WorldWideScience

Sample records for dworshak dam impacts

  1. Dworshak Dam impacts assessment and fisheries investigation -- Kokanee depth distribution in Dworshak Reservoir and implications toward minimizing entrainment. Annual progress report, January--December 1994

    International Nuclear Information System (INIS)

    Maiolie, M.A.; Elam, S.

    1996-10-01

    The authors measured the day and night depth distribution of kokanee Oncorhynchus nerka kennerlyi directly upstream of Dworshak Dam from October 1993 to December 1994 using split-beam hydroacoustics. At night most kokanee (70%) were distributed in a diffuse layer about 10 m thick. The depth of the layer varied with the season and ranged from 30 to 40 m deep during winter and from 15 to 25 m deep during summer. Nighttime depth of the kokanee layer during summer roughly corresponded to a zone where water temperatures ranged from 7 C to 12 C. Daytime kokanee distribution was much different with kokanee located in dense schools. Most kokanee (70%) were found in a 5--15 m thick layer during summer. Daytime depth distribution was also shallowest during fall and deepest during winter. Dworshak Dam has structures which can be used for selective water withdrawal and can function in depth ranges that will avoid the kokanee layer. Temperature constraints limit the use of selective withdrawal during the spring, summer, and fall, but in the winter, water is nearly isothermal and the full range of selector gate depths may be utilized. From October 1993 to February 1994, selector gates were positioned to withdraw water from above the kokanee layer. The discharge pattern also changed with more water being released during May and July, and less water being released during fall and winter. A combination of these two changes is thought to have increased kokanee densities to a record high of 69 adults/ha

  2. Dworshak Reservoir kokanee population monitoring: project progress report, 1999 annual report

    International Nuclear Information System (INIS)

    Maiolie, Melo; Vidergar, Dmitri T.; Harryman, Bill

    2001-01-01

    We used split-beam hydroacoustics and trawling to monitor the kokanee Oncorhynchus nerka population in Dworshak Reservoir during 1999. Estimated abundance of kokanee has continued to increase since the high entrainment losses in the spring of 1996. Based on hydroacoustic surveys, we estimated 1,545,000 kokanee and rainbow trout O. mykiss in Dworshak Reservoir during July 1999. This included 1,144,000 age-0 kokanee (90% CI ± 42%), 212,000 age-1 kokanee (90% CI ± 15%), and 189,000 age-2 kokanee and stocked rainbow trout (90% CI ± 39%). Rainbow trout could not be distinguished from the age-2 kokanee in the echograms since they were of similar size. Age-0 kokanee ranged in length from 40 mm to 90 mm, age-1 from 193 mm to 212 mm, and age-2 kokanee from 219 mm to 336 mm. These sizes indicated kokanee are still growing well. Discharge of water from Dworshak Dam during 1999 did not stop the expansion of the kokanee population based on these results. Counts of spawning kokanee in four tributary streams exceeded 11,000 fish. This index also showed a marked increase from last year's 660 spawning kokanee or the 1997 total of 144 spawning kokanee

  3. Dworshak Reservoir Kokanee Population Monitoring, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Maiolie, Melo; Stark, Eric

    2003-03-01

    Onsite testing of strobe lights was conducted to determine if they repelled kokanee Oncorhynchus nerka away from the turbine intakes at Dworshak Dam. We tested a set of nine strobe lights flashing at a rate of 360 flashes/min placed near the intake of a 90 mW turbine. A split-beam echo sounder was used to determine the effect of strobe light operation on fish density (thought to be mostly kokanee) in front of the turbine intakes. On five nights between December 2001 and January 2002, fish density averaged 110 fish/ha when no lights were flashing. Mean density dropped to 13 fish/ha when the strobe lights were turned on during five additional nights of sampling. This 88% decline in density was significant at the P = 0.009 level of significance based on a paired Student's t test. There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicate that a single set of nine lights may be sufficient to repel kokanee from a turbine intake during the night. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2001. Estimated abundance of kokanee has continued to increase since the spring of 1996 when high entrainment losses occurred. Based on hydroacoustic surveys, we estimated 3,276,000 kokanee in Dworshak Reservoir in early July 2001. This included 2,069,000 age-0 kokanee (90% CI {+-} 16.4%), 801,000 age-1 kokanee (90% CI {+-} 17.8%), and 406,000 age-2 kokanee (90% CI {+-} 20.5%). Entrainment sampling was also conducted with split-beam hydroacoustics a minimum of one continuous 24 h period per month. The highest entrainment rates occurred at night with lower discharges and shallower intake depths. Fish movement patterns suggested that they swam 'at will' in front of the intakes and may have chosen to move into the turbine intakes. Based on monthly hydroacoustic sampling in the forebay, we found that kokanee density was low in July and August during a period of high

  4. Dworshak Kokanee Population and Engrainment Assessment : 2006 Annual Report, March 1, 2006 - February 28, 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Stark, Eric J.

    2008-12-18

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. Strobe light tests were conducted on four nights from April 24-27, 2006, in front of the middle reservoir outlet (RO) 2. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On two nights, April 25 and 27, 2006, when no lights were present, fish counts near RO 2 averaged 12.4 fish and densities averaged 31.0 fish/ha. When strobe lights were turned on during the nights of April 24 and 26, mean counts dropped to 4.7 fish and densities dropped to 0.5 fish/ha. The decline in counts (62%) and densities (99%) was statistically significant (p = 0.009 and 0.002, respectively). Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of a discharging reservoir outlet, which would be sufficient to improve sport fish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2006. Estimated abundance of kokanee increased from the 2005 population estimate. Based on hydroacoustic surveys, we estimated approximately 5,815,000 kokanee (90% CI {+-} 27.6%) in Dworshak Reservoir in August 2006. This included 2,183,000 age-0 (90% CI {+-} 24.2%), 1,509,000 age-1 (90% CI {+-} 29.0%), and 2,124,000 age-2 (90% CI {+-} 27.6%) kokanee. This resulted in a density of age-2 kokanee above the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site, split-beam hydroacoustics from May through September for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were found during dawn periods, unlike previous year's results

  5. Health impacts of large dams

    International Nuclear Information System (INIS)

    Lerer, L.B.

    1999-01-01

    Large dams have been criticized because of their negative environmental and social impacts. Public health interest largely has focused on vector-borne diseases, such as schistosomiasis, associated with reservoirs and irrigation projects. Large dams also influence health through changes in water and food security, increases in communicable diseases, and the social disruption caused by construction and involuntary resettlement. Communities living in close proximity to large dams often do not benefit from water transfer and electricity generation revenues. A comprehensive health component is required in environmental and social impact assessments for large dam projects

  6. Strobe Light Testing and Kokanee Population Monitoring : Dworshak Dam Impacts Assessment and Fisheries Investigation Project, 87-99 : Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maiolie, Melo A.; Harryman, Bill; Ament, Willaim J.

    1999-11-01

    We tested the response of kokanee Oncorhynchus nerka to strobe lights. Testing was conducted on wild, free-ranging fish in their natural environment (i.e., the pelagic region of two large Idaho lakes). Split-beam hydroacoustics were used to record the distance kokanee moved away from the lights, as well as the density of kokanee in the area near the lights. In control tests, where strobe lights were lowered into the lake but kept turned off, kokanee remained within a few meters of the lights. Once the lights began flashing, kokanee quickly moved away from the light source. Kokanee moved 20 to 40 m away from the lights in waters with Secchi transparencies from 3 to 5 m. Kokanee densities near the lights were significantly lower (p=0.07 to p=0.00) when the lights were turned on than in control samples with no lights flashing. Flash rates of 300, 360, and 450 flashes/min elicited strong avoidance responses from the fish. Kokanee remained at least 24 m from the lights during our longest test that lasted for 5 h 50 min. We also continued annual monitoring of the kokanee population in Dworshak Reservoir. Spawner counts in four tributary streams that were used as an index of the adult population reached a record low of 144 spawners. No age-1 or age-2 kokanee were caught in 15 trawl hauls used to make population estimates. The population estimate of fry was 65,000 fish, {+-} 76% (90% C.I.). Flooding during the spring of 1996 was responsible for the low kokanee population.

  7. Brazil's Amazonian dams: Ecological and socioeconomic impacts

    Science.gov (United States)

    Fearnside, P. M.

    2016-12-01

    Brazil's 2015-2024 Energy Expansion Plan calls for 11 hydroelectric dams with installed capacity ≥ 30 MW in the country's Amazon region. Dozens of other large dams are planned beyond this time horizon, and dams with environmental and socioeconomic impacts. Loss of forest to flooding is one, the Balbina and Tucuruí Dams being examples (each 3000 km2). If the Babaquara/Altamira Dam is built it will flood as much forest as both of these combined. Some planned dams imply loss of forest in protected areas, for example on the Tapajós River. Aquatic and riparian ecosystems are lost, including unique biodiversity. Endemic fish species in rapids on the Xingu and Tapajós Rivers are examples. Fish migrations are blocked, such as the commercially important "giant catfish" of the Madeira River. Dams emit greenhouse gases, including CO2 from the trees killed and CH4 from decay under anoxic conditions at the bottom of reservoirs. Emissions can exceed those from fossil-fuel generation, particularly over the 20-year period during which global emissions must be greatly reduced to meet 1.5-2°C limit agreed in Paris. Carbon credit for dams under the Climate Convention causes further net emission because the dams are not truly "additional." Anoxic environments in stratified reservoirs cause methylation of mercury present in Amazonian soils, which concentrates in fish, posing a health risk to human consumers. Population displacement is a major impact; for example, the Marabá Dam would displace 40,000 people, mostly traditional riverside dwellers (ribeirinhos). Various dams impact indigenous peoples, such as the Xingu River dams (beginning with Belo Monte) and the São Luiz do Tapajós and Chacorão Dams on the Tapajós River. Brazil has many energy options other than dams. Much energy use has little benefit for the country, such as exporting aluminum. Electric showerheads use 5% of the country's power. Losses in transmission lines (20%) are far above global averages and can be

  8. How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation

    Science.gov (United States)

    Fencl, Jane S.; Mather, Martha E.; Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.

  9. The Impact of Dam-Reservoir-Foundation Interaction on Nonlinear Response of Concrete Gravity Dams

    International Nuclear Information System (INIS)

    Amini, Ali Reza; Motamedi, Mohammad Hossein; Ghaemian, Mohsen

    2008-01-01

    To study the impact of dam-reservoir-foundation interaction on nonlinear response of concrete gravity dams, a two-dimensional finite element model of a concrete gravity dam including the dam body, a part of its foundation and a part of the reservoir was made. In addition, the proper boundary conditions were used in both reservoir and foundation in order to absorb the energy of outgoing waves at the far end boundaries. Using the finite element method and smeared crack approach, some different seismic nonlinear analyses were done and finally, we came to a conclusion that the consideration of dam-reservoir-foundation interaction in nonlinear analysis of concrete dams is of great importance, because from the performance point of view, this interaction significantly improves the nonlinear response of concrete dams

  10. The environmental impact of large dams

    International Nuclear Information System (INIS)

    Razvan, E.

    1992-01-01

    The campaigns of conservationist groups against dams are generally based on rather emotional issues. This paper puts the situation in a more rational perspective, by analysing the various claims which tend to be put forward concerning the impacts of large dams, examining the validity of the arguments, looking at ways in which any adverse effects can be mitigated, and presenting the complexity of the problems. (author)

  11. The social impacts of dams: A new framework for scholarly analysis

    International Nuclear Information System (INIS)

    Kirchherr, Julian; Charles, Katrina J.

    2016-01-01

    No commonly used framework exists in the scholarly study of the social impacts of dams. This hinders comparisons of analyses and thus the accumulation of knowledge. The aim of this paper is to unify scholarly understanding of dams' social impacts via the analysis and aggregation of the various frameworks currently used in the scholarly literature. For this purpose, we have systematically analyzed and aggregated 27 frameworks employed by academics analyzing dams' social impacts (found in a set of 217 articles). A key finding of the analysis is that currently used frameworks are often not specific to dams and thus omit key impacts associated with them. The result of our analysis and aggregation is a new framework for scholarly analysis (which we call ‘matrix framework’) specifically on dams' social impacts, with space, time and value as its key dimensions as well as infrastructure, community and livelihood as its key components. Building on the scholarly understanding of this topic enables us to conceptualize the inherently complex and multidimensional issues of dams' social impacts in a holistic manner. If commonly employed in academia (and possibly in practice), this framework would enable more transparent assessment and comparison of projects.

  12. The potential for dams to impact lowland meandering river floodplain geomorphology.

    Science.gov (United States)

    Marren, Philip M; Grove, James R; Webb, J Angus; Stewardson, Michael J

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an "environmental sediment regime" to operate alongside environmental flows.

  13. The Potential for Dams to Impact Lowland Meandering River Floodplain Geomorphology

    Directory of Open Access Journals (Sweden)

    Philip M. Marren

    2014-01-01

    Full Text Available The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection and active impacts (changes in geomorphological processes and functioning. These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an “environmental sediment regime” to operate alongside environmental flows.

  14. Mitigating Dam Impacts Using Environmental Flow Releases

    Science.gov (United States)

    Richter, B. D.

    2017-12-01

    One of the most ecologically disruptive impacts of dams is their alteration of natural river flow variability. Opportunities exist for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. This presentation will highlight a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the suggested strategies for dam re-operation are predicated on changes in the end-use of the water, such as reductions in urban or agricultural water use during droughts, a systemic perspective of entire water management systems will be required to attain the fullest possible

  15. The social impacts of dams: A new framework for scholarly analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kirchherr, Julian, E-mail: julian.kirchherr@sant.ox.ac.uk; Charles, Katrina J., E-mail: katrina.charles@ouce.ox.ac.uk

    2016-09-15

    No commonly used framework exists in the scholarly study of the social impacts of dams. This hinders comparisons of analyses and thus the accumulation of knowledge. The aim of this paper is to unify scholarly understanding of dams' social impacts via the analysis and aggregation of the various frameworks currently used in the scholarly literature. For this purpose, we have systematically analyzed and aggregated 27 frameworks employed by academics analyzing dams' social impacts (found in a set of 217 articles). A key finding of the analysis is that currently used frameworks are often not specific to dams and thus omit key impacts associated with them. The result of our analysis and aggregation is a new framework for scholarly analysis (which we call ‘matrix framework’) specifically on dams' social impacts, with space, time and value as its key dimensions as well as infrastructure, community and livelihood as its key components. Building on the scholarly understanding of this topic enables us to conceptualize the inherently complex and multidimensional issues of dams' social impacts in a holistic manner. If commonly employed in academia (and possibly in practice), this framework would enable more transparent assessment and comparison of projects.

  16. Potential Impact of Planned Andean Dams on the Amazon Fluvial Ecosystem

    Science.gov (United States)

    Forsberg, B.; Melack, J. M.; Dunne, T.; Barthem, R. B.; Paiva, R. C. D.; Sorribas, M.; Silva, U. L., Jr.

    2016-12-01

    Increased energy demand has led to plans for building 151 new dams in the western Amazon, mostly in the Andes Region. Historical data and simulation scenarios were used to explore potential impacts above and below six of the largest storage dams planned for the region. These impacts included: 1) reduction in the downstream sediment supply 2) reduction in the downstream nutrient supply, 3) attenuation of the downstream flood pulse and 4) increased greenhouse gas emissions. Together, the six dams are expected to reduce the total downstream supply of sediments, total phosphorus (TP) and total nitrogen (TN) from the Andes by 66, 65 and 49%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These impacts are expected to be greatest close to the dams but could also extend to the central Amazon floodplain and delta regions. The attenuation of the downstream flood pulse following impoundment is expected to alter the survival, phenology and growth patterns of floodplain vegetation and result in lower fish yields in the downstream regions closest to the dams. Greenhouse gas emissions above and below the dams are expected to increase, contributing to significantly higher regional and global emissions for dams. Gas fired power plants are suggested as a cleaner, less impactful alternative to meeting regional energy demands.

  17. Mapping the social impacts of small dams: The case of Thailand's Ing River basin.

    Science.gov (United States)

    Fung, Zali; Pomun, Teerapong; Charles, Katrina J; Kirchherr, Julian

    2018-05-24

    The social impacts of large dams have been studied extensively. However, small dams' social impacts have been largely neglected by the academic community. Our paper addresses this gap. We examine the social impacts of multiple small dams in one upstream and one downstream village in Thailand's Ing River basin. Our research is based on semi-structured interviews with beneficiaries, government and NGOs. We argue that small dams' social impacts are multi-faceted and unequal. The dams were perceived to reduce fish abundance and provide flood mitigation benefits. Furthermore, the dams enabled increased access to irrigation water for upstream farmers, who re-appropriated water via the dams at the expense of those downstream. The small dams thus engendered water allocation conflicts. Many scholars, practitioners and environmentalists argue that small dams are a benign alternative to large dams. However, the results of our research mandate caution regarding this claim.

  18. Dams: impacts on the species diversity; Impacts des reservoirs sur la biodiversite

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Domingos de [Quebec Univ., Montreal, PQ (Canada). Dept. de Sciences Biologiques, Inst. de Sciences de l`Environnement

    1996-12-31

    Always you change one ecosystem, you have impacts on the species diversity. The work try to show some impacts of dams for hydroelectric power generation. First of all the author analyses the impacts on the habitats and ecosystems. He considers the problems on a variety of species, since plants and animals that living on the border of the river until the fishes, birds, invertebrates and the mammals. The example of 3 dams, La Grande, Opinaca and Caniapiseau, on Quebec, Canada, are used to give support to the work 14 refs., 1 tab.

  19. Using causal maps to support ex-post assessment of social impacts of dams

    International Nuclear Information System (INIS)

    Aledo, Antonio; García-Andreu, Hugo; Pinese, José

    2015-01-01

    - Highlights: • We defend the usefulness of causal maps (CM) for ex-post impact assessment of dams. • Political decisions are presented as unavoidable technical measures. • CM enable the identification of multiple causes involved in the dam impacts. • An alternative management of the dams is shown from the precise tracking of the causes. • Participatory CM better the quality of information and the governance of the research. This paper presents the results of an ex-post assessment of two important dams in Brazil. The study follows the principles of Social Impact Management, which offer a suitable framework for analyzing the complex social transformations triggered by hydroelectric dams. In the implementation of this approach, participative causal maps were used to identify the ex-post social impacts of the Porto Primavera and Rosana dams on the community of Porto Rico, located along the High Paraná River. We found that in the operation of dams there are intermediate causes of a political nature, stemming from decisions based on values and interests not determined by neutral, exclusively technical reasons; and this insight opens up an area of action for managing the negative impacts of dams

  20. Using causal maps to support ex-post assessment of social impacts of dams

    Energy Technology Data Exchange (ETDEWEB)

    Aledo, Antonio, E-mail: Antonio.Aledo@ua.es [Departamento de Sociología 1, Universidad de Alicante, Alicante 03080 (Spain); García-Andreu, Hugo, E-mail: Hugo.Andreu@ua.es [Departamento de Sociología 1, Universidad de Alicante, Alicante 03080 (Spain); Pinese, José, E-mail: pinese@uel.br [Centro de Ciências Exatas, UEL, Rodovia Celso Cid, Km 380, Campus Universitário, Londrina, PR 86057-970 (Brazil)

    2015-11-15

    - Highlights: • We defend the usefulness of causal maps (CM) for ex-post impact assessment of dams. • Political decisions are presented as unavoidable technical measures. • CM enable the identification of multiple causes involved in the dam impacts. • An alternative management of the dams is shown from the precise tracking of the causes. • Participatory CM better the quality of information and the governance of the research. This paper presents the results of an ex-post assessment of two important dams in Brazil. The study follows the principles of Social Impact Management, which offer a suitable framework for analyzing the complex social transformations triggered by hydroelectric dams. In the implementation of this approach, participative causal maps were used to identify the ex-post social impacts of the Porto Primavera and Rosana dams on the community of Porto Rico, located along the High Paraná River. We found that in the operation of dams there are intermediate causes of a political nature, stemming from decisions based on values and interests not determined by neutral, exclusively technical reasons; and this insight opens up an area of action for managing the negative impacts of dams.

  1. Environmental impacts of small dams on agriculture and ground water development: a case study of Khan pur Dam, Pakistan

    International Nuclear Information System (INIS)

    Ejaz, N.; Shahmim, M.A.; Elahi, A.; Khan, N.M.

    2012-01-01

    The water scarcity issues are increasing through out the world. Pakistan is also facing water crises and its water demands are increasing every day. During this research it is investigated that small dams are playing an important role for the sustainability of groundwater and agriculture. The main objective of this study was to assess the environmental impacts of small dam on agricultural and ground water. Proper planning and management of small dams may improve the sustainable agriculture in Pakistan. It is also concluded that small dams are significantly contributing towards economy, environment, local climate, recreational activities and crop production. Small dams can also be utilized for the production of electricity at local level. On the other hand, water management issues can be resolved by the involvement of local farmer's associations. Water losses through seepage, unlined channels and old irrigation methods are most critical in developing world. Considering the overall positive environmental impacts, construction of small dams must be promoted. (author)

  2. Olympic Dam project: assessment of the environmental impact

    International Nuclear Information System (INIS)

    1983-11-01

    The assessment report on the Environmental Impact Statement produced for the Olympic Dam project is intended to provide the South Australian Government with a comprehensive evaluation of the potential impact of the proposal and to make recommendations concerning the project to be negotiated with the Joint Venturers prior to approval of the EIS. The project involves the mining, processing and sale of products from the copper-uranium ore body at Olympic Dam on the Roxby Downs Station, South Australia. The report includes a description of the proposal, a description of the environment likely to be affected, a discussion of the potential impacts on that environment, a discussion of the adequacy of information presented in the EIS and a discussion of the acceptability of the environmental impacts. The Department has concluded that the pre-design proposal is acceptable on environmental grounds

  3. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  4. Impacts of the Garafiri hydroelectric dam on the Konkoure estuary

    International Nuclear Information System (INIS)

    Samoura, K.; Waaub, J.P.

    2008-01-01

    This article described the environmental impacts caused by the exploitation of one or several dams in tropical coastal basins. In particular, it proposed a methodological approach for analyzing the vulnerability of ecosystems to modifications caused by the exploitation of the Garafiri hydroelectric dam in Guinea. With an installed power capacity of 75 MW, this dam has been operational since 1999 and has supplied electricity to coastal and mid Guinea since 2000. Since then, the ecosystem of the Konkoure River has undergone important changes. This study focused primarily on impacts during the dry season. Data was collected at different hydroelectric stations along the Konkoure Basin to estimate changes in water flow in the estuary. The study showed several changes, including noticeable impacts on the soil salt content. In addition, changes in vegetation were attributed to changes in soil content. The study revealed that rice production has increased 65 per cent since 2000, while salt exploitation has been completely discontinued. It was concluded that the hydraulic management of the dam can have a significant impact on the region's ecosystem which can in turn influence ecological and social economic functions. It was concluded that the vulnerability of the ecosystem can be worsened in the context of climate change. 25 refs., 9 figs

  5. Numerical Simulation of Shock Response and Dynamic Fracture of a Concrete Dam Subjected to Impact Load

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2016-01-01

    Full Text Available The shock response and dynamic fracture of concrete gravity dams under impact load are the key problems to evaluate the antiknock safety of the dam. This study aims at understanding the effects of impact shock on the elastic response and dynamic fracture of concrete gravity dams. Firstly, this paper uses acceleration records of a concrete gravity dam under impact to establish the correct way to determine the concrete gravity dam of the fundamental frequency and present cut sheets multi-degree-of-freedom dynamic modeling. Under strong impact loading, the constitutive relation of concrete gravity dam and the highest frequency of the impact are uncertain. So, the main advantage of this method is avoiding the use of elastic modulus in the calculation. The result indicates that the calculation method is a reliable computational method for concrete gravity dams subjected to impact. Subsequently, the failure process of dam models was numerically simulated based on ABAQUS commercial codes. Finally, this paper puts forward suggestions for future research based on the results of the analysis.

  6. Examining the economic impacts of hydropower dams on property values using GIS.

    Science.gov (United States)

    Bohlen, Curtis; Lewis, Lynne Y

    2009-07-01

    While the era of dam building is largely over in the United States, globally dams are still being proposed and constructed. The articles in this special issue consider many aspects and impacts of dams around the world. This paper examines dam removal and the measurement of the impacts of dams on local community property values. Valuable lessons may be found. In the United States, hundreds of small hydropower dams will come up for relicensing in the coming decade. Whether or not the licenses are renewed and what happens to the dams if the licenses expires is a subject of great debate. Dams are beginning to be removed for river restoration and fisheries restoration and these "end-of-life" decisions may offer lessons for countries proposing or currently building small (and large) hydropower dams. What can these restoration stories tell us? In this paper, we examine the effects of dams along the Penobscot River in Maine (USA) on residential property values. We compare the results to findings from a similar (but ex post dam removal) data set for properties along the Kennebec river in Maine, where the Edwards Dam was removed in 1999. The Penobscot River Restoration Project, an ambitious basin-wide restoration effort, includes plans to remove two dams and decommission a third along the Penobscot River. Dam removal has significant effects on the local environment, and it is reasonable to anticipate that environmental changes will themselves be reflected in changes in property values. Here we examine historical real estate transaction data to examine whether landowners pay a premium or penalty to live near the Penobscot River or near a hydropower generating dam. We find that waterfront landowners on the Penobscot or other water bodies in our study area pay approximately a 16% premium for the privilege of living on the water. Nevertheless, landowners pay LESS to live near the Penobscot River than they do to live further away, contrary to the expectation that bodies of water

  7. Impact of Dams on Riparian Frog Communities in the Southern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Rohit Naniwadekar

    2014-08-01

    Full Text Available The Western Ghats is a global biodiversity hotspot and home to diverse and unique assemblages of amphibians. Several rivers originate from these mountains and hydropower is being tapped from them. The impacts of hydrological regulation of riparian ecosystems to wildlife and its habitat are poorly documented, and in particular the fate of frog populations is unknown. We examined the effects of dams on riparian frog communities in the Thamirabarani catchment in southern Western Ghats. We used nocturnal visual encounter surveys constrained for time, to document the species richness of frogs below and above the dam, and also at control sites in the same catchment. While we did not find differences in species richness below and above the dams, the frog community composition was significantly altered as a likely consequence of altered flow regime. The frog species compositions in control sites were similar to above-dam sites. Below-dam sites had a distinctly different species composition. Select endemic frog species appeared to be adversely impacted due to the dams. Below-dam sites had a greater proportion of generalist and widely distributed species. Dams in the Western Ghats appeared to adversely impact population of endemic species, particularly those belonging to the genus Nyctibatrachus that shows specialization for intact streams.

  8. Perspectives on the Salience and Magnitude of Dam Impacts for Hydro Development Scenarios in China

    Directory of Open Access Journals (Sweden)

    Desiree Tullos

    2010-06-01

    Survey results indicate differences in the perceived salience and magnitude of impacts across both expert groups and dam scenarios. Furthermore, surveys indicate that stakeholder perceptions changed as the information provided regarding dam impacts became more specific, suggesting that stakeholder evaluation may be influenced by quality of information. Finally, qualitative comments from the survey reflect some of the challenges of interdisciplinary dam assessment, including cross-disciplinary cooperation, data standardisation and weighting, and the distribution and potential mitigation of impacts. Given the complexity of data and perceptions around dam impacts, decision-support tools that integrate the objective magnitude and perceived salience of impacts are required urgently.

  9. The blind men meet the elephant at the dam: Alternative spatial and taxonomic components reveal different insights about how low-head dams impact fish biodiversity

    Science.gov (United States)

    Fencl, Jane S.; Mather, Martha E.; Smith, Joseph M.; Hitchman, Sean M.

    2017-01-01

    Dams are ubiquitous environmental impacts that threaten aquatic ecosystems. The ability to compare across research studies is essential to conserve the native biodiversity that is impacted by the millions of low‐head dams that currently fragment streams and rivers. Here, we identify a previously unaddressed obstacle that impedes this generalization. Specifically, divergent spatial and taxonomic approaches that result from different conceptualizations of the dam‐biodiversity problem can produce conflicting science‐based conclusions about the same dam impact. In this research, using the same dammed and undammed sites, we evaluated the scientific generality of different conceptualizations of the dam‐biodiversity problem. We compared two different but commonly used spatial approaches—(1) above dam–below dam vs. (2) undammed–dammed comparisons—and 11 different, commonly used taxonomic approaches (three assemblage summaries, eight guilds). Sites above the dam structure had less diverse fish assemblages than sites below dams, whereas sites below the dam structure were similar to undammed sites. Thus, spatial approach 1 detected a large dam effect and spatial approach 2 detected a small dam effect. Similarly, some taxonomic responses (species richness, diversity, abundance, and number of guilds) detected large dam effects; other responses detected small (riffle specialist guild) or no dam effects (pool generalists). In summary, our results showed that how the problem was framed altered scientific conclusions and created different dam realities. The metaphor of how individual blind men disagree about the structure of an elephant, based on examinations of different body parts, reinforces the need for a coordinated, holistic perspective on dam research. Although no single approach is adequate for all problems, identifying the form, consequences of, and relationships among different research conceptualizations will set the stage for future syntheses of dam

  10. Cleaning up the big muddy: A meta-synthesis of the research on the social impact of dams

    Energy Technology Data Exchange (ETDEWEB)

    Kirchherr, Julian, E-mail: julian.kirchherr@sant.ox.ac.uk; Pohlner, Huw, E-mail: huw.pohlner@oxfordalumni.org; Charles, Katrina J., E-mail: katrina.charles@ouce.ox.ac.uk

    2016-09-15

    Scholars have been exploring the social impacts of dams for over 50 years, but a lack of systematic approaches has resulted in many research gaps remaining. This paper presents the first systematic review of the literature on the social impacts of dams. For this purpose, we built a sample of 217 articles published in the past 25 years via key word searches, expert consultations and bibliography reviews. All articles were assessed against an aggregate matrix framework on the social impact of dams, which combines 27 existing frameworks. We find that existing literature is highly biased with regard to: perspective (45% negative versus 5% positive); dam size (large dams are overrepresented); spatial focus (on the resettlement area); and temporal focus (5–10 years ex-post resettlement). Additionally, there is bias in terms of whose views are included, with those of dam developers rarely examined by scholars. These gaps need to be addressed in future research to advance our knowledge on the social impact of dams to support more transparency in the trade-offs being made in dam development decisions. - Highlights: • Very first systematic review of the research on dams' social impact • Biases in the literature identified, e. g. large dams over-studied, too much focus solely on resettlement area impacts • Implications of these biases for understanding of the topic are discussed.

  11. Cleaning up the big muddy: A meta-synthesis of the research on the social impact of dams

    International Nuclear Information System (INIS)

    Kirchherr, Julian; Pohlner, Huw; Charles, Katrina J.

    2016-01-01

    Scholars have been exploring the social impacts of dams for over 50 years, but a lack of systematic approaches has resulted in many research gaps remaining. This paper presents the first systematic review of the literature on the social impacts of dams. For this purpose, we built a sample of 217 articles published in the past 25 years via key word searches, expert consultations and bibliography reviews. All articles were assessed against an aggregate matrix framework on the social impact of dams, which combines 27 existing frameworks. We find that existing literature is highly biased with regard to: perspective (45% negative versus 5% positive); dam size (large dams are overrepresented); spatial focus (on the resettlement area); and temporal focus (5–10 years ex-post resettlement). Additionally, there is bias in terms of whose views are included, with those of dam developers rarely examined by scholars. These gaps need to be addressed in future research to advance our knowledge on the social impact of dams to support more transparency in the trade-offs being made in dam development decisions. - Highlights: • Very first systematic review of the research on dams' social impact • Biases in the literature identified, e. g. large dams over-studied, too much focus solely on resettlement area impacts • Implications of these biases for understanding of the topic are discussed

  12. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.

    Science.gov (United States)

    Kano, Yuichi; Dudgeon, David; Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shibukawa, Koichi; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi; Utsugi, Kenzo

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for

  13. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.

    Directory of Open Access Journals (Sweden)

    Yuichi Kano

    Full Text Available Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more

  14. Climate change impact on operation of dams and hydroelectricity generation in the Northeastern United States

    Science.gov (United States)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2016-12-01

    We are using a large-scale, high-resolution, fully integrated hydrological/reservoir/hydroelectricity model to investigate the impact of climate change on the operation of 11037 dams and generation of electricity from 375 hydroelectric power plants in the Northeastern United States. Moreover, we estimate the hydropower potential of the region by energizing the existing non-powered dams and then studying the impact of climate change on the hydropower potential. We show that climate change increases the impact of dams on the hydrology of the region. Warmer temperatures produce shorter frozen periods, earlier snowmelt and elevated evapotranspiration rates, which when combined with changes in precipitation, are projected to increase water availability in winter but reduce it during summer. As a result, the water that is stored by dams will be more than ever a necessary part of the routine water systems operations to compensate for these seasonal imbalances. The function of dams as emergency water storage for creating drought resiliency will mostly diminish in the future. Building more dams to cope with the local impacts of climate change on water resources and to offset the increased drought vulnerability may thus be inevitable. Annual hydroelectricity generation in the region is 41 Twh. Our estimate of the annual hydropower potential of non-powered dams adds up to 350 Twh. Climate change may reduce hydropower potential from non-powered dams by up to 13% and reduce current hydroelectricity generation by up to 8% annually. Hydroelectricity generation and hydropower potential may increase in winter months and decline in months of summer and fall. These changes call for recalibration of dam operations and may raise conflict of interests in multipurpose dams.

  15. Attention to impact pathways in EISs of large dam projects

    International Nuclear Information System (INIS)

    Brismar, Anna

    2004-01-01

    The importance of addressing cumulative environmental impacts in Environmental Impact Statements (EISs) of large development projects is increasingly underlined. However, cumulative impacts are generated through complex impact pathways, involving multiple root causes and lower and higher order effects, interlinked by cause-effect relationships. Consideration to potential impact pathways may thus be difficult without appropriate analytical methods, expertise, and supportive Environmental Impact Assessment guidelines and terms-of-references (TOR). This paper presents the results of an analysis of six EISs prepared for large dam projects between 1994 and 2001. The objective was to analyze if, how, and to what extent potential impact pathways involved in the generation of dam-related cumulative impacts have been addressed in the analyzed material. For this purpose, a theoretical framework was developed, which identifies four key root causes, their potential effects, and associated cause-effect relationships. The analysis revealed various shortcomings. Important imbalances were found in the degree of attention given to effects of different categories. Lower order effects received greater attention than higher order, and the potential effects of reservoir filling were more extensively attended to than those of flow blockage, storage, and regulation. Most importantly, little effort was made to carefully explain the potential impact pathways involved; root causes were often referred to in general terms only, and potential pathways leading up to an anticipated higher order effect or following upon an expected lower order effect were often inadequately addressed or ignored. Probable reasons for the discovered shortcomings are discussed and recommendations are presented for improving the World Bank EIA guidelines for large dam projects

  16. a rapid health impact assessment of the university of ilorin dam

    African Journals Online (AJOL)

    Many Dams have been constructed in different parts of the world and for different purposes. While these dams have in most cases served the reason for their construction, the resultant environmental impact have been a subject of concern. The creation of a reservoir not only changes the ecology and hydrology of the ...

  17. Social impacts of Brazil's Tucurui Dam

    International Nuclear Information System (INIS)

    Fearnside, P.M.

    1999-01-01

    The Tucurui Dam, which blocked the Tocantins River in 1984 in Brazil's eastern Amazonian state of Para, is a continuing source of controversy. Most benefits of the power go to aluminum smelting companies, where only a tiny amount of employment is generated. Often presented by authorities as a model for hydroelectric development because of the substantial power that it produces, the project's social and environmental impacts are also substantial. Examination of Tucurui reveals a systematic overestimation of benefits and underestimation of impacts as presented by authorities. Tucurui offers many as-yet unlearned lessons for hydroelectric development in Amazonia

  18. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  19. Hydrological impact of high-density small dams in a humid catchment, Southeast China

    Science.gov (United States)

    Lu, W.; Lei, H.; Yang, D.

    2017-12-01

    The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.

  20. Environmental-impact assessment of dams and reservoir projects (review and a case study)

    International Nuclear Information System (INIS)

    Shah, S.M.

    2009-01-01

    Dams and reservoirs are among one of the most sensitive of all development Project, in terms of pervasiveness of their influence in altering the environmental conditions and resources. In the present study, major dams and reservoir projects are reviewed, from the environmental point of view. Dams and Reservoir projects bring about major changes in the immediate environment, thus affecting public health, settlements, farmlands, roads and historical sites. Impacts on human population and wildlife may be profound. Tropical diseases, involving fresh-water hosts or vectors in their transmission, are often common around new reservoirs. Large lakes create limnological changes, excessive evaporation, seepage, disturbance in water-table and increased tendencies of landslides and earthquakes. Micro climatic changes are possible, such as fog formation, increased cloudiness and modified rainfall-patterns. Retention of sediment results in silting up of reservoirs. Water shortages on mountain rivers may leave unsightly dry river-beds below a dam. Sediment deposition and growth of vegetation in reservoir affects the water-extraction for navigation power-generation and fishing. Various dams and reservoir projects in the world are critically studied, in terms of creating environmental impacts. The Kala Bagh Dam project (Pakistan), which is ready for construction, has been analysed as a case study, by matrix method. Analyses show that adverse effects of this dam are less than the benefits. It is recommended that based on the experience, appropriate lines and strategies may be drawn up to evaluate the local projects. Multidisciplinary experts need to be involved, for assessing environmental impacts and suggesting mitigation measures, to combat the adverse effects. (author)

  1. Dam pre-release as an important operation strategy in reducing flood impact in Malaysia

    Science.gov (United States)

    Hidayah Ishak, Nurul; Mustafa Hashim, Ahmad

    2018-03-01

    The 2014 flood was reported to be one of the worst natural disaster has ever affected several states in the northern part of Peninsular Malaysia. Overwhelming rainfall was noted as one of the main factors causing such impact, which was claimed to be unprecedented to some extent. The state of Perak, which is blessed with four cascading dams had also experienced flood damage at a scale that was considered the worst in history. The rainfall received had caused the dam to reach danger level that necessitated additional discharge to be released. Safety of the dams was of great importance and such unavoidable additional discharge was allowed to avoid catastrophic failure of the dam structures. This paper discusses the dam pre-release as a significant dam management strategy in reducing flood impact. An important balance between required dam storage to be maintained and the risk element that can be afforded is the crucial factor in such enhanced operation strategy. While further possibility in developing a carefully engineered dam pre-release strategy can be explored for dam operation in Malaysia, this has already been introduced in some developed countries. Australia and South Africa are examples where pre-release has been practiced and proven to reduce flood risk. The concept involves controlling the dam lake level throughout the year, in reference to the rainfall data and the hydrological properties for the catchment area of the dams. Plentiful data analysis need to be done in contemplation of producing the optimal pre-release model. The amount of heavy rainfalls received is beyond human control but the distribution of the discharge from the dams can be further managed with the appropriate pre-release strategy.

  2. A Framework to Assess the Cumulative Hydrological Impacts of Dams on flow Regime

    Science.gov (United States)

    Wang, Y.; Wang, D.

    2016-12-01

    In this study we proposed a framework to assess the cumulative impact of dams on hydrological regime, and the impacts of the Three Gorges Dam on flow regime in Yangtze River were investigated with the framework. We reconstructed the unregulated flow series to compare with the regulated flow series in the same period. Eco-surplus and eco-deficit and the Indicators of Hydrologic Alteration parameters were used to examine the hydrological regime change. Among IHA parameters, Wilcoxon signed-rank test and Principal Components Analysis identified the representative indicators of hydrological alterations. Eco-surplus and eco-deficit showed that the reservoir also changed the seasonal regime of the flows in autumn and winter. Annual extreme flows and October flows changes lead to negative ecological implications downstream from the Three Gorges Dam. Ecological operation for the Three Gorges Dam is necessary to mitigate the negative effects on the river ecosystem in the middle reach of Yangtze River. The framework proposed here could be a robust method to assess the cumulative impacts of reservoir operation.

  3. Using Choice Experiments to Assess Environmental Impacts of Dams in Portugal

    Directory of Open Access Journals (Sweden)

    Anabela Botelho

    2015-08-01

    Full Text Available Despite their well-known benefits in electricity production, dams are also responsible for some adverse environmental impacts affecting particularly the wellbeing of residents of the local communities. These environmental damages have not been included in the cost-benefit analysis of hydropower developments mainly because of the difficulty to determine their value. The prime objective of this paper is to measure the economic values of several environmental impacts due to the dams' activity in Portugal, using a discrete choice experiments approach. With the results of this research paper, we expect to contribute to a more efficient and thorough cost-benefit analysis within the complex process of deciding the optimal location of future dams to be built not only in Portugal, but elsewhere. The addition of this stage to the decision-making process allows the integration of economic, social and environmental dimensions, promoting a richer and more informed decision process.

  4. Sediment impact assessment of check-dam removal strategies on a mountain river in Taiwan

    Science.gov (United States)

    Kuo, W.; Wang, H.; Stark, C. P.

    2011-12-01

    Dam removal is important for reconnecting river habitats and restoring the free flow of water and sediment, so managing accumulated sediments is crucial in dam removal planning as the cost and potential impacts of dam removal can vary substantially depending on local conditions. A key uncertainty in dam removal is the fate of reservoir sediment stored upstream of the dam. Release of impounded sediment could raise downstream bed elevations leading to flooding, increase lateral channel mobility leading to bank erosion, and potentially bury downstream ecologically sensitive habitats if the sediment is fine. The ability to predict the sediment impacts of dam removal in highly sediment-filled systems is thus increasingly important as the number of such dam-removal cases is growing. Due to the safety concerns and the need for habitat restoration for the Formosan landlocked salmon, the Shei-Pa National Park in Taiwan removed the 15m high Chijiawan "No. 1 Check Dam" in late May 2011. During the planning process prior to removal, we conducted field surveys, numerical simulations, and flume experiments to determine sediment impacts and to suggest appropriate dam removal strategies. We collected river-bed topography and sediment bulk samples in 2010 to establish the channel geometry and grain-size distribution for modeling input. The scaled flume experiment was designed to provide insights on how and if the position of a notch location and size would affect the rate and amount of reservoir erosion under particular discharges. Observations indicated that choices of notch location can force the river to migrate differently. For long-term prediction, we used the quasi-two-dimensional numerical model NETSTARS (Network of Stream Tube model for Alluvial River Simulation) to simulate the channel responses. These simulations indicated that high suspended sediment concentrations would be the most likely major concern in the first year, while concerns for downstream sediment deposition

  5. Modelling the impact of dam removal on geomorphic channel response and sediment delivery: an Austrian case study

    Science.gov (United States)

    Pöppl, Ronald; Coulthard, Tom; Keesstra, Saskia; Keiler, Margreth

    2015-04-01

    Dams are often considered to have the most significant impact on rivers as dam construction generally reduces downstream sediment fluxes which further involves geomorphic changes in the affected river reaches. Since many dams no longer fulfill their intended purpose (e.g. due to siltation), are dangerous (e.g. catastrophic dam failures) and/or are ecologically damaging (e.g. habitat destruction), within the last two decades several dams have been removed and many more are already proposed for removal. Unfortunately, there is still only little empirical knowledge about the geomorphic consequences of dam removals and the related sediment release which represents a big challenge for river management. Modelling is one way to approach this problem. In the presented study we modelled the impacts of dam removal on geomorphic channel processes, channel morphology and sediment delivery further considering the role of channel engineering measures and reservoir excavation within a river reach impacted by a series of dams using the landscape evolution model CAESAR-Lisflood. The model was run with data from a small catchment located in Lower Austria. Modelled geomorphic channel changes and sediment fluxes were spatio-temporally analyzed, related to real-world data and are discussed in the context of river management issues.

