WorldWideScience

Sample records for dwpf defense waste

  1. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    Weisman, A.F.; Knight, J.R.; McIntosh, D.L.; Papouchado, L.M.

    1988-01-01

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  2. Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory

    International Nuclear Information System (INIS)

    Shanahan, K.L.

    1992-02-01

    A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning

  3. Quality Assurance Program description, Defense Waste Processing Facility (DWPF)

    International Nuclear Information System (INIS)

    Maslar, S.R.

    1992-01-01

    This document describes the Westinghouse Savannah River Company's (WSRC) Quality Assurance Program for Defense Waste Processing at the Savannah River Site (SRS). WSRC is the operating contractor for the US Department of Energy (DOE) at the SRS. The following objectives are achieved through developing and implementing the Quality Assurance Program: (1) Ensure that the attainment of quality (in accomplishing defense high-level waste processing objectives at the SRS) is at a level commensurate with the government's responsibility for protecting public health and safety, the environment, the public investment, and for efficiently and effectively using national resources. (2) Ensure that high-level waste from qualification and production activities conform to requirements defined by OCRWM. These activities include production processes, equipment, and services; and products that are planned, designed, procured, fabricated, installed, tested, operated, maintained, modified, or produced

  4. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  5. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    International Nuclear Information System (INIS)

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  6. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  7. Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs) 2 SO 4 , (Na, K, Cs)BF 4 , (Na, K) 2 B 4 O 7 and (Na,K)CrO 4 species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK) 2 SO 4 , (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na 2 BF 4 ) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur

  8. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  9. The DWPF waste form qualification program

    International Nuclear Information System (INIS)

    Marra, S.L.; Plodinec, M.J.

    1994-01-01

    Prior to the introduction of radioactive feed into the Defense Waste Processing Facility for immobilization in borosilicate glass an extensive waste qualification program must be completed. The DWPF must demonstrate its ability to comply with the Waste Acceptance Product Specifications. This ability is being demonstrated through laboratory and pilot scale work and will be completed after the full operation of the DWPF using various simulated feeds

  10. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  11. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD

  12. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  13. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  14. Conditions for precipitation of copper phases in DWPF waste glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Ramsey, W.G.

    1993-01-01

    The Defense Waste Processing Facility (DWPF) precipitate hydrolysis process requires the use of copper formate catalyst. The expected absorbed radiation doses to the precipitate require levels of copper formate that increase the potential for the precipitation of metallic copper in the DWPF Melter. The conditions required to avoid the precipitation of copper are described

  15. ALTERNATIVE ANALYTICAL DIGESTION SCHEME FOR THE DEFENSE WASTE PROCESSING FACILITY (DWPF) SLURRY RECEIPT AND ADJUSTMENT TANK (SRAT) ANALYSES

    International Nuclear Information System (INIS)

    Click, D; Charles02 Coleman, C; Frank Pennebaker, F; Kristine Zeigler, K; Tommy Edwards, T

    2007-01-01

    As part of the radioactive sludge batch qualification, Savannah River National Laboratory (SRNL) performs a verification of the digestion methods to be used by the Defense Waste Processing Facility (DWPF) Lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt process control samples and SRAT product process control samples. Verification of these methods on Sludge Batch 4 (SB4) radioactive sludge slurry indicated SB4 contains a higher concentration of aluminum (Al) than previous sludge batches. Aluminum plays a direct role in vitrification chemistry. At moderate levels, Al assists in glass forming, but at elevated levels Al can increase the viscosity of the molten glass which can adversely impact glass production rate and the volume of glass produced via limiting waste loading.3 Most of the Al present in SB4 is in the form of Al hydroxide as a mixture of gibbsite [α-aluminum trihydroxide, α-Al(OH) 3 ] and boehmite (α-aluminum oxyhydroxide, α-AlOOH) in an unknown ratio. Testing done at SRNL indicates Gibbsite is soluble at low pH but boehmite has limited solubility in the acid mixture (DWPF Cold Chem Method (CC), 25 mL nitric acid (HNO 3 ) and 25 mL hydrofluoric acid (HF)) used by DWPF to digest process control samples. Because Al plays such an important part in vitrification chemistry, it is necessary to have a robust digestion method that will dissolve all forms of Al present in the radioactive sludge while not increasing the analytical lab turnaround time. SRNL initially suggested that the DWPF lab use the sodium peroxide/hydroxide fusion (PF) digestion method4 to digest SRAT receipt and SRAT product radioactive sludge as an alternative to the acid digestion method to ensure complete digestion based on results obtained from digesting a SB4 radioactive sample.2 However, this change may have a significant impact on the DWPF lab analytical turnaround time due to the inefficiency in drying the radioactive sludge contained in a peanut

  16. DWPF waste form compliance plan (Draft Revision)

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Marra, S.L.

    1991-01-01

    The Department of Energy currently has over 100 million liters of high-level radioactive waste in storage at the Savannah River Site (SRS). In the late 1970's, the Department of Energy recognized that there were significant safety and cost advantages associated with immobilizing the high-level waste in a stable solid form. Several alternative waste forms were evaluated in terms of product quality and reliability of fabrication. This evaluation led to a decision to build the Defense Waste Processing Facility (DWPF) at SRS to convert the easily dispersed liquid waste to borosilicate glass. In accordance with the NEPA (National Environmental Policy Act) process, an Environmental Impact Statement was prepared for the facility, as well as an Environmental Assessment of the alternative waste forms, and issuance of a Record of Decision (in December, 1982) on the waste form. The Department of Energy, recognizing that start-up of the DWPF would considerably precede licensing of a repository, instituted a Waste Acceptance Process to ensure that these canistered waste forms would be acceptable for eventual disposal at a federal repository. This report is a revision of the DWPF compliance plan

  17. REMOTE IN-CELL SAMPLING IMPROVEMENTS PROGRAM AT THESAVANNAH RIVER SITE (SRS) DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Marzolf, A

    2007-01-01

    Remote Systems Engineering (RSE) of the Savannah River National Lab (SRNL) in combination with the Defense Waste Processing Facility(DWPF) Engineering and Operations has evaluated the existing equipment and processes used in the facility sample cells for 'pulling' samples from the radioactive waste stream and performing equipment in-cell repairs/replacements. RSE has designed and tested equipment for improving remote in-cell sampling evolutions and reducing the time required for in-cell maintenance of existing equipment. The equipment within the present process tank sampling system has been in constant use since the facility start-up over 17 years ago. At present, the method for taking samples within the sample cells produces excessive maintenance and downtime due to frequent failures relative to the sampling station equipment and manipulator. Location and orientation of many sampling stations within the sample cells is not conducive to manipulator operation. The overextension of manipulators required to perform many in-cell operations is a major cause of manipulator failures. To improve sampling operations and reduce downtime due to equipment maintenance, a Portable Sampling Station (PSS), wireless in-cell cameras, and new commercially available sampling technology has been designed, developed and/or adapted and tested. The uniqueness of the design(s), the results of the scoping tests, and the benefits relative to in-cell operation and reduction of waste are presented

  18. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  19. Evaluation Of The Impact Of The Defense Waste Processing Facility (DWPF) Laboratory Germanium Oxide Use On Recycle Transfers To The H-Tank Farm

    International Nuclear Information System (INIS)

    Jantzen, C.; Laurinat, J.

    2011-01-01

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO 3 ), germanium (IV) oxide (GeO 2 ) and cesium carbonate (Cs 2 CO 3 ) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to ∼12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO 2 /year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO 2 may increase to 4 kg/yr when improvements are implemented to attain an annual canister production

  20. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-25

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  1. Nitric-glycolic flowsheet reduction/oxidation (redox) model for the defense waste processing facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ramsey, W. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-14

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, retains radionuclides in the melt and thus the final glass. Specifically, long-lived radioactive 99Tc species are less volatile in the reduced Tc4+ state as TcO2 than as NaTcO4 or Tc2O7, and ruthenium radionuclides in the reduced Ru4+ state are insoluble RuO2 in the melt which are not as volatile as NaRuO4 where the Ru is in the +7 oxidation state. Similarly, hazardous volatile Cr6+ occurs in oxidized melt pools as Na2CrO4 or Na2Cr2O7, while the Cr+3 state is less volatile and remains in the melt as NaCrO2 or precipitates as chrome rich spinels. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam.

  2. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    International Nuclear Information System (INIS)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

    2013-01-01

    This report contains the results and comparison of data generated from inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition

  3. Chemical compatibility of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.

    1993-01-01

    The Waste Acceptance Preliminary Specifications (WAPS) require that the contents of the canistered waste form are compatible with one another and the stainless steel canister. The canistered waste form is a closed system comprised of a stainless steel vessel containing waste glass, air, and condensate. This system will experience a radiation field and an elevated temperature due to radionuclide decay. This report discusses possible chemical reactions, radiation interactions, and corrosive reactions within this system both under normal storage conditions and after exposure to temperatures up to the normal glass transition temperature, which for DWPF waste glass will be between 440 and 460 degrees C. Specific conclusions regarding reactions and corrosion are provided. This document is based on the assumption that the period of interim storage prior to packaging at the federal repository may be as long as 50 years

  4. Process arrangement options for Defense waste immobilization

    International Nuclear Information System (INIS)

    1980-02-01

    Current plans are to immobilize the SRP high-level liquid wastes in a high integrity form. Borosilicate glass was selected in 1977 as the reference waste form and a mjaor effort is currently underway to develop the required technology. A large new facility, referred to as the Defense Waste Processing Facility (DWPF) is being designed to carry out this mission, with project authorization targeted for 1982 and plant startup in 1989. However, a number of other process arrangements or manufacturing strategies, including staging the major elements of the project or using existing SRP facilities for some functions, have been suggested in lieu of building the reference DWPF. This study assesses these various options and compares them on a technical and cost basis with the DWPF. Eleven different manufacturing options for SRP defense waste solidification were examined in detail. These cases are: (1) vitrification of acid waste at current generation rate; (2) vitrification of current rate acid waste and caustic sludge; (3 and 4) vitrification of the sludge portion of neutralized waste; (5) decontamination of salt cake and storage of concentrated cesium and strontium for later immobilization; (6) processing waste in a facility with lower capacity than the DWPF; (7) processing waste in a combination of existing and new facilities; (8) waste immobilization in H Canyon; (9) vitrification of both sludge and salt; (10) DWPF with onsite storage; (11) deferred authorization of DWPF

  5. Defense Waste Processing Facility (DWPF): The vitrification of high-level nuclear waste. (Latest citations from the Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning a production-scale facility and the world's largest plant for the vitrification of high-level radioactive nuclear wastes (HLW) located in the United States. Initially based on the selection of borosilicate glass as the reference waste form, the citations present the history of the development including R ampersand D projects and the actual construction of the production facility at the DOE Savannah River Plant (SRP). (Contains a minimum of 177 citations and includes a subject term index and title list.)

  6. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  7. Defense waste processing facility startup progress report

    International Nuclear Information System (INIS)

    Iverson, D.C.; Elder, H.H.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing

  8. Environmental information document defense waste processing facility

    International Nuclear Information System (INIS)

    1981-07-01

    This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed

  9. Nuclear criticality safety analysis summary report: The S-area defense waste processing facility

    International Nuclear Information System (INIS)

    Ha, B.C.

    1994-01-01

    The S-Area Defense Waste Processing Facility (DWPF) can process all of the high level radioactive wastes currently stored at the Savannah River Site with negligible risk of nuclear criticality. The characteristics which make the DWPF critically safe are: (1) abundance of neutron absorbers in the waste feeds; (2) and low concentration of fissionable material. This report documents the criticality safety arguments for the S-Area DWPF process as required by DOE orders to characterize and to justify the low potential for criticality. It documents that the nature of the waste feeds and the nature of the DWPF process chemistry preclude criticality

  10. The defense waste processing facility: A status report

    International Nuclear Information System (INIS)

    Cowan, S.P.; Fulmer, D.C.

    1987-01-01

    The Defense Waste Processing Fascility (DWPF) will be the nation's first production scale facility for immobilizing high-level waste for disposal. It will also be the largest facility of its kind in the world. The technology, design, and construction efforts are on schedule for ''hot'' operation in fiscal year 1990. This paper provides a status report on the DWPF technology, design, and construction, and describes some of the challenges that have arisen during design and construction

  11. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  12. Defense waste processing facility at Savannah River Plant. Instrument and power jumpers

    International Nuclear Information System (INIS)

    Heckendorm, F.M. II.

    1983-06-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant is in the final design stage. Development of equipment interconnecting devices or jumpers for use within the remotely operated processing canyon is now complete. These devices provide for the specialized instrument and electrical requirements of the DWPF process for low-voltage, high-frequency, and high-power interconnections

  13. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO2-, Na2O-, and Cs2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and

  14. Overview - Defense Waste Processing Facility Operating Experience

    International Nuclear Information System (INIS)

    Norton, M.R.

    2002-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the world's largest radioactive waste vitrification facility. Radioactive operations began in March 1996 and over 1,000 canisters have been produced. This paper presents an overview of the DWPF process and a summary of recent facility operations and process improvements. These process improvements include efforts to extend the life of the DWPF melter, projects to increase facility throughput, initiatives to reduce the quantity of wastewater generated, improved remote decontamination capabilities, and improvements to remote canyon equipment to extend equipment life span. This paper also includes a review of a melt rate improvement program conducted by Savannah River Technology Center personnel. This program involved identifying the factors that impacted melt rate, conducting small scale testing of proposed process changes and developing a cost effective implementation plan

  15. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  16. Supplemental environmental impact statement - defense waste processing facility

    International Nuclear Information System (INIS)

    1994-11-01

    This document supplements the Final Environmental Impact Statement (EIS) DOE Issued in 1982 (DOE/EIS-0082) to construct and operate the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), a major DOE installation in southwestern South Carolina. That EIS supported the decision to construct and operate the DWPF to immobilize high-level waste generated as a result of nuclear materials processing at SRS. The DWPF would use a vitrification process to incorporate the radioactive waste into borosilicate glass and seal it in stainless steel canisters for eventual disposal at a permanent geologic repository. The DWPF is now mostly constructed and nearly ready for full operation. However, DOE has made design changes to the DWPF since the 1982 EIS to improve efficiency and safety of the facility. Each of these modifications was subjected to appropriate NEPA review. The purpose of this Supplemental EIS is to assist DOE in deciding whether and how to proceed with operation of the DWPF as modified since 1982 while ensuring appropriate consideration of potential environmental effects. In this document, DOE assesses the potential environmental impacts of completing and operating the DWPF in light of these design changes, examines the impact of alternatives, and identifies potential actions to be taken to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socioeconomics, and health and safety of onsite workers and the public are included in the assessment

  17. Preliminary technical data summary defense waste processing facility stage 2

    International Nuclear Information System (INIS)

    1980-12-01

    This Preliminary Technical Data Summary presents the technical basis for design of Stage 2 of the Staged Defense Waste Processing Facility (DWPF). Process changes incorporated in the staged DWPF relative to the Alternative DWPF described in PTDS No. 3 (DPSTD-77-13-3) are the result of ongoing research and development and are aimed at reducing initial capital investment and developing a process to efficiently immobilize the radionuclides in Savannah River Plant (SRP) high-level liquid waste. The radionuclides in SRP waste are present in sludge that has settled to the bottom of waste storage tanks and in crystallized salt and salt solution (supernate). Stage 1 of the DWPF receives washed, aluminum dissolved sludge from the waste tank farms and immobilizes it in a borosilicate glass matrix. The supernate is retained in the waste tank farms until completion of Stage 2 of the DWPF at which time it is filtered and decontaminated by ion exchange in the Stage 2 facility. The decontaminated supernate is concentrated by evaporation and mixed with cement for burial. The radioactivity removed from the supernate is fixed in borosilicate glass along with the sludge. This document gives flowsheets, material and curie balances, material and curie balance bases, and other technical data for design of Stage 2 of the DWPF. Stage 1 technical data are presented in DPSTD-80-38

  18. Materials evaluation programs at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided

  19. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  20. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  1. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    International Nuclear Information System (INIS)

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage

  2. Dew point, internal gas pressure, and chemical composition of the gas within the free volume of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.; Herman, D.T.; Crump, S.; Miller, T.J.; McIntosh, J.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) produced 55 canistered waste forms containing simulated waste glass during the four Waste Qualification campaigns of the DWPF Startup Test Program. Testing of the gas within the free volume of these canisters for dew point, internal gas pressure, and chemical composition was performed as part of a continuing effort to demonstrate compliance with the Waste Acceptance Product Specifications. Results are presented for six glass-filled canisters. The dew points within the canisters met the acceptance criterion of < 20 degrees C for all six canisters. Factors influencing the magnitude of the dew point are presented. The chemical composition of the free volume gas was indistinguishable from air for all six canisters. Hence, no foreign materials were present in the gas phase of these canisters. The internal gas pressures within the sealed canisters were < 1 atm at 25 degrees C for all six canisters which readily met the acceptance criterion of an internal gas pressure of less than 1.5 atm at 25 degrees C. These results provided the evidence required to demonstrate compliance with the Waste Acceptance Product Specifications

  3. Task plan: Temperatures in DWPF Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Hardy, B.J.

    1993-01-01

    The Bechtel National, Inc. Detailed Design Instructions for Structural Design (DDI-02) requires that concrete components of the GWSB not exceed 150 degrees F for structural elements and 200 degrees F locally over a 24 hour period. In addition, the Waste Acceptance Product Specifications (WAPS) sets the maximum post cooldown temperature of the glass waste-form at 400 degrees C. Various scenarios can be postulated which result in elevated glass and concrete temperatures in the GWSB. Therefore, it is important to determine the concrete and glass temperatures during both normal and off-normal conditions. This document details specific tasks required to develop a technically defensible and verifiable methodology for determining maximum temperatures for the waste-forms and the GWSB concrete structures. All models used in this analysis will satisfy Quality Assurance requirements and be defensible to review and oversight committees

  4. APET methodology for Defense Waste Processing Facility: Mode C operation

    International Nuclear Information System (INIS)

    Taylor, R.P. Jr.; Massey, W.M.

    1995-04-01

    Safe operation of SRS facilities continues to be the highest priority of the Savannah River Site (SRS). One of these facilities, the Defense Waste Processing Facility or DWPF, is currently undergoing cold chemical runs to verify the design and construction preparatory to hot startup in 1995. The DWPFF is a facility designed to convert the waste currently stored in tanks at the 200-Area tank farm into a form that is suitable for long term storage in engineered surface facilities and, ultimately, geologic isolation. As a part of the program to ensure safe operation of the DWPF, a probabilistic Safety Assessment of the DWPF has been completed. The results of this analysis are incorporated into the Safety Analysis Report (SAR) for DWPF. The usual practice in preparation of Safety Analysis Reports is to include only a conservative analysis of certain design basis accidents. A major part of a Probabilistic Safety Assessment is the development and quantification of an Accident Progression Event Tree or APET. The APET provides a probabilistic representation of potential sequences along which an accident may progress. The methodology used to determine the risk of operation of the DWPF borrows heavily from methods applied to the Probabilistic Safety Assessment of SRS reactors and to some commercial reactors. This report describes the Accident Progression Event Tree developed for the Probabilistic Safety Assessment of the DWPF

  5. Initial results from the canistered waste forms produced during the first campaign of the DWPF Startup Test Program

    International Nuclear Information System (INIS)

    Harbour, J.R.

    1995-01-01

    As part of the Defense Waste Processing Facility (DWPF) Startup Test Program, approximately 90 canisters will be filled with glass containing simulated radioactive waste during five separate campaigns. The first campaign is a facility acceptance test to demonstrate the operability of the facility and to collect initial data on the glass and the canistered waste forms. During the next four campaigns (the waste qualification campaigns) data will be obtained which will be used to demonstrate that the DWPF product meets DOE's Waste Acceptance Product Specifications (WAPS). Currently 12 of the 16 canisters have been filled with glass during the first campaign (FA-13). This paper describes the tests that have been carried out on these 12 glass-filled canisters and presents the data with reference to the acceptance criteria of the WAPS. These tests include measurement of canister dimensions prior to and after glass filling. dew point, composition, and pressure of the gas within the free volume of the canister, fill height, free volume, weight, leak rates of welds and temporary seals, and weld parameters

  6. Assessment of combustion and related issues in the DWPF and ITP waste tanks

    International Nuclear Information System (INIS)

    Ginsberg, T.

    1994-04-01

    This report presents a review of the safety analyses described in the DWPF Safety Analysis Report, the combustion analysis of the ITP Tanks 48 and 49, and presents conclusions drawn from interviews staff on issues related to accident analysis, in particular on issues related to combustion phenomena. The major objectives of this report are to clarify the issues related to the modes of combustion and expected loads on process vessels and structures and, in addition, to offer recommendations which would improve the defense-in-depth posture of the DWPF

  7. Projected radionuclide inventories of DWPF glass from current waste at time of production

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1993-01-01

    The Waste Acceptance Preliminary Specifications (WAPS) require that the DWPF estimate the inventory of long-lived radionuclides present in the waste glass, and report the values in the Waste Form Qualification Report. In this report, conservative (biased high) estimates of the radionuclide inventory of glass produced from waste currently in the Tank Farm are provided. In most cases, these calculated values compare favorably with actual data. In those cases where the agreement is not good, the values reported here are conservative

  8. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  9. Remote instrument/electrical wall nozzle replaement in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1983-09-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant is in the final design stage. Development of remotely replaceable instrument and electrical through-wall wiring is now complete. These assemblies connect the power and control signals from the high radiation environment to the personnel access areas. The ability to replace them will extend the life and lower the cost of the DWPF. 3 references, 22 figures, 2 tables

  10. DWPF process control

    International Nuclear Information System (INIS)

    Heckendoin, F.M. II

    1983-01-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant (SRP) is in the final design stage. Instrumentation to provide the parameter sensing required to assure the quality of the two-foot-diameter, ten-foot-high waste canister is in the final stage of development. All step of the process and instrumentation are now operating as nearly full-scale prototypes at SRP. Quality will be maintained by assuring that only the intended material enters the canisters, and by sensing the resultant condition of the filled canisters. Primary emphasis will be on instrumentation of the process

  11. Copper solubility in DWPF, Batch 1 waste glass: Update report

    International Nuclear Information System (INIS)

    Schumacker, R.F.

    1992-01-01

    The ''Late Washing'' Step in the processing of precipitate will require the use of additional copper formate in the Precipitate Reactor to catalyze the hydrolysis reaction. The increased copper concentration in the melter feed increases the potential for metal precipitation during the vitrification of the melter feed. This report describes recent results with a conservative glass selected from the DWPF acceptable region in the Batch 1 Variability Study

  12. Technical bases for the DWPF testing program

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the first production facility in the United States for the immobilization of high-level nuclear waste. Production of DWPF canistered wasteforms will begin prior to repository licensing, so decisions on facility startup will have to be made before the final decisions on repository design are made. The Department of Energy's Office of Civilian Radioactive Waste Management (RW) has addressed this discrepancy by defining a Waste Acceptance Process. This process provides assurance that the borosilicate-glass wasteform, in a stainless-steel canister, produced by the DWPF will be acceptable for permanent storage in a federal repository. As part of this process, detailed technical specifications have been developed for the DWPF product. SRS has developed detailed strategies for demonstrating compliance with each of the Waste Acceptance Process specifications. An important part of the compliance is the testing which will be carried out in the DWPF. In this paper, the bases for each of the tests to be performed in the DWPF to establish compliance with the specifications are described, and the tests are detailed. The results of initial tests relating to characterization of sealed canisters are reported

  13. Remote viewing of melter interior Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1986-01-01

    A remote system has been developed and demonstrated for continuous reviewing of the interior of a glass melter, which is used to vitrify highly radioactive waste. The system is currently being implemented with the Defense Waste Processing Facility (DWPF) now under construction at the Savannah River Plant (SRP). The environment in which the borescope/TV unit is implemented combines high temperature, high ionizing radiation, low light, spattering, deposition, and remote maintenance

  14. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K.

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of ''refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs

  15. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K. (ed.)

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  16. Defense waste processing facility radioactive operations. Part 1 - operating experience

    International Nuclear Information System (INIS)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and the world's largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge trademark level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs

  17. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    Energy Technology Data Exchange (ETDEWEB)

    Ray, J.W. [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  18. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form

  19. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  20. Defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.; Maher, R.; Mellen, J.B.; Shafranek, L.F.; Stevens, W.R. III.

    1984-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level waste at the Savannah River Plant near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes produced by defense activities at the site. At the present time engineering and design are 45% complete, the site has been cleared, and startup is expected in 1989. This paper will describe project status as well as features of the design. 9 figures

  1. Design and construction of the defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility

  2. DWPF remotable television and cell lighting facilities

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1984-01-01

    The Defense Waste Processing Facility (DWPF) for radioactive waste vitrification at the Savannah River Plant (SRP) is now under construction. Development of specialized low cost television (TV) viewing equipment for in-cell and within-melter applications is now complete. High resolution TV cameras not originally designed for high radiation environments have been demonstrated in crane remotable packages to be well suited to the DWPF. High intensity in-cell lighting has also been demonstrated in crane remotable assemblies. These dual 1000 W units (2000 W total) are used to support the multiplicity of TV and cell window viewing requirements. 8 figures

  3. DWPF glass transition temperatures: What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.; Ramsey, A.A.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site will immobilize high-level radioactive liquid waste in borosilicate glass. The glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  4. Task technical plan: DWPF air permit/dispersion modeling

    International Nuclear Information System (INIS)

    Lambert, D.P.

    1993-01-01

    This Task Technical Plan summarizes work required to project the benzene emissions from the Late Wash Facility (LWF) as well as update the benzene, mercury, and NO x emissions from the remainder of the Defense Waste Processing Facility (DWPF). These calculations will reflect (1) the addition of the LWF and (2) the replacement of formic acid with nitric acid in the melter preparation process. The completed calculations will be used to assist DWPF in applying for the LWF Air Quality Permit

  5. SCIX IMPACT ON DWPF CPC

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2011-07-14

    A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheet includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not

  6. Glass sampling program during DWPF Integrated Cold Runs

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1990-01-01

    The described glass sampling program is designed to achieve two objectives: To demonstrate Defense Waste Processing Facility (DWPF) ability to control and verify the radionuclide release properties of the glass product; To confirm DWPF's readiness to obtain glass samples during production, and SRL's readiness to analyze and test those samples remotely. The DWPF strategy for control of the radionuclide release properties of the glass product, and verification of its acceptability are described in this report. The basic approach of the test program is then defined

  7. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    International Nuclear Information System (INIS)

    1992-07-01

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to ''review process technology issues preventing start up of the DWPF.'' This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992

  8. Process technology for vitrification of defense high-level waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boersma, M.D.

    1984-01-01

    Vitrification in borosilicate glass is now the leading worldwide process for immobilizing high-level radioactive waste. Each vitrification project, however, has its unique mission and technical challenges. The Defense Waste Vitrification Facility (DWPF) now under construction at the Savannah River Plant will concentrate and vitrify a large amount of relatively low-power alkaline waste. Process research and development for the DWPF have produced significant advances in remote chemical operations, glass melting, off-gas treatment, slurry handling, decontamination, and welding. 6 references, 1 figure, 5 tables

  9. Criticality assessment of initial operations at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ha, B.C.; Williamson, T.G.

    1993-01-01

    At the Savannah River Site (SRS), high level radioactive wastes will be immobilized into borosilicate glass for long term storage and eventual disposal. Since the waste feed streams contain uranium and plutonium, the Defense Waste Processing Facility (DWPF) process has been evaluated to ensure that a subcritical condition is maintained. It was determined that the risk of nuclear criticality in the DWPF during initial, sludge-only operations is minimal due to the dilute concentration of fissile material in the sludge combined with excess neutron absorbers

  10. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  11. The DWPF strategy for producing an acceptable product

    International Nuclear Information System (INIS)

    Goldston, W.T.; Plodinec, M.J.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will convert the 130 million liters of high-level nuclear waste at SRS into stable borosilicate glass. Production of canistered waste forms by the DWPF is scheduled to begin well before submission of the license application for the first repository. The Department of Energy has defined waste acceptance specifications to ensure that DWPF canistered waste forms will be acceptable for eventual disposal. To ensure that canistered waste forms meet those specifications, a program is being carried out to qualify the waste form and those aspects of the production process which affect product quality. This program includes: Pre-production qualification testing of simulated and actual waste forms; Disciplined demonstrations of the ability to produce an acceptable product during startup testing; and Application of a rigorous product control program during production

  12. DWPF MATERIALS EVALUATION SUMMARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Gee, T.; Chandler, G.; Daugherty, W.; Imrich, K.; Jankins, C.

    1996-09-12

    To better ensure the reliability of the Defense Waste Processing Facility (DWPF) remote canyon process equipment, a materials evaluation program was performed as part of the overall startup test program. Specific test programs included FA-04 ('Process Vessels Erosion/Corrosion Studies') and FA-05 (melter inspection). At the conclusion of field testing, Test Results Reports were issued to cover the various test phases. While these reports completed the startup test requirements, DWPF-Engineering agreed to compile a more detailed report which would include essentially all of the materials testing programs performed at DWPF. The scope of the materials evaouation programs included selected equipment from the Salt Process Cell (SPC), Chemical Process Cell (CPC), Melt Cell, Canister Decon Cell (CDC), and supporting facilities. The program consisted of performing pre-service baseline inspections (work completed in 1992) and follow-up inspections after completion of the DWPF cold chemical runs. Process equipment inspected included: process vessels, pumps, agitators, coils, jumpers, and melter top head components. Various NDE (non-destructive examination) techniques were used during the inspection program, including: ultrasonic testing (UT), visual (direct or video probe), radiography, penetrant testing (PT), and dimensional analyses. Finally, coupon racks were placed in selected tanks in 1992 for subsequent removal and corrosion evaluation after chemical runs.

  13. Defense waste management plan

    International Nuclear Information System (INIS)

    1983-06-01

    Defense high-level waste (HLW) and defense transuranic (TRU) waste are in interim storage at three sites, namely: at the Savannah River Plant, in South Carolina; at the Hanford Reservation, in Washington; and at the Idaho National Engineering Laboratory, in Idaho. Defense TRU waste is also in interim storage at the Oak Ridge National Laboratory, in Tennessee; at the Los Alamos National Laboratory, in New Mexico; and at the Nevada Test Site, in Nevada. (Figure E-2). This document describes a workable approach for the permanent disposal of high-level and transuranic waste from atomic energy defense activities. The plan does not address the disposal of suspect waste which has been conservatively considered to be high-level or transuranic waste but which can be shown to be low-level waste. This material will be processed and disposed of in accordance with low-level waste practices. The primary goal of this program is to utilize or dispose of high-level and transuranic waste routinely, safely, and effectively. This goal will include the disposal of the backlog of stored defense waste. A Reference Plan for each of the sites describes the sequence of steps leading to permanent disposal. No technological breakthroughs are required to implement the reference plan. Not all final decisions concerning the activities described in this document have been made. These decisions will depend on: completion of the National Environmental Policy Act process, authorization and appropriation of funds, agreements with states as appropriate, and in some cases, the results of pilot plant experiments and operational experience. The major elements of the reference plan for permanent disposal of defense high-level and transuranic waste are summarized

  14. The Defense Waste Processing Facility, from vision to reality

    International Nuclear Information System (INIS)

    Randall, C.T.

    2000-01-01

    When the Savannah River Plant began operation in the early 1950's producing nuclear materials for the National defense, liquid, highly radioactive waste was generated as a by-product. Since that time the waste has been stored in large, carbon steel tanks that are buried underground. In 1960 one of the tanks developed a leak, and before recovery measures could be taken, about 25-gallons of radioactive salt solution had overflowed the secondary liner and seeped into the soil surrounding the tank. Significant improvements to the tanks were made, but constant surveillance was still required. Thus, the opinion began forming that storage of the mobile, highly radioactive waste in tanks was not a responsible long-term practice. So in the late 1960's the Savannah River Laboratory began research to find a suitable long-term solution to the waste disposal problem. Several alternative waste forms were evaluated, and in 1972 the first Savannah River waste was vitrified on a laboratory scale. By the mid-1970's, the DuPont Company, prime contractor at the Savannah River Plant, began to develop a vision of constructing America's first vitrification plant to immobilize the high level radioactive waste in borosilicate glass. This vision was later championed by DuPont in the form of a vitrification plant called the Defense Waste Processing Facility (DWPF). Today, the DWPF processes Savannah River High Level Waste sludge turning it into a solid, durable waste form of borosilicate glass. The DWPF is the world's largest vitrification facility. It was brought to reality through over 25-years of research and 13-years of careful construction, tests, and reviews at a cost of approximately $3 billion dollars

  15. Remotely replaceable jumpers and embedded wiring for the DWPF

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1984-01-01

    The Defense Waste Processing Facility (DWPF) for radioactive waste vitrification at the Savannah River Plant (SRP) is now under construction. Development of specialized electrical/instrument inter-connectors, or jumpers, is now complete. Remote replacement of the associated through-wall wiring using a standard canyon crane has also been demonstrated. 8 figures

  16. RECENT PROCESS IMPROVEMENTS TO INCREASE HLW THROUGHPUT AT THE DWPF

    International Nuclear Information System (INIS)

    Herman, C

    2007-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  17. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  18. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Glover, T.

