desarrollo y caracterización de un nuevo esmalte antideslizante de textura lisa y de fácil limpieza para baldosas de gres porcelánico

    OpenAIRE

    Barrachina Albert, Ester; Martín Núnez, J.A.; Fraga Chiva, Diego; Calvet, Iván; Carda Castelló, Juan B.

    2016-01-01

    Since conventional anti-slip enamels show some disadvantages, directly related to the surface roughness which prevents the adequate surface cleaning of tile, an anti-slip enamel exhibiting glass-ceramic nature has been designed, characterized by being stain-resistant and presenting a smooth texture and touch soft. To do this, new matte frits and raw materials with similar nature have been used, refractory enough to be suitable in enamel compositions for porcelain stoneware. The glass-ceramic ...

  9. Preparation and evaluation of packed capillary columns for the separation of nucleic acids by ion-pair reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Oberacher, H; Krajete, A; Parson, W; Huber, C G

    2000-09-29

    Oligonucleotides and double stranded DNA fragments were separated in 200 microm I.D. capillary columns packed with micropellicular, octadecylated, 2.1 microm poly(styrene-divinylbenzene) particles by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Both the length and the diameter of the connecting capillaries (150 x 0.020 mm I.D.) as well as the detection volume (3 nl) had to be kept to a minimum in order to maintain the high efficiency of this chromatographic separation system with peak widths at half height in the range of a few seconds. Three different types of frits, namely sintered silica particles, sintered octadecylsilica particles, and monolithic poly(styrene-divinylbenzene) (PS-DVB) frits were evaluated with respect to their influence on chromatographic performance. Best performance for the separation of oligonucleotides and long DNA fragments was observed with the PS-DVB frits, whereas the short DNA fragments were optimally resolved in columns terminated by octadecylsilica frits. The maximum loading capacity of 60 x 0.20 mm I.D. columns ranged from 20 fmol (7.7 ng) for a 587 base pair DNA fragment to 500 fmol (2.4 ng) for a 16-mer oligonucleotide. Lower mass- and concentration detection limits in the low femtomol and low nanomol per liter range, respectively, make capillary IP-RP-HPLC with UV absorbance detection highly attractive for the separation and characterization of minute amounts of synthetic oligonucleotides, DNA restriction fragments, and short tandem repeat sequences amplified by polymerase chain reaction.

  10. Børn og familieliv. Send Bertel Haarder ind i den familiepolitiske manege

    DEFF Research Database (Denmark)

    Grumløse, Sine Penthin

    2017-01-01

    I 30 år har Venstre lovprist forældres såkaldte ”frie valg”. Så snart der er blevet debatteret familiepolitiske emner, har svaret været, at en god hverdag er sikret af de frit vælgende forældre. Samtidig har man undladt at forholde sig til, om forældres frihed til at tilrettelægge hverdagen godt ...

  11. Interview

    DEFF Research Database (Denmark)

    Sarauw, Laura Louise; Hollesen, Laika

    2011-01-01

    Det såkaldte humboldtske universitetsideal står i frit fald. Så det burde ikke komme som nogen overraskelse, at det demokratiske fundament slår revner. Det kommer i hvert fald ikke bag på Laura Louise Sarauw fra Københavns Universitet, der i sin ph.d.-afhandling har sat stort spørgsmålstegn ved d...

  12. Packed multi-channels for parallel chromatographic separations in microchips.

    Science.gov (United States)

    Nagy, Andrea; Gaspar, Attila

    2013-08-23

    Here we report on a simple method to fabricate microfluidic chip incorporating multi-channel systems packed by conventional chromatographic particles without the use of frits. The retaining effectivities of different bottlenecks created in the channels were studied. For the parallel multi-channel chromatographic separations several channel patterns were designed. The obtained multipackings were applied for parallel separations of dyes. The implementation of several chromatographic separation units in microscopic size makes possible faster and high throughput separations.

  13. Super-Lattice Light Emitting Diodes (SLEDS) on GaAs

    Science.gov (United States)

    2016-03-31

    done using multiple techniques . Some of these techniques are thermocompression bonding , glass frit bonding , and adhesive bonding . It was decided to...method on predesigned GaAs RIIC that would drive the SLEDS. New developments showed that wafer bonding can be another succesful aproch to GSLEDS...infrared light emitting diodes (LEDs). Typically, the LED arrays are mated with CMOS read-in integrated circuit (RIIC) chips using flip-chip bonding . In

  14. Accident Fault Trees for Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  15. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  16. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  17. ART CCIM Phase II-A Off-Gas System Evaluation Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Jay Roach

    2009-01-01

    This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

  18. HLW system plan - revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-14

    The projected ability of the Tank Farm to support DWPF startup and continued operation has diminished somewhat since revision 1 of this Plan. The 13 month delay in DWPF startup, which actually helps the Tank Farm condition in the near term, was more than offset by the 9 month delay in ITP startup, the delay in the Evaporator startups and the reduction to Waste Removal funding. This Plan does, however, describe a viable operating strategy for the success of the HLW System and Mission, albeit with less contingency and operating flexibility than in the past. HLWM has focused resources from within the division on five near term programs: The three evaporator restarts, DWPF melter heatup and completion of the ITP outage. The 1H Evaporator was restarted 12/28/93 after a 9 month shutdown for an extensive Conduct of Operations upgrade. The 2F and 2H Evaporators are scheduled to restart 3/94 and 4/94, respectively. The RHLWE startup remains 11/17/97.

  19. Prevention for possible microbiologically influenced corrosion (MIC) in RHLWE flush water system

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, T.C.; Jenkins, C.F.

    1995-07-10

    This report is in response to the request to provide a recommendation for the prevention of possible microbiologically influenced corrosion (MIC) for the RHLWE (Replacement High-Level Waste Evaporator) flush water (FW) system. The recent occurrences of MIC at DWPF prompted HLWE to evaluate the possibility of MIC occurring in this 304L stainless steel RHLWE flush water system. Concern was heightened by the fact that the well water used and the other conditions at H-Tank Farm are similar to those at DWPF. However, only one known leak has occurred in the existing 304L evaporator flush water systems in either tank farm (in 1H system), and no MIC Corrosion has been confirmed in the tank farm area. The design of the RHLWE flush water system (completed long before the occurrence of MIC at DWPF) was modeled after the existing evaporator flush water systems and did not specifically include MIC prevention considerations. Therefore, MIC prevention was not specifically considered during the design phase of this flush water system. The system is presently being installed. After an extensive evaluation, a task team concluded that the best biocide to prevent the occurrence of MIC would be NaOH at fairly low concentration. Sodium hydroxide (NaOH) is optimal in this application, because of its effectiveness, low cost, and familiarity to the Operations personnel (see Appendix A). However, it is the opinion of the task group that application should be withheld until MIC corrosion is demonstrated in the system.

  20. EM-21 HIGHER WASTE LOADING GLASSES FOR ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES - 10194

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F.; Peeler, D.; Edwards, T.

    2009-11-18

    Supplemental validation data has been generated that will be used to determine the applicability of the current Defense Waste Processing Facility (DWPF) liquidus temperature (T{sub L}) model to expanded DWPF glass regions of interest based on higher waste loadings. For those study glasses which had very close compositional overlap with the model development and/or model validation ranges (except TiO{sub 2} and MgO concentrations), there was very little difference in the predicted and measured TL values, even though the TiO{sub 2} contents were above the 2 wt% upper limit. The results indicate that the current T{sub L} model is applicable in these compositional regions. As the compositional overlap between the model validation ranges diverged from the target glass compositions, the T{sub L} data suggest that the model under-predicted the measured values. These discrepancies imply that there are individual oxides or their combinations that were outside of the model development and/or validation range over which the model was previously assessed. These oxides include B{sub 2}O{sub 3}, SiO{sub 2}, MnO, TiO{sub 2} and/or their combinations. More data is required to fill in these anticipated DWPF compositional regions so that the model coefficients could be refit to account for these differences.

  1. Evaluation of quartz melt rate furnace with the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-03

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the Nitric-Glycolic (NG) flowsheet. The work is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 20141 and the Slurry-fed Melt Rate Furnace (SMRF) testing conducted in 20162 that supported Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR).3 The Quartz Melt Rate Furnace (QMRF) was evaluated as a bench-scale scoping tool to potentially be used in lieu of or simply prior to the use of the larger-scale SMRF or CEF. The QMRF platform has been used previously to evaluate melt rate behavior and offgas compositions of DWPF glasses prepared from the Nitric-Formic (NF) flowsheet but not for the NG flowsheet and not with continuous feeding.4 The overall objective of the 2016-2017 testing was to evaluate the efficacy of the QMRF as a lab-scale platform for steady state, continuously fed melter testing with the NG flowsheet as an alternative to more expensive and complex testing with the SMRF or CEF platforms.

  2. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    SK Sundaram; JM Perez, Jr.

    2000-09-06

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement.

  3. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1994 and FY-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Savannah River Ecology Laboratory initiated ecological studies related to the construction of the DWPF on the SRS in FY-1979. Two areas have been used for biological surveys and long-term monitoring: the DWPF construction site (S-Area and Z-Area), and two control sites (Rainbow Bay and Tinker Creek). The Rainbow Bay study area and S-Area are located within 5 km of each other on the SRS, and both once contained Carolina bays which were very similar ecologically. One goal of the SREL`s faunal studies is to compare the natural variation in amphibian populations at the Rainbow Bay control site to the variation observed at the human-altered site (Sun Bay, formerly on the DWPF construction site). Pre-construction biological surveys included data on vegetation, birds, mammals, amphibians, reptiles, fish and several invertebrate groups. No species on the Federal Endangered or Threatened lists were found on either site, but several plants and animals of threatened or special-concern status in South Carolina were present and the gopher frog (Rana areolata) currently is being considered for federal listing. Continuing studies are directed towards assessing construction impacts on the biota and towares modeling the effects of alteration of wetland hydroperiod on the biota. Primary emphasis is being paced on evaluation the effectiveness of mitigation measures undertaken by DOE.

  4. Production of muscovite-feldspathic glass composite: scanning electron microscopy and X-ray diffraction analysis; Producao de composito moscovita-vidro feldspatico: microscopia eletronica de varredura e analise de difracao de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.P.F.; Ogasawara, T.; Santos, S.F. [Universidade Federal do Rio de Janeiro (PEMM/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia. Programa de Engenharia Metalurgica e de Materiais; Franca, S.C.A.; Barbato, C.N [Centro de Tecnologia Mineral(CETEM/MCT), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The objective of this work was to find the sintering conditions for the feldspathic glass + muscovite mixture to produce a dense composite block for manufacturing dental prosthesis by using CAD-CAM. Each 20g of the glass-frit had : 15.55g of Armil-feldspar; 0.53g of Al{sub 2}O{sub 3}; 1.56g of Na{sub 2}CO{sub 3}; 0.5g of borax; 1.74g of K{sub 2}CO{sub 3}; 0.13g of CeO{sub 2}. Frit's powder finer than 350 Tyler mesh was mixed with 0 wt%, 10 wt%, 20 wt% and 100 wt% of muscovite pressed cylinders (5600 pounds force) 16mm in diameter and sintered under vacuum Vacumat (VITA) furnace at 850 deg C, 900 deg C, 950 deg C, 1000 deg C, 1050 deg C, 1100 deg C and 1150 deg C. X-ray diffraction analysis and scanning electron microscopy were carried out. The necessary temperature for high densification depended on the composition of the mixture: 850 deg C (for pure frit); 1050 deg C (for 10 wt% mica) and 1150 deg C (for 20 wt% mica); pure mica degraded during sintering. (author)

  5. Fictitious Reference Iterative Tuning-Based Two-Degrees-of-Freedom Method for Permanent Magnet Synchronous Motor Speed Control Using FPGA for a High-Frequency SiC MOSFET InverterMOSFET Inverter

    Directory of Open Access Journals (Sweden)

    Charles Ronald Harahap

    2016-11-01

    Full Text Available This paper proposes proportional-integral/proportional gain controller parameter tuning in a two-degrees-of-freedom (2DOF control system using the fictitious reference iterative tuning (FRIT method for permanent magnet synchronous motor (PMSM speed control using a field-programmable gate array (FPGA for a high-frequency SiC MOSFET (metal oxide semiconductor field-effect transistor inverter. The PI-P (proportional-integral/proportional controller parameters can be tuned using the FRIT method from one-shot experimental data without using a mathematical model of the plant. Particle swarm optimization is used for FRIT optimization. An inverter that uses a SiC MOSFET is presented to achieve high-frequency operation at up to100 kHz using a switching pulse-width modulation (PWM technique. As a result, a high-responsivity and high-stability PMSM (permanent magnet synchronous motor control system is achieved, where the speed response follows the ideal response characteristic for both the step response and the disturbance response. High-responsivity and optimal disturbance rejection can be achieved using the 2DOF control system. FPGA-based digital hardware control is used to maximize the switching frequency of the SiC MOSFET inverter. Finally, an experimental system is set up, and experimental results are presented to prove the viability of the proposed method.

  6. The inlfuence of potassium to mineral fertilizers on the maize health

    Institute of Scientific and Technical Information of China (English)

    Jan Bocianowski; Piotr Szulc; Anna Tratwal; Kamila Nowosad; Dariusz Piesik

    2016-01-01

    Field experiments (2009–2011) were conducted at the Department of Agronomy at Poznań University of Life Sciences on the ifelds of the Research Institute in Swadzim. We evaluated the health of maize plants of two types, depending on the variations in mineral fertilization. The conducted research recorded the occurrence of pests such as oscinela frit (Oscinela fritL.) and the European corn borer (Pyrausta nubilalis Hbn.). Diseases recorded during the research included two patho-genes:Fusarium (Fusarium ssp.) and corn smut (Ustilago maydis Corda). It was shown that the meteorological conditions during the maize vegetation had a signiifcant inlfuence on the occurrence of pests. Adding potassium to mineral fertilizers increased the maize resistance toFusarium. Cultivation of “stay-green” cultivar shal be considered as an element of in-tegrated maize protection. The occurrence of oscinela frit was correlated with the occurrence ofFusarium as wel as the occurrence of the European corn borer for both examined cultivars.