  6. Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2015-08-01

    Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater-surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.

  7. A Study of the Impact of Dams on Streamflow and Sediment Retention in the Mekong River Basin

    Science.gov (United States)

    Munroe, T.; Anderson, E.; Markert, K. N.; Griffin, R.

    2017-12-01

    Dam construction in the Mekong Basin has many cascading effects on the ecology, economy, and hydrology of the surrounding region. Current studies that assess the hydrological impact of dams in the region focus on only one or a small subset (SWAT), a rainfall-runoff hydrologic model to determine change in streamflow and sedimentation in the Mekong Basin before and after the construction of dams. This study uses land cover land use and reservoir datasets created by the NASA SERVIR-Mekong Regional Land Cover Monitoring System and Dam Inundation Mapping Tool as inputs into the model. The study also builds on the capabilities of the SWAT model by using the sediment trapping efficiency (STE) equation from Brune (1953), rewritten by Kummu (2007), to calculate STE of dams and estimate change in sediment concentration downstream. The outputs from this study can be used to inform dam operation policies, study the correlation between dams and delta subsidence, and study the impact of dams on river fisheries, which are all pressing issues in the Mekong region.

  8. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    Science.gov (United States)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  9. Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate.

    Science.gov (United States)

    Kibret, Solomon; Lautze, Jonathan; McCartney, Matthew; Nhamo, Luxon; Wilson, G Glenn

    2016-09-05

    Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change. The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs. The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21-23 million in the 2020s, 25-26 million in the 2050s and 28-29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2-1.6 million in the 2020s, 2.1-3.0 million in the 2050s and 2.4-3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6. In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected

  10. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams.

    Science.gov (United States)

    Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W

    2014-08-19

    Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.

  11. Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

    OpenAIRE

    Bo Cao; Shengmei Yang; Song Ye

    2017-01-01

    Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combin...

  12. Dams and Intergovernmental Transfers

    Science.gov (United States)

    Bao, X.

    2012-12-01

    Gainers and Losers are always associated with large scale hydrological infrastructure construction, such as dams, canals and water treatment facilities. Since most of these projects are public services and public goods, Some of these uneven impacts cannot fully be solved by markets. This paper tried to explore whether the governments are paying any effort to balance the uneven distributional impacts caused by dam construction or not. It showed that dam construction brought an average 2% decrease in per capita tax revenue in the upstream counties, a 30% increase in the dam-location counties and an insignificant increase in downstream counties. Similar distributional impacts were observed for other outcome variables. like rural income and agricultural crop yields, though the impacts differ across different crops. The paper also found some balancing efforts from inter-governmental transfers to reduce the unevenly distributed impacts caused by dam construction. However, overall the inter-governmental fiscal transfer efforts were not large enough to fully correct those uneven distributions, reflected from a 2% decrease of per capita GDP in upstream counties and increase of per capita GDP in local and downstream counties. This paper may shed some lights on the governmental considerations in the decision making process for large hydrological infrastructures.

  13. Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data

    Science.gov (United States)

    Velpuri, N. M.; Senay, G. B.

    2012-10-01

    Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in situ datasets. In this study, we used 12 yr (1998-2009) of existing multi-source satellite and model-assimilated global weather data. We used a calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of the Gibe III dam using three different approaches - a historical approach, a rainfall based approach, and a statistical approach to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the Gibe III dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8-10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 1-2 m (95% confidence) compared to the lake level modeled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modeling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of dam commencement. Areas

  14. 78 FR 35630 - Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact...

    Science.gov (United States)

    2013-06-13

    ... Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement for the Martin Dam Hydroelectric Project and Intention To Hold Public Meetings In accordance with the National Environmental Policy... the Martin Dam Hydroelectric Project (FERC No. 349), located on the Tallapoosa River in Tallapoosa...

  15. Small farm dams: impact on river flows and sustainability in a context of climate change

    Science.gov (United States)

    Habets, F.; Philippe, E.; Martin, E.; David, C. H.; Leseur, F.

    2014-10-01

    The repetition of droughts in France has led to a growing demand for irrigation water and consequently to an increase in requests for the construction of small farm dams. Although such dams are small, their accumulation in a basin affects river flows, because the water collected in these small farm dams is used for irrigation and thus does not contribute to river flow. In order to gain more insight into their impact on the annual and monthly discharges, especially during dry years, a small farm dam model was built and connected to a hydrometeorological model. Several scenarios with different volume capacities, filling catchment sizes and filling periods were tested for such dams. The results were analysed in a small basin in western France, where the pressure for building such dams is high, and then extended to the entire country. It was found that, due to the hydrometeorological conditions (mainly low precipitation compared to other regions in France), the development of small farm dams in north-western France would result in greater decreases in river flows and less efficient filling of small farm dams than in other regions. Therefore, such dams might not be as efficient as expected in supplying water to farmers when needed. Moreover, the ability to fill small farm dams is projected to decrease in a context of climate change, despite the uncertainty on the evolution of precipitation, thus worsening the situation.

  16. 78 FR 49735 - Intent To Prepare a Draft Environmental Impact Statement for Dam Safety Study, Lake Lewisville...

    Science.gov (United States)

    2013-08-15

    ... determine appropriate permanent methods for correcting potential problems, interim risk reduction measures... Environmental Impact Statement for Dam Safety Study, Lake Lewisville Dam, Elm Fork Trinity River, Denton County... primary purposes of the project are flood risk management, [[Page 49736

  17. The socio-economics dynamics of Dam on Rural Communities: A case study of Oyan Dam, Nigeria

    Science.gov (United States)

    Ayeni, Amidu; Ojifo, Lawrence

    2018-06-01

    Dams construction and operations have many benefits, nevertheless, they have also led to lots of negative social, health and human impacts. It is based on this that this study assesses the potential and socio-economics dynamics of Oyan dam between 1980 and 2016. The data used for this study include water level and discharge records of the dam between 2007 and 2016, Landsat imageries of 1984 and 2016 and socio-economic datasets for the period. Analysis of the dam potentials (water supply, agriculture and hydropower) and socio-economic impacts of the dam were carried out using basic statistical tools, land use change anaysis and field survey using questionnaire, structured interview with major stakeholders and personal observation. The results revealed that the water level and storage of the Oyan dam had a relative reduction of about 2 % as well as non-stationarity pattern of water abstraction and production for the period. The landuse classes show all classes decreased in extent except the cultivated landuse that acrued an increased of 19.9 % between 1984 and 2016. Furthermore, commercial water supply varied significantly between 2010 and 2016 while irrigation scheme is grossly under-utilized from the inception in 1983 to 2016. Finally, the result of socio-economic impacts revealed that majority of the selected communities' members are actually not benefiting from the dam and their livelihoods are not from the dam.

  18. Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

    Directory of Open Access Journals (Sweden)

    Bo Cao

    2017-10-01

    Full Text Available Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combining remote sensing (RS, a geographic information system (GIS, and hydrological modeling. The Tangjiashan dammed lake induced by the Wenchuan earthquake was selected as the case for study. The elevation-versus-reservoir capacity curve was first calculated using the seed-growing algorithm based on digital elevation model (DEM data. The simulated annealing algorithm was applied to train the hydrological modeling parameters according to the historical hydrologic data. Then, the downstream water elevation variational process under different collapse capacity conditions was performed based on the obtained parameters. Finally, the downstream potential impact area was estimated by the highest water elevation values at different hydrologic sections. Results show that a flood with a collapse elevation of at least 680 m will impact the entire downstream region of Beichuan town. We conclude that spatial information technology combined with hydrological modeling can accurately predict and demonstrate the potential impact area with limited data resources. This paper provides a better guide for future immediate responses to dammed lake hazard mitigation.

  19. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation

    International Nuclear Information System (INIS)

    Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A.

    2014-01-01

    , environmental impacts, and remediation of mine tailings dam failures

  20. The changing hydrology of a dammed Amazon

    Science.gov (United States)

    Timpe, Kelsie; Kaplan, David

    2017-01-01

    Developing countries around the world are expanding hydropower to meet growing energy demand. In the Brazilian Amazon, >200 dams are planned over the next 30 years, and questions about the impacts of current and future hydropower in this globally important watershed remain unanswered. In this context, we applied a hydrologic indicator method to quantify how existing Amazon dams have altered the natural flow regime and to identify predictors of alteration. The type and magnitude of hydrologic alteration varied widely by dam, but the largest changes were to critical characteristics of the flood pulse. Impacts were largest for low-elevation, large-reservoir dams; however, small dams had enormous impacts relative to electricity production. Finally, the “cumulative” effect of multiple dams was significant but only for some aspects of the flow regime. This analysis is a first step toward the development of environmental flows plans and policies relevant to the Amazon and other megadiverse river basins. PMID:29109972

  1. Sustainability of dams-an evaluation approach

    Science.gov (United States)

    Petersson, E.

    2003-04-01

    Situated in the stream bed of a river, dams and reservoirs interrupt the natural hydrological cycle. They are very sensitive to all kinds of changes in the catchment, among others global impacts on land use, climate, settlement structures or living standards. Vice versa dams strongly affect the spatially distributed, complex system of ecology, economy and society in the catchment both up- and downstream of the reservoir. The occurrence of negative impacts due to large dams led to serious conflicts about future dams. Nevertheless, water shortages due to climatic conditions and their changes, that are faced by enormous water and energy demands due to rising living standards of a growing world population, seem to require further dam construction, even if both supply and demand management are optimised. Although environmental impact assessments are compulsory for dams financed by any of the international funding agencies, it has to be assumed that the projects lack sustainability. Starting from an inventory of today's environmental impact assessments as an integral part of a feasibility study the presentation will identify their inadequacies with regard to the sustainability of dams. To improve the sustainability of future dams and avoid the mistakes of the past, the planning procedures for dams have to be adapted. The highly complex and dynamical system of interrelated physical and non-physical processes, that involves many different groups of stakeholders, constitutes the need for a model-oriented decision support system. In line with the report of the World Commission of Dams an integrated analysis and structure of the complex interrelations between dams, ecology, economy and society will be presented. Thus the system, that a respective tool will be based on, is analysed. Furthermore an outlook will be given on the needs of the potential users of a DSS and how it has to be embedded in the overall planning process. The limits of computer-based decision-support in the

  2. Downstream impacts of dams: shifts in benthic invertivorous fish assemblages

    Science.gov (United States)

    Granzotti, Rafaela Vendrametto; Miranda, Leandro E.; Agostinho, Angelo A.; Gomes, Luiz Carlos

    2018-01-01

    Impoundments alter connectivity, sediment transport and water discharge in rivers and floodplains, affecting recruitment, habitat and resource availability for fish including benthic invertivorous fish, which represent an important link between primary producers and higher trophic levels in tropical aquatic ecosystems. We investigated long-term changes to water regime, water quality, and invertivorous fish assemblages pre and post impoundment in three rivers downstream of Porto Primavera Reservoir in south Brazil: Paraná, Baía and Ivinhema rivers. Impacts were distinct in the Paraná River, which is fully obstructed by the dam, less evident in the Baía River which is partially obstructed by the dam, but absent in the unimpounded Ivinhema River. Changes in water regime were reflected mainly as changes in water-level fluctuation with little effect on timing. Water transparency increased in the Paraná River post impoundment but did not change in the Baía and Ivinhema rivers. Changes in fish assemblages included a decrease in benthic invertivorous fish in the Paraná River and a shift in invertivorous fish assemblage structure in the Baía and Paraná rivers but not in the unimpounded Ivinhema River. Changes in water regime and water transparency, caused by impoundment, directly or indirectly impacted invertivorous fish assemblages. Alterations of fish assemblages following environmental changes have consequences over the entire ecosystem, including a potential decrease in the diversity of mechanisms for energy flow. We suggest that keeping existing unimpounded tributaries free of dams, engineering artificial floods, and intensive management of fish habitat within the floodplain may preserve native fish assemblages and help maintain functionality and ecosystem services in highly impounded rivers.

  3. Impact of dam-building on marine life

    Science.gov (United States)

    Pandian, T. J.

    1980-03-01

    Dam-building across naturally flowing rivers tends to decrease discharge of surplus water into the sea, reduce nutrient concentration in estuaries and coastal waters, and diminish plankton blooms as well as fish landings. Depletion of nutrients and organic matter along with reduced mud and silt deposition affect benthic life on the continental shelf. Reduced mud and silt deposition leads to coastal retreat. Dams, especially those constructed for hydro-electric purposes, hinder migration of fishes and decapods. Discharge from dams can create barriers at high or low flows, cause delays, disrupt normal behavioural routine and change the travel speed of migratory animals. Where all spawners of a given population are frequently kept away from the breeding site, the population faces extinction.

  4. Dam! Dam! Dam!

    International Nuclear Information System (INIS)

    McCully, P.

    1997-01-01

    The author of ''Silenced Rivers'' a book questioning the desirability of dam building and hydroelectric power generation argues the main themes of his book in this paper. Despite being hailed by politicians as good solutions to power generation problems, and enthusiastically pursued in China, the U.S.A., the former Soviet Union, India and Japan, dams have far-reaching ecological and human consequences. The ecosystems lost to flooding, and the agricultural land use lost, the human cost in terms of homes and employment lost to reservoirs, disease from water-borne infections such as malaria, and the hazards of dams overflowing or breaking are all factors which are against the case for dam construction. The author argues the hydroelectric power may be renewable, but the social, agricultural and ecological costs are too high to justify it as a method of first choice. (UK)

  5. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930's, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river uses. This volume, Appendix D: Cultural resources appendix, Technical imput includes the following: Development of geomorphology based framework for cultural resources management, Dworshak Reservoir, Idaho; Impact profiles for SOR reservoirs; comments from the following Native American tribes: Burns Paiute Tribe; Coville Confederated Tribes; Confederated Tribes of the Warm Springs Indian Reservation; Confederated Tribes and bands of the Yakama Indian Nation (comments); Nez Perce Tribe; Coeur D'Alene Tribe; Spokane Tribe of Indians; The confederated Tribes of the Umatilla Indian Reservation

  6. Assessing summer and fall chinook salmon restoration in the Upper Clearwater River and principal tributaries. Annual report 1994

    International Nuclear Information System (INIS)

    Arnsberg, B.D.; Statler, D.P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  7. Applying a two-dimensional morphodynamic model to assess impacts to Chinook salmon spawning habitat from dam removal

    Science.gov (United States)

    Lee, A. A.; Crosato, A.; Omer, A. Y. A.; Bregoli, F.

    2017-12-01

    The need for accurate and robust predictive methods of assessing fluvial ecosystems is highlighted by the accelerating practice of dam removal. Dam removal can be a restorative measure, but the sudden release of impounded sediment and change in flow regime may negatively impact aquatic biota and their habitat. This study assesses the performance of a quasi-three-dimensional morphodynamic numerical model, coupled with habitat suitability indices, to predict short-term impacts to Chinook salmon (Oncorhynchus tshawytscha) spawning habitat from dam removal. The 2007 removal of Marmot Dam on the Sandy River (Oregon, U.S.A.) is used as a case study. Delft3D-FLOW is employed to simulate changes in river channel topography, sediment composition and hydrodynamic conditions for a 20-kilometer reach of the Sandy River. The transport of non-uniform sediment and three-dimensional flow effects are included in the model. Output parameters such as flow depth, velocity and substrate are processed to evaluate habitat quality in the year following the Marmot Dam removal. Impacts are evaluated across four life-stages of Chinook salmon. As a hindcast analysis, the morphodynamic model sufficiently reproduces the evolution of river morphology at the reach-scale while requiring only a low level of calibration. The model performs well in predicting impacts to fish passage, but carries more uncertainty for developing life stages. By coupling flow-sediment-biota interactions, this method shows strong potential for habitat assessment in unsteady and non-uniform environments. Computation time is a primary constraint, as it limits grid-cell resolution, modelling of suspended sediment and capacity to characterize the sediment grain size distribution. Research on the effects of suspended sediment on habitat quality is ongoing, and further research is recommended for modelling reservoir erosion processes numerically.

  8. Erosion risk analysis by GIS in environmental impact assessments: a case study--Seyhan Köprü Dam construction.

    Science.gov (United States)

    Sahin, S; Kurum, E

    2002-11-01

    Environmental Impact Assessment (EIA) is a systematically constructed procedure whereby environmental impacts caused by proposed projects are examined. Geographical Information Systems (GIS) are crucially efficient tools for impact assessment and their use is likely to dramatically increase in the near future. GIS have been applied to a wide range of different impact assessment projects and dams among them have been taken as the case work in this article. EIA Regulation in force in Turkey requires the analysis of steering natural processes that can be adversely affected by the proposed project, particularly in the section of the analysis of the areas with higher landscape value. At this point, the true potential value of GIS lies in its ability to analyze spatial data with accuracy. This study is an attempt to analyze by GIS the areas with higher landscape value in the impact assessment of dam constructions in the case of Seyhan-Köprü Hydroelectric Dam project proposal. A method needs to be defined before the overlapping step by GIS to analyze the areas with higher landscape value. In the case of Seyhan-Köprü Hydroelectric Dam project proposal of the present work, considering the geological conditions and the steep slopes of the area and the type of the project, the most important natural process is erosion. Therefore, the areas of higher erosion risk were considered as the Areas with Higher Landscape Value from the conservation demands points of view.

  9. GC51D-0831: A Study of the Impact of Dams on Sediment Retention in the Mekong River Basin

    Science.gov (United States)

    Munroe, Thailynn; Griffin, Robert; Anderson, Eric; Markert, Kel

    2017-01-01

    Dam construction in the Mekong Basin has many cascading effects on the ecology, economy, and hydrology of the surrounding region. The focus of this study is to utilize the Soil Water Assessment Tool (SWAT), developed at Texas A & M, a rainfall-runoff hydrologic model to determine change in sedimentation in the Mekong Basin after the construction of dams. This study uses land cover land use and reservoir datasets created by the NASA SERVIR-Mekong Regional Land Cover Monitoring System and Dam Inundation Mapping Tool as inputs into the model. The study also builds on the capabilities of the SWAT model by using the sediment trapping efficiency (STE) equation from Brune (1953), rewritten by Kummu & Varis (2007), to calculate STE of dams and estimate change in sediment concentration downstream. The outputs from this study can be used to inform dam operation policies, study the correlation between dams and delta subsidence, and study the impact of dams on river fisheries, which are all pressing issues in the Mekong region.

  10. Sulphate content of the Muntimpa dam water and its impact on water quality

    International Nuclear Information System (INIS)

    Tembo, F; Shitumbanuma, V; Simukanga, S; Mudenda, G; Chileshe, P; Mulenga, S; Phiri, Y

    2004-01-01

    This article presents results of a study of the quality of water from Muntimpa Dam, a reservior of waste mine water released from the processing of copper and cobalt ores by Konkola Copper Mines(KCM) Plc in Chingola. The mine water is discharged into the local Muntimpa stream, a possible source of drinking and domestic water for the local population. The purpose of the study was to determine levels of sulphate in the dam and stream water and recommend possible methods of partial sulphate removal to levels below the recommended statutory limits and secondly, to assess the impact of high sulphate levels on water quality. Study methods included the sampling of water from the Muntimpa dam and catchment area. Stream water samples were collected about 5m from the stream banks while water samples from the dam were randomly collected from the near the centre of the dam at a depth of 50cm. Laboratory methods involved the determination of physical and chemical properties of the water using standard analytical techniques. Results of the study indicate that both total (2470mg/l) and available (1965mg/l) sulphate concentrations are higher than the recommended statutory limit for the discharge of sulphates into natural streams of 1500mg/l. From the study it is concluded that water in Muntimpa dam and stream is not suitable for drinking and other domestic use due to the high sulphate levels. From theorectical considerations, it was established that sulphate reduction could be achieved by addition of lime, which however had the consquence of increasing the pH of the water in excess of the recommended Zambian statutory value of nine, and would thus require an additional process to reduce the pH. (author)

  11. The impact of foundation conditions on the design and construction of the Snake Lake Reservoir dams

    International Nuclear Information System (INIS)

    Griffin, G. D.

    1998-01-01

    Unique aspects of the design and construction of two small dams for the Snake Lake Reservoir Project and some of the lessons learned in the process are described. The outstanding feature of this project was that although relatively close together and in the same post-glacial channel, the foundations of the two dams were quite different. The West Dam had permeable silt, sand and gravel with deep bedrock, while the East Dam had impermeable high plastic clay and shallow bedrock as foundation. The challenge to the design was to develop a cross section that would work for both foundation conditions. The final design turned out to be an impermeable fill with toe berms accommodating the variability in the foundations. Instrumentation was used to determine when the second construction stage should commence. At the end of the construction, the reservoir was partially filled relying on the instrumentation to suggest when that would be safe enough to proceed without impacting the overall embankment stability. In the event, the West Dam foundation soils proved to be several orders of magnitude higher than estimated from grain size analyses, requiring installation of a relief valve after construction was completed. Apart from that, dam construction proceeded smoothly and the instrumentation performed as expected.12 refs., 7 figs

  12. Dam spills and fishes

    International Nuclear Information System (INIS)

    1996-01-01

    This short paper reports the main topics discussed during the two days of the annual colloquium of the Hydro-ecology Committee of EdF. The first day was devoted to the presentation of the joint works carried out by EdF, the Paul-Sabatier University (Toulouse), the Provence St-Charles University (Marseille), the ENSAT (Toulouse) and the CEMAGREF (Lyon and Aix-en-Provence) about the environmental impact of dam spills on the aquatic flora and fauna downstream. A synthesis and recommendations were presented for the selection and characterization of future sites. The second day was devoted to the hydro-ecology study of the dam reservoir of Petit-Saut (French Guyana): water reoxygenation, quality evolution, organic matter, plankton, invertebrates and fishes. The 134 French dams concerned by water spills have been classified according to the frequency of spills, the variations of flow rates created, and their impacts on fishing, walking, irrigation, industry, drinking water, navigation, bathing. Particular studies on different sites have demonstrated the complexity of the phenomena involved concerning the impact on the ecosystems and the water quality. (J.S.)

  13. Downstream impacts of a Central Amazonian hydroelectric dam on tree growth and mortality in floodplain forests

    Science.gov (United States)

    Resende, A. F. D.; Silva, T. S. F.; Silva, J. D. S.; Piedade, M. T. F.; Streher, A. S.; Ferreira-Ferreira, J.; Schongart, J.

    2017-12-01

    The flood pulse of large Amazonian Rivers is characterized by predictable high- and low-water periods during the annual cycle, and is the main driving force in the floodplains regulating decomposition, nutrient cycles, productivity, life cycles and growth rhythms of floodplains' biota. Over at least 20 millions of years, tree species in these ecosystems developed complex adaptative mechanisms to tolerate flooding, such as the tree species Macrolobium acaciifolium (Fabaceae) and Eschweilera tenuifolia (Lecythidaceae) occupying the lower topographic positions in the floodplain forests along the oligothrophic black-water rivers. Tree growth occurs mainly during terrestrial phase, while during the aquatic phase the anoxic conditions result into a cambial dormancy and formation of annual tree rings. The hydroelectric dam Balbina which was installed in the Uatumã River (central Amazonia) during the 1980s altered significantly the flood pulse regime resulting into higher minimum and lower maximum annual water levels. The suppression of the terrestrial phase caused large-scale mortality of flood-adapted trees growing on the lower topographic positions, as evidenced by radiocarbon dating and cross-dating techniques (dendrochronology). In this study we estimated the extension of dead forests using high resolution ALOS/PALSAR radar images, for their detection along a fluvial distance of more than 280 km downstream of the power plant. Further we analyzed tree growth of 60 living individuals of E. tenuifolia by tree-ring analyses comparing the post- and pre-dam periods. We evaluated the impacts of the altered hydrological regime on tree growth considering ontogenetic effects and the fluvial distance of the trees to the dam. Since the Balbina power plant started operating the associated igapó forests lost about 11% of its cover. We found a significant reduction of tree growth of E. tenuifolia during the post-dam period as a consequence of the increasing aquatic phase duration

  14. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Exhibits.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930`s, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river uses. This volume, Appendix D: Cultural resources appendix, Technical imput includes the following: Development of geomorphology based framework for cultural resources management, Dworshak Reservoir, Idaho; Impact profiles for SOR reservoirs; comments from the following Native American tribes: Burns Paiute Tribe; Coville Confederated Tribes; Confederated Tribes of the Warm Springs Indian Reservation; Confederated Tribes and bands of the Yakama Indian Nation (comments); Nez Perce Tribe; Coeur D`Alene Tribe; Spokane Tribe of Indians; The confederated Tribes of the Umatilla Indian Reservation.

  15. Downstream passage and impact of turbine shutdowns on survival of silver American Eels at five hydroelectric dams on the Shenandoah River

    Science.gov (United States)

    Eyler, Sheila; Welsh, Stuart A.; Smith, David R.; Rockey, Mary

    2016-01-01

    Hydroelectric dams impact the downstream migrations of silver American Eels Anguilla rostrata via migratory delays and turbine mortality. A radiotelemetry study of American Eels was conducted to determine the impacts of five run-of-the-river hydroelectric dams located over a 195-km stretch of the Shenandoah River, Virginia–West Virginia, during fall 2007–summer 2010. Overall, 96 radio-tagged individuals (mean TL = 85.4 cm) migrated downstream past at least one dam during the study. Most American Eels passed dams relatively quickly; over half (57.9%) of the dam passage events occurred within 1 h of reaching a dam, and most (81.3%) occurred within 24 h of reaching the dam. Two-thirds of the dam passage events occurred via spill, and the remaining passage events were through turbines. Migratory delays at dams were shorter and American Eels were more likely to pass via spill over the dam during periods of high river discharge than during low river discharge. The extent of delay in migration did not differ between the passage routes (spill versus turbine). Twenty-eight American Eels suffered turbine-related mortality, which occurred at all five dams. Mortality rates for eels passing through turbines ranged from 15.8% to 40.7% at individual dams. Overall project-specific mortality rates (with all passage routes combined) ranged from 3.0% to 14.3%. To protect downstream-migrating American Eels, nighttime turbine shutdowns (1800–0600 hours) were implemented during September 15–December 15. Fifty percent of all downstream passage events in the study occurred during the turbine shutdown period. Implementation of the seasonal turbine shutdown period reduced cumulative mortality from 63.3% to 37.3% for American Eels passing all five dams. Modifying the turbine shutdown period to encompass more dates in the spring and linking the shutdowns to environmental conditions could provide greater protection to downstream-migrating American Eels.

  16. Impact of damming on the Chironomidae of the upper zone of a tropical run-of-the-river reservoir.

    Science.gov (United States)

    Brandimarte, A L; Anaya, M; Shimizu, G Y

    2016-06-01

    We examined the effects of the Mogi-Guaçu river damming (São Paulo State, Brazil) on the Chironomidae fauna. Pre, during, and post-filling sampling was carried out in the main channel and margins of one site in the upper zone of the reservoir, using a modified Petersen grab (325 cm2). We evaluated the total, subfamily, and tribe densities and also their relative abundance. Analysis of genera included densities, relative abundance, richness, and dominance. The Rosso's ecological value index (EVI) determined the ecological importance of each genus. There was a tendency of decrease of the total Chironomidae density, increase in the percentage of Chironomini, and decrease in densities and percentages of Orthocladiinae and Tanytarsini. These changes in percentage were respectively related to Polypedilum, Lopescladius, and Rheotanytarsus, the genera with the highest EVI values. After-filling richness was lower in the margins and dominance of genera did not change significantly. Chironomidae in the margins was more sensitive to damming than in the main channel. This difference in sensibility sustains the use of Chironomidae as bioindicators. Damming impact was indicated by the reduction of both genera richness in the margins and relative abundance of groups typical of faster waters. The results have highlighted the need for multi-habitat analysis combined with a before-after sampling approach in the environmental impact studies concerning the damming impact on the benthic fauna.

  17. The Grand Ethiopian Renaissance Dam and Ethiopia's Succession ...

    African Journals Online (AJOL)

    Tadesse Kassa Woldetsadik

    2013-06-01

    Jun 1, 2013 ... Dam concessions engendered detrimental impacts on Ethiopia's riparian rights ... control works on the Aswan High and the Roseires dams. Disturbed by the ... hegemonic control that would inevitably ensue from construction of the Dam ...... Projects Implementation Division AAAID, Sudan, p.1. 39 Ibid.

  18. Market Participation in the Age of Big Dams: The Belo Monte Hydroelectric Dam and Its Impact on Rural Agrarian Households

    Directory of Open Access Journals (Sweden)

    Aniseh S. Bro

    2018-05-01

    Full Text Available With rapid population growth comes the ever-important task of meeting the energy demand that this growth requires, and many of the world’s tropical regions have turned to hydropower to address the challenges associated with increasing energy consumption. Hydropower is an important energy policy issue in Brazil, and it is promoted as the preferred electricity option, because it is the least expensive in terms of long-term returns on investment; the Belo Monte dam in Northern Brazil provides an opportunity to study the effects of large investments in hydroelectric infrastructure on the surrounding local population. Using a matched panel data spanning 10 years (2005 to 2015, we study the impacts of Brazil’s Belo Monte dam on cocoa and other food crop producers in the region. We find that households have seen a decline in rural employment opportunities, and despite improvements in cocoa productivity households have experienced declining food production. With the construction of the dam largely completed, farmers must now face the challenges of decreased food access and shifts in employment opportunities, and while there are many advantages and opportunities associated with this new development, special policy considerations are necessary to ensure that there are safety nets in place to assist those who will see a decline in access to economic opportunities.

  19. 78 FR 70295 - Intent to Prepare an Environmental Impact Statement for the Dam Safety Modification Report...

    Science.gov (United States)

    2013-11-25

    ... impacts to the natural, physical, and human environment resulting from modifications to Bluestone Dam. The..., low flow augmentation, and fish and wildlife enhancement. The project began operation in 1949 and...

  20. The Impact of the Dachaoshan Dam on Seasonal Hydrological Dynamics in the Main Stream of the Mekong River

    Science.gov (United States)

    Kameyama, S.; Shimazaki, H.; Nohara, S.; Fukushima, M.; Kudo, K.; Sato, T.

    2008-12-01

    In the Mekong River watershed, traditional social and industrial systems have long existed in harmony with water and biological resources. Since the 1950s, many dam-construction projects have been started to develop power and water resources to meet increasing demand for energy and food production. Since the 1970s, there have been temporary interruptions to these projects because of civil war or regional volatility of international relations. Many of these projects have been restarted in the last 15 years. This raises international interest, as there are transboundary issues cross-border issues related to both development assistance and environmental conservation. By 2008, two Chinese dams had already been completed (the Manwan dam in 1996 and the Dachaoshan dam in 2003) on the Mekong River in Yunnan province. Dam construction has some positive impacts, such as electricity production, management of water resources, and flood control. However, upstream control of water discharge can have negative impacts on traditional agricultural systems and fisheries downstream from the dams, such as drastic changes in flow volume and sediment load. We used hydrological simulation of the watershed to quantify the impact of the construction of the Dachaoshan dam by comparing annual water discharge and sediment transport before and after the dam was completed. Our main objectives were to use watershed hydrologic modeling to simulate changes to annual hydrological parameters and sediment transport, and to map spatio-temporal changes of these data before and after dam construction. Our study area covered the part of the Mekong River main channel that extends about 100 km downstream from the junction of the borders of Myanmar, Thailand, and the Lao People's Democratic Republic. We used five data validation points at 25-km intervals along this section of the river and calculated model parameters every 1 km. The years we modeled were 1990 (began dam construction) and 2006 (after dam

  1. Dams and transnational advocacy: Political opportunities in transnational collective action

    Science.gov (United States)

    Fu, Teng

    Possible arguments to explain the gradual decline in big dam development and its site transferring from developed to developing countries include technical, economic, and political factors. This study focuses on the political argument---the rise of transnational anti-dam advocacy and its impact on state policy-making. Under what conditions does transnational anti-dam advocacy matter? Under what conditions does transnational advocacy change state dam policies (delay, scale down, or cancel)? It examines the role of transnational anti-dam actors in big dam building in a comparative context in Asia. Applying the social movement theory of political opportunity structure (POS) and using the qualitative case-study method, the study provides both within-case and cross-case analyses. Within-case analysis is utilized to explain the changing dynamics of big dam building in China (Three Gorges Dam and proposed Nu/Salween River dam projects), and to a lesser extent, Sardar Sarovar Project in India and Nam Theun 2 Dam in Laos. Different domestic and international POS (DPOS and IPOS) impact the strategies and outcomes of anti-dam advocacies in these countries. The degree of openness of the POS directly affects the capacity of transnational efforts in influencing state dam policies. The degree of openness or closure is measured by specific laws, institutions, discourse, or elite allies (or the absence of these) for the participation of non-state actors on big dam issues at a particular moment. This degree of openness is relative, varying over time, across countries and regions. This study finds that the impact of transnational anti-dam activism is most effective when both DPOS and IPOS are relatively open. Transnational anti-dam advocacy is least effective in influencing state dam policies when both DPOS and IPOS are relatively closed. Under a relatively open DPOS and closed IPOS, transnational anti-dam advocacy is more likely to successfully change state dam policies and even

  2. The geomorphic legacy of small dams — An Austrian study

    NARCIS (Netherlands)

    Poeppl, R.E.; Keesstra, S.D.; Hein, T.

    2015-01-01

    Dams represent one of the most dominant forms of human impact upon fluvial systems during the Anthropocene, as they disrupt the downstream transfer of water and sediments. Removing dams restores river continuity and channel morphology. Both dam construction and dam removal induce geomorphic channel

  3. Dam construction as an engineering solution for water supply problem : environmental thrusts

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.H. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2004-09-01

    Water supply management and the potential impacts associated with engineering practices in water supply systems were examined. Global aspects of increasing water demand were presented and compared with populations, urbanization and water demand. Engineering practices in waterworks developments such as dam construction, river intakes, infiltration galleries, wells, boreholes and adits were also discussed. Construction of large dams and the problems associated with damming the rivers were studied as large dams generally have substantial impacts on rivers, watersheds and aquatic ecosystems, leading to the irreversible loss of species populations and ecosystems. These problems include negative impacts on the terrestrial ecosystem, greenhouse gas emissions from reservoirs due to decaying vegetation and carbon inflows from the catchment, changes in flow regimes, trapping of sediments and nutrients behind a dam, blocking migration of aquatic organisms, as well as negative impacts on flood plain ecosystems and fisheries. In addition, a case study, on the environmental impacts associated with damming in Three Gorges Valley in China was presented. 9 refs., 8 figs.

  4. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  5. Excavation of the Surikamigawa dam diversion tunnel. Surikamigawa dam karihaisui tunnel kantsu

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T.; Konno, T. (Ministry of Construction, Tokyo (Japan))

    1994-04-01

    A bypass tunnel construction has been completed at the Surikamigawa dam (Japan). This paper describes the summary of the construction. The full-swing dam construction work is scheduled to begin in 1995. The soils distributed near the dam site consist of lapillus tuff containing andesite-based light stones and tuff-based conglomerates containing large gravels. Excavation of the dam diversion tunnel has used a blasting method, and the tunnel construction has adopted an automatic tunnel cross section marking system and a non-electric explosion method. This marking system is a system to irradiate a laser beam onto the facing to depict excavation lines that realizes labor saving and high-accuracy excavation. The error at the tunnel completion was found 20 mm. The non-electric explosion method ignites a coated explosive layer with an impact wave, which is electrostatically safe, and reduces blasting vibration. Electric detonators have also been used because of using ANFO explosives. The result obtained from measurements of inner space displacement necessary for the blasting process has indicated that the area near the dam site consists of stable mountains. 6 figs., 4 tabs.

  6. Model analysis of check dam impacts on long-term sediment and water budgets in southeast Arizona, USA

    Science.gov (United States)

    Norman, Laura M.; Niraula, Rewati

    2016-01-01

    The objective of this study was to evaluate the effect of check dam infrastructure on soil and water conservation at the catchment scale using the Soil and Water Assessment Tool (SWAT). This paired watershed study includes a watershed treated with over 2000 check dams and a Control watershed which has none, in the West Turkey Creek watershed, Southeast Arizona, USA. SWAT was calibrated for streamflow using discharge documented during the summer of 2013 at the Control site. Model results depict the necessity to eliminate lateral flow from SWAT models of aridland environments, the urgency to standardize geospatial soils data, and the care for which modelers must document altering parameters when presenting findings. Performance was assessed using the percent bias (PBIAS), with values of ±2.34%. The calibrated model was then used to examine the impacts of check dams at the Treated watershed. Approximately 630 tons of sediment is estimated to be stored behind check dams in the Treated watershed over the 3-year simulation, increasing water quality for fish habitat. A minimum precipitation event of 15 mm was necessary to instigate the detachment of soil, sediments, or rock from the study area, which occurred 2% of the time. The resulting watershed model is useful as a predictive framework and decision-support tool to consider long-term impacts of restoration and potential for future restoration.

  7. Impacts of Karkheh Dam on Spatial Pattern of Riparian Zones in Karkheh National Park

    Directory of Open Access Journals (Sweden)

    H. Madadi

    2013-03-01

    Full Text Available Effective river ecosystem management requires that the existing hydrologic regime be characterized in terms of the natural hydrologic regime and the degree to which the human-altered regime differs from natural conditions. This is known as Range of Variation Approach (RVA and can be used for variation of stream flow, range of variation and appraisal of dam impacts on riparian zones. In this paper, we used 31 hydrologic parameters, classified into five groups, monthly flow indices, extreme flow indices, timing indices, high-flow and low-flow indices, and rate of change, to assess hydrologic regime alteration in downstream of Karkheh dam. For this, purpose the hydrologic parameters of Pay-Pol hydrometric station have been taken. into consideration. As the Riparian ecosystems are highly dependent on and sensitive to variation in the hydrological cycle, the focus of this study was the 50-meter buffer of the Karkheh River. To examine the impacts caused by the variation of hydrologic regime, we tested if this variation and 8 different landscape metrics in the study area are correlated. The results showed that variation of hydrologic regime had a significant impact on the landscape structure of riparian zone in Karkheh downstream and caused isolation in landscape pattern of the woodland cover. Therefore, landscape structure in Karkheh downstream is highly correlated to hydrologic processes of upstream of the river. It can be concluded that an effective water management strategy is keeping safe the ecological condition and integrity of the riparian zone of Karkheh. This happens when all the hydrologic parameters are in the natural range of variation as they were before dam construction.

  8. Simulation of Breach Outflow for Earthfill Dam

    International Nuclear Information System (INIS)

    Razad, Azwin Zailti Abdul; Muda, Rahsidi Sabri; Sidek, Lariyah Mohd; Azia, Intan Shafilah Abdul; Mansor, Faezah Hanum; Yalit, Ruzaimei

    2013-01-01

    Dams have been built for many reasons such as irrigation, hydropower, flood mitigation, and water supply to support development for the benefit of human. However, the huge amount of water stored behind the dam can seriously pose adverse impacts to the downstream community should it be released due to unwanted dam break event. To minimise the potential loss of lives and property damages, a workable Emergency Response Plan is required to be developed. As part of a responsible dam owner and operator, TNB initiated a study on dam breach modelling for Cameron Highlands Hydroelectric Scheme to simulate the potential dam breach for Jor Dam. Prediction of dam breach parameters using the empirical equations of Froehlich and Macdonal-Langridge-Monopolis formed the basis of the modelling, coupled with MIKE 11 software to obtain the breach outflow due to Probable Maximum Flood (PMF). This paper will therefore discuss the model setup, simulation procedure and comparison of the prediction with existing equations.

  9. On Dams in the Amazon Basin, Teleconnected Impacts, and Neighbors Unaware of the Damage to their Natural Resources and Assets.

    Science.gov (United States)

    Latrubesse, E. M.; Park, E.

    2017-12-01

    In a recent study, Latrubesse et al., (2017) demonstrated that the accumulated negative environmental effects of more than one hundred existing dams and at least 288 proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. The authors introduced a Dam Environmental Vulnerability Index (DEVI) to quantify the current and potential impacts of dams in the basin. The current and potential vulnerabilities of different regions of the Amazon basin was assessed, and the results highlighted the need for a more efficient and integrative legal framework involving all nine countries of the basin in an anticipatory assessment to minimize the negative socio-environmental and biotic impacts of hydropower developments. Here we present expanded information on the potential impacts of dams in the lower Amazon and the northeast Atlantic coast of South America, and revisit our proposed integrative strategies for basin management which are based on the adaptation and functionality of the institutional and legal framework already existing in the Amazon countries. Participative strategies involving members from the Amazon Cooperation Treaty Organization (ACTO) countries, and additional members (for example, France), such as the creation of a basin committee -as defined by the Brazilian Law of Waters of Brazil-, and the creation of an Amazon Basin Panel allowing the participation of scientists that could have a policy-relevant role but should be not policy-prescriptive, are also discussed. ReferencesLatrubesse, E., Arima E. Dunne T., Park E., Baker V, Horta F.,Wight, C., Wittmann F., Zuanon, J., Baker P., Ribas C, Norgaard R., Filizola N., Ansar A., Flyvbjerg B., Stevaux, J. 2017. Damming the rivers of the Amazon basin. Nature, 546, 363-369.

  10. Assessment of the environmental impact statement for the proposed expansion of the Olympic Dam operations at Roxby Downs

    International Nuclear Information System (INIS)

    1997-01-01

    This Environmental Assessment Report assesses the social, environmental and economic impact of the proposal by Western Mining Corporation (Olympic Dam Corporation) Pty Ltd. (WMC) to increase their production at Olympic Dam mine from 150,000t/a of copper and associated products to 350,000t/a by a phased expansion. The first phase would take production to approximately 200,000t/a. The report reviews the 1997 Environmental Impact Statement (EIS), public comments on the EIS, and the proponent's responses to these comments in the Supplement to the EIS. It also relies on information, comments and advice provided by appropriate South Australian and Commonwealth government agencies (through the joint assessment process) and previous studies undertaken in the region.The focus of the contents of this assessment report are: water usage; tailing management; radiation management; economic and employment estimates; EIS process, regulation and monitoring as well as flora, fauna and town management issues. This report also recognises that the Olympic Dam mine has been subject to previous environmental assessments which resulted in the environmental regime currently in place for the existing operations.It is concluded that the risks to the biophysical, historical, cultural and social environments from the proposed Olympic dam expansion are acceptable provided the mine continues to operate under stringent environmental control

  11. Assessment of the environmental impact statement for the proposed expansion of the Olympic Dam operations at Roxby Downs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This Environmental Assessment Report assesses the social, environmental and economic impact of the proposal by Western Mining Corporation (Olympic Dam Corporation) Pty Ltd. (WMC) to increase their production at Olympic Dam mine from 150,000t/a of copper and associated products to 350,000t/a by a phased expansion. The first phase would take production to approximately 200,000t/a. The report reviews the 1997 Environmental Impact Statement (EIS), public comments on the EIS, and the proponent's responses to these comments in the Supplement to the EIS. It also relies on information, comments and advice provided by appropriate South Australian and Commonwealth government agencies (through the joint assessment process) and previous studies undertaken in the region.The focus of the contents of this assessment report are: water usage; tailing management; radiation management; economic and employment estimates; EIS process, regulation and monitoring as well as flora, fauna and town management issues. This report also recognises that the Olympic Dam mine has been subject to previous environmental assessments which resulted in the environmental regime currently in place for the existing operations.It is concluded that the risks to the biophysical, historical, cultural and social environments from the proposed Olympic dam expansion are acceptable provided the mine continues to operate under stringent environmental control.

  12. Tailings dams from the perspective of conventional dam engineering

    International Nuclear Information System (INIS)

    Szymanski, M.B.