    1999-01-01

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task

  19. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  20. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  1. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: defense waste processing facility

    International Nuclear Information System (INIS)

    Huang, J.C.; Wright, W.V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built at the Savannah River Plant (SRP). High level waste is produced when SRP reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld-sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The present document compares the risks associated with the manufacture and interim storage of these two forms in the DWPF. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information. To perform the comparative risk assessments, consequences of the postulated accidents are calculated in terms of: (1) the maximum dose to an off-site individual; and (2) the dose to off-site population within 80 kilometers of the DWPF, both taken in terms of the 50-year inhalation dose commitment. The consequences are then multiplied by the estimated accident probabilities to obtain the risks. The analyses indicate that the maximum exposure risk to an individual resulting from the accidents postulated for both the production and interim storage of either waste form represents only an insignificant fraction of the natural background radiation of about 90 mrem per year per person in the local area. They also show that there is no disaster potential to the off-site population. Therefore, the risks from abnormal events in the production and the interim storage of the DWPF waste forms should not be considered as a dominant factor in the selection of the final waste form

  2. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  3. A truck cask design for shipping defense high-level waste

    International Nuclear Information System (INIS)

    Madsen, M.M.; Zimmer, A.

    1985-01-01

    The Defense High-Level Waste (DHLW) cask is a Type B packaging currently under development by the U.S. Department of Energy (DOE). This truck cask has been designed to initially transport borosilicate glass waste from the Defense Waste Processing Facility (DWPF) to the Waste Isolation Pilot Plant (WIPP). Specific program activities include designing, testing, certifying, and fabricating a prototype legal-weight truck cask system. The design includes such state-of-the-art features as integral impact limiters and remote handling features. A replaceable shielding liner provides the flexibility for shipping a wide range of waste types and activity levels

  4. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  5. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  6. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  7. Defense Waste Processing Facility staged operations: environmental information document

    International Nuclear Information System (INIS)

    1981-11-01

    Environmental information is presented relating to a staged version of the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The information is intended to provide the basis for an Environmental Impact Statement. In either the integral or the staged design, the DWPF will convert the high-level waste currently stored in tanks into: a leach-resistant form containing about 99.9% of all the radioactivity, and a residual, slightly contaminated salt, which is disposed of as saltcrete. In the first stage of the staged version, the insoluble sludge portion of the waste and the long lived radionuclides contained therein will be vitrified. The waste glass will be sealed in canisters and stored onsite until shipped to a Federal repository. In the second stage, the supernate portion of the waste will be decontaminated by ion exchange. The recovered radionuclides will be transferred to the Stage 1 facility, and mixed with the sludge feed before vitrification. The residual, slightly contaminated salt solution will be mixed with Portland cement to form a concrete product (saltcrete) which will be buried onsite in an engineered landfill. This document describes the conceptual facilities and processes for producing glass waste and decontaminated salt. The environmental effects of facility construction, normal operations, and accidents are then presented. Descriptions of site and environs, alternative sites and waste disposal options, and environmental consultations and permits are given in the base Environmental Information Document

  8. Preliminary technical data summary for the Defense Waste Processing Facility, Stage 1

    International Nuclear Information System (INIS)

    1980-09-01

    This Preliminary Technical Data Summary presents the technical basis for design of Stage 1 of the Staged Defense Waste Processing Facility (DWPF), a process to efficiently immobilize the radionuclides in Savannah River Plant (SRP) high-level liquid waste. The radionuclides in SRP waste are present in sludge that has settled to the bottom of waste storage tanks and in crystallized salt and salt solution (supernate). Stage 1 of the DWPF receives washed, aluminum dissolved sludge from the waste tank farms and immobilizes it in a borosilicate glass matrix. The supernate is retained in the waste tank farms until completion of Stage 2 of the DWPF at which time it filtered and decontaminated by ion exchange in the Stage 2 facility. The decontaminated supernate is concentrated by evaporation and mixed with cement for burial. The radioactivity removed from the supernate is fixed in borosilicate glass along with the sludge. This document gives flowsheets, material, and curie balances, material and curie balance bases, and other technical data for design of the Stage 1 DWPF

  9. Estimation of total error in DWPF reported radionuclide inventories. Revision 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is required to determine and report the radionuclide inventory of its glass product. For each macro-batch, the DWPF will report both the total amount (in curies) of each reportable radionuclide and the average concentration (in curies/gram of glass) of each reportable radionuclide. The DWPF is to provide the estimated error of these reported values of its radionuclide inventory as well. The objective of this document is to provide a framework for determining the estimated error in DWPF's reporting of these radionuclide inventories. This report investigates the impact of random errors due to measurement and sampling on the total amount of each reportable radionuclide in a given macro-batch. In addition, the impact of these measurement and sampling errors and process variation are evaluated to determine the uncertainty in the reported average concentrations of radionuclides in DWPF's filled canister inventory resulting from each macro-batch

  10. Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

    1997-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life

  11. DWPF simulant CPC studies for SB8

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  12. DWPF simulant CPC studies for SB8

    International Nuclear Information System (INIS)

    Koopman, D. C.; Zamecnik, J. R.

    2013-01-01

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  13. Accident Fault Trees for Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  14. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  15. A pilot scale demonstration of the DWPF process control and product verification strategy

    International Nuclear Information System (INIS)

    Hutson, N.D.; Jantzen, C.M.; Beam, D.C.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) has been designed and constructed to immobilize Savannah River Site high level liquid waste within a durable borosilicate glass matrix for permanent storage. The DWPF will be operated to produce a glass product which must meet a number of product property constraints which are dependent upon the final product composition. During actual operations, the DWPF will control the properties of the glass product by the controlled blending of the waste streams with a glass-forming frit to produce the final melter feed slurry. The DWPF will verify control of the glass product through analysis of vitrified samples of slurry material. In order to demonstrate the DWPF process control and product verification strategy, a pilot-scale vitrification research facility was operated in three discrete batches using simulated DWPF waste streams. All of the DWPF process control methodologies were followed and the glass produce from each experiment was leached according to the Product Consistency Test. Results of the campaign are summarized

  16. A pilot scale demonstration of the DWPF process control and product verification strategy

    International Nuclear Information System (INIS)

    Hutson, N.D.; Jantzen, C.M.; Beam, D.C.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) has been designed and constructed to immobilize Savannah River Site high level liquid waste within a durable borosilicate glass matrix for permanent storage. The DWPF will be operated to produce a glass product which must meet a number of product property constraints which are dependent upon the final product composition. During actual operations, the DWPF will control the properties of the glass product by the controlled blending of the waste streams with a glass-forming frit to produce the final melter feed slurry. The DWPF will verify control of the glass product through analysis of vitrified samples of slurry material. In order to demonstrate the DWPF process control and product verification strategy, a pilot-scale vitrification research facility was operated in three discrete batches using simulated DWPF waste streams. All of the DWPF process control methodologies were followed and the glass product from each experiment was leached according to the Product Consistency Test. In this paper results of the campaign are summarized

  17. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  18. The DWPF: Results of full scale qualification runs leading to radioactive operations

    International Nuclear Information System (INIS)

    Marra, S.L.; Elder, H.H.; Occhipinti, J.H.; Snyder, D.E.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC will immobilize high-level radioactive liquid waste, currently stored in underground carbon steel tanks, in borosilicate glass. The radioactive waste is transferred to the DWPF in two forms: precipitate slurry and sludge slurry. The radioactive waste is pretreated and then combined with a borosilicate glass frit in the DWPF. This homogeneous slurry is fed to a Joule-heated melter which operates at approximately 1150 degrees C. The glass is poured into stainless steel canisters for eventual disposal in a geologic repository. The DWPF product (i.e. the canistered waste form) must comply with the Waste Acceptance Product Specifications (WAPS) in order to be acceptable for disposal. The DWPF has completed Waste Qualification Runs which demonstrate the facility's ability to comply with the waste acceptance specifications. During the Waste Qualification Runs seventy-one canisters of simulated waste glass were produced in preparation for Radioactive Operations. These canisters of simulated waste glass were produced during five production campaigns which also exercised the facility prior to beginning Radioactive Operations. The results of the Waste Qualification Runs are presented

  19. SPEEDUP modeling of the defense waste processing facility at the SRS

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1997-01-01

    A computer model has been developed for the dynamic simulation of batch process operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF chemically treats high level waste materials from the site tank farm and vitrifies the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. A fully integrated model of these process units has been developed using the SPEEDUP trademark software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since SPEEDUP is designed for dynamic modeling of continuous processes, considerable effort was required to device batch process algorithms. This effort was successful and the model is able to simulate batch operations and the dynamic behavior of the process. The model also includes an optimization calculation that maximizes the waste content in the final glass product. In this paper, we will describe the process model in some detail and present preliminary results from a few simulation studies

  20. Devitrification of defense nuclear waste glasses: role of melt insolubles

    International Nuclear Information System (INIS)

    Bickford, D.F.; Jantzen, C.M.

    1985-01-01

    Time-temperature-transformation (TTT) curves have been determined for simulated nuclear waste glasses bounding the compositional range in the Defense Waste Processing Facility (DWPF). Formulations include all of the minor chemical elements such as ruthenium and chromium which have limited solubility in borosilicate glasses. Heterogeneous nucleation of spinel on ruthenium dioxide, and subsequent nucleation of acmite on spinel is the major devitrification path. Heterogeneous nucleation on melt insolubles causes more rapid growth of crystalline devitrification phases, than in glass free of melt insolubles. These studies point out the importance of simulating waste glass composition and processing as accurately as possible to obtain reliable estimates of glass performance. 11 refs., 8 figs., 1 tab

  1. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    International Nuclear Information System (INIS)

    Kitchen, B.G.

    1989-01-01

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance

  2. Analytical methods and laboratory facility for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Dewberry, R.A.; Lethco, A.J.; Denard, C.D.

    1985-01-01

    This paper describes the analytical methods, instruments, and laboratory that will support vitrification of defense waste. The Defense Waste Processing Facility (DWPF) is now being constructed at Savannah River Plant (SRP). Beginning in 1989, SRP high-level defense waste will be immobilized in borosilicate glass for disposal in a federal repository. The DWPF will contain an analytical laboratory for performing process control analyses. Additional analyses will be performed for process history and process diagnostics. The DWPF analytical facility will consist of a large shielded sampling cell, three shielded analytical cells, a laboratory for instrumental analysis and chemical separations, and a counting room. Special instrumentation is being designed for use in the analytical cells, including microwave drying/dissolution apparatus, and remote pipetting devices. The instrumentation laboratory will contain inductively coupled plasma, atomic absorption, Moessbauer spectrometers, a carbon analyzer, and ion chromatography equipment. Counting equipment will include intrinsic germanium detectors, scintillation counters, Phoswich alpha, beta, gamma detectors, and a low-energy photon detector

  3. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    Scott, D.E.; Chazel, A.C.; Pechmann, J.H.K.; Estes, R.A.

    1993-06-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ''refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022)

  4. Large-scale continuous process to vitrify nuclear defense waste: operating experience with nonradioactive waste

    International Nuclear Information System (INIS)

    Cosper, M.B.; Randall, C.T.; Traverso, G.M.

    1982-01-01

    The developmental program underway at SRL has demonstrated the vitrification process proposed for the sludge processing facility of the DWPF on a large scale. DWPF design criteria for production rate, equipment lifetime, and operability have all been met. The expected authorization and construction of the DWPF will result in the safe and permanent immobilization of a major quantity of existing high level waste. 11 figures, 4 tables

  5. Radioactive demonstration of DWPF product control strategy

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.

    1992-01-01

    The effectiveness of the product and process control strategies that will be utilized by the Defense Waste Processing Facility (DWPF) was demonstrated during a campaign in the Shielded Cells Facility (SCF) of the Savannah River Technology Center (SRTC). The remotely operated process included the preparation of the melter feed, vitrification in a slurry-fed 1/100th scale melter and analysis of the glass product both for its composition and durability. The campaign processed approximately 10 kg (on a dry basis) of radioactive sludge from Tank 51. This sludge is representative of the first batch of sludge that will be sent to the DWPF for immobilization into borosilicate glass. Additions to the sludge were made based on calculations using the Product Composition Control System (PCCS). Analysis of the glass produced during the campaign showed that a durable glass was produced with a composition similar to that predicted using the PCCS

  6. Bounding estimate of DWPF mercury emissions

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1992-01-01

    Purges required for H2 flammability control and verification of elevated Formic Acid Vent Condenser (FAVC) exit temperatures due to NO x reactions have lead to significant changes in Chemical Process Cell (CPC) operating conditions. Accordingly, mercury emissions estimates have been updated based upon the new operating requirements, IDMS (Integrated DWPF Melter System) experience, and development of an NO x /FAVC model which predicts FAVC exit temperatures. Using very conservative assumptions and maximum purge rates, the maximum calculated Hg emissions is approximately 130 lbs/yr. A range of 100 to 120 lbs/yr is conservatively predicted for other operating conditions. Defense Waste Processing Facility (DWPF) permitted Hg emissions are 175 lbs/yr (0.02 lbs/hr annual average)

  7. Evaluation of vitrification factors from DWPF's macro-batch 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    2000-01-01

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ''glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015

  8. SME Acceptability Determination For DWPF Process Control (U)

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-12

    The statistical system described in this document is called the Product Composition Control System (PCCS). K. G. Brown and R. L. Postles were the originators and developers of this system as well as the authors of the first three versions of this technical basis document for PCCS. PCCS has guided acceptability decisions for the processing at the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) since the start of radioactive operations in 1996. The author of this revision to the document gratefully acknowledges the firm technical foundation that Brown and Postles established to support the ongoing successful operation at the DWPF. Their integration of the glass propertycomposition models, developed under the direction of C. M. Jantzen, into a coherent and robust control system, has served the DWPF well over the last 20+ years, even as new challenges, such as the introduction into the DWPF flowsheet of auxiliary streams from the Actinide Removal Process (ARP) and other processes, were met. The purpose of this revision is to provide a technical basis for modifications to PCCS required to support the introduction of waste streams from the Salt Waste Processing Facility (SWPF) into the DWPF flowsheet. An expanded glass composition region is anticipated by the introduction of waste streams from SWPF, and property-composition studies of that glass region have been conducted. Jantzen, once again, directed the development of glass property-composition models applicable for this expanded composition region. The author gratefully acknowledges the technical contributions of C.M. Jantzen leading to the development of these glass property-composition models. The integration of these models into the PCCS constraints necessary to administer future acceptability decisions for the processing at DWPF is provided by this sixth revision of this document.

  9. Design ampersand construction innovations of the defense waste processing facility

    International Nuclear Information System (INIS)

    McKibben, J.M.; Pair, C.R.; Bethmann, H.K.

    1990-01-01

    Construction of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is essentially complete. The facility is designed to convert high-level radioactive waste, now contained in large steel tanks as aqueous salts and sludge, into solid borosilicate glass in stainless steel canisters. All processing of the radioactive material and operations in a radioactive environment will be done remotely. The stringent requirements dictated by remote operation and new approaches to the glassification process led to the development of a number of first-of-a-kind pieces of equipment, new construction fabrication and erection techniques, and new applications of old techniques. The design features and construction methods used in the vitrification building and its equipment were to accomplish the objective of providing a state-of-the-art vitrification facility. 3 refs., 10 figs

  10. Initial demonstration of DWPF process and product control strategy using actual radioactive waste

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.; Jantzen, C.M.; Beam, D.C.

    1991-01-01

    The Defense Waste Processing Facility at the Savannah River Site (SRS) will vitrify high-level nuclear waste into borosilicate glass. The waste will be mixed with properly formulated glass-making frit and fed to a melter at 1150 degrees C. Process control and product quality are ensured by proper control of the melter feed composition. Algorithms have been developed to predict the processability of the melt and the durability of the final glass based on this feed composition. To test these algorithms, an actual radioactive waste contained in a shielded facility at SRS was analyzed and a frit composition formulated using a simple computer spreadsheet which contained the algorithms. This frit was then mixed with the waste and the resulting slurry fed to a research scale joule-heated melter operated remotely. Approximately 24 kg of glass were successfully prepared. This paper will describe the frit formulation, the vitrification process, and the glass durability

  11. Can-in-canister cold demonstration in DWPF (U)

    International Nuclear Information System (INIS)

    Kuehn, N.H.

    1996-07-01

    The Department of Energy Fissile Materials Disposition Program is evaluating a number of options for disposition of weapons-usable plutonium surplus to national defense needs. One of the immobilization options is the Can-In-Canister approach. In this option small cans of a plutonium glass, which contains a neutron absorber, are placed on a support structure in a large Savannah River Site Defense Waste Processing Facility (DWPF) canister. The top is then welded onto the canister. This canister is filled with High Level Waste (HLW) glass at the DWPF. The HLW glass provides the radiation source for proliferation resistance. These canisters are to be placed in a Federal Repository. To provide information on the technical feasibility of this option prior to the Record of Decision on plutonium disposition, the Department of Energy Fissile Materials Disposition Program funded a demonstration in the DWPF. This demonstration was conducted before the start of radioactive operations. Two test canisters containing cans of surrogate (non- radioactive) plutonium glass were successfully filled with simulated HLW glass at the DWPF using standard pouring procedures. One canister had twenty cans of surrogate plutonium glass. The other had eight cans of surrogate plutonium glass. After the canisters were filled, the contents of the canisters were examined to provide data on the effect of the rack and cans on the filling of the DWPF canister, the effect of the pour on the surrogate plutonium glass and the effect of the rack and cans on the simulated HLW glass. There was no deformation of the support racks during the pour. The simulated HLW glass filled all the regions around the rack and cans and the regions between the cans and the wall of the canister. This report discusses the design of the racks and cans, the modification of the DWPF canisters to accommodate the rack and cans, the conditions during the pours and the results of the post pour analysis

  12. Translating DWPF design criteria into an engineered facility design

    International Nuclear Information System (INIS)

    Kemp, J.B.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) takes radioactive defense waste sludge and the radioactive nuclides, cesium and strontium, from the salt solution, and incorporates them in borosilicate glass in stainless steel canisters, for subsequent disposal in a deep geologic repository. The facility was designed by Bechtel National, Inc. under a subcontract from E.I. DuPont de Nemurs and Co., the prime contractor for the Department of Energy, for the design, construction and commissioning of the plant. The design criteria were specified by the DuPont Company, based upon their extensive experience as designer, and operator since the early 1950's, of the existing Savannah River Plant facilities. Some of the design criteria imposed unusual or new requirements on the detailed design of the facilities. This paper describes some of these criteria, encompassing several engineering disciplines, and discusses the solutions and designs which were developed for the DWPF

  13. Radioactive demonstration of DWPF product control strategy

    International Nuclear Information System (INIS)

    Andrews, M.K.; Bibler, N.E.

    1994-01-01

    The Defense Waste Processing Facility at the Savannah River Site (SRS) will vitrify high-level nuclear waste into borosilicate glass. The waste will be mixed with properly formulated glass-making frit and fed to a melter at 1150 degrees C. Process reliability and product quality are ensured by proper control of the melter feed composition. The effectiveness of the product and process control strategies that will be utilized by the Defense Waste Processing Facility (DWPF) was demonstrated during a campaign in the Shielded Cells Facility of the Savannah River Technology Center (SRTC). The remotely operated process included the preparation of the melter feed, vitrification in a slurry-fed 1/100th scale melter an analysis of the glass product both for its composition an durability. The campaign processed approximately 10 kg (on a dry basis) of radioactive sludge from Tank 51. This sludge is representative of the first batch of sludge that will be sent to the DWPF for immobilization into borosilicate glass. Additions to the sludge were made based on calculations using the Product Composition Control System (PCCS). Analysis of the glass produced during the campaign showed that a durable glass was produced with a composition very close to that predicted using the PCCS. 10 refs., 4 tabs

  14. DWPF Simulant CPC Studies For SB8

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51 heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected

  15. DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE

    International Nuclear Information System (INIS)

    Click, D; Tommy Edwards, T; Henry Ajo, H

    2008-01-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem Method, see Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 5 (SB5) SRAT Receipt and SB5 SRAT Product samples. The SB5 SRAT Receipt and SB5 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB5 Batch composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 4 (SB4), to form the SB5 Blend composition. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element in the sludge or used to estimate ratios of compounds in the sludge. A statistical comparison of the data validates the use of the DWPF CC method for SB5 Batch composition. However, the difficulty that was encountered in using the CC method for SB4 brings into question the adequacy of CC for the SB5 Blend. Also, it should be noted that visible solids remained in the final diluted solutions of all samples digested by this method at SRNL (8 samples total), which is typical for the DWPF CC method but not seen in the other methods. Recommendations to the DWPF for application to SB5 based on studies to date: (1) A dissolution study should be performed on the WAPS

  16. Relaxation of the lower frit loading constraint for DWPF process control

    International Nuclear Information System (INIS)

    Brown, K.G.

    2000-01-01

    The lower limit on the frit loading parameter when measurement uncertainty is introduced has impacted DWPF performance during immobilization of Tank 42 Sludge; therefore, any defensible relaxation or omission of this constraint should correspondingly increase DWPF waste loading and efficiency. Waste loading should be increased because the addition of frit is the current remedy for exceeding the lower frit loading constraint. For example, frit was added to DWPF SME Batches 94, 97 and 98 to remedy these batches for low frit loading. Attempts were also made to add frit in addition to the optimum computed to assure the lower frit loading constraint would be satisfied; however, approximately half of the SME Batches produced after Batch 98 have violated the lower frit loading constraint. If the DWPF batches did not have to be remediated and additional frit added because of the lower frit loading limit, then both, the performance of the DWPF process and the waste loading in the glass produced would be increased. Before determining whether or not the lower frit loading limit can be relaxed or omitted, the origin of this and the other constraints related to durability prediction must be examined. The lower limit loading constraint results from the need to make highly durable glass in DWPF. It is required that DWPF demonstrate that the glass produced would have durability that is at least two standard deviations greater than that of the Environmental Assessment (EA) glass. Glass durability cannot be measured in situ, it must be predicted from composition which can be measured. Fortunately, the leaching characteristics of homogeneous waste glasses is strongly related to the total molar free energy of the constituent species. Thus the waste acceptance specification has been translated into a requirement that the total molar free energy associated with the glass composition that would be produced from a DWPF melter feed batch be less than that of the EA glass accounting for

  17. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  18. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses

  19. DWPF Development Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Holtzscheiter, E.W.

    1994-05-09

    The DWPF Development Plan is based on an evaluation process flowsheet and related waste management systems. The scope is shown in Figure 1 entitled ``DWPF Process Development Systems.`` To identify the critical development efforts, each system has been analyzed to determine: The identification of unresolved technology issues. A technology issue (TI) is one that requires basic development to resolve a previously unknown process or equipment problem and is managed via the Technology Assurance Program co-chaired by DWPF and SRTC. Areas that require further work to sufficiently define the process basis or technical operating envelop for DWPF. This activity involves the application of sound engineering and development principles to define the scope of work required to complete the technical data. The identification of the level of effort and expertise required to provide process technical consultation during the start-up and demonstration of this first of a kind plant.

  20. DWPF Development Plan. Revision 1

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.

    1994-01-01

    The DWPF Development Plan is based on an evaluation process flowsheet and related waste management systems. The scope is shown in Figure 1 entitled ''DWPF Process Development Systems.'' To identify the critical development efforts, each system has been analyzed to determine: The identification of unresolved technology issues. A technology issue (TI) is one that requires basic development to resolve a previously unknown process or equipment problem and is managed via the Technology Assurance Program co-chaired by DWPF and SRTC. Areas that require further work to sufficiently define the process basis or technical operating envelop for DWPF. This activity involves the application of sound engineering and development principles to define the scope of work required to complete the technical data. The identification of the level of effort and expertise required to provide process technical consultation during the start-up and demonstration of this first of a kind plant

  1. Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and Vicinity, Savannah River Plant, South Carolina

    International Nuclear Information System (INIS)

    Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

    1989-01-01

    The purposes of this report are two-fold: (1) to define the hydrogeologic conditions in the vicinity of the defense waste processing facility (DWPF) and, (2) to evaluate the potential for movement of a concentrated salt-solution waste if released at or near the DWPF. These purposes were accomplished by assembling and evaluating existing hydrogeologic data; collecting additional geologic, hydrologic, and water-quality data; developing a local geologic framework; developing a conceptual model of the local ground-water flow system; and by performing laboratory experiments to determine the mobility of salt-solution waste in surface and near-surface sediments. Although the unconsolidated sediments are about 1000 ft thick in the study area, only the Tertiary age sediments, or upper 300 ft are discussed in this report. The top of the Ellenton Formation acts as the major confining unit between the overlying aquifers in Tertiary sediments and the underlying aquifers in Cretaceous sediments; therefore, the Ellenton Formation is the vertical limit of our hydrogeologic investigation. The majority of the hydrologic data for this study come from monitoring wells at the saltstone disposal site (SDS) in Z Area (fig. 3). No recent water-level data were collected in S Area owing to the removal of S Area monitoring wells prior to construction at the DWPF. 46 refs., 26 figs., 7 tabs

  2. Computer Modeling Of High-Level Waste Glass Temperatures Within DWPF Canisters During Pouring And Cool Down

    International Nuclear Information System (INIS)

    Amoroso, J.

    2011-01-01

    This report describes the results of a computer simulation study to predict the temperature of the glass at any location inside a DWPF canister during pouring and subsequent cooling. These simulations are an integral part of a larger research focus aimed at developing methods to predict, evaluate, and ultimately suppress nepheline formation in HLW glasses. That larger research focus is centered on holistically understanding nepheline formation in HLW glass by exploring the fundamental thermal and chemical driving forces for nepheline crystallization with respect to realistic processing conditions. Through experimental work, the goal is to integrate nepheline crystallization potential in HLW glass with processing capability to ultimately optimize waste loading and throughput while maintaining an acceptable product with respect to durability. The results of this study indicated severe temperature gradients and prolonged temperature dwell times exist throughout different locations in the canister and that the time and temperatures that HLW glass is subjected to during processing is a function of pour rate. The simulations indicate that crystallization driving forces are not uniform throughout the glass volume in a DWPF (or DWPF-like) canister and illustrate the importance of considering overall kinetics (chemical and thermal driving forces) of nepheline formation when developing methods to predict and suppress its formation in HLW glasses. The intended path forward is to use the simulation data both as a driver for future experimental work and, as an investigative tool for evaluating the impact of experimental results. Simulation data will be used to develop laboratory experiments to more acutely evaluate nepheline formation in HLW glass by incorporating the simulated temperatures throughout the canister into the laboratory experiments. Concurrently, laboratory experiments will be performed to identify nepheline crystallization potential in HLW glass as a function of

  3. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  4. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. FY 1989--1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  5. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1991 and FY-1992

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Chazel, A.C.; Pechmann, J.H.K.; Estes, R.A.

    1993-06-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  6. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In

  7. Elimination Of The Characterization Of DWPF Pour Stream Sample And The Glass Fabrication And Testing Of The DWPF Sludge Batch Qualification Sample

    International Nuclear Information System (INIS)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-01-01

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the

  8. Demonstration of the Defense Waste Processing Facility vitrification process for Tank 42 radioactive sludge -- Glass preparation and characterization

    International Nuclear Information System (INIS)

    Bibler, N.E.; Fellinger, T.L.; Marshall, K.M.; Crawford, C.L.; Cozzi, A.D.; Edwards, T.B.

    1999-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is currently processing and immobilizing the radioactive high level waste sludge at SRS into a durable borosilicate glass for final geological disposal. The DWPF has recently finished processing the first radioactive sludge batch, and is ready for the second batch of radioactive sludge. The second batch is primarily sludge from Tank 42. Before processing this batch in the DWPF, the DWPF process flowsheet has to be demonstrated with a sample of Tank 42 sludge to ensure that an acceptable melter feed and glass can be made. This demonstration was recently completed in the Shielded Cells Facility at SRS. An earlier paper in these proceedings described the sludge composition and processes necessary for producing an acceptable melter fee. This paper describes the preparation and characterization of the glass from that demonstration. Results substantiate that Tank 42 sludge after mixing with the proper amount of glass forming frit (Frit 200) can be processed to make an acceptable glass

  9. Fabrication of remote steam atomized scrubbers for DWPF off-gas system

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Lafferty, J.D.

    1988-01-01

    The defense waste processing facility (DWPF) is being constructed for the purpose of processing high-level waste from sludge to a vitrified borosilicate glass. In the operation of continuous slurry-fed melters, off-gas aerosols are created by entrainment of feed slurries and the vaporization of volatile species from the molten glass mixture. It is necessary to decontaminate these aerosols in order to minimize discharge of airborne radionuclide particulates. A steam atomized scrubber (SAS) has been developed for DWPF which utilizes a patented hydro- sonic system gas scrubbing method. The Hydro-Sonic System utilizes a steam aspirating-type venturi scrubber that requires very precise fabrication tolerances in order to obtain acceptable decontamination factors. In addition to the process-related tolerances, precision mounting and nozzle tolerances are required for remote service at DWPF

  10. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith III, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how the varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.

  11. Corrosion impact of reductant on DWPF and downstream facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilderman, J. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing was recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels

  12. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  13. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  14. Defense Transuranic Waste Program Strategy Document

    International Nuclear Information System (INIS)

    1984-01-01

    The Defense Transuranic Waste Program (DTWP) Strategy Document presents the general strategy for managing transuranic (TRU) waste materials generated during defense and research activities regulated by the US Department of Energy. The Strategy Document includes discussion of objectives and activities relating to the entire Defense Transuranic Waste Program. However, the primary focus is on the specific management responsibilities of the Transuranic Waste Lead Organization (TLO). The document also includes an updated summary of progress on TLO-managed activities over the past year

  15. Defense-in-depth evaluation for the New Waste Transfer Facility

    International Nuclear Information System (INIS)

    Hayes, T.G.; Kelly, J.L.

    1995-01-01

    This report fulfills part of the requirements of References 2 and 3 by documenting a Defense-In-Depth evaluation for the New Waste Transfer Facility (NWTF). This evaluation was performed using methodology similar to that used in an evaluation for the Defense Waste Processing Facility (DWPF). It differs because the DWPF evaluation was based on an existing Process Hazards Analysis (PHA) while NWTF's is based on a Preoperational Process Hazards Review (PHR) (Ref. 1). The accidents in the Process Hazards Review (PHR) were reviewed to determine those that might have significant consequences. Significance was based on the findings of the PHR, The facility design was reviewed to determine the Structures, Systems, and Components (SSCs) and administrative controls available before and after each accident. From this was developed a list of the Lines of Defense (LODs) available to contain the hazard associated with the accident. A summary of these LODs is given in Appendix C. Items are tabulated that are suggested for consideration in the functional classification as worker protection items. The specific criteria used in the evaluation is given in the methodology section of this report. The results are documented in Appendices A, B, C, and D

  16. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    SK Sundaram; JM Perez, Jr.

    2000-09-06

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement.

  17. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  18. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    International Nuclear Information System (INIS)

    Sundaram, S.K.; Perez, J.M. Jr.

    2000-01-01

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement

  19. Defense Waste Processing Facility Canister Closure Weld Current Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maxwell, D. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-29

    Two closure welds on filled Defense Waste Processing Facility (DWPF) canisters failed to be within the acceptance criteria in the DWPF operating procedure SW4-15.80-2.3 (1). In one case, the weld heat setting was inadvertently provided to the canister at the value used for test welds (i.e., 72%) and this oversight produced a weld at a current of nominally 210 kA compared to the operating procedure range (i.e., 82%) of 240 kA to 263 kA. The second weld appeared to experience an instrumentation and data acquisition upset. The current for this weld was reported as 191 kA. Review of the data from the Data Acquisition System (DAS) indicated that three of the four current legs were reading the expected values, approximately 62 kA each, and the fourth leg read zero current. Since there is no feasible way by further examination of the process data to ascertain if this weld was actually welded at either the target current or the lower current, a test plan was executed to provide assurance that these Nonconforming Welds (NCWs) meet the requirements for strength and leak tightness. Acceptance of the welds is based on evaluation of Test Nozzle Welds (TNW) made specifically for comparison. The TNW were nondestructively and destructively evaluated for plug height, heat tint, ultrasonic testing (UT) for bond length and ultrasonic volumetric examination for weld defects, burst pressure, fractography, and metallography. The testing was conducted in agreement with a Task Technical and Quality Assurance Plan (TTQAP) (2) and applicable procedures.