  7. VITRIFICATION OF HIGH LEVEL WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Peeler, D.

    2009-06-17

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent high level waste Sludge Batch 5 (SB5) as vitrified at the Savannah River Site Defense Waste Processing Facility. These data were used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of candidate frits. The study glasses were fabricated using depleted uranium and their chemical compositions, crystalline contents and chemical durabilities were characterized. Trevorite was the only crystalline phase that was identified in a few of the study glasses after slow cooling, and is not of concern as spinels have been shown to have little impact on the durability of high level waste glasses. Chemical durability was quantified using the Product Consistency Test (PCT). All of the glasses had very acceptable durability performance. The results of this study indicate that a frit composition can be identified that will provide a processable and durable glass when combined with SB5.

  8. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  9. High-performance liquid chromatography on glass chips using precisely defined porous polymer monoliths as particle retaining elements.

    Science.gov (United States)

    Thurmann, Sebastian; Mauritz, Laura; Heck, Christian; Belder, Detlev

    2014-11-28

    A stable and permanent integration of miniature packed bed separation columns into microfluidic systems is a major issue in nano liquid chromatography. Various approaches like differently shaped retaining elements or the use of key stone effect have been investigated. We show a flexible integration of miniature packed bed separation columns into microfluidic chips utilising common HPLC material achieved by laser-assisted generation of narrow, photopolymerised frits. The generated retaining elements serve as an in- and outlet frits for the columns. An optimised pre-polymeric solution, consisting of butyl acrylates and a porogen, allows a precise fabrication of frit-type structures with lengths of less than 100 m and the capability to withstand common slurry packing pressures of more than 250 bar. The separation of seven polycyclic aromatic hydrocarbons by pressure-driven, reversed-phase chromatography proves the high quality of the created chromatographic column inside a glass chip. Plate heights down to 2.9 were achieved and extremely fast separations with sub-second peak widths were performed in isocratic and gradient elution modes on very short columns (≤ 25 mm). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Complete Genome Sequences of Field Isolates of Mycobacterium bovis and Mycobacterium caprae.

    Science.gov (United States)

    de la Fuente, José; Díez-Delgado, Iratxe; Contreras, Marinela; Vicente, Joaquín; Cabezas-Cruz, Alejandro; Manrique, Marina; Tobes, Raquel; López, Vladimir; Romero, Beatriz; Domínguez, Lucas; Garrido, Joseba M; Juste, Ramón; Gortazar, Christian

    2015-06-25

    Here we report the complete genome sequences of field isolates of Mycobacterium bovis and the related mycobacterial species, Mycobacterium caprae. The genomes of three M. bovis (MB1, MB3, MB4) and one M. caprae (MB2) field isolates with different virulence, prevalence, and host distribution phenotypes were sequenced.

  11. First test of a CMS DT chamber equipped with full electronics in a muon beam

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    A CMS DT chamber of MB3 type, equipped with the final version of a minicrate (containing all on-chamber trigger and readout electronics), was tested in a muon beam for the first time. The beam was bunched in 25 ns spills, allowing an LHC-like response of the chamber trigger. This test confirmed the excellent performance of the trigger design.

  12. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  13. GLYCOLIC - FORMIC ACID FLOWSHEET DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Pickenheim, B.; Stone, M.; Newell, J.

    2010-11-08

    Flowsheet testing was performed to further develop the nitric/glycolic/formic acid flowsheet as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All other processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Eight runs were performed in total, including the baseline run. The baseline nitric/formic flowsheet run was extremely difficult to process under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. In the nitric/glycolic/formic flowsheet runs, mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. It is recommended that DWPF continue to support development of the nitric/glycolic/formic flowsheet. Although experience is limited at this time, this flowsheet meets or outperforms the current flowsheet in many regards, including off-gas generation, mercury removal, product rheology and general ease of processing. Additional flowsheet testing will allow for a more thorough understanding of the chemistry and effectiveness of the flowsheet over a range of sludge compositions and formic/glycolic ratios. This testing will also show whether the REDOX and metal solubility concerns with this change in the flowsheet can be addressed by just adjusting the volumes of

  14. IMPROVED ANTIFOAM AGENT STUDY END OF YEAR REPORT, EM PROJECT 3.2.3

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Koopman, D.; Newell, J.

    2011-09-30

    Antifoam 747 is added to minimize foam produced by process gases and water vapor during chemical processing of sludge in the Defense Waste Processing Facility (DWPF). This allows DWPF to maximize acid addition and evaporation rates to minimize the cycle time in the Chemical Processing Cell (CPC). Improvements in DWPF melt rate due to the addition of bubblers in the melter have resulted in the need for further reductions in cycle time in the CPC. This can only be accomplished with an effective antifoam agent. DWPF production was suspended on March 22, 2011 as the result of a Flammable Gas New Information/(NI) Potential Inadequacy in the Safety Analysis (PISA). The issue was that the DWPF melter offgas flammability strategy did not take into account the H and C in the antifoam, potentially flammable components, in the melter feed. It was also determined the DWPF was using much more antifoam than anticipated due to a combination of longer processing in the CPC due to high Hg, longer processing due to Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) additions, and adding more antifoam than recommended. The resolution to the PISA involved and assessment of the impact of the antifoam on melter flammability and the implementation of a strategy to control additions within acceptable levels. This led to the need to minimize the use of Antifoam 747 in processing beginning in May 2011. DWPF has had limited success in using Antifoam 747 in caustic processing. Since starting up the ARP facility, the ARP product (similar chemically to caustic sludge) is added to the Sludge Receipt and Adjustment Tank (SRAT) at boiling and evaporated to maintain a constant SRAT volume. Although there is very little offgas generated during caustic boiling, there is a large volume of water vapor produced which can lead to foaming. High additions and more frequent use of antifoam are used to mitigate the foaming during caustic boiling. The result of these three

  15. Qualification of the First ICS-3000 ION Chromatograph for use at the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T; Mahannah, R.

    2011-07-05

    The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-13 has been qualified for use. The qualification was a head to head comparison of the ICS-3000 with the currently used DX-500 IC system. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. Based upon the successful qualification of the ICS-3000 in M-13, it is recommended that this task proceed in developing the data to qualify, by a head to head comparison of the two ICS-3000 instruments, a second ICS-3000 to be installed in M-14. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, organic acid constituents, etc. The DWPF Laboratory (Lab) has been using Dionex DX-500 ion chromatography (IC) systems since 1998. The vendor informed DWPF in 2006 that the instruments would no longer be supported by service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance

  16. SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D; Michael Stone, M; Bradley Pickenheim, B; David Best, D; David Koopman, D

    2008-10-03

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0007, Rev. 1 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing plan to prepare SB5 and the estimated SB4 heel mass. Nine DWPF process simulations were completed in 4-L laboratory-scale equipment using both a batch simulant (Tank 51 simulant after washing is complete) and a blend simulant (Tank 40 simulant after Tank 51 transfer is complete). Each simulant had a set of four SRAT and SME simulations at varying acid stoichiometry levels (115%, 130%, 145% and 160%). One additional run was made using blend simulant at 130% acid that included additions of the Actinide Removal Process (ARP) waste prior to acid addition and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) waste following SRAT dewatering. There are several parameters that are noteworthy concerning SB5 sludge: (1) This is the first batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution. (2) The sludge is high in mercury

  17. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  18. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg

    2009-04-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter

  19. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  20. GLYCOLIC-FORMIC ACID FLOWSHEET FINAL REPORT FOR DOWNSELECTION DECISION

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Pickenheim, B.; Stone, M.; Newell, J.; Best, D.

    2011-03-10

    Flowsheet testing was performed to develop the nitric-glycolic-formic acid flowsheet (referred to as the glycolic-formic flowsheet throughout the rest of the report) as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Forty-six runs were performed in total, including the baseline run and the melter feed preparation runs. Significant results are summarized. The baseline nitric/formic flowsheet run, using the SB6 simulant produced by Harrell was extremely difficult to process successfully under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF SRAT limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. Mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. The glycolic-formic flowsheet has a very wide processing window. Testing was completed from 100% to 200% of acid stoichiometry and using a glycolic-formic mixture from 40% to 100% glycolic acid. The testing met all processing requirements throughout these processing windows. This should allow processing at an acid stoichiometry of 100% and a glycolic-formic mixture of 80% glycolic acid with minimal hydrogen generation. It should also allow processing endpoints in the SRAT and SME at significantly higher

  1. Effect of ceramic industrial particulate emission control on key components of ambient PM10.

    Science.gov (United States)

    Minguillón, María Cruz; Monfort, Eliseo; Querol, Xavier; Alastuey, Andrés; Celades, Irina; Miró, José Vicente

    2009-06-01

    The relationship between specific particulate emission control and ambient levels of some PM(10) components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits are produced. The PM(10) emissions from the ceramic processes were calculated over the period 2000-2006, taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/EC, leading to a marked decrease in PM(10) emissions. By contrast, emissions from tile manufacture remained relatively constant because of the few changes in the implementation of corrective measures. On the other hand, ambient PM(10) levels and composition measurements were carried out from 2002 to 2006. A high correlation between PM(10) emissions from frit manufacture and ambient levels of Zn, As, Pb and Cs (R(2) from 0.61 to 0.98) was observed. On the basis of these results, the potential impact of the implementation of corrective measures to reduce emissions from tile manufacture was quantified, resulting in a possible decrease of 3-5 microg/m(3) and 2 microg/m(3) in ambient mineral PM(10) (on an annual basis) in urban and suburban areas, respectively. This relatively simple methodology allows us to estimate the direct effect of a reduction in primary particulate emissions on ambient levels of key particulate components, and to make a preliminary quantification of the possibilities of air quality improvement by means of further emission reduction. Therefore, it is a useful tool for developing future air quality plans in the study area and in other industrialised areas.

  2. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  3. Results For The Third Quarter 2013 Tank 50 WAC Slurry Sample

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J.

    2013-11-26

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  4. Results For The Fourth Quarter 2014 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2014 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  5. Determination of the impact of glycolate on ARP and MCU operations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, A. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-17

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal, phase separation, or coalescer performance at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU).

  6. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Pickenheim, B.; Hay, M.

    2011-06-20

    The Defense Waste Processing Facility (DWPF) is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and

  7. HLW Tank Space Management, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.S.; Abell, G.; Garrett, R.; d' Entremont, P.; Fowler, J.R.; Mahoney, M.; Poe, L.

    1999-09-20

    The HLW Tank Space Management Team (SM Team) was chartered to select and recommend an HLW Tank Space Management Strategy (Strategy) for the HLW Management Division of Westinghouse Savannah River Co. (WSRC) until an alternative salt disposition process is operational. Because the alternative salt disposition process will not be available to remove soluble radionuclides in HLW until 2009, the selected Strategy must assure that it safely receives and stores HLW at least until 2009 while continuing to supply sludge slurry to the DWPF vitrification process.

  8. Results for the second quarter 2014 tank 50 WAC slurry sample chemical and radionuclide contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-09-04

    This report details the chemical and radionuclide contaminant results for the characterization of the 2014 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  9. Results for the Third Quarter 2014 Tank 50 WAC slurry sample: Chemical and radionuclide contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-08

    This report details the chemical and radionuclide contaminant results for the characterization of the 2014 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time.1 Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  10. Independent Technical Review of In-Tank Precipitation (ITP) at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    An Independent Technical Review of In-Tank Precipitation (ITP) and Extended Sludge Processing (ESP) at the Savannah River Site (SRS) was carried out in March, 1993. The review focused on ITP/ESP equipment and chemical processes, integration of ITP/ESP within the High Level Waste (HLW) and Defense Waste Processing Facility (DWPF) systems, and management and regulatory concerns. Following the ITR executive summary, this report includes: Chapter I--summary assessment; Chapter II--recommendations; and Chapter III--technical evaluations.

  11. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W.E.

    2000-01-06

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  12. Remote operation of Defense Waste Processing Facility sampling stations

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, D E; Gunnels, D L

    1985-01-01

    A full-scale liquid sampling station mockup for the Defense Waste Processing Facility (DWPF) at the Savannah River Laboratory (SRL) demonstrated successful remote operation and replacement of all valves and instruments using master/slave manipulators in a clean atmosphere before similar stations are placed in a radioactive cell. Testing of the sample stations demonstrated the limitations of the manipulators which resulted in minor design changes that were easily accomplished in a clean cell. These same changes would have been difficult and very costly to make in a radioactive environment. 6 figs.

  13. An Integrated Thermal Compensation System for MEMS Inertial Sensors

    OpenAIRE

    Sheng-Ren Chiu; Li-Tao Teng; Jen-Wei Chao; Chung-Yang Sue; Chih-Hsiou Lin; Hong-Ren Chen; Yan-Kuin Su

    2014-01-01

    An active thermal compensation system for a low temperature-bias-drift (TBD) MEMS-based gyroscope is proposed in this study. First, a micro-gyroscope is fabricated by a high-aspect-ratio silicon-on-glass (SOG) process and vacuum packaged by glass frit bonding. Moreover, a drive/readout ASIC, implemented by the 0.25 µm 1P5M standard CMOS process, is designed and integrated with the gyroscope by directly wire bonding. Then, since the temperature effect is one of the critical issues in the high ...