    1999-01-01

    A guideline intended for conventional dams such as hydroelectric, water supply, flood control, or irrigation is used sometimes for evaluating the safety of a tailings dam. Differences between tailings dams and conventional dams are often substantial and, as such, should not be overlooked when applying the techniques or safety requirements of conventional dam engineering to tailings dams. Having a dam safety evaluation program developed specifically for tailings dams is essential, if only to reduce the chance of potential errors or omissions that might occur when relying on conventional dam engineering practice. This is not to deny the merits of using the Canadian Dam Safety Association Guidelines (CDSA) and similar conventional dam guidelines for evaluating the safety of tailings dams. Rather it is intended as a warning, and as a rationale underlying basic requirement of tailings dam emgineering: specific experience in tailings dams is essential when applying conventional dam engineering practice. A discussion is included that focuses on the more remarkable tailings dam safety practics. It is not addressed to a technical publications intended for such dams, or significantly different so that the use of conventional dam engineering practice would not be appropriate. The CDSA Guidelines were recently revised to include tailings dams. But incorporating tailings dams into the 1999 revision of the CDSA Guidelines is a first step only - further revision is necessary with respect to tailings dams. 11 refs., 2 tabs

  13. Proceedings of the Canadian Dam Association's 2005 annual conference : 100 years of dam experience : balancing tradition and innovation. CD-ROM ed.

    International Nuclear Information System (INIS)

    2004-09-01

    This conference provided a forum to promote discussion on improving the management and safety of dams. It featured 8 technical sessions as well as workshops to discuss dam safety guidelines and guidelines for extreme flood analyses and their applications. It also featured workshops on instrumentation and performance monitoring of dams; tailing dam closures and reclamation; and, practical approaches to emergency preparedness for dam owners. The discussions provided details on large hydropower development projects, their innovations in environmental impact assessment, mitigation, and monitoring. The conference included a technical component led by experts on dams and tailings facilities. Recent developments in dam construction were reviewed along with discharge and debris management, tailings dam issues, asset management, seismic issues, public safety, seepage monitoring, flow control, dam rehabilitation, concrete testing, hydrotechnical issues, risk assessment methodology, and safety guidelines. All 24 presentations at this conference have been catalogued separately for inclusion in this database

  14. The World Commission on Dams + 10: Revisiting the Large Dam Controversy

    Directory of Open Access Journals (Sweden)

    Deborah Moore

    2010-06-01

    Full Text Available The World Commission on Dams (WCD was an experiment in multi-stakeholder dialogue and global governance concerned with a subject area – large dams – that was fraught with conflict and controversy. The WCD Report, Dams and Development: A New Framework for Decision-Making, was published in 2000 and accompanied by hopes that broad-based agreements would be forged on how to better manage water and energy development. Ten years later, this special issue of Water Alternatives revisits the WCD and its impacts, exploring the question: Is the WCD still relevant? The editorial team and the Guest Editors of this special issue of Water Alternatives have selected a range of 20 papers, 6 viewpoints, and 4 book reviews that help to illustrate the evolution in the dams debate. The goal of this special issue is to examine the influence and the impacts of the WCD on the dam enterprise, in general, and on the policies and practices of key stakeholders and institutions, and on the development outcomes for affected communities and environments, in particular. In this introduction, the Guest Editors provide an overview of the special issue, exploring the new drivers of dam development that have emerged during the last decade, including climate change and new financiers of dams, and describing the themes emerging from this diverse set of papers and viewpoints. This special issue demonstrates the need for a renewed multi-stakeholder dialogue at multiple levels. This would not be a redo of the WCD, but rather a rekindling and redesigning of processes and forums where mutual understanding, information-sharing, and norm-setting can occur. One of the most promising developments of the last decade is the further demonstration, in case studies described here, that true partnership amongst key stakeholders can produce transformative resource-sharing agreements, showing that many of the WCD recommendations around negotiated decision making are working in practice. We hope

  15. Expectations of immortality: dam safety management into the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, M.D. [Tonkin and Taylor International Ltd., Auckland, (New Zealand)

    1999-07-01

    Topics concerning the problems associated with older and aging dams are considered including: what can be done to extent the lifetime of an old dam, the decision to decommission a dam based on a value judgment that the risk of maintaining the dam is too great for society's acceptance, the possibility of change in the level of risk tolerance with time in a technological environment, traditional surveillance methods used by dam owners in the Y2K situation, and the unreality of dam immortality. Trends and means for preserving older dams for their owner's purposes are outlined, as well as their lifetime compared to that of the downstream systems they serve. Despite the fact that we live in a throwaway society, dam owners cannot just leave their dam asset when they are through with using it. Someone has to maintain the dam, or ensure that it is safely decommissioned when the owner is finished with it. On a worldwide scale the available pool of experienced dam engineers is shrinking. This problem needs to be addressed by a shift towards operating and dam safety management skills based on a firm awareness of dam design principles. A shift in society's expectations has occurred such that dam designers and owners must now recognize the impact a dam can have both on its natural and social environments. Because of the increasing emphasis on paying attention to the impacts of people's activities on the planet, engineers more than anyone else must have a significant influence in that direction. 9 refs.

  16. Expectations of immortality: dam safety management into the next millennium

    International Nuclear Information System (INIS)

    Palmer, M.D.

    1999-01-01

    Topics concerning the problems associated with older and aging dams are considered including: what can be done to extent the lifetime of an old dam, the decision to decommission a dam based on a value judgment that the risk of maintaining the dam is too great for society's acceptance, the possibility of change in the level of risk tolerance with time in a technological environment, traditional surveillance methods used by dam owners in the Y2K situation, and the unreality of dam immortality. Trends and means for preserving older dams for their owner's purposes are outlined, as well as their lifetime compared to that of the downstream systems they serve. Despite the fact that we live in a throwaway society, dam owners cannot just leave their dam asset when they are through with using it. Someone has to maintain the dam, or ensure that it is safely decommissioned when the owner is finished with it. On a worldwide scale the available pool of experienced dam engineers is shrinking. This problem needs to be addressed by a shift towards operating and dam safety management skills based on a firm awareness of dam design principles. A shift in society's expectations has occurred such that dam designers and owners must now recognize the impact a dam can have both on its natural and social environments. Because of the increasing emphasis on paying attention to the impacts of people's activities on the planet, engineers more than anyone else must have a significant influence in that direction. 9 refs

  17. Dams and river dolphins: Can they co-exist?

    International Nuclear Information System (INIS)

    Reeves, R.R.; Leatherwood, S.

    1994-01-01

    Dam construction is one of many ways that humans have modified river-dolphin habitats. It is suggested that physiographic and hydrologic complexity plays an important role in making rivers suitable for dolphins. If this hypothesis is true, then it can be assumed that dams and other artificial obstructions degrade dolphin habitat insofar as they reduce such complexity. This paper identifies some of the impacts that dams, barrages, and dikes might have on dolphins. Research is needed at project sites, both before and after construction, to document impacts. Specially designed ''swimways'' may allow upstream and downstream passage by dolphins and thus mitigate at least one of the adverse effects of dam projects, namely population fragmentation, but such measures aimed at benefiting single species are no substitute for protecting ecosystems. 30 refs

  18. National Program for Inspection of Non-Federal Dams. Miller Pond Dam (CT 00154), Thames River Basin, Waterford, Connecticut. Phase I Inspection Report.

    Science.gov (United States)

    1980-08-01

    Road and adjacent to the Brook are likely to be impacted by dam failure. Because a breach of Miller Pond Dam would cause severe economic loss and the...TO THE ASSUMED SPILL CREST ELEVATION 3 WATER %. WACE ELEATCRS. SHOREI I NE AND 7AI NGTER COGRATIONS ARE APPROXIMATE, AS OBTAINED Dl"F I -t DAM INSECTION

  19. Use of nuclear techniques and hydrochemical analysis to evaluate the impact of tailings dams

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Flaviane M.; Fleming, Peter M.; Fonseca, Flávio H. da R.; Pimenta, Rafael C.; Moreira, Rubens M., E-mail: flaviane@cdtn.br, E-mail: pmf@cdtn.br, E-mail: flavio.fonseca@cdtn.br, E-mail: colombopimenta@gmail.com, E-mail: rubens@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The mining industry is a most important productive segment to country's economy. However, it is important to recognize and monitor the environmental impacts caused by mining, such as dams. They are structures built to store the waste produced by the beneficiation of ores, through chemical and mechanical processes classified as concentrate, crude ore or tailings. Tailings dams are associated with a potential risk of disruption and can therefore cause various images to the environment and population. Seepage flows and transport mechanisms are parameters to indicate the structural integrity. Nuclear technology can be used as a tool to trace these parameters. The objective of this work is to use isotopic techniques and hydrochemical characterization to detect leaks in dams belonging to a mining company. The isotopic techniques are used to measure the concentration of environmental isotopes in dam waters and their mediations, among which deuterium ({sup 2}H) and oxygen-18 ({sup 18}O) are measured. These isotopes will be used as environmental tracers to investigate the presence of infiltrations through the displacement of the water in its flow in the aquifer, since they are constituent of the molecule of water. In parallel, the basic physical chemical parameters and water quality parameters will be measured in-situ to aid in the interpretation of the results of the isotopic analyzes. Thus, it is intended to provide data that can help the environmental agencies to make decisions regarding the decommissioning of the mine. (author)

  20. Impact of farm dams on river flows; A case study in the Limpopo River basin, Southern Africa

    NARCIS (Netherlands)

    Meijer, E.; Querner, E.P.; Boesveld, H.

    2013-01-01

    The study analysed the impact of a farm dam on the river flow in the Limpopo River basin. Two methods are used to calculate the water inflow: one uses the runoff component from the catchment water balance; the other uses the drainage output of the SIMFLOW model. The impact on the flow in a

  1. Modeling the capacity of riverscapes to support beaver dams

    Science.gov (United States)

    Macfarlane, William W.; Wheaton, Joseph M.; Bouwes, Nicolaas; Jensen, Martha L.; Gilbert, Jordan T.; Hough-Snee, Nate; Shivik, John A.

    2017-01-01

    The construction of beaver dams facilitates a suite of hydrologic, hydraulic, geomorphic, and ecological feedbacks that increase stream complexity and channel-floodplain connectivity that benefit aquatic and terrestrial biota. Depending on where beaver build dams within a drainage network, they impact lateral and longitudinal connectivity by introducing roughness elements that fundamentally change the timing, delivery, and storage of water, sediment, nutrients, and organic matter. While the local effects of beaver dams on streams are well understood, broader coverage network models that predict where beaver dams can be built and highlight their impacts on connectivity across diverse drainage networks are lacking. Here we present a capacity model to assess the limits of riverscapes to support dam-building activities by beaver across physiographically diverse landscapes. We estimated dam capacity with freely and nationally-available inputs to evaluate seven lines of evidence: (1) reliable water source, (2) riparian vegetation conducive to foraging and dam building, (3) vegetation within 100 m of edge of stream to support expansion of dam complexes and maintain large colonies, (4) likelihood that channel-spanning dams could be built during low flows, (5) the likelihood that a beaver dam is likely to withstand typical floods, (6) a suitable stream gradient that is neither too low to limit dam density nor too high to preclude the building or persistence of dams, and (7) a suitable river that is not too large to restrict dam building or persistence. Fuzzy inference systems were used to combine these controlling factors in a framework that explicitly also accounts for model uncertainty. The model was run for 40,561 km of streams in Utah, USA, and portions of surrounding states, predicting an overall network capacity of 356,294 dams at an average capacity of 8.8 dams/km. We validated model performance using 2852 observed dams across 1947 km of streams. The model showed

  2. Towards a dams safety management system for Angola

    OpenAIRE

    Camilo, V.; Silva, A.; Costa, R.; Barateiro, J.; Portela, E. A.; Fonseca, J.

    2015-01-01

    Dams have contributed to the human development and have brought many benefits, such as delivering hydropower, irrigating agricultural fields, supplying drinking water, or just for navigational and recreational purposes. Nevertheless, dams are critical structures that raise multiple concerns and risks associated with the ecological, social and economic impact. Angola has a rich and complex network of water basins and dams that serves different strategic purposes as defined in it...

  3. The Political Ecology of Chinese Large Dams in Cambodia: Implications, Challenges and Lessons Learnt from the Kamchay Dam

    Directory of Open Access Journals (Sweden)

    Giuseppina Siciliano

    2016-09-01

    Full Text Available Given the opportunities offered by foreign investment in energy infrastructure mostly by Chinese firms, the Government of Cambodia is giving high priority to developing hydropower resources for reducing energy poverty and powering economic growth. Using a “Political ecology of the Asian drivers” framework, this paper assesses China’s involvement in the development of large dams’ in Cambodia and its impacts on the access of natural resources such as water and energy by dam builders, local communities and the government. This analysis is based on 61 interviews and 10 focus group discussions with affected communities, institutional actors, Chinese dam builders and financiers in relation to the first large Chinese dam built in Cambodia: the Kamchay dam. Based on the results of the analysis this paper makes recommendations on how to improve the planning, implementation and governance of future large dams in Cambodia.

  4. Fragility Analysis of Concrete Gravity Dams

    Science.gov (United States)

    Tekie, Paulos B.; Ellingwood, Bruce R.

    2002-09-01

    Concrete gravity dams are an important part ofthe nation's infrastructure. Many dams have been in service for over 50 years, during which time important advances in the methodologies for evaluation of natural phenomena hazards have caused the design-basis events to be revised upwards, in some cases significantly. Many existing dams fail to meet these revised safety criteria and structural rehabilitation to meet newly revised criteria may be costly and difficult. A probabilistic safety analysis (PSA) provides a rational safety assessment and decision-making tool managing the various sources of uncertainty that may impact dam performance. Fragility analysis, which depicts fl%e uncertainty in the safety margin above specified hazard levels, is a fundamental tool in a PSA. This study presents a methodology for developing fragilities of concrete gravity dams to assess their performance against hydrologic and seismic hazards. Models of varying degree of complexity and sophistication were considered and compared. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930's. The hydrologic fragilities showed that the Eluestone Dam is unlikely to become unstable at the revised probable maximum flood (PMF), but it is likely that there will be significant cracking at the heel ofthe dam. On the other hand, the seismic fragility analysis indicated that sliding is likely, if the dam were to be subjected to a maximum credible earthquake (MCE). Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. Probabilities of relatively severe limit states appear to be only marginally affected by extremely rare events (e.g. the PMF and MCE). Moreover, the risks posed by the extreme floods and earthquakes were not balanced for the Bluestone Dam, with seismic hazard posing a relatively higher risk.

  5. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    Science.gov (United States)

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  6. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    Directory of Open Access Journals (Sweden)

    Matt Finer

    Full Text Available Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1 There is a critical need for further strategic regional and basin scale evaluation of dams. 2 There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3 Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  7. Estimation of the transboundary economic impacts of the Grand Ethiopia Renaissance Dam: A Computable General Equilibrium Analysis

    NARCIS (Netherlands)

    Kahsay, T.N.; Kuik, O.J.; Brouwer, R.; van der Zaag, P.

    2015-01-01

    Employing a multi-region multi-sector computable general equilibrium (CGE) modeling framework, this study estimates the direct and indirect economic impacts of the Grand Ethiopian Renaissance Dam (GERD) on the Eastern Nile economies. The study contributes to the existing literature by evaluating the

  8. Social and environmental aspects of the Manantali dam. Retrospective assessment

    International Nuclear Information System (INIS)

    Ficatier, Yves; Niasse, Madiodio

    2008-04-01

    After the great drought of the 1970's, and in order to better exploit the water resources of the Senegal river basin, an important project had been launched which comprises the Diama and Manantali dams, the construction or rehabilitation of dikes, and the construction of a hydroelectric plant for the Manantali dam. In order to provide a retrospective assessment of the social and environmental aspects (impacts on agriculture, fishing, electricity production, water availability, and so on) associated with the Manantali dam, this study reports an analysis of major advances and problems noticed at the social and environmental level in the Senegal river basin, an assessment of negative and positive social and environmental impacts of various components of the project achieved with the financial support of French and German institutions (deforestation, construction of both dams, of dikes, and of the energy equipment), an analysis of the way these social and environmental impacts have been managed all along the planning and realisation process, an assessment of social and environmental impacts of the program as a whole (impact studies, realisation, noticed impacts, efficiency in impact management), an analysis of the way existing standards of the moment have been taken into account in the management of environmental issues, and a global assessment of the program according to criteria defined by the DAC (Development Assistance Committee) of the OECD: relevance, efficiency, impact on development, and sustainability

  9. Dams, Hydrology and Risk in Future River Management

    Science.gov (United States)

    Wegner, D. L.

    2017-12-01

    Across America there are over 80,000 large to medium dams and globally the number is in excess of 800,000. Currently there are over 1,400 dams and diversion structures being planned or under construction globally. In addition to these documented dams there are thousands of small dams populating watersheds. Governments, agencies, native tribes, private owners and regulators all have a common interest in safe dams. Often dam safety is characterized as reducing structural risk while providing for maximum operational flexibility. In the 1970's there were a number of large and small dam failures in the United States. These failures prompted the federal government to issue voluntary dam safety guidelines. These guidelines were based on historic information incorporated into a risk assessment process to analyze, evaluate and manage risk with the goal to improve the quality of and support of dam management and safety decisions. We conclude that historic and new risks need to be integrated into dam management to insure adequate safety and operational flexibility. A recent assessment of the future role of dams in the United States premises that future costs such as maintenance or removal beyond the economic design life have not been factored into the long-term operations or relicensing of dams. The converging risks associated with aging water storage infrastructure, multiple dams within watersheds and uncertainty in demands policy revisions and an updated strategic approach to dam safety. Decisions regarding the future of dams in the United States may, in turn, influence regional water planning and management. Leaders in Congress and in the states need to implement a comprehensive national water assessment and a formal analysis of the role dams play in our water future. A research and national policy agenda is proposed to assess future impacts and the design, operation, and management of watersheds and dams.

  10. Ice interactions at a dam face

    Energy Technology Data Exchange (ETDEWEB)

    Morse, B.; Morse, J.; Beaulieu, P.; Pratt, Y. [Laval Univ., Quebec City, PQ (Canada). Dept. of Civil Engineering; Stander, E. [State Univ. of New York, Cobleskill College, Cobleskill, NY (United States). Dept. of Natural Sciences; Cote, A.; Tarras, A.; Noel, P. [Hydro-Quebec, Varennes, PQ (Canada). IREQ

    2009-07-01

    This paper reported on a joint research project between Laval University and Hydro-Quebec to study ice forces on dams in an effort to harmonize design criteria and develop mitigation strategies. This paper introduced the project and explored some of the preliminary results of the 2007-2008 field season. Ice displacement, ice stresses and ice forces on the LaGabelle dam were measured at several locations. The paper identified and discussed the complex relationships between data sets and discussed the spatial-temporal variability of the ice forces and its impact on design criteria. The project objective was to develop design criteria for ice forces on dams and to provide a scientific basis for interpreting and harmonizing existing recommended criteria. The methodology and site description were presented. It was concluded that the ice processes in a reservoir near a dam face subject to water fluctuations are quite complex. Therefore, in order to know the real average pressure on the dam, a significant amount of panels are required, having important implications for determining safe design values. 9 refs., 10 figs.

  11. Alteration of stream temperature by natural and artificial beaver dams.

    Science.gov (United States)

    Weber, Nicholas; Bouwes, Nicolaas; Pollock, Michael M; Volk, Carol; Wheaton, Joseph M; Wathen, Gus; Wirtz, Jacob; Jordan, Chris E

    2017-01-01

    Beaver are an integral component of hydrologic, geomorphic, and biotic processes within North American stream systems, and their propensity to build dams alters stream and riparian structure and function to the benefit of many aquatic and terrestrial species. Recognizing this, beaver relocation efforts and/or application of structures designed to mimic the function of beaver dams are increasingly being utilized as effective and cost-efficient stream and riparian restoration approaches. Despite these verities, the notion that beaver dams negatively impact stream habitat remains common, specifically the assumption that beaver dams increase stream temperatures during summer to the detriment of sensitive biota such as salmonids. In this study, we tracked beaver dam distributions and monitored water temperature throughout 34 km of stream for an eight-year period between 2007 and 2014. During this time the number of natural beaver dams within the study area increased by an order of magnitude, and an additional 4 km of stream were subject to a restoration manipulation that included installing a high-density of Beaver Dam Analog (BDA) structures designed to mimic the function of natural beaver dams. Our observations reveal several mechanisms by which beaver dam development may influence stream temperature regimes; including longitudinal buffering of diel summer temperature extrema at the reach scale due to increased surface water storage, and creation of cool-water channel scale temperature refugia through enhanced groundwater-surface water connectivity. Our results suggest that creation of natural and/or artificial beaver dams could be used to mitigate the impact of human induced thermal degradation that may threaten sensitive species.

  12. Dams and Levees: Safety Risks

    Science.gov (United States)

    Carter, N. T.

    2017-12-01

    The nation's flood risk is increasing. The condition of U.S. dams and levees contributes to that risk. Dams and levee owners are responsible for the safety, maintenance, and rehabilitation of their facilities. Dams-Of the more than 90,000 dams in the United States, about 4% are federally owned and operated; 96% are owned by state and local governments, public utilities, or private companies. States regulate dams that are not federally owned. The number of high-hazard dams (i.e., dams whose failure would likely result in the loss of human life) has increased in the past decade. Roughly 1,780 state-regulated, high-hazard facilities with structural ratings of poor or unsatisfactory need rehabilitation. Levees-There are approximately 100,000 miles of levees in the nation; most levees are owned and maintained by municipalities and agricultural districts. Few states have levee safety programs. The U.S. Army Corps of Engineers (Corps) inspects 15,000 miles of levees, including levees that it owns and local levees participating in a federal program to assist with certain post-flood repairs. Information is limited on how regularly other levees are inspected. The consequence of a breach or failure is another aspect of risk. State and local governments have significant authority over land use and development, which can shape the social and economic impacts of a breach or failure; they also lead on emergency planning and related outreach. To date, federal dam and levee safety efforts have consisted primarily of (1) support for state dam safety standards and programs, (2) investments at federally owned dams and levees, and (3) since 2007, creation of a national levee database and enhanced efforts and procedures for Corps levee inspections and assessments. In Public Law 113-121, enacted in 2014, Congress (1) directed the Corps to develop voluntary guidelines for levee safety and an associated hazard potential classification system for levees, and (2) authorized support for the

  13. Hidden impacts of the Samarco mining waste dam collapse to Brazilian marine fauna - an example from the staurozoans (Cnidaria)

    OpenAIRE

    Miranda, Lucília Souza; Marques, Antonio Carlos

    2016-01-01

    The collapse of the Fundão tailings dam at Mariana (State of Minas Gerais, Brazil) started a huge human tragedy and likely the most serious environmental disaster in recent Brazilian history. The dam had contained waste from processing iron ore from mines owned by Samarco, a joint venture company of the Brazilian Vale S.A. and the Anglo-Australian BHP Billiton Ltd. Following ineffective attempts to contain the disaster, after 16 days the mud flood reached the sea, where its impact is expected...

  14. Linking Three Gorges Dam and downstream hydrological regimes along the Yangtze River, China

    NARCIS (Netherlands)

    Mei, X.; Dai, Z.; Van Gelder, P.H.A.J.M.; Gao, J.

    2015-01-01

    The magnitude of anthropogenic influence, especially dam regulation, on hydrological system is of scientific and practical value for large river management. As the largest dam in the world by far, Three Gorges Dam (TGD) is expected to be a strong evidence on dam impacts on downstream hydrological

  15. Dam spills and fishes; Eclusees et poissons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This short paper reports the main topics discussed during the two days of the annual colloquium of the Hydro-ecology Committee of EdF. The first day was devoted to the presentation of the joint works carried out by EdF, the Paul-Sabatier University (Toulouse), the Provence St-Charles University (Marseille), the ENSAT (Toulouse) and the CEMAGREF (Lyon and Aix-en-Provence) about the environmental impact of dam spills on the aquatic flora and fauna downstream. A synthesis and recommendations were presented for the selection and characterization of future sites. The second day was devoted to the hydro-ecology study of the dam reservoir of Petit-Saut (French Guyana): water reoxygenation, quality evolution, organic matter, plankton, invertebrates and fishes. The 134 French dams concerned by water spills have been classified according to the frequency of spills, the variations of flow rates created, and their impacts on fishing, walking, irrigation, industry, drinking water, navigation, bathing. Particular studies on different sites have demonstrated the complexity of the phenomena involved concerning the impact on the ecosystems and the water quality. (J.S.).

  16. Dam Safety Concepts

    NARCIS (Netherlands)

    Duricic, J.

    2014-01-01

    The majority of dams constructed in the world are dams that can be categorized as embankment dams. Throughout history we can point to many failures of dams, and embankment dams in particular. Nowadays it is clear that the goal to construct stable dams has not been achieved, even with advanced

  17. Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W.F.; Ickes, Brian; Ryherd, Julia K.; Guida, Ross J.; Therrell, Matthew D.

    2018-01-01

    The impacts of dams and levees on the long-term (>130 years) discharge record was assessed along a ~1200 km segment of the Mississippi River between St. Louis, Missouri, and Vicksburg, Mississippi. To aid in our evaluation of dam impacts, we used data from the U.S. National Inventory of Dams to calculate the rate of reservoir expansion at five long-term hydrologic monitoring stations along the study segment. We divided the hydrologic record at each station into three periods: (1) a pre-rapid reservoir expansion period; (2) a rapid reservoir expansion period; and (3) a post-rapid reservoir expansion period. We then used three approaches to assess changes in the hydrologic record at each station. Indicators of hydrologic alteration (IHA) and flow duration hydrographs were used to quantify changes in flow conditions between the pre- and post-rapid reservoir expansion periods. Auto-regressive interrupted time series analysis (ARITS) was used to assess trends in maximum annual discharge, mean annual discharge, minimum annual discharge, and standard deviation of daily discharges within a given water year. A one-dimensional HEC-RAS hydraulic model was used to assess the impact of levees on flood flows. Our results revealed that minimum annual discharges and low-flow IHA parameters showed the most significant changes. Additionally, increasing trends in minimum annual discharge during the rapid reservoir expansion period were found at three out of the five hydrologic monitoring stations. These IHA and ARITS results support previous findings consistent with the observation that reservoirs generally have the greatest impacts on low-flow conditions. River segment scale hydraulic modeling revealed levees can modestly increase peak flood discharges, while basin-scale hydrologic modeling assessments by the U.S. Army Corps of Engineers showed that tributary reservoirs reduced peak discharges by a similar magnitude (2 to 30%). This finding suggests that the effects of dams and

  18. Factors influencing hysteresis characteristics of concrete dam deformation

    Directory of Open Access Journals (Sweden)

    Jia-he Zhang

    2017-04-01

    Full Text Available Thermal deformation of a concrete dam changes periodically, and its variation lags behind the air temperature variation. The lag, known as the hysteresis time, is generally attributed to the low velocity of heat conduction in concrete, but this explanation is not entirely sufficient. In this paper, analytical solutions of displacement hysteresis time for a cantilever beam and an arch ring are derived. The influence of different factors on the displacement hysteresis time was examined. A finite element model was used to verify the reliability of the theoretical analytical solutions. The following conclusions are reached: (1 the hysteresis time of the mean temperature is longer than that of the linearly distributed temperature difference; (2 the dam type has a large impact on the displacement hysteresis time, and the hysteresis time of the horizontal displacement of an arch dam is longer than that of a gravity dam; (3 the reservoir water temperature variation lags behind of the air temperature variation, which intensifies the differences in the horizontal displacement hysteresis time between the gravity dam and the arch dam; (4 with a decrease in elevation, the horizontal displacement hysteresis time of a gravity dam tends to increase, whereas the horizontal displacement hysteresis time of an arch dam is likely to increase initially, and then decrease; and (5 along the width of the dam, the horizontal displacement hysteresis time of a gravity dam decreases as a whole, while the horizontal displacement hysteresis time of an arch dam is shorter near the center and longer near dam surfaces.

  19. Impact of dams and irrigation schemes in Anopheline (Diptera: Culicidae bionomics and malaria epidemiology

    Directory of Open Access Journals (Sweden)

    Jordi Sanchez-Ribas

    2012-08-01

    Full Text Available Irrigation schemes and dams have posed a great concern on public health systems of several countries, mainly in the tropics. The focus of the present review is to elucidate the different ways how these human interventions may have an effect on population dynamics of anopheline mosquitoes and hence, how local malaria transmission patterns may be changed. We discuss different studies within the three main tropical and sub-tropical regions (namely Africa, Asia and the Pacific and the Americas. Factors such as pre-human impact malaria epidemiological patterns, control measures, demographic movements, human behaviour and local Anopheles bionomics would determine if the implementation of an irrigation scheme or a dam will have negative effects on human health. Some examples of successful implementation of control measures in such settings are presented. The use of Geographic Information System as a powerful tool to assist on the study and control of malaria in these scenarios is also highlighted.

  20. Dam Break Analysis of Embankment Dams Considering Breach Characteristics

    Directory of Open Access Journals (Sweden)

    Abolfazl Shamsaei

    2004-05-01

    Full Text Available The study of dam's break, needs the definition of various parameters such as the break cause, its type, its dimension and the duration of breach development. The precise forecast for different aspects of the breach is one of the most important factors for analyzing it in embankment dam. The characteristics of the breach and determination of their vulnerability has the most effect on the waves resulting from dam break. Investigating, about the parameters of the breach in "Silveh" earth dam have been determined using the suitable model. In Silve dam a trapezoid breach with side slope z=0.01m and the average base line b=80m was computed. The duration of the breaches development is 1.9 hour. Regarding the above results and the application of DAM Break software the consequences of the probable break of the dam was determined. The analysis of the results of water covering of the city of Piranshahr located 12km from silve dam confirms that in 3 hours the water will reach the height (level of 1425 meters.

  1. Impact of dam-induced hydrological changes on riparian vegetation

    Science.gov (United States)

    Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca

    2010-05-01

    Hydrological disturbances are a key factor for the riparian vegetation, which is a highly dynamic ecosystem prone to external forcing. Random fluctuations of water stages drive in fact the alternation of periods of floods and exposure of the vegetated plots. During flooding, the plots are submerged and vegetation is damaged by burial, uprooting and anoxia, while during exposure periods vegetation grows according to the soil moisture content and the phreatic water table depth. The distribution of vegetation along the riparian transect is then directly connected to the stochasticity of river discharges. River damming can have remarkable impacts on the hydrology of a river and, consequently, on the riparian vegetation. Several field studies show how the river regulation induced by artificial reservoirs can greatly modify the statistical moments and the autocorrelation of the discharge time series. The vegetation responds to these changes reducing its overall heterogeneity, declining - substituted by exotic species - and shifting its starting position nearer or far away from the channel center. These latter processes are known as narrowing and widening, respectively. In our work we explore the effects of dam-induced hydrological changes on the narrowing/widening process and on the total biomass along the transect. To this aim we use an eco-hydrological stochastic model developed by Camporeale and Ridolfi [2006], which is able to give a realistic distribution of the biomass along the transect as a function of a few hydrologic, hydraulic and vegetation parameters. We apply the model to an exemplifying case, by investigating the vegetation response to a set of changes in mean discharge and coefficient of variation. The range of these changes is deduced from the analysis of field data in pre- and post-dam conditions. Firstly, we analyze the narrowing/widening process. In particular, we analyze two percentage differences of the starting transversal position with respect to

  2. NRC inventory of dams

    International Nuclear Information System (INIS)

    Lear, G.E.; Thompson, O.O.

    1983-01-01

    The NRC Inventory of Dams has been prepared as required by the charter of the NRC Dam Safety Officer. The inventory lists 51 dams associated with nuclear power plant sites and 14 uranium mill tailings dams (licensed by NRC) in the US as of February 1, 1982. Of the 85 listed nuclear power plants (148 units), 26 plants obtain cooling water from impoundments formed by dams. The 51 dams associated with the plants are: located on a plant site (29 dams at 15 plant sites); located off site but provide plant cooling water (18 dams at 11 additional plant sites); and located upstream from a plant (4 dams) - they have been identified as dams whose failure, and ensuing plant flooding, could result in a radiological risk to the public health and safety. The dams that might be considered NRC's responsibility in terms of the federal dam safety program are identified. This group of dams (20 on nuclear power plant sites and 14 uranium mill tailings dams) was obtained by eliminating dams that do not pose a flooding hazard (e.g., submerged dams) and dams that are regulated by another federal agency. The report includes the principal design features of all dams and related useful information

  3. The Influence of Dams on Malaria Transmission in Sub-Saharan Africa.

    Science.gov (United States)

    Kibret, Solomon; Wilson, G Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2017-06-01

    The construction of dams in sub-Saharan Africa is pivotal for food security and alleviating poverty in the region. However, the unintended adverse public health implications of extending the spatial distribution of water infrastructure are poorly documented and may minimize the intended benefits of securing water supplies. This paper reviews existing studies on the influence of dams on the spatial distribution of malaria parasites and vectors in sub-Saharan Africa. Common themes emerging from the literature were that dams intensified malaria transmission in semi-arid and highland areas with unstable malaria transmission but had little or no impact in areas with perennial transmission. Differences in the impacts of dams resulted from the types and characteristics of malaria vectors and their breeding habitats in different settings of sub-Saharan Africa. A higher abundance of a less anthropophilic Anopheles arabiensis than a highly efficient vector A. gambiae explains why dams did not increase malaria in stable areas. In unstable areas where transmission is limited by availability of water bodies for vector breeding, dams generally increase malaria by providing breeding habitats for prominent malaria vector species. Integrated vector control measures that include reservoir management, coupled with conventional malaria control strategies, could optimize a reduction of the risk of malaria transmission around dams in the region.

  4. Watershed restoration: planning and implementing small dam removals to maximize ecosystem services

    Science.gov (United States)

    Tonitto, C.; Riha, S. J.

    2016-12-01

    River restoration and enhancing watershed connectivity is of growing concern in industrialized nations. The past two decades have seen a number of small dam removals, though many removals remain unstudied and poorly documented. We summarize socio-economic and biophysical lessons learned during the past two decades of accelerated activity regarding small dam removals throughout the United States. We present frameworks for planning and implementing removals developed by interdisciplinary engagement. Toward the goal of achieving thorough dam removal planning, we present outcomes from well-documented small dam removals covering ecological, chemical, and physical change in rivers post-dam removal, including field observation and modeling methodologies. Guiding principles of a dam removal process should include: 1) stakeholder engagement to navigate the complexity of watershed landuse, 2) an impacts assessment to inform the planning process, 3) pre- and post-dam removal observations of ecological, chemical and physical properties, 4) the expectation that there are short- and long-term ecological dynamics with population recovery depending on whether dam impacts were largely related to dispersion or to habitat destruction, 5) an expectation that changes in watershed chemistry are dependent on sediment type, sediment transport and watershed landuse, and 6) rigorous assessment of physical changes resulting from dam removal, understanding that alteration in hydrologic flows, sediment transport, and channel evolution will shape ecological and chemical dynamics, and shape how stakeholders engage with the watershed.

  5. Potential Impact of Climate Changes on the Inundation Risk Levels in a Dam Break Scenario

    Directory of Open Access Journals (Sweden)

    Sudha Yerramilli

    2013-03-01

    Full Text Available The overall objective of the study is to generate information for an enhanced land use planning with respect to flood hazards. The study assesses the potential impact of climate change by simulating a dam break scenario in a high intensity rainfall event and evaluates the vulnerability risk in the downstream region by integrating ArcGIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS technologies. In the past century, the evidence of climate changes are observed in terms of increase in high intensity rainfall events. These events are of high concern, as increased inflow rates may increase the probability of a dam failure, leading to higher magnitude flooding events involving multiple consequences. The 100 year historical rainfall data for the central Mississippi region reveals an increased trend in the intensity of rainfall rates after the 1970s. With more than 10% of high hazard dams in the central region, the damage can be far accumulative. The study determines occurrence of the high intensity rainfall event in the past 100 years for central Mississippi and simulates a Ross Barnett Reservoir dam break scenario and evaluates the vulnerability risks due to inundation in the immediate downstream region, which happens to be the State Capital. The results indicate that the inundation due to a Ross Barnett Reservoir failure under high intensity rainfall event is comparable to a catastrophic flood event experienced by the region in 1979, which almost equals a 200-year flood magnitude. The results indicate that the extent and depth of flood waters poses a significant destructive threat to the state capital, inundating various infrastructural and transportation networks.

  6. Billy Shaw Dam and Reservoir: Environmental assessment and finding of no significant impacts

    International Nuclear Information System (INIS)

    1997-03-01

    This notice announces BPA's decision to fund the construction, operation, and maintenance of the Billy Shaw Dam and Reservoir on the Duck Valley Reservation. This project is part of a continuing effort to address system-wide fish and wildlife losses caused by the development of the hydropower system in the Columbia River Basin. BPA has prepared an Environmental Assessment (EA) evaluating the potential environmental impacts of the proposed project. Based on the analysis in the EA, BPA has determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI

  7. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)

    Science.gov (United States)

    Dufresne, A.; Ostermann, M.; Preusser, F.

    2018-06-01

    The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.

  8. The Impacts of Pelosika and Ameroro Dams in the Flood Control Performance of Konaweha River

    Directory of Open Access Journals (Sweden)

    Arif Sidik

    2016-09-01

    Full Text Available Konaweeha watershed is the largest watershed in Southeast Sulawesi with Konaweeha River as the main river. The main issues in Konaweeha Watershed is floods that occur caused damage to infrastructure and public facilities, lowering agricultural production, and cause fatalities. One of the government's efforts to cope with the flooding problem in Konaweeha Watershed is planning the construction of multi-purpose dams in the upstream of Konaweeha Watershed that is Pelosika Dam and Ameroso Dam. Necessary to study the flood control performance of the two dams. Analyses were performed with hydrologic-hydraulic modeling using HEC-HMS software (Hydrologic Modelling System version 4.0 and HEC-RAS (River Analysis System version 4.1. The design rainfalls that were used as input to the model were 2 year, 5-year, 10-year and 25 year. Scenarios used in this study are: (1 Existing Scenario (2 Pelosika Dam Scenario; (3 Ameroro Dam Scenario; (4 Pelosika and Ameroro Dams Scenario. The results showed the maximum water surface elevation along the downstream of Konaweeha River in Scenario (2 and (4 were almost the same in the 2 and 5 years return period design flood. However, in case of 10 and 25 years return period, the difference of maximum water surface elevation at downstream of Konaweeha River was slightly significant. Furthermore, the damping efficiency of the peak discharge (at Probably Maximum Flood or PMF was found to be 71.70% and 18.18% for the individual Pelosika Dam and Ameroro Dam respectively. Further discussion suggests the development of Pelosika Dam as the higher priority rather than that of the Ameroro Dam.

  9. The environmental impacts of one of the largest tailing dam failures worldwide.

    Science.gov (United States)

    Hatje, Vanessa; Pedreira, Rodrigo M A; de Rezende, Carlos Eduardo; Schettini, Carlos Augusto França; de Souza, Gabriel Cotrim; Marin, Danieli Canaver; Hackspacher, Peter Christian

    2017-09-06

    The impacts of the SAMARCO iron tailing spill along more than 650 km, between the dam and the plume of the Doce River in the Atlantic, were assessed by the determination of toxic metals. The tailing spill caused a substantial increase in suspended sediment loads (up to 33,000 mg L -1 ), in addition to large depositions of waste along the Doce basin. The highest estimated transport of dissolved metals was observed for Fe (58.8 μg s -1 ), Ba (37.9 μg s -1 ) and Al (25.0 μg s -1 ). Sediments reached the highest enrichment factors (EFs) for Hg (4,234), Co (133), Fe (43), and Ni (16), whereas As (55), Ba (64), Cr (16), Cu (17), Mn (41), Pb (38) and Zn (82) highest EFs were observed for suspended particulate matter (SPM). Iron, As, Hg, Mn exceeded sediment quality guidelines. Therefore, the risk of occurrence of adverse effects is highly possible, not only due to the dam failure, but also due to the Fe mining and the artisan Au mining. Heavy rain episodes will likely cause enhanced erosion, remobilization, and transport of contaminated particles, sustaining high inputs of SPM and metals for the years to come and threatening the ecosystem services.

  10. Characterize and Quantify Residual Steelhead in the Clearwater River, Idaho, 1999-2000 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brostrom, Jody K. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2006-08-01

    During 1999-2002 we determined whether size at release and release site influenced emigration success and survival of hatchery steelhead smolts raised at Dworshak National Fish Hatchery and released into the Clearwater River drainage. We marked 4,500 smolts each year with Passive Integrated Transponder Tags (PIT-tags) which enabled us to track emigration and estimate survival through mainstem Snake and Columbia river dams. Hatchery steelhead raised in System I freshwater were significantly smaller than those raised in warmer System II re-use water (196 mm, 206 mm, 198 mm and 201 mm System I; 215 mm, 213 mm, 206 mm and 209 mm System II). However, there was no significant difference in detection rates to mainstem observation sites between the two groups (65%, 58%, 78% and 55% System I; 69%, 59%, 74% and 53% System II). Survival estimates to Lower Granite Dam were also not significant between the two groups (72%, 81%, 80% and 77% System I; 77%, 79%, 77%, and 72% System II). Smolts less than 180 mm FL were less likely to be detected than larger smolts. Hatchery steelhead smolts released into Clear Creek, the South Fork Clearwater River and the Clearwater River at Dworshak National Fish Hatchery had significantly different lengths each year, but there was no discernible pattern due to random egg takes and rearing systems. Detection rates to mainstem observation sites for smolts released into Clear Creek were significantly less than the other two groups in all years except 2002 (62%, 57%, 71%, and 57% Clear Creek; 68%, 63%, 73% and 61% South Fork Clearwater River; 70%, 59%, 78% and 55% Clearwater River). However, survival rates to Lower Granite Dam were not significantly different (73%, 65%, 78%, and 77% Clear Creek; 79%, 72%, 79% and 76% South Fork Clearwater River; 81%, 76%, 80% and 83% Clearwater River). Similar to the size at release group, smolts less than 180 mm FL were less likely to get detected than larger smolts. Smolts from both size at release and release

  11. After Three Gorges Dam: What have we learned?

    Science.gov (United States)

    Natali, J.; Williams, P.; Wong, R.; Kondolf, G. M.

    2013-12-01

    China is at a critical point in its development path. By investing heavily in large-scale infrastructure, the rewards of economic growth weigh against long-term environmental and social costs. The construction of Three Gorges Dam, the world's largest hydroelectric project, began in 1994. Between 2002 and 2010, its 660 kilometer reservoir filled behind a 181 meter dam, displacing at least 1.4 million people and transforming Asia's longest river (the Yangtze) while generating nearly 100 billion kWh/yr of electricity -- 2.85% of China's current electric power usage. As the mega-project progenitor in a cascade of planned dams, the Three Gorges Dam emerges as a test case for how China will plan, execute and mitigate its development pathway and the transformation of its environment. Post-Project Assessments (PPA) provide a systematic, scientific method for improving the practice of environmental management - particularly as they apply to human intervention in river systems. In 2012, the Department of Landscape Architecture and Environmental Planning at University of California, Berkeley organized a symposium-based PPA for the Three Gorges Dam on the Yangtze River. Prior to this symposium, the twelve invited Chinese scientists, engineers and economists with recent research on Three Gorges Dam had not had the opportunity to present their evaluations together in an open, public forum. With a 50-year planning horizon, the symposium's five sessions centered on impacts on flows, geomorphology, geologic hazards, the environment and socioeconomic effects. Three Gorges' project goals focused on flood control, hydropower and improved navigation. According to expert research, major changes in sediment budget and flow regime from reservoir operation have significantly reduced sediment discharge into the downstream river and estuary, initiating a series of geomorphic changes with ecological and social impacts. While the dam reduces high flow stages from floods originating above the

  12. Dams

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset �is generated from from the Vermont Dam Inventory (VDI). The VDI is managed by the VT DEC's Dam Safety and Hydrology Section and contains information...