  20. Defense-Waste-Processing Faclity, Savannah River Plant, Aiken, SC: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1981-09-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Energy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  1. Defense Waste Processing Facility: Savannah River Plant, Aiken, SC. Final environmental impact statement

    International Nuclear Information System (INIS)

    1982-02-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Envgy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  2. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF

  3. The corrosion behavior of DWPF glasses

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.

    1995-01-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed

  4. Status of DOE defense waste management policy

    International Nuclear Information System (INIS)

    Oertel, K.G.; Scott, R.S.

    1983-01-01

    This paper very briefly traces the statutory basis for DOE management of atomic energy defense activity wastes, touches on the authority of the Federal agencies involved in the regulation of defense nuclear waste management, and addresses the applicable regulations and their status. This background sets the stage for a fairly detailed discussion of management and disposal strategies of the Defense Waste and Byproducts Management Program

  5. Analysis of high-level radioactive slurries as a method to reduce DWPF turnaround times

    International Nuclear Information System (INIS)

    Coleman, C.J.; Bibler, N.E.; Ferrara, D.M.; Hay, M.S.

    1996-01-01

    Analysis of Defense Waste Processing Facility (DWPF) samples as slurries rather than as dried or vitrified samples is an effective way to reduce sample turnaround times. Slurries can be dissolved with a mixture of concentrated acids to yield solutions for elemental analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Slurry analyses can be performed in eight hours, whereas analyses of vitrified samples require up to 40 hours to complete. Analyses of melter feed samples consisting of the DWPF borosilicate frit and either simulated or actual DWPF radioactive sludge were typically within a range of 3--5% of the predicted value based on the relative amounts of sludge and frit added to the slurry. The results indicate that the slurry analysis approach yields analytical accuracy and precision competitive with those obtained from analyses of vitrified samples. Slurry analyses offer a viable alternative to analyses of solid samples as a simple way to reduce analytical turnaround times

  6. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  7. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  8. Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Baker, W.H.; Wittman, R.S.; Amos, C.N.

    1993-01-01

    The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility

  9. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  10. Defense waste transportation: cost and logistics studies

    International Nuclear Information System (INIS)

    Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

    1982-08-01

    Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport

  11. Analysis of the DWPF glass pouring system using neural networks

    International Nuclear Information System (INIS)

    Calloway, T.B. Jr.; Jantzen, C.M.

    1997-01-01

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of ± 0.35 inwc ( 2 = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R 2 = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers

  12. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    International Nuclear Information System (INIS)

    Shine, E. P.; Poirier, M. R.

    2013-01-01

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  13. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Energy Technology Data Exchange (ETDEWEB)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  14. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  15. Socioeconomic assessment of defense waste processing facility impacts in the Savannah River Plant region

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, E.; Reed, J.H.; Stevenson, R.H.

    1981-09-01

    The DWPF will immobilize highly radioactive defense wastes for storage on site until shipment to an approved federal repository for radioactive wastes. This document assesses the socioeconomic impacts of constructing and operating the proposed facility and presents the assessment methodology. Because various schedules and various ways of staging the construction of the DWPF are considered and because in some of these instances a large nearby construction project (the Vogtle Nuclear Power Station) may influence the socioeconomic impacts, four scenarios involving different facility options and schedules are assessed. In general, the impacts were found not to be large. In the scenario where the socioeconomic effects were the greatest, it was found that there are likely to be some impacts on schools in Barnwell County as well as a shortage of mobile homes in that county. Aiken, Allendale, and Bamberg counties are also likely to experience slight-to-moderate housing shortages. Minor impacts are anticipated for fire and police services, roads, traffic, and land use. There will be noticeable economic impact from the project. Other scenarios had fewer socioeconomic impacts.

  16. Socioeconomic assessment of defense waste processing facility impacts in the Savannah River Plant region

    International Nuclear Information System (INIS)

    Peelle, E.; Reed, J.H.; Stevenson, R.H.

    1981-09-01

    The DWPF will immobilize highly radioactive defense wastes for storage on site until shipment to an approved federal repository for radioactive wastes. This document assesses the socioeconomic impacts of constructing and operating the proposed facility and presents the assessment methodology. Because various schedules and various ways of staging the construction of the DWPF are considered and because in some of these instances a large nearby construction project (the Vogtle Nuclear Power Station) may influence the socioeconomic impacts, four scenarios involving different facility options and schedules are assessed. In general, the impacts were found not to be large. In the scenario where the socioeconomic effects were the greatest, it was found that there are likely to be some impacts on schools in Barnwell County as well as a shortage of mobile homes in that county. Aiken, Allendale, and Bamberg counties are also likely to experience slight-to-moderate housing shortages. Minor impacts are anticipated for fire and police services, roads, traffic, and land use. There will be noticeable economic impact from the project. Other scenarios had fewer socioeconomic impacts

  17. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  18. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  19. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  20. DWPF recycle minimization: Brainstorming session

    International Nuclear Information System (INIS)

    Jacobs, R.A.; Poirier, M.R.

    1993-01-01

    The recycle stream from the DWPF constitutes a major source of water addition to the High Level Waste evaporator system. As now designed, the entire flow of 3.5 to 6.5 gal/min (at sign 25% and 75% attainment, respectively), or 2 gal/min during idling, flow to the 2H evaporator system (Tank 43). Substantial improvement in the HLW water balance and tank volume management is expected if the DWPF recycle to the HLW evaporator system can be significantly reduced. A task team has been appointed to study alternatives for reducing the flow to the HLW evaporator system and make recommendations for implementation and/or further study and evaluation. The brainstorming session detailed in this report was designed to produce the first cut options for the task team to further evaluate

  1. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    International Nuclear Information System (INIS)

    Smith, M.E.; Bickford, D.F.

    1997-01-01

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy's Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program

  2. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  3. Liquid level measurement in high level nuclear waste slurries

    International Nuclear Information System (INIS)

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs

  4. Neptunium sorption and co-precipitation of strontium in simulated DWPF salt solution

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Orebaugh, E.G.; King, C.M.

    1988-01-01

    Batch experiments performed using crushed slag saltstone (∼40 mesh) removed >80% of 237 Np from simulated Defense Waste Processing Facility (DWPF) salt solution. The concentration of 237 Np (110 pCi/ml) used was 1000x greater than levels in actual DWPF solutions. Neptunium-239 was used as a tracer and was formed by neutron activation of uranyl nitrate. Results showed that small amounts of crushed saltstone (as little as 0.05 grams), removed >80% of neptunium from 15 ml of simulated DWPF solution after several hours equilibration. The neptunium is sorbed on insoluble carbonates formed in and on the saltstone matrix. Further testing showed that addition of 0.01 and 0.10 ml of 1 molar Ca +2 (ie. Ca (NO 3 ) 2 , CaCl 2 ) into 15 ml of simulated DWPF solution yielded a white carbonate precipitate which also removed >80% of the neptunium after 1 hour equilibration. Further experiments were performed to determine the effectiveness of this procedure to co-precipitate strontium

  5. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  6. Decontamination of Savannah River Plant waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant (SRP) liquid, high-level radioactive waste into a solid form, such as borosilicate glass. The outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF to prevent the spread of radioactivity. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated byproducts which are difficult to immobilize by vitrification

  7. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    International Nuclear Information System (INIS)

    Edwards, T. B.

    2013-01-01

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF's melter operation during the processing of Sludge Batch 8 (SB8). SRNL's support has been in response to technical task requests that have been made by SRR's Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF's strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy

  8. Defense transuranic waste program strategy document

    International Nuclear Information System (INIS)

    1982-07-01

    This document summarizes the strategy for managing transuranic (TRU) wastes generated in defense and research activities regulated by the US Department of Energy. It supercedes a document issued in July 1980. In addition to showing how current strategies of the Defense Transuranic Waste Program (DTWP) are consistent with the national objective of isolating radioactive wastes from the biosphere, this document includes information about the activities of the Transuranic Lead Organization (TLO). To explain how the DTWP strategy is implemented, this document also discusses how the TLO coordinates and integrates the six separate elements of the DTWP: (1) Waste Generation Site Activities, (2) Storage Site Activities, (3) Burial Site Activities, (4) Technology Development, (5) Transportation Development, and (6) Permanent Disposal. Storage practices for TRU wastes do not pose short-term hazards to public health and safety or to the environment. Isolation of TRU wastes in a deep-mined geologic repository is considered the most promising of the waste disposal alternatives available. This assessment is supported by the DOE Record of Decision to proceed with research and development work at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico - a deep-mined geologic research and development project. In support of the WIPP research project and the permanent disposal of TRU waste, the DTWP strategy for the near term will concentrate on completion of procedures and the design and construction of all facilities necessary to certify newly-generated (NG) and stored TRU wastes for emplacement in the WIPP. In addition, the strategy involves evaluating alternatives for disposing of some transuranic wastes by methods which may allow for on-site disposal of these wastes and yet preserve adequate margins of safety to protect public health and the environment

  9. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  10. Hazards analyses of hydrogen evolution and ammonium nitrate accumulation in DWPF -- Revision 1

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.

    1994-01-01

    This revision consists of two reports, the first of which is an analysis of potential ammonium nitrate explosion hazards in the DWPF (Defense Waste Processing Facility). Sections describe the effect of impurities (organic and inorganic (chlorides, chromates, metals and oxides)); the consequences of a hydrogen deflagration or detonation; the role of confinement; the action of heat on ammonium nitrate; the thermal decomposition of ammonium nitrate; the hazard of spontaneous heating; and the explosive decomposition of ammonium nitrate. The second report, Hazard analysis of hydrogen evolution in DWPF: Process vessels and vent system for the late wash/nitric acid flowsheet, contains a description of a revised model for hydrogen generation based on the late wash/nitric acid process. The second part of the report is a sensitivity analysis of the base case conditions and the hydrogen generation model

  11. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  12. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  13. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

  14. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, Matthew S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Luther, Michelle C. [Auburn Univ., AL (United States); Brandenburg, Clayton H. [Univ.of South Carolina, Columbia, SC (United States)

    2016-09-27

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  15. Phase II of a Six sigma Initiative to Study DWPF SME Analytical Turnaround Times: SRNL's Evaluation of Carbonate-Based Dissolution Methods

    International Nuclear Information System (INIS)

    Edwards, Thomas

    2005-01-01

    The Analytical Development Section (ADS) and the Statistical Consulting Section (SCS) of the Savannah River National Laboratory (SRNL) are participating in a Six Sigma initiative to improve the Defense Waste Processing Facility (DWPF) Laboratory. The Six Sigma initiative has focused on reducing the analytical turnaround time of samples from the Slurry Mix Evaporator (SME) by developing streamlined sampling and analytical methods [1]. The objective of Phase I was to evaluate the sub-sampling of a larger sample bottle and the performance of a cesium carbonate (Cs 2 CO 3 ) digestion method. Successful implementation of the Cs 2 CO 3 fusion method in the DWPF would have important time savings and convenience benefits because this single digestion would replace the dual digestion scheme now used. A single digestion scheme would result in more efficient operations in both the DWPF shielded cells and the inductively coupled plasma--atomic emission spectroscopy (ICP-AES) laboratory. By taking a small aliquot of SME slurry from a large sample bottle and dissolving the vitrified SME sample with carbonate fusion methods, an analytical turnaround time reduction from 27 hours to 9 hours could be realized in the DWPF. This analytical scheme has the potential for not only dramatically reducing turnaround times, but also streamlining operations to minimize wear and tear on critical shielded cell components that are prone to fail, including the Hydragard(trademark) sampling valves and manipulators. Favorable results from the Phase I tests [2] led to the recommendation for a Phase II effort as outlined in the DWPF Technical Task Request (TTR) [3]. There were three major tasks outlined in the TTR, and SRNL issued a Task Technical and QA Plan [4] with a corresponding set of three major task activities: (1) Compare weight percent (wt%) total solids measurements of large volume samples versus peanut vial samples. (2) Evaluate Cs 2 CO 3 and K 2 CO 3 fusion methods using DWPF simulated

  16. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01

    Prior to initiating a new sludge batch in the Defense Waste Processing Facility (DWPF), Savannah River National Laboratory (SRNL) is required to simulate this processing, including Chemical Process Cell (CPC) simulation, waste glass fabrication, and chemical durability testing. This report documents this simulation for the next sludge batch, Sludge Batch 6 (SB6). SB6 consists of Tank 12 material that has been transferred to Tank 51 and subjected to Low Temperature Aluminum Dissolution (LTAD), Tank 4 sludge, and H-Canyon Pu solutions. Following LTAD and the Tank 4 addition, Liquid Waste Operations (LWO) provided SRNL a 3 L sample of Tank 51 sludge for SB6 qualification. Pu solution from H Canyon was also received. SB6 qualification included washing the sample per LWO plans/projections (including the addition of Pu from H Canyon), DWPF CPC simulations, waste glass fabrication (vitrification), and waste glass characterization and chemical durability evaluation. The following are significant observations from this demonstration. Sludge settling improved slightly as the sludge was washed. SRNL recommended (and the Tank Farm implemented) one less wash based on evaluations of Tank 40 heel projections and projections of the glass composition following transfer of Tank 51 to Tank 40. Thorium was detected in significant quantities (>0.1 wt % of total solids) in the sludge. In past sludge batches, thorium has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), seen in small quantities, and reported with the radionuclides. As a result of the high thorium, SRNL-AD has added thorium to their suite of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) elements. The acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT) processing of 115%, or 1.3 mol acid per liter of SRAT receipt slurry, was adequate to accomplish some of the goals of SRAT processing: nitrite was destroyed to below 1,000 mg/kg and mercury was removed to

  17. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-01

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  18. Evaluation of a turbidity meter for use at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Mahannah, R.N; Edwards, T.B.

    2013-01-01

    Savannah River RemediationÆs (SRRÆs) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ôpeanutö vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of

  19. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  20. EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Mahannah, R.; Edwards, T.

    2013-06-04

    Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the

  1. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    International Nuclear Information System (INIS)

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-01-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy's DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H 2 generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H 2 generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H 2 in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H 2 monitors were recommended to the DWPF to control the generation of H 2 during melter feed preparation by fuel dilution

  2. Phenomenological analyses and their application to the Defense Waste Processing Facility probabilistic safety analysis accident progression event tree. Revision 1

    International Nuclear Information System (INIS)

    Kalinich, D.A.; Thomas, J.K.; Gough, S.T.; Bailey, R.T.; Kearnaghan, D.P.

    1995-01-01

    In the Defense Waste Processing Facility (DWPF) Safety Analysis Reports (SARs) for the Savannah River Site (SRS), risk-based perspectives have been included per US Department of Energy (DOE) Order 5480.23. The NUREG-1150 Level 2/3 Probabilistic Risk Assessment (PRA) methodology was selected as the basis for calculating facility risk. The backbone of this methodology is the generation of an Accident Progression Event Tree (APET), which is solved using the EVNTRE computer code. To support the development of the DWPF APET, deterministic modeling of accident phenomena was necessary. From these analyses, (1) accident progressions were identified for inclusion into the APET; (2) branch point probabilities and any attendant parameters were quantified; and (3) the radionuclide releases to the environment from accidents were determined. The phenomena of interest for accident progressions included explosions, fires, a molten glass spill, and the response of the facility confinement system during such challenges. A variety of methodologies, from hand calculations to large system-model codes, were used in the evaluation of these phenomena

  3. Liquidus Temperature Data for DWPF Glass

    International Nuclear Information System (INIS)

    Piepel, G.F.; Vienna, J.D.; Crum, J.V.; Mika, M.; Hrma, P.

    1999-01-01

    This report provides new liquidus temperature (T L ) versus composition data that can be used to reduce uncertainty in T L calculation for DWPF glass. According to the test plan and test matrix design PNNL has measured T L for 53 glasses within and just outside of the current DWPF processing composition window. The T L database generated under this task will directly support developing and enhancing the current T L process-control model. Preliminary calculations have shown a high probability of increasing HLW loading in glass produced at the SRS and Hanford. This increase in waste loading will decrease the life-cycle tank cleanup costs by decreasing process time and the volume of waste glass produced

  4. Technical Report on the Impact of MgO on Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Schultz, R.L.

    2000-01-01

    The purpose of this study was to determine the effect(s) of removing MgO from DWPF frits to assess the impact on liquidus temperature and the durability of the glass product. Removal of MgO from the frit was hypothesized to lead to a decrease in liquidus temperature and thereby allow increased waste loading

  5. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-12

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.

  6. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-20

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.

  7. Pilot scale processing of simulated Savannah River Site high level radioactive waste

    International Nuclear Information System (INIS)

    Hutson, N.D.; Zamecnik, J.R.; Ritter, J.A.; Carter, J.T.

    1991-01-01

    The Savannah River Laboratory operates the Integrated DWPF Melter System (IDMS), which is a pilot-scale test facility used in support of the start-up and operation of the US Department of Energy's Defense Waste Processing Facility (DWPF). Specifically, the IDMS is used in the evaluation of the DWPF melter and its associated feed preparation and offgass treatment systems. This article provides a general overview of some of the test work which has been conducted in the IDMS facility. The chemistry associated with the chemical treatment of the sludge (via formic acid adjustment) is discussed. Operating experiences with simulated sludge containing high levels of nitrite, mercury, and noble metals are summarized

  8. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R

  9. Paper Study Evaluations Of The Introduction Of Small Column Ion Exchange Waste Streams To The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-01-01

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb 2 O 5 , TiO 2 , and ZrO 2 , to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is targeted for Sludge

  10. Achieving RCRA compliance in DOE defense waste management operations

    International Nuclear Information System (INIS)

    Frankhauser, W.A.; Shepard, M.D.

    1989-01-01

    The U.S. Department of Energy (DOE) generates significant volumes of radioactive mixed waste (RMW) through its defense-related activities. Defense RMW is co-regulated by DOE and the U.S. Environmental Protection Agency/State agencies in accordance with requirements of the Resource Conservation and Recovery Act (RCRA) and the Atomic Energy Act (AEA). This paper highlights some of the problems encountered in co-regulation and discusses achievements of the defense waste management program in integrating RCRA requirements into RMW operations. Defense waste sites are planning facility modifications and major new construction projects to develop treatment, storage and disposal capacity for existing RMW inventories and projected needs

  11. Impact of Spherical Frit Beads on Simulated DWPF Slurries

    International Nuclear Information System (INIS)

    SMITH, MICHAEL

    2005-01-01

    It has been shown that the rheological properties of simulated Defense Waste Processing Facility (DWPF) melter feed with the glass former frit as mostly (90 weight percent) solid spherical particles (referred to as beads) were improved as the feed was less viscous as compared to DWPF melter feed that contained the normal irregular shaped frit particles. Because the physical design of the DWPF Slurry Mix Evaporator (SME), Melter Feed Tank (MFT), and melter feed loop are fixed, the impact of changing the rheology might be very beneficial. Most importantly, higher weight percent total solids feed might be processed by reducing the rheological properties (specifically yield stress) of the feed. Additionally, if there are processing problems, such as air entrainment or pumping, these problems might be alleviated by reducing the rheological properties, while maintaining targeted throughputs. Rheology modifiers are chemical, physical, or a combination of the two and can either thin or thicken the rheology of the targeted slurry. The beads are classified as a physical rheological modifier in this case. Even though the improved rheological properties of the feed in the above mentioned DWPF tanks could be quite beneficial, it is the possibility of increased melt rate that is the main driver for the use of beaded glass formers. By improving the rheological properties of the feed, the weight percent solids of the feed could be increased. This higher weight percent solids (less water) feed could be processed faster by the melter as less energy would be required to evaporate the water, and more would be available for the actual melting of the waste and the frit. In addition, the use of beads to thin the feed could possibly allow for the use of a lower targeted acid stoichiometry in the feed preparation process (if in fact acid stoichiometry is being driven by feed rheology as opposed to feed chemistry). Previous work by the Savannah River National Laboratory (SRNL) with the lab

  12. Processing and certification of defense transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cargo, C.H.; McKinley, K.B.; Smith, T.H.; Anderson, B.C.

    1984-01-01

    Since 1970, defense-generated transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the US Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste form the INEL. To support this objective, the Stored Waste Examination Pilot Plant (SWEPP) and the Process Experimental Pilot Plant (PREPP) are currently being constructed. SWEPP will certify waste, using nondestructive examination techniques, for shipment to the Waste Isolation Pilot Plant (WIPP). PREPP will process uncertifiable waste into a certifiable waste form. 3 references

  13. Remote crane control techniques and closed-circuit television for the U.S. Department of Energy, Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    DaSilva, D.A.

    1988-01-01

    The Defense Waste Processing Facility (DWPF) located at the Savannah River Plant (SRP), South Carolina is a nuclear waste facility being built to vitrify and containerize high level radioactive waste products. DWPF has a unique requirement for an unmanned crane system to install and replace equipment in the high humidity, high radiation and harsh chemical environment of permanently inaccessible processing cells. A radio control system is provided to control a 117 ton capacity bridge crane that is equipped with various power tools for remote handling of crane replaceable and maintained equipment. High resolution black and white closed circuit television (CTV) assemblies mounted on the crane and on the walls of the various processing cells are provided for viewing the equipment during normal operations and maintenance. The main process cell (MPC) crane is designed as the vehicle to be the eyes, ears and hands for remote in-cell operations and maintenance. The crane runs on elevated rails above the process cells. A trailer-like-electrical equipment compartment (EEC) containing control and radio communications equipment for the crane; is dragged along on rails in a heavily shielded corridor by a drag bar mounted to the crane. A two way RF system is the communications link for all control and video signals between the crane and two stationary crane control consoles

  14. Development Of Remote Hanford Connector Gasket Replacement Tooling For DWPF

    International Nuclear Information System (INIS)

    Krementz, D.; Coughlin, Jeffrey

    2009-01-01

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manually or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and

  15. An Evaluation of Liquidus Temperature as a Function of Waste Loading for a Tank 42 ''Sludge Only''/Frit 200 Flowsheet

    International Nuclear Information System (INIS)

    Peeler, D.

    1999-01-01

    'The waste glass produced in the SRS Defense Waste Processing Faiclity (DWPF) process must comply with Waste Acceptance Product Specifications (WAPS) and process control requirements by demonstrating, to a high degree of confidence, that melter feed will produce glass satisfying all quality and processing requirements.'

  16. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  17. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  18. Management of remote-handled defense transuranic wastes

    International Nuclear Information System (INIS)

    Ebra, M.A.; Pierce, G.D.; Carson, P.H.

    1988-01-01

    Transuranic (TRU) wastes generated by defense-related activities are scheduled for emplacement at the Waste Isolation Pilot Plant (WIPP) in New Mexico beginning in October 1988. After five years of operation as a research and development facility, the WIPP may be designated as a permanent repository for these wastes, if it has been demonstrated that this deep, geologically stable formation is a safe disposal option. Defense TRU wastes are currently stored at various Department of Energy (DOE) sites across the nation. Approximately 2% by volume of currently stored TRU wastes are defined, on the basis of dose rates, as remote-handled (RH). RH wastes continue to be generated at various locations operated by DOE contractors. They require special handling and processing prior to and during emplacement in the WIPP. This paper describes the strategy for managing defense RH TRU wastes

  19. ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Hera, K.; Coleman, C.; Jones, M.; Wiedenman, B.

    2011-12-05

    Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1). This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from

  20. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  1. Quality assurance in Hanford site defense waste operations

    International Nuclear Information System (INIS)

    Wojtasek, R.D.

    1989-01-01

    This paper discusses quality assurance as an integral part of conducting waste management operations. The storage, treatment, and disposal of radioactive and non- radioactive hazardous wastes at Hanford are described. The author reports that quality assurance programs provide confidence that storage, treatment, and disposal facilities and systems perform as intended. Examples of how quality assurance is applied to Hanford defense waste operations are presented

  2. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludge – Sludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  3. Dissolution rates of DWPF glasses from long-term PCT

    International Nuclear Information System (INIS)

    Ebert, W.L.; Tam, S.W.

    1996-01-01

    We have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 per m at 90 degrees C in tuff groundwater at pH values near 12 for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively

  4. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M andO 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  5. DWPF glass transition temperatures - What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Applewhite-Ramsey, A.L.; Jantzen, C.M.

    1991-01-01

    The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the first geologic repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  6. Calculation of radionuclides in the defense waste processing facility

    International Nuclear Information System (INIS)

    Chandler, J.R.; Finch, D.R.; Becker, G.W. Jr.

    1979-01-01

    SHIELD system calculations yield the isotopic inventory, activity, decay heat, and multigroup radiation source spectra for all of the DWPF process streams and for the solidified waste products. One application of these results is the analysis of the radiation emissions of the stored waste. Another application is the analysis of time dependent properties of the solidified waste. Initially, gamma radiation from /sup 137m/Ba decay contributes approximately one-third of the total energy. As the 137 Cs content decreases, the gamma contribution declines. The major producers of beta radiation are the 90 Sr, 137 Cs, and 144 Pr decay chains. As the glass age increases, however, the contribution from the actinides dominates increasingly. The inital activity level in the glass is 2000 curies per gallon. The activity and decay heat decrease by a factor of 2 in about fifteen years, and by a factor of 4 in fifty years. A similar analysis was made for the salt cake. Initially, the salt cake produces 0.01 watts per gallon from 2.4 curies per gallon of activity. In five years, the activity is reduced by a factor of 19, and the decay heat declines by a factor of 24. After ten years, both the activity and decay heat levels are less than 1% of their initial values. 7 figures, 4 tables

  7. Measurement of the volatility and glass transition temperatures of glasses produced during the DWPF startup test program

    International Nuclear Information System (INIS)

    Marra, J.C.; Harbour, J.R.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize high-level radioactive waste currently stored in underground tanks at the Savannah River Site by incorporating the waste into a glass matrix. The molten waste glass will be poured into stainless steel canisters which will be welded shut to produce the final waste form. One specification requires that any volatiles produced as a result of accidentally heating the waste glass to the glass transition temperature be identified. Glass samples from five melter campaigns, run as part of the DWPF Startup Test Program, were analyzed to determine glass transition temperatures and to examine the volatilization (by weight loss). Glass transition temperatures (T g ) for the glasses, determined by differential scanning calorimetry (DSC), ranged between 445 C and 474 C. Thermogravimetric analysis (TGA) scans showed that no overall weight loss occurred in any of the glass samples when heated to 500 C. Therefore, no volatility will occur in the final glass product when heated up to 500 C

  8. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE 8118

    International Nuclear Information System (INIS)

    Barnes, A; Dan Iverson, D; Brannen Adkins, B

    2008-01-01

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and

  9. Canister disposition plan for the DWPF Startup Test Program

    International Nuclear Information System (INIS)

    Harbour, J.R.; Payne, C.H.

    1990-01-01

    This report details the disposition of canisters and the canistered waste forms produced during the DWPF Startup Test Program. The six melter campaigns (DWPF Startup Tests FA-13, WP-14, WP-15, WP-16, WP-17, and FA-18) will produce 126 canistered waste forms. In addition, up to 20 additional canistered waste forms may be produced from glass poured during the transition between campaigns. In particular, this canister disposition plan (1) assigns (by alpha-numeric code) a specific canister to each location in the six campaign sequences, (2) describes the method of access for glass sampling on each canistered waste form, (3) describes the nature of the specific tests which will be carried out, (4) details which tests will be carried out on each canistered waste form, (5) provides the sequence of these tests for each canistered waste form, and (6) assigns a storage location for each canistered waste form. The tests are designed to provide evidence, as detailed in the Waste Form Compliance Plan (WCP 1 ), that the DWPF product will comply with the Waste Acceptance Product Specifications (WAPS 2 ). The WAPS must be met before the canistered waste form is accepted by DOE for ultimate disposal at the Federal Repository. The results of these tests will be included in the Waste Form Qualification Report (WQR)

  10. DWPF Flowsheet Studies with Simulants to Determine Modular Caustic Side Solvent Extraction Unit Solvent Partitioning and Verify Actinide Removal Process Incorporation Strategy

    International Nuclear Information System (INIS)

    Herman, C

    2006-01-01

    The Actinide Removal Process (ARP) facility and the Modular Caustic Side Solvent Extraction Unit (MCU) are scheduled to begin processing salt waste in fiscal year 2007. A portion of the streams generated in the salt processing facilities will be transferred to the Defense Waste Processing Facility (DWPF) to be incorporated in the glass matrix. Before the streams are introduced, a combination of impact analyses and research and development studies must be performed to quantify the impacts on DWPF processing. The Process Science and Engineering (PS and E) section of the Savannah River National Laboratory (SRNL) was requested via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 to evaluate the impacts on DWPF processing. Simulant Chemical Process Cell (CPC) flowsheet studies have been performed using previous composition and projected volume estimates for the ARP sludge/monosodium titanate (MST) stream. Due to changes in the flammability control strategy for DWPF for salt processing, the incorporation strategy for ARP has changed and additional ARP flowsheet tests were necessary to validate the new processing strategy. The last round of ARP testing included the incorporation of the MCU stream and identified potential processing issues with the MCU solvent. The identified issues included the potential carry-over and accumulation of the MCU solvent components in the CPC condensers and in the recycle stream to the Tank Farm. Therefore, DWPF requested SRNL to perform additional MCU flowsheet studies to better quantify the organic distribution in the CPC vessels. The previous MCU testing used a Sludge Batch 4 (SB4) simulant since it was anticipated that both of these facilities would begin salt processing during SB4 processing. The same sludge simulant recipe was used in this round of ARP and MCU testing to minimize the number of changes between the two phases of testing so a better comparison could be made. ARP and MCU stream simulants were made for this phase of

  11. Remote process cell mercury transfer pumps for DWPF

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Vaughn, V.G.

    1986-01-01

    Final design and the results of the testing performed thus far show that the water displacement of mercury to a height of 40 feet is feasible with just 6 gallons of motive water. Control of the transfer is achieved by monitoring the pump discharge pressure. An air actuated plug valve configuration successfully contained the required discharge pressure of 260 psi. The requirements of low flow and maximum separation of mercury from particulates are achieved due to the configuration of the pressure canister. The pump is capable of transferring a discrete amount of mercury with little additional slurry particulates. The success of this new pumping configuration is highlighted by the fact that it was the inspiration for other remote transfer applications tested at SRP. These application include the dual canister sample pump shown in Figure 7, as well as a successful prototype pump designed at Pacific Northwest Laboratories (PNL). The PNL pump was designed for the purpose of metering waste slurries to an electric melter. Upon completion of final pump fabrication, the Defense Waste Processing facility (DWPF) facility will have a simple and highly reliable method of remotely transferring small discrete batches of mercury as required from radioactive process vessels. 3 refs., 7 figs., 1 tab

  12. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR THE SAVANNAH RIVER SITE'S DEFENSE WASTE PROCESSING FACILITY

    International Nuclear Information System (INIS)

    Krementz, D

    2007-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) requested development of tooling for remote replacement of gaskets in mechanical Hanford connectors. The facility has compressed air supply, two master-slave manipulators (MSM's) and a lightweight robotic arm for operation of the remote tools. The Savannah River National Laboratory (SRNL) developed and tested multiple tools to perform the gasket replacement tasks. Separate pneumatic snap-ring removal tools that use the connector skirt as a reaction surface were developed for removal of the snap ring and spent gasket on both vertical and horizontal Hanford connectors. A pneumatic tool that clamps and centers on the jumper pipe ID was developed to simultaneously install the new gasket and snap ring. A pneumatic snap-ring-loading tool was developed that compresses the snap ring and places it in a groove in the installation tool. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. The entire system has been successfully tested using MSM's to manipulate the various tools. Deployment of the entire system is expected during FY08. The Hanford connector gasket replacement tooling has been successfully tested using MSM's to manipulate the various tools. Nitric acid is used in many of the decontamination processes performed in the REDC, where the tooling will be deployed. Although most of the tool components were fabricated/purchased with nitric acid and radioactive service in mind, some of the prototype parts must be replaced with parts that are more compatible with nitric acid/radioactive service. Several modifications to the various tools are needed to facilitate maintenance and replacement of failed components. Development of installation tools for replacement of 1-inch, 2-inch and multi-hole gaskets is being considered. Deployment of the existing system in the DWPF REDC is expected during FY

  13. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  14. Nevada test site defense waste acceptance criteria, certification, and transfer requirements

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Test Site (NTS) Defense Waste Acceptance Criteria, Certification and Transfer Requirements establishes procedures and criteria for safe transfer, disposal, and storage of defense transuranic, low-level, and mixed waste at the NTS. Included are an overview of the NTS defense waste management program; the NTS waste acceptance criteria for transuranic, low-level, and mixed wastes; waste certification requirements and guidance; application to submit waste; and requirements for waste transfer and receipt. 5 figs., 16 tabs

  15. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  16. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  17. Parametric testing of a DWPF glass

    International Nuclear Information System (INIS)

    Bazan, F.; Rego, J.