  14. DOT/FAA Human Factors Workshop on Aviation. Transcript. Volume II.

    Science.gov (United States)

    1980-11-25

    tboe me o :k phese. 0-696614.6 0550 11 ,41. 11i evosts l~ w-osVo @0..1rJ I.I Clff * tIG5,05 5..* 0. 0.6 r- I 2S. resec Sa F*L16554 5 leo ..N 5ts~oleOS...Industry and manufac. transport aircraft. Capt Frits Brouwer , In calculating the probability of an turers support the view that human chairman of the...procedures Brouwer rests hi% argument on an *Influence of economic events demonstrates performance pro- assumed superiority of a three-man upon the

  15. Innovative Approaches To Improving The Bond Between Concrete and Steel Surfaces

    Science.gov (United States)

    2006-11-01

    silicates developed in Portland cement (di- and tri-calcium silicates, calcium aluminates ) and firing the mixture onto the surface of the...developed for undercoating over mild steel. Critical components, especially cobalt and nickel, in the frit assure that the iron oxide on the...0.07 nil Manganese dioxide MnO2 1.39 1 - 2 Ni oxide NiO 1.04 1 - 2 Cobalt Oxide Co3O4 0.93 .5 – 1.5 Phosphorus

  16. Reliability of industrial packaging for microsystems

    DEFF Research Database (Denmark)

    Reus, Roger De; Christensen, Carsten; Weichel, Steen

    1998-01-01

    . Protective coatings of amorphous silicon carbide and tantalum oxide are suitable candidates with etch rates below 0.1 Angstrom/h in aqueous solutions with pH II at temperatures up to 140 degrees C. Si-Ta-N films exhibit etch rates around 1 Angstrom/h. Parylene C coatings did not etch but peeled off after...... electro-depositable photo-resist. Hermetically sealed feedthroughs were obtained using glass frits, which withstand pressures of 4000 bar. (C) 1998 Elsevier Science Ltd. All rights reserved....

  17. Vejen til Vesten

    DEFF Research Database (Denmark)

    Ladegaard, Jakob

    2012-01-01

    Den kommunistiske Østbloks sammenbrud blev af mange hyldet som indledningen på en ny epoke domineret af liberale demokratier og et frit globalt marked. En række vestlige film peger dog på, at overgangen også har skabt nye magtrelationer og ofre, herunder en del af de østeuropæiske kvinder, der...... søger til Vesten. Med udgangspunkt i Lukas Moodyssons Lilja 4-ever (2002) undersøger artiklen de vigtigste tendenser i disse films skildring af migration og nye grænser i det postkommunistiske Europa....

  18. Monitoring of Deformations Induced by Crystal Growth of Salts in Porous Systems Using Microscopic Speckle Pattern Interferometry

    Science.gov (United States)

    Gülker, G.; Jarad, A. El; Hinsch, K. D.; Juling, H.; Linnow, K.; Steiger, M.; Brüggerhoff, St.; Kirchner, D.

    Electronic speckle pattern interferometry (ESPI) has been used to monitor microdeformations and surface microstructure changes produced by crystallization or hydration pressure of magnesium sulfate in a porous material. Samples of fritted glass were chosen as a standard porous substrate because of its mean grain size, its porosity distribution, and its negligible humidity expansion. The glass samples, soaked with salt solution, were exposed to changes in relative humidity of the surrounding air. The full-field ESPI measurements were combined with cryogenic SEM visualizations. Results from these investigations were partly not expected theoretically and give new insight in the underlying salt phase transition processes.

  19. Lederudvikling med mål og retning

    DEFF Research Database (Denmark)

    Brix, Jacob

    2010-01-01

    canadisk organisations og ledelsesforsker, er kendt for at sige: "you can't create a leader in a classroom!" - som frit tolket betyder: man bliver ikke leder på skolebænken. Mintzberg mener at en rigtig leder først skabes, når vedkommende har praksiserfaring og derefter søger videreuddannelse. For én ting...... det vigtigt at vi tager udviklingen af vores ledere seriøst, og måske endda gør selve temaet lederudvikling til en fast del af virksomhedens HR strategi, simpelthen for at ruste ledelsen og dermed virksomheden bedre til fremtiden. Udgivelsesdato: December...

  20. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    Energy Technology Data Exchange (ETDEWEB)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  1. Microwave energy for post-calcination treatment of high-level nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  2. Flow Instability Tests for a Particle Bed Reactor Nuclear Thermal Rocket Fuel Element

    Science.gov (United States)

    1993-05-01

    Doney for constant entertainment just describing their lifestyles. -My out of town friends for always being there for support. -The AN’S basketball ...team for allowing a pathetic basketball player to be their coach. -The MIT rugby team for allowing me to play, even when I did not have enough timc- to...cylindrical channel. The frits are tapered at the outlet to lower the exit Mach number to -0.2 in order to reduce vibrations in the core. Boron control rods

  3. Porcelain enamel passive thermal control coatings

    Science.gov (United States)

    Leggett, H.; King, H. M.

    1978-01-01

    This paper discusses the development and evaluation of a highly adherent, low solar absorptance, porcelain enamel thermal control coating applied to 6061 and 1100 aluminum for space vehicle use. The coating consists of a low index of refraction, transparent host frit and a high volume fraction of titania as rutile, crystallized in-situ, as the scattering medium. Solar absorptance is 0.21 at a coating thickness of 0.013 cm. Hemispherical emittance is 0.88. The change in solar absorptance is 0.03, as measured in-situ, after an exposure of 1000 equivalent sun hours in vacuum.

  4. Preparation and Evaluation of Immobilized SE-30 Coated Stationary Phases for CEC

    Institute of Scientific and Technical Information of China (English)

    NingBaoming; ZhengJie; ZhangGuodong; XuBingjiu

    2001-01-01

    A new type of stationary phase for capillary electrochromatography (CEC), immobilized SE-30 coated silica gel, was developed and the columns packed with this new phase were prepared and evaluated. It was found that this phase could be used to make frits for the micro-columns as well as to pack the bulk of the column. By sticking together the particles in the whole of the column bed, this new packing resulted in columns with stable performance, even under rigorous conditions: more than 380 consecutive separations were effected with these columns with the mobile phase pH of 11.7.

  5. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    Science.gov (United States)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  6. Soft X-Ray Projection Lithography. Organization of the Photonics Science Topical Meetings Held in Monterey, California on May 10-12, 1993

    Science.gov (United States)

    1993-05-10

    State Laser Driver for Projection X-ray Lithography Lloyd A. Hackel C. Brent Dane, Mark R. Hermann, Luis E. Zapata Lawrence Livermore National...WBI Wong, Alfred K - MA7 Wood, Obert R, 11 - MA2, TuA3, TuAS, WA8 Yamashita, voshio - TuA4 Zapata , Luis E. - WA6 Zernike, Frits, Jr - MA2, TuB...ApprovedPAGE 0MB No. 0704-0188 Public epcittng q rden lot 0is c¢ eCtion of nnformattor is estimaled to aiprage I hour per response. in lui ’.-g the lime for

  7. History of Thermal Barrier Coatings for Gas Turbine Engines: Emphasizing NASA's Role from 1942 to 1990

    Science.gov (United States)

    Miller, Robert A.

    2009-01-01

    NASA has played a central role in the development of thermal barrier coatings (TBCs) for gas turbine applications. This report discusses the history of TBCs emphasizing the role NASA has played beginning with (1) frit coatings in the 1940s and 1950s; (2) thermally sprayed coatings for rocket application in the 1960s and early 1970s; (3) the beginnings of the modern era of turbine section coatings in the mid 1970s; and (4) failure mechanism and life prediction studies in the 1980s and 1990s. More recent efforts are also briefly discussed.

  8. Ion exchange properties of Wyodak premium coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Vorres, K.S.

    1993-08-23

    Low rank coals (lignite and subbituminous) contain exchangeable cations. A sample of {minus}20+200 mesh Argonne Premium Wyodak coal was washed with nitric acid in a burette fitted with a coarse glass frit at the base of the graduations to remove the exchangeable cations from the system. The eluent was passed to a flow-through pH electrode and a titration curve was obtained on a computer file. A series of electrodes (pH, calcium, sodium and potassium) were used in separate experiments to follow the elution from the coal. Some implications for coal structure are also indicated.

  9. Thermal decomposition of silver acetate in silver paste for solar cell metallization: An effective route to reduce contact resistance

    Science.gov (United States)

    Jun Kim, Suk; Yun Kim, Se; Man Park, Jin; Hwan Park, Keum; Ho Lee, Jun; Mock Lee, Sang; Taek Han, In; Hyang Kim, Do; Ram Lim, Ka; Tae Kim, Won; Cheol Park, Ju; Soo Jee, Sang; Lee, Eun-Sung

    2013-08-01

    A screen printed silver/metallic glass (MG) paste formulated with Ag acetate resulted in a specific contact resistance in the range of 0.6-0.7 mΩ.cm2 on both the n- and p-type Si emitters of interdigitated back-contact solar cells. Silver nanocrystallites resulting from thermally decomposed Ag acetate prevented the Al MG frits from directly interacting with the Si emitter, thus reducing the amount of Al diffused into the Si emitters, and subsequently, the contact resistance. A photovoltaic conversion efficiency of 20.3% was achieved using this technique.

  10. Ultra lightweight mirror performance at 8 degrees kelvin

    Science.gov (United States)

    Crowe, D. A.; Melugin, R. K.; Miller, J. H.

    1985-01-01

    Earlier work funded by DARPA, evaluating the optical stability of a 0.5-m ultra-lightweight, frit-bonded, fused silica mirror, is extended from the previous 100 deg K specification down to 8 deg K. The thermal stability is excellent and comparable to that for conventional fusion and solid mirrors. The total mirror change of 0.10 lambda rms (lambda = 0.6328 microns) meets the needs of most IR systems. Thermal elastic quilting is excellent (0.008 lambda). Ames Research Center and Kodak data evaluations, done independently, are in very good agreement.

  11. Effective scintillation materials based on solid solutions ZnS1–xTex and perspectives of their application

    Directory of Open Access Journals (Sweden)

    Katrunov K. A.

    2011-04-01

    Full Text Available The optimal technological regime of formation ZnS1–xTex solid solution at spacing 0,0≤х≤0,1 has been determined, and has been shown that fritting in hydrogen atmosphere results in more rapid reaction in comparison to argon due to chemical-thermal etching the ZnO layer out. Further annealing in the inert Ar atmosphere leads to the increase of the light output, to the intensive emission band formation and causes afterglow level reduction and the crystalline lattice rearrangement.

  12. Mechanisms of stereomutation and thermolysis of spiro-1,2-oxaphosphetanes: new insights into the second step of the Wittig reaction.

    Science.gov (United States)

    García López, Jesús; Morán Ramallal, Antonio; González, Javier; Roces, Laura; García-Granda, Santiago; Iglesias, María José; Oña-Burgos, Pascual; López Ortiz, Fernando

    2012-12-05

    The experimentally observed stereomutation of spiro-1,2-oxaphosphetanes is shown by DFT calculations to proceed through successive M(B2) or M(B4) and M(B3) mechanisms involving two, four, and three Berry pseudorotations at phosphorus, respectively. Oxaphosphetane decomposition takes place in a single step via a polar transition state. The calculated activation parameters for this reaction are in good agreement with those determined experimentally.

  13. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry

  14. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the defense waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, Matthew S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Luther, Michelle C. [Auburn Univ., AL (United States); Brandenburg, Clayton H. [Univ.of South Carolina, Columbia, SC (United States)

    2016-09-27

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  15. The determination of the Fe sup 2+ /Fe sup 3+ ratio in simulated nuclear waste glass by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.

    1990-10-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass in the Defense Waste Processing Facility (DWPF). In this facility, control of the oxidation/reduction (redox) equilibrium in the glass melter is critical for processing of the nuclear waste. Therefore, the development of a rapid and reliable analytical method for the determination of the redox equilibrium is of considerable interest. Redox has been determined by measuring the ratio of ferrous to ferric ions in the glass melt. Two analytical techniques for glass redox measurement have been investigated for the DWPF: Mossbauer Spectroscopy which may be subject to interferences from the radiation in actual waste, and a rapid and simple chemical dissolution/spectrophotometric technique. Comparisons of these techniques have been made at several laboratories including Clemson University. In the study attached, the determination of the redox ratio by Ion Chromatography (IC) was investigated as a potential new technology. Clemson University performed IC analyses on the same glasses as previously examined by wet chemical and Mossbauer techniques. Results from all three techniques were highly correlated and IC was reported to be a promising new technology for redox measurement. 19 refs., 19 figs., 5 tabs.

  16. Analysis Of Condensate Samples In Support Of The Antifoam Degradation Study

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-12

    The degradation of Antifoam 747 to form flammable decomposition products has resulted in declaration of a Potential Inadequacy in the Safety Analysis (PISA) for the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) testing with simulants showed that hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and 1-propanal are formed in the offgas from the decomposition of the antifoam. A total of ten DWPF condensate samples from Batch 735 and 736 were analyzed by SRNL for three degradation products and additional analytes. All of the samples were analyzed to determine the concentrations of HMDSO, TMS, and propanal. The results of the organic analysis found concentrations for propanal and HMDSO near or below the detection limits for the analysis. The TMS concentrations ranged from below detection to 11 mg/L. The samples from Batch 736 were also analyzed for formate and oxalate anions, total organic carbon, and aluminum, iron, manganese, and silicon. Most of the samples contained low levels of formate and therefore low levels of organic carbon. These two values for each sample show reasonable agreement in most cases. Low levels of all the metals (Al, Fe, Mn, and Si) were present in most of the samples.