  13. IMPACT OF THE ATATÜRK DAM LAKE ON AGRO-METEOROLOGICAL ASPECTS OF THE SOUTHEASTERN ANATOLIA REGION USING REMOTE SENSING AND GIS ANALYSIS

    Directory of Open Access Journals (Sweden)

    O. Ozcan

    2012-07-01

    Full Text Available The Atatürk Dam is the fourth largest clay-cored rock fill dam in the world. It was constructed on the Euphrates River located in semi-arid Southeastern Turkey in the 1980s as the central component of a large-scale regional development project for the Southeastern Anatolia region (referred to as GAP. The construction began in 1983 and was completed in 1990. The dam and the hydroelectric power plant, which went into service after filling up the reservoir was accomplished in 1992. The Atatürk Dam, which has a height of 169 m, a total storage capacity of 48.7 million m3, and a surface area of about 817 km2 plays an important role in the development of Turkey's energy and agriculture sectors. In this study, the spatial and temporal impacts of the Atatürk Dam on agro-meteorological aspects of the Southeastern Anatolia region have been investigated. Change detection and environmental impacts due to water-reserve changes in Atatürk Dam Lake have been determined and evaluated using multi-temporal Landsat satellite imageries and meteorological datasets within a period of 1984 to 2011. These time series have been evaluated for three time periods. Dam construction period constitutes the first part of the study. Land cover/use changes especially on agricultural fields under the Atatürk Dam Lake and its vicinity have been identified between the periods of 1984 to 1992. The second period comprises the 10-year period after the completion of filling up the reservoir in 1992. At this period, Landsat and meteorological time-series analyses are examined to assess the impact of the Atatürk Dam Lake on selected irrigated agricultural areas. For the last 9-year period from 2002 to 2011, the relationships between seasonal water-reserve changes and irrigated plains under changing climatic factors primarily driving vegetation activity (monthly, seasonal, and annual fluctuations of rainfall rate, air temperature, humidity on the watershed have been investigated

  14. Billy Shaw Dam and Reservoir : Environmental Assessment and Finding of No Significant Impacts.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada.

    1997-03-01

    This notice announces BPA`s decision to fund the construction, operation, and maintenance of the Billy Shaw Dam and Reservoir on the Duck Valley Reservation. This project is part of a continuing effort to address system-wide fish and wildlife losses caused by the development of the hydropower system in the Columbia River Basin. BPA has prepared an Environmental Assessment (EA) evaluating the potential environmental impacts of the proposed project. Based on the analysis in the EA, BPA has determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  15. Resilience scales of a dammed tropical river

    Science.gov (United States)

    Calamita, Elisa; Schmid, Martin; Wehrli, Bernhard

    2017-04-01

    Artificial river impoundments disrupt the seasonality and dynamics of thermal, chemical, morphological and ecological regimes in river systems. These alterations affect the aquatic ecosystems in space and time and specifically modify the seasonality and the longitudinal gradients of important biogeochemical processes. Resilience of river systems to anthropogenic stressors enables their recovery along the flow path; however little is known about the longitudinal distance that rivers need to partially restore their physical, chemical and biological integrity. In this study, the concept of a "resilience scale" will be explored for different water quality parameters downstream of Kariba dam, the largest artificial lake in the Zambezi basin (South-East Africa). The goal of this project is to develop a modelling framework to investigate and quantify the impact of large dams on downstream water quality in tropical context. In particular, we aim to assess the degree of reversibility of the main downstream alterations (temperature, oxygen, nutrients) and consequently the quantification of their longitudinal extent. Coupling in-situ measurements with hydraulic and hydrological parameters such as travel times, will allow us to define a physically-based parametrization of the different resilience scales for tropical rivers. The results will be used for improving future dam management at the local scale and assessing the ecological impact of planned dams at the catchment scale.

  16. Japan`s largest composition dam, aiming for harmony with nature. Chubetsu dam; Shizen tono chowa wo mezasu, Nippon ichi no fukugo dam. Chubetsu dam

    Energy Technology Data Exchange (ETDEWEB)

    Mizushima, T. [Hokkaido Development Bureau, Hokkaido Development Agency, Sapporo (Japan)

    1994-08-15

    This paper introduces Chubetsu Dam planned with a large-scale embankment having a river bed width of 600 m. Chubetsu Dam is being constructed with such objectives as flood control of Ishikari River, river flow rate maintenance, drinking water supply, irrigation water supply and power generation. The dam site is a gravel bed having a river bed width of 600 m and a maximum foundation rock thickness of 40 m, requiring evaluations as a dam foundation and discussions of water shielding methods. As a result of discussions at the Chubetsu Dam technical discussion committee, the dam type is decided to be a composition dam consisting of a gravity type concrete dam on the left river side and a central core type fill dam using a part of the gravel bed as the foundation on the right river side. A continuous underground wall system is planned to be used for shielding water in the gravel foundation. In discussing the anti-seismic properties, analyses for bank construction and water filling to derive stress and deformation conditions prior to an earthquake and a time-history response analysis to derive conditional changes during the earthquake are performed. According to the results thereof, evaluations are given on the safety by compounding the stress and the acceleration. In plans to improve the surrounding areas, an area will be provided upstream the reservoir where the water level is kept constant to serve as a bird sanctuary. 7 figs.

  17. Hydropower, social priorities and the rural–urban development divide: The case of large dams in Cambodia

    International Nuclear Information System (INIS)

    Siciliano, Giuseppina; Urban, Frauke; Kim, Sour; Dara Lonn, Pich

    2015-01-01

    Hydropower investment is a priority in many developing countries, as a means to increase electrification rates and promote national development. However, neglect of dam-affected people's needs, can make them vulnerable to the multifaceted impacts of such projects. Using the case of Cambodia's first large dam, the Kamchay dam, this paper reveals social priorities of affected communities and institutional actors linked to environmental and social implications of large hydropower projects using a preference ranking method. Qualitative research revealed concerns among dam-affected communities which included energy access, livelihood changes, environmental impacts, access to natural resources and compensation. Results also reveal divergence between national and local priorities, which in turn brings about an unequal distribution of costs and benefits of the Kamchay Dam between urban and rural areas. The paper provides recommendations to policy-makers, NGOs and international organizations regarding governance issues, consultation processes and mitigation measures. - Highlights: • We assess social priorities linked to the impacts of a large dam in Cambodia. • We examine differences between local actors in the prioritization of the impacts. • Findings show divergences between national and local priorities of dam construction. • Distribution of cost and benefit is spatially unequal between rural and urban areas.

  18. Physicochemical Characteristics of River Water Downstream of a Large Tropical Hydroelectric Dam

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2016-01-01

    Full Text Available Water quality in the downstream river of a hydroelectric dam may be affected by the structural design and operation. To date, little is known about the water quality downstream of the largest dam in Malaysia, the Bakun hydroelectric dam. Therefore, the objective of the study was to determine the water quality downstream of the dam when the spillway was closed and when it was opened. Results of the study indicate that the dam plays a significant role in regulating the water quality downstream of it. When the spillway was closed, pH and oxygen were lower in the river where DO was below 5 mg/L. When the spillway was opened, the water quality improved in terms of oxygen content (>8.0 mg/L, total sulphide (TS, and chemical oxygen demand (COD but deteriorated in terms of five-day biochemical oxygen demand (BOD5, total ammonia nitrogen (TAN, and total phosphorus (TP. Additionally, the intensity of the impacts, particularly BOD5, COD, and TAN, shows a declining trend as distance from the dam increases. This study shows that impacts on the water quality extend to a distance of 32 km from the dam particularly turbidity and DO and opening the spillway changes the water quality significantly.

  19. Assessment of changes at Glen Canyon Dam

    International Nuclear Information System (INIS)

    Cherry, D.; McCoy, J.; Crandall, S.

    1991-01-01

    This paper describes the complexity associated with the assessment of financial impacts of proposed and actual short-term restrictions at Glen Canyon Dam. The reasons for these restrictions are discussed as well as the methods used to measure their financial impact to Western Area Power Administration

  20. Will river erosion below the Three Gorges Dam stop in the middle Yangtze?

    Science.gov (United States)

    Lai, X.; Yin, D.; Finlayson, B. L.; Wei, T.; Li, M.; Yuan, W.; Yang, S.; Dai, Z.; Gao, S.; Chen, Z.

    2017-11-01

    The environmental impact of the Three Gorges Dam has been a subject of vigorous academic, political and social debate since its inception. This includes the key issue of post-dam river channel erosion, which was predicted by the feasibility study to extend to the river mouth. In this paper we examine the geomorphic response of the channel of the middle Yangtze for 660 km downstream of the dam. Using data on channel characteristics, bed material and sediment transport, we show that in the decade following the dam closure, pre-dam seasonal erosion has been replaced by year-round erosion, a pattern most marked at the upstream end of the study area. The sediment carrying capacity of the river channel has been largely reduced below the dam. The locus of bed scour has moved progressively downstream, ceasing as the bed material became too coarse to be transported (e.g. D50: 0.29 mm pre-dam coarsened to 20 mm below the dam by 2008). About 400 km below the dam there is a reduction in channel slope that changes the sediment carrying capacity from 0.25 kg m-3 to only about 0.05 kg m-3, which is insufficient to move bed sediment. The new long-term hydro-morphological equilibrium that will be established in this section of the middle Yangtze will prevent the further incision downstream initiated by the Three Gorges Dam. The results suggest that the full extent of adverse environmental impact predicted by the pre-dam studies will not eventuate.

  1. Safety Aspects of Sustainable Storage Dams and Earthquake Safety of Existing Dams

    Directory of Open Access Journals (Sweden)

    Martin Wieland

    2016-09-01

    Full Text Available The basic element in any sustainable dam project is safety, which includes the following safety elements: ① structural safety, ② dam safety monitoring, ③ operational safety and maintenance, and ④ emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. However, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be carried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that dam safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.

  2. Large dams and risk management

    International Nuclear Information System (INIS)

    Cazelais, N.

    2003-01-01

    In July 1996, Quebec's Saguenay region was subjected to intensive rainfall which caused severe floods and uncontrolled release of several reservoirs, resulting in extensive damage to dam structures and reservoirs. The probability of occurrence for that disaster was 1:10,000. Following the disaster, the Quebec government established a dam management body entitled the Commission scientifique et technique sur la gestion des barrages, which pointed out several safety shortcomings of existing dams. Many were either very old or had undergone significant function change without being subsequently re-evaluated. A report by the Commission stated that damage following the floods could have been limited if the design and operating standards of the dams had been more stringent. A Dam Safety Act was adopted by the Quebec National Assembly on May 30, 2000 following recommendations to retain safer structures. The Act demands regular reporting of operating procedures. Seismic activity was noted as being a topic that requires in-depth examination since Quebec's St. Lawrence Valley, particularly the Charlevoix region, is one of Canada's largest seismic zones. The other is on the west coast in British Columbia. Earthquakes in Quebec are less intense than the ones in British Columbia, but they have higher frequency content which exerts a quasi-resonance wave effect which impacts roads, bridges, buildings and hydroelectric generating facilities. Hydro-Quebec is a public utility which owns 563 retaining structures, of which 228 are ranked as large dams that measure more than 15 metres high, 400 metres long and with a reservoir capacity of more than 1 million cubic metres of water. Hydro-Quebec addresses hydrological, seismic, technological and human risks through a dam safety procedure that includes structured plans for choosing best alternatives through staged exercises. Hazard levels are minimized through the adoption of emergency, prevention and alleviation measures. The utility

  3. Estimating flood inundation caused by dam failures

    Energy Technology Data Exchange (ETDEWEB)

    Mocan, N. [Crozier and Associates Inc., Collingwood, ON (Canada); Joy, D.M. [Guelph Univ., ON (Canada). School of Engineering; Rungis, G. [Grand River Conservation Authority, Cambridge, ON (Canada)

    2006-01-15

    Recent advancements in modelling inundation due to dam failures have allowed easier and more illustrative analyses of potential outcomes. This paper described new model and mapping capabilities available using the HEC-RAS hydraulic model in concert with geographic information systems (GIS). The study area was the upper reaches of Canagagigue Creek and the Woolwich Dam near Elmira, Ontario. A hydraulic analysis of a hypothetical dam failure was developed based on the summer probable maximum flood (PMF) event. Limits extended from Woolwich Dam to downstream of the Town of Elmira. An incoming summer PMF hydrograph was set as the upstream boundary condition in the upstream model. Simulation parameters include simulation time-step; implicit weighting factor; water surface calculation tolerance; and output calculation interval. Peak flows were presented, as well as corresponding flood inundation results through the Town of Elmira. The hydraulic model results were exported to a GIS in order to develop inundation maps for emergency management planning. Results from post-processing included inundation maps for each of the simulated time-steps as well as an inundation animation for the duration of the dam breach. It was concluded that the modelling tools presented in the study can be applied to other dam safety assessment projects in order to develop effective and efficient emergency preparedness plans through public consultation and the establishment of impact zones. 1 tab., 2 figs.

  4. Damming evidence : Canada and the World Commission on Dams

    Energy Technology Data Exchange (ETDEWEB)

    Vert, P.; Parkinson, B.

    2003-06-01

    Large hydroelectric projects have been met with strong resistance from affected communities, particularly indigenous groups who have been displaced from their flooded communities following the damming of a river. The World Commission on Dams (WCD) was formed in 1998 to review the effectiveness of large dams and develop internationally acceptable guidelines and standards for large dams or hydro energy projects. The Canadian government, through the Canadian International Development Agency, was one of many governments to fund the WCD. However, the authors argue that despite the financial support, the Canadian government was absent from any effort to follow-up on the recommendations of the WCD. The seven strategic priorities in the decision making process include: (1) gaining public acceptance, (2) comprehensive option assessment of water, energy, food and development needs, (3) addressing existing dams to improve the benefits that can be derived from them, (4) sustaining livelihoods, (5) recognizing the entitlements and sharing benefits, (6) ensuring compliance, and (7) sharing rivers for peace, development and security. This report offers a means to assess planned or existing dams and presents a set of guidelines for good practices linked to the seven strategic priorities. Ten case studies from around the world were presented, including the Three Gorges Dam in China. 154 refs., 3 figs., 3 appendices.

  5. Proceedings of the Canadian Dam Association's 2006 annual conference: dams: past, present and future

    International Nuclear Information System (INIS)

    2006-01-01

    This conference addressed particular technical challenges regarding the operation of dams with particular focus on best practices for improving dam management and safety. It featured 4 workshops and a technical program led by experts on dams and tailings facilities that addressed topics such as dam construction, design and rehabilitation; dam management in a hydrological uncertainty context; monitoring, instrumentation and maintenance; dam behaviour; dam safety, dam failure and practical approaches to emergency preparedness planning for dam owners; historical aspects and environmental issues and conflicting water use. Recent developments in dam construction were reviewed along with discharge and debris management, tailings dam issues, asset management, seismic issues, public safety, seepage monitoring, flow control, dam rehabilitation, concrete testing, hydrotechnical issues, risk assessment methodology, and dam safety guidelines for extreme flood analyses and their applications. All 80 presentations from this conference have been catalogued separately for inclusion in this database. refs., tabs., figs

  6. Oldman river dam mitigation program downstream vegetation project report, Volume II: The potential effects of an operating plan for the Oldman River dam on Riparian cottonwood forests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.M.

    1993-01-01

    Extensive cottonwood (poplar) forests exist in the Oldman River valley downstream of the Oldman River dam. Studies of similar forests in nearby river valleys and elsewhere on the western prairies have found significant declines of some riparian forests following river damming. This investigation was initiated to determine the causes of cottonwood forest decline downstream from existing dams in southern Alberta; inventory the existing river valley forests in the Oldman Basin; establish study sites in the Oldman River forests to monitor changes in forest status following commissioning of the Oldman River dam, and evaluate the probable impact of proposed operating plans for the Oldman River dam and associated water control structures on downstream forests. This report summarizes the progress made in the analyses of the probable effects on the survival of the forests, including a discussion of the hydrological conditions essential for cottonwood forest regeneration and an explanation of the effects of altering these characteristics on riparian forests; the hydrological alterations expected along various river reaches in the Oldman Basin with the implementation of the proposed OD05 Oldman Dam operating plan; and preliminary analyses of the problem impacts of the OD05 operating plan on the cottonwood forests along these reaches.

  7. Estimates o the risks associated with dam failure

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaswamy, P.; Hauss, B.; Hseih, T.; Moscati, A.; Hicks, T.E.; Okrent, D.

    1974-03-01

    The probabilities and potential consequences of dam failure in California, primarily due to large earthquakes, was estimated, taking as examples eleven dams having a relatively large population downstream. Mortalities in the event of dam failure range from 11,000 to 260,000, while damage to property may be as high as $720 million. It was assumed that an intensity IX or X earthquake (on the Modified Mercalli Scale) would be sufficient to completely fail earthen dams. Predictions of dam failure were based on the recurrence times of such earthquakes. For the dams studied, the recurrence intervals for an intensity IX earthquake varied between 20 and 800 years; for an intensity X between 50 and 30,000 years. For the Lake Chabot and San Pablo dams (respectively 20, 30 years recurrent earthquake times for a intensity X) the associated consequences are: 34,000 (Lake Chabot) and 30,000 (San Pablo) people killed; damage $140 million and $77 million. Evaculation was found to ameliorate the consequences slightly in most cases because of the short time available. Calculations are based on demography, and assume 10 foot floodwaters will drown all in their path and destroy all one-unit homes in the flood area. Damage estimates reflect losses incurred by structural damage to buildings and do not include loss of income. Hence the economic impact is probably understated.

  8. Proceedings of the 2010 Canadian Dam Association's public safety around dams workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Nearly 30 people have drowned in dam-related incidents over the last 10 years in Canada. The Canadian public is now calling for improved safety guidelines. Public interaction with dams is increasing as a result of interest in extreme sports and perceived rights of access. However, many members of the public are not aware of the dangers posed by dams. This workshop provided a forum to discuss proposals for a draft publication of the Canadian Dam Association (CDA) guidelines for public safety and security around dams. Issues related to current legislation and liability were discussed. Methods of increasing public awareness of the hazards posed by dams included increased signage in dam locations, the use of audible and visual alert systems, and the use of booms and buoys. The responsibilities of dam owners in ensuring the safety of dams were also discussed. The conference featured 5 presentations, of which 2 have been catalogued separately for inclusion in this database. tabs., figs.

  9. The Impact of a Check Dam on Groundwater Recharge and Sedimentation in an Ephemeral Stream

    Directory of Open Access Journals (Sweden)

    Hakan Djuma

    2017-10-01

    Full Text Available Despite the widespread presence of groundwater recharge check dams, there are few studies that quantify their functionality. The objectives of this study are (i to assess groundwater recharge in an ephemeral river with and without a check dam and (ii to assess sediment build-up in the check-dam reservoir. Field campaigns were carried out to measure water flow, water depth, and check-dam topography to establish water volume, evaporation, outflow, and recharge relations, as well as sediment build-up. To quantify the groundwater recharge, a water-balance approach was applied at two locations: at the check dam reservoir area and at an 11 km long natural stretch of the river upstream. Prediction intervals were computed to assess the uncertainties of the results. During the four years of operation, the check dam (storage capacity of 25,000 m3 recharged the aquifer with an average of 3.1 million m3 of the 10.4 million m3 year−1 of streamflow (30%. The lower and upper uncertainty limits of the check dam recharge were 0.1 and 9.6 million m3 year−1, respectively. Recharge from the upstream stretch was 1.5 million m3 year−1. These results indicate that check dams are valuable structures for increasing groundwater resources in semi-arid regions.

  10. The Dams and Monitoring Systems and Case Study: Ataturk and Karakaya Dams

    Science.gov (United States)

    Kalkan, Y.; Bilgi, S.; Gülnerman, A. G.

    2017-12-01

    Dams are among the most important engineering structures used for flood controls, agricultural purposes as well as drinking and hydroelectric power. Especially after the Second World War, developments on the construction technology, increase the construction of larger capacity dams. There are more than 150.000 dams in the world and almost 1000 dams in Turkey, according to international criteria. Although dams provide benefits to humans, they possess structural risks too. To determine the performance of dams on structural safety, assessing the spatial data is very important. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some general information on dams and their different monitoring systems by taking into account two different dams and their structural specifications with the required information. The case study in this paper depends on a comparison of the monitoring surveys on Atatürk Dam and Karakaya Dam, which are constructed on Firat River with two different structural

  11. Impact of beaver dams on abundance and distribution of anadromous salmonids in two lowland streams in Lithuania.

    Science.gov (United States)

    Virbickas, Tomas; Stakėnas, Saulius; Steponėnas, Andrius

    2015-01-01

    European beaver dams impeded movements of anadromous salmonids as it was established by fishing survey, fish tagging and redd counts in two lowland streams in Lithuania. Significant differences in abundancies of other litophilic fish species and evenness of representation by species in the community were detected upstream and downstream of the beaver dams. Sea trout parr marked with RFID tags passed through several successive beaver dams in upstream direction, but no tagged fish were detected above the uppermost dam. Increase in abundances of salmonid parr in the stream between the beaver dams and decrease below the dams were recorded in November, at the time of spawning of Atlantic salmon and sea trout, but no significant changes were detected in the sections upstream of the dams. After construction of several additional beaver dams in the downstream sections of the studied streams, abundance of Atlantic salmon parr downstream of the dams decreased considerably in comparison with that estimated before construction.

  12. Impact of beaver dams on abundance and distribution of anadromous salmonids in two lowland streams in Lithuania.

    Directory of Open Access Journals (Sweden)

    Tomas Virbickas

    Full Text Available European beaver dams impeded movements of anadromous salmonids as it was established by fishing survey, fish tagging and redd counts in two lowland streams in Lithuania. Significant differences in abundancies of other litophilic fish species and evenness of representation by species in the community were detected upstream and downstream of the beaver dams. Sea trout parr marked with RFID tags passed through several successive beaver dams in upstream direction, but no tagged fish were detected above the uppermost dam. Increase in abundances of salmonid parr in the stream between the beaver dams and decrease below the dams were recorded in November, at the time of spawning of Atlantic salmon and sea trout, but no significant changes were detected in the sections upstream of the dams. After construction of several additional beaver dams in the downstream sections of the studied streams, abundance of Atlantic salmon parr downstream of the dams decreased considerably in comparison with that estimated before construction.

  13. Trading river services: optimizing dam decisions at the basin scale to improve socio-ecological resilience

    Science.gov (United States)

    Roy, S. G.; Gold, A.; Uchida, E.; McGreavy, B.; Smith, S. M.; Wilson, K.; Blachly, B.; Newcomb, A.; Hart, D.; Gardner, K.

    2017-12-01

    Dam removal has become a cornerstone of environmental restoration practice in the United States. One outcome of dam removal that has received positive attention is restored access to historic habitat for sea-run fisheries, providing a crucial gain in ecosystem resilience. But dams also provide stakeholders with valuable services, and uncertain socio-ecological outcomes can arise if there is not careful consideration of the basin scale trade offs caused by dam removal. In addition to fisheries, dam removals can significantly affect landscape nutrient flux, municipal water storage, recreational use of lakes and rivers, property values, hydroelectricity generation, the cultural meaning of dams, and many other river-based ecosystem services. We use a production possibility frontiers approach to explore dam decision scenarios and opportunities for trading between ecosystem services that are positively or negatively affected by dam removal in New England. Scenarios that provide efficient trade off potentials are identified using a multiobjective genetic algorithm. Our results suggest that for many river systems, there is a significant potential to increase the value of fisheries and other ecosystem services with minimal dam removals, and further increases are possible by including decisions related to dam operations and physical modifications. Run-of-river dams located near the head of tide are often found to be optimal for removal due to low hydroelectric capacity and high impact on fisheries. Conversely, dams with large impoundments near a river's headwaters can be less optimal for dam removal because their value as nitrogen sinks often outweighs the potential value for fisheries. Hydropower capacity is negatively impacted by dam removal but there are opportunities to meet or exceed lost capacity by upgrading preserved hydropower dams. Improving fish passage facilities for dams that are critical for safety or water storage can also reduce impacts on fisheries. Our

  14. Fragmentation of Andes-to-Amazon connectivity by hydropower dams.

    Science.gov (United States)

    Anderson, Elizabeth P; Jenkins, Clinton N; Heilpern, Sebastian; Maldonado-Ocampo, Javier A; Carvajal-Vallejos, Fernando M; Encalada, Andrea C; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems-the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services.

  15. FULCRUM - A dam safety management and alert system

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Cameron; Greenaway, Graham [Knight Piesold Ltd., Vancouver, (Canada)

    2010-07-01

    Efficient management of instrumentation, monitoring and inspection data are the keys to safe performance and dam structure stability. This paper presented a data management system, FULCRUM, developed for dam safety management. FULCRUM is a secure web-based data management system which simplifies the process of data collection, processing and analysis of the information. The system was designed to organize and coordinate dam safety management requirements. Geotechnical instrumentation such as piezometers or inclinometers and operating data can be added to the database. Data from routine surveillance and engineering inspection can also be incorporated into the database. The system provides users with immediate access to historical and recent data. The integration of a GIS system allows for rapid assessment of the project site. Customisable alerting protocols can be set to identify and respond quickly to significant changes in operating conditions and potential impacts on dam safety.

  16. Research on Safety Factor of Dam Slope of High Embankment Dam under Seismic Condition

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available With the constant development of construction technology of embankment dam, the constructed embankment dam becomes higher and higher, and the embankment dam with its height over 200m will always adopt the current design criteria of embankment dam only suitable for the construction of embankment dam lower than 200m in height. So the design criteria of high embankment dam shall be improved. We shall calculate the stability and safety factors of dam slope of high embankment dam under different dam height, slope ratio and different seismic intensity based on ratio of safety margin, and clarify the change rules of stability and safety factors of dam slope of high embankment dam with its height over 200m. We calculate the ratio of safety margin of traditional and reliable method by taking the stable, allowable and reliability index 4.2 of dam slope of high embankment dam with its height over 200m as the standard value, and conduct linear regression for both. As a result, the conditions, where 1.3 is considered as the stability and safety factors of dam slope of high embankment dam with its height over 200m under seismic condition and 4.2 as the allowable and reliability index, are under the same risk control level.

  17. Dams designed to fail

    Energy Technology Data Exchange (ETDEWEB)

    Penman, A. [Geotechnical Engineering Consultants, Harpenden (United Kingdom)

    2004-09-01

    New developments in geotechnical engineering have led to methods for designing and constructing safe embankment dams. Failed dams can be categorized as those designed to fail, and those that have failed unexpectedly. This presentation outlined 3 dam failures: the 61 m high Malpasset Dam in France in 1959 which killed 421; the 71 m high Baldwin Hills Dam in the United States in 1963 which killed 5; and, the Vajont Dam in Italy in 1963 which killed 2,600 people. Following these incidents, the International Commission for Large Dams (ICOLD) reviewed regulations on reservoir safety. The 3 dams were found to have inadequate spillways and their failures were due to faults in their design. Fuse plug spillways, which address this problem, are designed to fail if an existing spillway proves inadequate. They allow additional discharge to prevent overtopping of the embankment dam. This solution can only be used if there is an adjacent valley to take the additional discharge. Examples of fuse gates were presented along with their effect on dam safety. A research program is currently underway in Norway in which high embankment dams are being studied for overtopping failure and failure due to internal erosion. Internal erosion has been the main reason why dams have failed unexpectedly. To prevent failures, designers suggested the use of a clay blanket placed under the upstream shoulder. However, for dams with soft clay cores, these underblankets could provide a route for a slip surface and that could lead to failure of the upstream shoulder. It was concluded that a safe arrangement for embankment dams includes the use of tipping gates or overturning gates which always fail at a required flood water level. Many have been installed in old and new dams around the world. 14 refs., 19 figs.

  18. Management of dams for the next Millennium: proceedings of the 1999 Canadian Dam Association

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The meeting featured seven sessions with 18 papers abstracted/indexed therein as follows: keynote address: tailings dams safety - implications for the dam safety community; 1 - design and performance: performance monitoring of dams: are we doing what we should be doing?; tailings dams from the perspective of conventional dam engineering; and design overview of Syncrude's Mildred Lake east toe berm; 2 - design and modelling: use of a 2D model for a dam break study on the ALCAN hydroelectric complex in Quebec; and spillway design implications resulting from changes in rainfall extremes; 3 - risk and dam safety I: closing the gaps in the dam safety guidelines; the reality of life safety consequence classification; and surveillance practices for the next millenium; 4 - risk and dam safety II: quantitative risk-assessment using the capacity-demand analysis; and new guidelines for dam safety classification; 5 - millenium issues: expectations of immortality, dam safety management into the next millenium; 6 - rehabilitation techniques: the unconventional application of conventional materials; nondestructive testing technology to characterize concrete dam/bedrock interface; method and instrument for detecting crack in concrete; and grouting of the cracks in the Arch 5-6 - Daniel Johnson Dam; and 7 - case studies: rehabilitation of an 80 year old Ambursen type dam; and debris booms for the protection of spillways.

  19. Removing Dams: Project-Level Policy and Scientific Research Needs (Invited)

    Science.gov (United States)

    Graber, B.

    2010-12-01

    More than 800 dams have been removed around the country, mostly “small” dams, under 25 feet in height. The total number of removals, however, is small relative to the number of deteriorating dams and the ecological impacts those structures continue to have on native riverine species and natural river function. The number of dam removal projects is increasing as aging dams continue to deteriorate and riverine species continue to decline. Practitioners and regulators need to find cost-effective project approaches that minimize short-term environmental impacts and maximize long-term benefits while keeping project costs manageable. Dam removals can be a regulatory challenge because they inherently have short-term impacts in order to achieve larger, self-sustaining, long-term benefits. These short-term impacts include sediment movement, construction access roads, and habitat conversion from lacustrine to riverine. Environmental regulations are designed to prevent degradation and have presented challenges for projects designed to benefit the environment. For example, a short-term release of sediment may exceed water quality standards for some period of time, but lead to a long-term beneficial project. Other regulatory challenges include permitting the loss of wetland area for increased native river function, or allowing the release of some level of contaminated sediment when the downstream sediment is similarly contaminated. Dam removal projects raise a range of engineering and scientific questions on effective implementation techniques such as appropriate sediment management approaches, construction equipment access approaches, invasive species management, channel/floodplain reconstruction, and active versus passive habitat rehabilitation. While practitioners have learned and refined implementation approaches over the last decade, more input is needed from researchers to help assess the effectiveness of those techniques, and to provide more effective techniques

  20. In the Land of the Dammed: Assessing Governance in Resettlement of Ghana’s Bui Dam Project

    Directory of Open Access Journals (Sweden)

    Kwabena Asiama

    2017-11-01

    Full Text Available Resettlement resulting from dam construction has raised several concerns due to the negative aftermath impacts. In Ghana, the construction of three hydroelectric dams resulted in large-scale resettlements. Given the little experience that Ghana has in resettlements, it is necessary for a robust monitoring structure for resettlements. However, this was not available in the last resettlement undertaken for the Bui Dam Project. This paper aims at developing an assessment framework for monitoring resettlement activities on customary lands from a good governance perspective. Based on four good governance principles, transparency, public participation and inclusiveness, equity and rule of law and accountability, a good governance assessment framework is built and applied to the Bui Dam Project using a case study approach. Data were collected through interviews and focus group discussion with the key actors of the resettlement project. It was first found that the planning stage of the resettlement came out with a robust plan that was to prevent the impoverishment of the affected persons. However, in the implementation of the resettlement, not all good governance principles were adhered to. In conclusion, it was found that by deconstructing the resettlement process with a good governance framework, the problematic areas of the resettlement can be effectively differentiated between the planning and implementation phases.

  1. Evaluating safety of concrete gravity dam on weak rock: Scott Dam

    International Nuclear Information System (INIS)

    Goodman, R.E.; Ahlgren, C.S.

    2000-01-01

    Scott Dam is owned and operated by Pacific Gas and Electric Co. (PG and E) as part of the Potter Valley Project. Although it is an unimpressive concrete gravity dam [233 m (765 ft) long with maximum water surface 33.4 m (110 ft) above tail water], the dam has unusually complex and weak foundation rocks; thick condition caused design changes during construction, numerous subsequent special investigations, and several corrections and additions. A main stumbling block to clarification of the dam safety issue for Scott Dam has always been difficulty in characterizing the foundation material. This paper discusses an approach to this problem as well s how the safety of the dam was subsequently confirmed. Following a comprehensive program of research, investigations, and analysis from 1991 to 1997

  2. Dam removal: Listening in

    Science.gov (United States)

    Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.

    2017-07-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  3. Public safety around dams

    Energy Technology Data Exchange (ETDEWEB)

    Bourassa, H. [Centre d' expertise hydrique du Quebec, Quebec, PQ (Canada)

    2009-07-01

    Fourty public dams are managed on a real-time basis by the Centre d'expertise hydrique du Quebec (CEHQ). This presentation described the public dams owned by the CEHQ and discussed the public safety measures at the dams. The dams serve various purposes, including protection against floods; industrial or drinking water supply; resort or recreational activities; hydroelectric development; and wildlife conservation. Trigger events were also discussed, such as the complaint at Rapides-des-Cedres dam and deaths that occurred in 2004 when water from a dam was released without warning. Several photographs were presented to illustrate that people were unaware of the danger. Initiatives aimed at raising awareness and studying public safety issues were discussed. A pilot project was launched and a permanent committee was created to evaluate all aspects of public safety at the dams owned by CEHQ. The first tasks of the committee were to establish requirements for waterway safety barriers, both upstream and downstream, for all public dams; to establish requirements for safety signage for all public dams; and to develop criteria to decide on safety signage at each dam. figs.

  4. Public safety around dams

    Energy Technology Data Exchange (ETDEWEB)

    Bourassa, H [Centre d' expertise hydrique du Quebec, Quebec, PQ (Canada)

    2009-07-01

    Fourty public dams are managed on a real-time basis by the Centre d'expertise hydrique du Quebec (CEHQ). This presentation described the public dams owned by the CEHQ and discussed the public safety measures at the dams. The dams serve various purposes, including protection against floods; industrial or drinking water supply; resort or recreational activities; hydroelectric development; and wildlife conservation. Trigger events were also discussed, such as the complaint at Rapides-des-Cedres dam and deaths that occurred in 2004 when water from a dam was released without warning. Several photographs were presented to illustrate that people were unaware of the danger. Initiatives aimed at raising awareness and studying public safety issues were discussed. A pilot project was launched and a permanent committee was created to evaluate all aspects of public safety at the dams owned by CEHQ. The first tasks of the committee were to establish requirements for waterway safety barriers, both upstream and downstream, for all public dams; to establish requirements for safety signage for all public dams; and to develop criteria to decide on safety signage at each dam. figs.

  5. Assessment and statistics of Brazilian hydroelectric power plants: Dam areas versus installed and firm power

    International Nuclear Information System (INIS)

    Caetano de Souza, Antonio Carlos

    2008-01-01

    The Brazilian relief, predominantly composed by small mountains and plateaus, contributed to formation of rivers with high amount of falls. With exception to North-eastern Brazil, the climate of this country are rainy, which contributes to maintain water flows high. These elements are essential to a high hydroelectric potential, contributing to the choice of hydroelectric power plants as the main technology of electricity generation in Brazil. Though this is a renewable source, whose utilized resource is free, dams must to be established which generates a high environmental and social impact. The objective of this study is to evaluate the impact caused by these dams through the use of environmental indexes. These indexes are ratio formed by installed power with dam area of a hydro power plant, and ratio formed by firm power with this dam area. In this study, the greatest media values were found in South, Southeast, and Northeast regions respectively, and the smallest media values were found in North and Mid-West regions, respectively. The greatest encountered media indexes were also found in dams established in the 1950s. In the last six decades, the smallest indexes were registered by dams established in the 1980s. These indexes could be utilized as important instruments for environmental impact assessments, and could enable a dam to be established that depletes an ecosystem as less as possible. (author)

  6. Pine Flat Dam Fish and Wildlife Habitat Restoration, Fresno, California. Final Environmental Impact Statement/Environment Impact Report (SCH #96042044)

    National Research Council Canada - National Science Library

    2001-01-01

    ...; and reestablishing the historic flood plain and native historic plant and wildlife communities. This final EIS/EIR describes the environment near Pine Flat Dam and Reservoir and along the Lower Kings River in the Pine Flat Dam area...

  7. Dam failure analysis for the Lago El Guineo Dam, Orocovis, Puerto Rico

    Science.gov (United States)

    Gómez-Fragoso, Julieta; Heriberto Torres-Sierra,

    2016-08-09

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed hydrologic and hydraulic analyses to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers.The hydrologic assessment was designed to determine the outflow hydrographs and peak discharges for Lago El Guineo and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation event, (2) a 24-hour probable maximum precipitation event, and (3) a 24-hour, 100-year recurrence rainfall event. The hydraulic study simulated a dam failure of Lago El Guineo Dam using flood hydrographs generated from the hydrologic study. The simulated dam failure generated a hydrograph that was routed downstream from Lago El Guineo Dam through the lower reaches of the Río Toro Negro and the Río Grande de Manatí to determine water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” conditions. The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC–HMS) and Hydrologic Engineering Center’s River Analysis System (HEC–RAS) computer programs, developed by the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was completed using the unsteady flow module available in the HEC–RAS model.Above the Lago El Guineo Dam, the simulated inflow peak discharges from HEC–HMS resulted in about 550 and 414 cubic meters per second for the 6- and 24-hour probable maximum precipitation events, respectively. The 24-hour, 100-year recurrence storm simulation resulted in a peak discharge of about 216 cubic meters per second. For the hydrologic analysis, no dam failure conditions are

  8. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history

    Science.gov (United States)

    Williams, Martin

    2014-05-01

    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are

  9. Downstream environmental impacts of dams: case study Tucurui Hydroelectric Plant, PA; Impactos ambientais a jusante de hidreletricas: o caso da usina de Tucurui, PA

    Energy Technology Data Exchange (ETDEWEB)

    Manyari, Waleska Valenca

    2007-12-15

    The hydroelectric resources of the Amazon region are considered a competitive alternative despite the structural problems they entail. Concerning the latter, plans to build large-scale dams in the region have drawn criticism mainly on account of the loss of forest cover in areas flooded by dam reservoirs and the conflicts concerning the relocation of indigenous and riverside communities in the region. This study seeks to contribute to better understanding of the environmental issue in the Amazon by focusing attention on the downstream effects of dams, which have large-scale, hitherto neglected ecological repercussions. The impact of dams extends well beyond the area surrounding the artificial lakes they create, harming rich Amazon wetland ecosystems. The morphology of dammed rivers changes in response to new inputs of energy and matter, which may in turn destroy certain biotypes. This is a remote-sensing-based case study of the Tucurui hydroelectric scheme in the Amazon state of Para. Attention is drawn to the need to take into account effects on alluvial rivers downstream from hydroelectric power plants when it comes to making planning decisions, as part of a sustainable energy policy. (author)

  10. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    Science.gov (United States)

    Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.

  11. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    Science.gov (United States)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  12. Measurement of Lake Roosevelt biota in relation to reservoir operations. 1991 Annual report

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th

  13. Measurement of Lake Roosevelt Biota in Relation to Reservoir Operations; 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Janelle R.; McDowell, Amy C.; Scholz, Allan T.

    1995-08-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th.

  14. Hydrologic response of streams restored with check dams in the Chiricahua Mountains, Arizona

    Science.gov (United States)

    Norman, Laura M.; Brinkerhoff, Fletcher C.; Gwilliam, Evan; Guertin, D. Phillip; Callegary, James B.; Goodrich, David C.; Nagler, Pamela L.; Gray, Floyd

    2016-01-01

    In this study, hydrological processes are evaluated to determine impacts of stream restoration in the West Turkey Creek, Chiricahua Mountains, southeast Arizona, during a summer-monsoon season (June–October of 2013). A paired-watershed approach was used to analyze the effectiveness of check dams to mitigate high flows and impact long-term maintenance of hydrologic function. One watershed had been extensively altered by the installation of numerous small check dams over the past 30 years, and the other was untreated (control). We modified and installed a new stream-gauging mechanism developed for remote areas, to compare the water balance and calculate rainfall–runoff ratios. Results show that even 30 years after installation, most of the check dams were still functional. The watershed treated with check dams has a lower runoff response to precipitation compared with the untreated, most notably in measurements of peak flow. Concerns that downstream flows would be reduced in the treated watershed, due to storage of water behind upstream check dams, were not realized; instead, flow volumes were actually higher overall in the treated stream, even though peak flows were dampened. We surmise that check dams are a useful management tool for reducing flow velocities associated with erosion and degradation and posit they can increase baseflow in aridlands.

  15. Spatial extent and dynamics of dam impacts on tropical island freshwater fish assemblages

    Science.gov (United States)

    Cooney, Patrick B.; Kwak, Thomas J.

    2013-01-01

    Habitat connectivity is vital to the persistence of migratory fishes. Native tropical island stream fish assemblages composed of diadromous species require intact corridors between ocean and riverine habitats. High dams block fish migration, but low-head artificial barriers are more widespread and are rarely assessed for impacts. Among all 46 drainages in Puerto Rico, we identified and surveyed 335 artificial barriers that hinder fish migration to 74.5% of the upstream habitat. We also surveyed occupancy of native diadromous fishes (Anguillidae, Eleotridae, Gobiidae, and Mugilidae) in 118 river reaches. Occupancy models demonstrated that barriers 2 meters (m) high restricted nongoby fish migration and extirpated those fish upstream of 4-m barriers. Gobies are adapted to climbing and are restricted by 12-m barriers and extirpated upstream of 32-m barriers. Our findings quantitatively illustrate the extensive impact of low-head structures on island stream fauna and provide guidance for natural resource management, habitat restoration, and water development strategies.

  16. Crotch Lake dam rehabilitation project

    International Nuclear Information System (INIS)

    Brunet, G.; Dobrowolski, E.

    1999-01-01

    Replacement of the existing wood crib dam structure on Crotch Lake on the Mississippi River in eastern Ontario that provided water storage for the power production at High Falls Generating Station, became necessary when it was determined that the dam did not meet Ontario-Hydro's safety standards. This paper describes the project of replacing the existing structure with a PVC coated gabion wall with waterproofing. The entire structure was covered with three layers of wire mesh, laced together, and criss-crossed for superior strength and rigidity. The work was completed in 28 days with no environmental impact . Life expectancy of the new structure is in excess of 40 years. With periodic maintenance of the gabion mat cover, life span could be extended an additional 20 to 40 years. 5 figs

  17. Teton Dam failure

    Energy Technology Data Exchange (ETDEWEB)

    Snorteland, N. [United States Dept. of the Interior, Washington, DC (United States). Bureau of Reclamation

    2009-07-01

    This case summary discussed an internal erosion failure that occurred at the embankment foundation of Teton Dam. The project was designed as a run-of-the-river power generation facility and to provide irrigation, flood protection, and power generation to the lower Teton region of southern Idaho. The dam site was located next to the eastern Snake River plain, a volcanic filled depression. The foundation's cutoff trench was excavated into the bedrock along the length of the dam. The dam was designed as a zoned earthfill with a height of 305 feet. A trench made of low plasticity windblown silt was designed to connect the embankment core to the rock foundation. Seeps were noted in 1976, and a leak was observed near the toe of the dam. A wet spot appeared on the downstream face of the dam at elevation 5200. A sinkhole then developed. The embankment crest collapsed, and the dam breached. Peak outflow was estimated at 1,000,000 cfs. The failure was attributed to a lack of communication between designers, a failure to understand geologic information about the region, and an insufficient review of designs and specifications by designers and field personnel. No monitoring instrumentation was installed in the embankment. Approximately 300 square miles were inundated, and 25,000 people were displaced. Eleven people were killed. A review group noted that the rock surface was not adequately sealed, and that the dam failed as a result of inadequate protection of the impervious core material from internal erosion. 42 figs.