    1985-03-01

    A series of tests has been performed to characterize the chemical stability of a DWPF borosilicate glass sample as part of the Waste Package Task of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. This material was prepared at the Savannah River Laboratory for the purpose of testing the 165-frit matrix doped with a simulated nonradioactive waste. All tests were conducted at 90 0 C using deionized water and J-13 water (a tuffaceous formation ground water). In the deionized water tests, both monoliths and crushed glass were tested at various ratios of surface area of the sample to volume of water in order to compare leach rates for different sample geometries or leaching times. Effects on the leach rates as a result of the presence of crushed tuff and stainless steel material were also investigated in the tests with J-13 water. 3 refs., 12 figs., 7 tabs

  18. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT01, KT02, KT03, AND KT04-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2010-11-01

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT01 and KT02-series of glasses were chosen to allow for the identification of the influence of the concentrations of major components of the glass on the retention of TiO{sub 2}. The KT03 series of glasses was chosen to allow for the identification of these influences when higher Nb{sub 2}O{sub 5} and ZrO{sub 2} concentrations are included along with TiO2. The KT04 series of glasses was chosen to investigate the properties and performance of glasses based on the best available projections of actual compositions to be processed at the DWPF (i.e., future sludge batches including the SCIX streams).

  19. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  20. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  1. Preliminary Analysis of Species Partitioning in the DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kesterson, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-15

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas entrainment rates from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream compositions and timeaveraged melter operating data over the duration of one canister-filling cycle. The only case considered in this study involved the SB6 pour stream sample taken while Canister #3472 was being filled over a 20-hour period on 12/20/2010, approximately three months after the bubblers were installed. The analytical results for that pour stream sample provided the necessary glass composition data for the mass balance calculations. To estimate the “matching” feed composition, which is not necessarily the same as that of the Melter Feed Tank (MFT) batch being fed at the time of pour stream sampling, a mixing model was developed involving three preceding MFT batches as well as the one being fed at that time based on the assumption of perfect mixing in the glass pool but with an induction period to account for the process delays involved in the calcination/fusion step in the cold cap and the melter turnover.

  2. Glass formulation requirements for DWPF coupled operations using crystalline silicotitanates

    International Nuclear Information System (INIS)

    Harbour, J.R.; Andrews, M.K.

    1997-01-01

    The design basis DWPF flowsheet couples the vitrification of two waste streams: (1) a washed sludge and (2) a hydrolyzed sodium tetraphenylborate precipitate product, PHA. The PHA contains cesium-137 which had been precipitated from the tank supernate with sodium tetraphenylborate. Smaller amounts of strontium and plutonium adsorbed on sodium titanate are also present with the PHA feed. Currently, DWPF is running a sludge-only flowsheet while working towards solutions to the problems encountered with In Tank Precipitation (ITP). The sludge loading for the sludge-only flowsheet and for the anticipated coupled operations is 28 wt% on an oxide basis. For the coupled operation, it is essential to balance the treatment of the two waste streams such that no supernate remains after immobilization of all the sludge. An alternative to ITP and sodium titanate is the removal of Cs-137, Sr-90, and plutonium from the tank supernate by ion exchange using crystalline silicotitanate (CST). This material has been shown to effectively sorb these elements from the supernate. It is also known that CST sorbs plutonium. The loaded CST could then be immobilized with the sludge during vitrification. It has recently been demonstrated that CST loadings approaching 70 wt% for a CST-only glass can be achieved using a borosilicate glass formulation which can be processed by the DWPF melter. Initial efforts on coupled waste streams with simulated DWPF sludge show promise that a borosilicate glass formulation can incorporate both sludge and CST. This paper presents the bases for research efforts to develop a glass formulation which will incorporate sludge and CST at loadings appropriate for DWPF operation

  3. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  4. Savannah River waste plant takes another broadside

    International Nuclear Information System (INIS)

    Setzer, S.W.

    1992-01-01

    This article is a discussion of Government Accounting Office findings related to the high-level waste disposal facilities, and in particular the Defense Waste Processing Facility, at Savannah River. Cost and schedule problems are noted, and the report concluded that ineffective management, both by DOE personnel and M ampersand AO contractor personnel, was a principal factor contributing to these problems at the DWPF and supporting facilities

  5. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  6. Analysis Of DWPF Sludge Batch 7A (Macrobatch 8) Pour Stream Samples

    International Nuclear Information System (INIS)

    Johnson, F.

    2012-01-01

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed. The following conclusions were drawn from the analytical results provided in this report: (1) The sum of oxides for the official SB7a pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%). (2) The average calculated Waste Dilution Factor (WDF) for SB7a is 2.3. In general, the measured radionuclide content of the official SB7a pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7a Waste Acceptance Program Specification (WAPS) sample. (3) As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the official SB7a pour stream sample. (4) The Product Consistency Test (PCT) results indicate that the official SB7a pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.64 g/L, which is an order of magnitude less than the Environmental

  7. Developing an institutional strategy for transporting defense transuranic waste materials

    International Nuclear Information System (INIS)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations

  8. U.S. Department of Energy defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Jordan, E.A.

    1988-01-01

    The Program Implementation Plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  9. Yield Stress Reduction of DWPF Melter Feed Slurries

    International Nuclear Information System (INIS)

    Stone, M.E.; Smith, M.E.

    2007-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame

  10. Balancing the technical, administrative, and institutional forces in defense waste management

    International Nuclear Information System (INIS)

    Hindman, T.B.

    1988-01-01

    Defense radioactive waste results from the Department of Energy's (DOE) national defense and nuclear weapons production activities. In 1983, the President submitted to Congress the Defense Waste Management Plan (DWMP) for defense high-level and transuranic wastes. The Plan proposed a workable approach for the final disposition of these wastes. The Department is still following the path laid out in this Plan. The proper management of this waste requires that technical, administrative, and institutional forces which are often neither well understood nor well documented be properly balanced. This paper clarifies the role these three forces play in the Defense waste management programs and provides examples of their impacts on specific programs

  11. Investigation of Rheological Impacts on the Defense Waste Processing Facility's Sludge Slurry Feed as Insoluble Solids and Wash Endpoints are Adjusted

    International Nuclear Information System (INIS)

    Fellinger, T. L.; Howard, S.J.; Lee, M.C.; Galloway, R.H.

    2006-01-01

    The Savannah River Site (SRS) is currently pursuing an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). To create a batch of feed for the DWPF, several tanks of radioactive sludge slurry are combined into one of the million gallon (i.e. 3.79 E06 liters) feed tanks for DWPF. Once these sludge slurries are combined, the soluble sodium and weight percent total solids are adjusted by a 'washing' process. The 'washing' process involves diluting the soluble sodium of the sludge slurry with inhibited water (0.015 M NaOH and 0.015 M NaNO 2 ) and allowing the sludge slurry to settle into two layers. The two layers in the tank consist of a clear supernate on top and a layer of settled sludge solids on the bottom. The clear supernate layer is then decanted to another hold tank. This 'washing' process is repeated until the desired wash endpoint (i.e. sodium concentration in the supernate) and weight percent total solids are achieved. A final washed batch of feed consists of approximately 500,000 gallons (i.e. 1.89 E06 liters). DWPF has already processed three batches of feed and is currently processing a fourth. Prior to processing a batch of feed in the DWPF, it must be well characterized. Samples of the prepared feed batch are sent to the Savannah River National Laboratory (SRNL) for this characterization. As a part of the SRNL characterization for the fourth batch, rheology measurements were performed. Measurements were performed at different weight percent insoluble solids loadings to mimic potential facility processing scenarios (i.e. mixing/pumping of concentrated sludge slurry). In order to determine the influence of the soluble Na on the rheological properties of the sample, the supernate of the 'as received' sample was adjusted from 1 M soluble Na to 0.5 M soluble Na by using a lab scale version of the 'washing' process. Rheology

  12. Determination of Reportable Radionuclides for DWPF Sludge Batch 2 (Macro Batch 3)

    International Nuclear Information System (INIS)

    Bibler, N.E.

    2002-01-01

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the greater than 0.01 percent criterion for Curie content

  13. Nuclear hazardous waste cost control management

    International Nuclear Information System (INIS)

    Selg, R.A.

    1991-01-01

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes

  14. Application of SYNROC to high-level defense wastes

    International Nuclear Information System (INIS)

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phase in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100 0 C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY81

  15. Activities in department of energy hazardous and mixed waste defense waste management

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1988-01-01

    In January 1986, the U.S. Department of Energy (DOE) Office of Assistant Secretary for Defense Programs (DP) created the Hazardous Waste and Remedial Actions Division within the Office of Defense Waste and Transportation Management. The Oak Ridge Operations Office (ORO) was assigned the responsibility for supporting DOE Headquarters (HQ) in planning nationally integrated activities for Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act/Superfund Amendments and Reauthorization Act (RCRA/CERCLA/SARA) compliance. In turn, ORO created the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAPSCO) to assist with the expanded lead assignment. The HAZWRAPSCO activities are currently supported by three distinct DOE-HQ funding elements: the Environmental Restoration Program, the Hazardous Waste Compliance Technology Program, and the Hazardous Waste Research and Development R and D Program. The Environmental Restoration Program is discussed in the paper, entitled The DOE Defense Program for Environmental Restoration

  16. IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES

    International Nuclear Information System (INIS)

    Eibling, R; Michael Stone, M

    2006-01-01

    The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress (∼10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report focuses

  17. Off-gas characteristics of defense waste vitrification using liquid-fed Joule-heated ceramic melters

    International Nuclear Information System (INIS)

    Goles, R.W.; Sevigny, G.J.

    1983-09-01

    Off-gas and effluent characterization studies have been established as part of a PNL Liquid-Fed Ceramic Melter development program supporting the Savannah River Laboratory Defense Waste Processing Facility (SRL-DWPF). The objectives of these studies were to characterize the gaseous and airborne emission properties of liquid-fed joule-heated melters as a function of melter operational parameters and feed composition. All areas of off-gas interest and concern including effluent characterization, emission control, flow rate behavior and corrosion effects have been studied using alkaline and formic-acid based feed compositions. In addition, the behavioral patterns of gaseous emissions, the characteristics of melter-generated aerosols and the nature and magnitude of melter effluent losses have been established under a variety of feeding conditions with and without the use of auxiliary plenum heaters. The results of these studies have shown that particulate emissions are responsible for most radiologically important melter effluent losses. Melter-generated gases have been found to be potentially flammable as well as corrosive. Hydrogen and carbon monoxide present the greatest flammability hazard of the combustibles produced. Melter emissions of acidic volatile compounds of sulfur and the halogens have been responsible for extensive corrosion observed in melter plenums and in associated off-gas lines and processing equipment. The use of auxiliary plenum heating has had little effect upon melter off-gas characteristics other than reducing the concentrations of combustibles

  18. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  19. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1994-01-01

    The Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) has developed Waste Acceptance Product Specifications (EM-WAPS). The EM-WAPS will be the basis for defining product acceptance criteria compatible with the requirements of the Civilian Radioactive Waste Management System (CRWMS). The relationship between the EM-WAPS and the CRWMS Systems Requirements document (WA-SRD) will be discussed. The impact of the EM-WAPS on the Savannah River Sit (SRS) Defense Waste Processing Facility's (DWPF) Waste Acceptance Program, Waste Qualification Run planning, and startup schedule will also be reported. 14 refs., 2 tabs

  20. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  1. Defense-waste vitrification studies during FY-1981. Summary report

    International Nuclear Information System (INIS)

    Bjorklund, W.J.

    1982-09-01

    Both simulated alkaline defense wastes and simulated acidic defense wastes (formed by treating alkaline waste with formic acid) were successfully vitrified in direct liquid-fed melter experiments. The vitrification process was improved while using the formate-treated waste. Leach resistance was essentially the same. Off-gas entrainment was the primary mechanism for material exiting the melter. When formate waste was vitrified, the flow behavior of the off gas from the melter changed dramatically from an erratic surging behavior to a more quiet, even flow. Hydrogen and CO were detectable while processing formate feed; however, levels exceeding the flamability limits in air were never approached. Two types of melter operation were tested during the year, one involving boost power. Several boosting methods located within the melter plenum were tested. When lid heating was being used, water spray cooling in the off gas was required. Countercurrent spray cooling was more effective than cocurrent spray cooling. Materials of construction for the off-gas system were examined. Inconel-690 is preferred in the plenum area. Inspection of the pilot-scale melter found that corrosion of the K-3 refractory and Inconel-690 electrodes was minimal. An overheating incident occurred with the LFCM in which glass temperatures up to 1480 0 C were experienced. Lab-scale vitrification tests to study mercury behavior were also completed this year. 53 figures, 63 tables

  2. Corrosion study for a radioactive waste vitrification facility

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE's Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200 degree C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack

  3. Master slave manipulator maintenance at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Lethco, A.J.; Beasley, K.M.

    1991-01-01

    Equipment has been developed and tested to provide transport, installation, removal, decontamination, and repair for the master slave manipulators that are required for thirty-five discrete work locations in the 221-S Vitrification Building of the Defense Waste Processing Facility at the Westinghouse Savannah River Company. This specialized equipment provides a standardized scheme for work locations at different elevations with two types of manipulators

  4. Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Rechard, R.P.; Lord, M.E.; Stockman, C.T.; McCurley, R.D.

    1997-01-01

    The Office of Environmental Management of the U.S. Department of Energy is responsible for the safe management and disposal of DOE owned defense spent nuclear fuel and high level waste (DSNF/DHLW). A desirable option, direct disposal of the waste in the potential repository at Yucca Mountain, depends on the final waste acceptance criteria, which will be set by DOE's Office of Civilian Radioactive Waste Management (OCRWM). However, evolving regulations make it difficult to determine what the final acceptance criteria will be. A method of anticipating waste acceptance criteria is to gain an understanding of the DOE owned waste types and their behavior in a disposal system through a performance assessment and contrast such behavior with characteristics of commercial spent fuel. Preliminary results from such an analysis indicate that releases of 99Tc and 237Np from commercial spent fuel exceed those of the DSNF/DHLW; thus, if commercial spent fuel can meet the waste acceptance criteria, then DSNF can also meet the criteria. In large part, these results are caused by the small percentage of total activity of the DSNF in the repository (1.5%) and regulatory mass (4%), and also because commercial fuel cladding was assumed to provide no protection

  5. High Level Waste (HLW) Processing Experience with Increased Waste Loading

    International Nuclear Information System (INIS)

    JANTZEN, CAROL

    2004-01-01

    The Defense Waste Processing Facility (DWPF) Engineering requested characterization of glass samples that were taken after the second melter had been operational for about 5 months. After the new melter had been installed, the waste loading had been increased to about 38 weight percentage after a new quasicrystalline liquidus model had been implemented. The DWPF had also switched from processing with refractory Frit 200 to a more fluid Frit 320. The samples were taken after DWPF observed very rapid buildup of deposits in the upper pour spout bore and on the pour spout insert while processing the high waste loading feedstock. These samples were evaluated using various analytical techniques to determine the cause of the crystallization. The pour stream sample was homogeneous, amorphous, and representative of the feed batch from which it was derived. Chemical analysis of the pour stream sample indicated that a waste loading of 38.5 weight per cent had been achieved. The data analysis indicated that surface crystallization, induced by temperature and oxygen fugacity gradients in the pour spout, caused surface crystallization to occur in the spout and on the insert at the higher waste loadings even though there was no crystallization in the pour stream

  6. Defense High-Level Waste Leaching Mechanisms Program. Final report

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90 0 C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations

  7. Defense High-Level Waste Leaching Mechanisms Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E. (compiler)

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

  8. Final Report - Engineering Study for DWPF Bubblers, VSL-10R1770-1, Rev. 0, dated 12/22/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Joseph, I.; Matlack, K. S.; Kot, W. K.; Diener, G. A.; Pegg, I. L.; Callow, R. A.

    2013-11-13

    The objective of this work was to perform an engineering assessment of the impact of implementation of bubblers to improve mixing of the glass pool, and thereby increase throughput, in the Defense Waste Processing Facility (DWPF) on the melter and off-gas system. Most of the data used for this evaluation were from extensive melter tests performed on non-SRS feeds. This information was supplemented by more recent results on SRS HLW simulants that were tested on a melter system at VSL under contracts from ORP and SRR. Per the work scope, the evaluation focused on the following areas: Glass production rate; Corrosion of melter components; Power requirements; Pouring stability; Off-gas characteristics; Safety and flammability.

  9. Planning a transportation system for US Defense Transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-05-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans. 9 figures, 1 table

  10. Planning a transportation system for US defense transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-01-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans

  11. Integration of SWPF into the DWPF Flowsheet: Gap Analysis and Test Matrix Development

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-10

    Based on Revision 19 of the High Level Waste (HLW) System Plan, it is anticipated that the Salt Waste Processing Facility (SWPF) will be integrated into the Defense Waste Processing Facility (DWPF) flowsheet in October 2018 (or with Sludge Batch 11 (SB11)). Given that, Savannah River Remediation (SRR) has requested a technical basis be developed that validates the current Product Composition Control System (PCCS) models for use during the processing of the SWPF-based coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that the models may be used during the processing of the SWPF-based coupled flowsheet. To support this objective, Savannah River National Laboratory (SRNL) has completed three key interim activities prior to validation of the current or development of refined PCCS models over the anticipated glass composition region for SWPF processing. These three key activities include: (1) defining the glass compositional region over which SWPF is anticipated to be processed, (2) comparing the current PCCS model validation ranges to the SWPF glass compositional region from which compositional gaps can be identified, and (3) developing a test matrix to cover the compositional gaps.

  12. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  13. Freeze and restart of the DWPF Scale Glass Melter

    International Nuclear Information System (INIS)

    Choi, A.S.

    1989-01-01

    After over two years of successful demonstration of many design and operating concepts of the DWPF Melter system, the last Scale Glass Melter campaign was initiated on 6/9/88 and consisted of two parts; (1) simulation of noble metal buildup and (2) freeze and subsequent restart of the melter under various scenarios. The objectives were to simulate a prolonged power loss to major heating elements and to examine the characteristics of transient melter operations during a startup with a limited supply of lid heat. Experimental results indicate that in case of a total power loss to the lower electrodes such as due to noble metal deposition, spinel crystals will begin to form in the SRL 165 composite waste glass pool in 24 hours. The total lid heater power required to initiate joule heating was the same as that during slurry-feeding. Results of a radiative heat transfer analysis in the plenum indicate that under the identical operating conditions, the startup capabilities of the SGM and the DWPF Melter are quite similar, despite a greater lid heater to melt surface area ratio in the DWPF Melter

  14. Effect of canister size on costs of disposal of SRP high-level wastes

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1982-01-01

    The current plan for managing the high-level nuclear wastes at the Savannah River Plant (SRP) calls for processing them into solid forms contained in stainless steel canisters for eventual disposal in a federal geologic repository. A new SRP facility called the Defense Waste Processing Facility (DWPF) is being designed for the onsite waste processing operations. Preliminary evaluations indicate that costs of the overall disposal operation will depend significantly on the size of the canisters, which determines the number of waste forms to be processed. The objective of this study was to evaluate the effects of canister size on costs of DWPF process operations, including canister procurement, waste solidification, and interim storage, on offsite transport, and on repository costs of disposal, including provision of suitable waste packages

  15. Evaluation of health and safety impacts of defense high-level waste in geologic repositories

    International Nuclear Information System (INIS)

    Smith, E.D.; Kocher, D.C.; Witherspoon, J.P.

    1985-02-01

    Pursuant to the requirement of the Nuclear Waste Policy Act of 1982 that the President evaluate the use of commercial high-level waste repositories for the disposal of defense high-level wastes, a comparative assessment has been performed of the potential health and safety impacts of disposal of defense wastes in commercial or defense-only repositories. Simplified models were used to make quantitative estimates of both long- and short-term health and safety impacts of several options for defense high-level waste disposal. The results indicate that potential health and safety impacts are not likely to vary significantly among the different disposal options for defense wastes. Estimated long-term health and safety impacts from all defense-waste disposal options are somewhat less than those from commercial waste disposal, while short-term health and safety impacts appear to be insensitive to the differences between defense and commercial wastes. In all cases, potential health and safety impacts are small because of the need to meet stringent standards promulgated by the US Environmental Protection Agency and the US Nuclear Regulatory Commission. We conclude that health and safety impacts should not be a significant factor in the choice of a disposal option for defense high-level wastes. 20 references, 14 tables

  16. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  17. Economic considerations/comparisons for the disposal of defense high-level waste

    International Nuclear Information System (INIS)

    Leclaire, D.B.; Lazur, E.G.

    1985-01-01

    This paper provides a summary, in a generic sense, of the economic considerations and comparisons of permanent isolation of defense high-level waste (DHLW) in a licensed geologic repository. Topics considered include underground disposal, economic analysis, comparative evaluations, national defense, radioactive waste facilities, and licensing

  18. U.S. Department of Energy, defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Chee, T.

    1988-01-01

    This paper reports that the program implementation plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  19. Use of titanates in decontamination of defense waste

    International Nuclear Information System (INIS)

    Dosch, R.G.

    1978-06-01

    Sodium titanate, an inorganic ion exchange material, has been evaluated for use in a process to remove strontium from Defense Waste or other high-sodium, caustic solutions. Distribution coefficients on the order of 10 5 were observed at sub part per million concentrations of Sr, and the effects of other cation impurities and complexants in the waste were investigated. The preparation and general chemical properties of the exchange material are discussed. This information was used in developing a commercial source which has since supplied a 200 kg batch of the material for evaluation. In column ion exchange experiments with 85 Sr-doped simulated waste, decontamination factors of 500 or greater were observed in the first 2000 to 3500 bed volumes of effluent, depending on the impurities in the simulant. A -40 to +130 mesh range of sodium titanate powder was used as the baseline material, but a study to produce alternate forms of the titanate was carried in parallel. This has resulted in two materials which appear promising with respect to both simplification of handling and chemical properties. One of the materials is an agglomerated form of the titanate formed by extrusion pelletizing using water as a binder, and the second is a macroreticular organic anion resin which was loaded with 30 to 40% (by weight) of sodium titanate. The results of initial testing of these materials are discussed

  20. High-level waste processing at the Savannah River Site: An update

    International Nuclear Information System (INIS)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ''sludge-only'' composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ''coupled'' feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates

  1. The remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) is a complete production area being constructed at the Savannah River Plant for the immobilization of nuclear waste in glass. The remote handling of canisters filled with nuclear waste in glass is an essential part of the process of the DWPF at the Savannah River Plant. The canisters are filled with nuclear waste containing up to 235,000 curies of radioactivity. Handling and movement of these canisters must be accomplished remotely since they radiate up to 5000 R/h. Within the Vitrification Building during filling, cleaning, and sealing, canisters are moved using standard cranes and trolleys and a specially designed grapple. During transportation to the Glass Waste Storage Building, a one-of-a-kind, specially designed Shielded Canister Transporter (SCT) is used. 8 figs

  2. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  3. Preliminary estimates of cost savings for defense high level waste vitrification options

    International Nuclear Information System (INIS)

    Merrill, R.A.; Chapman, C.C.

    1993-09-01

    The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion

  4. Integration of long-range planning for management of defense transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; McFadden, M.H.; Raudenbush, M.H.; Smith, L.J.

    1984-01-01

    As described in The Defense Waste Management Plan, the defense TRU program goal is to achieve permanent disposal and to end interim storage. TRU waste is currently stored at six Department of Energy (DOE) sites, and new waste is generated at several more sites. The Waste Isolation Pilot Plant (WIPP) project is well defined, and it has been necessary to integrate the activities of other parts of the TRU program in support of DOE Headquarters policy and the WIPP schedules and technical requirements. The strategy is described in the Defense Transuranic Waste Program Strategy Document. More detailed, quantitative plans have been developed through the use of several system models, with a Long-Range Master Plan for Defense Transuranic Waste Management as the focal point for coordination of proposed plans with all the parties involved

  5. Solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Stevens, W.R. III.

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures

  6. Integrating the commercial and defense high level waste programs - A utility perspective

    International Nuclear Information System (INIS)

    Tomonto, J.R.

    1986-01-01

    The Nuclear Waste Policy Act of 1982 provided that disposal of high-level wastes resulting from defense activities be included in the authorized repository unless the President determined that separate facilities are required. President Reagan approved commingling of defense and civilian wastes on April 30, 1985. The impacts of this decision on the repository schedule, civilian spent fuel acceptance rates, and cost sharing are reviewed and recommendations for resolving these issues are presented

  7. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  8. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    International Nuclear Information System (INIS)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-01-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  9. 1987 monitoring report for the defense waste lysimeters

    International Nuclear Information System (INIS)

    McIntyre, P.F.

    1987-01-01

    Low levels of radionuclides migrate through the soil to the sump. This report updates previous monitoring reports and discusses results obtained during the past year of operation. The effluents from the forty defense waste lysimeters continue to be analyzed on a monthly basis for gamma emitting radionuclides and quarterly for alpha emitting radionuclides and Sr-90. Cobalt-60, Sr-90, Sb-125, U-235, Pu-238, Pu-239 and Am-241 continue to be detected in sump effluent. Detectable levels of cobalt-60 and antimony-125 are each observed in only one lysimeter. Manganese-54, Ru-106 and Th-234 are no longer detected in effluent from any lysimeter. Significant levels of Sr-90 and Pu-238 are observed from several lysimeters, while others continue to show low levels of U-235, Pu-239 and Am-241. The release rates for transporting radionuclides through the soil to the sump indicate that migration is independent of whether a lysimeter is operated in a saturated or unsaturated mode. Pine trees continue to grow on the ten foot diameter lysimeters. No sampling of needles or woody stem portions was performed. The purpose of analyzing pine trees growing on lysimeters is to measure the amount of radionuclide uptake by the pine trees as their root systems come in contact with the waste material. 6 refs., 2 figs., 49 tabs

  10. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non

  11. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 4 MACROBATCH 5

    International Nuclear Information System (INIS)

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-01-01

    The Waste Acceptance Product Specifications (WAPS)1 1.2 require that 'The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115'. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP)2 and Waste Form Qualification Report (WQR)3. However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the previous contents of Tank 40 (Sludge Batch 3) and the sludge that was transferred to Tank 40 from Tank 51. The blend of sludge from Tank 51 and Tank 40 defines Sludge Batch 4 (also referred to as Macrobatch 5 (MB5)). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of

  12. Future directions of defense programs high-level waste technology programs

    International Nuclear Information System (INIS)

    Chee, T.C.; Shupe, M.W.; Turner, D.A.; Campbell, M.H.

    1987-01-01

    The Department of Energy has been managing high-level waste from the production of nuclear materials for defense activities over the last forty years. An objective for the Defense Waste and Transportation Management program is to develop technology which ensures the safe, permanent disposal of all defense radioactive wastes. Technology programs are underway to address the long-term strategy for permanent disposal of high-level waste generated at each Department of Energy site. Technology is being developed for assessing the hazards, environmental impacts, and costs of each long-term disposal alternative for selection and implementation. This paper addresses key technology development areas, and consideration of recent regulatory requirements associated with the long-term management of defense radioactive high-level waste

  13. DWPF SB6 Initial CPC Flowsheet Testing SB6-1 TO SB6-4L Tests Of SB6-A And SB6-B Simulants

    International Nuclear Information System (INIS)

    Lambert, D.; Pickenheim, B.; Best, D.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing in late fiscal year 2010. Tests were conducted using non-radioactive simulants of the expected SB6 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2008-0043, Rev.0 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT and QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. These studies were conducted with the estimated SB6 composition at the time of the study. This composition assumed a blend of 101,085 kg of Tank 4 insoluble solids and 179,000 kg of Tank 12 insoluble solids. The current plans are to subject Tank 12 sludge to aluminum dissolution. Liquid Waste Operations assumed that 75% of the aluminum would be dissolved during this process. After dissolution and blending of Tank 4 sludge slurry, plans included washing the contents of Tank 51 to ∼1M Na. After the completion of washing, the plan assumes that 40 inches on Tank 40 slurry would remain for blending with the qualified SB6 material. There are several parameters that are noteworthy concerning SB6 sludge: (1) This is the second batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution; (2) The sludge is high in mercury, but the projected concentration is lower than SB5; (3) The sludge is high in noble metals, but the projected concentrations are lower than SB5; and(4) The sludge is high in U and Pu - components that are not added in sludge simulants. Six DWPF process simulations were completed in 4-L laboratory-scale equipment using

  14. DWPF Glass Melter Technology Manual: Volume 4

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter

  15. DWPF Glass Melter Technology Manual: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  16. DWPF Glass Melter Technology Manual: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  17. DWPF Glass Melter Technology Manual: Volume 3

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs

  18. The Impact of Waste Loading on Viscosity in the Frit 418-SB3 System

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    In this report, data are provided to gain insight into the potential impact of a lower viscosity glass on melter stability (i.e., pressure spikes, cold cap behavior) and/or pour stream stability. High temperature viscosity data are generated for the Frit 418-SB3 system as a function of waste loading (from 30 to 45 percent) and compared to similar data from other systems that have been (or are currently being) processed through the Defense Waste Processing Facility (DWPF) melter. The data are presented in various formats to potentially align the viscosity data with physical observations at various points in the melter system or critical DWPF processing unit operations. The expectations is that the data will be provided adequate insight into the vitrification parameters which might evolve into working solutions as DWPF strives to maximize waste throughput. This report attempts to provide insight into a physical interpretation of the data from a DWPF perspective. The theories present ed are certainly not an all inclusive list and the order in which they are present does imply a ranking, probability, or likelihood that the proposed theory is even plausible. The intent of this discussion is to provide a forum in which the viscosity data can be discussed in relation to possible mechanisms which could potentially lead to a workable solution as discussed in relation to possible solution as higher overall attainment is striven for during processing of the current or future sludge batches

  19. Rheological Properties of Defense Waste processing Facility Melter Feeds

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Mao, F.

    1998-01-01

    In the present investigation, viscosity measurements have been carried out for two types of simulated Defense waste slurries, a Savannah River slurry and a Hanford slurry. The measurements were conducted in two experimental options. A rotational viscometer was used to measure viscosity under well-defined temperature and pH value operating conditions. The solids concentration used for this option was lower than 15 wt.%. Both the slurries have been investigated using this experimental option. The Savannah River slurry has also been investigated in a pipeline flow system, which measured the pressure drop as the slurry flowed through the pipe. The slurry's viscosity can be extracted from the pressure drop information. These investigations have been performed in relatively wide parameter ranges. The solids concentration of the slurry tested in the pipeline system was as high as 25 wt.%.The slurry pH in both experimental options covered a range of 4 to 13.5. The highest operating temperature was 66 C for the rotational viscometer and 55 C for the pipeline system. In FY97, the experiments for the Hanford slurry in the pipeline system will be performed

  20. Hanford Waste Vitrification Plant - the project and process systems

    International Nuclear Information System (INIS)

    Swenson, L.D.; Miller, W.C.; Smith, R.A.

    1990-01-01

    The Hanford Waste Vitrification Plant (HWVP) project is scheduled to start construction on the Hanford reservation in southeastern Washington State in 1991. The project will immobilize the liquid high-level defense waste stored there. The HWVP represents the third phase of the U.S. Department of Energy (DOE) activities that are focused on the permanent disposal of high-level radioactive waste, building on the experience of Defense Waste Processing Facility (DWPF) at the Savannah River site, South Carolina, and of the West Valley Demonstration Plant (WVDP), New York. This sequential approach to disposal of the country's commercial and defense high-level radioactive waste allows HWVP to make extensive use of lessons learned from the experience of its predecessors, using mature designs from the earlier facilities to achieve economies in design and construction costs while enhancing operational effectiveness

  1. FY 1987 program summary document: Office of Defense Waste and Transportation Management

    International Nuclear Information System (INIS)

    1987-04-01

    This document describes the Office of Defense Waste and Transportation Management (DWTM) Program as supported by the President's Fiscal Year (FY) 1987 Budget Request to Congress. It specifically addresses the program's organization, objectives, strategies, and plans for FY 1987

  2. Waste Acceptance System Requirements document (WASRD)

    International Nuclear Information System (INIS)

    1993-01-01

    This Waste Acceptance System Requirements document (WA-SRD) describes the functions to be performed and the technical requirements for a Waste Acceptance System for accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) into the Civilian Radioactive Waste Management System (CRWMS). This revision of the WA-SRD addresses the requirements for the acceptance of HLW. This revision has been developed as a top priority document to permit DOE's Office of Environmental Restoration and Waste Management (EM) to commence waste qualification runs at the Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) in a timely manner. Additionally, this revision of the WA-SRD includes the requirements from the Physical System Requirements -- Accept Waste document for the acceptance of SNF. A subsequent revision will fully address requirements relative to the acceptance of SNF

  3. FY85 Program plan for the Defense Transuranic Waste Program (DTWP)

    International Nuclear Information System (INIS)

    1984-11-01

    The Defense TRU Waste Program (DTWP) is the focal point for the Department of Energy in national planning, integration, and technical development for TRU waste management. The scope of this program extends from the point of TRU waste generation through delivery to a permanent repository. The TRU program maintains a close interface with repository development to ensure program compatibility and coordination. The defense TRU program does not directly address commercial activities that generate TRU waste. Instead, it is concerned with providing alternatives to manage existing and future defense TRU wastes. The FY85 Program Plan is consistent with the Defense TRU Waste Program goals and objectives stated in the Defense Transuranic Waste Program Strategy Document, January 1984. The roles of participants, the responsibilities and authorities for Research and Development (R and D), the organizational interfaces and communication channels for R and D and the establishment of procedures for planning, reporting, and budgeting of all R and D activities meet requirements stated in the Technical Management Plan for the Transuranic Waste Management Program. The Program Plan is revised as needed. The work breakdown structure is reflected graphically immediately following the Administration section and is described in the subsequent narrative. Detailed budget planning (i.e., programmatic funding and capital equipment) is presented for FY85; outyear budget projections are presented for future years

  4. Program plan: DWPF/HLWDP stirred Melter Program Plan

    International Nuclear Information System (INIS)

    Smith, M.E.