  17. ANALYSIS OF CONDENSATE SAMPLES IN SUPPORT OF THE ANTIFOAM DEGRADATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-29

    The degradation of Antifoam 747 to form flammable decomposition products has resulted in declaration of a Potential Inadequacy in the Safety Analysis (PISA) for the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) testing with simulants showed that hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and 1-propanal are formed in the offgas from the decomposition of the antifoam. A total of ten DWPF condensate samples from Batch 735 and 736 were analyzed by SRNL for three degradation products and additional analytes. All of the samples were analyzed to determine the concentrations of HMDSO, TMS, and propanal. The results of the organic analysis found concentrations for propanal and HMDSO near or below the detection limits for the analysis. The TMS concentrations ranged from below detection to 11 mg/L. The samples from Batch 736 were also analyzed for formate and oxalate anions, total organic carbon, and aluminum, iron, manganese, and silicon. Most of the samples contained low levels of formate and therefore low levels of organic carbon. These two values for each sample show reasonable agreement in most cases. Low levels of all the metals (Al, Fe, Mn, and Si) were present in most of the samples.

  18. Characterization of the SRNL-Washed tank 51 sludge batch 9 qualification sample

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-01

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) sent SRNL a 3-L sample of Tank 51H slurry to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (after combining with Tank 40H sludge). SRNL has washed the Tank 51H sample per the Tank Farm washing strategy as of October 20, 2015. A part of the qualification process is extensive radionuclide and chemical characterization of the SRNL-washed Tank 51H slurry. This report documents the chemical characterization of the washed slurry; radiological characterization is in progress and will be documented in a separate report. The analytical results of this characterization are comparable to the Tank Farm projections. Therefore, it is recommended that SRNL use this washed slurry for the ongoing SB9 qualification activities.

  19. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, Matthew S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Luther, Michelle C. [Auburn Univ., AL (United States); Brandenburg, Clayton H. [Univ.of South Carolina, Columbia, SC (United States)

    2016-09-27

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  20. Ion exchange at TNX using the SKID unit

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.L.; Bibler, J.P.

    1993-10-21

    An ion exchange unit has been manufactured for WSRC by British Nuclear Fuels, Ltd. This unit consists of three columns, ancillary valving, pumps, lines, and computer controls. It has been delivered to TNX for use in testing a cesium-specific ion exchange resin, developed at WSRC as a potential second generation process for the decontamination of Defense Waste Processing Facility (DWPF) supernate. This resin also has Department of Energy applications at both Oak Ridge and Hanford. Oak Ridge is interested in decontaminating the Melton Valley storage tank supernate, while Hanford is interested in decontaminating the 101-AW and 101-SY supernate streams. Another potential developmental interest is the Savannah River Site (SRS) DWPF recycle stream. The three primary waste streams of interest are the Oak Ridge, Hanford, and SRS, SWPF supernate streams. For these three waste streams, the cesium decontamination factor (DF) will be measured for a non-radioactive, simulated, high-level waste solution. The test objectives, process outlines, and broad characterization of the waste streams are described.

  1. Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And Cua's Vitreous State Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. B.; Peeler, D. K.

    2012-11-26

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

  2. Minimum TI4085D interlock setpoint at 1.0 GPM sludge-only feed rate and 14,000 ppm TOC

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1996-11-05

    DWPF-Engineering requested that SRTC determine the minimum indicated melter vapor space temperature that must be maintained in order to minimize the potential for off-gas flammability during a steady sludge-only feeding operation at 1.0 GPM containing 14,000 ppm total organic carbon. The detailed scope of this request is described in the technical task request, HLW-DWPF-TTR-960092 (DWPT Activity No. DWPT-96-0065). In response to this request, a dynamic simulation study was conducted in which the concentration of flammable gases was tracked throughout the course of a simulated 3X off-gas surge using the melter off-gas (MOG) dynamics model. The results of simulation showed that as long as the melter vapor space temperature as indicated on TI4085D is kept at 570 degrees C or higher, the peak concentration of combustible gases in the melter off-gas system is not likely to exceed 60 percent of the lower flammability limit (LFL). The minimum TI4085D of 570 degrees C is valid only when the air purges to FIC3221A and FIC3221B are maintained at or above 850 and 250 lb/hr, respectively. All the key bases and assumptions along with the input data used in the simulation are described in the attached E-7 calculation note.

  3. GLASS COMPOSITIONS FOR THE NEPHELINE PHASE III STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2009-06-29

    A series of 29 test glass compositions were selected for Phase III of the nepheline study using a combination of two approaches. The first approach was based on evaluating the glass composition region allowable by all of the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) models with the exception of the current nepheline discriminator. This approach was taken to determine whether there are glass compositions that, while predicted to crystallize nepheline upon slow cooling, would otherwise be acceptable for processing in the DWPF. The second approach was based on quasicrystalline theory of glass structure, which helped predict compositional regions where nepheline should form. A detailed description of this methodology is forthcoming. The selection strategy outlined here will provide an opportunity to determine experimentally whether the glasses that fail the current nepheline discriminator but pass the newly proposed nepheline discriminator are indeed free of nepheline after slow cooling. If this is the case, these data will serve as a significant step toward reducing conservatism in the current nepheline discriminator. The 29 glass compositions selected for testing address both the PCCS model and quasicrystalline theory approaches in evaluating both a reduction in conservatism for the current nepheline discriminator and possible implementation of the newly proposed discriminator based on glass structural theory. These glasses will be fabricated and characterized in the laboratory, with the results and conclusions described in a technical report.

  4. Socioeconomic assessment of defense waste processing facility impacts in the Savannah River Plant region

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, E.; Reed, J.H.; Stevenson, R.H.

    1981-09-01

    The DWPF will immobilize highly radioactive defense wastes for storage on site until shipment to an approved federal repository for radioactive wastes. This document assesses the socioeconomic impacts of constructing and operating the proposed facility and presents the assessment methodology. Because various schedules and various ways of staging the construction of the DWPF are considered and because in some of these instances a large nearby construction project (the Vogtle Nuclear Power Station) may influence the socioeconomic impacts, four scenarios involving different facility options and schedules are assessed. In general, the impacts were found not to be large. In the scenario where the socioeconomic effects were the greatest, it was found that there are likely to be some impacts on schools in Barnwell County as well as a shortage of mobile homes in that county. Aiken, Allendale, and Bamberg counties are also likely to experience slight-to-moderate housing shortages. Minor impacts are anticipated for fire and police services, roads, traffic, and land use. There will be noticeable economic impact from the project. Other scenarios had fewer socioeconomic impacts.

  5. Sludge batch 9 (SB9) acceptance evaluation. Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States); Diprete, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-10

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tank 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.

  6. Sludge batch 9 (SB9) accepance evaluation: Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Diprete, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tank 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a compositioniv expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.

  7. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning of glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.

  8. Vitrification of copper flotation waste.

    Science.gov (United States)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  9. On-column nitrosation of amines observed in liquid chromatography impurity separations employing ammonium hydroxide and acetonitrile as mobile phase.

    Science.gov (United States)

    Myers, David P; Hetrick, Evan M; Liang, Zhongming; Hadden, Chad E; Bandy, Steven; Kemp, Craig A; Harris, Thomas M; Baertschi, Steven W

    2013-12-06

    The availability of high performance liquid chromatography (HPLC) columns capable of operation at pH values up to 12 has allowed a greater selectivity space to be explored for method development in pharmaceutical analysis. Ammonium hydroxide is of particular value in the mobile phase because it is compatible with direct interfacing to electrospray mass spectrometers. This paper reports an unexpected N-nitrosation reaction that occurs with analytes containing primary and secondary amines when ammonium hydroxide is used to achieve the high pH and acetonitrile is used as the organic modifier. The nitrosation reaction has generality. It has been observed on multiple columns from different vendors and with multiple amine-containing analytes. Ammonia was established to be the source of the nitroso nitrogen. The stainless steel column frit and metal ablated from the frit have been shown to be the sites of the reactions. The process is initiated by removal of the chromium oxide protective film from the stainless steel by acetonitrile. It is hypothesized that the highly active, freshly exposed metals catalyze room temperature oxidation of ammonia to NO but that the actual nitrosating agent is likely N(2)O(3).

  10. Application of the HWVP measurement error model and feed test algorithms to pilot scale feed testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.L.

    1996-03-01

    The purpose of the feed preparation subsystem in the Hanford Waste Vitrification Plant (HWVP) is to provide, for control of the properties of the slurry that are sent to the melter. The slurry properties are adjusted so that two classes of constraints are satisfied. Processability constraints guarantee that the process conditions required by the melter can be obtained. For example, there are processability constraints associated with electrical conductivity and viscosity. Acceptability constraints guarantee that the processed glass can be safely stored in a repository. An example of an acceptability constraint is the durability of the product glass. The primary control focus for satisfying both processability and acceptability constraints is the composition of the slurry. The primary mechanism for adjusting the composition of the slurry is mixing the waste slurry with frit of known composition. Spent frit from canister decontamination is also recycled by adding it to the melter feed. A number of processes in addition to mixing are used to condition the waste slurry prior to melting, including evaporation and the addition of formic acid. These processes also have an effect on the feed composition.

  11. Using quartzofeldspathic waste to obtain foamed glass material

    Directory of Open Access Journals (Sweden)

    O.V. Kazmina

    2016-03-01

    Full Text Available The present paper proposes a method for the processing of mine refuse non-ferrous metal ore in the production of foamed glass. The subject of this research is a low-temperature frit synthesis (<900 °C, allowing for the high-temperature glass melting process to be avoided. The technology for the production of frit without complete melting of the batch and without using glass-making units offers a considerable reduction in energy consumption and air pollution. It was found that material samples obtained with a density of up to 250 kg/m3 are of rigidity (up to 1.7 MPa in comparison with the conventional foamed glass (1 MPa. This increased rigidity was due to the presence of crystalline phase particles in its interpore partition of less than 2 µm in size. Material with a density of 300 kg/cm3 is recommended for thermal insulation for the industrial and construction sectors. At densities above 300 kg/cm3 and a strength of 2.5 MPa, the purpose becomes heat-insulating construction material. The proposed method for obtaining a porous material from waste widens our choice of raw materials for foamed glass, whilst saving resources and energy.

  12. Technological development for increasing the natural gas market; Desenvolvimento tecnologico para o incremento do mercado do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bollmann, Arno; Romanos, Rafael Reami; Konishi, Ricardo; Lehmkuhl, Willian Anderson [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil)

    2008-07-01

    This paper presents the results achieved in technological development projects for the use of natural gas in furnaces for producing ceramic frits, in plastic film thermoforming and in hardwoods drying. In the case of the production of frits, the analysis of a typical furnace showed that its productivity is better, compared with the use of conventional fuel oil and around 60% of losses of energy were detected, resulting in a proposal of a new model to increase its efficiency, recovering the energy of exhaust gases from the chimney. For the thermoforming, it was shown that the isolation of its sides enable improvements in the order of 7% in its efficiency. Comparing the operating costs, the replacement of electric radiators by porous radiating burners generates savings of around 30% to 45%, with an expected return on investment in about 2.5 years. The drying of hardwoods with natural gas can be carried out in only 26 days, kept all the required technical characteristics, thanks to the good controllability of the conditions of the drying heater, providing a technologically feasible opportunity to reduce the drying time, which in conventional methods is in the order of 90 to 120 days. (author)

  13. Improved ceramic heat exchanger materials

    Science.gov (United States)

    Rauch, H. W.

    1980-01-01

    The development and evaluation of materials for potential application as heat exchanger structures in automotive gas turbine engines is discussed. Test specimens in the form of small monolithic bars were evaluated for thermal expansion and dimensional stability before and after exposure to sea salt and sulfuric acid, followed by short and long term cycling at temperatures up to 1200 C. The material finally selected, GE-7808, consists of the oxides, ZrO2-MgO-Al2O3-S1O2, and is described generically as ZrMAS. The original version was based on a commercially available cordierite (MAS) frit. However, a clay/talc mixture was demonstrated to be a satisfactory very low cost source of the cordierite (MAS) phase. Several full size honeycomb regenerator cores, about 10.2 cm thick and 55 cm diameter were fabricated from both the frit and mineral versions of GE-7808. The honeycomb cells in these cores had rectangular dimensions of about 0.5 mm x 2.5 mm and a wall thickness of approximately 0.2 mm. The test data show that GE-7808 is significantly more stable at 1100 C in the presence of sodium than the aluminosilicate reference materials. In addition, thermal exposure up to 1100 C, with and without sodium present, results in essentially no change in thermal expansion of GE-7808.

  14. Development of porcelain enamel passive thermal control coatings

    Science.gov (United States)

    Levin, H.; Lent, W. E.; Buettner, D. H.

    1973-01-01

    A white porcelain enamel coating was developed for application to high temperature metallic alloy substrates on spacecraft. The coating consists of an optically opacifying zirconia pigment, a lithia-zirconia-silica frit, and an inorganic pigment dispersant. The coating is fired at 1000 to 1150 C to form the enamel. The coating has a solar absorptance of 0.22 and a total normal emittance of 0.82 for a 0.017 cm thick coating. The coating exhibits excellent adhesion, cleanability, and integrity and is thermal shock resistant to 900 C. Capability to coat large panels has been demonstrated by successful coating of 30 cm x 30 cm Hastelloy X alloy panels. Preliminary development of low temperature enamels for application to aluminum and titanium alloy substrates was initiated. It was determined that both leaded and leadless frits were feasible when applied with appropriate mill fluxes. Indications were that opacification could be achieved at firing temperatures below 540 C for extended periods of time.

  15. The effect of pre-treatment parameters on the quality of glass-ceramic wasteforms for plutonium immobilisation, consolidated by hot isostatic pressing

    Science.gov (United States)

    Thornber, Stephanie M.; Heath, Paul G.; Da Costa, Gabriel P.; Stennett, Martin C.; Hyatt, Neil C.