  18. Mechanics of slide dams

    International Nuclear Information System (INIS)

    Young, G.A.

    1970-01-01

    Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)

  19. Mechanics of slide dams

    Energy Technology Data Exchange (ETDEWEB)

    Young, G A [Engineering, Agbabian-Jacobsen Associates, Los Angeles (United States)

    1970-05-15

    Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)

  20. Geographical Overview of the Three Gorges Dam and Reservoir, China - Geologic Hazards and Environmental Impacts

    Science.gov (United States)

    Highland, Lynn M.

    2008-01-01

    The Three Gorges Dam and Reservoir on the Yangtze River, China, has been an ambitious and controversial project. The dam, the largest in the world as of 2008, will provide hydropower, help to manage flood conditions, and increase the navigability of the Yangtze River. However, this massive project has displaced human and animal populations and altered the stability of the banks of the Yangtze, and it may intensify the seismic hazard of the area. It has also hindered archeological investigations in the reservoir and dam area. This report, originally in the form of a Microsoft PowerPoint presentation, gives a short history and overview of the dam construction and subsequent consequences, especially geologic hazards already noted or possible in the future. The report provides photographs, diagrams, and references for the reader's further research - a necessity, because this great undertaking is dynamic, and both its problems and successes continue to evolve. The challenges and consequences of Three Gorges Dam will be closely watched and documented as lessons learned and applied to future projects in China and elsewhere.

  1. Dam break analysis and flood inundation map of Krisak dam for emergency action plan

    Science.gov (United States)

    Juliastuti, Setyandito, Oki

    2017-11-01

    The Indonesian Regulation which refers to the ICOLD Regulation (International Committee on Large Dam required have the Emergency Action Plan (EAP) guidelines because of the dams have potential failure. In EAP guidelines there is a management of evacuation where the determination of the inundation map based on flood modeling. The purpose of the EAP is to minimize the risk of loss of life and property in downstream which caused by dam failure. This paper will describe about develop flood modeling and inundation map in Krisak dam using numerical methods through dam break analysis (DBA) using hydraulic model Zhong Xing HY-21. The approaches of dam failure simulation are overtopping and piping. Overtopping simulation based on quadrangular, triangular and trapezium fracture. Piping simulation based on cracks of orifice. Using results of DBA, hazard classification of Krisak dam is very high. The nearest village affected dam failure is Singodutan village (distance is 1.45 kilometer from dam) with inundation depth is 1.85 meter. This result can be used by stakeholders such as emergency responders and the community at risk in formulating evacuation procedure.

  2. Classification of the alterations of beaver dams to headwater streams in northeastern Connecticut, U.S.A.

    Science.gov (United States)

    Burchsted, Denise; Daniels, Melinda D.

    2014-01-01

    Of the many types of barriers to water flow, beaver dams are among the smallest, typically lasting less than a decade and rarely exceeding 1.5 m in height. They are also among the most frequent and common obstructions in rivers, with a density often exceeding ten dams per km, a frequency of construction within a given network on a time scale of years, and a historic extent covering most of North America. Past quantification of the geomorphologic impact of beaver dams has primarily been limited to local impacts within individual impoundments and is of limited geographic scope. To assess the impact of beaver dams at larger scales, this study examines channel shape and sediment distribution in thirty river reaches in northeastern Connecticut, U.S.A. The study reaches fall within the broader categories of impounded and free-flowing segments, leaving a third segment class of beaver meadows requiring additional study. Each of the study reaches were classified at the reach scale as free-flowing, valley-wide beaver pond, in-channel beaver pond, and downstream of beaver dam. The bankfull channel width to depth ratios and channel widths normalized by watershed area vary significantly across the study reach classes. Additionally, reaches modified by beaver dams have finer sediment distributions. This paper provides the first quantitative geomorphic descriptions of the in-channel beaver pond and reaches downstream of beaver dams. Given the different channel shapes and sediment distributions, we infer that geomorphic processes are longitudinally decoupled by these frequent barriers that control local base level. These barriers generate heterogeneity within a river network by greatly increasing the range of channel morphology and by generating patches controlled by different processes. Therefore, in spite of the small size of individual beaver dams, the cumulative effect of multiple dams has the potential to modify processes at larger spatial scales. To improve assessment of the

  3. Spruce Lake Dam reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, G. [SGE Acres Ltd., Fredericton, NB (Canada); Barnard, J. [SGE Acres Ltd., St. John' s, NF (Canada); Vriezen, C. [City of Saint John, NF (Canada); Stephenson, M. [Jacques Whitford Environment Ltd., Fredericton, NB (Canada)

    2004-09-01

    Spruce Lake Dam was constructed in 1898 as part of the water supply system for Saint John, New Brunswick. The original dam was a 6 meter high, 140 meter long concrete gravity dam with an intake structure at its mid point and an overflow spillway at the left abutment. A rehabilitation project was launched in 2001 to bring the deteriorated dam into conformance with the dam safety guidelines of the Canadian Dam Association. The project criteria included minimal disruption to normal operation of water supply facilities and no negative effect on water quality. The project involved installation of a new low level outlet, removal of a gate house and water intake pipes, replacement of an access road culvert in the spillway channel, and raising the earth dam section by 1.8 meters to allow for increased water storage. The new raised section has an impervious core. The project also involved site and geotechnical investigations as well as hydrotechnical and environmental studies. This presentation described the final design of the remedial work and the environmental permitting procedures. Raising the operating level of the system proved successful as demonstrated by the fewer number of pumping days required after dam rehabilitation. The dam safety assessment under the Canadian Environmental Assessment Act began in April 2001, and the rehabilitation was completed by the end of 2002. 1 tab., 8 figs.

  4. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams.

    Science.gov (United States)

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-04-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness

  5. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams

    Science.gov (United States)

    Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.

    2018-01-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species

  6. Deformation Monitoring and Bathymetry Analyses in Rock-Fill Dams, a Case Study at Ataturk Dam

    Science.gov (United States)

    Kalkan, Y.; Bilgi, S.

    2014-12-01

    Turkey has 595 dams constructed between 1936 and 2013 for the purposes of irrigation, flood control, hydroelectric energy and drinking water. A major portion of the dam basins in Turkey are deprived of vegetation and have slope topography on near surrounding area. However, landscaping covered with forest around the dam basin is desirable for erosion control. In fact; the dams, have basins deprived of vegetation, fill up quickly due to sediment transport. Erosion control and forestation are important factors, reducing the sediment, to protect the water basins of the dams and increase the functioning life of the dams. The functioning life of dams is as important as the investment and construction. Nevertheless, in order to provide safety of human life living around, well planned monitoring is essential for dams. Dams are very large and critical structures and they demand the use or application of precise measuring systems. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. Monitoring is an essential component of the dam after construction and during operation and must en­able the timely detection of any behavior that could deteriorate the dam, potentially result in its shutdown or failure. Considering the time and labor consumed by long-term measurements, processing and analysis of measured data, importance of the small structural motions at regular intervals could be comprehended. This study provides some information, safety and the techniques about the deformation monitoring of the dams, dam safety and related analysis. The case study is the deformation measurements of Atatürk Dam in Turkey which is the 6th largest dam of world considering the filling volume of embankment. Brief information is given about the

  7. Small dams need better management

    Science.gov (United States)

    Balcerak, Ernie

    2012-03-01

    Many small dams around the world are poorly maintained and represent a safety hazard, according to Pisaniello et al. Better oversight of small dams is needed, the authors argue. The researchers reviewed literature, conducted case studies in four states in Australia, and developed policy benchmarks and best practices for small-dam management. Small dams, often just several meters high and typically privately owned by individual farmers, have historically caused major damage when they fail. For instance, in China in 1975, 230,000 people died when two large dams failed because of the cumulative failure of 60 smaller upstream dams. In the United States, in 1977 the 8-meter-high Kelly Barnes Lake dam failed, killing 39 people. Many other small-dam failures around the world have resulted in casualties and severe ecological and economic damage.

  8. Environmental Assessment and Finding of No Significant Impact: Pond B Dam Repair Project at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-09-27

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1285) for the proposed repair of the Pond B dam at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  9. Competition at the attack of EdF's dams

    International Nuclear Information System (INIS)

    James, O.; Gateaud, P.; Dupin, L.

    2010-01-01

    The exploitation of French hydroelectric dams is at the eve of a big upheaval. EdF, the historical operator, and GdF Suez the French number two of hydropower generation are going to face the strong competition of the big European energy groups. France will open 20% of its hydroelectric potential to competition in order to be in agreement with the opening of energy markets imposed by the European Union, and to increase by 10% the hydroelectric power as requested by the French government policy. The candidates will have to fulfill 3 criteria: investing to increase production, reducing the environmental impacts, and accepting the principle of paying fees. However, some of the French dams suffer from serious pathologies and the health of thousands of small dams remains unknown because of the lack of available data. (J.S.)

  10. Experimental study on mechanism and shape characteristics of suspended flexible dam

    Science.gov (United States)

    Wang, Jian-zhong; Fan, Hong-xia; Zhu, Li-jun

    2014-12-01

    Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structural form. With brush and stone as building materials, this kind of structure has an obvious engineering effect. However, it not only requires huge capital investments, but also has negative impacts on the ecological environment. The suspended flexible dam is an innovative engineering measure, and few theoretical and experimental researches of this type dam can be found at present. This paper studies the mechanism and shape characteristics of this dam and obtains the dynamic equilibrium equation of flexible dam, the float buoyancy expression, and the condition for transformation among three forms of the underwater shape of the dam. The results are valuable in engineering application and can be used as the reference for the future work due to the distinctive design philosophy, the small negative effects on environment and the consistency for sustainable development.

  11. Impact of Geotechnical Factors on the Safety of Low Embankment Dams From the Perspective of Technical and Safety Supervision

    Directory of Open Access Journals (Sweden)

    Kasana Andrej

    2015-03-01

    Full Text Available Our research deals with a broad spectrum of problems concerning the variability of geotechnical factors and their influence on the safety of the biggest group of dam constructions in Slovakia, i.e., low earthfill dams. Its specific aim is the observation of their risk factors by using our experience and knowledge gained while working in the sector of technical and safety supervision. To achieve the aims of a research thesis, we analyzed 39 low earthfill dams. We performed observations and documented their conditions with the aim of clarifying the risk factors. After an analysis of the information materials that characterize dams and after a statistical analysis of the measurement results in situ, including measurements from technical and safety supervision databases, we performed an analysis by using mathematical modeling to evaluate the safety of the dam constructions. Out of the total number of 39 dam constructions, an analysis of the stability of the dam slopes was performed on 37 dams, and deformation problems were analyzed on 28 of the dams. Filtration problems were analyzed at 26 dams, and a complete evaluation of the intensity of filtration movements was performed on 19 of the constructions.

  12. Study of Dam-break Due to Overtopping of Four Small Dams in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Zakaraya Alhasan

    2015-01-01

    Full Text Available Dam-break due to overtopping is one of the most common types of embankment dam failures. During the floods in August 2002 in the Czech Republic, several small dams collapsed due to overtopping. In this paper, an analysis of the dam break process at the Luh, Velký Bělčický, Melín, and Metelský dams breached during the 2002 flood is presented. Comprehensive identification and analysis of the dam shape, properties of dam material and failure scenarios were carried out after the flood event to assemble data for the calibration of a numerical dam break model. A simple one-dimensional mathematical model was proposed for use in dam breach simulation, and a computer code was compiled. The model was calibrated using the field data mentioned above. Comparison of the erodibility parameters gained from the model showed reasonable agreement with the results of other authors.

  13. Investigation of geophysical methods for assessing seepage and internal erosion in embankment dams : a study of through-dam seismic testing at WAC Bennett Dam

    Energy Technology Data Exchange (ETDEWEB)

    Gaffran, P.; Jeffries, M. [BC Hydro, Burnaby, BC (Canada)

    2005-07-15

    Crosshole tomography is used to establish the distribution of seismic velocity between drill holes. The through-dam mode takes advantage of the triangular cross-section of earth embankments, obviating the need for drill holes. Seismic energy, generated on one face of the dam, passes underneath the crest and is detected by sensors arrayed on the opposite face. The sinkholes discovered at WAC Bennett Dam in 1996 provided an opportunity to test the procedure. Using p-wave energy, two series of measurements were conducted, notably one immediately before remediation of one sinkhole, and a second one shortly after the sinkhole was repaired. The known defect was successfully imaged by the first round of measurements. This report presented the results of an investigation of the through-dam seismic method using propagation of seismic waves through a dam from upstream to downstream, or vice-versa. The purpose of the study was to determine if this procedure could characterize the distribution of seismic velocity within a dam in an accurate and cost effective manner. The report presented the methods of velocity testing such as crosshole and downhole, and tomography; and through-dam measurements. Background to the Bennett Dam studies was also provided, with particular reference to the Bennett Dam sinkholes; sinkhole investigations; working hypothesis for sinkhole development; sinkhole number one characterization; and sinkhole remediation. An analysis of compression wave testing at Bennett Dam and shear wave testing was then offered. Other topics that were discussed included field test procedures; methodologies for data processing; p-waves versus s-waves; applicability of the research; and costs of through-dam surveys. It was concluded that under the right circumstances, through-dam seismic testing was capable of detecting changed conditions in an embankment dam. 15 refs., 2 tabs., 41 figs., 1 appendix.

  14. A Review of the Integrated Effects of Changing Climate, Land Use, and Dams on Mekong River Hydrology

    Directory of Open Access Journals (Sweden)

    Yadu Pokhrel

    2018-03-01

    Full Text Available The ongoing and proposed construction of large-scale hydropower dams in the Mekong river basin is a subject of intense debate and growing international concern due to the unprecedented and potentially irreversible impacts these dams are likely to have on the hydrological, agricultural, and ecological systems across the basin. Studies have shown that some of the dams built in the tributaries and the main stem of the upper Mekong have already caused basin-wide impacts by altering the magnitude and seasonality of flows, blocking sediment transport, affecting fisheries and livelihoods of downstream inhabitants, and changing the flood pulse to the Tonle Sap Lake. There are hundreds of additional dams planned for the near future that would result in further changes, potentially causing permanent damage to the highly productive agricultural systems and fisheries, as well as the riverine and floodplain ecosystems. Several studies have examined the potential impacts of existing and planned dams but the integrated effects of the dams when combined with the adverse hydrologic consequences of climate change remain largely unknown. Here, we provide a detailed review of the existing literature on the changes in climate, land use, and dam construction and the resulting impacts on hydrological, agricultural, and ecological systems across the Mekong. The review provides a basis to better understand the effects of climate change and accelerating human water management activities on the coupled hydrological-agricultural-ecological systems, and identifies existing challenges to study the region’s Water, Energy, and Food (WEF nexus with emphasis on the influence of future dams and projected climate change. In the last section, we synthesize the results and highlight the urgent need to develop integrated models to holistically study the coupled natural-human systems across the basin that account for the impacts of climate change and water infrastructure development

  15. 75 FR 49429 - Metal and Nonmetal Dams

    Science.gov (United States)

    2010-08-13

    ... internal water pressures. Pressures beyond a certain level would lead to structural instability. In the 18... foundation and embankment material strengths, and stability analyses to verify that the slopes of the dam..., rationales, benefits to miners, technological and economic feasibility, impact on small mines, and supporting...

  16. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    Science.gov (United States)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture

  17. 76 FR 25310 - Intent To Prepare an Environmental Impact Statement for the Zoar Levee and Diversion Dam, Dam...

    Science.gov (United States)

    2011-05-04

    ... dam. f. The cultural and historical significance of the Village of Zoar is well documented. The... community and a significant collection of early nineteenth century German folk architecture. Much of Zoar was documented in 1936 by the Historic American Building Survey (HABS). This study concluded that Zoar...

  18. Perspectives on dam safety in Canada

    International Nuclear Information System (INIS)

    Halliday, R.

    2004-01-01

    Canadian dam safety issues were reviewed from the perspective of a water resources engineer who is not a dam safety practitioner. Several external factors affecting dam safety were identified along with perceived problems in dam safety administration. The author claims that the main weakness in safety practices can be attributed to provincial oversights and lack of federal engagement. Some additions to the Canadian Dam Safety Guidelines were proposed to address these weaknesses. Canada has hundreds of large dams and high hazard dams whose failure would result in severe downstream consequences. The safety of dams built on boundary waters shared with the United States have gained particular attention from the International Joint Commission. This paper also examined safety criteria for concerns such as aging dams, sabotage and global climate change that may compromise the safety of a dam. 26 refs

  19. Army Corps of Engineers: Actions Needed to Improve Cost Sharing for Dam Safety Repairs

    Science.gov (United States)

    2015-12-01

    agreements with the Corps, their history of being a sponsor, the financial impacts of cost sharing for dam safety repair projects, and the Corps...1240 (2007)) and Beaver Lake dam, AR (Pub. L. No. 102-377, 106 Stat. 1315, 1318 (1992), Pub. L. No. 102-580, § 209(f), 106 Stat. 4797, 4830 (1992...inaction in setting a clear policy for a provision under which sponsors face significant financial impacts has contributed to conditions under

  20. SCENARIO OF AN ACCIDENT OF SOIL DAMS IN CASE OF WATER SPILL OVER A DAM CREST BY USING FAULT TREE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Kuznetsov Dmitriy Viktorovich

    2016-04-01

    Full Text Available The scenario of a hydrodynamic accident of water flow over a crest of a soil dam is considered by the method of fault tree analysis, for which the basic reasons and controlled diagnostic indicators of an accident have been defined. Logical operators “AND”/”OR” were used for creation of a sequence of logically connected events, leading to an undesired event in the scenario of accident. The scenario of the accident was plotted in case of three basic reasons - an excessive settling of a dam crest, an excess flood, an inoperable spillway, taking into account the sequence of the events’ development and with observance of the necessary conditions leading to an accident. “Technical” reasons were observed in the present scenario, force majeure events were not considered. The provided scenario of the accident consists of two branches of events’ development: the left one that depends on an upstream level, and the right one that depends on settling of a dam crest. In each of the considered events an accident “the water spill over a crest of a soil dam” is possible only in case of execution of two different conditions at the same time, i.e. in case of an appropriate upstream level and the appropriate mark of a crest of a soil dam. The conditions of the accident are defined by diagnostic indices - the upstream level and settling of a dam crest, which at the same time are safety criteria of the hydraulic structure for soil dams. They allow defining the technical condition of the construction. Four possible technical conditions are suggested for the definition of technical statuses - normative, operable, limited operable, abnormal. Criteria of safety are the boundaries of the state: for loading and impact - it is the upstream level, for geometrical compliance of the construction - it is a dam crest mark.

  1. 78 FR 53494 - Dam Safety Modifications at Cherokee, Fort Loudoun, Tellico, and Watts Bar Dams

    Science.gov (United States)

    2013-08-29

    ... Bar Dams AGENCY: Tennessee Valley Authority. ACTION: Issuance of Record of Decision. SUMMARY: This... the dam safety modifications at Cherokee, Fort Loudoun, Tellico, and Watts Bar Dams. The notice of... Loudoun, Tellico, and Watts Bar Dams was published in the Federal Register on May 31, 2013. This...

  2. Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River

    Science.gov (United States)

    Cai, Huayang; Piccolroaz, Sebastiano; Huang, Jingzheng; Liu, Zhiyong; Liu, Feng; Toffolon, Marco

    2018-05-01

    This study examines the impact of the world’s largest dam, the Three Gorges Dam (TGD), on the thermal dynamics of the Yangtze River (China). The analysis uses long-term observations of river water temperature (RWT) in four stations and reconstructs the RWT that would have occurred in absence of the TGD. Relative to pre-TGD conditions, RWT consistently warmed in the region due to air temperature (AT) increase. In addition, the analysis demonstrates that the TGD significantly affected RWT in the downstream reach. At the closest downstream station (Yichang) to the TGD, the annual cycle of RWT experienced a damped response to AT and a marked seasonal alteration: warming during all seasons except for spring and early summer which were characterized by cooling. Both effects were a direct consequence of the larger thermal inertia of the massive water volume stored in the TGD reservoir, causing the downstream reach to be more thermally resilient. The approach used here to quantify the separate contributions of climate and human interventions on RWT can be used to set scientific guidelines for river management and conservation planning strategies.

  3. Dam tot damloop : economische en maatschappelijke waarde

    NARCIS (Netherlands)

    de Nooij, Michiel; Horsselenberg, Peter

    2014-01-01

    Ruim 36.757 lopers (op de hoofdafstand!) en 115.000 bezoekers langs het parcours van het centrum van Amsterdam naar het centrum van Zaanstad, maakt de Dam tot damloop een groot evenement (het grootste hardloop evenement van Nederland) met een flinke impact op de (lokale) samenleving en economie. Dit

  4. River Restoration by Dam Removal: Assessing Riverine Re-Connectivity Across New England

    Science.gov (United States)

    Magilligan, F. J.; Nislow, K. H.; Graber, B.; Sneddon, C.; Fox, C.; Martin, E.

    2014-12-01

    The impacts of dams in New England are especially acute as it possesses one of the highest densities of dams in the US, with the NID documenting more than 4,000 dams, and state agency records indicating that >14,000 dams are peppered throughout the landscape. This large number of dams contributes to pervasive watershed fragmentation, threatening the ecological integrity of rivers and streams, and in the case of old, poorly maintained structures, posing a risk to lives and property. These concerns have generated active dam removal efforts throughout New England. To best capture the geomorphic, hydrologic, and potential ecological effects of dam removal at a regional level, we have compiled a dataset of 127 removed dams in New England, which includes information about structural characteristics, georectified locations, and key watershed attributes (including basin size, distance to next upstream obstacle, and number of free-flowing river kms opened up). Our specific research questions address (1) what is the spatial distribution of removed dams and how does this pattern relate to stated management goals of restoring critical habitat for native resident freshwater and diadromous fish, (2) what are the structural or management commonalities in dam types that have been removed, and (3) what has been the incremental addition of free-flowing river length? Rather than reflecting an overall management prioritization strategy, results indicate that dam removals are characterized more by opportunistic removals. For example, despite a regional emphasis on diadromous fish protection and restoration, most removals are inland rather than coastal settings. Most of the removed dams were small (~ 45% 2,300 river kms over the past several decades, with implication for both resident and diadromous fish, and with many removals located in mid-sized rivers that are a key link between upstream and downstream/coastal aquatic ecosystems.

  5. Anthropocene streams and base-level controls from historic dams in the unglaciated mid-Atlantic region, USA

    Science.gov (United States)

    Merritts, Dorothy; Walter, Robert; Rahnis, Michael; Hartranft, Jeff; Cox, Scott; Gellis, Allen; Potter, Noel; Hilgartner, William; Langland, Michael; Manion, Lauren; Lippincott, Caitlin; Siddiqui, Sauleh; Rehman, Zain; Scheid, Chris; Kratz, Laura; Shilling, Andrea; Jenschke, Matthew; Datin, Katherine; Cranmer, Elizabeth; Reed, Austin; Matuszewski, Derek; Voli, Mark; Ohlson, Erik; Neugebauer, Ali; Ahamed, Aakash; Neal, Conor; Winter, Allison; Becker, Steven

    2011-01-01

    Recently, widespread valley-bottom damming for water power was identified as a primary control on valley sedimentation in the mid-Atlantic US during the late seventeenth to early twentieth century. The timing of damming coincided with that of accelerated upland erosion during post-European settlement land-use change. In this paper, we examine the impact of local drops in base level on incision into historic reservoir sediment as thousands of ageing dams breach. Analysis of lidar and field data indicates that historic milldam building led to local base-level rises of 2-5 m (typical milldam height) and reduced valley slopes by half. Subsequent base-level fall with dam breaching led to an approximate doubling in slope, a significant base-level forcing. Case studies in forested, rural as well as agricultural and urban areas demonstrate that a breached dam can lead to stream incision, bank erosion and increased loads of suspended sediment, even with no change in land use. After dam breaching, key predictors of stream bank erosion include number of years since dam breach, proximity to a dam and dam height. One implication of this work is that conceptual models linking channel condition and sediment yield exclusively with modern upland land use are incomplete for valleys impacted by milldams. With no equivalent in the Holocene or late Pleistocene sedimentary record, modern incised stream-channel forms in the mid-Atlantic region represent a transient response to both base-level forcing and major changes in land use beginning centuries ago. Similar channel forms might also exist in other locales where historic milling was prevalent.

  6. Investigation on the Causes of Cracking in Earth Dams (Case study: Mahmood-Abad Earth Dam

    Directory of Open Access Journals (Sweden)

    H. Rahimi

    2016-09-01

    Full Text Available Introduction: Cracking of earth dams is a one of the main threat causes of stability of embankment dams. In this research by modeling of the behavior of an embankment dam and employing conditions of the earthquake, the reasons of cracking were inspected using by modeling of earth dam behavior. Based on the literature, one of the main causes of dam failures is sliding and cracking of the dam structure during earthquake. Localized liquefaction of foundation soils was one of the causes of the observed post-earthquake distress within these dams. Material and Methods: In order to study the causes and the results of crack on earth dams, Mahmoodabad earthen dam with a height of 19 m, is located in Zanjan province, northwest of Iran, which suffered a longitudinal crack on the crest and slight sliding of the upstream slope due to 2001 Avaj earthquake was studied. This dam has faced earthquake two times with an interval of two years. During the first earthquake with the magnitude about 6.6 in Richter scale small longitudinal cracks had created on the crest. The developed cracks had been repaired by injecting the cement and then has been hidden by passing the time. After the second earthquake with the magnitude about 6.5 in Richter scale the hidden cracks had been appeared again and the slight movement of the upper slopes of dam reported. Based on the site investigation and documented information about dam, including maps and parameter data, the behavior of the dam has modeled by using Plaxis as a finite element model. In order to check the accuracy of the design of dam, the stability analysis has been conducted using by Xslope as a limit equilibrium model. The foundation conditions and the Geotechnical properties of the layer beneath the dam has been inspected by open excavation. Results and Discussion: Underground investigation about Geotechnical properties of dam foundation has showed that there is a thin sandy layer confined in alluvium material of the

  7. Valuation of the environmental impacts of the Kayraktepe dam/hydroelectric project, Turkey: An exercise in contingent valuation

    International Nuclear Information System (INIS)

    Biro, Y.E.K.

    1998-01-01

    This paper describes and evaluates the environmental impacts of the Kayraktepe Dam and Hydroelectric Power Plant in Turkey. The contingent valuation method is used to estimate the project's local environmental costs. The average local rural annual willingness to pay for the restoration of the environmental impacts of the project is found to be USD 300 person -1 . Loss of forestry and agricultural benefits from the reservoir area that will be inundated are estimated to be USD 12.66 mill. yr -1 . When the Kayraktepe Project's external costs are internalized, its benefit cost ratio falls from 1.35 to 0.84, indicating that the project is economically undesirable and the decision for its construction needs to be reconsidered 26 refs, 1 fig, 5 tabs

  8. Dynamic decision making for dam-break emergency management - Part 2: Application to Tangjiashan landslide dam failure

    Science.gov (United States)

    Peng, M.; Zhang, L. M.

    2013-02-01

    Tangjiashan landslide dam, which was triggered by the Ms = 8.0 Wenchuan earthquake in 2008 in China, threatened 1.2 million people downstream of the dam. All people in Beichuan Town 3.5 km downstream of the dam and 197 thousand people in Mianyang City 85 km downstream of the dam were evacuated 10 days before the breaching of the dam. Making such an important decision under uncertainty was difficult. This paper applied a dynamic decision-making framework for dam-break emergency management (DYDEM) to help rational decision in the emergency management of the Tangjiashan landslide dam. Three stages are identified with different levels of hydrological, geological and social-economic information along the timeline of the landslide dam failure event. The probability of dam failure is taken as a time series. The dam breaching parameters are predicted with a set of empirical models in stage 1 when no soil property information is known, and a physical model in stages 2 and 3 when knowledge of soil properties has been obtained. The flood routing downstream of the dam in these three stages is analyzed to evaluate the population at risk (PAR). The flood consequences, including evacuation costs, flood damage and monetized loss of life, are evaluated as functions of warning time using a human risk analysis model based on Bayesian networks. Finally, dynamic decision analysis is conducted to find the optimal time to evacuate the population at risk with minimum total loss in each of these three stages.

  9. Water quality of Flag Boshielo Dam, Olifants River, South Africa ...

    African Journals Online (AJOL)

    Increasing demands for water, discharge of effluents, and variable rainfall have a negative impact on water quality in the Olifants River. Crocodile and fish mortalities attributed to pansteatitis, in Loskop Dam and downstream in the Kruger National Park (KNP), have highlighted the serious effects these impacts are having on ...

  10. The Negative Impacts of Dams on Envıronment and Their Samples in Turkey

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Sönmez

    2012-06-01

    Full Text Available The rapidly increasing of world population has increased the need of energy and food. The gap which has occurred in agriculture are tried to resolve by opening new agricultural areas and irrigation and using of input. Meanwhile the gap which has occurred in energy are tried to resolve by dams, wind and waves which are relatively more environmental and likely renewal energy sources. The exhaustible energy sources which are distributed unevenly across the globe as well as accelerated industrialization in the world has increased the importance of renewable energy sources. Generally which are known as the most renewable and environmental energy sources are the dams. Whereas in our country the dams which are benefited greatly in irrigation and energy, narrowing the agriculture fields, siltation, degradation of ecosystem and migration bring too many problems with

  11. Lost opportunities and future avenues to reconcile hydropower and sediment transport in the Mekong Basin through optimal sequencing of dam portfolios.

    Science.gov (United States)

    Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.

    2017-12-01

    Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our

  12. Sharing Perspectives and Learning from One Another: Southern Paiutes, Scientists, and Policymakers in the Glen Canyon Dam Adaptive Management Program

    Science.gov (United States)

    Austin, D. E.; Bulletts, K.; Bulletts, C.

    2017-12-01

    The traditional lands of the Southern Paiute people in the United States are bounded by more than 600 miles of the Colorado River from the Kaiparowits Plateau in the north to Blythe, California in the south. According to Southern Paiute traditional knowledge, Southern Paiutes were the first inhabitants of this region and are responsible for protecting and managing this land along with the water and all that is upon and within it. In 1963, the Bureau of Reclamation completed construction of Glen Canyon Dam on the Colorado River, and in 1972, the Glen Canyon National Recreation Area was established, encompassing Lake Mead above the Dam and a world class trout fishery on the Colorado River between the Dam and Lees Ferry. Below Lees Ferry on its way to Lake Mead and Hoover Dam, the Colorado River flows through Grand Canyon National Park and the Navajo and Hualapai reservations. U.S. federal law requires that Glen Canyon Dam be operated with minimal impact to the natural, recreational, and cultural resources of the region of the Colorado River that is potentially impacted by flows from the Dam. The Grand Canyon Protection Act and the Environmental Impact Statement (EIS) for the Operation of the Glen Canyon Dam established a program of long-term research and monitoring of the effects of the Dam on these resources. In 1991, three Southern Paiute tribes - the Kaibab Band of Paiute Indians, the Paiute Indian Tribe of Utah, and the San Juan Southern Paiute Tribe - agreed to participate in studies to identify cultural resources impacted by Glen Canyon Dam and to recommend strategies for their protection, In 1995, the EIS was completed and transition to the Adaptive Management Program (AMP) called for in the Grand Canyon Protection Act was begun. At that time, Southern Paiute activities expanded to include assessing potential environmental and cultural impacts of the dam, developing monitoring procedures, and interacting with scientists, other tribal representatives, and

  13. Modeling the ecological impacts of Flaming Gorge Dam operations

    International Nuclear Information System (INIS)

    Yin, S.C.L.; LaGory, K.E.; Hayse, J.W.; Hlohowskyj, I.; Van Lonkhuyzen, R.A.; Cho, H.E.

    1996-01-01

    Hydropower operations at Flaming Gorge Dam on the Green River in Utah, US, can produce rapid downstream changes in flow and stage during a day. These changes can, in turn, affect ecological resources below the dam, including riparian vegetation, trout, and endangered fish. Four hydropower operational scenarios featuring varying degrees of hydropower-induced flow fluctuation were evaluated with hydrologic models and multispectral aerial videography of the river. Year-round high fluctuations would support the least amount of stable spawning habitat for trout and nursery habitat for endangered fish, and would have the greatest potential for reducing growth and over winter survival of fish. Seasonally, adjusted moderate fluctuation and seasonally adjusted steady flow scenarios could increase food production and over winter survival and would provide the greatest amount of spawning and nursery habitat for fish. The year-round high fluctuation, seasonally adjusted high fluctuation, and seasonally adjusted moderate fluctuation scenarios would result in a 5% decrease in upper riparian zone habitat. the seasonally adjusted steady flow scenario would result in an 8% increase in upper riparian zone habitat. Lower riparian zone habitat would increase by about 17% for year-round and seasonally adjusted high fluctuating flow scenarios but decrease by about 24% and 69% for seasonally adjusted moderate fluctuating and steady flow scenarios, respectively

  14. Hungry Horse mitigation: Aquatic modeling of the selective withdrawal system -- Hungry Horse Dam, Montana

    International Nuclear Information System (INIS)

    Marotz, B.L.; Althen, C.; Gustafson, D.

    1994-04-01

    Hungry Horse Dam presently releases frigid water from the bottom of the reservoir all year long. Cold water effects insect production and fish growth downstream. Rapid temperature changes of up to 8.3 C (14 F) have been measured in the Flathead River downstream of the South Fork confluence, controlled by dam discharges. Thermal effects from Hungry Horse Dam are detectable for over 64 Km downstream to Flathead Lake. The installation of a selective withdrawal structure on each of the dam's discharge penstocks was determined to be the most cost-effective means to provide constant, permanent temperature control without impacting power production and flexibility in dam operation. The thermal model presented herein revealed that fish growth potential in the river would increase two to five times through selective withdrawal, temperature control. Temperature control is possible over the entire range of turbine discharge capacity, with very little effect on power production. Findings indicate that angling would improve through higher catch rates and larger fish. Temperature control will solve the most serious impact to river health. However, flow fluctuations will continue to effect insect production and usable fishery habitat in the Flathead River. A natural thermal regime combined with moderated flow fluctuation would further enhance riverine food production, trout growth and recreation potential

  15. EVALUASI KEAMANAN DAM JATILUHUR BERBASIS INDEKS RESIKO

    Directory of Open Access Journals (Sweden)

    Avazbek Ishbaev

    2014-12-01

    Full Text Available The dams have very important roles to agricultural activities. Especially, West Java with 240,000 hectares of agricultural land, needs a good dam structure that can be used sustainably. Jatiluhur dam in Purwakarta, West Java is one of big dams in Indonesia which has important rules not only for Purwakarta but also for Jakarta, Karawang and Bekasi residents. A study and observation about safety and dam stability is needed to prevent any damage. The purpose of this research were to identify parameters that influenced dam safety and to evaluate dam reliability based on index tools. Analysis was done using risk index tools. The result showed that the condition of the dam of Jatiluhur is still satisfied with indicators, "Idam"-750. The total index risk was 127.22 and the safety factor was 83.04 out of 100. Therefore, Jatiluhur dam could be classified as safe and no need for particular treatments. Jatiluhur dam can be operated in normal condition or abnormal condition with periodic monitoring. Keywords: dam safety, evaluation, Jatiluhur Dam, risk index tools

  16. Dam safety operating guidelines

    International Nuclear Information System (INIS)

    Elsayed, E.; Leung, T.; Kirkham, A.; Lum, D.

    1990-01-01

    As part of Ontario Hydro's dam structure assessment program, the hydraulic design review of several river systems has revealed that many existing dam sites, under current operating procedures, would not have sufficient discharge capacity to pass the Inflow Design Flood (IDF) without compromising the integrity of the associated structures. Typical mitigative measures usually considered in dealing with these dam sites include structural alterations, emergency action plans and/or special operating procedures designed for extreme floods. A pilot study was carried out for the Madawaska River system in eastern Ontario, which has seven Ontario Hydro dam sites in series, to develop and evaluate the effectiveness of the Dam Safety Operating Guidelines (DSOG). The DSOG consist of two components: the flood routing schedules and the minimum discharge schedules, the former of which would apply in the case of severe spring flood conditions when the maximum observed snowpack water content and the forecast rainfall depth exceed threshold values. The flood routing schedules would identify to the operator the optimal timing and/or extent of utilizing the discharge facilities at each dam site to minimize the potential for dam failures cased by overtopping anywhere in the system. It was found that the DSOG reduced the number of structures overtopped during probable maximum flood from thirteen to four, while the number of structures that could fail would be reduced from seven to two. 8 refs., 4 figs., 3 tabs

  17. Owyhee River intracanyon lava flows: does the river give a dam?

    Science.gov (United States)

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  18. Dam risk reduction study for a number of large tailings dams in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Verma, N. [AMEC Earth and Environmental Ltd., Mississauga, ON (Canada); Small, A. [AMEC Earth and Environmental Ltd., Fredericton, NB (Canada); Martin, T. [AMEC Earth and Environmental, Burnaby, BC (Canada); Cacciotti, D. [AMEC Earth and Environmental Ltd., Sudbury, ON (Canada); Ross, T. [Vale Inco Ltd., Sudbury, ON (Canada)

    2009-07-01

    This paper discussed a risk reduction study conducted for 10 large tailings dams located at a central tailings facility in Ontario. Located near large industrial and urban developments, the tailings dams were built using an upstream method of construction that did not involve beach compaction or the provision of under-drainage. The study provided a historical background for the dam and presented results from investigations and instrumentation data. The methods used to develop the dam configurations were discussed, and remedial measures and risk assessment measures used on the dams were reviewed. The aim of the study was to address key sources of risk, which include the presence of high pore pressures and hydraulic gradients; the potential for liquefaction; slope instability; and the potential for overtopping. A borehole investigation was conducted and piezocone probes were used to obtain continuous data and determine soil and groundwater conditions. The study identified that the lower portion of the dam slopes were of concern. Erosion gullies could lead to larger scale failures, and elevated pore pressures could lead to the risk of seepage breakouts. It was concluded that remedial measures are now being conducted to ensure slope stability. 6 refs., 1 tab., 6 figs.

  19. Land use change impacts on discharge analysis using SWAT model at Ciherang Pondok DAM catchment area

    Science.gov (United States)

    Utamahadi, M. A.; Pandjaitan, N. H.; Rau, M. I.

    2018-05-01

    The prompt increase of population influenced the requirement for new regions to fulfill people’s primary needs. Its increased land use change and caused many impacts on the environment, including watersheds as well. Ciherang Pondok DAM catchment area is part of Cisadane watershed and was selected as the research area. This research aimed to analyse the water supply and water discharge change caused by the Urban Planning (RTRW) in 2020. The analysis was conducted using soil and water assessment tools (SWAT) model. Stages of this research were catchment area delineation, HRU identification, calibration and validation of models, and prediction of discharge and water demand. The result showed that RTRW of 2020 increased the maximum discharge of 1.6 m3/s and decreased the minimum discharge of 0.01 m3/s, hence the maximum and minimum discharge ratio increased 0.26% from 2016. Output discharge in 2020 at Ciherang Pondok Dam Catchment Area was classified as well, with discharge of 6.72 – 126.2 m3/s, and could fulfil water demand. For the best result, it is better to use climate data from weather stations inside the study area and it is required an improvement in data archiving system.

  20. Evaluating the effects of dam breach methodologies on Consequence Estimation through Sensitivity Analysis

    Science.gov (United States)

    Kalyanapu, A. J.; Thames, B. A.

    2013-12-01

    Dam breach modeling often includes application of models that are sophisticated, yet computationally intensive to compute flood propagation at high temporal and spatial resolutions. This results in a significant need for computational capacity that requires development of newer flood models using multi-processor and graphics processing techniques. Recently, a comprehensive benchmark exercise titled the 12th Benchmark Workshop on Numerical Analysis of Dams, is organized by the International Commission on Large Dams (ICOLD) to evaluate the performance of these various tools used for dam break risk assessment. The ICOLD workshop is focused on estimating the consequences of failure of a hypothetical dam near a hypothetical populated area with complex demographics, and economic activity. The current study uses this hypothetical case study and focuses on evaluating the effects of dam breach methodologies on consequence estimation and analysis. The current study uses ICOLD hypothetical data including the topography, dam geometric and construction information, land use/land cover data along with socio-economic and demographic data. The objective of this study is to evaluate impacts of using four different dam breach methods on the consequence estimates used in the risk assessments. The four methodologies used are: i) Froehlich (1995), ii) MacDonald and Langridge-Monopolis 1984 (MLM), iii) Von Thun and Gillete 1990 (VTG), and iv) Froehlich (2008). To achieve this objective, three different modeling components were used. First, using the HEC-RAS v.4.1, dam breach discharge hydrographs are developed. These hydrographs are then provided as flow inputs into a two dimensional flood model named Flood2D-GPU, which leverages the computer's graphics card for much improved computational capabilities of the model input. Lastly, outputs from Flood2D-GPU, including inundated areas, depth grids, velocity grids, and flood wave arrival time grids, are input into HEC-FIA, which provides the

  1. Impact of Kishnica and Badovci Flotation Tailing Dams on Levels of Heavy Metals in Water of Graçanica River (Kosovo

    Directory of Open Access Journals (Sweden)

    Fatbardh Gashi

    2017-01-01

    Full Text Available The main objective of this study was to perform assessment of water quality of Graçanica River (Kosovo, impacted by Kishnica and Badovci flotation tailing dams, using ICP-OES method. The obtained results show that the mean values of all heavy metals in studied river water samples were significantly high, with following maximal concentrations: As (0.033 mgL−1, Cd (0.002 mgL−1, Cr (0.225 mgL−1, Cu (0.015 mgL−1, Hg (0.004 mgL−1, Mn (15.66 mgL−1, Ni (0.255 mgL−1, Pb (0.013 mgL−1, and Zn (0.612 mgL−1, but only two samples from locations influenced by Kishnica and Badovci flotation tailing dams showed statistically anomalous values of Cr3+, Cu2+, Mn2+, Zn2+, and Hg2+. According to assessment based on Croatian standards, locations near both flotation tailing dams are significantly polluted with majority of studied metals, while downstream sampling stations are almost unpolluted or slightly polluted. Mercury is found to be the most significant contaminant. According to WHO recommended values for drinking water, on all locations values were within the limits for Al, Cd, Cu, and Zn, while for As, Cr, Hg, Mn, Ni, and Pb values exceed recommended values on some sampling stations. Further monitoring of water and possibly sediments of Graçanica River is advised, as well as performing of remediation of Kishnica and Badovci mine tailing dams.

  2. 75 FR 6004 - Notice of Intent To Prepare a Draft Environmental Impact Statement and Dam Safety Assurance...