    1994-01-01

    Slurry Fed Melters (SFM) have been developed in the United States, Europe, and Japan for the conversion of high-level radioactive waste (HLW) to borosilicate glass for permanent disposal. The newest design, the stirred melter, combines the high production rates and high glass quality features of the Joule-heated melters with the low-cost, compact, simple maintenance features of the pot melters. However, further engineering design and demonstrations are needed to operate the stirred melter on a large scale. This document outlines the program which develops a full scale stirred melter for the DWPF (240 pph), and provides a basis which will allow further scale-up of the technology for use in the Hanford High Level Waste Disposal Program (HLWDP) for up to four times the reference capacity

  5. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  6. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  7. Evaluation of a high-level waste radiological maintenance facility

    International Nuclear Information System (INIS)

    Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation''s first and world''s largest high level waste vitrification facility. DWPF began, operations in March 1996 to process radioactive waste, consisting of a matrixed predominantly 137 Cs precipitate and a predominately 90 Sr and alpha emitting sludge, into boro-silicate glass for long term storage. Presently, DWPF is processing only sludge waste and is preparing to process a combination of sludge and precipitate waste. During precipitate operations, canister dose rates are expected to exceed 10 Sv hr -1 (1000 rem hr -1 ). In sludge-only operations, canister contact gamma dose rates are approximately 15 mSv hr -1 (1500 mrem hr -1 ). Transferable contamination levels have been greater than 10 mSv hr -1 (100 cm 2 ) -1 for beta-gamma emitters and into the millions of Bq (100 cm 2 ) -1 for the alpha emitting radionuclides. This paper presents an evaluation of the radiological maintenance areas and their ability to support radiological work

  8. Nuclear waste glass product consistency test (PCT), Version 5.0

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached

  9. Thermal phase stability of some simulated Defense waste glasses

    International Nuclear Information System (INIS)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450 0 C to 1100 0 C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7 0 C/hour from an 1100 0 C melt down to 500 0 C where it was removed from the furnace. The following were observed. The slow cooling rate of 7 0 C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO 2 and (Ni, Mn, Fe) 2 O 4 form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500 0 C there is but little devitrification occurring implying that glass canisters stored at 300 0 C may be kinetically stable despite not being thermodynamically so

  10. Thermal phase stability of some simulated Defense waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  11. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class-C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types. The paper discusses site selection; establishment of the Radioactive Waste Management Project; operations with respect to low-level radioactive wastes, transuranic waste storage, greater confinement disposal test, and mixed waste management facility; and related research activities such as tritium migration studies, revegetation studies, and in-situ monitoring of organics

  12. Waste and Simulant Precipitation Issues

    International Nuclear Information System (INIS)

    Steele, W.V.

    2000-01-01

    As Savannah River Site (SRS) personnel have studied methods of preparing high-level waste for vitrification in the Defense Waste Processing Facility (DWPF), questions have arisen with regard to the formation of insoluble waste precipitates at inopportune times. One option for decontamination of the SRS waste streams employs the use of an engineered form of crystalline silicotitanate (CST). Testing of the process during FY 1999 identified problems associated with the formation of precipitates during cesium sorption tests using CST. These precipitates may, under some circumstances, obstruct the pores of the CST particles and, hence, interfere with the sorption process. In addition, earlier results from the DWPF recycle stream compatibility testing have shown that leaching occurs from the CST when it is stored at 80 C in a high-pH environment. Evidence was established that some level of components of the CST, such as silica, was leached from the CST. This report describes the results of equilibrium modeling and precipitation studies associated with the overall stability of the waste streams, CST component leaching, and the presence of minor components in the waste streams

  13. Review of Statistical Analyses Resulting from Performance of HLDWD-DWPF-005

    International Nuclear Information System (INIS)

    Beck, R.S.

    1997-01-01

    The Engineering Department at the Defense Waste Processing Facility (DWPF) has reviewed two reports from the Statistical Consulting Section (SCS) involving the statistical analysis of test results for analysis of small sample inserts (references 1 ampersand 2). The test results cover two proposed analytical methods, a room temperature hydrofluoric acid preparation (Cold Chem) and a sodium peroxide/sodium hydroxide fusion modified for insert samples (Modified Fusion). The reports support implementation of the proposed small sample containers and analytical methods at DWPF. Hydragard sampler valve performance was typical of previous results (reference 3). Using an element from each major feed stream. lithium from the frit and iron from the sludge, the sampler was determined to deliver a uniform mixture in either sample container.The lithium to iron ratios were equivalent for the standard 15 ml vial and the 3 ml insert.The proposed method provide equivalent analyses as compared to the current methods. The biases associated with the proposed methods on a vitrified basis are less than 5% for major elements. The sum of oxides for the proposed method compares favorably with the sum of oxides for the conventional methods. However, the average sum of oxides for the Cold Chem method was 94.3% which is below the minimum required recovery of 95%. Both proposed methods, cold Chem and Modified Fusion, will be required at first to provide an accurate analysis which will routinely meet the 95% and 105% average sum of oxides limit for Product Composition Control System (PCCS).Issued to be resolved during phased implementation are as follows: (1) Determine calcine/vitrification factor for radioactive feed; (2) Evaluate covariance matrix change against process operating ranges to determine optimum sample size; (3) Evaluate sources for low sum of oxides; and (4) Improve remote operability of production versions of equipment and instruments for installation in 221-S.The specifics of

  14. Hydroceramics, a ''new'' cementitious waste form material for U.S. defense-type reprocessing waste

    International Nuclear Information System (INIS)

    Siemer, Darryl D.

    2002-01-01

    A ''hydroceramic'' (HC) is a concrete which possesses mineralogy similar to the zeolitized rock indigenous to the USA's current ''basis'' high level radioactive waste (HLW) repository site, Yucca Mountain (YM). It is made by curing a mixture of inorganic waste, calcined clay, vermiculite, Na 2 S, NaOH, plus water under hydrothermal conditions. The product differs from conventional Portland cement and/or slag-based concretes (''grouts'') in that it is primarily comprised of alkali aluminosilicate ''cage minerals'' (cancrinites, sodalites, and zeolites)rather than hydrated calcium silicates (C-S-H in cement-chemistry shorthand). Consequently it microencapsulates individual salt molecules thereby rendering them less leachable than they are from conventional grouts. A fundamental difference between the formulations of HCs and radwaste-type glasses is that the latter contain insufficient aluminum to form insoluble minerals with all of the alkali metals in them. This means that the imposition of worst-case ''repository failure'' (hydrothermal) conditions would cause a substantial fraction of such glasses to alter to water-soluble forms. Since the same conditions tend to reduce the solubility of HC concretes, they constitute a more rugged immobilization sub-system. This paper compares leach characteristics of HCs with those of radwaste-type glasses and points out why hydroceramic solidification makes more sense than vitrification for US defense-type reprocessing waste. (orig.)

  15. Proceedings of the Sandia Laboratories workshop on the use of titanate ion exchangers for defense waste management

    International Nuclear Information System (INIS)

    Schwoebel, R.L.; Northrup, C.J.

    1978-01-01

    Abstracts and visual aids from the following talks are presented: removal of radionuclides from Hanford defense waste solutions; waste management programs at Savannah River Plant; application of defense waste decontamination; americium and curium recovery from nuclear waste using inorganic ion exchanger materials; removal of trace 106 Ru in nuclear waste processing; and titanate characterization and consolidation processes. Copies of three memos are included: 90 Sr radiation effects on sodium titanate loaded macroreticular resin; 238 239 Pu content in defense waste; and preparation and physical properties of sodium titanate in ion exchange resin

  16. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  17. DWPF Glass Melter Technology Manual: Volume 1

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs

  18. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  19. Modeling The Impact Of Elevated Mercury In Defense Waste Processing Facility Melter Feed On The Melter Off-Gas System - Preliminary Report

    International Nuclear Information System (INIS)

    Zamecnik, J.; Choi, A.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl 2 , and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg 2 Cl 2 ) to HgCl 2 with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of

  20. Phase 2 Report--Mercury Behavior In The Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River Site (SRS), Aiken, SC (United States); Fellinger, T. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-27

    The purpose of this report is to provide a summary of the DWPF processing history in regards to mercury, document the mercury results obtained on the product and condensate samples, and provide further recommendations based on the data obtained.

  1. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  2. DWPF upgrade, immobilization Programmatic Environmental Impact Statement input. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, I.K.; Bignell, D.

    1994-01-01

    This Programmatic Environmental Impact Statement (PEIS) addresses the immobilization of plutonium by vitrification. Existing engineering documents, analyses, EIS, and technical publications were used and incorporated wherever possible to provide a timely response to this support effort. Although the vitrification technology is proven for the immobilization of high-level radioactive waste, more study and technical detail will be necessary to provide a comprehensive EIS that fully addresses all aspects of introduction of plutonium to the vitrification process. This document describes the concept(s) of plutonium processing as it relates to the upgrade of the DWPF and is therefore conceptual in nature. These concepts are based on technical data and experience at the Savannah River Site and will be detailed and finalized to support execution of this immobilization option

  3. Impact of transporting defense high-level waste to a geologic repository

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options

  4. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    International Nuclear Information System (INIS)

    Goles, R.W.

    1996-03-01

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed

  5. Economic evaluation of volume reduction for Defense transuranic waste

    International Nuclear Information System (INIS)

    Brown, C.M.

    1982-03-01

    The economics of volume reduction of retrievably stored and newly generated DOE transuranic wastes are evaluated by comparing the costs of reduction of the wastes with the savings possible in transportation and disposal. A general approach to the comparison of TRU waste volume reduction costs and cost savings is developed, an initial set of cost data is established, conclusions to support selecting technologies and facilities for the disposal of DOE transuranic waste are developed. Section I outlines the analysis which considers seven types of volume reduction from incineration and compaction of combustibles to compaction, size reduction, shredding, melting, and decontamination of metals. The study considers the volume reduction of contact-handled, newly generated and retrievably stored DOE transuranic wastes. Section II of this report describes the analytical approach, assumptions, and flow of waste material through sites. Section III presents the waste inventories, disposal and transportation savings, and volume reduction techniques and costs. Section IV contains the results and conclusions of the study. The major conclusions drawn from the study are: For DOE sites with a small amount of waste requiring disposal ( 3 /year) the cost of volume reduction is greater than the transportation and disposal savings from volume reduction provided the waste requires little additional preparation to meet transportation and disposal criteria. Wastes that do not meet these criteria require site specific economic analysis outside the general evaluations of this study. For Idaho National Engineering Laboratory, incineration and metal shredding are cost-effective, provided a facility is to be constructed as a consequence of repackaging the fraction of stored waste which may require repackaging and immobilizing chemical process waste to meet disposal criteria

  6. Defense waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Dukes, M.D.

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables

  7. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    International Nuclear Information System (INIS)

    Koopman, David C.:Eibling, Russel E

    2005-01-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Chemical Process Cell of the Defense Waste Processing Facility, DWPF. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Parallel preparations of two sludge simulants targeting the composition of Sludge Batch 3 were performed in order to evaluate the impact of the form of noble metals. Identical steps were used except that one simulant had dissolved palladium, rhodium, and ruthenium present during the precipitation of the insoluble solids. Noble metals were trimmed into the other stimulant prior to process tests. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The simulants were used as feeds for Sludge Receipt and Adjustment Tank, SRAT, process simulations. The following conclusions were drawn from the simulant preparation work: (1) The first preparation of a waste slurry simulant with co-precipitated noble metals was successful, based on the data obtained. It appears that 99+% of the noble metals were retained in the simulant. (2) Better control of carbonate, hydroxide, and post-wash trim chemical additions is needed before the new method of simulant preparation will be as reproducible as the old method. (3) The two new

  8. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable

  9. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    International Nuclear Information System (INIS)

    Radulesscu, G.; Tang, J.S.

    2000-01-01

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M andO [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M andO 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M andQ 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M andO 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this

  10. Yield Stress Reduction of Radioactive Waste Slurries by Addition of Surfactants

    International Nuclear Information System (INIS)

    MICHAEL, STONE

    2005-01-01

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass while the facilities at the Hanford site are in the design/construction phase. Both processes utilize slurry-fed joule heated melters to vitrify the waste slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and melter feed processes. The use of a surface active agent, or surfactant, to increase the solids loading that can be fed to the melters would increase melt rate by reducing the heat load on the melter required to evaporate the water in the feed. The waste slurries are non-Newtonian fluids with rheological properties that were modeled using the Bingham Plastic mod el (this model is typically used by SRNL when studying the DWPF process1).The results illustrate that altering the surface chemistry of the particulates in the waste slurries can lead to a reduction in the yield stress. Dolapix CE64 is an effective surfactant over a wide range of pH values and was effective for all simulants tested. The effectiveness of the additive increased in DWPF simulants as the concentration of the additive was increased. No maxi main effectiveness was observed. Particle size measurements indicate that the additive acted as a flocculant in the DWPF samples and as a dispersant in the RPP samples

  11. Allowable residual contamination levels: transuranic advanced disposal systems for defense waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1982-01-01

    An evaluation of advanced disposal systems for defense transuranic (TRU) wastes is being conducted using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. For defense TRU wastes at the Hanford Site near Richland, Washington, various advanced disposal techniques are being studied to determine their potential for application. This paper presents a discussion of the results of the first stage of the TRU advanced disposal systems project

  12. Perspective on methods to calculate a fee for disposal of defense high-level waste in combined (civilian/defense) repositories

    International Nuclear Information System (INIS)

    1986-12-01

    The Department of Energy intends to send the high-level waste from defense operations to combined civilian/defense repositories for disposal. The federal government must pay a fee to cover its fair share of the cost for the disposal system. This report provides an overview perspective on the defense high-level waste (DHLW) quantities and characteristics and on potential alternatives for calculation and payment of the disposal fee. Information on the DHLW expected from government sites includes the number of waste canisters, radioactivity, thermal decay power, mass of defense reactor fuel, and total electrical energy-equivalents. Ranges in quantities are shown where different operating scenarios are being considered. Several different fee determination methods are described and fees for different quantities of waste are estimated. Information is also included on possible payment alternatives, production and shipping schedules, and credits which could be applied to the fee

  13. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    International Nuclear Information System (INIS)

    Pierce, G.D.; Wolaver, R.W.; Carson, P.H.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs

  14. Mercury removal from SRP radioactive waste streams using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.; Ebra, M.A.

    1986-01-01

    Mercury is present in varying concentrations in some Savannah River Plant (SRP) waste streams as a result of its use as a catalyst in the dissolution of fuel elements composed of uranium-aluminum alloys. It may be desirable to remove mercury from these streams before treatment of the waste for incorporation in glass for long-term storage. The glass forming process will also create waste from which mercury will have to be removed. The goal of mercury would be to eliminate ultimate emission of the toxic substance into the environment. This paper describes tests that demonstrate the feasibility of using a specific cation exchange resin, Duolite GT-73 for the removal of mercury from five waste streams generated at the SRP. Two of these streams are dilute; one is the condensate from a waste evaporator while the other is the effluent from an effluent treatment plant now under development. The three other streams are related to the Defense Waste Processing Facility (DWPF) that is being built at SRP. One of these streams is a concentrated salt solution (principally sodium nitrate and sodium hydroxide) that constitutes the soluble fraction of SRP waste and contains 20% mercury in the waste. The second stream is a slurry of the insoluble components in SRP waste and contains 80% of the mercury. The third stream is the offgas condensate from the glass melter system in the DWPF

  15. SPEEDUP simulation of liquid waste batch processing. Revision 1

    International Nuclear Information System (INIS)

    Shannahan, K.L.; Aull, J.E.; Dimenna, R.A.

    1994-01-01

    The Savannah River Site (SRS) has accumulated radioactive hazardous waste for over 40 years during the time SRS made nuclear materials for the United States Department of Energy (DOE) and its predecessors. This waste is being stored as caustic slurry in a large number of 1 million gallon steel tanks, some of which were initially constructed in the early 1950's. SRS and DOE intend to clean up the Site and convert this waste into stable forms which then can be safely stored. The liquid waste will be separated into a partially decontaminated low-level and radioactive high-level waste in one feed preparation operation, In-Tank Precipitation. The low-level waste will be used to make a concrete product called saltstone in the Saltstone Facility, a part of the Defense Waste Processing Facility (DWPF). The concrete will be poured into large vaults, where it will be permanently stored. The high-level waste will be added to glass-formers and waste slurry solids from another feed preparation operation, Extended Sludge Processing. The mixture will then be converted to a stable borosilicate glass by a vitrification process that is the other major part of the DWPF. This glass will be poured into stainless steel canisters and sent to a temporary storage facility prior to delivery to a permanent underground storage site

  16. Retrieval process development and enhancements waste simulant compositions and defensibility

    International Nuclear Information System (INIS)

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD ampersand E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD ampersand E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties

  17. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete

  18. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction.

  19. Improved polyphase ceramic form for high-level defense nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Morgan, P.E.D.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-01-01

    An improved ceramic nuclear waste form and fabrication process have been developed using simulated Savannah River Plant defense high-level waste compositions. The waste form provides flexibility with respect to processing conditions while exhibiting superior resistance to ground water leaching than other currently proposed forms. The ceramic, consolidated by hot-isostatic pressing at 1040 0 C and 10,000 psi, is composed of six major phases, nepheline, zirconolite, a murataite-type cubic phase, magnetite-type spinel, a magnetoplumbite solid solution, and perovskite. The waste form provides multiple crystal lattice sites for the waste elements, minimizes amorphous intergranular material, and can accommodate waste loadings in excess of 60 wt %. The fabrication of the ceramic can be accomplished with existing manufacturing technology and eliminates the effects of radionuclide volatilization and off-gas induced corrosion experienced with the molten processes for vitreous form production

  20. Economics of defense high level waste management in the United States

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1987-01-01

    Life-cycle costs of defense waste disposal, as presented in the foregoing sections, are summarized. Expressed as incremental costs per canister of waste deposited in a Federal geologic repository and per gallon of decontaminated salt solution immobilized in onsite concrete vaults, the tabulated values provide a measure of waste management costs relatively independent of the inventories of waste processed. Total values are about $350,000 per glass waste canister processed and $4.68 per gallon of decontaminated salt immobilized. These costs do not generally include contributions of fixed charges, such as capital costs, except in the case of transport and repository charges for which the quantities of waste handled determine allocation of fixed costs included in the fee assessments. 14 refs., 2 figs., 3 tabs

  1. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  2. Control of DWPF melter feed composition

    International Nuclear Information System (INIS)

    Brown, K.G.; Edwards, R.E.; Postles, R.L.; Randall, C.T.

    1989-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility

  3. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1979-01-01

    Objective is to evaluate the corrosion/erosion resistance of melter materials. Materials tested were Monofrox K3 and E, Serv, Inconel 690, Pt, and SnO. Results show that Inconel 690 is the leading electrode material and Monofrox K3 the leading refractory candidate. Melter lifetime is estimated to be 2 to 5 years for defense waste

  4. Solidification of commercial and defense low-level radioactive waste in polyethylene

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, L.H.; Colombo, P.

    1987-08-01

    A process was developed for the solidification of salt wastes, incinerator ash and ion-exchange resins in polyethylene. Of the salt wastes, sodium sulfate and boric acid are representative of the wastes produced at commercial nuclear facilities while sodium nitrate in a typical high-volume waste generated at defense-related facilities. Ease of processibility and high loading efficiencies were obtained through the use of low-density polyethylene with melt indices ranging from 2.0 to 55.0 g/minute. The process utilized a commercially available single-screw extruder to incorporate the wastes into the polyethylene at about 120 0 C to produce a homogeneous mixture. Although present studies utilize dry wastes, wet wastes can also be processed using vented extruders of the type used commercially for the bitumen solidification process. Tests were performed on the waste forms to determine leachability and mechanical properties. To confirm the compatibility of polyethylene and nitrate salt waste at elevated temperatures, the self-ignition temperatures were measured and a differential scanning calorimeter was used to characterize the thermal behavior of oxidizing compounds contained in the simulated waste, as well as the real Savannah River Plant waste. No exothermic reactions were observed over the temperature range studied from 50 0 C to 400 0 C. 18 refs., 7 figs., 8 tabs

  5. DWPF liquid sample station: Status of equipment development

    International Nuclear Information System (INIS)

    Caplan, J.R.

    1987-01-01

    This report summarizes operating experience and equipment status of the DWPF liquid sample cell. Operation hours to date, results of equipment inspections and problems encountered and their solutions are discussed. An equipment and instrumentation status updating DPST-85-592, DWPF LIQUID SAMPLE CELL MOCK-UP, is presented. Remaining development items are also outlined

  6. Managing the Department of Energy's hazardous and mixed defense wastes

    International Nuclear Information System (INIS)

    Daly, G.H.; Sharples, F.E.; McBrayer, J.F.

    1986-04-01

    Like other large and complex industries, the nuclear weapons programs produce hazardous chemical wastes, many of which require special handling for the protection of health, safety, and the environment. This requires the interaction of a multiplicity of organizational entities. The HAZWRAP was established to provide centralized planning and technical support for DP RCRA- and CERCLA-related activities. The benefits of a centralized program integrator include DP-wide consistency in regulatory compliance, effective setting and execution of priorities, and development of optimal long-term waste management strategies for the DP complex

  7. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.

    2013-04-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case

  8. Preliminary evaluation of alternative forms for immobilization of Hanford high-level defense wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Beary, M.M.; Gallagher, S.A.; Higley, B.A.; Johnston, R.G.; Jungfleisch, F.M.; Kupfer, M.J.; Palmer, R.A.; Watrous, R.A.; Wolf, G.A.

    1980-09-01

    A preliminary evaluation of solid waste forms for immobilization of Hanford high-level radioactive defense wastes is presented. Nineteen different waste forms were evaluated and compared to determine their applicability and suitability for immobilization of Hanford salt cake, sludge, and residual liquid. This assessment was structured to address waste forms/processes for several different leave-retrieve long-term Hanford waste management alternatives which give rise to four different generic fractions: (1) sludge plus long-lived radionuclide concentrate from salt cake and residual liquid; (2) blended wastes (salt cake plus sludge plus residual liquid); (3) residual liquid; and (4) radionuclide concentrate from residual liquid. Waste forms were evaluated and ranked on the basis of weighted ratings of seven waste form and seven process characteristics. Borosilicate Glass waste forms, as marbles or monoliths, rank among the first three choices for fixation of all Hanford high-level wastes (HLW). Supergrout Concrete (akin to Oak Ridge National Laboratory Hydrofracture Process concrete) and Bitumen, low-temperature waste forms, rate high for bulk disposal immobilization of high-sodium blended wastes and residual liquid. Certain multi-barrier (e.g., Coated Ceramic) and ceramic (SYNROC Ceramic, Tailored Ceramics, and Supercalcine Ceramic) waste forms, along with Borosilicate Glass, are rated as the most satisfactory forms in which to incorporate sludges and associated radionuclide concentrates. The Sol-Gel process appears superior to other processes for manufacture of a generic ceramic waste form for fixation of Hanford sludge. Appropriate recommendations for further research and development work on top ranking waste forms are made

  9. DWPF Sample Vial Insert Study-Statistical Analysis of DWPF Mock-Up Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.P. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-09-18

    This report is prepared as part of Technical/QA Task Plan WSRC-RP-97-351 which was issued in response to Technical Task Request HLW/DWPF/TTR-970132 submitted by DWPF. Presented in this report is a statistical analysis of DWPF Mock-up test data for evaluation of two new analytical methods which use insert samples from the existing HydragardTM sampler. The first is a new hydrofluoric acid based method called the Cold Chemical Method (Cold Chem) and the second is a modified fusion method.Either new DWPF analytical method could result in a two to three fold improvement in sample analysis time.Both new methods use the existing HydragardTM sampler to collect a smaller insert sample from the process sampling system. The insert testing methodology applies to the DWPF Slurry Mix Evaporator (SME) and the Melter Feed Tank (MFT) samples.The insert sample is named after the initial trials which placed the container inside the sample (peanut) vials. Samples in small 3 ml containers (Inserts) are analyzed by either the cold chemical method or a modified fusion method. The current analytical method uses a HydragardTM sample station to obtain nearly full 15 ml peanut vials. The samples are prepared by a multi-step process for Inductively Coupled Plasma (ICP) analysis by drying, vitrification, grinding and finally dissolution by either mixed acid or fusion. In contrast, the insert sample is placed directly in the dissolution vessel, thus eliminating the drying, vitrification and grinding operations for the Cold chem method. Although the modified fusion still requires drying and calcine conversion, the process is rapid due to the decreased sample size and that no vitrification step is required.A slurry feed simulant material was acquired from the TNX pilot facility from the test run designated as PX-7.The Mock-up test data were gathered on the basis of a statistical design presented in SRT-SCS-97004 (Rev. 0). Simulant PX-7 samples were taken in the DWPF Analytical Cell Mock

  10. Alternative solid forms for Savannah River Plant defense waste

    International Nuclear Information System (INIS)

    Stone, J.A.; Goforth, S.T.; Smith, P.K.

    1980-01-01

    Solid forms and processes were evaluated for immobilization of SRP high-level radioactive waste, which contains bulk chemicals such as hydrous iron and aluminium oxides. Borosilicate glass currently is the best overall choice. High-silica glass, tailored ceramics, and coated ceramics are potentially superior products, but require more difficult processes

  11. Hazardous Waste Disposal Costs for The Defense Logistics Agency

    National Research Council Canada - National Science Library

    1999-01-01

    This audit is part of the overall audit, "DoD Hazardous Waste Disposal Costs," (Project No. 9CK-5021). The overall audit was jointly conducted by the Inspector General, DoD, and the Army, Navy, and Air Force audit agencies...

  12. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes

  13. Bounding estimate of DWPF mercury emissions

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1993-01-01

    Two factors which have substantial impact on predicted Mercury emissions are the air flows in the Chemical Process Cell (CPC) and the exit temperature of the Formic Acid Vent Condenser (FAVC). The discovery in the IDMS (Integrated DWPF Melter System) of H 2 generation by noble metal catalyzed formic acid decomposition and the resultant required dilution air flow has increased the expected instantaneous CPC air flow by as much as a factor of four. In addition, IDMS has experienced higher than design (10 degrees C) FAVC exit temperatures during certain portions of the operating cycle. These temperatures were subsequently attributed to the exothermic reaction of NO to NO 2 . Moreover, evaluation of the DWPF FAVC indicated it was undersized and unless modified or replaced, routine exit temperatures would be in excess of design. Purges required for H 2 flammability control and verification of elevated FAVC exit temperatures due to NO x reactions have lead to significant changes in CPC operating conditions. Accordingly, mercury emissions estimates have been updated based upon the new operating requirements, IDMS experience, and development of an NO x /FAVC model which predicts FAVC exit temperatures. Using very conservative assumptions and maximum purge rates, the maximum calculated Hg emissions is approximately 130 lbs/yr. A range of 100 to 120 lbs/yr is conservatively predicted for other operating conditions. The peak emission rate calculated is 0.027 lbs/hr. The estimated DWPF Hg emissions for the construction permit are 175 lbs/yr (0.02 lbs/hr annual average)

  14. MCC-15: waste/canister accident testing and analysis method

    International Nuclear Information System (INIS)

    Slate, S.C.; Pulsipher, B.A.; Scott, P.A.

    1985-02-01

    The Materials Characterization Center (MCC) at the Pacific Northwest Laboratory (PNL) is developing standard tests to characterize the performance of nuclear waste forms under normal and accident conditions. As part of this effort, the MCC is developing MCC-15, Waste/Canister Accident Testing and Analysis. MCC-15 is used to test canisters containing simulated waste forms to provide data on the effects of accidental impacts on the waste form particle size and on canister integrity. The data is used to support the design of transportation and handling equipment and to demonstrate compliance with repository waste acceptance specifications. This paper reviews the requirements that led to the development of MCC-15, describes the test method itself, and presents some early results from tests on canisters representative of those proposed for the Defense Waste Processing Facility (DWPF). 13 references, 6 figures

  15. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  16. The WIPP research and development program: providing the technical basis for defense waste disposal

    International Nuclear Information System (INIS)

    Hunter, Th.O.

    1983-01-01

    The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, is being developed by the US Department of Energy as a research and development facility to demonstrate the safe disposal of radioactive wastes from the defense programs of the United States. Underground workings are at a depth of 660 in a bedded-salt formation. Site investigations began in the early 1970s and are culminating with the completion of the Site and Preliminary Design Validation (SPDV) program in 1983 in which two shafts and several thousand feet of underground drifts are being constructed. The underground facility will be used for in situ tests and demonstrations that address technical issues associated with the disposal of transuranic and defense high-level wastes (DHLW) in bedded salt. These tests are based on several years of laboratory tests, field tests in mines, and analytical modeling studies. They primarily address repository development in bedded salt, including thermal-structural interactions plugging and sealing, and facility operations; and waste package interactions, including the effects of the waste on local rock salt and the evaluation of waste package materials. In situ testing began in the WIPP with the initiation of the SPDV program in 1981. In 1983, a major series of tests will begin to investigate the response of the rock salt without the use of any radioactivity

  17. Economics of defense high-level waste management in the United States

    International Nuclear Information System (INIS)

    Slate, S.C.; McDonell, W.R.

    1987-01-01

    The Department of Energy (DOE) is responsible for managing defense high-level wastes (DHLW) from U.S. defense activities using environmentally safe and cost-effective methods. In parallel with its technical programs, the DOE is performing economic studies to ensure that costs are minimized. To illustrate the cost estimating techniques and to provide a sense of cost magnitude, the DHLW costs for the Savannah River Plant (SRP) are calculated. Since operations at SRP must be optimized within relatively fixed management practices, the estimation of incremental costs is emphasized. Treatment and disposal costs are shown to equally contribute to the incremental cost of almost $400,000/canister

  18. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an

  19. Nuclear waste form risk assessment for US defense waste at Savannah River Plant. Annual report fiscal year 1980

    International Nuclear Information System (INIS)

    Cheung, H.; Jackson, D.D.; Revelli, M.A.

    1981-07-01

    Waste form dissolution studies and preliminary performance analyses were carried out to contribute a part of the data needed for the selection of a waste form for the disposal of Savannah River Plant defense waste in a deep geologic repository. The first portion of this work provides descriptions of the chemical interactions between the waste form and the geologic environment. We reviewed critically the dissolution/leaching data for borosilicate glass and SYNROC. Both chemical kinetic and thermodynamic models were developed to describe the dissolution process of these candidate waste forms so as to establish a fundamental basis for interpretation of experimental data and to provide directions for future experiments. The complementary second portion of this work is an assessment of the impacts of alternate waste forms upon the consequences of disposal in various proposed geological media. Employing systems analysis methodology, we began to evaluate the performance of a generic waste form for the case of a high risk scenario for a bedded salt repository. Results of sensitivity analysis, uncertainty analyses, and sensitivity to uncertainty analysis are presented

  20. Defense waste cyclone incinerator demonstration program: April-September 1980

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    An improved offgas system is being designed. The new system will improve gas cleaning and will also provide for improved offgas sampling and mass balance data collection. Continuous solid feed burning experiments were delayed pending delivery of shredding equipment. Liquid burning experiments were in progress at fiscal year end. Burn data indicate that the incinerator will work well for combustible liquids. Improved data on incinerator performance will be generated upon completion of system changes and utilization of new sampling and analysis equipment. Mound Facility received advanced guidance from the Transuranic Waste Systems Office that this program will be cancelled in FY-1981 because of reductions in funding levels

  1. The Impact Of The Mcu Life Extension Solvent On Dwpf Glass Formulation Efforts

    International Nuclear Information System (INIS)

    Peeler, D.; Edwards, T.