    2017-03-01

    Glass-ceramics with high glass fractions (70 wt%) were fabricated in stainless steel canisters by hot isostatic pressing (HIP), at laboratory scale. High (600 °C) and low (300 °C) temperature pre-treatments were investigated to reduce the canister evacuation time and to understand the effect on the phase assemblage and microstructure of the hot isostatically pressed product. Characterisation of the HIPed materials was performed using scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) and powder X-ray diffraction (XRD). This analysis showed the microstructure and phase assemblage was independent of the variation in pre-treatment parameters. It was demonstrated that a high temperature pre-treatment of batch reagents, prior to the HIP cycle, is beneficial when using oxide precursors, in order to remove volatiles and achieve high quality dense materials. Sample throughput can be increased significantly by utilising a high temperature ex-situ calcination prior to the HIP cycle. Investigation of glass-ceramic wasteform processing utilising a glass frit precursor, produced a phase assemblage and microstructure comparable to that obtained using oxide precursors. The use of a glass frit precursor should allow optimised throughput of waste packages in a production facility, avoiding the need for a calcination pre-treatment required to remove volatiles from oxide precursors.

  16. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  17. Microwave plasma generation and filtered transport of O{sub 2} (a {sup 1}{delta}{sub g})

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Skip [Air Force Research Laboratory, Mail Stop PRAS, 1950 Fifth Street, WPAFB, OH 45433-7251 (United States); Popovic, Svetozar [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States); Gupta, Manish [Los Gatos Research, Incorporated 67 East Evelyn Ave, Suite 3, Mountain View, CA 94041 (United States)], E-mail: skip.williams@wpafb.af.mil

    2009-08-01

    Singlet oxygen, O{sub 2}(a {sup 1}{delta}{sub g}), is generated using a low pressure, low power continuous microwave discharge operating at 2.45 GHz with a flow of helium seeded with 1-10% molecular oxygen. The absolute concentration of O{sub 2}(a {sup 1}{delta}{sub g}) is measured using off-axis integrated cavity output spectroscopy to probe the Q-branch transition of the (1, 0) band of the b{sup 1}{sigma}{sub g}{sup +}-a{sup 1}{delta}{sub g} Noxon system. In order to remove other energetic species from the flow, the post-discharge flow is passed through a coarse fritted quartz filter. The use of the quartz frit takes advantage of the substantially lower surface sticking probability of O{sub 2}(a {sup 1}{delta}{sub g}) in comparison with other excited species on the flow. Up to 6% of the total oxygen passing through the filter remains in the a {sup 1}{delta}{sub g} state, and absolute densities of 2.5 x 10{sup 14} cm{sup -3} are obtained using this method. This preparation method and transport is important in developing sources of singlet oxygen for kinetic and spectroscopic studies.

  18. Overlimiting Current and Shock Electrodialysis in Porous Media

    CERN Document Server

    Deng, Daosheng; Han, Ji-Hyung; Schlumpberger, Sven; Mani, Ali; Zaltzman, Boris; Bazant, Martin Z

    2013-01-01

    Most electrochemical processes, such as electrodialysis, are limited by diffusion, but in porous media, surface conduction and electro-osmotic flow also contribute to ionic fluxes. In this paper, we report experimental evidence for surface-driven over-limiting current (faster than diffusion) and deionization shocks (propagating salt removal) in a porous medium. The apparatus consists of a silica glass frit (1 mm thick with 500 nm mean pore size) in an aqueous electrolyte (CuSO$_4$ or AgNO$_3$) passing ionic current from a reservoir to a cation-selective membrane (Nafion). The current-voltage relation of the whole system is consistent with a proposed theory based on the electro-osmotic flow mechanism over a broad range of reservoir salt concentrations (0.1 mM - 1.0 M), after accounting for (Cu) electrode polarization and pH-regulated silica charge. Above the limiting current, deionized water ($\\approx 10 \\mu$ $M$) can be continuously extracted from the frit, which implies the existence of a stable shock propag...

  19. SUMMARY OF 2009 RHEOLOGY MODIFIER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.

    2009-12-08

    The overall objective of the EM-31 Rheological Modifiers and Wetting Agents program is to utilize commercially available rheology modifiers to increase the solids fraction of radioactive sludge based waste streams, resulting in an increase in throughput and decreasing the overall processing time. The program first investigates the impact of rheology modifiers on slurry simulants and then utilizes the most effective rheology modifiers on radioactive slurries. The work presented in this document covers the initial investigation of rheology modifier testing with simulants. This task is supported by both the Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL). The SRNL EM-31 task, for this year, was to investigate the use of rheology modifiers on simulant Defense Waste Processing Facility (DWPF) melter feeds. The task is to determine, based on the impact of the rheology modifier, if there are rheology modifiers that could reduce the water content of the slurry going to the DWPF melter, hence increasing the melt rate by decreasing the water loading. The rheology modifier in essence would allow a higher solids content slurry to have the same type of rheology or pumpability of a lower solids slurry. The modifiers selected in this report were determined based on previous modifiers used in high level waste melter feed simulants, on-going testing performed by counterparts at PNNL, and experiences gain through use of modifiers in other Department of Energy (DOE) processes such as grout processing. There were 12 rheology modifiers selected for testing, covering both organic and inorganic types and they were tested at four different concentrations for a given melter feed. Five different DWPF melter feeds were available and there was adequate material in one of the melter feeds to increase the solids concentration, resulting in a total of six simulants for testing. The mass of melter feed available in each simulant was not adequate for

  20. Investigation of Sludge Batch 3 (Macrobatch 4) Glass Sample Anomalous Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J.; Bibler, N. E.; Peeler, D. K.

    2005-08-15

    Two Defense Waste Processing Facility (DWPF) glass samples from Sludge Batch 3 (SB3) (Macrobatch 4) were received by the Savannah River National Laboratory (SRNL) on February 23, 2005. One sample, S02244, was designated for the Product Consistency Test (PCT) and elemental and radionuclide analyses. The second sample, S02247, was designated for archival storage. The samples were pulled from the melter pour stream during the feeding of Melter Feed Tank (MFT) Batch 308 and therefore roughly correspond to feed from Slurry Mix Evaporator (SME) Batches 306-308. During the course of preparing sample S02244 for PCT and other analyses two observations were made which were characterized as ''unusual'' or anomalous behavior relative to historical observations of glasses prepared for the PCT. These observations ultimately led to a series of scoping tests in order to determine more about the nature of the behavior and possible mechanisms. The first observation was the behavior of the ground glass fraction (-100 +200 mesh) for PCT analysis when contacted with deionized water during the washing phase of the PCT procedure. The behavior was analogous to that of an organic compound in the presence of water: clumping, floating on the water surface, and crawling up the beaker walls. In other words, the glass sample did not ''wet'' normally, displaying a hydrophobic behavior in water. This had never been seen before in 18 years SRNL PCT tests on either radioactive or non-radioactive glasses. Typical glass behavior is largely to settle to the bottom of the water filled beaker, though there may be suspended fines which result in some cloudiness to the wash water. The typical appearance is analogous to wetting sand. The second observation was the presence of faint black rings at the initial and final solution levels in the Teflon vessels used for the mixed acid digestion of S02244 glass conducted for compositional analysis. The digestion is composed

  1. Development Of Ion Chromatography Methods To Support Testing Of The Glycolic Acid Reductant Flowsheet In The Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiedenman, B. J.; White, T. L.; Mahannah, R. N.; Best, D. R.; Stone, M. E.; Click, D. R.; Lambert, D. P.; Coleman, C. J.

    2013-10-01

    Ion Chromatography (IC) is the principal analytical method used to support studies of Sludge Reciept and Adjustment Tank (SRAT) chemistry at DWPF. A series of prior analytical ''Round Robin'' (RR) studies included both supernate and sludge samples from SRAT simulant, previously reported as memos, are tabulated in this report.2,3 From these studies it was determined to standardize IC column size to 4 mm diameter, eliminating the capillary column from use. As a follow on test, the DWPF laboratory, the PSAL laboratory, and the AD laboratory participated in the current analytical RR to determine a suite of anions in SRAT simulant by IC, results also are tabulated in this report. The particular goal was to confirm the laboratories ability to measure and quantitate glycolate ion. The target was + or - 20% inter-lab agreement of the analyte averages for the RR. Each of the three laboratories analyzed a batch of 12 samples. For each laboratory, the percent relative standard deviation (%RSD) of the averages on nitrate, glycolate, and oxalate, was 10% or less. The three laboratories all met the goal of 20% relative agreement for nitrate and glycolate. For oxalate, the PSAL laboratory reported an average value that was 20% higher than the average values reported by the DWPF laboratory and the AD laboratory. Because of this wider window of agreement, it was concluded to continue the practice of an additional acid digestion for total oxalate measurement. It should also be noted that large amounts of glycolate in the SRAT samples will have an impact on detection limits of near eluting peaks, namely Fluoride and Formate. A suite of scoping experiments are presented in the report to identify and isolate other potential interlaboratory disceprancies. Specific ion chromatography inter-laboratory method conditions and differences are tabulated. Most differences were minor but there are some temperature control equipment differences that are significant leading to

  2. IMPACT OF ELIMINATING MERCURY REMOVAL PRETREATMENT ON THE PERFORMANCE OF A HIGH LEVEL RADIOACTIVE WASTE MELTER OFFGAS SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J; Alexander Choi, A

    2009-03-17

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: (1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; (2) adjust feed rheology; and (3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid pretreatment has been proposed to eliminate the production of hydrogen in the pretreatment systems; alternative reductants would be used to control redox. However, elimination of formic acid would result in significantly more mercury in the melter feed; the current specification is no more than 0.45 wt%, while the maximum expected prior to pretreatment is about 2.5 wt%. An engineering study has been undertaken to estimate the effects of eliminating mercury removal on the melter offgas system performance. A homogeneous gas-phase oxidation model and an aqueous phase model were developed to study the speciation of mercury in the DWPF melter offgas system. The model was calibrated against available experimental data and then applied to DWPF conditions. The gas-phase model predicted the Hg{sub 2}{sup 2-}/Hg{sup 2+} ratio accurately, but some un-oxidized Hg{sup 0} remained. The aqueous model, with the addition of less than 1 mM Cl{sub 2} showed that this remaining Hg{sup 0} would be oxidized such that the final Hg{sub 2}{sup 2+}/Hg{sup 2+} ratios matched the experimental data. The results of applying the model to DWPF show that due to excessive shortage of chloride, only 6% of

  3. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  4. Composition and property measurements for PHA Phase 4 glasses

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.B.

    2000-01-25

    The results presented in this report are for nine Precipitate Hydrolysis Aqueous (PHA) Phase 4 glasses. Three of the glasses contained HM sludge at 22, 26, and 30 wt% respectively, 10 wt% PHA and 1.25 wt% monosodium titanate (MST), all on an oxide basis. The remaining six glasses were selected from the Phase 1 and Phase 2 studies (Purex sludge) but with an increased amount of MST. The high-end target for MST of 2.5 wt% oxide was missed in Phases 1 and 2 due to {approximately}30 wt% water content of the MST. A goal of this Phase 4 study was to determine whether this increase in titanium concentration from the MST had any impact on glass quality or processibility. Two of the glasses, pha14c and pha15c, were rebatched and melted due to apparent batching errors with pha14 and pha15. The models currently in the Defense Waste Processing Facility's (DWPF) Product Composition Control System (PCCS) were used to predict durability, homogeneity, liquidus, and viscosity for these nine glasses. All of the HM glasses and half of the Purex glasses were predicted to be phase separated, and consequently prediction of glass durability is precluded with the cument models for those glasses that failed the homogeneity constraint. If one may ignore the homogeneity constraint, the measured durabilities were within the 95% prediction limits of the model. Further efforts will be required to resolve this issue on phase separation (inhomogeneity). The liquidus model predicted unacceptable liquidus temperatures for four of the nine glasses. The approximate, bounding liquidus temperatures measured for all had upper limits of 1,000 C or less. Given the fact that liquidus temperatures were only approximated, the 30 wt% loading of Purex may be near or at the edge of acceptability for liquidus. The measured viscosities were close to the predictions of the model. For the Purex glasses, pha12c and pha15c, the measured viscosities of 28 and 23 poise, respectively, indicate that DWPF processing

  5. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickenheim, B. R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bibler, N. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hay, M. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-08

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid

  6. Evaluation of SRAT Sampling Data in Support of a Six Sigma Yellow Belt Process Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Thomas B.

    2005-06-01

    As part of the Six Sigma continuous improvement initiatives at the Defense Waste Processing Facility (DWPF), a Yellow Belt team was formed to evaluate the frequency and types of samples required for the Sludge Receipt and Adjustment Tank (SRAT) receipt in the DWPF. The team asked, via a technical task request, that the Statistical Consulting Section (SCS), in concert with the Immobilization Technology Section (ITS) (both groups within the Savannah River National Laboratory (SRNL)), conduct a statistical review of recent SRAT receipt results to determine if there is enough consistency in these measurements to allow for less frequent sampling. As part of this review process, key decisions made by DWPF Process Engineering that are based upon the SRAT sample measurements are outlined in this report. For a reduction in SRAT sampling to be viable, these decisions must not be overly sensitive to the additional variation that will be introduced as a result of such a reduction. Measurements from samples of SRAT receipt batches 314 through 323 were reviewed as part of this investigation into the frequency of SRAT sampling. The associated acid calculations for these batches were also studied as part of this effort. The results from this investigation showed no indication of a statistically significant relationship between the tank solids and the acid additions for these batches. One would expect that as the tank solids increase there would be a corresponding increase in acid requirements. There was, however, an indication that the predicted reduction/oxidation (REDOX) ratio (the ratio of Fe{sup 2+} to the total Fe in the glass product) that was targeted by the acid calculations based on the SRAT receipt samples for these batches was on average 0.0253 larger than the predicted REDOX based upon Slurry Mix Evaporator (SME) measurements. This is a statistically significant difference (at the 5% significance level), and the study also suggested that the difference was due to

  7. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was

  8. DEMONSTRATION OF THE GLYCOLIC-FORMIC FLOWSHEET IN THE SRNL SHIELDED CELLS USING ACTUAL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Pareizs, J.; Click, D.