    Science.gov (United States)

    2010-02-05

    ..., air quality, socioeconomics, water supply, land use, recreation, visual and aesthetic resources... openings through which water can travel inside the dam); b. Evidence that the auxiliary dam's drain blanket... [[Page 6005

  3. Longitudinal distribution of Chironomidae (Diptera) downstream from a dam in a neotropical river.

    Science.gov (United States)

    Pinha, G D; Aviz, D; Lopes Filho, D R; Petsch, D K; Marchese, M R; Takeda, A M

    2013-08-01

    The damming of a river causes dangerous consequences on structure of the environment downstream of the dam, modifying the sediment composition, which impose major adjustments in longitudinal distribution of benthic community. The construction of Engenheiro Sérgio Motta Dam in the Upper Paraná River has caused impacts on the aquatic communities, which are not yet fully known. This work aimed to provide more information about the effects of this impoundment on the structure of Chironomidae larvae assemblage. The analysis of data of physical and chemical variables in relation to biological data of 8 longitudinal sections in the Upper Paraná River showed that composition of Chironomidae larvae of stations near Engenheiro Sérgio Motta Dam differed of the other stations (farther of the Dam). The predominance of coarse sediments at stations upstream and finer sediments further downstream affected the choice of habitat by different morphotypes of Chironomidae and it caused a change in the structure of this assemblage in the longitudinal stretch.

  4. Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis

    Science.gov (United States)

    Reynolds, Z. A.

    2015-12-01

    Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how

  5. The Effects of Dams on Downstream Channel Characteristics in Pennsylvania and Maryland: Assessing the Potential Consequences of Dam Removal

    Science.gov (United States)

    Skalak, K. J.; Pizzuto, J. E.; Jenkins, P.

    2003-12-01

    The potential downstream effects of dam removal were assessed on fifteen sites of varying dam size and characteristics in Pennsylvania and Maryland. The dams ranged in size from a 30 cm high fish weir to a water supply dam 57 m high. Stream order ranged from 1 to 4. The dams are located in watersheds with varying degrees of human disturbance and urbanization. The dams are also operated differently, with significant consequences for hydraulic residence time and downstream flow variability. Most streams were alluvial, but 6 of the reaches were clearly bedrock channels. We hypothesize that the channel upstream, which is unaffected by the dam, will provide an accurate model for the channel downstream of the dam long after dam removal. Therefore, reaches upstream and downstream of the dam were compared to determine the effects of the dam as well as the condition of the stream that will ultimately develop decades after dam removal. Surprisingly, the dams had no consistent influence on channel morphology. However, the percentage of sand is significantly lower downstream than upstream: the mean % sand downstream is 11.47%, while the mean % sand upstream is 21.39%. The coarser fractions of the bed, as represented by the 84th percentile grain diameter, are unaffected by the presence of the dam. These results imply that decades after dam removal, the percentage of sand on the bed will increase, but the coarse fraction of the bed will remain relatively unchanged.

  6. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales

    International Nuclear Information System (INIS)

    Grill, Günther; Lehner, Bernhard; Lumsdon, Alexander E; Zarfl, Christiane; MacDonald, Graham K; Reidy Liermann, Catherine

    2015-01-01

    The global number of dam constructions has increased dramatically over the past six decades and is forecast to continue to rise, particularly in less industrialized regions. Identifying development pathways that can deliver the benefits of new infrastructure while also maintaining healthy and productive river systems is a great challenge that requires understanding the multifaceted impacts of dams at a range of scales. New approaches and advanced methodologies are needed to improve predictions of how future dam construction will affect biodiversity, ecosystem functioning, and fluvial geomorphology worldwide, helping to frame a global strategy to achieve sustainable dam development. Here, we respond to this need by applying a graph-based river routing model to simultaneously assess flow regulation and fragmentation by dams at multiple scales using data at high spatial resolution. We calculated the cumulative impact of a set of 6374 large existing dams and 3377 planned or proposed dams on river connectivity and river flow at basin and subbasin scales by fusing two novel indicators to create a holistic dam impact matrix for the period 1930–2030. Static network descriptors such as basin area or channel length are of limited use in hierarchically nested and dynamic river systems, so we developed the river fragmentation index and the river regulation index, which are based on river volume. These indicators are less sensitive to the effects of network configuration, offering increased comparability among studies with disparate hydrographies as well as across scales. Our results indicate that, on a global basis, 48% of river volume is moderately to severely impacted by either flow regulation, fragmentation, or both. Assuming completion of all dams planned and under construction in our future scenario, this number would nearly double to 93%, largely due to major dam construction in the Amazon Basin. We provide evidence for the importance of considering small to medium

  7. The economic impact of the Olympic Dam development

    International Nuclear Information System (INIS)

    Cook, L.H.; Trengove, C.D.

    1982-01-01

    The copper-uranium-gold deposit at Olympic Dam on the Roxby Downs Station, South Australia, was discovered in July 1975. Production technology, safety during mining and processing and the nature and extent of government involvement are discussed. Factors influencing the optimal scale of the project are considered and indicative calculations are made of project costs under a range of assumptions. Social issues raised by the project include lease allocation, taxation, infrastructure and the use of indenture agreements. An analysis is undertaken of the project's expected employment and production effects in South Australia using input/output modelling techniques

  8. Smoothed Particle Hydrodynamics Simulations of Dam-Break Flows Around Movable Structures

    OpenAIRE

    Jian, Wei; Liang, Dongfang; Shao, Songdong; Chen, Ridong; Yang, Kejun

    2015-01-01

    In this paper, 3D weakly compressible and incompressible Smoothed Particle Hydrodynamics (WCSPH & ISPH) models are used to study dam-break flows impacting on either a fixed or a movable structure. First, the two models’ performances are compared in terms of CPU time efficiency and numerical accuracy, as well as the water surface shapes and pressure fields. Then, they are applied to investigate dam-break flow interactions with structures placed in the path of the flood. The study found that th...

  9. Impact of the Three-Gorges Dam and water transfer project on Changjiang floods

    Science.gov (United States)

    Nakayama, Tadanobu; Shankman, David

    2013-01-01

    Increasing frequency of severe floods on the middle and lower Changjiang (Yangtze) River during the past few decades can be attributed to both abnormal monsoon rainfall and landscape changes that include extensive deforestation affecting river sedimentation, and shrinking lakes and levee construction that reduced the areas available for floodwater storage. The Three-Gorges Dam (TGD) and the South-to-North Water Transfer Project (SNWTP) will also affect frequency and intensity of severe floods in the Poyang Lake region of the middle Changjiang. Process-based National Integrated Catchment-based Eco-hydrology (NICE) model predicts that the TGD will increase flood risk during the early summer monsoon against the original justifications for building the dam, relating to complex river-lake-groundwater interactions. Several scenarios predict that morphological change will increase flood risk around the lake. This indicates the importance of managing both flood discharge and sediment deposition for the entire basin. Further, the authors assessed the impact of sand mining in the lake after its prohibition on the Changjiang, and clarified that alternative scenario of sand mining in lakes currently disconnected from the mainstream would reduce the flood risk to a greater extent than intensive dredging along junction channel. Because dry biomasses simulated by the model were linearly related to the Time-Integrated Normalized Difference Vegetation Index (TINDVI) estimated from satellite images, its decadal gradient during 1982-1999 showed a spatially heterogeneous distribution and generally decreasing trends beside the lakes, indicating that the increases in lake reclamation and the resultant decrease in rice productivity are closely related to the hydrologic changes. This integrated approach could help to minimize flood damage and promote better decisions addressing sustainable development.

  10. Public safety around dams guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, T [Canadian Dam Association, Edmonton, AB (Canada)

    2010-07-01

    This presentation discussed Canadian and international initiatives for improving dam safety and described some of the drivers for the development of new Canadian Dam Association (CDA) public safety guidelines for dams. The CDA guidelines were divided into the following 3 principal sections: (1) managed system elements, (2) risk assessment and management, and (3) technical bulletins. Public and media responses to the drownings have called for improved safety guidelines. While the public remains unaware of the hazards of dams, public interaction with dams is increasing as a result of interest in extreme sports and perceived rights of access. Guidelines are needed for dam owners in order to provide due diligence. Various organizations in Canada are preparing technical and public safety dam guidelines. CDA guidelines have also been prepared for signage, booms and buoys, and audible and visual alerts bulletins. Working groups are also discussing recommended practices for spill procedures, spillways and the role of professional engineers in ensuring public safety. Methods of assessing risk were also reviewed. Managed system elements for risk assessment and public interactions were also discussed, and stepped control measures were presented. tabs., figs.

  11. Odelouca Dam Construction: Numerical Analysis

    OpenAIRE

    Brito, A.; Maranha, J. R.; Caldeira, L.

    2012-01-01

    Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca Dam`s construction. The material con-stants of the soil model used are determined from a comprehensive testing programme carried out in the C...

  12. Effect of a dam on epilithic algal communities of a mountain stream: before-after dam construction comparison

    Directory of Open Access Journals (Sweden)

    Luciana Cibils Martina

    2013-02-01

    Full Text Available In this study we evaluated the effect of a dam on epilithic algal communities by analyzing community response after dam construction and by comparing community composition, structure and biomass upstream and downstream of the dam. Samples of epilithic algae and environmental data were collected at each site during high and low water periods before and after dam construction in Achiras Stream (Córdoba, Argentina. Ordinations showed modifications in algal assemblages after dam construction and downstream of the dam. Ordinations also suggested a loss of seasonality at the downstream site since the assemblages were similar between hydrological periods after dam construction. Indicator species, obtained by the Indicator Value method, showed that, after dam construction, there could have been an increase in nutrient concentration and a release of plankton from the impoundment. Abundance, richness and diversity were altered after dam construction as assessed by ANOVAs derived from a modified BACI Design. Proportion of early-successional species was higher at the upstream site while late-successional species were dominant at the downstream site, as predicted. Lower fluctuations in discharge downstream of the dam may have helped succession advance, whereas at the upstream site, mainly during the high water period, floods could have caused sloughing of life forms from the outer layers of the biofilm, resetting the algal community to early successional stages. It may be concluded that the dam affected algal community and favored succession advance mainly by reducing current velocity and flow fluctuations.

  13. Viewpoint – Brazil’s Madeira River Dams: A Setback for Environmental Policy in Amazonian Development

    Directory of Open Access Journals (Sweden)

    Philip Martin Fearnside

    2014-02-01

    Full Text Available Decisions on hydroelectric dam construction will be critical in shaping the future of Amazonia, where planned dams would convert most tributaries into chains of reservoirs. The Santo Antônio and Jirau dams, now nearing completion on the Madeira River, have created dangerous precedents in a trend towards weakening environmental protection in Brazil. Political appointees have overruled the technical staff of the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA, which is responsible for evaluating the environmental impact study (EIA and for licensing dams. Installation licences were granted without satisfying many of the 'conditions' that had been established as prerequisites. This feature and several others of the licensing process for the Madeira River dams have now been repeated in licensing the controversial Belo Monte Dam on the Xingu River. Brazil plans to build 30 large dams in its Amazon region in a decade, and others are to be financed and built by Brazil in Peru, Bolivia, Ecuador and Guyana. These plans affect virtually all water resources in an area larger than Western Europe. The Madeira River dams indicate the need to reform the decision-making process in Brazil.

  14. 78 FR 77397 - Flood Control Regulations, Marshall Ford Dam (Mansfield Dam and Lake Travis), Colorado River, Texas

    Science.gov (United States)

    2013-12-23

    ... Regulations, Marshall Ford Dam (Mansfield Dam and Lake Travis), Colorado River, Texas AGENCY: U.S. Army Corps... Marshall Ford Dam (Mansfield Dam and Lake Travis), Colorado River, Texas. In 1997, the Lower Colorado River... regulations to reflect changes in ownership and responsibilities of flood control management of Marshall Ford...

  15. 7 CFR 1724.55 - Dam safety.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Dam safety. 1724.55 Section 1724.55 Agriculture... § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... for Dam Safety,”(Guidelines), as applicable. A dam, as more fully defined in the Guidelines, is...

  16. New guidelines for dam safety classification

    International Nuclear Information System (INIS)

    Dascal, O.

    1999-01-01

    Elements are outlined of recommended new guidelines for safety classification of dams. Arguments are provided for the view that dam classification systems should require more than one system as follows: (a) classification for selection of design criteria, operation procedures and emergency measures plans, based on potential consequences of a dam failure - the hazard classification of water retaining structures; (b) classification for establishment of surveillance activities and for safety evaluation of dams, based on the probability and consequences of failure - the risk classification of water retaining structures; and (c) classification for establishment of water management plans, for safety evaluation of the entire project, for preparation of emergency measures plans, for definition of the frequency and extent of maintenance operations, and for evaluation of changes and modifications required - the hazard classification of the project. The hazard classification of the dam considers, as consequence, mainly the loss of lives or persons in jeopardy and the property damages to third parties. Difficulties in determining the risk classification of the dam lie in the fact that no tool exists to evaluate the probability of the dam's failure. To overcome this, the probability of failure can be substituted for by a set of dam characteristics that express the failure potential of the dam and its foundation. The hazard classification of the entire project is based on the probable consequences of dam failure influencing: loss of life, persons in jeopardy, property and environmental damage. The classification scheme is illustrated for dam threatening events such as earthquakes and floods. 17 refs., 5 tabs

  17. Chemical characteristics and limnology of Loskop Dam on the ...

    African Journals Online (AJOL)

    Major impacts include acid mine drainage and eutrophication associated with sewage effluent. ... ensure the sustainability of Loskop Dam, catchment management plans must focus on reducing phosphorus inputs, and continue seeking treatment solutions for mine-water associated with abandoned and working coal mines.

  18. War damages and reconstruction of Peruca dam

    International Nuclear Information System (INIS)

    Nonveiller, E.; Sever, Z.

    1999-01-01

    The paper describes the heavy damages caused by blasting in the Peruca rockfill dam in Croatia in January 1993. Complete collapse of the dam by overtopping was prevented through quick action of the dam owner by dumping clayey gravel on the lowest sections of the dam crest and opening the bottom outlet of the reservoir, thus efficiently lowering the water level. After the damages were sufficiently established and alternatives for restoration of the dam were evaluated, it was decided to construct a diaphragm wall through the damaged core in the central dam part as the impermeable dam element and to rebuild the central clay core at the dam abutments. Reconstruction works are described

  19. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Marshall Ford Dam and Reservoir... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford Dam...

  20. Social Discounting of Large Dams with Climate Change Uncertainty

    Directory of Open Access Journals (Sweden)

    Marc Jeuland

    2010-06-01

    This paper reviews the recent discounting controversy and examines its implications for the appraisal of an illustrative hydropower project in Ethiopia. The analysis uses an integrated hydro-economic model that accounts for how the dam’s transboundary impacts vary with climate change. The real value of the dam is found to be highly sensitive to assumptions about future economic growth. The argument for investment is weakest under conditions of robust global economic growth, particularly if these coincide with unfavourable hydrological or development factors related to the project. If however long-term growth is reduced, the value of the dam tends to increase. There may also be distributional or local arguments favouring investment, if growth in the investment region lags behind that of the rest of the globe. In such circumstances, a large dam can be seen as a form of insurance that protects future vulnerable generations against the possibility of macroeconomic instability or climate shocks.

  1. Three Sisters Dam modifications and performance

    Energy Technology Data Exchange (ETDEWEB)

    Courage, L.J.R. [Monenco AGRA Inc., Calgary, AB (Canada)

    1995-12-31

    Recent modifications and maintenance carried out at the Three Sisters Dam, in the Alberta Rockies south of the town of Canmore, were described. A detailed account was given of the dam`s geological setting, its abnormally high leakage through the foundation and its sinkhole activity. Results of studies aimed at finding the cause of leakage and sinkhole occurrences were reviewed. Modifications made to the dam since 1951 were detailed, as were modifications to handle probable maximum flood levels. Three approaches for estimating failure probabilities after identification of failure modes were described. The overall conclusion was that based on constant leakage, no settlement in the dam, penstocks, or the powerhouse since construction, the Three Sisters Dam was stable. 1 ref.

  2. Olympic Dam project: draft environmental impact statement

    International Nuclear Information System (INIS)

    1982-10-01

    The Olympic Dam deposit, South Australia, is estimated to contain at least 2,000 million tonnes of mineralized material, with an average grade of about 1.6% copper, 0.6 Kg/t of uranium oxide and 0.6 g/t of gold. The objective of the project is to extract and process the ore for the production and sale of copper, uranium oxide and the associated gold and silver. Facilities required are an underground mine, an on-site processing plant, associated facilities including a tailings retention system, a town to accommodate up to 9,000 people and other infrastructure. Chapters in the draft E.I.S. contain information on the environment, land use, aboriginal environment, geology, tailings retention system, radiation assessment, project infrastructure, social effects and economic effects

  3. Deformation performance of Waba Dam

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, T.; Bhardwaj, V.; Hassan, P. [Ontario Power Generation, Niagara-on-the-Lake, ON (Canada); Cragg, C. [Cragg Consulting Services, Toronto, ON (Canada)

    2009-07-01

    This paper described the performance of the Waba Dam which is being monitored as part of Ontario Power Generation's Dam Safety Program. It described the deformations that have been observed in this 3600 ft long earthfill dam which lies on marine clay in eastern Ontario. An extensive instrumentation program, including foundation settlement gauges, surface monuments, slope inclinometers, load cells and piezometers has been in effect since the construction of the dam in 1975. Significant settlement has occurred at Waba Dam since its construction. Wide berms were provided upstream and downstream beyond the slopes of the main fill to ensure stability of the dyke on the soft clay foundation and the crest elevations were designed to allow for the expected settlement in the foundation which would be overstressed by the dam loading. Based on current settlements, future settlements are predicted based on Asaoka's method. Inclinometer measurements have shown a foundation lateral spreading of 12 in. The lateral versus vertical deformations were found to be comparable to well behaving embankments reported in the literature. These analyses indicate that Waba Dam is performing well and should continue to perform well into the future. 8 refs., 1 tab., 14 figs.

  4. DAM-LAKEFRONT PLAZA: Revitalization of an Agriculture Reservoir Dam in Kashar-Tirana/Albania

    Directory of Open Access Journals (Sweden)

    Valbona Koçi

    2014-12-01

    Full Text Available The Dam-Lakefront Plaza in Kashar-Tirana/Albania is a research project that proposes not only the re-consideration and reinforcement of the artificial Reservoirs Dams built during Socialism in Albania, but envisions the maintenance of dams and revitalization of the lakeside area promoting the public-private collaboration. In addition, it envisions the generation of qualitative and lively public spaces in sub-urban areas as well. Admitting the artificial lakes as specific nodes of man-made infrastructure in the landscape, and consequently the dams (together with the drainage channels as important hydrotechnic elements of the flood protection infrastructure, this research intends to elaborate on one type of landscape infrastructure - the vertical screens, offering a mediation between the natural and built landscape.

  5. Accuracy Analysis of a Dam Model from Drone Surveys

    Science.gov (United States)

    Buffi, Giulia; Venturi, Sara

    2017-01-01

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations. PMID:28771185

  6. Accuracy Analysis of a Dam Model from Drone Surveys

    Directory of Open Access Journals (Sweden)

    Elena Ridolfi

    2017-08-01

    Full Text Available This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.

  7. Accuracy Analysis of a Dam Model from Drone Surveys.

    Science.gov (United States)

    Ridolfi, Elena; Buffi, Giulia; Venturi, Sara; Manciola, Piergiorgio

    2017-08-03

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.

  8. Ecological Aspect of Dam Design for Flood Regulation and Sustainable Urban Development

    Directory of Open Access Journals (Sweden)

    Badenko Vladimir

    2016-01-01

    Full Text Available Many floodplains are excluded from urban development because the floods cause considerable damage to people’s lives and properties. This requires the development of new approaches to flood management and mitigation for support sustainable urban development. In present study as the measures for mitigation of flash floods, the regulation of river flow by the system of detention reservoirs for flood diversion with dams, which do not need any operation management, are analyzed concerning of Far East region of Russia. The main objective of this paper is to develop a method for analysis how the dam site selection meets the environmental criterion. The method to justify a selection of self-regulated flood dam parameters, primarily a height of a dam and its location on a water stream, providing minimization of impact on the environment have been developed. The result for Selemdzha river basin in Far East monsoon region of Russian Federation is analyzed. The result shows the robustness of the method.

  9. Downstream Yangtze River levels impacted by Three Gorges Dam

    International Nuclear Information System (INIS)

    Wang, Jida; Sheng, Yongwei; Gleason, Colin J; Wada, Yoshihide

    2013-01-01

    Changes in the Yangtze River level induced by large-scale human water regulation have profound implications on the inundation dynamics of surrounding lakes/wetlands and the integrity of related ecosystems. Using in situ measurements and hydrological simulation, this study reveals an altered Yangtze level regime downstream from the Three Gorges Dam (TGD) to the Yangtze estuary in the East China Sea as a combined result of (i) TGD’s flow regulation and (ii) Yangtze channel erosion due to reduced sediment load. During the average annual cycle of TGD’s regular flow control in 2009–2012, downstream Yangtze level variations were estimated to have been reduced by 3.9–13.5% at 15 studied gauging stations, manifested as evident level decrease in fall and increase in winter and spring. The impacts on Yangtze levels generally diminished in a longitudinal direction from the TGD to the estuary, with a total time lag of ∼9–12 days. Chronic Yangtze channel erosion since the TGD closure has lowered water levels in relation to flows at most downstream stations, which in turn counteracts the anticipated level increase by nearly or over 50% in winter and spring while reinforcing the anticipated level decrease by over 20% in fall. Continuous downstream channel erosion in the near future may further counteract the benefit of increased Yangtze levels during TGD’s water supplement in winter and accelerate the receding of inundation areas/levels of downstream lakes in fall. (letter)

  10. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Cochnauer, Tim; Claire, Christopher

    2002-12-01

    Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South

  11. Geomorphic and Ecological Issues in Removal of Sediment-Filled Dams in the California Coast Ranges (Invited)

    Science.gov (United States)

    Kondolf, G. M.; Oreilly, C.

    2010-12-01

    Water-supply reservoirs in the actively eroding California Coast Ranges are vulnerable to sediment filling, thus creating obsolete impounding dams (Minear & Kondolf 2009). Once full of sediment, there is more impetus to remove dams for public safety and fish passage, but managing accumulated sediments becomes a dominant issue in dam removal planning. We analyzed the planning process and sediment management analyses for five dams, all of which have important ecological resources but whose dam removal options are constrained by potential impacts to downstream urban populations. Ringe Dam on Malibu Ck, Matilija Dam on the Ventura River, Searsville Dam on San Francisquito Ck, and Upper York Creek Dam on York Ck cut off important habitat for anadromous steelhead trout (Oncorhynchus mykiss). San Clemente Dam on the Carmel River has a working fish ladder, but only some of the migratory steelhead use it. By virtue of having filled with sediment, all five dams are at greater risk of seismic failure. San Clemente Dam is at greater risk because its foundation is on alluvium (not bedrock), and the poor-quality concrete in Matilija Dam is deteriorating from an akali-aggregate reaction. Simply removing the dams and allowing accumulated sediments to be transported downstream is not an option because all these rivers have extremely expensive houses along downstream banks and floodplains, so that allowing the downstream channel to aggrade with dam-dervied sediments could expose agencies to liability for future flood losses. Analyses of potential sediment transport have been based mostly on application of tractive force models, and have supported management responses ranging from in-situ stabilization (San Clemente and Matilija) to removal of stored sediment (York) to annual dredging to maintain capacity and prevent sediment passing over the dam (proposed for Searsville).

  12. The role of dams in development

    International Nuclear Information System (INIS)

    Cakmak, C.

    2001-01-01

    Although the amounts of water resources are enough for the entire world, the distribution of them in time and space shows uneven pattern. The water need is increasing with heavy industrial and agricultural requirements, while available water in the world remains as a fixed source. Economic growth, socio-cultural, and environmental developments are being realized following these changes. In order to achieve sustainable management of water resources, these changes have to be taken into consideration in water-related development projects. Demand for water is steadily increasing through out the world, even though the fresh water resources are limited and unevenly distributed, during the past three centuries, the amount of water withdrawn from fresh water resources has increased by a factor of 35, whereas world population by a factor 8. The engineering of dams, which provides regular water from reservoirs of dams to be used in case of demand pattern, is a vital part of the civilization. Dams have played a key rote in the development since the third millennium B C when the first great civilizations evolved on major rivers, such as Tigris-Euphrates, the Nile and the Indus. From these early times dams were built for flood control, water supply, irrigation and navigation. Dams also had been built to produce motive power and electricity since the industrial revolution. Development priorities changed, experience accumulated with the construction and operation of dams. Although the importance of water is well known in the human life and civilization around the world, still various groups argue that expected economic benefits are not being produced and that major environmental, economic and social costs are not being taken into account. By the end of 20th century, there were 45000 large dams in over 150 countries. According to the same classification there are 625 large dams in Turkey. All over the world, 50 % of the large dams were built mainly for irrigation. It is estimated

  13. Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA

    Science.gov (United States)

    Levine, Rebekah; Meyer, Grant A.

    2014-01-01

    within the main channel on Odell Creek is limited by frequent breaching (beaver-damming impacts on Odell Creek and other stream systems of different scales suggest a high sensitivity to hydrologic, geomorphic, and environmental controls, complicating predictions of the longer-term effects of beaver restoration.

  14. Matahina Dam : lessons learned from an earthquake-related internal erosion incident at the Matahina Dam, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Gillon, M. [Damwatch Services Ltd., Wellington (New Zealand)

    2009-07-01

    This case history discussed internal erosion damage and crest subsidence caused by an earthquake at the Matahina Dam in New Zealand. The study showed that cracking and internal erosion was initiated during the 1967 reservoir filling operation. Located in an area of active volcanism and faulting, the dam is located on a river with extensive erosion through an ignimbrite flow. The dam's core is founded on compact Tertiary age sediments overlain by sand and gravel deposits beneath the shoulders of the dam. The earthquake caused a rupture along an unidentified fault trace 12 km from the dam. The horizontal base acceleration recorded at the dam was 3.25 m/s. Transverse cracking was observed at each abutment, and deformations were observed in the rockfill. An investigation program was conducted to determine the dam's integrity. Piezometer measurements showed widespread fluctuations. It was concluded that the lack of an effective filter was a significant design omission. 12 refs., 12 figs.

  15. Five-year longitudinal assessment of the downstream impact on schistosomiasis transmission following closure of the Three Gorges Dam.

    Directory of Open Access Journals (Sweden)

    Darren J Gray

    Full Text Available Schistosoma japonicum is a major public health concern in the Peoples' Republic of China (PRC, with about 800,000 people infected and another 50 million living in areas at risk of infection. Based on ecological, environmental, population genetic and molecular factors, schistosomiasis transmission in PRC can be categorised into four discrete ecosystems or transmission modes. It is predicted that, long-term, the Three Gorges Dam (TGD will impact upon the transmission of schistosomiasis in the PRC, with varying degree across the four transmission modes.We undertook longitudinal surveillance from 2002 to 2006 in sentinel villages of the three transmission modes below the TGD across four provinces (Hunan, Jiangxi, Hubei and Anhui to determine whether there was any immediate impact of the TGD on schistosomiasis transmission. Eight sentinel villages were selected to represent both province and transmission mode. The primary end point measured was human incidence. Here we present the results of this five-year longitudinal cohort study. Results showed that the incidence of human S. japonicum infection declined considerably within individual villages and overall mode over the course of the study. This is also reflected in the yearly odds ratios (adjusted for infection risk that showed significant (P<0.01 downward trends in all modes over the follow-up period.The decrease in human S. japonicum incidence observed across all transmission modes in this study can probably be attributed to the annual human and bovine PZQ chemotherapy. If an increase in schistosome transmission had occurred as a result of the TGD, it would be of negligible size compared to the treatment induced decline seen here. It appears therefore that there has been virtually no immediate impact of the TGD on schistosomiasis transmission downstream of the dam.

  16. Dam-breach analysis and flood-inundation mapping for selected dams in Oklahoma City, Oklahoma, and near Atoka, Oklahoma

    Science.gov (United States)

    Shivers, Molly J.; Smith, S. Jerrod; Grout, Trevor S.; Lewis, Jason M.

    2015-01-01

    Dams provide beneficial functions such as flood control, recreation, and storage of water supplies, but they also entail risk; dam breaches and resultant floods can cause substantial property damage and loss of life. The State of Oklahoma requires each owner of a high-hazard dam, which the Federal Emergency Management Agency defines as dams for which failure or improper operation probably will cause loss of human life, to develop an emergency action plan specific to that dam. Components of an emergency action plan are to simulate a flood resulting from a possible dam breach and map the resulting downstream flood-inundation areas. The resulting flood-inundation maps can provide valuable information to city officials, emergency managers, and local residents for planning an emergency response if a dam breach occurs.

  17. Technical bulletin : structural considerations for dam safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This technical bulletin discussed issues related to the safety assessment of concrete water-retaining structures and timber dams. Structures reviewed in the paper included gravity dams; buttress dams; arch dams; spillway structures; intake structures; power plants; roller compacted concrete dams; and timber dams. A variety of issues related to the loss of cohesive bond and discontinuities in bedrock foundations were reviewed with reference to issues related to compressive strength, tensile strength, and shear strength. Static failure modes and failure mechanisms related to dam failures were also described. Visual indicators for potential failures include abutment and foundation movement, seepage, and structure movements. Loading combinations were discussed, and performance indicators for gravity dams were provided. Methods of analysis for considering load characteristics, structure types and geological conditions were also discussed. Modelling techniques for finite element analysis were also included. 16 refs., 3 tabs., 5 figs.

  18. Dam construction impacts on multiscale characterization of sediment discharge in two typical karst watersheds of southwest China

    Science.gov (United States)

    Li, Zhenwei; Xu, Xianli; Xu, Chaohao; Liu, Meixian; Wang, Kelin

    2018-03-01

    Southwest China, as one of the largest continuous karst areas in the world, is a severely eroded region due to its special geological condition. Thus, soil and water conservation measures such as dam construction have been extensively implemented in this region to control sediment delivery. However, it remains unclear how dam construction affects multiscale variability of sediment discharge (SD) and its potentially influential factors in southwest China. To assess this, annual SD, water discharge (WD), precipitation (PT), potential evapotranspiration (PET), and normalized differential vegetation index (NDVI) data from 1955 to 2015 were obtained from two karst watersheds of Liujiang (no large dams) and Hongshui (dam-controlled). These sites shared the similar climatic conditions. The Mann-Kendal test, Wilcoxon rank-sum test, and continuous wavelet transform analysis was used to detect the trends and periodicity in SD, and wavelet coherence analysis were employed to detect the temporal covariance between SD and WD, PT, PET, and NDVI. Results indicated that the multiscale variability of SD was strongly influenced by dam construction. The annual SD showed significant 4-year periodic oscillation in the Liujiang watershed, while no significant cycles were found in the Hongshui watershed. Dam construction exerted substantial influence on the multiscale correlations between SD and its associated factors. The time scales that the NDVI resonated with SD were concentrated on the periodicity of 2- and 3-year in the Liujiang watershed. In contrast, no significant periodicities were observed in the Hongshu watershed. This study yields a greater understanding of SD dynamics, and is helpful for better watershed management in karst areas of southwest China.

  19. Assessing Risks of Mine Tailing Dam Failures

    Science.gov (United States)

    Concha Larrauri, P.; Lall, U.

    2017-12-01

    The consequences of tailings dam failures can be catastrophic for communities and ecosystems in the vicinity of the dams. The failure of the Fundão tailings dam at the Samarco mine in 2015 killed 19 people with severe consequences for the environment. The financial and legal consequences of a tailings dam failure can also be significant for the mining companies. For the Fundão tailings dam, the company had to pay 6 billion dollars in fines and twenty-one executives were charged with qualified murder. There are tenths of thousands of active, inactive, and abandoned tailings dams in the world and there is a need to better understand the hazards posed by these structures to downstream populations and ecosystems. A challenge to assess the risks of tailings dams in a large scale is that many of them are not registered in publicly available databases and there is little information about their current physical state. Additionally, hazard classifications of tailings dams - common in many countries- tend to be subjective, include vague parameter definitions, and are not always updated over time. Here we present a simple methodology to assess and rank the exposure to tailings dams using ArcGIS that removes subjective interpretations. The method uses basic information such as current dam height, storage volume, topography, population, land use, and hydrological data. A hazard rating risk was developed to compare the potential extent of the damage across dams. This assessment provides a general overview of what in the vicinity of the tailings dams could be affected in case of a failure and a way to rank tailings dams that is directly linked to the exposure at any given time. One hundred tailings dams in Minas Gerais, Brazil were used for the test case. This ranking approach could inform the risk management strategy of the tailings dams within a company, and when disclosed, it could enable shareholders and the communities to make decisions on the risks they are taking.

  20. Sediment Transport Over Run-of-River Dams

    Science.gov (United States)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  1. Hydraulics of embankment-dam breaching

    Science.gov (United States)

    Walder, J. S.; Iverson, R. M.; Logan, M.; Godt, J. W.; Solovitz, S.

    2012-12-01

    Constructed or natural earthen dams can pose hazards to downstream communities. Experiments to date on earthen-dam breaching have focused on dam geometries relevant to engineering practice. We have begun experiments with dam geometries more like those of natural dams. Water was impounded behind dams constructed at the downstream end of the USGS debris-flow flume. Dams were made of compacted, well-sorted, moist beach sand (D50=0.21 mm), 3.5 m from toe to toe, but varying in height from 0.5 to 1 m; the lower the dam, the smaller the reservoir volume and the broader the initially flat crest. Breaching was started by cutting a slot 30-40 mm wide and deep in the dam crest after filling the reservoir. Water level and pore pressure within the dam were monitored. Experiments were also recorded by an array of still- and video cameras above the flume and a submerged video camera pointed at the upstream dam face. Photogrammetric software was used to create DEMs from stereo pairs, and particle-image velocimetry was used to compute the surface-velocity field from the motion of tracers scattered on the water surface. As noted by others, breaching involves formation and migration of a knickpoint (or several). Once the knickpoint reaches the upstream dam face, it takes on an arcuate form whose continued migration we determined by measuring the onset of motion of colored markers on the dam face. The arcuate feature, which can be considered the head of the "breach channel", is nearly coincident with the transition from subcritical to supercritical flow; that is, it acts as a weir that hydraulically controls reservoir emptying. Photogenic slope failures farther downstream, although the morphologically dominant process at work, play no role at all in hydraulic control aside from rare instances in which they extend upstream so far as to perturb the weir, where the flow cross section is nearly self-similar through time. The domain downstream of the critical-flow section does influence

  2. Dam that social networking: connecting South Africa's major dams to social media

    CSIR Research Space (South Africa)

    Butgereit, L

    2011-10-01

    Full Text Available where four major South African dams are connected to Twitter and Facebook (and other social media such as MXit and Google Chat) in a mechanism which would be easy to replicate for additional dams or rivers. Data is supplied by the South African...

  3. Grouting of the cracks in the Arch 5-6 Daniel Johnson dam

    International Nuclear Information System (INIS)

    Lariviere, R.; Routhier, L.; Roy, V.; Saleh, K.; Tremblay, S.

    1999-01-01

    The Daniel-Johnson dam is located 800 km northeast of Montreal, PQ, and is 1314 m in length and 214 m high. Just after completion of dam construction different types of cracks started to appear on the upstream and downstream faces. During and after the construction of the dam, numerous cracks and joints were grouted in order to reduce water infiltration. In some cases, as a result of high injection pressures and inaccurate methods, the injections provoked the propagation of the existing cracks or the initiation of new ones. Because of this situation and to determine the contribution of injection to dam safety, in 1985, Hydro-Quebec applied a moratorium on all future injection work on the dam. Research work was initiated in 1986 in the areas of grouting materials, methods, equipment and behavioral analysis to establish a safe method for the injection of the cracks. A committee was formed in 1993 with members from various groups, in order to: carry out extensive behavioral analysis of the Arch 5-6 dam, carry out an investigation program in order to determine the cause of the increase of the water infiltration, undertake a structural analysis program in order to evaluate the impact of an injection on the safety of the dam, and identify the proper method and injection products to use. In 1997, as a result of the progress of the structural analysis studies and the injection research project, a decision was made to proceed with the injection of the dam. A description is included of the results of the investigation, recommendations and results of the injection research project, as well as some details of the grouting campaign carried out in January 1999. On the whole, a better knowledge was acquired of the structure, of the plunging cracks and the behaviour of the dam during the injection. In the field of injection methods, materials and equipment, research work was invaluable when it came to the injection of micro-fine cracks in concrete dams. 5 refs., 8 figs

  4. TYPOLOGY OF LARGE DAMS. A REVIEW

    Directory of Open Access Journals (Sweden)

    Gheorghe ROMANESCU

    2015-06-01

    Full Text Available The dams represent hydrotechnical constructions meant to ensure a judicious use of water resources. The international literature is extremely rich in data regarding the large dams on Earth. In this context, a hierarchy of the main dams is attempted and the role they play in the economic development of the regions they were built in is underlined. The largest dams are built on the big rivers in Asia, North America, South America and Africa. The reservoirs have multiple roles: electricity production, drinking or industrial water supply, irrigations, recreation, etc. High costs and land fragility do not allow the construction of dams in the places most affected by drought or flood. This is why they are usually built in mountainous areas, at great distance from the populated centres. On the Romanian territory, there are 246 large dams, built in the hydrographical basins of Siret, Olt, Arges, Somes, etc. The largest rivers on Earth, by discharge, (Amazon and Zair do not also include the largest dams because the landform and the type of flow have not allowed such constructions.

  5. Construction of anhydrite dams

    Energy Technology Data Exchange (ETDEWEB)

    Bortoluzzi, L; Francois, G

    1977-05-01

    To construct a ventilation dam, the road is closed with a fibreglass sheet onto which 3 or 4 cm of anhydrite paste is sprayed. The equipment necessary is described, and the cost is compared with that of an aggregate dam.

  6. Trends and evolution of contamination in a well-dated water reservoir sedimentary archive: the Brno Dam, Moravia, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Sedláček, J.; Bábek, O.; Matys Grygar, Tomáš

    2013-01-01

    Roč. 69, č. 8 (2013), s. 2581-2593 ISSN 1866-6280 Institutional support: RVO:61388980 Keywords : Brno Dam * Dam sediments * Cs-137 dating * Heavy metals * Eutrophication Subject RIV: DD - Geochemistry Impact factor: 1.572, year: 2013

  7. Regional impact of climate on Japanese encephalitis in areas located near the three gorges dam.

    Directory of Open Access Journals (Sweden)

    Yuntao Bai

    Full Text Available BACKGROUND: In this study, we aim to identify key climatic factors that are associated with the transmission of Japanese encephalitis virus in areas located near the Three Gorges Dam, between 1997 and 2008. METHODS: We identified three geographical regions of Chongqing, based on their distance from the Three Gorges Dam. Collectively, the three regions consisted of 12 districts from which study information was collected. Zero-Inflated Poisson Regression models were run to identify key climatic factors of the transmission of Japanese encephalitis virus for both the whole study area and for each individual region; linear regression models were conducted to examine the fluctuation of climatic variables over time during the construction of the Three Gorges Dam. RESULTS: Between 1997 and 2008, the incidence of Japanese encephalitis decreased throughout the entire city of Chongqing, with noticeable variations taking place in 2000, 2001 and 2006. The eastern region, which is closest to the Three Gorges Dam, suffered the highest incidence of Japanese encephalitis, while the western region experienced the lowest incidence. Linear regression models revealed that there were seasonal fluctuations of climatic variables during this period. Zero-Inflated Poisson Regression models indicated a significant positive association between temperature (with a lag of 1 and 3 months and Japanese encephalitis incidence, and a significant negative association between rainfall (with a lag of 0 and 4 months and Japanese encephalitis incidence. CONCLUSION: The spatial and temporal trends of Japanese encephalitis incidence that occurred in the City of Chongqing were associated with temperature and rainfall. Seasonal fluctuations of climatic variables during this period were also observed. Additional studies that focus on long-term data collection are needed to validate the findings of this study and to further explore the effects of the Three Gorges Dam on Japanese

  8. Hydropower generation, flood control and dam cascades: A national assessment for Vietnam

    Science.gov (United States)

    Nguyen-Tien, Viet; Elliott, Robert J. R.; Strobl, Eric A.

    2018-05-01

    Vietnam is a country with diverse terrain and climatic conditions and a dependency on hydropower for a significant proportion of its power needs and as such, is particularly vulnerable to changes in climate. In this paper we apply SWAT (Soil and Water Assessment Tool) derived discharge simulation results coupled with regression analysis to estimate the performance of hydropower plants for Vietnam between 1995 and mid-2014 when both power supply and demand increased rapidly. Our approach is to examine the watershed formed from three large inter-boundary basins: The Red River, the Vietnam Coast and the Lower Mekong River, which have a total area of 977,964 km2. We then divide this area into 7,887 sub-basins with an average area of 131.6 km2 (based on level 12 of HydroSHEDS/HydroBASINS datasets) and 53,024 Hydrological Response Units (HRUs). Next we simulate river flow for the 40 largest hydropower plants across Vietnam. Our validation process demonstrates that the simulated flows are significantly correlated with the gauged inflows into these dams and are able to serve as a good proxy for the inflows into hydropower dams in our baseline energy regression, which captures 87.7% of the variation in monthly power generation. In other results we estimate that large dams sacrifice on average around 18.2% of their contemporaneous production for the purpose of flood control. When we assess Vietnam's current alignment of dams we find that the current cascades of large hydropower dams appear to be reasonably efficient: each MWh/day increase in upstream generation adds 0.146 MWh/day to downstream generation. The study provides evidence for the multiple benefits of a national system of large hydropower dams using a cascade design. Such a system may help overcome future adverse impacts from changes in climate conditions. However, our results show that there is still room for improvement in the harmonization of cascades in some basins. Finally, possible adverse hydro

  9. Brief daily postpartum separations from the litter alter dam response to psychostimulants and to stress

    Directory of Open Access Journals (Sweden)

    P.P. Silveira

    2013-05-01

    Full Text Available Neonatal handling induces several behavioral and neurochemical alterations in pups, including decreased responses to stress and reduced fear in new environments. However, there are few reports in the literature concerning the behavioral effects of this neonatal intervention on the dams during the postpartum period. Therefore, the aim of the current study was to determine if brief postpartum separation from pups has a persistent impact on the dam's stress response and behavior. Litters were divided into two neonatal groups: 1 non-handled and 2 handled [10 min/day, from postnatal day (PND 1 to 10]. Weaning occurred at PND 21 when behavioral tasks started to be applied to the dams, including sweet food ingestion (PND 21, forced swimming test (PND 28, and locomotor response to a psychostimulant (PND 28. On postpartum day 40, plasma was collected at baseline for leptin assays and after 1 h of restraint for corticosterone assay. Regarding sweet food consumption, behavior during the forced swimming test or plasma leptin levels did not differ between dams briefly separated and non-separated from their pups during the postpartum period. On the other hand, both increased locomotion in response to diethylpropion and increased corticosterone secretion in response to acute stress were detected in dams briefly separated from their pups during the first 10 postnatal days. Taken together, these findings suggest that brief, repeated separations from the pups during the neonatal period persistently impact the behavior and induce signs of dopaminergic sensitization in the dam.