    2011-01-01

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NG-CSSX), a new strip acid, and modified monosodium titanate (mMST) will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing with the next generation solvent and mMST is required to determine the impact of these changes in 512-S operations as well as Chemical Process Cell (CPC), Defense Waste Processing Facility (DWPF) glass formulation activities, and melter operations at DWPF. To support programmatic objectives, the downstream impacts of the boric acid strip effluent (SE) to the glass formulation activities and melter operations are considered in this study. More specifically, the impacts of boric acid additions to the projected SB7b operating windows, potential impacts to frit production temperatures, and the potential impact of boron volatility are evaluated. Although various boric acid molarities have been reported and discussed, the baseline flowsheet used to support this assessment was 0.01M boric acid. The results of the paper study assessment indicate that Frit 418 and Frit 418-7D are robust to the implementation of the 0.01M boric acid SE into the SB7b flowsheet (sludge-only or ARP-added). More specifically, the projected operating windows for the nominal SB7b projections remain essentially constant (i.e., 25-43 or 25-44% waste loading (WL)) regardless of the flowsheet options (sludge-only, ARP added, and/or the presence of the new SE). These results indicate that even if SE is not transferred to the Sludge Receipt and Adjustment Tank (SRAT), there would be no need to add boric acid (from a trim tank) to compositionally compensate for the absence of the boric acid SE in either a sludge-only or ARP-added SB7b flowsheet. With respect to boron volatility, the Measurement Acceptability Region (MAR) assessments also

  2. Defense waste cyclone incinerator demonstration program: October--March 1979

    International Nuclear Information System (INIS)

    Klinger, L.M.

    1979-01-01

    The cyclone incinerator developed at Mound has proven to be an effective tool for waste volume reduction. During the first half of FY-1979, efforts have been made to increase the versatility of the system. Incinerator development was continued in three areas. Design changes were drafted for the present developmental incinerator to rectify several minor operational deficiencies of the system. Improvements will be limited to redesign unless installation is required to prove design or to permit implementation of other portions of the plan. The applications development portion of the feasibility plan is focused upon expanding the versatility of the incinerator. An improved delivery system was installed for burning various liquids. An improved continuous feed system was installed and will be demonstrated later this year. Late in FY-1979, work will begin on the conceptual design of a production cyclone incinerator which will handle nonrecoverable TRU waste, and which will fully demonstrate the capabilities of the cyclone incinerator system. Data generated in past years and during FY-1979 are being collected to establish cyclone incineration effects on solids, liquids, and gases in the system. Data reflecting equipment life cycles and corrosion have been tabulated. Basic design criteria for a cyclone incinerator system based on developmental work on the incinerator through FY-1979 have been assembled. The portion of the material dealing with batch-type operation of the incinerator will be published later this year

  3. Materials performance in a high-level radioactive waste vitrification system

    International Nuclear Information System (INIS)

    Imrich, K.J.; Chandler, G.T.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) is a Department of Energy Facility designed to vitrify highly radioactive waste. An extensive materials evaluation program has been completed on key components in the DWPF after twelve months of operation using nonradioactive simulated wastes. Results of the visual inspections of the feed preparation system indicate that the system components, which were fabricated from Hastelloy C-276, should achieve their design lives. Significant erosion was observed on agitator blades that process glass frit slurries; however, design modifications should mitigate the erosion. Visual inspections of the DWPF melter top head and off gas components, which were fabricated from Inconel 690, indicated that varying degrees of degradation occurred. Most of the components will perform satisfactorily for their two year design life. The components that suffered significant attack were the borescopes, primary film cooler brush, and feed tubes. Changes in the operation of the film cooler brush and design modifications to the feed tubes and borescopes is expected to extend their service lives to two years. A program to investigate new high temperature engineered materials and alloys with improved oxidation and high temperature corrosion resistance will be initiated

  4. Errors of DWPF frit analysis: Final report

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    1993-01-01

    Glass frit will be a major raw material for the operation of the Defense Waste Processing Facility. The frit will be controlled by certificate of conformance and a confirmatory analysis from a commercial analytical laboratory. The following effort provides additional quantitative information on the variability of frit chemical analyses at two commercial laboratories. Identical samples of IDMS Frit 202 were chemically analyzed at two commercial laboratories and at three different times over a period of four months. The SRL-ADS analyses, after correction with the reference standard and normalization, provided confirmatory information, but did not detect the low silica level in one of the frit samples. A methodology utilizing elliptical limits for confirming the certificate of conformance or confirmatory analysis was introduced and recommended for use when the analysis values are close but not within the specification limits. It was also suggested that the lithia specification limits might be reduced as long as CELS is used to confirm the analysis

  5. Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program

    International Nuclear Information System (INIS)

    Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.; Thieme, R.E.

    1988-02-01

    In 1970, the US Atomic Energy Commission established a ''transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as ''buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containing mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs

  6. Solidification of Savannah River Plant high level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Kelley, J.A.; Zeyfang, R.W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY 83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quantity of existing high level nuclear wastes can be safely and permanently immobilized. Early demonstration will both expedite and facilitate rational decision making on this aspect of the nuclear program. Delay in providing these facilities will result in significant DOE expenditures at SRP for new tanks just for continued temporary storage of wastes, and would probably result in dissipation of the intellectual and planning momentum that has built up in developing the project

  7. Impact of Alkali Source on Vitrification of SRS High Level Waste

    International Nuclear Information System (INIS)

    LAMBERT, D. P.; MILLER, D. H.; PEELER, D. K.; SMITH, M. E.; STONE, M. E.

    2005-01-01

    The Defense Waste Processing Facility (DWPF) Savannah River Site is currently immobilizing high level nuclear waste sludge by vitrification in borosilicate glass. The processing strategy involves blending a large batch of sludge into a feed tank, washing the sludge to reduce the amount of soluble species, then processing the large ''sludge batch'' through the DWPF. Each sludge batch is tested by the Savannah River National Laboratory (SRNL) using simulants and tests with samples of the radioactive waste to ''qualify'' the batch prior to processing in the DWPF. The DWPF pretreats the sludge by first acidifying the sludge with nitric and formic acid. The ratio of nitric to formic acid is adjusted as required to target a final glass composition that is slightly reducing (the target is for ∼20% of the iron to have a valence of two in the glass). The formic acid reduces the mercury in the feed to elemental mercury which is steam stripped from the feed. After a concentration step, the glass former (glass frit) is added as a 50 wt% slurry and the batch is concentrated to approximately 50 wt% solids. The feed slurry is then fed to a joule heated melter maintained at 1150 C. The glass must meet both processing (e.g., viscosity and liquidus temperature) and product performance (e.g., durability) constraints The alkali content of the final waste glass is a critical parameter that affects key glass properties (such as durability) as well as the processing characteristics of the waste sludge during the pretreatment and vitrification processes. Increasing the alkali content of the glass has been shown to improve the production rate of the DWPF, but the total alkali in the final glass is limited by constraints on glass durability and viscosity. Two sources of alkali contribute to the final alkali content of the glass: sodium salts in the waste supernate and sodium and lithium oxides in the glass frit added during pretreatment processes. Sodium salts in the waste supernate can

  8. Investigation of foaming during nuclear defense-waste solidification by electric melting

    International Nuclear Information System (INIS)

    Blair, H.T.; Lukacs, J.M.

    1980-12-01

    To determine the cause of foaming, the physical and chemical composition of the glass formers that are added to the waste to produce a borosilicate melt were investigated. It was determined that the glass-forming frit was not the source of the foam-causing gases. Incomplete calcination of the waste, which results in residual hydrates, carbonates and nitrates, and the relatively high carbon and sulfate contents of the waste glass composition were also eliminated as possible sources of the foam. It was finally shown that the oxides of the multivalent ions of manganese and iron that are in the defense waste in high concentrations are the source of the foaming. Nickel oxide is also present in the waste and is suspected of contributing to the foaming. In investigating methods to reduce the foam, the focus was on the chemistry of the materials being processed rather than on the mechanical aspects of the processing equipment to avoid increasing the mechanical complexity of the melter operation. Reducing the waste loading in the host glass from 28 to 14 wt. % produced the most significant reduction in the foam. Of course this did not increase the rate at which waste can be processed. Adding carbonaceous additives or barium metaphosphate to the waste/frit mixture (batch) reduced the foaming somewhat. However, if too much reducing agent was added to the batch, iron-nickel alloys separated from the melt. Likewise, melting the batch in an inert or a reducing atmosphere reduced the foaming but produced a heterogeneous product. Finally, initial attempts to control foaming by adding reducing agents to the liquid waste and then spray-calcining it using an inert atomizing gas were not successful. The possibilities for liquid-waste treatment need to be investigated further

  9. The behavior and effects of the noble metals in the DWPF melter system

    International Nuclear Information System (INIS)

    Hutson, N.D.; Smith, M.E.

    1992-01-01

    Fission-product noble metals have caused severe operating problems in numerous worldwide waste vitrification facilities. These dense, highly conductive noble metals have tended to accumulate on the floor of joule-heated glass melters causing electrical distortions which have, in some occurrences, rendered the melter inoperable. A pilot scale vitrification research facility at the U.S. Department of Energy's Savannah River Laboratory has been operated for more than a year with simulated feed streams containing noble metals. In this paper the behavior of these noble metals in the melter system and final glass product and their effects on the scaled DWPF-type melter are discussed

  10. DWPF Sample Vial Insert Study-Statistical Analysis of DWPF Mock-Up Test Data

    International Nuclear Information System (INIS)

    Harris, S.P.

    1997-01-01

    This report is prepared as part of Technical/QA Task Plan WSRC-RP-97-351 which was issued in response to Technical Task Request HLW/DWPF/TTR-970132 submitted by DWPF. Presented in this report is a statistical analysis of DWPF Mock-up test data for evaluation of two new analytical methods which use insert samples from the existing HydragardTM sampler. The first is a new hydrofluoric acid based method called the Cold Chemical Method (Cold Chem) and the second is a modified fusion method.Both new methods use the existing HydragardTM sampler to collect a smaller insert sample from the process sampling system. The insert testing methodology applies to the DWPF Slurry Mix Evaporator (SME) and the Melter Feed Tank (MFT) samples. Samples in small 3 ml containers (Inserts) are analyzed by either the cold chemical method or a modified fusion method. The current analytical method uses a HydragardTM sample station to obtain nearly full 15 ml peanut vials. The samples are prepared by a multi-step process for Inductively Coupled Plasma (ICP) analysis by drying, vitrification, grinding and finally dissolution by either mixed acid or fusion. In contrast, the insert sample is placed directly in the dissolution vessel, thus eliminating the drying, vitrification and grinding operations for the Cold chem method. Although the modified fusion still requires drying and calcine conversion, the process is rapid due to the decreased sample size and that no vitrification step is required.A slurry feed simulant material was acquired from the TNX pilot facility from the test run designated as PX-7.The Mock-up test data were gathered on the basis of a statistical design presented in SRT-SCS-97004 (Rev. 0). Simulant PX-7 samples were taken in the DWPF Analytical Cell Mock-up Facility using 3 ml inserts and 15 ml peanut vials. A number of the insert samples were analyzed by Cold Chem and compared with full peanut vial samples analyzed by the current methods. The remaining inserts were analyzed by

  11. An update on the quality assurance for the waste vitrification plants

    Energy Technology Data Exchange (ETDEWEB)

    Caplinger, W.H.; Shugars, D.L.; Carlson, M.K.

    1990-01-01

    Immobilization of high-level defense production wastes is an important step in environmental restoration. The best available technology for immobilization of this waste currently is by incorporation into borosilicate glass, i.e., vitrification. Three US sites are active in the design, construction, or operation of vitrification facilities. The status, facility description and Quality Assurance (QA) development for each facility was presented at the 1989 Energy Division Conference. This paper presents the developments since that time. The West Valley Demonstration Project (WVDP) in northwestern New York State has demonstrated the technology. At the Savannah River Site (SRS) in South Carolina the Defense Waste Processing Facility (DWPF) has completed design, construction is essentially complete, and preparation for operation is underway. The Hanford Waste Vitrification Plant (HWVP) in Washington State is in initial Detailed Design. 4 refs.

  12. An update on the quality assurance for the waste vitrification plants

    International Nuclear Information System (INIS)

    Caplinger, W.H.; Shugars, D.L.; Carlson, M.K.

    1990-01-01

    Immobilization of high-level defense production wastes is an important step in environmental restoration. The best available technology for immobilization of this waste currently is by incorporation into borosilicate glass, i.e., vitrification. Three US sites are active in the design, construction, or operation of vitrification facilities. The status, facility description and Quality Assurance (QA) development for each facility was presented at the 1989 Energy Division Conference. This paper presents the developments since that time. The West Valley Demonstration Project (WVDP) in northwestern New York State has demonstrated the technology. At the Savannah River Site (SRS) in South Carolina the Defense Waste Processing Facility (DWPF) has completed design, construction is essentially complete, and preparation for operation is underway. The Hanford Waste Vitrification Plant (HWVP) in Washington State is in initial Detailed Design. 4 refs

  13. Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, William R.; Lumetta, Gregg J.; Johnson, Michael E.; Poirier, Micheal R.; Thompson, Major C.; Suggs, Patricia C.; Machara, N.

    2011-01-13

    The U.S. Department of Energy (DOE) is responsible for retrieving, immobilizing, and disposing of radioactive waste that has been generated during the production of nuclear weapons in the United States. The vast bulk of this waste material is stored in underground tanks at the Savannah River Site in South Carolina and the Hanford Site in Washington State. The general strategy for treating the radioactive tank waste consists of first separating the waste into high-level and low-activity fractions. This initial partitioning of the waste is referred to as pretreatment. Following pretreatment, the high-level fraction will be immobilized in a glass form suitable for disposal in a geologic repository. The low-activity waste will be immobilized in a waste form suitable for disposal at the respective site. This paper provides a review of recent developments in the application of pretreatment technologies to the processing of the Hanford and Savannah River radioactive tank wastes. Included in the review are discussions of 1) solid/liquid separations methods, 2) cesium separation technologies, and 3) other separations critical to the success of the DOE tank waste remediation effort. Also included is a brief discussion of the different requirements and circumstances at the two DOE sites that have in some cases led to different choices in pretreatment technologies.

  14. Statistical analysis of the DWPF prototypic sampler

    International Nuclear Information System (INIS)

    Postles, R.L.; Reeve, C.P.; Jenkins, W.J.; Bickford, D.F.

    1991-01-01

    The DWPF process will be controlled using assay measurements on samples of feed slurry. These slurries are radioactive, and thus will be sampled remotely. A Hydraguard trademark pump-driven sampler system will be used as the remote sampling device. A prototype Hydraguard trademark sampler has been studied in a full-scale mock-up of a DWPF process vessel. Two issues were of dominant interest: (1) what accuracy and precision can be provided by such a pump-driven sampler in the face of the slurry rheology; and, if the Hydraguard trademark sample accurately represents the slurry in its local area, (2) is the slurry homogeneous enough throughout for it to represent the entire vessel? To determine Hydraguard trademark Accuracy, a Grab Sampler of simpler mechanism was used as reference. This (Low) Grab Sampler was located as near to the intake port of the Hydraguard trademark as could be arranged. To determine Homogeneity, a second (High) Grab Sampler was located above the first. The data necessary to these determinations comes from the measurement system, so its important variables also affect the results. Thus, the design of the test involved not just Sampling variables, but also some of the Measurement variables as well. However, the main concern was the Sampler and not the Measurement System, so the test design included only such measurement variables as could not be circumvented (Vials, Dissolution Method, and Aliquoting). The test was executed by, or under the direct oversight of, expert technologists. It thus did not explore the many important particulars of ''routine'' plant operations (such as Remote Sample Preparation or Laboratory Shift Operation)

  15. Material compatibility evaluataion for DWPF nitric-glycolic acid - literature review

    International Nuclear Information System (INIS)

    Mickalonis, J.I; Skidmore, T.E.

    2013-01-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reported corrosion rates and degradation characteristics have shown the following for the materials of construction: For C276 alloy, the primary material of construction for the CPC vessels, corrosion rates of either 2 or 20 mpy were reported up to a temperature of 93 deg C; For the austenitic stainless steels, 304L and 316L, variable rates were reported over a range of temperatures, varying from 2 mpy up to 200 mpy (at 100 deg C); For 690, G30, Allcorr, Ultimet and Stellite alloys no data were available; and, For relevant polymers where data are available, the data suggests that exposure to glycolic acid is not detrimental. The literature data had limited application to the DWPF process since only the storage and feed vessels, pumps and piping used to handle the glycolic acid are directly covered by the available data. These components are either 304L or 316L alloys for which the literature data is inconsistent (See Bullet 2 above). Corrosion rates in pure glycolic acid solutions also are not representative of the DWPF process streams. This stream is complex and contains aggressive species, i.e. chlorides, sulfates, mercury, as well as antifoaming agents which cumulatively have an unknown effect on the corrosion rates of the materials of construction. Therefore, testing is recommended to investigate any synergistic effects of the aggressive

  16. Incorporating functional requirements into the structural design of the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Hsiu, F.J.; Ng, C.K.; Almuti, A.M.

    1986-01-01

    Vitrification Building-type structures have unique features and design needs. The structural design requires new concepts and custom detailing. The above special structural designs have demonstrated the importance of the five design considerations listed in the introduction. Innovative ideas and close coordination are required to achieve the design objectives. Many of these innovations have been applied to the DWPF facility which is a first of a kind

  17. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  18. Post-test evaluations of Waste Isolation Pilot Plant - Savannah River simulated defense HLW canisters and waste form

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.; Harbour, J.R.; Ferrara, D.M.

    1993-01-01

    Eighteen nonradioactive defense high-level waste (DHLW) canisters were emplaced in and subjected to accelerated overtest thermal conditions for about three years at the bedded salt Waste Isolation Pilot Plant (WIPP) facility. Post-test laboratory corrosion results of several stainless steel 304L waste canisters, cast steel overpacks, and associated instruments ranged from negligible to moderate. We found appreciable surface corrosion and corrosion products on the cast steel overpacks. Pieces of both 304L and 316 stainless steel test apparatus underwent extensive stress-corrosion cracking failure and nonuniform attack. One of the retrieved test packages contained nonradioactive glass waste form from the Savannah River Site. We conducted post-test analyses of this glass to determine the degree of resultant glass fracturing, and whether any respirable fines were present. Linear glass fracture density ranged from about 1 to 8 fractures intersecting every 5 cm (2 inch) segment along a diameter line of the canister cross-section. Glass fines between 1 and 10 microns in diameter were detected, but were not quantified

  19. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  20. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    International Nuclear Information System (INIS)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose

  1. Management of defense beta-gamma contaminated solid low-level wastes

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    In DOE defense operations, approx. 70,000 m 3 of beta-gamma low-level radioactive waste are disposed of annually by shallow land burial operations at six primary sites. Waste generated at other DOE sites are transported on public roads to the primary sites for disposal. In the practice of low-level waste (LLW) disposal in the US, the site hydrology and geology are the primary barriers to radioactive migration. To date, little emphasis has been placed on waste form improvements or engineered site modifications to reduce migration potential. Compaction is the most common treatment step employed. The performance of ground disposal of radioactive waste in this country, in spite of many practices that we would consider unacceptable in today's light, has resulted in very little migration of radioactivity outside site boundaries. Most problems with previously used burial grounds have been from subsidence at the arid sites and subsidence and groundwater contact at the humid sites. The radionuclides that have shown the most significant migration are tritium, 90 Sr, and 99 Tc. The unit cost for disposal operations at a given DOE site is dependent on many variables, but the annual volume to be disposed is probably the major factor. The average cost for current DOE burial operation is approximately $170/m 3 . 23 figures

  2. CLASSIFICATION OF THE MGR DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) defense high-level waste disposal container system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333PY ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  3. Modeling the dissolution behavior of defense waste glass in a salt repository environment

    International Nuclear Information System (INIS)

    McGrain, B.P.

    1988-02-01

    A mechanistic model describing a dynamic mass balance between the production and consumption of dissolved silica was found to describe the dissolution behavior of SRL-165 defense waste glass in a high-magnesium brine (PBB3) at a temperature of 90 0 C. The synergistic effect of the waste package container on the glass dissolution rate was found to depend on a precipitation reaction for a ferrous silicate mineral. The model predicted that the ferrous silicate precipitate should be variable in composition where the iron/silica stoichiometry depended on the metal/glass surface area ratio used in the experiment. This prediction was confirmed experimentally by the variable iron/silica ratios observed in filtered leachates. However, the interaction between dissolved silica and iron corrosion products needs to be much better understood before the model can be used with confidence in predicting radionuclide release rates for a salt repository. 25 refs., 4 figs., 1 tab

  4. A two-state citizen task force responds to Dept. of Energy on defense waste

    International Nuclear Information System (INIS)

    Peelle, E.

    1990-01-01

    Successes in public involvement efforts for nuclear waste management are so few that they deserve careful documentation and analysis. This paper chronicles the goals, process, problems and outcomes of one such success, the Northwest Defense Waste Citizens Forum (CF), created by the DOE-Richland manager in 1986 to advise DOE on its plans for nuclear waste disposal and cleanup of the Hanford site in eastern Washington state. DOE under-took an extensive multi-facted public involvement program to gain advice, understanding and support on heretofore neglected defense waste (DW) cleanup problems. DOE sought broad public input for a draft environmental impact statement (DEIS) at an early stage before all characterization data were complete and before a recommended alternative was formulated. In the evolving, often-controversial, highly-visible area of agency-public interactions, citizen task forces (TFs) have been shown to be useful in developing public policy at the local level. For DOE-Richland, the high-risk gamble in undertaking a public involvement program involving reversals of long-term DOE policies of secrecy and unresponsiveness to its host area paid off handsomely in an improved EIS, better relationships with state agencies and regional businesses, and unexpected political support for DW cleanup funding. The Hanford citizen forum was highly successful in both DOE's and participant views, with significant achievements, unusual process and technical findings of its own. By the authors' criteria discussed earlier for public participation efforts, the CF effort was successful in all 3 areas. The success of this approach suggests its use as a model for other federal cleanup activities

  5. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  6. Disposal of Savannah River Plant waste salt

    International Nuclear Information System (INIS)

    Dukes, M.D.

    1982-01-01

    Approximately 26-million gallons of soluble low-level waste salts will be produced during solidification of 6-million gallons of high-level defense waste in the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Soluble wastes (primarily NaNO 3 , NaNO 2 , and NaOH) stored in the waste tanks will be decontaminated by ion exchange and solidified in concrete. The resulting salt-concrete mixture, saltcrete, will be placed in a landfill on the plantsite such that all applicable federal and state disposal criteria are met. Proposed NRC guidelines for the disposal of waste with the radionuclide content of SRP salt would permit shallow land burial. Federal and state rules require that potentially hazardous chemical wastes (mainly nitrate-nitrate salts in the saltcrete) be contained to the degree necessary to meet drinking water standards in the ground water beneath the landfill boundary. This paper describes the proposed saltcrete landfill and tests under way to ensure that the landfill will meet these criteria. The work includes laboratory and field tests of the saltcrete itself, a field test of a one-tenth linear scale model of the entire landfill system, and a numerical model of the system

  7. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management

  8. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  9. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  10. Plutonium Solubility In High-Level Waste Alkali Borosilicate Glass

    International Nuclear Information System (INIS)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-01

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to ∼18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m 3 of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m 3 3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt

  11. Proposed method for assigning metric tons of heavy metal values to defense high-level waste forms to be disposed of in a geologic repository

    International Nuclear Information System (INIS)

    1987-08-01

    A proposed method is described for assigning an equivalent metric ton heavy metal (eMTHM) value to defense high-level waste forms to be disposed of in a geologic repository. This method for establishing a curie equivalency between defense high-level waste and irradiated commercial fuel is based on the ratio of defense fuel exposure to the typical commercial fuel exposure, MWd/MTHM. application of this technique to defense high-level wastes is described. Additionally, this proposed technique is compared to several alternate calculations for eMTHM. 15 refs., 2 figs., 10 tabs

  12. Independent engineering review of the Hanford Waste Vitrification System

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs

  13. Independent engineering review of the Hanford Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  14. Calibration and Measurement of the Viscosity of DWPF Start-Up Glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2001-01-01

    The Harrop, High-Temperature Viscometer has been in operation at the Savannah River Technology Center (SRTC) for several years and has proven itself to be reasonably accurate and repeatable. This is particularly notable when taking into consideration the small amount of glass required to make the viscosity determination. The volume of glass required is only 2.60 cc or about 6 to 7 grams of glass depending on the glass density. This may be compared to the more traditional viscosity determinations, which generally require between 100 to 1000 grams of glass. Before starting the present investigation, the unit was re-aligned and the furnace thermal gradients measured. The viscometer was again calibrated with available NIST Standard Reference Material glasses (717a and 710a) and a spindle constant equation was determined. Standard DWPF Waste Compliance Glasses (Purex, HM, and Batch 1) were used to provide additional verification for the determinations at low temperature. The Harrop, High-Temperature Viscometer was then used to determine the viscosity of three random samples of ground and blended DWPF, Black, Start -Up Frit, which were obtained from Pacific Northwest National Laboratory (PNNL). The glasses were in powder form and required melting prior to the viscosity determination. The results from this evaluation will be compared to ''Round Robin'' measurements from other DOE laboratories and a number of commercial laboratories

  15. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  16. Methods for estimating costs of transporting spent fuel and defense high-level radioactive waste for the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Darrough, M.E.; Lilly, M.J.

    1989-01-01

    The US Department of Energy (DOE), through the Office of Civilian Radioactive Waste Management, is planning and developing a transportation program for the shipment of spent fuel and defense high-level waste from current storage locations to the site of the mined geologic repository. In addition to its responsibility for providing a safe transportation system, the DOE will assure that the transportation program will function with the other system components to create an integrated waste management system. In meeting these objectives, the DOE will use private industry to the maximum extent practicable and in a manner that is cost effective. This paper discusses various methodologies used for estimating costs for the national radioactive waste transportation system. Estimating these transportation costs is a complex effort, as the high-level radioactive waste transportation system, itself, will be complex. Spent fuel and high-level waste will be transported from more than 100 nuclear power plants and defense sites across the continental US, using multiple transport modes (truck, rail, and barge/rail) and varying sizes and types of casks. Advance notification to corridor states will be given and scheduling will need to be coordinated with utilities, carriers, state and local officials, and the DOE waste acceptance facilities. Additionally, the waste forms will vary in terms of reactor type, size, weight, age, radioactivity, and temperature

  17. Preliminary analysis of projected construction employment effects of building the defense waste processing facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Garey, R.B.; Blair, L.M.; Craig, R.L.; Stevenson, W.

    1981-09-01

    This study estimates the probable effects of constructing the DWPF on the surrounding labor markets. Analyses are based on data from the local and regional labor markets, information from experts on local construction activities, information on the labor requirements of the Vogtle Power Plant (two nuclear reactors) being built by Georgia Power Company in Burke County, Georgia, and an econometric model of the construction labor market, based on several surveys of workers building three Tennessee Valley Authority nuclear power plants. The results of this study are reported in three parts. In Part I, completed in May 1980, we describe the 1979 (base year) employment levels within the local and regional labor markets surrounding SRP, from which most DWPF construction workers are likely to be drawn. In Part II, completed in June 1980, we define the four local sources of construction employment that will compete for craftsmen when DWPF is built. Also in Part II, most of the projected impacts of the DWPF reference immobilization alternative (one of several alternatives that may be chosen) are reported. Several construction schedules and labor demand scenarios for the reference alternative are considered. In Part III, completed in January 1981, most of the estimated impacts of the DWPF alternative referred to as the staged process alternative are reported. Several construction schedules and labor demand scenarios for this alternative are considered

  18. Estimation of Total Error in DWPF Reported Radionuclide Inventories

    International Nuclear Information System (INIS)

    Edwards, T.B.

    1995-01-01

    This report investigates the impact of random errors due to measurement and sampling on the reported concentrations of radionuclides in DWPF's filled canister inventory resulting from each macro-batch. The objective of this investigation is to estimate the variance of the total error in reporting these radionuclide concentrations

  19. DWPF PCCS version 2.0 test case

    International Nuclear Information System (INIS)

    Brown, K.G.; Pickett, M.A.

    1992-01-01

    To verify the operation of the Product Composition Control System (PCCS), a test case specific to DWPF operation was developed. The values and parameters necessary to demonstrate proper DWPF product composition control have been determined and are presented in this paper. If this control information (i.e., for transfers and analyses) is entered into the PCCS as illustrated in this paper, and the results obtained correspond to the independently-generated results, it can safely be said that the PCCS is operating correctly and can thus be used to control the DWPF. The independent results for this test case will be generated and enumerated in a future report. This test case was constructed along the lines of the normal DWPF operation. Many essential parameters are internal to the PCCS (e.g., property constraint and variance information) and can only be manipulated by personnel knowledgeable of the Symbolics reg-sign hardware and software. The validity of these parameters will rely on induction from observed PCCS results. Key process control values are entered into the PCCS as they would during normal operation. Examples of the screens used to input specific process control information are provided. These inputs should be entered into the PCCS database, and the results generated should be checked against the independent, computed results to confirm the validity of the PCCS

  20. Alternate approaches to verifying the structural adequacy of the Defense High Level Waste Shipping Cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Koploy, M.

    1991-12-01

    In the early 1980s, the US Department of Energy/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as one that fully complies with all applicable DOE, Nuclear Regulatory Commission (NRC), and Department of Transportation (DOT) regulations. General Atomics (GA) designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Laboratories (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This topical report presents the results of the two analytical approaches and the model testing results. The purpose of this work is to show that there are two viable analytical alternatives to verify the structural adequacy of a Type B package and to obtain an NRC license. It addition, this data will help to support the future acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing

  1. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.

  2. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program

  3. Conceptual process for immobilizing defense high level wastes in SYNROC-D

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    It is believed that the immobilization of defense wastes in SYNROC-D possesses important advantages over an alternative process which involves immobilizing the sludges in borosilicate glass. (1) It is possible to immobilize about 3 times the weight of sludge in a given volume of SYNROC-D as compared to borosilicate glass. The costs of fabrications, transport and ultimate geologic storage are correspondingly reduced; (2) the mineral assemblage of SYNROC-D is vastly more stable in the presence of groundwaters than are borosilicate glasses. The long-lived actinide elements, in particular, are immobilized much more securely in SYNROC-D than in glass; and (3) SYNROC-D is composed of thermodynamically compatible phases which possess crystal structures identical to those of natural minerals which are known to have survived in geological environments at elevated pressures and temperatures for periods of 500 to 2000 million years and to have retained radioactive elements quantitatively for these periods despite strong radiation damage. It is this evidence, provided by nature herself, which can demonstrate to the community that the shorter times required for radwaste immobilization under the much less extreme pressure, temperature conditions present in a suitable geological repository can be successfully achieved. Glass, as a waste-form, is intrinsically incapable of providing this assurance

  4. Analysis of mercury in simulated nuclear waste

    International Nuclear Information System (INIS)

    Policke, T.A.; Johnson, L.C.; Best, D.R.

    1991-01-01

    Mercury, Hg, is a non-radioactive component in the High Level Waste at the Savannah River Site (SRS). Thus, it is a component of the Defense Waste Processing Facility's (DWPF) process streams. It is present because mercuric nitrate (Hg(NO 3 ) 2 ) is used to dissolve spent fuel rods. Since mercury halides are extremely corrosive, especially at elevated temperatures such as those seen in a melter (1150 degrees C), its concentration throughout the process needs to be monitored so that it is at an acceptable level prior to reaching the melter off-gas system. The Hg can be found in condensates and sludge feeds and throughout the process and process lines, i.e., at any sampling point. The different samples types that require Hg determinations in the process streams are: (1) sludges, which may be basic or acidic and may or may not include aromatic organics, (2) slurries, which are sludges with frit and will always contain organics (formate and aromatics), and (3) condensates, from feed prep and melter off-gas locations. The condensates are aqueous and the mercury may exist as a complex mixture of halides, oxides, and metal, with levels between 10 and 100 ppm. The mercury in the sludges and slurries can be Hg 0 , Hg +1 , or Hg +2 , with levels between 200 and 3000 ppm, depending upon the location, both time and position, of sampling. For DWPF, both total and soluble Hg concentrations need to be determined. The text below describes how these determinations are being made by the Defense Waste Processing Technology (DWPT) Analytical Laboratory at the Savannah River Site. Both flame atomic absorption (FAA) and cold vapor atomic (CVAA) measurements are discussed. Also, the problems encountered in the steps toward measuring HG in these samples types of condensates and sludges are discussed along with their solutions

  5. Waste removal sequencing using ProdMod

    International Nuclear Information System (INIS)

    Paul, P.K.; Gregory, M.V.; Davis, N.R.; Brooke, J.N.