    2011-11-07

    Glycolic acid was effective at dissolving many metals, including iron, during processing with simulants. Criticality constraints take credit for the insolubility of iron during processing to prevent criticality of fissile materials. Testing with actual waste was needed to determine the extent of iron and fissile isotope dissolution during Chemical Process Cell (CPC) processing. The Alternate Reductant Project was initiated by the Savannah River Remediation (SRR) Company to explore options for the replacement of the nitric-formic flowsheet used for the CPC at the Defense Waste Processing Facility (DWPF). The goals of the Alternate Reductant Project are to reduce CPC cycle time, increase mass throughput of the facility, and reduce operational hazards. In order to achieve these goals, several different reductants were considered during initial evaluations conducted by Savannah River National Laboratory (SRNL). After review of the reductants by SRR, SRNL, and Energy Solutions (ES) Vitreous State Laboratory (VSL), two flowsheets were further developed in parallel. The two flowsheet options included a nitric-formic-glycolic flowsheet, and a nitric-formic-sugar flowsheet. As of July 2011, SRNL and ES/VSL have completed the initial flowsheet development work for the nitric-formic-glycolic flowsheet and nitric-formic-sugar flowsheet, respectively. On July 12th and July 13th, SRR conducted a Systems Engineering Evaluation (SEE) to down select the alternate reductant flowsheet. The SEE team selected the Formic-Glycolic Flowsheet for further development. Two risks were identified in SEE for expedited research. The first risk is related to iron and plutonium solubility during the CPC process with respect to criticality. Currently, DWPF credits iron as a poison for the fissile components of the sludge. Due to the high iron solubility observed during the flowsheet demonstrations with simulants, it was necessary to determine if the plutonium in the radioactive sludge slurry

  9. PREPARATION AND ELECTRICAL PROPERTIES OF LEAD-FREE SILVER PASTE FOR SOLAR CELLS%太阳能电池无铅导电电极的制备及电性能研究

    Institute of Scientific and Technical Information of China (English)

    罗晖; 邱深玉; 周立新; 刘桂华

    2012-01-01

    以Bi2O3、B2O3和SiO2为主要原料制备无铅玻璃粘合剂,将其与导电银(Ag)粉、Al2O3、MnO2等无机添加剂和α-松油醇等有机载体进行混合制备无铅导电银浆,在800℃的温度下烧结20s形成Ag电极。采用四点探针法测量Ag电极电阻率ρ,通过SEM观察其断面形貌并用Keithley2400数字源表测定电池的相关性能参数,研究了Ag电极中导电Ag粉含量对电极性能的影响,确定了无铅导电Ag浆的质量配比为:导电银粉75%,玻璃粘合剂(Glass frit,GF)4%,无机添加剂1%,有机载体20%时,Ag电极的电性能趋于最佳。%Lead-free silver pastes were prepared through mixing lead-free glass frit which was fabricated with Bi2O3、B2O3 and SiO2 as the main raw materials,silver powder,inorganic additives such as Al2O3,MnO2 and so on,and organic carrier such as α-terpineol and so on.The lead-free paste was printed on silicon wafer and sintered under the temperature of 800℃ for 20s.The resistivity of the silver electrode was measured by four-point probe,the morphologies were observed by SEM,and the photovoltaic properties of solar cells were measured by Keithley 2400 under an illumination of AM1.5G.We investigated the influence of silver content on the electrical properties of silver electrode.The results show that the silver paste with 75% silver powder,4% lead-free glass frit,1% inorganic additives and 20% organic carrier yielded the best photovoltaic properties for solar cells.

  10. The development and testing of glaze materials for application to the fit surface of dental ceramic restorations.

    Science.gov (United States)

    Cattell, Michael J; Chadwick, Thomas C; Knowles, Jonathan C; Clarke, Richard L

    2009-04-01

    The aims of the study were to develop and test overglaze materials for application to the fit surface of dental ceramic restorations, which could be etched and adhesively bonded and increase the flexural strength of the ceramic substrate. Three glaze materials were developed using commercial glass powders (P25 and P54, Pemco, Canada). P25 (90 wt%) was mixed with P54 (10 wt%) to produce (P25/P54). P54 (90 wt%) was mixed with P25 (10 wt%) to produce (P54/P25). P25 (90 wt%) was mixed with 10 wt% of an experimental glass powder (P25/frit). Eighty-two disc specimens (14 mm x 2 mm) were produced by heat pressing a leucite glass-ceramic and were sandblasted with 50 microm glass beads. Group 1 control specimens (10) were sandblasted. Groups 2-4 (10 per group) were coated using P25/frit (Group 2), P25/P54 (Group 3) and P54/P25 (Group 4) overglazes before sintering. Groups 1-4 were etched for 2 min using 9.5% HF (Gresco, USA). Composite cylinders (Marathon v, Den-Mat) were light cured and bonded to the glazed and prepared disc surfaces and groups water stored for 8 days. Groups were tested using shear bond strength (SBS) testing at 0.5mm/min. Disc specimens (42) were tested using the biaxial flexural strength (BFS) test at a crosshead speed of 0.15 mm/min. Group 1 was tested as sandblasted (21) and Group 2 (21) after coating the tensile surface with P25/frit. Xrd, Eds and Sem analyzes were carried out. Mean SBS (MPa+/-S.D.) were: Group 1: 10.7+/-2.1; Group 2: 9.8+/-1.9; Group 3: 1.8+/-1.0 and Group 4: 2.6+/-1.7. Groups 1 and 2 were statistically different to Groups 3 and 4 (p0.05). The mean BFS (MPa+/-S.D.) of the overglazed Group 2 (200.2+/-22.9) was statistically different (pceramic substrate and produced comparable shear bond strengths to an etched and bonded control. The application of etched overglaze materials to dental glass-ceramic and ceramic substrates may be useful in adhesive dentistry.

  11. Pre-concentration of pesticide residues in environmental water samples using Silica nanoparticles and identification of residues By GC-MS method

    Directory of Open Access Journals (Sweden)

    Tentu. Nageswara Rao

    2016-08-01

    Full Text Available The silica nanoparticles prepared by stober’s mechanism by reaction of tetraethylorthosilicate (TEOS with ammonia was tested for their adsorption capacity in the pre-concentration of residues of pesticides in water. The synthesized nanoparticles were characterized by Scanning Electron Microscope (SEM, Transmission Electron Microscope (TEM and X-Ray Diffraction (XRD. The size of the silica nanoparticles were 50 to 250 nm. The solid phase extraction (SPE cartridges were prepared by filling the empty cartridges of 5.5 cm length and 0.3 cm i.d. with 200 mg of nanoparticles and protected between two polytetrafluroethylene (PTFE frits. To avoid the passage of nanoparticles, 2% solution of polystyrene in chloroform was passed through PTFE frits and dried in air for two hours at room temperature before fitted into the cartridges. This process is to reduce the pore size of the PTFE frits. These cartridges are used in pre-concentration of different types of residues of pesticides in water. The pyrethroids tested for the pre-concentration are tetramethrin, lambda-cyhalothrin, cyphenothrin. The water samples were spiked with aliquots of pesticides and were passed through the cartridges. The amounts of the pesticides adsorbed on the cartridges were tested. The influence of temperature, sample volume, flow rate, pH and ionic strength on the performance of the cartridges was checked. The results of fortified sample analysis were compared with the data obtained from the commercially available C18 cartridges for the sample volume. The separation parameters were established for the simultaneous determination of residues using GC-EI-MS. The method was validated by means of linearity, precision, and assay accuracy. The limit of detection (LOD and the limit of quantification (LOQ were established based on the signal to noise ratio 3:1 and 10:1 respectively. An analytical method for the enrichment of residues using nanoparticles based SPE cartridges were developed

  12. New optical microbarometer

    Science.gov (United States)

    Olivier, Nathalie; Olivier, Serge; Hue, Anthony; Le Mallet, Serge

    2017-04-01

    Usually, transducers implemented in infrasound sensor (microbarometer) are mainly composed of two associated elements. The first one converts the external pressure variation into a physical linear displacement. The second one converts this motion into an electrical signal. According to this configuration, MB3, MB2000 and MB2005 microbarometers are using an aneroid capsule for the first one, and an electromagnetic transducer (Magnet-coil or LVDT) for the second one. CEA DAM (designer of MB series) and PROLANN / SEISMO WAVE (manufacturer and seller of MB3) have associated their expertise to design a new optical microbarometer: We aim at thinking that changing the electromagnetic transducer by an interferometer is an interesting solution in order to increase the dynamic and the resolution of the sensor. Currently, we are exploring this way in order to propose a future optical microbarometer which will enlarge the panel of infrasound sensors. First, we will present the new transducer principles, taking into account the aneroid capsule and the interferometer using integrated optics technology. More specifically, we will explain the operation of this optical technology, and discuss on its advantages and drawbacks. Secondly, we will present the optical microbarometer in which the interferometer is positioned inside the aneroid capsule under vacuum. The adjustment of the interferometer position is a challenge we solved. The optical measurement is naturally protected from environmental disturbances. Four prototypes were manufactured in order to compare their performances, and also an optical digitizer specifically designed to record the four channels interferometer. Finally, we will present the results we obtained with this sensor (sensitivity, self-noise, effect of environmental disturbance, etc) compared to those of a MB3 microbarometer, and discuss about the advantages of this new sensor.

  13. Evaluation of a new DTPA-derivative chelator: comparative biodistribution and imaging studies of [sup 111]In-labeled B3 monoclonal antibody in athymic mice bearing human epidermoid carcinoma xenografts. [Diethylenetriaminpentaacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Camera, L.; Kinuya, S.; Garmestani, K.; Pai, L.H.; Brechbiel, M.W.; Gansow, O.A.; Paik, C.H.; Pastan, I.; Carrasquillo, J.A. (National Cancer Inst., Bethesda, MD (United States))

    1993-11-01

    Biodistribution and imaging characteristics of monoclonal antibody (MAb) B3 conjugated to either the 2-(p-isothiocvanatobenzyl)-cyclohexyl-DTPA (CHX-B) or 2-(p-isothiocyanatobenzyl)-6-methyl-DTPA (1B4M) and labeled with [sup 111]In, were evalulated in nude mice bearing A431 human epidermoid carcinoma xenografts. MAb B3, is a murine IgG1k reacting with a carbohydrate antigen abundantly expressed by most carcinomas. Both [sup 111]In-(CHX-B)-B3 and [sup 111]In-(1B4M)-B3 showed good tumor targeting with peak values observed at 72 h with 27.6 [+-] 7.6 and 25.4 [+-] 1.7% ID/g, respectively (P > 0.05). High tumor-to-organ ratios were also observed and, confirmed by the imaging results. In particular, tumor-to liver ratios increased from 5.0 [+-] 0.9 at 24 h to 9.2 [+-] 2.0 at 168 h for [sup 111]In-(CHX-B)-B3 and from 4.5 [+-] 0.6 to 8.9 [+-] 3.5 for [sup 111]In-(1B4M)-B3. This was mainly the result of low liver accumulation of both [sup 111]In-(CHX-B)-B3 and [sup 111]In-(1B4M)-B3, with only 2.48 [+-] 0.46 and 2.5 [+-] 0.9% ID/g at 168h, respectively (P > 0.05). Our findings indicate that either CHX-B or 1B4M can be successfully used for [sup 111]In-labeling of MAbs and that [sup 111]In-B3 may represent a promising radioimmunoimaging agent. (Author).

  14. Quantitative determination of five hydroxy acids, precursors of relevant wine aroma compounds in wine and other alcoholic beverages.

    Science.gov (United States)

    Gracia-Moreno, Elisa; Lopez, Ricardo; Ferreira, Vicente

    2015-10-01

    A method for the quantitative determination of 2-hydroxy-2-methylbutanoic (2OH2MB), 2-hydroxy-3-methylbutanoic (2OH3MB), 3-hydroxy-3-methylbutanoic (3OH3MB), 2-hydroxy-4-methylpentanoic (2OH4MP) and 3-hydroxybutanoic (3OHB) acids has been optimized, validated and applied to a set of wines and other alcoholic beverages. The analytes were preconcentrated in a solid phase extraction cartridge and derivatized with 2,3,4,5,6-pentafluorobenzyl bromide at room temperature for 30 min, followed by GC-MS analysis. Detection limits were between 0.5 and 29 μg L(-1), and linearity was maintained up to 3 or 12 mg L(-1), depending on the analyte. Recovery values were between 85 and 106 %, and reproducibility was better than 12 % RSD in most cases. The first specific study of these analytes in wine and other alcoholic beverages is herein reported. Concentrations ranged from the method detection limits to 7820, 519, 8510, 3470 and 2500 μg L(-1) for 2OH2MB, 2OH3MB, 3OH3MB, 2OH4MP and 3OHB, respectively, which may have relevant sensory effects. These products were not found in distillates (except 3OHB) but were all present in beer. 2OH2MB, 3OH3MB and 3OHB were found in unfermented grape derivatives. Sherry wines had the highest levels of all except for 3OHB.

  15. Experimental assessment of computer codes used for safety analysis of integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Falkov, A.A.; Kuul, V.S.; Samoilov, O.B. [OKB Mechanical Engineering, Nizhny Novgorod (Russian Federation)

    1995-09-01

    Peculiarities of integral reactor thermohydraulics in accidents are associated with presence of noncondensable gas in built-in pressurizer, absence of pumped ECCS, use of guard vessel for LOCAs localisation and passive RHRS through in-reactor HX`s. These features defined the main trends in experimental investigations and verification efforts for computer codes applied. The paper reviews briefly the performed experimental investigation of thermohydraulics of AST-500, VPBER600-type integral reactors. The characteristic of UROVEN/MB-3 code for LOCAs analysis in integral reactors and results of its verification are given. The assessment of RELAP5/mod3 applicability for accident analysis in integral reactor is presented.