  10. Restoring Environmental Flows by Modifying Dam Operations

    Directory of Open Access Journals (Sweden)

    Brian D. Richter

    2007-06-01

    Full Text Available The construction of new dams has become one of the most controversial issues in global efforts to alleviate poverty, improve human health, and strengthen regional economies. Unfortunately, this controversy has overshadowed the tremendous opportunity that exists for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. This paper describes an assessment framework that can be used to evaluate the benefits that might be restored through dam re-operation. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. The paper highlights a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the

  11. Combining turbine blade-strike and life cycle models to assess mitigation strategies for fish passing dams

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J.W. [National Marine Fisheries Service, Seattle, WA (United States). Fish Ecology Div.; Swedish Univ. of Agricultural Sciences, Umea (Sweden). Dept. of Wildlife, Fish and Environmental Studies; Ploskey, G.R. [Battelle-Pacific Northwest National Laboratory, Richland, WA (United States); Zabel, R.W. [National Marine Fisheries Service, Seattle, WA (United States). Fish Ecology Div.; Lundqvist, H. [Swedish Univ. of Agricultural Sciences, Umea (Sweden). Dept. of Wildlife, Fish and Environmental Studies

    2008-08-15

    Many diadromous and resident fish populations migrate within riverine, freshwater, and marine habitats that have been altered by human activities. This paper developed a tool designed to analyze the effects of dams on fish populations. The model combined a blade-strike model of a hydroelectric turbine and a life cycle model in order to generate point estimates of mortality and incorporate dam passage impacts. The modelling tool was used to study populations of Atlantic salmon and sea trout populations in Sweden which were depressed due to damming, dredging, pollution, and siltation of the rivers. The downstream migrating fish in the rivers passed through a single dam and power station containing Kaplan and Francis turbines. A blade-strike model was developed as the primary mechanism of mortality for the fish. The mortality of juvenile and adult fish and mortality rates from blade-strikes were then entered into salmon life cycle models that incorporated life history variability in age of reproduction and spawning activities. The life cycle model populations in the river were then modelled in hypothetical scenarios. Results of the scenarios were compared with effects from the blade-strike mortality results. Results of the study showed that increases in the number of female salmon escaping above the dam after 20 years was significantly higher when both juveniles and adult fish populations were protected. The model will be used to evaluate strategies designed to conserve fish populations impacted by dams. 49 refs., 9 tabs., 6 figs.

  12. Combining turbine blade-strike and life cycle models to assess mitigation strategies for fish passing dams

    International Nuclear Information System (INIS)

    Ferguson, J.W.; Zabel, R.W.; Lundqvist, H.

    2008-01-01

    Many diadromous and resident fish populations migrate within riverine, freshwater, and marine habitats that have been altered by human activities. This paper developed a tool designed to analyze the effects of dams on fish populations. The model combined a blade-strike model of a hydroelectric turbine and a life cycle model in order to generate point estimates of mortality and incorporate dam passage impacts. The modelling tool was used to study populations of Atlantic salmon and sea trout populations in Sweden which were depressed due to damming, dredging, pollution, and siltation of the rivers. The downstream migrating fish in the rivers passed through a single dam and power station containing Kaplan and Francis turbines. A blade-strike model was developed as the primary mechanism of mortality for the fish. The mortality of juvenile and adult fish and mortality rates from blade-strikes were then entered into salmon life cycle models that incorporated life history variability in age of reproduction and spawning activities. The life cycle model populations in the river were then modelled in hypothetical scenarios. Results of the scenarios were compared with effects from the blade-strike mortality results. Results of the study showed that increases in the number of female salmon escaping above the dam after 20 years was significantly higher when both juveniles and adult fish populations were protected. The model will be used to evaluate strategies designed to conserve fish populations impacted by dams. 49 refs., 9 tabs., 6 figs

  13. 33 CFR 100.1102 - Marine Events on the Colorado River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam...

    Science.gov (United States)

    2010-07-01

    ... River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona). 100.1102 Section... MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.1102 Marine Events on the Colorado River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona). (a) General. Sponsors are...

  14. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2011 - February 2012

    Science.gov (United States)

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.; Hatton, Tyson W.

    2013-01-01

    The movements and dam passage of juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. The purpose of the study was to provide information to aid with decisions about potential alternatives for improving downstream passage conditions for juvenile salmonids in this flood-control reservoir. In 2011, a total of 411 hatchery fish and 26 wild fish were tagged and released during a 3-month period in the spring, and another 356 hatchery fish and 117 wild fish were released during a 3-month period in the fall. A series of 16 autonomous hydrophones throughout the reservoir and 12 hydrophones in a collective system near the dam outlet were used to determine general movements and dam passage of the fish over the life of the acoustic transmitter, which was expected to be about 3 months. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back to the head of the reservoir. Most fish were detected near the temperature control tower at least once. The median time from release near the head of the reservoir to detection within about 100 meters of the dam outlet at the temperature control tower was between 5.7 and 10.8 days, depending on season and fish origin. Dam passage events occurred over a wider range of dates in the spring and summer than in the fall and winter, but dam passage numbers were greatest during the fall and winter. A total of 10.5 percent (43 of 411) of the hatchery fish and 15.4 percent (4 of 26) of the wild fish released in the spring are assumed to have passed the dam, whereas a total of 25.3 percent (90 of 356) of the hatchery fish and 16.9 percent (30 of 117) of the wild fish released in the fall are assumed to have passed the dam. A small number of fish passed the dam after their transmitters had stopped working and were detected at

  15. GIS inundation mapping and dam breach analysis of Woolwich Dam using HEC-geoRAS

    Energy Technology Data Exchange (ETDEWEB)

    Mocan, N. [Crozier and Associates Inc., Collingwood, ON (Canada); Joy, D.M. [Guelph Univ., ON (Canada); Rungis, G. [Grand River Conservation Authority, Cambridge, ON (Canada)

    2006-07-01

    A study was conducted to determine the extent of flood inundation given a hypothetical dam breach scenario of the Woolwich Dam located in the Grand River Watershed, 2.5 km north of the Town of Elmira, Ontario. The dam is operated by the Grand River Conservation Authority and was constructed to provide low-flow augmentation to Canagagigue Creek. Advances in the computational capabilities of numerical models along with the availability of fine resolution geospatial data has lead to significant advances in the evaluation of catastrophic consequences due to the ensuing flood waters when dams fail. The hydraulic models HEC-RAS and HEC-GeoRAS were used in this study along with GIS to produce high resolution spatial and temporal flood inundation mapping. Given the proximity to the Town of Elmira, the dam is classified as having a high hazard potential. The large size and high hazard potential of the dam suggests that the Inflow Design Flood (IDF) is the Probable Maximum Flood (PMF) event. The outlet structure of the spillway consists of 4 ogee-type concrete spillways equipped with radial gates. A low-level concrete pipe located within the spillway structure provides spillage for maintenance purposes. The full flow capacity of the spillway structure is 297 cubic metres per second at the full supply level of 364.8 metres. In addition to GIS flood inundation maps, this paper included the results of flood hydrographs, water surface profiles and peak flow data. It was concluded that techniques used in this analysis should be considered for use in the development of emergency management planning and dam safety assessments across Canada. 6 refs., 3 tabs., 4 figs.

  16. Research on shape optimization of CSG dams

    Directory of Open Access Journals (Sweden)

    Xin Cai

    2011-12-01

    Full Text Available The multi-objective optimization method was used for shape optimization of cement sand and gravel (CSG dams in this study. The economic efficiency, the sensitivities of maximum horizontal displacement and maximum settlement of the dam to water level changes, the overall stability, and the overall strength security were taken into account during the optimization process. Three weight coefficient selection schemes were adopted to conduct shape optimization of a dam, and the case studies lead to the conclusion that both the upstream and downstream dam slope ratios for the optimal cross-section equal 1:0.7, which is consistent with the empirically observed range of 1:0.6 to 1:0.8 for the upstream and downstream dam slope ratios of CSG dams. Therefore, the present study is of certain reference value for designing CSG dams.

  17. Records of pan (floodplain wetland) sedimentation as an approach for post-hoc investigation of the hydrological impacts of dam impoundment: The Pongolo river, KwaZulu-Natal.

    Science.gov (United States)

    Heath, S K; Plater, A J

    2010-07-01

    River impoundment by dams has far-reaching consequences for downstream floodplains in terms of hydrology, water quality, geomorphology, ecology and ecosystem services. With the imperative of economic development, there is the danger that potential environmental impacts are not assessed adequately or monitored appropriately. Here, an investigation of sediment composition of two pans (floodplain wetlands) in the Pongolo River floodplain, KwaZulu-Natal, downstream of the Pongolapoort dam constructed in 1974, is considered as a method for post-hoc assessment of the impacts on river hydrology, sediment supply and water quality. Bumbe and Sokhunti pans have contrasting hydrological regimes in terms of their connection to the main Pongolo channel - Bumbe is a shallow ephemeral pan and Sokhunti is a deep, perennial water body. The results of X-ray fluorescence (XRF) geochemical analysis of their sediment records over a depth of >1 m show that whilst the two pans exhibit similar sediment composition and variability in their lower part, Bumbe pan exhibits a shift toward increased fine-grained mineral supply and associated nutrient influx at a depth of c. 45 cm whilst Sokhunti pan is characterised by increased biogenic productivity at a depth of c. 26 cm due to enhanced nutrient status. The underlying cause is interpreted as a shift in hydrology to a 'post-dam' flow regime of reduced flood frequencies with more regular baseline flows which reduce the average flow velocity. In addition, Sokhunti shows a greater sensitivity to soil influx during flood events due to the nature of its 'background' of autochthonous biogenic sedimentation. The timing of the overall shift in sediment composition and the dates of the mineral inwash events are not well defined, but the potential for these wetlands as sensitive recorders of dam-induced changes in floodplain hydrology, especially those with a similar setting to Sokhunti pan, is clearly demonstrated. Copyright 2010 Elsevier Ltd. All

  18. Evaporation Ponds or Recharge Structures ? the Role of Check Dams in Arkavathy River Basin, India

    Science.gov (United States)

    Jeremiah, K.; Srinivasan, V.; R, A.

    2014-12-01

    "Watershed development" has been the dominant paradigm for water management in India for the last two decades. Current spending on watershed development programmes rivals spending on large dams. In practice, watershed development involves a range of soil and water conservation measures including building check dams, gully plugs, contour bunds etc. Despite their dominance in water management paradigms, relatively little empirical data exists on these structures. Importantly, even though the benefits of individual watershed structures are recognized, the cumulative impact of building hundreds of such structures on hydrologic partitioning of a watershed remains unknown. We investigated the role of check dams in two small milli-watersheds in the Arkavathy River basin in South India. We conducted a comprehensive census of all check dams in the two milli-watersheds with a total area of 26 sq km. 40 check dams (representing a density of 1.35/sq km of watershed area) were geotagged, photographed, measured and their condition was recorded. We then selected twelve check dams and monitored the water stored using capacitance sensors. We also set up Automatic Weather Stations in each watershed. Inflows, evaporation and infiltration were calculated at each site to evaluate how check dams alter hydrologic partitioning in the watershed as a whole.

  19. Research progress on dam-break floods

    KAUST Repository

    Wu, Jiansong; Bao, Kai; Zhang, Hui

    2011-01-01

    Because of the catastrophic effects downstream of dam-break failure, more and more researchers around the world have been working on the study of dam-break flows to accurately forecast the downstream inundation mapping. With the rapid development of computer hardware and computing techniques, numerical study on dam-break flows has been a popular research subject. In the paper, the numerical methodologies used to solve the governing partial differential equations of dam-break flows are classified and summarized, and their characteristics and applications are discussed respectively. Furthermore, the fully-developed mathematical models developed in recent decades are reviewed, and also introduced the authors' on-going work. Finally, some possible future developments on modeling the dam-break flows and some solutions are presented and discussed. © 2011 IEEE.

  20. Research progress on dam-break floods

    KAUST Repository

    Wu, Jiansong

    2011-08-01

    Because of the catastrophic effects downstream of dam-break failure, more and more researchers around the world have been working on the study of dam-break flows to accurately forecast the downstream inundation mapping. With the rapid development of computer hardware and computing techniques, numerical study on dam-break flows has been a popular research subject. In the paper, the numerical methodologies used to solve the governing partial differential equations of dam-break flows are classified and summarized, and their characteristics and applications are discussed respectively. Furthermore, the fully-developed mathematical models developed in recent decades are reviewed, and also introduced the authors\\' on-going work. Finally, some possible future developments on modeling the dam-break flows and some solutions are presented and discussed. © 2011 IEEE.

  1. An automated assessment method for the potential loss related to a dam failure

    International Nuclear Information System (INIS)

    Marche, C.; McNeil, E.; Boyer, R.

    1994-01-01

    The overall risk associated with a dam or dam group failure is a measure of the probability and severity of its effects to people, properties and the environment. A methodology for flooding impacts studies based on deterministic analysis of water depth and velocity is proposed. The methodology can be used for flooding impacts studies on entities for which the geographical position is either a unique point (such as a buildings), a series of linked points (e.g. roads) or a polygon (e.g. crop field). Software implementation of the methodology is based on numerical cartograpy, including terrain numerical modelling, free surface flow modelling and dual kriging. The software delineates the flood contours, identifies entities located in the flooding area, estimates flow conditions at the site locations of each affected entity and evaluates the corresponding impacts in these entities. 4 refs., 7 figs

  2. Tenaga Nasional Berhad dam safety and surveillance program

    International Nuclear Information System (INIS)

    Jansen Luis; Zulkhairi Abd Talib

    2006-01-01

    This paper discusses the current practice of dam surveillance, which includes dam monitoring which is a process of visual inspections, measuring, processing, compiling and analyzing dam instrumentation data to determine the performance of a dam. The prime objective of the dam surveillance system is to ensure that any occurrence and development of safety deficiencies and problems are quickly detected, identified, analyzed and the required remedial actions are determined and consequently carried out in due time. In brief, the section is responsible to ensure that the dam monitoring and surveillance works are implemented as per scheduled and in accordance with the requirement and guidelines prepared by the dam designers and in accordance with international commission on large dams, ICOLD. The paper also illustrates and recommends an alternative approach for dam surveillance program using risk management approach, which is currently being actively adopted by some countries like USA, Canada, Australia and etc, towards improving the dam safety management and the decision making process. The approach provides a wider area of opportunity, improvements and benefits particular in the evaluation and modifications to the dam performance and safety. The process provides an effective and efficient tool for the decision makers and engineers through a comprehensive evaluation and a good understanding of the hazards, risks and consequences in relation to dam safety investigations. (Author)

  3. WinDAM C earthen embankment internal erosion analysis software

    Science.gov (United States)

    Two primary causes of dam failure are overtopping and internal erosion. For the purpose of evaluating dam safety for existing earthen embankment dams and proposed earthen embankment dams, Windows Dam Analysis Modules C (WinDAM C) software will simulate either internal erosion or erosion resulting f...

  4. Alleviating dam impacts along the transboundary Se San River in northeast Cambodia : a review of the rapid environmental impact assessment on the Cambodian part of the Se San River due to hydropower development in Vietnam (July 2007 version)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-02-15

    Probe International has reviewed 2 reports regarding the environmental impact assessment (EIA) on the Cambodian part of the Se San River resulting from hydropower development in Vietnam. Both reports were prepared for Electricity of Vietnam (EVN), the project owner and developer. The operation of 3 large hydro dams on the upper Se San River has disrupted flow in downstream Cambodia where more than 28,000 people depend on the river for drinking water, irrigation, fishing, livestock watering and transportation. Probe International's focus is on mitigating and compensating for affected communities in downstream Cambodia. Their review of the EIAs recommends that Electricity of Vietnam consider switching from peaking to base load operations at its upper Se San hydro dams to mitigate the impacts in downstream Cambodia. The downstream impacts of EVN dams on the Se San River include loss of life, property, livelihood and habitat; malnutrition; loss of wet season rice production; reduced fish catches; food security at risk; loss of fish protein; loss of river bank agriculture; reduced availability of plants for food and medicine; river bank erosion; reservoir erosion and downstream turbidity; increased transportation risks; loss of fisheries habitat; increased pressure on upland forests; disrupted riverine ecosystem; and disrupted fish migration. The EIA recommendations include the re-regulation of the Se San 4A reservoir; operational changes to reduce downstream fluctuations and erosion; monitoring impact of operations on water quantity and quality downstream; algal monitoring; establishment of early warning system for spillway release; prolonging the wet season filling of the reservoir; reducing nutrient inputs to the rivers and reservoirs and a fish stocking program. 6 figs., 1 appendix.

  5. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    Science.gov (United States)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this

  6. Brazil's Balbina Dam: Environment versus the legacy of the Pharaohs in Amazonia

    Science.gov (United States)

    Fearnside, Philip M.

    1989-07-01

    The Balbina Dam in Brazil's state of Amazonas floods 2360 km2 of tropical forest to generate an average of only 112.2 MW of electricity. The flat topography and small size of the drainage basin make output small. Vegetation has been left to decompose in the reservoir, resulting in acidic, anoxic water that will corrode the turbines. The shallow reservoir contains 1500 islands and innumerable stagnant bays where the water's residence time will be even longer than the average time of over one year. Balbina was built to supply electricity to Manaus, a city that has grown so much while the dam was under construction that other alternatives are already needed. Government subsidies explain the explosive growth, including Brazil's unified tariff for electricity. Alternative power sources for Manaus include transmission from more distant dams or from recently discovered oil and natural gas deposits. Among Balbina's impacts are loss of potential use of the forest and displacement of about one third of the surviving members of a much-persecuted Amerindian tribe: the Waimiri-Atroari. The dam was closed on 1 October 1987 and the first of five generators began operation in February 1989. The example of Balbina points to important ways that the decision-making process could be improved in Brazil and in the international funding agencies that have directly and indirectly contributed to the project. Environmental impact analyses must be completed prior to decisions on overall project implementation and must be free of influence from project proponents. The current environmental impact assessment system in Brazil, as in many other countries, has an undesirable influence on science policy, in addition to failing to address the underlying causes of environmentally destructive development processes and inability to halt “irreversible” projects like Balbina.

  7. Sinkhole remediation at Swinging Bridge Dam

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A. [Devine Tarbell and Associates, Portland, ME (United States)

    2009-07-01

    This case history summary described a piping-related sinkhole that occurred after a flood at the Swinging Bridge Dam. The earth-filled embankment dam was constructed using a hydraulic fill technique. A foundation drilling and grouting program was constructed in areas of the dam founded on jointed sandstone and shale. The storage volumes of the reservoir is 32,000 acre-feet. A sinkhole 25 to 300 feet in diameter was observed on May 5, 2005 along the edge of the dam crest. The sinkhole extended to within 10 feet of the reservoir and was separated by a shallow berm of soil and driftwood. Cracking of the crest extended across an area of 180 feet. Operations staff notified the appropriate agencies, implemented a monitoring program, and mobilized construction equipment and sands for use as emergency sinkhole filler. An increase in tailrace turbidity was observed. Historical records for the dam showed significant cracking during the initial filling of the reservoir. Failure modes included increased pore pressures and seepages resulting in the piping of soil along the outside of the dam conduit. Emergency repairs included chemical grouting and weld repairs in the penstocks. A Federal Emergency Management Agency (FEMA) is currently addressing safety issues associated with conduits through dams. 4 refs., 11 figs.

  8. Dynamic tests at the Outardes 3 dam

    International Nuclear Information System (INIS)

    Proulx, J.; Paultre, P.; Duron, Z.; Tai Mai Phat; Im, O.

    1992-01-01

    At the Outardes 3 gravity dam, part of the Manicouagan-Outardes hydroelectric complex in northeastern Quebec, forced vibration tests were carried out using an eccentric mass shaker attached to the dam crest at three different locations. Accelerations were measured along the crest and in the inspection galleries, and hydrodynamic pressures were measured along the upstream dam face and at various locations in the reservoir. The tests were designed to analyze the effects of gravity dam-reservoir interactions and to generate a data base for calibrating finite element models used in studying the dynamic behavior of gravity dams. Experimental results are presented in order to demonstrate the quality of the data obtained and the effectiveness of the experimental procedures. Modes of vibration were observed which corresponded to those obtained by finite element analysis. It is shown that techniques recently developed for dynamic tests on large dams can be successfully used on gravity dams. 3 refs., 6 figs

  9. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    Directory of Open Access Journals (Sweden)

    Maíra Benchimol

    Full Text Available Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  10. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    Science.gov (United States)

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  11. National dam inventory provides data for analysis

    International Nuclear Information System (INIS)

    Spragens, L.

    1992-01-01

    The Association of State Dam Safety Officials completed a dam inventory this fall. Information on approximately 90,000 state-regulated dams in the US collected during the four-year inventory is being used to build a database managed by the Federal Emergency Management Agency. In addition to ASDSO's work, the federal government conducted an inventory of federal dams. This data will be added to the state information to form one national database. The database will feature 35 data fields for each entry, including the name of the dam, its size, the name of the nearest downstream community, maximum discharge and storage volume, the date of the last inspection, and details about the emergency action plan. The program is an update of the nation's first dam inventory, required by the Dam Safety Act of 1972. The US Army Corps of Engineers completed the original inventory in 1981. The Water Resources Development Act of 1986 authorized appropriations of $2.5 million for the Corps to update the inventory. FEMA and the Corps entered into an agreement for FEMA to undertake the task for the Corps and to coordinate work on both the federal and state inventories. ASDSO compiles existing information on state-regulated dams into a common format for the database, added missing information, and established a process for continually updating data. ASDSO plans to analyze the information collected for the database. It will look at statistics for the number of dams regulated, communities that could be affected, and the number of high-hazard dams. FEMA is preparing reports for Congress on the project. The reports, which are expected to be ready by May 1993, will include information on the methodology used and facts about regulated dams under state jurisdiction

  12. Seismic failure modes and seismic safety of Hardfill dam

    Directory of Open Access Journals (Sweden)

    Kun Xiong

    2013-04-01

    Full Text Available Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and greater seismic safety.

  13. Qu'Appelle River Dam, dam break analysis using advanced GIS tools for rapid modelling and inundation mapping

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, D. [Hatch Energy, Winnipeg, MB (Canada); Campbell, C. [Saskatchewan Watershed Authority, Moose Jaw, SK (Canada); Groeneveld, J. [Hatch Energy, Calgary, AB (Canada)

    2008-07-01

    The South Saskatchewan River Project (SSRP) comprises a multi-purpose reservoir that provides water for conservation and irrigation, flood control, power generation, recreation, and municipal and industrial water supply. In addition to the 64 m high Gardiner Dam, the 27 m high Qu'Appelle River Dam and the 22 km long Lake Diefenbaker Reservoir, the SSRP also includes ancillary works. The Qu'Appelle River valley extends for 458 km before connecting to the Assiniboine River. The valley is incised up to 90 m in depth and is a popular cottaging and recreational area with several major communities located in the flood plain. In the event of a breach of the Qu'Appelle Dam, the discharge will increase from a normal maximum discharge of under 60 m{sup 3} per second to over 50,000 m{sup 3} per second. The Saskatchewan Watershed Authority (SWA) is responsible for ensuring safe development of the Province's water resources, without affecting reservoir or lake operations, and preventing damage from flooding, erosion or land slides. It is in the process of developing Hazard Assessments and emergency preparedness plans for each of their dams in accordance with the Canadian Dam Safety Guidelines. Studies using GIS technology and the hydrodynamic routing model HEC-RAS have been completed to evaluate the potential inundation that may result in the event of failure of the Qu'Appelle River Dam. These studies involved the development of a breach parameter model using a breach data set revised to better reflect the Qu'Appelle River Dam; the development of a dam break model for the Qu'Appelle River Dam and downstream river and flood plain; and, the use of this model to simulate two potential dam failure scenarios for the Qu'Appelle River Dam, notably failure during passage of the PMF and failure during fair weather conditions. Inundation maps have been prepared for the downstream Qu'Appelle River valley for each of the above events. 3 refs., 4

  14. Impact assessment of gilgel gibe hydroelectric dam on schitosomiasis: a cross sectional study in southwest ethiopia.

    Science.gov (United States)

    Yami, Alemeshet; Kebede, Sileshi; Mamo, Yoseph

    2010-07-01

    Intestinal schistosomiasis is prevalent in East Africa including Ethiopia. Constructed five years back, Gilgel Gibe dam is suspected to harbor the intermediate host for transmission of schistosomiasis. The objective of this study was to determine the prevalence of intestinal schistosomiasis and risk factors among school children. A comparative cross-sectional study was carried out in October 2008 in four Woredas bordering Gilgel Gibe dam, within 10 kilometers, and Bulbul, which is 30 Kms away from the dam. Children attending grades 1-8 in the schools located adjacent to the dam constituted the cases and those living in Bulbul constitute the controls. Using Epinfo version 6.0 for cross-sectional study, a sample size of 937 was determined. Sample size allocation was done 2:1 for cases and control. After interview, stool sample was collected and analyzed. Screening for the presence of intermediate host and physiochemical analyses of selected water bodies along the major water contact sites of the reservoir was also done Data were entered into computer and analyzed using SPSS for windows version 13.0.1. Out of 624 sampled cases and 312 controls, 585 and 270 participated in the study giving a response rate of 93.8% and 86.5%, respectively. Four hundred seventy four (81.0% of the cases and 203 (75.2%) controls use latrine regularly. On stool examination, 406 (47.5%) children, 295 (50.4%) cases and 111 (41.1%) controls) were positive to intestinal parasites but only two children, both from the control groups, were positive for Schistosoma mansoni. The three river water samples on which malacological survey was done had similar physicochemical characteristics in many ways except high conductivity, pH and percent of dissolved oxygen concentration (milligram per liter) at one site where uninfected Biomphilaria Pfeifferi was found The study revealed that schistosomiasis is not yet a problem at Gilgel-Gibe dam. But, continuous surveying is required as the intermediate host is

  15. Dam Design can Impede Adaptive Management of Environmental Flows: A Case Study from the Opuha Dam, New Zealand

    Science.gov (United States)

    Lessard, JoAnna; Murray Hicks, D.; Snelder, Ton H.; Arscott, David B.; Larned, Scott T.; Booker, Doug; Suren, Alastair M.

    2013-02-01

    The Opuha Dam was designed for water storage, hydropower, and to augment summer low flows. Following its commissioning in 1999, algal blooms (dominated first by Phormidium and later Didymosphenia geminata) downstream of the dam were attributed to the reduced frequency and magnitude of high-flow events. In this study, we used a 20-year monitoring dataset to quantify changes associated with the dam. We also studied the effectiveness of flushing flows to remove periphyton from the river bed. Following the completion of the dam, daily maximum flows downstream have exceeded 100 m3 s-1 only three times; two of these floods exceeded the pre-dam mean annual flood of 203 m3 s-1 (compared to 19 times >100 m3 s-1 and 6 times >203 m3 s-1 in the 8 years of record before the dam). Other changes downstream included increases in water temperature, bed armoring, frequency of algal blooms, and changes to the aquatic invertebrate community. Seven experimental flushing flows resulted in limited periphyton reductions. Flood wave attenuation, bed armoring, and a shortage of surface sand and gravel, likely limited the effectiveness of these moderate floods. Floods similar to pre-dam levels may be effective for control of periphyton downstream; however, flushing flows of that magnitude are not possible with the existing dam infrastructure. These results highlight the need for dams to be planned and built with the capacity to provide the natural range of flows for adaptive management, particularly high flows.

  16. The interplay of activists and dam developers : the case of Myanmar’s mega-dams

    NARCIS (Netherlands)

    Kirchherr, Julian|info:eu-repo/dai/nl/411261487; J. Charles, Katrina; Walton, Matthew J.

    2017-01-01

    Scholars investigating activism against large dam developments in Asia usually focus on those campaigning, but not on those the campaigns are aimed at–the dam developers. Yet the developers’ perspective is crucial to comprehensively understand the dynamics of social and environmental activism in

  17. 75 FR 25876 - Notice of Intent To Prepare Resource Management Plans for the Beaver Dam Wash and Red Cliffs...

    Science.gov (United States)

    2010-05-10

    ... Intent To Prepare Resource Management Plans for the Beaver Dam Wash and Red Cliffs National Conservation... Environmental Impact Statement, Utah AGENCY: Bureau of Land Management, Interior. ACTION: Notice of intent..., intends to prepare Resource Management Plans (RMP) for the Beaver Dam Wash and the Red Cliffs National...

  18. Simulations of The Dalles Dam Proposed Full Length Spillwall

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.; Serkowski, John A.

    2008-02-25

    This report presents results of a computational fluid dynamics (CFD) modeling study to evaluatethe impacts of a full-length spillwall at The Dalles Dam. The full-length spillwall is being designed and evaluated as a structural means to improve tailrace egress and thus survival of juvenile fish passing through the spillway. During the course of this study, a full-length spillwall at Bays 6/7 and 8/9 were considered. The U.S. Army Corps of Engineers (USACE) has proposed extending the spillwall constructed in the stilling basin between spillway Bays 6 and 7 about 590 ft farther downstream. It is believed that the extension of the spillwall will improve egress conditions for downstream juvenile salmonids by moving them more rapidly into the thalweg of the river hence reducing their exposure to predators. A numerical model was created, validated, and applied the The Dalles Dam tailrace. The models were designed to assess impacts to flow, tailrace egress, navigation, and adult salmon passage of a proposed spill wall extension. The more extensive model validation undertaken in this study greatly improved our confidence in the numerical model to represent the flow conditions in The Dalles tailrace. This study used these validated CFD models to simulate the potential impacts of a spillwall extension for The Dalles Dam tailrace for two locations. We determined the following: (1)The construction of an extended wall (between Bays 6/7) will not adversely impact entering or exiting the navigation lock. Impact should be less if a wall were constructed between Bays 8/9. (2)The construction of a wall between Bays 6/7 will increase the water surface elevation between the wall and the Washington shore. Although the increased water surface elevation would be beneficial to adult upstream migrants in that it decreases velocities on the approach to the adult ladder, the increased flow depth would enhance dissolved gas production, impacting potential operations of the project because of

  19. Influences of Dam Operations in Groundwater-Surface Water Mixing Zones: Towards Multiscale Understanding

    Science.gov (United States)

    Stegen, J.; Scheibe, T. D.; Chen, X.; Huang, M.; Arntzen, E.; Garayburu-Caruso, V. A.; Graham, E.; Johnson, T. C.; Strickland, C. E.

    2017-12-01

    The installation and operation of dams have myriad influences on ecosystems, from direct effects on hydrographs to indirect effects on marine biogeochemistry and terrestrial food webs. With > 50000 existing and > 3700 planned large dams world-wide there is a pressing need for holistic understanding of dam impacts. Such understanding is likely to reveal unrecognized opportunities to modify dam operations towards beneficial outcomes. One of the most dramatic influences of daily dam operations is the creation of `artificial intertidal zones' that emerge from short-term increases and decreases in discharge due to hydroelectric power demands; known as hydropeaking. There is a long history of studying the influences of hydropeaking on macrofauna such as fish and invertebrates, but only recently has significant attention been paid to the hydrobiogeochemical effects of hydropeaking. Our aim here is to develop an integrated conceptual model of the hydrobiogeochemical influences of hydropeaking. To do so we reviewed available literature focusing on hydrologic and/or biogeochemical influences of hydropeaking. Results from these studies were collated into a single conceptual model that integrates key physical (e.g., sediment transport, hydromorphology) and biological (e.g., timescale of microbiome response) processes. This conceptual model highlights non-intuitive impacts of hydropeaking, the presence of critical thresholds, and strong interactions among processes. When examined individually these features suggest context dependency, but when viewed through an integrated conceptual model, common themes emerge. We will further discuss a critical next step, which is the local to regional to global evaluation of this conceptual model, to enable multiscale understanding. We specifically propose a global `hydropeaking network' of researchers using common methods, data standards, and analysis techniques to quantify the hydrobiogeochemical effects of hydropeaking across biomes. We

  20. Dams life; La vie des barrages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The paper reports on the conclusions of decennial and annual inspections of French dams. Dams surveillance is performed by the operators and consists in visual examinations and measurements. Concrete dams, in particular, always have more or less developed fissures with water sweating threw the concrete mass or the foundations. Old concrete often show low swelling phenomena which are measured too. (J.S.)

  1. Fish ladder of Lajeado Dam: migrations on one-way routes?

    Directory of Open Access Journals (Sweden)

    Angelo Antônio Agostinho

    Full Text Available Fish ladders are generally conceived to reestablish connectivity among critical habitats for migratory species, thus mitigating the impacts of the blockage of migration routes by dams. If this management tool is to be meaningful for conserving fish species, it must provide a fully permeable connection and assure both upward and downward movements. However, because reservoirs have very different hydrodynamics than the original river, it is expected that, at least in the inner area, they may constitute an additional barrier to this movement, especially for descending fish. Thus, the present study sought to determine if migratory fish and their offspring disperse downstream from the dam after ascending a ladder and spawning in the upper reaches of a basin. To achieve this purpose, we evaluated the limitation imposed by lentic areas to the descent of eggs, larvae and adults of migratory species; we also determined the abundance and composition of larvae present in the plankton near the dam, and compared the intensity of the upward and downward movements of adult fish. Samples of ichthyoplankton were taken upriver, inside the reservoir, in the river downstream from the dam, and in the forebay of the Lajeado Dam on the Tocantins River (Luis Eduardo Magalhães Hydroelectric Plant, from October, 1999 through September, 2004. The densities of fish ascending and descending the ladder were determined experimentally on eight occasions, from June, 2004 to March, 2005. Due to difficulties in identifying the true fish origin (up or down in the environments connected by the fish passage system, the evaluation of the distribution of migratory fish in reservoirs was based on the landings of the commercial fishery conducted along the Itaipu Reservoir during the four years preceding (2001 through 2003 the construction of the lateral channel (fish-passage mechanism. Fish eggs and larvae drifting down the Tocantins River did not appear in samples taken in the lower

  2. Impacts of hydroelectric dams on alluvial riparian plant communities in Eastern Brazilian Amazonian.

    Science.gov (United States)

    Ferreira, Leandro Valle; Cunha, Denise A; Chaves, Priscilla P; Matos, Darley C L; Parolin, Pia

    2013-09-01

    The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  3. Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian

    Directory of Open Access Journals (Sweden)

    LEANDRO VALLE FERREIRA

    2013-09-01

    Full Text Available The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  4. The impact of erosion protection by Stone Dams on Salt-Marsh vegetation on Two Wadden Sea Barrier Islands

    NARCIS (Netherlands)

    Loon-Steensma, van J.M.; Slim, P.A.

    2013-01-01

    This paper describes and quantifies the effect of low stone dams on the extent and composition of salt-marsh habitats on two Dutch Wadden islands: Terschelling and Ameland. The stone dams were built to prevent erosion of the salt-marsh edge. Analyses of a series of aerial photographs taken between

  5. Studying and understanding the environmental impacts of the Three Gorges Dam in China

    Science.gov (United States)

    Schönbrodt-Stitt, Sarah; Stumpf, Felix; Schmidt, Karsten; Althaus, Paul; Bi, Renneng; Bieger, Katrin; Buzzo, Giovanni; Dumperth, Christian; Fohrer, Nicola; Rohn, Joachim; Strehmel, Alexander; Udelhoven, Thomas; Wei, Xiang; Zimmermann, Karsten; Scholten, Thomas

    2013-04-01

    Since its planning phase and its completion and start of operation in 2009, the Three Gorges Dam (TGD) at the Yangtze River, has been discussed in a controversial manner. Due to considerable resettlements along with the associated expansion of the infrastructure network and large-scale shifts in land use and management, the TGD in Central China is among the most prominent human-induced examples for large-scale environmental impacts. As a consequence of the rapid ecosystem changes, the region is largely characterized by an enormous boost of typical geo-risks such as soil erosion, mass movements, and diffuse sediment and matter fluxes into the reservoir. Within the joint research project YANGTZE-GEO, Chinese and German scientists jointly focus on the human-induced environmental changes in the reservoir of the TGD after the impoundment of the Yangtze River and its tributaries. An integrative approach was set up in order to combine multi-scale investigation methods and state-of-the-art techniques from soil science, geology, hydrology, geophysics, geodesy, remote sensing, and data survey and monitoring. By means of eco-hydrological and soil erosion modeling, geo-statistical approaches such as digital soil mapping and Artificial Neuronal Networks, spatially and temporally differentiated simulation of the water budget as well as the balance of diffuse matter such as phosphorus and sediment, three-dimensional dynamic modeling, seismoacoustics and terrestrial radarinterferometry, multi-temporal land use classification from recent and historical remote sensing data and laser scanning, the research aims at (i) the understanding of the mechanisms and anthropogenic and environmental control factors of the environmental changes in the highly dynamic region and (ii) the development of spatially explicit land use options and recommendations for a sustainable land use management. Finally, based on the integrate modelling, we aim at the conception of a monitoring- and measuring

  6. Evaluation of the Three Gorges Dam project using multi-criteria analysis (MCA) based on a sustainable perspective

    Science.gov (United States)

    Han, Yue; Zheng, Wei; Guo, Junshan; Ma, Yihe; Ding, Junqi; Zhu, Lingkai; Che, Yongqiang; Zhang, Yanpeng

    2018-02-01

    Abstract . The Three Gorges dam of China is one of the largest and expensive hydropower projects of the world. The four main purposes of the project are flood control,energy production, improved navigation and fresh water supply. The dam project has been completed and running successfully with the potential benefits. However, this project is still a controversial issue among many environmentalists and socialists due to various impacts. This study focuses on the benefit and the impacts of the project, and also evaluates the performance of the project using multi-criteria analysis (MCA) approach from a sustainable perspective. Different sustainability criteria related with the dam project have been identified and used for the ranking and rating process. The final result of MCA comes with this scoring process and pairwise comparison, which evaluates the performance of the project considering different positive and negative aspects.

  7. Understanding Hydrological Regime Alterations Caused by dams: the Santiago River case in the Andean Region of the Amazon Basin.

    Science.gov (United States)

    Rosero-Lopez, D.; Flecker, A.; Walter, M. T.

    2016-12-01

    Water resources in South America have been clearly targeted as key sources for hydropower expansion over the next 30 years. Ecuador, among the most biologically diverse countries in the world, has the highest density of hydropower dams, either operational, under construction, or planned, in the Amazon Basin. Ecuador's ambitious plan to change its energy portfolio is conceived to satisfy the country's demand and to empower the country to be the region's first hydroelectric energy exporter. The Santiago watershed located in the southeast part of the country has 39 facilities either under construction or in operation. The Santiago River and its main tributaries (Zamora and Upano) are expected to be impounded by large dams over the next 10 years. In order to understand the magnitude and potential impacts of regional dam development on hydrological regimes, a 35-year historical data set of stream discharge was analyzed. We examined flow regimes for time series between the construction of each dam, starting with the oldest and largest built in 1982 up until the most recent dam built in 2005. Preliminary results indicate a systematic displacement in flow seasonality following post-dam compared to pre-dam conditions. There are also notable differences in the distributions of peaks and pulses in post-dam flows. The range of changes from these results shows that punctuated and cumulative impacts are related to the size of each new impoundment. These observations and their implications to the livelihoods, biota, and ecosystems services in the Santiago watershed need to be incorporated into a broader cost-benefit analysis of hydropower generation in the western Amazon Basin.

  8. Potential Effects of Dams on Migratory Fish in the Mekong River: Lessons from Salmon in the Fraser and Columbia Rivers

    Science.gov (United States)

    Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  9. Hydro-dam - A nature-based solution or an ecological problem: The fate of the Tonlé Sap Lake.

    Science.gov (United States)

    Lin, Zihan; Qi, Jiaguo

    2017-10-01

    Recent proliferation of hydro-dams was one of the nature-based solutions to meet the increasing demand for energy and food in the Lower Mekong River Basin (LMRB). While construction of these hydro-dams generated some hydropower and facilitated expansion of irrigated lands, it also significantly altered the basin-wide hydrology and subsequently impacted wetland ecosystems. Unintended adverse consequences of ecosystem services from lakes and wetlands offset the intended gains in hydroelectricity and irrigated agriculture. The trade-offs between gains in energy and food production and losses in aquatic ecosystem services were perceived to be significant but knowledge of the magnitude, spatial extent, and type of ecosystem services change is lacking and, therefore, the question whether the hydro-dam is an optimized solution or a potential ecological problem remains unanswered. In this study, as the first step to answer this question and using the Tonlé Sap Lake as an example, we quantified one of the impacts of hydro-dams on lake ecosystem's phenology in terms of open water area, a critical ecological characteristic that affects lake systems' fish production, biodiversity, and livelihoods of the local communities. We used the MODIS-NDVI time series, forecast function and the Mann-Kendall trend test method to first quantify the open water area, analyzed its changes over time, and then performed correlation analysis with climate variables to disentangle dam impacts. The results showed reduced hydro-periods, diminishing lake seasonality and a declining trend in Tonlé Sap Lake open water area over the past 15 years. These changes were insignificantly related to climatic influence during the same period. It is concluded that basin-wide hydro-dam construction and associated agricultural irrigation were deemed to be the primary cause of these ecological changes. Further analyses of changes in the lake's ecosystem services, including provision and cultural services, need to

  10. The quality of surface waters of the dam reservoir Mexa, Northeast of Algeria

    Directory of Open Access Journals (Sweden)

    Bahroun Sofia

    2017-09-01

    Full Text Available In this work, we have conducted a physicochemical study that assesses the impact of agricultural activities and urban domestic wastewater on the surface water quality of the dam reservoir Mexa in the area of El-Taref, which is located in the eastern coastal basin of Constantine. 36 samplings have been conducted for three years (2010, 2011 and 2012, at the rate of one sampling per month on the dam reservoir water; 36 samples have been analysed. The samples taken have been subjected to an in situ measurement of physicochemical parameters (temperature, hydrogen potential, electric conductivity and dissolved oxygen and laboratory analysis (anions, cations, biological oxygen demand, chemical oxygen demand, organic matter, phosphate, nitrate, nitrite and ammonium. Concentrations of various organic and inorganic pollutants varied from one month to another and from one year to another. From a temporal point of view, the contamination of water of the dam reservoir Mexa varies according to climatic conditions, being generally low during the winter period and high during the low-flow periods. The results obtained reveal that water of the dam reservoir Mexa is fairly contaminated. It is certain that the dam reservoir is subject to pollution of agricultural and urban origin.

  11. Dam safety management in Victoria (Australia)

    International Nuclear Information System (INIS)

    Adem, J.

    1996-01-01

    The Victoria state government's decision to make dam owners accountable for safety and upkeep of their dams was reported. To give effect to this decision a series of guidelines have been developed which outline the required activities and skills to ensure that dams are properly managed within a framework of 'light-handed' regulation. The guidelines are also intended to ensure that dam management becomes an integral part of the business decision making process, not just a set of prescribed technical procedures. Details of the direction being taken and the proposed controls to ensure compliance with national and international standards were described. 4 refs., 2 figs

  12. Large Dam Effects on Flow Regime and Hydraulic Parameters of river (Case study: Karkheh River, Downstream of Reservoir Dam

    Directory of Open Access Journals (Sweden)

    Farhang Azarang

    2017-06-01

    Full Text Available Introduction: The critical role of the rivers in supplying water for various needs of life has led to engineering identification of the hydraulic regime and flow condition of the rivers. Hydraulic structures such dams have inevitable effects on their downstream that should be well investigated. The reservoir dams are the most important hydraulic structures which are the cause of great changes in river flow conditions. Materials and Methods: In this research, an accurate assessment was performed to study the flow regime of Karkheh river at downstream of Karkheh Reservoir Dam as the largest dam in Middle East. Karkheh River is the third waterful river of Iran after Karun and Dez and the third longest river after the Karun and Sefidrud. The Karkheh Dam is a large reservoir dam built in Iran on the Karkheh River in 2000. The Karkheh Reservoir Dam is on the Karkheh River in the Northwestern Khouzestan Province, the closest city being Andimeshk to the east. The part of Karkheh River, which was studied in this research is located at downstream of Karkheh Reservoir Dam. This interval is approximately 94 km, which is located between PayePol and Abdolkhan hydrometric stations. In this research, 138 cross sections were used along Karkheh River. Distance of cross sections from each other was 680m in average. The efficient model of HEC-RAS has been utilized to simulate the Karkheh flow conditions before and after the reservoir dam construction using of hydrometric stations data included annually and monthly mean discharges, instantaneous maximum discharges, water surface profiles and etc. Three defined discharges had been chosen to simulate the Karkheh River flow; maximum defined discharge, mean defined discharge and minimum defined discharge. For each of these discharges values, HEC-RAS model was implemented as a steady flow of the Karkheh River at river reach of study. Water surface profiles of flow, hydraulic parameters and other results of flow regime in

  13. Exporting dams: China's hydropower industry goes global.

    Science.gov (United States)

    McDonald, Kristen; Bosshard, Peter; Brewer, Nicole

    2009-07-01

    In line with China's "going out" strategy, China's dam industry has in recent years significantly expanded its involvement in overseas markets. The Chinese Export-Import Bank and other Chinese financial institutions, state-owned enterprises, and private firms are now involved in at least 93 major dam projects overseas. The Chinese government sees the new global role played by China's dam industry as a "win-win" situation for China and host countries involved. But evidence from project sites such as the Merowe Dam in Sudan demonstrates that these dams have unrecognized social and environmental costs for host communities. Chinese dam builders have yet to adopt internationally accepted social and environmental standards for large infrastructure development that can assure these costs are adequately taken into account. But the Chinese government is becoming increasingly aware of the challenge and the necessity of promoting environmentally and socially sound investments overseas.