    1996-01-01

    The Savannah River Site (SRS) is starting to solidify its accumulated high-level radioactive waste into borosilicate glass in stainless steel canisters for eventual permanent storage. The in-tank precipitation process (ITP) and extended sludge processing (ESP) are two key operations in the waste processing complex. The supernate and dissolved salt from the waste storage tanks are transferred to the ITP process tank where the solution is decontaminated in batch processes. Soluble radioactive cesium is precipitated with sodium tetraphenylborate and strontium, uranium, and plutonium are adsorbed on monosodium titanate. The precipitate and adsorbent solids, which now contain the radionuclides, are concentrated using crossflow filters. The concentrated solids are sent to the high-level waste vitrification process. The decontaminated salt solution is sent to the low-level waste solidification process to form cement grout. In parallel with the precipitate operations, insoluble sludges that settled originally to the bottom of the waste tanks are reslurried and sent to ESP to undergo washing to reduce soluble salt content and aluminum dissolution, if required. In the vitrification process in the Defense Waste Processing Facility (DWPF), the concentrated precipitate from the ITP is mixed with the washed sludge from ESP and glass frit in proportion to form a stable borosilicate glass. A novel and fast-running Production Planning Model (ProdMod) has been developed to simulate the waste processing operation. This paper describes the application of ProdMod in sequencing the ITP batches and scheduling the ESP batches

  6. Immobilization of high-level defense waste in a slurry-fed electric glass melter

    International Nuclear Information System (INIS)

    Brouns, R.A.; Mellinger, G.B.; Nelson, T.A.; Oma, K.H.

    1980-11-01

    Scoping studies have been performed at the Pacific Northwest Laboratory related to the direct liquid-feeding of a generic high-level defense waste to a joule-heated ceramic melter. Tests beginning on the laboratory scale and progressing to full-scale operation are reported. Laboratory work identified the need for a reducing agent in the feed to help control the foaming tendencies of the waste glass. These tests also indicated that suspension agents were helpful in reducing the tendency of solids to settle out of the liquid feed. Testing was then moved to a larger pilot-scale melter (designed for approx. 2.5 kg/h) where verification of the flowsheet examined in the lab was accomplished. It was found that the reducing agent controlled foaming and did not result in the precipitation of metals. Pumping problems were encountered when slurries with higher than normal solids content were fed. A demonstration (designed for approx. 50 kg/h) in a full-scale melter was then made with the tested flowsheet; however, the amount of reducing agent had to be increased. In addition, it was found that feed control needed further development; however, steady-state operation was achieved giving encouraging results on process capacities. During steady-state operation, ruthenium losses to the offgas system averaged less than 0.16%, while cesium losses were somewhat higher, ranging from 0.91 to 24% and averaging 13%. Particulate decontamination factors from feed to offgas in the melter ranged from 5 x 10 2 to greater than 10 3 without any filtration or treatment. Approximately 1050 kg of glass was produced from 2900 L of waste at rates up to 40 kg/h

  7. Nuclear waste glass product consistency test (PCT): Version 7.0. Revision 3

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Product Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 7.0 of the PCT procedure is attached. This draft version has been submitted to ASTM for full committee (C26, Nuclear Fuel Cycle) ballot after being balloted successfully through subcommittee C26.13 on Repository Waste Package Materials Testing

  8. Criticality considerations for salt-cake disolution in DOE waste tanks

    International Nuclear Information System (INIS)

    Trumble, E.F.; Niemer, K.A.

    1995-01-01

    A large amount of high-level waste is being stored in the form of salt cake at the Savannah River site (SRS) in large (1.3 x 106 gal) underground tanks awaiting startup of the Defense Waste Processing Facility (DWPF). This salt cake will be dissolved with water, and the solution will be fed to DWPF for immobilization in borosilicate glass. Some of the waste that was transferred to the tanks contained enriched uranium and plutonium from chemical reprocessing streams. As water is added to these tanks to dissolve the salt cake, the insoluble portion of this fissile material will be left behind in the tank as the salt solution is pumped out. Because the salt acts as a diluent to the fissile material, the process of repeated water addition, salt dissolution, and salt solution removal will act as a concentrating mechanism for the undissolved fissile material that will remain in the tank. It is estimated that tank 41 H at SRS contains 20 to 120 kg of enriched uranium, varying from 10 to 70% 235 U, distributed nonuniformly throughout the tank. This paper discusses the criticality concerns associated with the dissolution of salt cake in this tank. These concerns are also applicable to other salt cake waste tanks that contain significant quantities of enriched uranium and/or plutonium

  9. Control of high-level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  10. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  11. THE USE OF DI WATER TO MITIGATE DUSTING FOR ADDITION OF DWPF FRIT TO THE SLURRY MIX EVAPORATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.

    2010-07-21

    The Defense Waste Processing Facility (DPWF) presently is in the process to determine means to reduce water utilization in the Slurry Mix Evaporator (SME) process, thus reducing effluent and processing times. The frit slurry addition system mixes the dry frit with water, yielding approximately a 50 weight percent slurry containing frit and the other fraction water. This slurry is discharged into the SME and excess water is removed via boiling. To reduce this water load to the SME, DWPF has proposed using a pneumatic system in conveying the frit to the SME, in essence a dry delivery system. The problem associated with utilizing a dry delivery system with the existing frit is the generation of dust when discharged into the SME. The use of water has been shown to be effective in the mining industry as well in the DOE complex to mitigate dusting. The method employed by SRNL to determine the quantity of water to mitigate dusting in dry powders was effective, between a lab and bench scale tests. In those tests, it was shown that as high as five weight percent (wt%) of water addition was required to mitigate dust from batches of glass forming minerals used by the Waste Treatment Plant at Hanford, Washington. The same method used to determine the quantity of water to mitigate dusting was used in this task to determine the quantity of water to mitigate this dusting using as-received frit. The ability for water to mitigate dusting is due to its adhesive properties as shown in Figure 1-1. Wetting the frit particles allows for the smaller frit particles (including dust) to adhere to the larger frit particles or to agglomerate into large particles. Fluids other than water can also be used, but their adhesive properties are different than water and the quantity required to mitigate dusting is different, as was observed in reference 1. Excessive water, a few weight percentages greater than that required to mitigate dusting can cause the resulting material not to flow. The primary

  12. PROBCON-HDW: A probability and consequence system of codes for long-term analysis of Hanford defense wastes

    International Nuclear Information System (INIS)

    Piepho, M.G.; Nguyen, T.H.

    1988-12-01

    The PROBCON-HDW (PROBability and CONsequence analysis for Hanford defense waste) computer code system calculates the long-term cumulative releases of radionuclides from the Hanford defense wastes (HDW) to the accessible environment and compares the releases to environmental release limits as defined in 40 CFR 191. PROBCON-HDW takes into account the variability of input parameter values used in models to calculate HDW release and transport in the vadose zone to the accessible environment (taken here as groundwater). A human intrusion scenario, which consists of drilling boreholes into the waste beneath the waste sites and bringing waste to the surface, is also included in PROBCON-HDW. PROBCON-HDW also includes the capability to combine the cumulative releases according to various long-term (10,000 year) scenarios into a composite risk curve or complementary cumulative distribution function (CCDF). The system structure of the PROBCON-HDW codes, the mathematical models in PROBCON-HDW, the input files, the input formats, the command files, and the graphical output results of several HDW release scenarios are described in the report. 3 refs., 7 figs., 9 tabs

  13. Preliminary Evaluation Of DWPF Impacts Of Boric Acid Use In Cesium Strip FOR SWPF And MCU

    International Nuclear Information System (INIS)

    Stone, M.

    2010-01-01

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the

  14. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    International Nuclear Information System (INIS)

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-01-01

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy's Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product

  15. Alternative design concept for the second Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Rainisch, R.

    1992-10-01

    This document presents an alternative design concept for storing canisters filled with vitrified waste produced at the Defense Waste Processing Facility (DWPF). The existing Glass Waste Storage Building (GWSB1) has the capacity to store 2,262 canisters and is projected to be completely filled by the year 2000. Current plans for glass waste storage are based on constructing a second Glass Waste Storage Building (GWSB2) once the existing Glass Waste Storage Building (GWSB1) is filled to capacity. The GWSB2 project (Project S-2045) is to provide additional storage capacity for 2,262 canisters. This project was initiated with the issue of a basic data report on March 6, 1989. In response to the basic data report Bechtel National, Inc. (BNI) prepared a draft conceptual design report (CDR) for the GWSB2 project in April 1991. In May 1991 WSRC Systems Engineering issued a revised Functional Design Criteria (FDC), the Rev. I document has not yet been approved by DOE. This document proposes an alternative design for the conceptual design (CDR) completed in April 1991. In June 1992 Project Management Department authorized Systems Engineering to further develop the proposed alternative design. The proposed facility will have a storage capacity for 2,268 canisters and will meet DWPF interim storage requirements for a five-year period. This document contains: a description of the proposed facility; a cost estimate of the proposed design; a cost comparison between the proposed facility and the design outlined in the FDC/CDR; and an overall assessment of the alternative design as compared with the reference FDC/CDR design

  16. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  17. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear byproducts are a major national resource that has yet to be incorporated into the economy. The current Defense Byproducts Program is designed to match specific military and commercial needs with the availability of valuable products which are currently treated as waste at considerable expense in waste management costs. This program plan focuses on a few specific areas with the greatest potential for near-term development and application. It also recognizes the need for a continuing effort to develop new applications for byproducts and to continue to assess the impacts on waste management. The entire program has been, and will continue to be structured so as to ensure the safety of the public and maintain the purity of the environment. Social and institutional concerns have been recognized and will be handled appropriately. A significant effort will be undertaken to inform the public of the benefits of byproduct use and of the care being taken to ensure safe, efficient operation

  18. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-08-01

    Nuclear byproducts are a major national resource that has yet to be incorporated into the economy. The current Defense Byproducts Program is designed to match specific military and commercial needs with the availability of valuable products which are currently treated as waste at considerable expense in waste management costs. This program plan focuses on a few specific areas with the greatest potential for near-term development and application. It also recognizes the need for a continuing effort to develop new applications for byproducts and to continue to assess the impacts on waste management. The entire program has been, and will continue to be structured so as to ensure the safety of the public and maintain the purity of the environment. Social and institutional concerns have been recognized and will be handled appropriately. A significant effort will be undertaken to inform the public of the benefits of byproduct use and of the care being taken to ensure safe, efficient operation.

  19. Hanford Waste Vitrification Plant quality assurance program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-12-01

    The US Department of Energy-Office of Civilian Radioactive Waste Management has been designated the national high-level waste repository licensee and the recipient for the canistered waste forms. The Office of Waste Operations executes overall responsibility for producing the canistered waste form. The Hanford Waste Vitrification Plant Project, as part of the waste form producer organization, consists of a vertical relationship. Overall control is provided by the US Department of Energy-Environmental Restoration and Waste Management Headquarters; with the US Department of Energy-Office of Waste Operations; the US Department of Energy- Headquarters/Vitrification Project Branch; the US Department of Energy-Richland Operations Office/Vitrification Project Office; and the Westinghouse Hanford Company, operations and engineering contractor. This document has been prepared in response to direction from the US Department of Energy-Office of Civilian Radioactive Waste Management through the US Department of Energy-Richland Operations Office for a quality assurance program that meets the requirements of the US Department of Energy. This document provides guidance and direction for implementing a quality assurance program that applies to the Hanford Waste Vitrification Plant Project. The Hanford Waste Vitrification Plant Project management commits to implementing the quality assurance program activities; reviewing the program periodically, and revising it as necessary to keep it current and effective. 12 refs., 6 figs., 1 tab

  20. An overview of the hazardous waste remedial actions program: hazardous and mixed waste activities for the U.S. Departments of energy and defense

    International Nuclear Information System (INIS)

    Craig, Robert B.; Rothermich, Nancy E.

    1991-01-01

    In May 1987 all mixed waste generated at the U.S. Department of Energy (DOE) facilities became jointly regulated by the U.S. Environmental Protection Agency (EPA) and DOE. The Department of Defense (DOD) generates hazardous wastes and is also regulated by the EPA. To maintain or attain compliance, both DOE and DOD have initiated compliance activities on all hazardous and mixed waste streams. This compliance includes the development of innovative technologies and processes to avoid the generation of hazardous and mixed wastes, development of technologies to treat the process wastes that are unavoidably generated, development of technologies to restore the environment where wastes have been released to the environment, the cleanup of asbestos and the monitoring of radon in federal facilities, the completion of remedial investigation/feasibility studies, and development of the data systems that are necessary to compile this information. This paper will describe each of these activities as they relate to compliance with the Resource Conservation and Recovery Act and/or CERCLA and their implementing regulations

  1. An Assessment of Using Vibrational Compaction of Calcined HLW and LLW in DWPF Canisters

    International Nuclear Information System (INIS)

    Yi, Yun-Bo; Amme, Robert C.; Shayer, Zeev

    2008-01-01

    Since 1963, the INEL has calcined almost 8 million gallons of liquid mixed waste and liquid high-level waste, converting it to some 1.1 million gallons of dry calcine (about 4275.0 m3), which consists of alumina-and zirconia-based calcine and zirconia-sodium blend calcine. In addition, if all existing and projected future liquid wastes are solidified, approximately 2,000 m3 of additional calcine will be produced primarily from sodium-bearing waste. Calcine is a more desirable material to store than liquid radioactive waste because it reduces volume, is much less corrosive, less chemically reactive, less mobile under most conditions, easier to monitor and more protective of human health and the environment. This paper describes the technical issue involved in the development of a feasible solution for further volume reduction of calcined nuclear waste for transportation and long term storage, using a standard DWPF canister. This will be accomplished by developing a process wherein the canisters are transported into a vibrational machine, for further volume reduction by about 35%. The random compaction experiments show that this volume reduction is achievable. The main goal of this paper is to demonstrate through computer modeling that it is feasible to use volume reduction vibrational machine without developing stress/strain forces that will weaken the canister integrity. Specifically, the paper presents preliminary results of the stress/strain analysis of the DWPF canister as a function of granular calcined height during the compaction and verifying that the integrity of the canister is not compromised. This preliminary study will lead to the development of better technology for safe compactions of nuclear waste that will have significant economical impact on nuclear waste storage and treatment. The preliminary results will guide us to find better solutions to the following questions: 1) What are the optimum locations and directions (vertical versus horizontal or

  2. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    International Nuclear Information System (INIS)

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed

  3. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-08

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components, antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).

  4. Process innovations to minimize waste volumes at Savannah River

    International Nuclear Information System (INIS)

    Doherty, J.P.

    1986-01-01

    In 1983 approximately 1.6 x 10 3 m 3 (427,000 gallons) of radioactive salt solution were decontaminated in a full-scale demonstration. The cesium decontamination factor (DF) was in excess of 4 x 10 4 vs. a goal of 1 x 10 4 . Data from this test were combined with pilot data and used to design the permanent facilities currently under construction. Startup of the Salt Decontamination Process is scheduled for 1987 and will decontaminate 2 x 10 4 m 3 (5.2 million gallons) of radioactive salt solution and generate 2 x 10 3 m 3 (520,000 gallons) of concentrated and washed precipitate per year. The Defense Waste Processing Facility (DWPF) will begin processing this concentrate in the Precipitate Hydrolysis Process starting in 1989. Laboratory data using simulated salt solution and nonradioactive cesium are being used to design this process. A 1/5-scale pilot plant is under construction and will be used to gain large-scale operating experience using nonradioactive simulants. This pilot plant is scheduled to startup in early 1987. The incentives to reduce the volume of waste that must be treated are self-evident. At Savannah River process development innovations to minimize the DWPF feed volumes have directly improved the economics of the process. The integrity of the final borosilicate glass water form has not been compromised by these developments. Many of the unit operations are familiar to chemical engineers and were put to use in a unique environment. As a result, tax dollars have been saved, and the objective of safely disposing of the nation's high-level defense waste has moved forward

  5. Sample vial inserts: A better approach for sampling heterogeneous slurry samples in the SRS Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Goode, S.R.

    1996-01-01

    A convenient and effective new approach for analyzing DWPF samples involves the use of inserts with volumes of 1.5--3 ml placed in the neck of 14 ml sample vials. The inserts have rims that conform to the rim of the vials so that they sit straight and stable in the vial. The DWPF tank sampling system fills the pre-weighed insert rather than the entire vial, so the vial functions only as the insert holder. The shielded cell operator then removes the vial cap and decants the insert containing the sample into a plastic bottle, crucible, etc., for analysis. Inert materials such as Teflon, plastic, and zirconium are used for the insert so it is unnecessary to separate the insert from the sample for most analyses. The key technique advantage of using inserts to take DWPF samples versus filling sample vials is that it provides a convenient and almost foolproof way of obtaining and handling small volumes of slurry samples in a shielded cell without corrupting the sample. Since the insert allows the entire sample to be analyzed, this approach eliminates the errors inherent with subsampling heterogeneous slurries that comprise DWPF samples. Slurry samples can then be analyzed with confidence. Analysis times are dramatically reduced by eliminating the drying and vitrification steps normally used to produce a homogeneous solid sample. Direct dissolution and elemental analysis of slurry samples are achieved in 8 hours or less compared with 40 hours for analysis of vitrified slurry samples. Comparison of samples taken in inserts versus full vials indicate that the insert does not significantly affect sample composition

  6. Maximum total organic carbon limit for DWPF melter feed

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T ampersand E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit

  7. DWPF integrated cold runs revised technical bases for precipitate hydrolysis

    International Nuclear Information System (INIS)

    Landon, L.F.

    1992-01-01

    The report defines new precipitate hydrolysis process operating parameters for DWPF Chemical runs assuming the precipitate feed simulants to be processed reflect the decision to implement a final wash of the tetraphenylborate slurry before transfer to DWPF (i.e. the Late Wash Facility). Control of the nitrite content of the tetraphenylborate slurry to 0.01M or less has eliminated the need for hydroxylamine nitrate (HAN) during hydrolysis. Consequently, the oxidant nitrous oxide will not be generated. However, nitric oxide (NO) is expected to be generated (reaction of formic acid with nitrite) and some fraction of the NO can be expected to be oxidized to nitrogen dioxide. The rate of NO generation with low nitrite feed has not been quantified at this time nor is the extent to which the NO is oxidized to NO 2 known. A mass spectrometer is being installed in the Precipitate Hydrolysis Experimental Facility (PHEF) which will enable the NO generation rate to be defined as well as the extent to which the NO is oxidized to NO 2 . There is some undocumented data available for C 6 H 6 /NO and C 6 H 6 /NO 2 with N 2 as the diluent but no similar data for CO 2 . Development of test data in the required time frame is not possible. However, MOC's will be estimated for benzene/NO/NO 2 /CO 2 gas mixtures (the MOC is expected to be approximately 60% less than for the HAN process). Once these data are obtained, and NO/NO 2 concentration profiles are obtained from PHEF hydrolysis process demonstrations, a flammability control strategy for the DWPF Salt Processing Cell will be developed. Implementation of the HAN process purge strategy upon startup of the SPC with the late wash process would be conservative

  8. Glass as a waste form for the immobilization of plutonium

    International Nuclear Information System (INIS)

    Bates, J.K.; Ellison, A.J.G.; Emery, J.W.; Hoh, J.C.

    1995-01-01

    Several alternatives for disposal of surplus plutonium are being considered. One method is incorporating Pu into glass and in this paper we discuss the development and corrosion behavior of an alkali-tin-silicate glass and update results in testing Pu doped Defense Waste Processing Facility (DWPF) reference glasses. The alkali-tin-silicate glass was engineered to accommodate a high Pu loading and to be durable under conditions likely to accelerate glass reaction. The glass dissolves about 7 wt% Pu together with the neutron absorber Gd, and under test conditions expected to accelerate the glass reaction with water, is resistant to corrosion. The Pu and the Gd are released from the glass at nearly the same rate in static corrosion tests in water, and are not segregated into surface alteration phases when the glass is reacted in water vapor. Similar results for the behavior of Pu and Gd are found for the DWPF reference glasses, although the long-term rate of reaction for the reference glasses is more rapid than for the alkali-tin-silicate glass

  9. Comparison of elastic and inelastic analysis and test results for the defense high level waste shipping cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Koploy, M.A.; Madsen, M.M.

    1991-01-01

    In the early 1980s, the US DOE/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as fully complies with all applicable DOE, Nuclear Regulatory Commission, and DOT regulations. General Atomics designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Labs. (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This paper will compare the results of the two analytical approaches and with model testing results. The purpose of this work is to provide data to support licensing of the DHLW cask and to support the acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing

  10. DWPF Melter No.2 Prototype Bus Bar Test Report

    International Nuclear Information System (INIS)

    Gordon, J.

    2003-01-01

    Characterization and performance testing of a prototype DWPF Melter No.2 Dome Heater Bus Bar are described. The prototype bus bar was designed to address the design features of the existing system which may have contributed to water leaks on Melter No.1. Performance testing of the prototype revealed significant improvement over the existing design in reduction of both bus bar and heater connection maximum temperature, while characterization revealed a few minor design and manufacturing flaws in the bar. The prototype is recommended as an improvement over the existing design. Recommendations are also made in the area of quality control to ensure that critical design requirements are met

  11. Alternatives for long-term management of defense high-level radioactive waste, Hanford Reservations, Richland, Washington

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this document is to provide information or alternatives that are being considered for the long-term management of defense high-level radioactive waste stored at Hanford in underground tanks and in stainless steel-lined concrete basins. For purposes of basic programmatic decision making, four major alternatives based on disposal location are considered. The steps leading to placement of the waste in the following locations are illustrated: existing waste tanks; onsite engineered surface facilities; onsite geologic repository; and offsite geologic repository. The four major disposal alternatives are expanded into 27 alternative plans by considering: (1) variations in the final form of the high-level fraction (with radionuclide removal) to include glass, concrete, and powder; (2) variations in the final form of the dehydrated waste product to include glass, calcined clay, and powder; and (3) variations in the treatment and handling of encapsulated waste to include packaging of capsules in canisters and conversion of the strontium fluoride and cesium chloride to glass; canisters stored in sealed casks on the surface are disposed of in a surface vault after the radionuclides have decayed sufficiently to avoid a heat-transfer problem. A description of the technology, a preliminary risk assessment, and preliminary cost estimates for each of these 27 plans are presented. The technology required to implement any of the 27 alternative plans has not been developed to the point where any plan can be considered completely technically sound and feasible

  12. Overview of mixed waste issues at the Department of Energy defense installations

    International Nuclear Information System (INIS)

    Mezga, L.J.; Eisenhower, B.M.

    1988-01-01

    Due to the /open quotes/double hazard/close quotes/ associated with these waste materials, the ability to manage these mixed wastes has been somewhat limited. The unavailability of acceptable and proven treatment and/or disposal systems has forced the Department of Energy (DOE) installations to place these materials in storage. The limited capacity of permitted storage areas and the desire to move forward in the overall waste management cycle have placed an increased emphasis on the need to develop treatment/disposal technologies for mixed wastes. Programs have been initiated by contractors who operate the DOE installations to provide the technical basis for selecting technologies to render these wastes nonhazardous through treatment by destroying the hazardous constituent, to separate the hazardous constituents from the radioactive constituents, to treat the wastes and place them in a form that will meet EPA requirements to be classified as nonhazardous, and to provide facilities for the disposal of wastes which cannot be changed into a nonhazardous form. These wastes include a variety of materials such as chlorinated solvents and waste oils contaminated with uranium or fission products, liquid scintillation wastes, and sludges from wastewater treatment plants contaminated with uranium or fission products. By volume, the largest mixed waste streams are the contaminated wastewater treatment sludges. Plans for the management of the major categories of mixed waste are presented below. More detailed information on plans for specific waste streams is presented in the paper

  13. Proceedings of the Department of Energy Defense Programs hazardous and mixed waste minimization workshop: Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    1988-09-01

    The first workshop on hazardous and mixed waste minimization was held in Las Vegas, Nevada, on July 26--28, 1988. The objective of this workshop was to establish an interchange between DOE headquarters (DOE-HQ) DP, Operations Offices, and contractors of waste minimization strategies and successes. The first day of the workshop began with presentations stressing the importance of establishing a waste minimization program at each site as required by RCRA, the land ban restrictions, and the decrease in potential liabilities associated with waste disposal. Discussions were also centered on pending legislation which would create an Office of Waste Reduction in the Environmental Protection Agency (EPA). The Waste Minimization and Avoidance Study was initiated by DOE as an addition to the long-term productivity study to address the issues of evolving requirements facing RCRA waste management activities at the DP sites, to determine how major operations will be affected by these requirements, and to determine the available strategies and options for waste minimization and avoidance. Waste minimization was defined in this study as source reduction and recycling

  14. Information requirements for the Department of Energy Defense Programs' hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Herron, S.A.

    1987-01-01

    This document contains viewgraphs from a presentation made to the DOE Low-Level Waste Management Conference in Denver, Colorado. The presentation described information and data base systems that describe hazardous and mixed waste treatment, storage, and disposal

  15. ANL Technical Support Program for DOE Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    Bates, J.K.; Bradley, C.R.; Buck, E.C.; Cunnane, J.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Gerding, T.J.; Gong, M.; Hoh, J.C.; Mazer, J.J.; Wronkiewicz, D.J.; Bourcier, W.L.; Morgan, L.E.; Nielsen, J.K.; Steward, S.A.; Ewing, R.C.; Wang, L.M.; Han, W.T.; Tomozawa, M.

    1992-03-01

    This report provides an overview of progress during FY 1991 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE, Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defenses Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are likely to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: (1) to review and evaluate available information on parameters that will be important in establishing the long-term performance of glass in a repository environment; (2) to perform testing to further quantify the effects of important variables where there are deficiencies in the available data; and (3) to initiate long-term testing that will bound glass performance under a range of conditions applicable to repository disposal

  16. Comparison of potential health and safety impacts of different disposal options for defense high-level wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Smith, E.D.; Witherspoon, J.P.

    1984-01-01

    A comparative assessment has been performed of the potential long- and short-term health and safety impacts of different disposal options for defense high-level wastes. Conservative models and assumptions were used. The assessment suggests that considerations of health and safety will not be significant in choosing among disposal options, primarily because of the need to meet stringent standards in all cases. Rather, the ease and cost of assuring compliance of a particular disposal option with health and safety standards may be a more important factor. 11 references

  17. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    International Nuclear Information System (INIS)

    Gupta, N.K.; Gong, Chung.

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B ampersand PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels

  18. Lot No. 1 of Frit 202 for DWPF cold runs

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    1993-01-01

    This report was prepared at the end of 1992 and summarizes the evaluation of the first lot sample of DWPF Frit 202 from Cataphote Inc. Publication of this report was delayed until the results from the carbon analyses could be included. To avoid confusion the frit specifications presented in this report were those available at the end of 1992. The specifications were slightly modified early in 1993. The frit was received and evaluated for moisture, particle size distribution, organic-inorganic carbon and chemical composition. Moisture content and particle size distribution were determined on a representative sample at SRTC. These properties were within the DWPF specifications for Frit 202. A representative sample was submitted to Corning Engineering Laboratory Services for chemical analyses. The sample was split and two dissolutions prepared. Each dissolution was analyzed on two separate days. The results indicate that there is a high probability (>95%) that the silica content of this frit is below the specification limit of 77.0 ± 1.0 wt %. The average of the four analyzed values was 75.1 wt % with a standard deviation of 0.28 wt %. All other oxides were within the elliptical two sigma limits. Control standard frit samples were submitted and analyzed at the same time and the results were very similar to previous analyses of these materials

  19. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-26

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy’s Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanning calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF

  20. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    International Nuclear Information System (INIS)

    Fox, K.; Amoroso, J.; Mcclane, D.

    2017-01-01

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy's Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanning calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF

  1. Defense Waste Management Plan for buried transuranic-contaminated waste, transuranic-contaminated soil, and difficult-to-certify transuranic waste

    International Nuclear Information System (INIS)

    1987-06-01

    GAO recommended that DOE provide specific plans for permanent disposal of buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; cost estimates for permanent disposal of all TRU waste, including the options for the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; and specific discussions of environmental and safety issues for the permanent disposal of TRU waste. Purpose of this document is to respond to the GAO recommendations by providing plans and cost estimates for the long-term isolation of the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste. This report also provides cost estimates for processing and certifying stored and newly generated TRU waste, decontaminating and decommissioning TRU waste processing facilities, and interim operations

  2. Disposition of excess plutonium using ''off-spec'' MOX pellets as a sintered ceramic waste form

    International Nuclear Information System (INIS)

    Armantrout, G.A.; Jardine, L.J.

    1996-02-01

    The authors describe a potential strategy for the disposition of excess weapons plutonium in a way that minimizes (1) technological risks, (2) implementation costs and completion schedules, and (3) requirements for constructing and operating new or duplicative Pu disposition facilities. This is accomplished by an optimized combination of (1) using existing nuclear power reactors to ''burn'' relatively pure excess Pu inventories as mixed oxide (MOX) fuel and (2) using the same MOX fuel fabrication facilities to fabricate contaminated or impure excess Pu inventories into an ''off-spec'' MOX solid ceramic waste form for geologic disposition. Diversion protection for the SCWF to meet the ''spent fuel standard'' introduced by the National Academy of Sciences can be achieved in at least three ways. (1) One can utilize the radiation field from defense high-level nuclear waste by first packaging the SCWF pellets in 2- to 4-L cans that are subsequently encapsulated in radioactive glass in the Defense Waste Processing Facility (DWPF) glass canisters (a ''can-in-canister'' approach). (2) One can add 137 Cs (recovered from defense wastes at Hanford and currently stored as CsCl in capsules) to an encapsulating matrix such as cement for the SCWF pellets in a small hot-cell facility and thus fabricate large monolithic forms. (3) The SCWF can be fabricated into reactor fuel-like pellets and placed in tubes similar to fuel assemblies, which can then be mixed in sealed repository containers with irradiated spent nuclear fuel for geologic disposition

  3. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  4. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  5. Defense waste solidification studies. Volume 2. Drawing supplement. Savannah River Plant, Project S-1780

    International Nuclear Information System (INIS)

    1977-01-01

    Volume 2 contains the drawings prepared and used in scoping and estimating the Glass-Form Waste Solidification facilities and the alternative studies cited in the report, the Off-Site Shipping Case, the Decontaminated Salt Storage Case, and a revised Reference Plant (Concrete-Form Waste) Case

  6. Production and remediation of low-sludge, simulated Purex waste glasses, 1: Effects of sludge oxide additions on melter operation

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but less durable than most simulated SRS high-level waste glasses. Also, Purex 4 glass was considerably less durable than predicted by the algorithm which will be used to control production of DWPF glass. A melter run was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by Hydration Thermodynamics. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the composition, crystallinity, and durability was determined. This document details the melter operation and composition and crystallinity analyses

  7. Development of an ASTM standard glass durability test, the Product Consistency Test (PCT), for high level radioactive waste glass

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-01-01

    The nation's first, and the world's largest, facility to immobilize high-level nuclear waste in durable borosilicate glass has started operation at the Savannah River Site (SRS) in Aiken, South Carolina. The product specifications on the glass wasteform produced in the Defense Waste Processing Facility (DWPF) required extensive characterization of the glass product before actual production began and for continued characterization during production. To aid in this characterization, a glass durability (leach) test was needed that was easily reproducible, could be performed remotely on highly radioactive samples, and could yield results rapidly. Several standard leach tests were examined with a variety of test configurations. Using existing tests as a starting point, the DWPF Product Consistency Test (PCT was developed in which crushed glass samples are exposed to 90 ± 2 degree C deionized water for seven days. Based on extensive testing, including a seven-laboratory round robin and confirmatory testing with radioactive samples, the PCT is very reproducible, yields reliable results rapidly, and can be performed in shielded cell facilities with radioactive samples

  8. ANL Technical Support Program for DOE Environmental Restoration and Waste Management. Annual report, October 1992--September 1993

    International Nuclear Information System (INIS)

    Bates, J.K.; Bourcier, W.L.; Bradley, C.R.

    1994-06-01

    This report is an overview of the progress during FY 1993 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are anticipated to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: reviewing and evaluating available data on parameters that will be important in establishing the long-term performance of glass in a repository environment; performing tests to further quantify the effects of important variables where there are deficiencies in the available data; and initiating long-term tests to determine glass performance under a range of conditions applicable to repository disposal

  9. Hanford Waste Vitrification Plant Quality Assurance Program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1992-01-01

    This document describes the quality assurance (QA) program of the Hanford Waste Vitrification Plant (HWVP) Project. The purpose of the QA program is to control project activities in such a manner as to achieve the mission of the HWVP Project in a safe and reliable manner. A major aspect of the HWVP Project QA program is the control of activities that relate to high-level waste (HLW) form development and qualification. This document describes the program and planned actions the Westinghouse Hanford Company (Westinghouse Hanford) will implement to demonstrate and ensure that the HWVP Project meets the US Department of Energy (DOE) and ASME regulations. The actions for meeting the requirements of the Waste Acceptance Preliminary Specifications (WAPS) will be implemented under the HWVP product qualification program with the objective of ensuring that the HWVP and its processes comply with the WAPS established by the federal repository

  10. Development of the DWPF canister temporary shrink-fit seal

    International Nuclear Information System (INIS)

    Kelker, J.W. Jr.