  16. Single Proton Knock-Out Reactions from 24,25,26F

    CERN Document Server

    Thoennessen, M; Brown, B A; Enders, J; Frank, N; Hansen, P G; Heckman, P; Luther, B A; Seitz, J; Stolz, A; Tryggestad, E J

    2003-01-01

    The cross sections of the single proton knock-out reactions from 24F, 25F, and 26F on a 12C target were measured at energies of about 50 MeV/nucleon. Ground state populations of 6.6+-.9 mb, 3.8+-0.6 mb for the reactions 12C(24F,23O) and 12C(25F,24O) were extracted, respectively. The data were compared to calculations based on the many-body shell model and the eikonal theory. In the reaction 12C(26F,25O) the particle instability of 25O was confirmed.

  17. Geographical structure and differential natural selection among North European populations

    DEFF Research Database (Denmark)

    McEvoy, Brian P; Montgomery, Grant W; McRae, Allan F

    2009-01-01

    from F(ST)-based analysis of genic and nongenic SNPs that differential positive selection has operated across these populations despite their short divergence time and relatively similar geographic and environmental range. The pressure appears to have been focused on genes involved in immunity, perhaps...... reflecting response to infectious disease epidemic. Such an event may explain a striking selective sweep centered on the rs2508049-G allele, close to the HLA-G gene on chromosome 6. Evidence of the sweep extends over a 8-Mb/3.5-cM region. Overall, the results illustrate the power of dense genotype and sample...

  18. Annual Gaseous Electronics Conference (44TH) Held in Albuquerque, New Mexico on 22-25 October 1991

    Science.gov (United States)

    1992-05-01

    Carbon Plasma Excited by Fast Capillary Discharges B. Szapiro, J.J. Rocca, M.C. Marconi, D. Cortazar and F. Tomasel PB-8 Time Resolved Electric Field...M.C. MARCONI, D. CORTAZAR and F. TOMASEL Colorado State University. The possibility of developing a soft X-Ray recombination laser based on a...Caledonia, G.E. MC-2 Cornelius, W.D. JA-2 Campbell, R.B. MA-14 Corr, LLJ HB-6 Cao, Y.S. MC-14 Cortazar , D. PB-7 Capitelli, M. MB-3, PA-6 Coultas, D.K. BA-7

  19. TANK 7 CHARACTERIZATION AND WASHING STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Pareizs, J.; Click, D.

    2010-02-04

    and cations remaining, with the exception of sodium and oxalate, for which the percentages were 2.8% and 10.8% respectively. The post-wash sodium concentration was 9.25 wt% slurry total solids basis and 0.15 M supernate. (5) The settling rate of slurry was very fast allowing the completion of one decant/wash cycle each day. (6) The measured yield stress of as-received (6.42 wt% undissolved solids) and post-wash (7.77 wt% undissolved solids) slurry was <1 Pa. For rapidly settling slurries, it can be hard to measure the yield stress of the slurry so this result may be closer to the supernate result than the slurry. The recommended strategy for developing the oxalate target for sludge preparation for Sludge Batch 7 includes the following steps: (1) CPC simulant testing to determine the percent oxalate destruction and acid mix needed to produce a predicted redox of approximately 0.2 Fe{sup +2}/{Sigma}Fe in a SME product while meeting all DWPF processing constraints. (2) Perform a DWPF melter flammability assessment to ensure that the additional carbon in the oxalate together with other carbon sources will not lead to a flammability issue. (3) Perform a DWPF glass paper assessment to ensure the glass produced will meet all DWPF glass limits due to the sodium concentration in the sludge batch. The testing would need to be repeated if a significant CPC processing change, such as an alternative reductant to formic acid, is implemented.

  20. EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Mahannah, R.; Edwards, T.

    2013-06-04

    Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the

  1. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  2. SALT CORE SAMPLING EVOLUTION AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Nance, T; Daniel Krementz, D; William Cheng, W

    2007-11-29

    The Savannah River Site (SRS), a Department of Energy (DOE) facility, has over 30 million gallons of legacy waste from its many years of processing nuclear materials. The majority of waste is stored in 49 buried tanks. Available underground piping is the primary and desired pathway to transfer waste from one tank to another until the waste is delivered to the glass plant, DWPF, or the grout plant, Saltstone. Prior to moving the material, the tank contents need to be evaluated to ensure the correct destination for the waste is chosen. Access ports are available in each tank top in a number of locations and sizes to be used to obtain samples of the waste for analysis. Material consistencies vary for each tank with the majority of waste to be processed being radioactive salts and sludge. The following paper describes the progression of equipment and techniques developed to obtain core samples of salt and solid sludge at SRS.

  3. Lightning protection for the process canyons at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    McAfee, D.E.

    1995-12-31

    Westinghouse Savannah River Company (WSRC) has performed Lightning Studies for the existing Process Canyons at the Savannah River Site (SRS). These studies were initiated to verify the lightning protection systems for the facilities and to compare the installations to the National Fire Protection (NFPA) Standard 780, Lighting Protection Code, 1992. The original study of the F-Canyon was initiated to develop answers to concerns raised by the Defense Nuclear Facility Safety Board (DNFSB). Once this study was completed it was determined that a similar study for H-Canyon would be prudent; followed by an evaluation of the Defense Waste Processing Facility (DWPF) Vitrification Building (S-Canyon). This paper will provide an overview of the nature of lightning and the principals of lightning protection. This will provide the reader with a basic understanding of the phenomena of lighting and its potential for damaging structures, components, and injuring personnel in or near the structure.

  4. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-08

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components, antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).

  5. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  6. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-12-31

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States` first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  7. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  8. Letter report: Evaluation of LFCM off-gas system technologies for the HWVP

    Energy Technology Data Exchange (ETDEWEB)

    Goles, R.W.; Mishima, J.; Schmidt, A.J.

    1996-03-01

    Radioactive high-level liquid waste (HLLW), a byproduct of defense nuclear fuel reprocessing activities, is currently being stored in underground tanks at several US sites. Because its mobility poses significant environmental risks, HLLW is not a suitable waste form for long-term storage. Thus, high-temperature processes for solidifying and isolating the radioactive components of HLLW have been developed and demonstrated by the US Department of Energy (DOE) and its contractors. Vitrification using liquidfed ceramic melters (LFCMs) is the reference process for converting US HLLW into a borosilicate glass. Two vitrification plants are currently under construction in the United States: the West Valley Demonstration Plant (WVDP) being built at the former West Valley Nuclear Fuels Services site in West Valley, New York; and the Defense Waste Processing Facility (DWPF), which is currently 85% complete at DOE`s Savannah River Plant (SRP). A third facility, the Hanford Waste Vitrification Plant (HWVP), is being designed at DOE`s Hanford Site.

  9. Evaluation of experimental factors that influence the application and discrimination capability of the product consistency test

    Energy Technology Data Exchange (ETDEWEB)

    Shade, J.W.; Piepel, G.F.

    1991-06-01

    It is desirable to have a means of monitoring possible changes in waste glass durability during protection so that the product remains within acceptable limits. A leach test called the Product Consistency test (PCT) was developed by Savannah River Laboratory (SRL) as such a production test for the Defense Waste Processing Facility (DWPF). This report examines some of the experimental factors that may be used in the PCT that could influence test precision and its ability to function as intended. An experiment was performed to investigate the effects (on pH and elemental releases of Al, Fe, K, Na, Si, B, Li, and Mn) of modifications to the test conditions of the Product Consistency Test (PCT). The experiment was replicated three times; each replicate involved leach testing two glasses with each of 24 different sets of PCT conditions. 6 refs., 1 fig., 12 tabs.

  10. Results for the First, Second, and Third Quarter Calendar Year 2015 Tank 50H WAC slurry samples chemical and radionuclide contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-18

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2015 First, Second, and Third Quarter sampling of Tank 50H for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering (D&S-FE) to support the transfer of low-level aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50H Waste Characterization System. Previous memoranda documenting the WAC analyses results have been issued for these three samples.

  11. SALT CORE SAMPLING EVOLUTION AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Nance, T; Daniel Krementz, D; William Cheng, W

    2007-11-29

    The Savannah River Site (SRS), a Department of Energy (DOE) facility, has over 30 million gallons of legacy waste from its many years of processing nuclear materials. The majority of waste is stored in 49 buried tanks. Available underground piping is the primary and desired pathway to transfer waste from one tank to another until the waste is delivered to the glass plant, DWPF, or the grout plant, Saltstone. Prior to moving the material, the tank contents need to be evaluated to ensure the correct destination for the waste is chosen. Access ports are available in each tank top in a number of locations and sizes to be used to obtain samples of the waste for analysis. Material consistencies vary for each tank with the majority of waste to be processed being radioactive salts and sludge. The following paper describes the progression of equipment and techniques developed to obtain core samples of salt and solid sludge at SRS.

  12. ANL Technical Support Program for DOE Environmental Restoration and Waste Management; Annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Bourcier, W.L.; Bradley, C.R. [and others

    1994-06-01

    This report is an overview of the progress during FY 1993 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are anticipated to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: reviewing and evaluating available data on parameters that will be important in establishing the long-term performance of glass in a repository environment; performing tests to further quantify the effects of important variables where there are deficiencies in the available data; and initiating long-term tests to determine glass performance under a range of conditions applicable to repository disposal.

  13. EXPERIMENTAL RESULTS OF THE NEPHELINE PHASE III STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2009-11-09

    This study is the third phase in a series of experiments designed to reduce conservatism in the model that predicts the formation of nepheline, a crystalline phase that can reduce the durability of high level waste glass. A Phase I study developed a series of glass compositions that were very durable while their nepheline discriminator values were well below the current nepheline discriminator limit of 0.62, where nepheline is predicted to crystallize upon slow cooling. A Phase II study selected glass compositions to identify any linear effects of composition on nepheline crystallization and that were restricted to regions that fell within the validation ranges of the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) models. However, it was not possible to identify any linear effects of composition on chemical durability performance for this set of study glasses. The results of the Phase II study alone were not sufficient to recommend modification of the current nepheline discriminator. It was recommended that the next series of experiments continue to focus not only on compositional regions where the PCCS models are considered applicable (i.e., the model validation ranges), but also be restricted to compositional regions where the only constraint limiting processing is the current nepheline discriminator. Two methods were used in selecting glasses for this Phase III nepheline study. The first was based on the relationship of the current nepheline discriminator model to the other DWPF PCCS models, and the second was based on theory of crystallization in mineral and glass melts. A series of 29 test glass compositions was selected for this study using a combination of the two approaches. The glasses were fabricated and characterized in the laboratory. After reviewing the data, the study glasses generally met the target compositions with little issue. Product Consistency Test results correlated well with the crystallization analyses in

  14. ANL Technical Support Program for DOE Environmental Restoration and Waste Management. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Bradley, C.R.; Buck, E.C.; Cunnane, J.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Gerding, T.J.; Gong, M.; Hoh, J.C.; Mazer, J.J.; Wronkiewicz, D.J. [Argonne National Lab., IL (United States); Bourcier, W.L.; Morgan, L.E.; Nielsen, J.K.; Steward, S.A. [Lawrence Livermore National Lab., CA (United States); Ewing, R.C.; Wang, L.M. [New Mexico Univ., Albuquerque, NM (United States); Han, W.T.; Tomozawa, M. [Rensselaer Polytechnic Inst., Troy, MI (United States)

    1992-03-01

    This report provides an overview of progress during FY 1991 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE, Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defenses Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are likely to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: (1) to review and evaluate available information on parameters that will be important in establishing the long-term performance of glass in a repository environment; (2) to perform testing to further quantify the effects of important variables where there are deficiencies in the available data; and (3) to initiate long-term testing that will bound glass performance under a range of conditions applicable to repository disposal.

  15. Hydroxide depletion in dilute supernates stored in waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1985-10-10

    Free hydroxide ion in dilute supernates are depleted by reaction with atmospheric carbon dioxide to form bicarbonate and carbonate species and by reaction with acidic compounds formed by the radiolytic decomposition of tetraphenylborate salts. A model of the kinetics and thermodynamics of absorption of carbon dioxide in the waste tanks has been developed. Forecasts of the rate of hydroxide depletion and the requirements for sodium hydroxide to maintain technical standards have been made for the washed sludge and washed precipitate storage tanks. Hydroxide depletion is predicted to have a minimal impact on sludge processing operations. However, in-tank precipitation and downstream DWPF operations are predicted to be significantly affected by hydroxide depletion in Tank 49H. The installation of a carbon dioxide scrubber on Tank 49H may be justified in view of the decrease in alkali content and variation in the melter feed.

  16. SRNL Review And Assessment Of WTP UFP-02 Sparger Design And Testing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R.; Duignan, M. R.; Fink, S. D.; Steimke, J. L.

    2014-03-24

    During aerosol testing conducted by Parsons Constructors and Fabricators, Inc. (PCFI), air sparger plugging was observed in small-scale and medium-scale testing. Because of this observation, personnel identified a concern that the steam spargers in Pretreatment Facility vessel UFP-02 could plug during Waste Treatment and Immobilization Plant (WTP) operation. The U. S. Department of Energy (DOE) requested that Savannah River National Laboratory (SRNL) provide consultation on the evaluation of known WTP bubbler, and air and steam sparger issues. The authors used the following approach for this task: reviewed previous test reports (including smallscale testing, medium-scale testing, and Pretreatment Engineering Platform [PEP] testing), met with Bechtel National, Inc. (BNI) personnel to discuss sparger design, reviewed BNI documents supporting the sparger design, discussed sparger experience with Savannah River Site Defense Waste Processing Facility (DWPF) and Sellafield personnel, talked to sparger manufacturers about relevant operating experience and design issues, and reviewed UFP-02 vessel and sparger drawings.

  17. Control of radioactive waste-glass melters: Part 3, Glass electrical stability

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D F; Propst, R C; Plodinec, M J

    1988-01-01

    Pilot waste-glass melter operations have indicated a tendency for noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Changes in melter geometry are being considered in Japan, Germany, and the United States to permit draining of the noble metals to reduce their effects. Physical modeling of melter electrical patterns, electrode/waste-glass electrochemistry, and non-linear electrical behavior have been evaluated for typical waste-glass. Major melter design changes should not be necessary for the US Department of Energy's Defense Waste Processing Facility (DWPF). Top electrodes will not be significantly affected. Minor alterations in melter design, monitoring of electrical characteristics, and adjustment of bottom electrode currents can provide protection from shorting if noble metals accumulate. 31 refs., 4 figs., 4 tabs.

  18. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

  19. Impact of scaling on the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-01

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  20. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  1. High-Level Waste Systems Plan. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    Brooke, J.N.; Gregory, M.V.; Paul, P.; Taylor, G.; Wise, F.E.; Davis, N.R.; Wells, M.N.

    1996-10-01

    This revision of the High-Level Waste (HLW) System Plan aligns SRS HLW program planning with the DOE Savannah River (DOE-SR) Ten Year Plan (QC-96-0005, Draft 8/6), which was issued in July 1996. The objective of the Ten Year Plan is to complete cleanup at most nuclear sites within the next ten years. The two key principles of the Ten Year Plan are to accelerate the reduction of the most urgent risks to human health and the environment and to reduce mortgage costs. Accordingly, this System Plan describes the HLW program that will remove HLW from all 24 old-style tanks, and close 20 of those tanks, by 2006 with vitrification of all HLW by 2018. To achieve these goals, the DWPF canister production rate is projected to climb to 300 canisters per year starting in FY06, and remain at that rate through the end of the program in FY18, (Compare that to past System Plans, in which DWPF production peaked at 200 canisters per year, and the program did not complete until 2026.) An additional $247M (FY98 dollars) must be made available as requested over the ten year planning period, including a one-time $10M to enhance Late Wash attainment. If appropriate resources are made available, facility attainment issues are resolved and regulatory support is sufficient, then completion of the HLW program in 2018 would achieve a $3.3 billion cost savings to DOE, versus the cost of completing the program in 2026. Facility status information is current as of October 31, 1996.

  2. RADIATION EFFECTS ON EPOXY/CARBON FIBER COMPOSITE

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E; Eric Skidmore, E

    2008-12-12

    The Department of Energy Savannah River Site vitrifies nuclear waste incident to defense programs through its Defense Waste Processing Facility (DWPF). The piping in the DWPF seal pot jumper configuration must withstand the stresses during an unlikely but potential deflagration event, and maintain its safety function for a 20-year service life. Carbon fiber-reinforced epoxy composites (CFR) were proposed for protection and reinforcement of piping during such an event. The proposed CFR materials have been ASME-approved (Section XI, Code Case N-589-1) for post-construction maintenance and is DOT-compliant per 49CFR 192 and 195. The proposed carbon fiber/epoxy composite reinforcement system was originally developed for pipeline rehabilitation and post-construction maintenance in petrochemical, refineries, DOT applications and other industries. The effects of ionizing radiation on polymers and organic materials have been studied for many years. The majority of available data are based on traditional exposures to gamma irradiation at high dose rates ({approx}10,000 Gy/hr) allowing high total dose within reasonable test periods and general comparison of different materials exposed at such conditions. However, studies in recent years have shown that degradation of many polymers are sensitive to dose rate, with more severe degradation often observed at similar or even lower total doses when exposed to lower dose rates. This behavior has been primarily attributed to diffusion-limited oxidation which is minimized during very high dose rate exposures. Most test standards for accelerated aging and nuclear qualification of components acknowledge these limitations. The results of testing to determine the radiation resistance and microstructural effects of gamma irradiation exposure on a bisphenol-A based epoxy matrix composite reinforced with carbon fibers are presented. This work provides a foundation for a more extensive evaluation of dose rate effects on advanced epoxy

  3. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, R.G.

    1995-06-07

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  4. SLUDGE BATCH SUPPLEMENTAL SRAT RUNS EFFECTS OF YIELD STRESS AND CYCLE TIME INCREASE

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.

    2010-08-10

    The Defense Waste Processing Facility (DWPF) has transitioned from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing. Phase III-Tank 40 Chemical Process Cell (CPC) flowsheet simulations have been completed to determine the initial processing conditions for the DWPF transition. The impact of higher yield stress (SB-25) and cycle time extension (SB6-26) on the physical and chemical effects of SB6 processing during the SRAT (Sludge Receipt and Adjustment Tank) cycle were evaluated. No significant impacts on the SRAT chemistry were noted during the higher yield stress run. In particular, no impact on mercury stripping was noted, indicating that settling of elemental mercury was not the primary factor in the low mercury recovery noted in the flowsheet testing. The SRAT product from this run retained the higher yield stress of the starting sludge. The run indicated that ultrasonication is an effective tool to increase the yield stress of simulants to targeted values and the chemistry of downstream processing is not impacted. Significant differences were noted in the cycle time extension test compared to the Phase III flowsheet baseline runs. Large decreases in the ammonia and hydrogen generation rates were noted along with reduced mercury stripping efficiency. The latter effect is similar to that of operating under a high acid stoichiometry. It is conceivable that, under the distinctly different conditions of high formic acid concentration (high acid run) or slow formic acid addition (extended run), that mercury could form amalgams with noble metals, possibly rendering both inert. Thus, the removal of free mercury and noble metals could decrease the rate of catalytic formic acid reactions which would decrease generation of ammonium and hydrogen. The potential underlying reasons for the behavior noted during this run would require additional testing.

  5. PROCESSING ALTERNATIVES FOR DESTRUCTION OF TETRAPHENYLBORATE

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D; Thomas Peters, T; Samuel Fink, S

    2007-02-27

    Two processes were chosen in the 1980's at the Savannah River Site (SRS) to decontaminate the soluble High Level Waste (HLW). The In Tank Precipitation (ITP) process (1,2) was developed at SRS for the removal of radioactive cesium and actinides from the soluble HLW. Sodium tetraphenylborate was added to the waste to precipitate cesium and monosodium titanate (MST) was added to adsorb actinides, primarily uranium and plutonium. Two products of this process were a low activity waste stream and a concentrated organic stream containing cesium tetraphenylborate and actinides adsorbed on monosodium titanate (MST). A copper catalyzed acid hydrolysis process was built to process (3, 4) the Tank 48H cesium tetraphenylborate waste in the SRS's Defense Waste Processing Facility (DWPF). Operation of the DWPF would have resulted in the production of benzene for incineration in SRS's Consolidated Incineration Facility. This process was abandoned together with the ITP process in 1998 due to high benzene in ITP caused by decomposition of excess sodium tetraphenylborate. Processing in ITP resulted in the production of approximately 1.0 million liters of HLW. SRS has chosen a solvent extraction process combined with adsorption of the actinides to decontaminate the soluble HLW stream (5). However, the waste in Tank 48H is incompatible with existing waste processing facilities. As a result, a processing facility is needed to disposition the HLW in Tank 48H. This paper will describe the process for searching for processing options by SRS task teams for the disposition of the waste in Tank 48H. In addition, attempts to develop a caustic hydrolysis process for in tank destruction of tetraphenylborate will be presented. Lastly, the development of both a caustic and acidic copper catalyzed peroxide oxidation process will be discussed.

  6. Improved mixing and sampling systems for vitrification melter feeds

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    This report summarizes the methods used and results obtained during the progress of the study of waste slurry mixing and sampling systems during fiscal year 1977 (FY97) at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The objective of this work is to determine optimal mixing configurations and operating conditions as well as improved sampling technology for defense waste processing facility (DWPF) waste melter feeds at US Department of Energy (DOE) sites. Most of the research on this project was performed experimentally by using a tank mixing configuration with different rotating impellers. The slurry simulants for the experiments were prepared in-house based on the properties of the DOE sites` typical waste slurries. A sampling system was designed to withdraw slurry from the mixing tank. To obtain insight into the waste mixing process, the slurry flow in the mixing tank was also simulated numerically by applying computational fluid dynamics (CFD) methods. The major parameters investigated in both the experimental and numerical studies included power consumption of mixer, mixing time to reach slurry uniformity, slurry type, solids concentration, impeller type, impeller size, impeller rotating speed, sampling tube size, and sampling velocities. Application of the results to the DWPF melter feed preparation process will enhance and modify the technical base for designing slurry transportation equipment and pipeline systems. These results will also serve as an important reference for improving waste slurry mixing performance and melter operating conditions. These factors will contribute to an increase in the capability of the vitrification process and the quality of the waste glass.

  7. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

    1994-10-20

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

  8. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    Energy Technology Data Exchange (ETDEWEB)

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

    1996-03-01

    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles.

  9. Bymaskinen

    DEFF Research Database (Denmark)

    Busk, Malene

    2007-01-01

    netop karakteren af konsistente enheder, fx byen, som gør noget ved os, som er sammensat af bestemte relationer til trafik, opland, krig, fritænkning, stat m.v., som stimulerer nogle relationer og hæmmer andre relationer. Med inddragelse af Virilio og Grosz kommenteres FN's opgørelse over, at over 50......% af verdens befolkning nu lever i byer. Virilio gør opmærksom på byens omformning under de virtuelle kontrolteknologier og Grosz gør opmærksom på værdien af, at arkitekturen kommer i kontakt med noget 'udenfor' den selv: de nye krav til arkitekturen om at tænke og ikke blot føje sig efter de stærkeste...

  10. Re-Innovating. Technological research contribution in the recovery of Our Lady of Mercy Church in Baranzate

    Directory of Open Access Journals (Sweden)

    Anna Mangiarotti

    2011-04-01

    Full Text Available The recovery project of Our Lady of Mercy Church in Baranzate, by Angelo Mangiarotti and Bruno Morassutti, with Aldo Favini for structures, built in 1956, and now in charge by Giulio Barazzetta, Anna Mangiarotti, Ingrid Paoletti, Tito Neri for structures and Giancarlo Chiesa for hvac, has requested a high technological effort in order to identify the technical options in order to ‘re-innovate’ on this building. The aim is to increase performances and internal comfort, while maintaining the original concept of the church. The deteriorated envelope will be changed with a façade envelope in steel dry assembled and a triple glazed unit high performance and with face fritted surfaced in order to reproduce the original architectural effects. Thanks to hvac, performances are radically improved.

  11. Characterization studies of late Ottoman ceramics recovered from Istanbul Tekfur Palace excavation

    Energy Technology Data Exchange (ETDEWEB)

    Geckinli, A.E. [Istanbul Technical Univ. (Turkey). Chemistry and Metallurgical Engineering Faculty; Goektas, A.A.; Sueer, A. [Canakkale Ceramic Factory, Research and Development Lab., Can- Canakkale (Turkey); Yenisehirlioglu, F. [Hacettepe Univ., Dept. of History of Art, Beytepe-Ankara (Turkey)

    2002-07-01

    Tekfur Palace in Istanbul was used as a royal factory for ceramic and glass production between 1719- 1730. Excavation was started at Tekfur Palace in 1995 and lots of ceramic fragments including tiles, European porcelains and, various red and white body pottery were recovered. In addition to those sherds, raw and painting materials, frit and slag were also found. In this paper, the first report on the characterization of ten selected excavated underglaze decorated and also undecorated Tekfur tiles are given. The results compared with the 16. Century high quality Iznik tiles in order to investigate the reasons of the decline of quality in Ottoman ceramic technology during the 18{sup th} Century. (orig.)

  12. Análisis de grasas y vitamina C en papas congeladas fritas en diferentes aceites Analysis of fats and vitamin c in frozen potatoes fried in different oils

    OpenAIRE

    María Sabrina Lencina; María Beatriz Gomez; Eduardo Raul Costa; Ana Rosa Abalos; Ana Frigola; María José Estevés

    2012-01-01

    Las papas prefritas congeladas son mayormente destinadas a los servicios de comidas rápidas incorporándose recientemente al hogar. El método más utilizado para su elaboración es la fritura, el cual se caracteriza por la absorción de lípidos y por menor pérdida de nutrientes termolábiles, lo que puede contribuir a la preservación de vitamina C frente a otros métodos de cocción. Este estudio se propone comparar el contenido de vitamina C y grasas en variedades de papas prefritas y frescas, frit...

  13. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

    Directory of Open Access Journals (Sweden)

    Claudia Schinke

    2013-01-01

    Full Text Available Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100 μm, air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters. Best results were obtained with the simple medium supernatant by combining the stepwise addition of small amounts of the surfactant with the variation of the air flow rates along the separation. Inert proteins were foamed out first, and the subsequent foamate was enriched in the enzymes, showing estimated activity recovery (R, enrichment ratio (E, and purification factor (P of 45%, 34.7, and 2.9, respectively. Lipases were present in the enriched foamate.

  14. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  15. Application of Genetic Algorithm and Particle Swarm Optimization techniques for improved image steganography systems

    Directory of Open Access Journals (Sweden)

    Jude Hemanth Duraisamy

    2016-01-01

    Full Text Available Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA and Particle Swarm Optimization (PSO have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT and Finite Ridgelet Transform (FRIT are used in combination with GA and PSO to improve the efficiency of the image steganography system.

  16. Application of Genetic Algorithm and Particle Swarm Optimization techniques for improved image steganography systems

    Science.gov (United States)

    Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela

    2016-01-01

    Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.