    1986-04-01

    The Defense Waste Processing Facility is being constructed at The Savannah River Plant for the containerization of high-level nuclear waste in a wasteform for eventual permanent disposal. The waste will be incorporated in molten glass and solidified in type 304L stainless steel canisters, 2-feet in diameter x 9-feet 10-inches long, containing a flanged 6-in.-diam pipe fill-nozzle. The canisters have a minimum wall thickness of 3/8 in. Utilizing the heat from the glass filling operation, a shrink-fit seal for a plug in the end of the canister fill nozzle was developed that: will withstand the radioactive environment; will prevent the spread of contamination, and will keep moisture and water from entering the canister during storage and decontamination of the canister by wet-frit blasting to remove smearable and oxide-film fixed radioactive nuclides; is removable and can be replaced by a new oversize plug in the event the seal fails the pressure decay leakage test ( -4 atm cc/sec helium); will keep the final weld closure clean and free of nuclear contamination; will withstand being pressed into the nozzle without exposing external contamination or completely breaking the seal; is reliable; and is easily installed. The seal consists of: a removable sleeve (with a tapered bore) which is shrink-fitted into the nozzle bore during canister fabrication; and a tapered plug which is placed into the sleeved nozzle after the canister is filled with radioactive molten glass. A leak-tight shrink-fit seal is formed between the nozzle, sleeve, and plug upon temperature equilibrium. The temporarily sealed canister is transferred from the Melt cell to the Decon cell, and the surface is decontaminated. Next it is transferred to the Weld/Test cell where the temporary seal is pressed down into the nozzle, revealing a clean cavity where the canister final closure weld is made

  11. The waste isolation pilot plant. Permanent isolation of defense transuranic waste in deep geologic salt. A national solution and international model

    International Nuclear Information System (INIS)

    Franco, Jose; Van Luik, Abraham

    2015-01-01

    The Waste Isolation Pilot Plant is located about 42 kilometers from the city of Carlsbad, New Mexico. It is an operating deep geologic repository in bedded salt 657 meters below the surface of the Chihuahuan desert. Since its opening in March of 1999, it has received about 12,000 shipments totaling about 91,000 cubic meters of defense related transuranic (TRU) wastes. Twenty-two sites have been cleaned up of their defense-legacy TRU waste. The WIPP's shipping program has an untarnished safety record and its trucks and trailers have safely traveled the equivalent of about 60 round-trips to the Moon. WIPP received, and deserved, a variety of safety accolades over its nearly 15 year working life. In February of 2014, however, two incidents resulted in a major operational suspension and reevaluation of its safety systems, processes and equipment. The first incident was an underground mining truck fire, followed nine days later by an airborne radiation release incident. Accident Investigation Board (AIB) reports on both incidents point to failures of plans, procedures and persons. The AIB recommendations for recovery from both these incidents are numerous and are being carefully implemented. One major recommendation is to no longer have different maintenance and safety requirements for nuclear handling equipment and mining equipment. Maintenance and cleanliness of mining equipment was cited as a contributing cause to the underground fire, and the idea that there can be lesser rigor in taking care of mining equipment, when it is being operated in the same underground space as the waste handling equipment, is not tenable. At some point in the future, the changes made in response to these two incidents will be seen as a valuable lesson learned on behalf of future repository programs. WIPP will once again be seen as a ''pilot'' in the nautical sense, in terms of 'showing the way' - the way to a national and international radioactive waste

  12. The waste isolation pilot plant. Permanent isolation of defense transuranic waste in deep geologic salt. A national solution and international model

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose; Van Luik, Abraham [US Department of Energy, Carlsbad, NM (United States). Carlsbad Field Office

    2015-07-01

    The Waste Isolation Pilot Plant is located about 42 kilometers from the city of Carlsbad, New Mexico. It is an operating deep geologic repository in bedded salt 657 meters below the surface of the Chihuahuan desert. Since its opening in March of 1999, it has received about 12,000 shipments totaling about 91,000 cubic meters of defense related transuranic (TRU) wastes. Twenty-two sites have been cleaned up of their defense-legacy TRU waste. The WIPP's shipping program has an untarnished safety record and its trucks and trailers have safely traveled the equivalent of about 60 round-trips to the Moon. WIPP received, and deserved, a variety of safety accolades over its nearly 15 year working life. In February of 2014, however, two incidents resulted in a major operational suspension and reevaluation of its safety systems, processes and equipment. The first incident was an underground mining truck fire, followed nine days later by an airborne radiation release incident. Accident Investigation Board (AIB) reports on both incidents point to failures of plans, procedures and persons. The AIB recommendations for recovery from both these incidents are numerous and are being carefully implemented. One major recommendation is to no longer have different maintenance and safety requirements for nuclear handling equipment and mining equipment. Maintenance and cleanliness of mining equipment was cited as a contributing cause to the underground fire, and the idea that there can be lesser rigor in taking care of mining equipment, when it is being operated in the same underground space as the waste handling equipment, is not tenable. At some point in the future, the changes made in response to these two incidents will be seen as a valuable lesson learned on behalf of future repository programs. WIPP will once again be seen as a ''pilot'' in the nautical sense, in terms of 'showing the way' - the way to a national and international radioactive waste

  13. The TRansUranium EXtraction (TRUEX) process: A vital tool for disposal of US defense nuclear waste

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Schulz, W.W.

    1990-01-01

    The TRUEX (TRansUranium EXtraction) process is a generic actinide extraction/recovery process for the removal of all actinides from acidic nitrate and chloride nuclear waste solutions. Because of its high efficiency and flexibility and its compatibility with existing process facilities, TRUEX has now become a vital tool for the disposal of certain US defense nuclear waste. The development of TRUEX is closely coupled to the development of bifunctional extractants belonging to the carbamoylphosphoryl class and CMPO in particular. A brief review of the development of CMPO and its relationship to other bifunctional and monofunctional extractants is presented. The effect of TBP on CMPO, the selectivity of CMPO for actinides extracted from acidic nitrate media, the influence of diluents on CMPO behavior and 3rd phase formation, and the radiolysis/hydrolysis of CMPO and subsequent solvent cleanup will be highlighted. Application of TRUEX in the chemical pretreatment of specific nuclear waste streams and a summary of the current status of development and deployment of TRUEX is presented. 15 refs., 10 figs., 3 tabs

  14. Determination of nitrate and nitrite in Hanford defense waste (HDW) by reverse polarity capillary zone electrophoresis (RPCE) method

    International Nuclear Information System (INIS)

    Metcalf, S.G.

    1998-01-01

    This paper describes the first application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in Hanford Defense Waste (HDW). The method development was carried out by using Synthetic Hanford Waste (SHW), followed by the analysis of 4 real HDW samples. Hexamethonium bromide (HMB) was used as electroosmotic flow modifier in borate buffer at pH 9.2 to decrease the electroosmotic flow (EOF) in order to enhance the speed of analysis and the resolution of nitrate and nitrite in high ionic strength HDW samples. The application of this capillary zone electrophoresis method, when compared with ion chromatography for two major components of HDW, nitrate and nitrite slightly reduced analysis time, eliminated most pre-analysis handling of the highly radioactive sample, and cut analysis wastes by more than 2 orders of magnitude. The analysis of real HDW samples that were validated by using sample spikes showed a concentration range of 1.03 to 1.42 M for both nitrate. The migration times of the real HDW and the spiked HDW samples were within a precision of less than 3% relative standard deviation. The selectivity ratio test used for peak confirmation of the spiked samples was within 96% of the real sample. Method reliability was tested by spiking the matrix with 72.4 mM nitrate and nitrite. Recoveries for these spiked samples were 93-103%

  15. Assessment of processes, facilities, and costs for alternative solid forms for immobilization of SRP defense waste

    International Nuclear Information System (INIS)

    Dunson, J.B. Jr.; Eisenberg, A.M.; Schuyler, R.L. III; Haight, H.G. Jr.; Mello, V.E.; Gould, T.H. Jr.; Butler, J.L.; Pickett, J.B.

    1982-03-01

    A quantitative merit evaluation which assesses the relative difficulty of remote processing of Savannah River Plant high-level wastes for seven alternative waste forms is presented. The reference borosilicate glass process is rated as the simplest, followed by FUETAP concrete. The other processes evaluated in order of increasing complexity were: glass marbles in a lead matrix, high-silica glass, crystalline ceramic (Synroc-D and tailored ceramic), and coated ceramic particles. Cost appraisals are summarized for the borosilicate glass, high-silica glass, and ceramic waste form processing facilities

  16. Proceedings of the second Department Of Energy Defense Programs waste reduction workshop

    International Nuclear Information System (INIS)

    1989-04-01

    The second waste reduction workshop was held at the Rocky Flats Plant (RFP). The objective of this workshop was to exchange specific information (successes and failures) on education and training programs for waste reduction. Each facility was asked to provide a description of their programs to include information on formal, informal, and planned employee training programs; employee incentive programs; pamphlets, posters, books, magazines, communications, and publicity; procurement control and awareness in minimizing hazardous materials; housekeeping successes; waste minimization surveys; and implementation successes and failures. This document contains copies of the demonstrations and not the text of the presentations

  17. Glass as a matrix for SRP high-level defense waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; Bibler, N.E.; Dukes, M.D.; Plodinec, M.J.

    1980-01-01

    Work done at Savannah River Laboratory and elsewhere that has led to development of glass as a candidate for solidifying Savannah River Plant waste is summarized. Areas of development described are glass formulation and fabrication, and leaching and radiation effects

  18. Economic comparison of centralizing or decentralizing processing facilities for defense transuranic waste

    International Nuclear Information System (INIS)

    Brown, C.M.

    1980-07-01

    This study is part of a set of analyses under direction of the Transuranic Waste Management Program designed to provide comprehensive, systematic methodology and support necessary to better understand options for national long-term management of transuranic (TRU) waste. The report summarizes activities to evaluate the economics of possible alternatives in locating facilities to process DOE-managed transuranic waste. The options considered are: (1) Facilities located at all major DOE TRU waste generating sites. (2) Two or three regional facilities. (3) Central processing facility at only one DOE site. The study concludes that processing at only one facility is the lowest cost option, followed, in order of cost, by regional then individual site processing

  19. Electrical service and controls for Joule heating of a defense waste experimental glass melter

    International Nuclear Information System (INIS)

    Erickson, C.J.; Haideri, A.Q.

    1983-01-01

    Vitrification of radioactive liquid waste in a glass matrix is a leading candidate for long-term storage of high-level waste. This paper describes the electrical service and control system for an experimental electrically heated, nonradioactive glass melter installed at Savannah River Laboratory. Data accumulated, and design/operating experience acquired in operating this melter, are being used to design a modified melter to be installed in a processing area for use with radioactive materials

  20. Nuclear waste-form risk assessment for US defense waste at Savannah River Plant. Annual report FY, 1982

    International Nuclear Information System (INIS)

    Cheung, H.; Edwards, L.L.; Harvey, T.F.

    1982-01-01

    A network model was developed to simulate the hydrological flow and the transport of radionuclides from a deep geological repository to the biosphere subsequent to closure. By means of very efficient computational methods for solving the fundamental differential equations, a code was developed to treat in great detail the effects of waste form characteristics and of repository designs on the repository risks. It is possible to examine near field effects heretofore not attempted. Without sacrificing the essential details of description, the code can also be applied to perform probabilistic risk analyses to high confidence levels. Analytical results showed: (1) for waste form release rates greater than approximately 5 x 10 -7 /yr, dose to man is insensitive to release rate and release rate uncertainty; (2) significant reduction in dose can be achieved through simple design modifications; (3) a basalt repository generally does not perform as well as a salt repository; and (4) disruptive events are relatively unimportant for repository safety. 82 references

  1. H.R. 1526: A Bill to the Defense Nuclear Waste Cleanup Privatization Act. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    International Nuclear Information System (INIS)

    1995-01-01

    This report discusses a bill to authorize the Secretary of Energy to enter into privatization arrangements for activities carried out in connection with defense nuclear facilities, and for other purposes like: waste remediation and environmental restoration, including treatment, storage, and disposal; technical services; energy production; utility services; effluent treatment; general storage; fabrication and maintenance; and research and testing

  2. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  3. Removal of radionuclides from the water-soluble fraction of Hanford nuclear defense wastes

    International Nuclear Information System (INIS)

    Strachan, D.M.; Schulz, W.W.

    1980-01-01

    The current Hanford Waste Management Program has operated since 1968 to remove the bulk of the long-lived heat emitters /sup 90/Sr and /sup 137/Cs from stored high-level wastes. The liquid waste remaining after removal of /sup 90/Sr and /sup 137/Cs is returned to underground tanks for eventual evaporation to damp solid salt cake. Approximately 95,000 m/sup 3/ of salt cake and 49,000 m/sup 3/ of ''sludge'' will eventually accumulate in approximately 50 underground single-shell tanks. One alternative for long-term management of high-level Hanford wastes involves retrieval, after a yet-to-be determined interim storage time, conversion to more immobile forms, and terminal storage in a suitable geologic repository. Another alternative for long-term management of salt cake and residual liquid involves removing most of the long-lived radionuclides and many of the shorter-lived ones from these wastes. This paper describes conditions and results of recent hot cell tests of the complete Hanford Radionuclide Removal Process. These advanced tests, made with actual residual liquid containing large concentrations of ethylenediaminetetracetic acid (EDTA) and other organic compounds, provided a rigorous and convincing proof of the process flowsheet. 16 refs

  4. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  5. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables

  6. Field lysimeter studies for performance evaluation of grouted Hanford defense wastes

    International Nuclear Information System (INIS)

    Last, G.V.; Serne, R.J.; LeGore, V.L.

    1995-02-01

    The Grout Waste Test Facility (GWTF) consisted of four large field lysimeters designed to test the leaching and migration rates of grout-solidified low-level radioactive wastes generated by Hanford Site operations. Each lysimeter was an 8-m-deep by 2-media closed-bottom caisson that was placed in the ground such that the uppermost rim remained just above grade. Two of these lysimeters were used; the other two remained empty. The two lysimeters that were used (A-1 and B-1) were backfilled with a two-layer soil profile representative of the proposed grout disposal site. The proposed grout disposal site (termed the Grout Treatment Facility Landfill) is located immediately east of the Hanford Site's 200 East Area. This soil profile consisted of a coarse sand into which the grout waste forms were placed and covered by 4 m of a very fine sand. The A-1 lysimeter was backfilled in March 1985, with a grout-solidified phosphate/sulfate liquid waste from N Reactor decontamination and ion exchange resin regeneration. The B-1 lysimeter was backfilled in September 1985 and received a grout-solidified simulated cladding removal waste representative of waste generated from fuel reprocessing operations at the head end of the Plutonium Uranium Extraction (PUREX) plant. Routine monitoring and leachate collection activities were conducted for over three years, terminating in January 1989. Drainage was collected sporadically between January 1989 and December 1992. Decontamination and decommissioning of these lysimeters during the summer of 1994, confirmed the presence of a 15 to 20-cm-long hairline crack in one of the bottom plate welds. This report discusses the design and construction of the GWTF, presents the routine data collected from this facility through January 1989 and subsequent data collected sporadically between 1989 and 1993, and provides a brief discussion concerning preliminary interpretation of the results

  7. Defense waste solidification studies, 200-S area. Savannah River Plant work request 860504, Project S-1780

    International Nuclear Information System (INIS)

    1977-05-01

    A scope of work and a venture guidance appraisal were prepared for a conceptual process and plant facilities for the solidification and long-term storage of radioactive wastes removed from underground storage tanks in the 241 F and H Areas at the Savannah River Plant. Conceptual design was based on incorporating the highly radioactive waste components in a borosilicate type glass. The scope of work describes facilities for: reclaiming liquid and sludge wastes from F and H area tank farms; separating the sludge from the liquid salt solution by physical processes; removing radioactive cesium from the salt solution by ion exchange techniques; incorporating the dried sludge and cesium in a borosilicate glass in stainless steel containers; evaporating the liquid salt solution and encapsulating the resulting salt cake in a stainless steel container; and storing two years' worth of glass and salt containing cyclinders in separate retrievable surface storage facilities. Operations are to be located in a new area, designated the 200-S area. A full complement of power, general, and service facilities are provided. The venture guidance appraisal based on FY 82 authorization and FY 87 turnover is $2,900,000,000. The figure is suitable for planning purposes only. The Glass-form Waste Case is a variation of the concrete-form waste case (or the Reference Plant Case) reported in DPE--3410. The new venture guidance appraisal for the concrete-form case (updated to a consistent time basis with the glass-form case) is $2,900,000,000, indicating no apparent cost advantage between the two waste product forms

  8. Comparison of SRP high-level waste disposal costs for borosilicate glass and crystalline ceramic waste forms

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1982-04-01

    An evaluation of costs for the immobilization and repository disposal of SRP high-level wastes indicates that the borosilicate glass waste form is less costly than the crystalline ceramic waste form. The wastes were assumed immobilized as glass with 28% waste loading in 10,300 reference 24-in.-diameter canisters or as crystalline ceramic with 65% waste loading in either 3400 24-in.-diameter canisters or 5900 18-in.-diameter canisters. After an interim period of onsite storage, the canisters would be transported to the federal repository for burial. Total costs in undiscounted 1981 dollars of the waste disposal operations, excluding salt processing for which costs are not yet well defined, were about $2500 million for the borosilicate glass form in reference 24-in.-diameter canisters, compared to about $2900 million for the crystalline ceramic form in 24-in.-diameter canisters and about $3100 million for the crystalline ceramic form in 18-in.-diameter canisters. No large differences in salt processing costs for the borosilicate glass and crystalline ceramic forms are expected. Discounting to present values, because of a projected 2-year delay in startup of the DWPF for the crystalline ceramic form, preserved the overall cost advantage of the borosilicate glass form. The waste immobilization operations for the glass form were much less costly than for the crystalline ceramic form. The waste disposal operations, in contrast, were less costly for the crystalline ceramic form, due to fewer canisters requiring disposal; however, this advantage was not sufficient to offset the higher development and processing costs of the crystalline ceramic form. Changes in proposed Nuclear Regulatory Commission regulations to permit lower cost repository packages for defense high-level wastes would decrease the waste disposal costs of the more numerous borosilicate glass forms relative to the crystalline ceramic forms

  9. Evaluation of commercial repository capacity for the disposal of defense high-level waste. Comments and responses for DOE/DP--0020

    International Nuclear Information System (INIS)

    1985-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) requires that the President evaluate the use of disposal capacity at one or more repositories to be developed for permanent disposal of civilian spent nuclear fuel and high-level radioactive waste for the disposal of defense high-level radioactive waste. The Department of Energy prepared a report titled ''An Evaluation of Commercial Repository Capacity for the Disposal of Defense High-Level Waste,'' DOE/DP-0020, to provide input for the President's evaluation. The report constituted the Department's input and recommendation to be considered by the President in making his evaluation. Although not required by the Act, the Department made the July 1984 draft of the report available to the general public for review and comment in order to increase public awareness, and develop a public record on the issue of disposal of defense high-level waste. Over 400 copies of the draft report were distributed. Thirty comment letters containing over 400 comments were received from representatives of states, localities, and Indian tribes, federal agencies, organizations representing utilities, public interest groups, individual utilities, and private citizens. All letters were reviewed and considered. Where appropriate, changes were made in the final report reflecting the comments received

  10. Accelerator-driven transmutation of high-level waste from the defense and commercial sectors

    International Nuclear Information System (INIS)

    Bowman, C.; Arthur, E.; Beard, C.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The major goal has been to develop accelerator transmutation of waste (ATW) system designs that will thoroughly and rapidly transmute nuclear waste, including plutonium from dismantled weapons and spent reactor fuel, while generating useful electrical power and without producing a long-lived radioactive waste stream. We have identified and quantified the unique qualities of subcritical nuclear systems and their capabilities in bringing about the complete destruction of plutonium. Although the 1191 subcritical systems involved in our most effective designs radically depart from traditional nuclear reactor concepts, they are based on extrapolations of existing technologies. Overall, care was taken to retain the highly desired features that nuclear technology has developed over the years within a conservative design envelope. We believe that the ATW systems designed in this project will enable almost complete destruction of nuclear waste (conversion to stable species) at a faster rate and without many of the safety concerns associated with the possible reactor approaches

  11. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I ampersand C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility

  12. Application of titanates, niobates, and tantalates to neutralized defense waste decontamination: materials properties, physical forms, and regeneration techniques. Final report

    International Nuclear Information System (INIS)

    Dosch, R.G.

    1981-01-01

    A study of the application of sodium titanate (ST) to the decontamination of neutralized defense waste has been completed. The work was directed at Sr removal from dissolved salt cake, simulated in this work with a 6.0 N NaNO 3 - 0.6 N NaOH solution. Three physical forms of the titanates were developed including powder, pellets, and titanate-loaded resin beads and all were found to be superior to conventional organic ion exchange in this application. When spent, the titanate materials can be calcined to an oxide from which is a stable waste form in itself or can be added directly to a glass melter to become part of a vitrified waste form. Radiation stability of titanate powder and resin forms was assessed in tests in which these materials were exposed to 60 Co radiation. The strontium exchange capacity of the powder remained constant through a dose of 3 x 10 7 rads and retained 50% capacity after a dose of 2 x 10 9 rads. The primary mechanism involved in loss of capacity was believed to be heating associated with the irradiation. The resin forms were unchanged through a dose of 5 x 10 8 rads and retained 30% capacity after a dose of 2 x 10 9 rads. The latter dose resulted in visible degradation of the resin matrix. Anion exchange resins loaded with sodium niobate and sodium tantalate were also prepared by similar methods and evaluated for this application. These materials had Sr sorption properties comparable to the titanate material; however, they would have to provide a significant improvement to justify their higher cost

  13. Assessment of change in shallow land burial limits for defense transuranic waste

    International Nuclear Information System (INIS)

    Cohen, J.J.; Smith, C.F.; Spaeth, M.E.; Ciminesi, F.J.; Dickman, P.T.; O'Neal, D.A.

    1983-03-01

    There is an emerging consensus within the waste management technical community that the current concentration limit of 10 nCi/g for shallow land burial (SLB) of transuranic (TRU) waste is excessively restrictive. A concentration limit for SLB in the range of 100 to 1000 nCi/g is reasonable and justifiable based upon these reasons: Resultant increase in collective radiation dose (total population dose) would be very small, and the net detriment to public health would be negligible. Increasing the limit is cost-effective and could save hundreds of millions of dollars for the national economy over time. The hazard resulting from the increased SLB limit for TRU would be significantly less than that due to many naturally occurring mineral deposits and/or human activities. Expenditures directed toward health and safety conform to the economic law of diminishing returns: as the absolute expenditure increases, the marginal return decreases. Excessive restriction of the TRU concentration limit for SLB needlessly diverts limited resources (time, talent, and money) from other areas of health and safety where they might be more beneficially applied. Despite considerable effort, this study did not find any compelling technical argument to maintain the limit for TRU in SLB at 10 nCi/g. Subsequent to the initial preparation of this document, the US Department of Energy issued DOE Order 5820 which raises the administrative disposal limit for transuranic wastes from 10 nCi/g to 100 nCi/g. In addition, the US Nuclear Regulatory Commission has subsequently proposed and adopted a revised version of regulation 10 CFR 61 in which the disposal limit for shallow land burial of Category C (intruder protected) waste is set at 100 nCi/g

  14. Saltstone: cement-based waste form for disposal of Savannah River Plant low-level radioactive salt waste

    International Nuclear Information System (INIS)

    Langton, C.A.

    1984-01-01

    Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 400 million liters of waste containing NaNO 3 , NaOH, Na 2 SO 4 , and NaNO 2 . After decontamination, the salt solution is classified as low-level waste. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach rate, permeability, and compressive strength. Microstructure and mineralogy of leached and unleached specimens were characterized by SEM and x-ray diffraction analyses. The disposal system for the DWPF salt waste includes reconstitution of the crystallized salt as a solution containing 32 wt % solids. This solution will be decontaminated to remove 137 Cs and 90 Sr and then stabilized in a cement-based waste form. Laboratory and field tests indicate that this stabilization process greatly reduces the mobility of all of the waste constitutents in the surface and near-surface environment. Engineered trenches for subsurface burial of the saltstone have been designed to ensure compatibility between the waste form and the environment. The total disposal sytem, saltstone-trench-surrounding soil, has been designed to contain radionuclides, Cr, and Hg by both physical encapsulation and chemical fixation mechanisms. Physical encapsulation of the salts is the mechanism employed for controlling N and OH releases. In this way, final disposal of the SRP low-level waste can be achieved and the quality of the groundwater at the perimeter of the disposal site meets EPA drinking water standards

  15. Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes. Final Report

    International Nuclear Information System (INIS)

    Wasan, Darsh T.

    2007-01-01

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study

  16. Technical status report on environmental aspects of long-term management of high-level defense waste at the Hanford Site

    International Nuclear Information System (INIS)

    1980-10-01

    Since 1944, radioactive wastes have accumulated at the US Department of Energy's (DOE) 1500-km 2 Hanford Site in southeastern Washington, where nine nuclear reactors have produced nuclear materials for National defense. Today, only one production reactor is still operating, but a large inventory of radioactive high-level waste (HLW), the residue from processing the spent fuel to recover plutonium and uranium, remains stored in underground tanks and in metal capsules in water basins. So that this waste will pose no significant threat to the public health and safety, it must be isolated from the biosphere for thousands of years. This document contains an evaluation of environmental impacts of four alternative methods for long-term management of these HLW. The alternatives range from continuing the present action of storing the waste near the surface of the ground to retrieving the waste and disposing of it deep underground in a mined geologic repository. The alternatives are: near-term geologic disposal of stored waste; deferred geologic disposal of in-tank waste; in situ disposal of in-tank waste; and continued present action for stored waste. The environmental impacts of the four alternatives are small relative to that radiation received from natural sources or the available natural resources in the earth

  17. Erosion Modeling Analysis For Modified DWPF SME Tank

    International Nuclear Information System (INIS)

    LEE, SI

    2004-01-01

    In support of an erosion evaluation for the modified cooling coil guide and its supporting structure in the DWPF SME vessel, a computational model was developed to identify potential sites of high erosion using the same methodology established by previous work. The erosion mechanism identified in the previous work was applied to the evaluation of high erosion locations representative of the actual flow process in the modified coil guide of the SME vessel, abrasive erosion which occurs by high wall shear of viscous liquid. The results show that primary locations of the highest erosion due to the abrasive wall erosion are at the leading edge of the guide, external surface of the insert plate, the tank floor next to the insert plate of the coil guide support, and the upstream lead-in plate. The present modeling results show a good comparison between the original and the modified cases in terms of high erosion sites, as well as the degree of erosion and the calculated shear stress. Wall she ar of the tank floor is reduced by about 30 per cent because of the new coil support plate. Calculations for the impeller speed lower than 103 rpm in the SME showed similar erosion patterns but significantly reduced wall shear stresses and reduced overall erosion. Comparisons of the 103 rpm results with SME measurements indicated that no significant erosion of the tank floor in the SME is to be expected. Thus, it is recommended that the agitator speed of SME does not exceed 103 rpm

  18. Evaluation and compilation of DOE waste package test data: Biannual report, August 1986-January 1987

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.; Harrison, S.; Shull, R.; Linzer, M.; Ricker, R.; Ruspi, J.

    1987-10-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Technical discussions are given for the corrosion of metals proposed for the canister, particularly carbon and stainless steels, and copper. In the section on tuff, the current level of understanding of several canister materials is questioned. Within the Basalt Waste Isolation Project (BWIP) section, discussions are given on problems concerning groundwater, materials for use in the metallic overpack, and diffusion through the packing. For the proposed salt site, questions are raised on the work on both ASTM A216 Steel and Ti-Code 12. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) is covered. NBS reviews of selected DOE technical reports and a summary of current waste-package activities of the Materials Characterization Center (MCC) is presented. Using a database management system, a computerized database for storage and retrieval of reviews and evaluations of HLW data has been developed and is described. 17 refs., 2 figs., 2 tabs

  19. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    International Nuclear Information System (INIS)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-01

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned

  20. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  1. Supplemental report on population estimates for Hanford high-level defense waste draft programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Yandon, K.E.; Landstrom, D.K.

    1980-06-01

    Current and revised population projections based on those previously published in the document Population Distribution in 90-mile Radius of Hanford Meteorological Station and Projections to Year 2300 by Compass Sector and 10 Mile Radii are presented. In addition, there was a need to extend the population estimates out to 1000 and 10,000 years into the future to permit estimation of population radiation doses from accidents affecting the Hanford Facilities directly related to the defense high-level waste disposal alternatives. The methodology used in making the estimates is presented along with the detailed population matrix data required for performing the dose calculations. Although the near-term overall population projections are probably reasonably correct, no claim is made for the accuracy of the detailed data within each individual sector. Long-term estimates are made using reasonable assumptions about the growth potential and possibilities in the Hanford area. No claim of accuracy of these figures is made since they are so highly dependent on actions and conditions that are not predictable. For example, if a major climate change were to occur, the entire Hanford area might be uninhabited at 10,000 years in the future. To provide conservative dose estimates, it was assumed that the Hanford population will experience reasonable and continuous growth throughout the 10,000 year period

  2. Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant

    International Nuclear Information System (INIS)

    Herman, Connie C.

    2013-01-01

    The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the

  3. Phase equilibria, leaching characteristics and ceramic processing of SYNROC D formulations for US defense wastes

    International Nuclear Information System (INIS)

    Newkirk, H.; Ryerson, F.; Coles, D.; Hoenig, C.; Rozsa, R.; Rossington, C.; Bazan, F.; Tewhey, J.

    1980-01-01

    The assemblage of coexisting phases in SYNROC D is perovskite, zirconolite, nepheline and spinel. Cesium from the supernate is to be immobilized in hollandite. In the current processing scheme, presynthesized granules of hollandite are added to calcined SYNROC D powders prior to hot procesing or sintering. The disposition of inert and radwaste components of Savannah River Plant (SRP) wastes in SYNROC D formulations has been determined by means of optical microscopy, XRD, XRF, SEM, STEM, electron microprobe analysis and autoradiography. A summary of results is presented. Leaching studies of SYNROC D have been done by means of static, high temperature experiments and continuous-flow experiments. The data reported are from high-temperature experiments (distilled water, powdered sample, 150 0 C, one day). The elements reported are the only ones observed in the leachate. Analysis was done by means of XRF. The flowsheet which depicts the current experimental methods that are being employed at LLNL to produce SYNROC D samples containing presynthesized Cs-bearing hollandite is presented. The starting material for SYNROC D (high Fe, high Al and composite compositions) is simulated sludge obtained in 55 gallon quantities from Southwestern Chemical Corporation. Hot pressing temperatures for SYNROC D are 1000 to 1150 0 C. Hot pressing temperatures for hollandite are 1200 to 1400 0 C

  4. Evaluation and compilation of DOE waste package test data: Biannual report, August 1987--January 1988

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.; Ondik, H.; Plante, E.; Ricker, R.; Ruspi, J.

    1988-08-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Since enactment of the Budget Reconciliation Act for Fiscal Year 1988, the Yucca Mountain, Nevada, site (in which tuff is the geologic medium) is the only site that will be characterized for use as high-level nuclear waste repository. During the reporting period of August 1987 to January 1988, five reviews were completed for tuff, and these were grouped into the categories: ferrous alloys, copper, groundwater chemistry, and glass. Two issues are identified for the Yucca Mountain site: the approach used to calculate corrosion rates for ferrous alloys, and crevice corrosion was observed in a copper-nickel alloy. Plutonium can form pseudo-colloids that may facilitate transport. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) and activities of the DOE Materials Characterization Center (MCC) for the 6-month reporting period are also included. 27 refs., 3 figs

  5. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  6. Topical report on release scenario analysis of long-term management of high-level defense waste at the Hanford Site

    International Nuclear Information System (INIS)

    Wallace, R.W.; Landstrom, D.K.; Blair, S.C.; Howes, B.W.; Robkin, M.A.; Benson, G.L.; Reisenauer, A.E.; Walters, W.H.; Zimmerman, M.G.

    1980-11-01

    Potential release scenarios for the defense high-level waste (HLW) on the Hanford Site are presented. Presented in this report are the three components necessary for evaluating the various alternatives under consideration for long-term management of Hanford defense HLW: identification of scenarios and events which might directly or indirectly disrupt radionuclide containment barriers; geotransport calculations of waste migration through the site media; and consequence (dose) analyses based on groundwater and air pathways calculations. The scenarios described in this report provide the necessary parameters for radionuclide transport and consequence analysis. Scenarios are categorized as either bounding or nonbounding. Bounding scenarios consider worst case or what if situations where an actual and significant release of waste mat