  14. How stakeholders frame dam removal: The role of current and anticipated future ecosystem service use

    Science.gov (United States)

    Reilly, Kate; Adamowski, Jan

    2016-04-01

    Many river restoration projects, including dam removal, are controversial and can trigger conflicts between stakeholders who are for and against the proposed project. The study of environmental conflicts suggests that differences in how stakeholders 'frame', or make sense of a situation based on their prior knowledge and experiences, can perpetuate conflicts. Understanding different stakeholders' frames, particularly how they converge, can form the basis of successful conflict resolution. In the case of dam removals, it is often assumed that emphasising increased provision of ecosystem services can be a point of convergence between those advocating for ecological restoration and those opposed to removal because of negative human impacts. However, how exactly stakeholders frame a contentious proposed dam removal and how those frames relate to ecosystem services has been little studied. Here we used the case of a potential dam removal in New Brunswick to investigate how people frame the issue and how that relates to their current and anticipated future use of ecosystem services. Based on in-depth interviews with 30 stakeholders in the area, including both people for and against dam removal, we found that both groups currently used ecosystem services and were in favour of ecosystem protection. However, they differed in how they framed the issue of the potential dam removal. The group against dam removal framed the issue as one of loss and risk - they thought that any potential benefits to the ecosystem would be outweighed by the high risk of negative social impacts caused by a loss of access to ecosystem services, such as recreation and aesthetic enjoyment. By contrast, the group in favour of the dam framed the issue as one of opportunity and justice. They thought that following a short transition period, all stakeholders would benefit from the restored river, particularly from a restored salmon fishery, improved aesthetic appeal and the long-term sustainability of an

  15. Measuring and managing safety at Wahleach Dam

    International Nuclear Information System (INIS)

    Salmon, G. M.; Cattanach, J. D.; Hartford, D. N. D.

    1996-01-01

    Safety improvements recently implemented at the Wahleach Dam were described as one of the first instances in international dam safety practice where risk concepts have been used in conjunction with acceptable risk criteria to evaluate safety of a dam relative to required level of safety. Erosion was identified as the greatest threat to the safety of the dam. In addressing the deficiencies B.C. Hydro formulated a process which advocates a balanced level of safety,i.e. the probability of failure multiplied by the consequences of failure, integrated over a range of initiators. If the risk posed by the dam is lower than a 'tolerable' risk, the dam is considered to be safe enough. In the case of the Wahleach Dam, the inflow design flood (IDF) was selected to be about one half of the probable maximum flow (PMF), hence it was more likely than not that the spillway could pass floods up to and including the PMF. By accepting the determined level of risk, expenditures of several million dollars for design and construction of dam safety improvements were made redundant. Another byproduct of this new concept of risk assessment was the establishment of improved life safety protection by means of an early warning system for severe floods through the downstream community and emergency authorities. 3 refs., 5 tabs

  16. Assessment of hydrological changes in the Nile River due to the construction of Renaissance Dam in Ethiopia

    Directory of Open Access Journals (Sweden)

    Mohammed El Bastawesy

    2015-06-01

    Full Text Available This paper assesses impact of the Renaissance Dam on Ethiopia; on the Nile discharge ultimately reaches Egypt downstream. The Landsat-8 satellite images of 2013 were obtained and interpreted to identify locations for the construction sites for the Renaissance Dam. Then the Shuttle Radar Topography Mission (SRTM data were obtained and processed to create a digital elevation model (DEM for the Blue Nile upstream areas that will be submerged. Different scenarios for the dams’ heights and resulting storages were simulated to estimate the resulting abstraction of the Blue Nile flows until completion of the project and the annual losses due to evaporation thereafter. The current site (506 m asl for the Renaissance Dam allows the creation of a 100 m deep reservoir with a total storage of 17.5 km3; overflows will occur at that lake’s level (606 m asl from the north western part of the developed lake into Rosaires downstream. Construction of the spillway dam to control the overflow area can allow the creation of a 180 m deep lake that store up to 173 km3 in a lake that will cover 3130 km2. The analysis of Tropical Rainfall Monitoring Mission (TRMM suggests that the variation of total annual rainfall could reach 20%, thus the resulting hydrological fluctuations could affect the estimated filling time, the operational functions and discharge downstream. The negative hydrological impacts of the Renaissance Dam will increase by increasing the height of its spillway dam, as increasing the storage capacity could affect the strategic storage for the reservoirs in Egypt and Sudan. It is strongly recommended that an agreement should be reached to compromise the storage capacities and water supplies for all dams on the Nile to thoroughly satisfy the necessary needs.

  17. Stability of earth dam with a vertical core

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    2016-01-01

    Full Text Available Earth dam with impervious element in the form of asphaltic concrete core is currently the most promising type of earth dams (due to simple construction technology and universal service properties of asphaltic concrete and is widely used in the world. However, experience in the construction and operation of high dams (above 160 m is not available, and their work is scarcely explored. In this regard, the paper discusses the results of computational prediction of the stress-strain state and stability of a high earth dam (256 m high with the core. The authors considered asphaltic concrete containing 7 % of bitumen as the material of the core. Gravel was considered as the material of resistant prisms. Design characteristics of the rolled asphaltic concrete and gravel were obtained from the processing of the results of triaxial tests. The calculations were performed using finite element method in elastoplastic formulation and basing on the phased construction of the dam and reservoir filling. The research shows, that the work of embankment dam with vertical core during filling of the reservoir is characterized by horizontal displacement of the lower resistant prism in the tailrace and the formation of a hard wedge prism descending along the core in the upper resistant prism. The key issue of the safety assessment is to determine the safety factor of the overall stability of the dam, for calculation of which the destruction of the earth dam is necessary, which can be done by reducing the strength properties of the dam materials. As a results of the calculations, the destruction of the dam occurs with a decrease in the strength characteristics of the materials of the dam by 2.5 times. The dam stability depends on the stability of the lower resistant prism. The destruction of its slope occurs on the classical circular-cylindrical surface. The presence of a potential collapse surface in the upper resistant prism (on the edges of the descending wedge does

  18. Isotope technique in JPS dam surveillance: its potential

    International Nuclear Information System (INIS)

    Sabri Hassan

    2006-01-01

    Controlling seepage is one of the most important requirements for safe dams. Any leakage at an earth embankment may be potentially dangerous since rapid internal erosion may quickly enlarge an initially minor defect. Thus dam owners need to have thorough surveillance programs that can forewarn of impending problems from seepage or other factors influencing the safety of dams. In carrying out dam surveillance works, all possible efforts should be considered and foreseeing the potential of isotope technique, JPS (Department of Irrigation and Drainage, Malaysia) and MINT (Malaysian Institute for Nuclear Technology Research) participated actively in the UNDP/RCA/IAEA program under RAS/8/093 project sponsored by the International Atomic Energy Agency (IAEA). Through these activities, it was noted that the technique demonstrated very promising potentials such as in assisting dam site selections, site investigations, watershed studies, dam and reservoir design, leakage investigations and sediments related issues, the two latter ones being relatively critical during the operational life of the dam. Establishment of baseline isotopic characteristics (or fingerprint), hydrochemistry, electrical conductivity and temperature profiles is underway for all JPS dams to be later utilized in diagnosing seepage related issues it is suggested that application of this technique be extended to other dam owners nationwide. (Author)

  19. Numerical modelling for stability of tailings dams

    OpenAIRE

    Auchar, Muhammad; Mattsson, Hans; Knutsson, Sven

    2013-01-01

    A tailings dam is a large embankment structure that is constructed to store the waste from the mining industry. Stability problems may occur in a tailings dam due to factors such as quick rate of raising, internal erosion and liquefaction. The failure of a tailings dam may cause loss of human life and environmental degradation. Tailings Dams must not only be stable during the time the tailings storage facility is in operation, but also long time after the mine is closed. In Sweden, the licens...

  20. Large-scale projects in the amazon and human exposure to mercury: The case-study of the Tucuruí Dam.

    Science.gov (United States)

    Arrifano, Gabriela P F; Martín-Doimeadios, Rosa C Rodríguez; Jiménez-Moreno, María; Ramírez-Mateos, Vanesa; da Silva, Núbia F S; Souza-Monteiro, José Rogério; Augusto-Oliveira, Marcus; Paraense, Ricardo S O; Macchi, Barbarella M; do Nascimento, José Luiz M; Crespo-Lopez, Maria Elena

    2018-01-01

    The Tucuruí Dam is one of the largest dams ever built in the Amazon. The area is not highly influenced by gold mining as a source of mercury contamination. Still, we recently noted that one of the most consumed fishes (Cichla sp.) is possibly contaminated with methylmercury. Therefore, this work evaluated the mercury content in the human population living near the Tucuruí Dam. Strict exclusion/inclusion criteria were applied for the selection of participants avoiding those with altered hepatic and/or renal functions. Methylmercury and total mercury contents were analyzed in hair samples. The median level of total mercury in hair was above the safe limit (10µg/g) recommended by the World Health Organization, with values up to 75µg/g (about 90% as methylmercury). A large percentage of the participants (57% and 30%) showed high concentrations of total mercury (≥ 10µg/g and ≥ 20µg/g, respectively), with a median value of 12.0µg/g. These are among the highest concentrations ever detected in populations living near Amazonian dams. Interestingly, the concentrations are relatively higher than those currently shown for human populations highly influenced by gold mining areas. Although additional studies are needed to confirm the possible biomagnification and bioaccumulation of mercury by the dams in the Amazon, our data already support the importance of adequate impact studies and continuous monitoring. More than 400 hydropower dams are operational or under construction in the Amazon, and an additional 334 dams are presently planned/proposed. Continuous monitoring of the populations will assist in the development of prevention strategies and government actions to face the problem of the impacts caused by the dams. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    OpenAIRE

    Kathleen Feiner; Christopher S. Lowry

    2015-01-01

    Study Focus: This research examines a wetland environment before and after the construction of a beaver dam to determine the hydrologic impacts on regional groundwater flow and quantify changes to the capture zone of a wetland pond. Increased hydraulic head behind a newly built beaver dam can cause shifts in the capture zone of a wetland pond. Changes in groundwater flux, and the extent of both the capture and discharge zones of this wetland were examined with the use of a groundwater flow mo...

  2. 78 FR 62627 - Sam Rayburn Dam Rate

    Science.gov (United States)

    2013-10-22

    ..., Wholesale Rates for Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative, Inc. (Contract No... Schedule SRD-08, Wholesale Rates for Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative... ADMINISTRATION RATE SCHEDULE SRD-13 \\1\\ WHOLESALE RATES FOR HYDRO POWER AND ENERGY SOLD TO SAM RAYBURN DAM...

  3. Evaluatie Dam tot Damloop 2014

    NARCIS (Netherlands)

    Deutekom-Baart de la Faille, Marije

    In het weekend van 20 en 21 september 2014 vond de 30ste editie van de Dam tot Damloop plaats. Onderzoekers van de Hogeschool van Amsterdam en Hogeschool Inholland hebben bij de Dam tot Damloop een evaluatieonderzoek uitgevoerd met als doel het vinden van aanknopingspunten voor het structureel

  4. The Total Risk Analysis of Large Dams under Flood Hazards

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2018-02-01

    Full Text Available Dams and reservoirs are useful systems in water conservancy projects; however, they also pose a high-risk potential for large downstream areas. Flood, as the driving force of dam overtopping, is the main cause of dam failure. Dam floods and their risks are of interest to researchers and managers. In hydraulic engineering, there is a growing tendency to evaluate dam flood risk based on statistical and probabilistic methods that are unsuitable for the situations with rare historical data or low flood probability, so a more reasonable dam flood risk analysis method with fewer application restrictions is needed. Therefore, different from previous studies, this study develops a flood risk analysis method for large dams based on the concept of total risk factor (TRF used initially in dam seismic risk analysis. The proposed method is not affected by the adequacy of historical data or the low probability of flood and is capable of analyzing the dam structure influence, the flood vulnerability of the dam site, and downstream risk as well as estimating the TRF of each dam and assigning corresponding risk classes to each dam. Application to large dams in the Dadu River Basin, Southwestern China, demonstrates that the proposed method provides quick risk estimation and comparison, which can help local management officials perform more detailed dam safety evaluations for useful risk management information.

  5. Analysis the dynamic response of earth dam in free vibration and forced by introducing the effect of the interaction dam foundation

    Directory of Open Access Journals (Sweden)

    Malika Boumaiza

    2018-01-01

    Full Text Available The present study concerns the analysis of the dynamic response of earth dam, in free and forced vibration (under the effect of earthquake using the finite element method. The analysis is carried out at the end of dam construction without filling. The behavior of the dam materials and the foundation is linear elastic. In free vibration, to better understand the effect of the dam foundation interaction, we will take into account different site conditions and see their influence on the free vibration characteristics of the dam. In forced vibration, to study the seismic response of the dam, the system is subjected to the acceleration of the Boumerdes earthquake of May 21, 2003 recorded at the station n ° 2 of the dam of Kaddara in the base, with a parametric study taking into account the influence of the main parameters such as the mechanical properties of the soil: rigidity, density.

  6. Thermal effects of dams in the Willamette River basin, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites

  7. Chinese engineers and scientists urge leadership to change Three Gorges Dam operating plan

    International Nuclear Information System (INIS)

    2000-01-01

    An appeal to the Chinese Leadership by a group of senior engineers, water management experts and academics about the dire consequences of filling the Three Gorges reservoir on the Yangtze River to 175 metres, is reported. Originally, the plan was to keep water levels behind the Three Gorges Dam at 156 metres for the first ten years of operation, in order to allow for resettlement of people displaced by building the dam, and to evaluate the impact of silt deposits on navigation and ports at the upper end of the reservoir. Plans have changed in 1997; the water level is now scheduled to rise to 175 metres in the sixth year of the dam's operation in order to maximize the dam's power output. The appeal by 53 experts warned the Chinese Government that the filling of the reservoir to 175 metres would displace 1.13 million people and raise the water level in the Yangtze River more than 10 metres at Chongqing City, submerging drainage outlets and backing up the city's sewage, as well as increase silt deposits, blocking shipping traffic along the Yangtze River. A parallel is drawn with the Sanmenxia Dam on the Yellow River. It was completed in 1960; it has proven to be useless for controlling floods while producing only one-third of its expected output due to massive silt build-up in the reservoir

  8. Environmental considerations in energy planning for the Amazon region: Downstream effects of dams

    International Nuclear Information System (INIS)

    Manyari, Waleska Valenca; de Carvalho, Osmar Abilio

    2007-01-01

    The most salient current feature of the electric energy sector in Brazil is the pressing need for expansion. In this context, the hydroelectric resources of the Amazon region are considered a competitive alternative despite the structural problems they entail. These include reliance of new investments and environmental restrictions. Concerning the latter, plans to build large-scale dams in the region have drawn criticism mainly on account of the loss of forest cover in areas flooded by dam reservoirs and the conflicts concerning the relocation of indigenous and riverside communities in the region. This article seeks to contribute to better understanding of the environmental issue in the Amazon by focusing attention on the downstream effects of dams, which have large-scale, hitherto neglected ecological repercussions. The impact of dams extends well beyond the area surrounding the artificial lakes they create, harming rich Amazon wetland ecosystems. The morphology of dammed rivers changes in response to new inputs of energy and matter, which may in turn destroy certain biotopes. This is a remote-sensing-based case study of the Tucurui hydroelectric scheme in the Amazon state of Para. Attention is drawn to the need to take into account effects on alluvial rivers downstream from hydroelectric power plants when it comes to making planning decisions, as part of a sustainable energy policy

  9. Douglas County Dam Breach Inundation Areas

    Data.gov (United States)

    Kansas Data Access and Support Center — Dam breach analysis provides a prediction of the extent and timing of flooding from a catastrophic breach of the dams. These results are sufficient for developing...

  10. Study the impact of rainfall on the United Arab Emirates dams using remote sensing and image processing techniques

    Science.gov (United States)

    Al Marzouqi, Fatima A.; Al Besher, Shaikha A.; Al Mansoori, Saeed H.

    2017-10-01

    The United Arab Emirates (UAE) has given great attention to the environment and sustainable development through applications of best practices of global standards that ensure optimal investment in natural resources. Since the UAE is located in an arid region which is known as dry, sandy and get a small amount of rainfall, thus the water resources are limited and accordingly, the government has initiated an integrated water resources management (IWRM) strategy to meet the increasing demands of water. Dams are considered as one of the important strategies that are suitable for this arid region. An event of rainfall if between heavy to severe in a short duration could cause flash floods and damages to population centers and areas of agriculture nearby. To prevent that from happening, several dams and barriers were built to protect human life and infrastructure. Besides contribution to enhance the water resources and use them optimally to irrigate the growing agricultural areas across the country. Geographically, most of the dams were located in the northern and eastern part of the UAE, around mountainous areas. This study aims to monitor the changes that occurred to five dams of the north-eastern region of the UAE during 2015 and 2016 through the use of remote sensing technology of optical images captured by "DubaiSat-2". The segmentation approach utilized in this study is based on a band ratio technique called Normalized Difference Water Index (NDWI). The experimental results revealed that the proposed approach is efficient in detecting dams from multispectral satellite images.

  11. Seismology-based early identification of dam-formation landquake events.

    Science.gov (United States)

    Chao, Wei-An; Zhao, Li; Chen, Su-Chin; Wu, Yih-Min; Chen, Chi-Hsuan; Huang, Hsin-Hua

    2016-01-12

    Flooding resulting from the bursting of dams formed by landquake events such as rock avalanches, landslides and debris flows can lead to serious bank erosion and inundation of populated areas near rivers. Seismic waves can be generated by landquake events which can be described as time-dependent forces (unloading/reloading cycles) acting on the Earth. In this study, we conduct inversions of long-period (LP, period ≥20 s) waveforms for the landquake force histories (LFHs) of ten events, which provide quantitative characterization of the initiation, propagation and termination stages of the slope failures. When the results obtained from LP waveforms are analyzed together with high-frequency (HF, 1-3 Hz) seismic signals, we find a relatively strong late-arriving seismic phase (dubbed Dam-forming phase or D-phase) recorded clearly in the HF waveforms at the closest stations, which potentially marks the time when the collapsed masses sliding into river and perhaps even impacting the topographic barrier on the opposite bank. Consequently, our approach to analyzing the LP and HF waveforms developed in this study has a high potential for identifying five dam-forming landquake events (DFLEs) in near real-time using broadband seismic records, which can provide timely warnings of the impending floods to downstream residents.

  12. Langbjorn dam : adaptation for safe discharge of extreme floods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Vattenfall Research and Development, Alvkarleby (Sweden); Ericsson, H.; Gustafsson, A. [SWECO, Stockholm (Sweden); Stenmark, M. [Vattenfall Power Consultant, Ludvika (Sweden); Mikaelsson, J. [Vattenfall Nordic Generation, Bispgarden (Sweden)

    2007-07-01

    The Langbjorn hydropower scheme, composed of an embankment dam with an impervious core of compacted moraine, a spillway section and a powerhouse, is located on the Angermanalven River in north Sweden. The scheme was commissioned in 1959 and is owned by Vattenfall. As part of its dam safety program, Vattenfall plans to adapt and refurbish many of its dams to the updated design-flood and dam-safety guidelines. Langbjorn is classified as a high hazard dam, as its updated design flood is 30 per cent higher than the existing spillway capacity. Safety evaluations were conducted for the Langbjorn dam, and, as required by the higher safety standard, there was a need to rebuild the dam, so that the design flood could be safely released without causing failure of the dam. This paper provided information on the Langbjorn hydropower scheme and discussed the planned rebuilding measures. For example, the design flood was accommodated by allowing a temporary raise of the water level by 1.3 metres above the legal retention reservoir level, which required heightening and reinforcement of the dam. Specifically, the paper discussed measures to increase the discharge capacity; handling and control of floating debris; improvement and heightening of impervious core in left and right connecting dam and abutment; measures to increase the stability of the left steep riverbank; and measures to increase stability of the spillway monoliths and the left guide wall. In addition, the paper discussed measures to ensure stability of the downstream stretch of the river bank and increase instrumentation. The paper also presented the results of hydraulic investigations to investigate the risk of erosion downstream of the dam. It was concluded that the dam could discharge the design flood and that the stability of the dam was improved and judged to be satisfactory during all foreseeable conditions. 2 refs., 8 figs.

  13. Lower Granite dam smolt monitoring program: annual report, 2000; ANNUAL

    International Nuclear Information System (INIS)

    Morrill, Charles

    2000-01-01

    The 2000 fish collection season at Lower Granite was characterized by lower than average spring flows and spill, low levels of debris, cool water temperatures, increased unclipped yearling and subyearling chinook smolts, and 8,300,546 smolts collected and transported compared to 5,882,872 in 1999. With the continued release of unclipped supplementation chinook and steelhead above Lower Granite Dam, we can no longer accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. Although some table titles in this report still show ''wild'' column headings, the numbers in these columns for 1999 and 2000 include wild and unclipped hatchery origin smolts. The increases over previous years reflect the increased supplementation. A total of 8,300,546 juvenile salmonids were collected at Lower Granite Dam. Of these, 187,862 fish were bypassed back to the river and 7,950,648 were transported to release sites below Bonneville Dam, 7,778,853 by barge and 171,795 by truck. A total of 151,344 salmonids were examined in daily samples. Nine research projects conducted by four agencies impacted a total of 1,361,006 smolts (16.4% of the total collection)

  14. The mathematics of dam safety

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, R. [Osterreichische Gesellschaft fuer Geomechanik, Salzburg (Austria)

    1997-05-01

    The safety of a dam is determined by its design, construction and supervision during operation. High arch dam failures have dropped dramatically since the early part of this century. An essential part of the success story relates to improved measurement techniques that can detect earlier unexpected behaviour that may lead to failure. (UK)

  15. Automatic dam concrete placing system; Dam concrete dasetsu sagyo no jidoka system

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Y; Hori, Y; Nakayama, T; Yoshihara, K; Hironaka, T [Okumura Corp., Osaka (Japan)

    1994-11-15

    An automatic concrete placing system was developed for concrete dam construction. This system consists of the following five subsystems: a wireless data transmission system, an automatic dam concrete mixing system, a consistency determination system, an automatic dam concrete loading and transporting system, and a remote concrete bucket opening and closing system. The system includes the following features: mixing amount by mixing ratio and mixing intervals can be instructed from a concrete placing site by using a wireless handy terminal; concrete is mixed automatically in a batcher plant; a transfer car is started, and concrete is charged into a bucket automatically; the mixed concrete is determined of its properties automatically; labor cost can be reduced, the work efficiency improved, and the safety enhanced; and the system introduction has resulted in unattended operation from the aggregate draw-out to a bunker line, manpower saving of five persons, and reduction in cycle time by 10%. 11 figs., 2 tabs.

  16. Reflections on hydroelectric dams in the Amazon: water, energy and development

    Directory of Open Access Journals (Sweden)

    Bertha Koiffmann Becker

    2012-12-01

    Full Text Available The essay discusses the deployment of hydroelectric dams in the Amazon having as a starting point the relations between water and hydropower consumption at different scales of analyses. So, if all parts of the world are affected by global processes, they are not in the same way. The global scale is dominated by the apocalyptic discourse of increasing water scarcity and global warming, requiring the reduction of emissions of greenhouse gases through the use of renewable energy and new technologies. On a Brazilian national scale, the problems are, rather, how to manage the abundance of water with social and territorial justice, and how to stop the loss of 20% of the electricity produced. Finally, it is at the regional scale - in the Amazon - that major problems arise: i the biggest paradox between the abundance of water and social inaccessibility to this resource; ii most of the dams planned for the country will be built there, with the risk of negative impacts already known; iii the obligation of building sluices at all the proposed dams, suggested by the industrial sector in name of the rivers navigation, will serve, in fact, to export commodities produced in the Brazilian central region. An ethical question is, therefore, posed to society and to Brazilian government: are really needed so many hydroelectric dams in the Amazon?

  17. Dam safety investigations of the concrete structures of Hugh Keenleyside dam

    International Nuclear Information System (INIS)

    Hanna, A.W.; Nunn, J.O.H.; Cornish, L.; Northcott, P.

    1993-01-01

    The Hugh Keenleyside dam is located on the Columbia River in southeastern British Columbia, and impounds Arrow Lakes Reservoir which has a live storage of 8.8 km 3 and drains an area of 36,000 km 2 . It consists of a number of concrete structures, with a total length of 360 m and a maximum height of 58 m, and an earthfill embankment which spans across the original river channel. The 450 m long zoned earthfill dam is founded on pervious alluvium over 150 m deep. It has a sloping impervious core constructed from glacial till which extends 670 m upstream of the dam. This impervious blanket extends over the full width of the reservoir and is connected to the upstream face of the concrete structures. The results of a dam safety study, which was carried out due to the presence of high uplift pressures at some parts of the foundation, and stability concerns, are presented. The investigation concluded that the high uplift pressures were due to a localized defect in the upstream blanket and did not indicate any general deterioration of the blanket. Techniques that were found to be of particular use in the study for defining the source and nature of the foundation defects were: temperature surveys of flows from piezometers, cells and drains; air injection tests; and pressure response testing of cells, piezometers and drains to establish foundation interconnections. The concrete structures met the stability criteria for all load cases considered except for the navigation lock and the low level outlets. 3 refs., 6 figs

  18. Computational Aspects of Dam Risk Analysis: Findings and Challenges

    Directory of Open Access Journals (Sweden)

    Ignacio Escuder-Bueno

    2016-09-01

    Full Text Available In recent years, risk analysis techniques have proved to be a useful tool to inform dam safety management. This paper summarizes the outcomes of three themes related to dam risk analysis discussed in the Benchmark Workshops organized by the International Commission on Large Dams Technical Committee on “Computational Aspects of Analysis and Design of Dams.” In the 2011 Benchmark Workshop, estimation of the probability of failure of a gravity dam for the sliding failure mode was discussed. Next, in 2013, the discussion focused on the computational challenges of the estimation of consequences in dam risk analysis. Finally, in 2015, the probability of sliding and overtopping in an embankment was analyzed. These Benchmark Workshops have allowed a complete review of numerical aspects for dam risk analysis, showing that risk analysis methods are a very useful tool to analyze the risk of dam systems, including downstream consequence assessments and the uncertainty of structural models.

  19. On the response of large dams to incoherent seismic excitation

    International Nuclear Information System (INIS)

    Ramadan, O.; Novak, M.

    1993-01-01

    An intensive parametric study was conducted to investigate the response of concrete gravity dams to horizontal, spatially variable seismic ground motions. Both segmented dams consisting of separate blocks, or monoliths, and continuous monolithic dams are considered. The study includes the effects of various parameters on system natural frequencies, vibration modes, modal displacement ratios, as well as dam displacements and internal stresses due to spatially variable ground motions. The dam analytical model, and dam response to incoherent ground motions are described. The results show that the dam vibrates almost as a rigid body under the fully correlated waves, but bends and twists significantly under the spatially correlated motions. Dam-foundation interaction magnifies the low frequency components of the dam response, more so for a full reservoir, but decreases the high frequency components. For long dams, the effects of spatially incoherent ground motions are qualitatively different and can be much greater than those due to surface travelling waves. 3 refs., 3 figs

  20. the effect of age of dam on weaning mass for ftve dam breed types

    African Journals Online (AJOL)

    SUMMARY: The effect of age of dam on adjusted 210 day calf weaning mass was estimated by the Least Squares method for 5 dam types on 2 farms. ... the later maturing breeds would have a low level of productivity because these cows would be eliminated in their potentially prime .... time at 28 (2A) or 3l (28) months old.

  1. Assessing the physical vulnerability of check dams through an empirical damage index

    Directory of Open Access Journals (Sweden)

    Andrea Dell'Agnese

    2013-06-01

    Full Text Available A comprehensive analysis of flood risk in mountain streams has to include an assessment of the vulnerability of the protection systems, in addition to an assessment of the vulnerability of the constructed environment on alluvial fans and floodplains. Structures forming the protection systems are of a dual nature, i.e. they are designed to mitigate natural process-related hazards and, on the other hand, are prone to be damaged during their lifecycle by the same processes they should mitigate. Therefore, their effectiveness declines over time. Hence, the knowledge of how effectively control structures perform is essential for risk management. A procedure was developed to assess the physical vulnerability of check dams based on empirical evidence collected in South Tyrol, Northern Italy. A damage index defined on pre- and postevent comparisons of check dam conditions was evaluated for 362 structures in 18 mountain streams along with the relevant processes and the structural characteristics affecting it. Although the available dataset did not allow conclusive functional relationships between damage index and impact variables to be established, it was possible to assess the average expected residual functionality of check dams according to structure characteristics, and event type and intensity. These results may help plan appropriate check dam maintenance.

  2. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Science.gov (United States)

    Harrison, Stephan; Kargel, Jeffrey S.; Huggel, Christian; Reynolds, John; Shugar, Dan H.; Betts, Richard A.; Emmer, Adam; Glasser, Neil; Haritashya, Umesh K.; Klimeš, Jan; Reinhardt, Liam; Schaub, Yvonne; Wiltshire, Andy; Regmi, Dhananjay; Vilímek, Vít

    2018-04-01

    Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity - rather unexpectedly - have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  3. Proceeding of the public safety around dams conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Canadian Dam Association hosted the Public Safety Around Dams workshop in which presentations were given in the morning to describe the different measures and methods implemented by the Ontario Ministry of Natural Resources, Ontario Power Generation and others to improve safety around dams. In the afternoon, the participants toured the Auburn and Lakefield dams and facilities to view the infrastructures and equipment. A roundtable discussion concluded the day. Following this workshop, a Public Safety Around Dams group was created on the social network site, LinkedIn. This conference featured 6 presentations, 3 of which have been catalogued separately for inclusion in this database.

  4. Dam Breach Release of Non-Cohesive Sediments: Channel Response and Recovery Rates

    Science.gov (United States)

    Collins, M. J.; Boardman, G.; Banks, W.; Andrews, M.; Conlon, M.; Dillow, J. J. A.; Gellis, A.; Lowe, S.; McClain, S.; Miller, A. J.; Snyder, N. P.; Wilcock, P. R.

    2014-12-01

    Dam removals featuring unchecked releases of non-cohesive sediments are excellent opportunities to learn more about stream channel response to abrupt increases in bed material supply that can occur deliberately or by natural processes like landslides and volcanic eruptions. Understanding channel response to sediment pulses, including response rates, is essential because human uses of river channels and floodplains are impacted by these events as are aquatic habitats. We had the opportunity to study a dam removal site at the Simkins Dam in Maryland, USA, that shares many important geophysical attributes of another well-studied dam removal in the humid northeast United States [Merrimack Village Dam, New Hampshire; Pearson et al., 2011]. The watershed sizes are the same order of magnitude (102 km2), and at both sites relatively low head dams were removed (~ 3-4 m) and ~60,000 m3 of dominantly sand-sized sediments discharged to low-gradient reaches immediately downstream. Analyzing four years of repeat morphometry and bed sediment grain size surveys at the Simkins site on the Patapsco River, as well as continuous discharge and suspended sediment gaging data, we clearly document a two-phase response in the upstream reach as described by Pearson et al. [2011] for their New Hampshire site and noted at other dam removals [e.g., Major et al., 2012]. In the early phase, approximately 50% of the impounded sediment mass was eroded rapidly over a period of about three months when flows were very modest (Figure 1). After incision to base level and channel widening in the former impoundment, a second phase began when further erosion depended on floods large enough to access impounded sediments more distant from the newly-formed channel. We also found important differences in the upstream responses at the Maryland and New Hampshire sites that appear to be related to valley type (non-glaciated versus glaciated, respectively). Response variances immediately downstream between the

  5. Major dams of the United States, Geographic NAD83, USGS (2006) [dams00x020_USGS_2006

    Data.gov (United States)

    Louisiana Geographic Information Center — This map layer portrays major dams of the United States, including Puerto Rico and the U.S. Virgin Islands. The map layer was created by extracting dams 50 feet or...

  6. Geodetic deformation monitoring at Pendidikan Diponegoro Dam

    Science.gov (United States)

    Yuwono, Bambang Darmo; Awaluddin, Moehammad; Yusuf, M. A.; Fadillah, Rizki

    2017-07-01

    Deformation monitoring is one indicator to assess the feasibility of Dam. In order to get the correct result of the deformation, it is necessary to determine appropriate deformation monitoring network and the observation data should be analyse and evaluated carefully. Measurement and analysis of deformation requires relatively accurate data and the precision is high enough, one of the observation method that used is GPS (Global Positioning System). The research was conducted at Pendidikan Undip Dams is Dam which is located in Tembang. Diponegoro Dam was built in 2013 and a volume of 50.86 m3 of water, inundation normal width of up to 13,500 m2. The main purpose of these building is not only for drainage but also for education and micro hydro power plant etc. The main goal of this reasearch was to monitor and analyze the deformation at Pendidikan Undip Dam and to determaine whether GPS measurement could meet accuracy requirement for dam deformation measurements. Measurements were made 2 times over 2 years, 2015 and 2016 using dual frequency GPS receivers with static methods and processed by Scientific Software GAMIT 10.6

  7. Assessment of the Hydro-Ecological Impacts of the Three Gorges Dam on China’s Largest Freshwater Lake

    Directory of Open Access Journals (Sweden)

    Guiping Wu

    2017-10-01

    Full Text Available The Three Gorges Dam (TGD has received increasing attention with respect to its potential effects on downstream hydro-ecosystems. Poyang Lake is the largest freshwater lake downstream of the TGD, and it is not immune to these impacts. Here, we combine hydrological observations, remote sensing, a geographic information system (GIS, and landscape ecology technology to investigate the variability and spatial pattern of the hydro-ecological alterations to Poyang Lake induced by the operation of the TGD. It was found that the TGD caused significant hydro-ecological alterations across the Poyang Lake wetland. Specifically, the TGD operation altered the seasonal inundation pattern of Poyang Lake and significantly reduced the monthly inundation frequencies (IFs, which were especially notable (~30–40% from September to November. Spatially, the declining IFs led to an increase in the mudflat area that is suitable for the growth of vegetation. The vegetation area increased by 58.82 km2 and 463.73 km2 in the low- and high-water season, respectively, with the most significant changes occurring in the estuary delta of the Ganjiang and Raohe rivers. The results also indicated that the changes in the inundation pattern and floodplain vegetation have profoundly altered the structure and composition of the wetland, which has resulted in increased landscape diversity and a gradual increase in the complexity of the ecosystem composition under the influence of regulation of the TGD. Such results are of great importance for policymakers, as they may provide a reference for wetland water resource planning and landscape restoration in an operational dam environment.

  8. Investigating leaks in dams and reservoirs

    International Nuclear Information System (INIS)

    2003-01-01

    Millions of people throughout the world depend on dams and reservoirs for electricity, water and flood protection. Dams require significant investment to build and maintain, and yet their usefulness and integrity are constantly threatened by leakage and sedimentation. Isotope hydrology techniques, combined with conventional analytical methods, are a cost-effective tool to reduce such threats. The International Atomic Energy Agency is promoting their use to protect these investments and improve management, particularly by supporting specialized teams of scientists and engineers to investigate dam leakage in African countries on request. (IAEA)

  9. A study on the effect of a broken large sabo dam on the sediment transportation in channel - an example of Baling-sabo-dam

    Science.gov (United States)

    Tseng, W. H.; Shieh, C. L.; Lee, S. P.; Tsang, Y. C.

    2009-04-01

    To retard the sediment transportation and its effect on the reservoir, large sabo dams are built in the main channel of the reservoir watershed in Taiwan. Therefore, these large sabo dams affect upstream, downstream, and the reservoir significantly if the dam breaks. There was about 450 mm of rain fell in the reservoir watershed during typhoon Wipha that struck Taiwan on 17-19, September, 2007. This heavy rainfall caused the Baling-sabo-dam broken about 60 m of the upper Dahan Creek in the Shimen Reservoir watershed. The dam, built in 1977, is 38 m in height, 80 m in width, and is designed to reserve sediment materials about 10 million m3. The upper river bed was diminished maximum to 20 m in a month; the deposited and affected areas are unable to estimate and still required to be observed. The main purpose of this paper is to analyze the topographic characteristic of the channel after the dam broke according to the topographic and surveyed data before and after the dam broke. The longitudinal profile and the cross section data show the effects to the channel after the dam break and the channel is able to classify in several sections. A simple comparison of the sediment discharge estimated from the hydrologic data with the topographic survey data is also analyzed. Keywords:dam break, sabo dam, sediment discharge

  10. A population growth trend analysis for Neotricula aperta, the snail intermediate host of Schistosoma mekongi, after construction of the Pak-Mun dam.

    Directory of Open Access Journals (Sweden)

    Stephen W Attwood

    2013-11-01

    Full Text Available The Pak-Mun dam is a controversial hydro-power project on the Mun River in Northeast Thailand. The dam is sited in a habitat of the freshwater snail Neotricula aperta, which is the intermediate host for the parasitic blood-fluke Schistosoma mekongi causing Mekong schistosomiasis in humans in Cambodia and Laos. Few data are available which can be used to assess the effects of water resource development on N. aperta. The aim of this study was to obtain data and to analyze the possible impact of the dam on N. aperta population growth.Estimated population densities were recorded for an N. aperta population in the Mun River 27 km upstream of Pak-Mun, from 1990 to 2011. The Pak-Mul dam began to operate in 1994. Population growth was modeled using a linear mixed model expression of a modified Gompertz stochastic state-space exponential growth model. The N. aperta population was found to be quite stable, with the estimated growth parameter not significantly different from zero. Nevertheless, some marked changes in snail population density were observed which were coincident with changes in dam operation policy.The study found that there has been no marked increase in N. aperta population growth following operation of the Pak-Mun dam. The analysis did indicate a large and statistically significant increase in population density immediately after the dam came into operation; however, this increase was not persistent. The study has provided the first vital baseline data on N. aperta population behavior near to the Pak-Mun dam and suggests that the operation policy of the dam may have an impact on snail population density. Nevertheless, additional studies are required for other N. aperta populations in the Mun River and for an extended time series, to confirm or refine the findings of this work.

  11. Dam failure analysis/calibration using NWS models on dam failure in Alton, New Hampshire

    International Nuclear Information System (INIS)

    Capone, E.J.

    1998-01-01

    The State of New Hampshire Water Resources Board, the United States Geological Service, and private concerns have compiled data on the cause of a catastrophic failure of the Bergeron Dam in Alton, New Hampshire in March of 1996. Data collected related to the cause of the breach, the breach parameters, the soil characteristics of the failed section, and the limits of downstream flooding. Dam break modeling software was used to calibrate and verify the simulated flood-wave caused by the Bergeron Dam breach. Several scenarios were modeled, using different degrees of detail concerning the topography/channel-geometry of the affected areas. A sensitivity analysis of the important output parameters was completed. The relative importance of model parameters on the results was assessed against the background of observed historical events

  12. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    Science.gov (United States)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  13. STABILITAS CHECK DAM DI ARBORETUM DESA SUMBER BRANTAS

    Directory of Open Access Journals (Sweden)

    Endang Purwati

    2012-09-01

    Full Text Available Abstract: The stability of check-dam in arboretum of Sumber Brantas village. Sumber Brantas water sources area is arboretum territory which has to be maintained as conservation either for technical or vegetation (plants cover by sustainable development. Arboretum territory is made as asylum in irrigation system district of Brantas River. This research discusses technical conservation activity to build the check dam in conserving the area. Check dam is built dimensionally by using HEC-RAS Program to get safe and stable dimension for rolling, shifting and piping of Sf > 1.5, and based on hydrologic analysis to get maximum flood discharge of 48.01 m3second-1. Hydraulic analysis is used to get water level profile and pressure for the dam body. Stability of the structure will be controlled by construction load (weight of check dam and its fully sediment storage condition. The result of this research shows that the safe and stable dimension for check dam are as follows: 28 meter of width; 3 meter of main height; 1.5 meter of sub-height; 10 meter of stilling basin length (Main Dam–Sub Dam.

  14. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.

    Directory of Open Access Journals (Sweden)

    Stephen P Rubin

    Full Text Available The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth. Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  15. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities

    Science.gov (United States)

    Rubin, Stephen P.; Miller, Ian M.; Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan; McHenry, Michael L.; Stevens, Andrew; Eidam, Emily; Ogston, Andrea; Gelfenbaum, Guy R.; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  16. Computerized evaluation of flood impact

    International Nuclear Information System (INIS)

    Gagnon, J.; Quach, T.T.; Marche, C.; Lessard, G.

    1998-01-01

    A computerized evaluation process for assessing the economic impacts of a potential dam failure is described. The DOMINO software, which was developed by Hydro-Quebec, takes into account flow data from dam break simulations of floods, the territory involved, plus the economic evaluations of the real estate and infrastructures affected. Some examples of software applications and impact evaluations are presented. The principal elements involved in estimating economic or other types of impacts induced by natural flooding or dam failure, are: (1) flow forecasting, (2) defining the contour of the involved territory, and (3) accounting for the various impacts identified in the affected zone. Owing to its wide range of functions and utilities, DOMINO has proven to be a very useful, user-friendly and portable decision-making tool. 5 refs., 6 tabs

  17. THE ANALYSIS OF SABO DAM PERFORMANCE AS A SEDIMENT CONTROL STRUCTURE IN PUTIH RIVER, MT. MERAPI

    Directory of Open Access Journals (Sweden)

    Andre Wisoyo

    2015-02-01

    Full Text Available Mt. Merapi’s eruption which occurred on 26 October 2010 had disadvantageous impact for human life that live surrounds it. The primary disaster was pyroclastic cloud that destroyed villages surround it. In addition, the secondary disaster continuously became a threat for human life around the rivers that destroyed at Mount Merapi. One of the secondary disasters is Putih River’s volcanic material overflowing into Yogyakarta-Magelang Highway. The series of Sabo dam which had been built along the river could not handle that phenomenon. Sabo dam was built and expected to accommodate volcanic material or at least to resist the velocity of volcanic material (sediment controlling, so the damage caused by the flow became relatively small. However, this function could not work at that phenomenon. In order to know the function of sediment control of Sabo dam in Putih River, it is necessary to study the performance of Sabo dam. This research used Kanako software ver. 2.04 and reviewed Sabo dam PU-D1 Mranggen and PU-C8 Ngaglik. There were four simulated scenarios in this research: a scenario without Sabo dam; with Sabo dam PU-D1 Mranggen; with Sabo dam PU-C8 Ngaglik, and the last with two of Sabo dams. The simulation was based on 23 January 2011 event and simulated for 18.000 s. From this research, it can be concluded that Sabo dam PU-D1 Mranggen can reduce the total volume  passing through about 43,998.6 m3 or 1.53 % for 5 hours, and reduce the sediment volume that passing through about 28,482 m3 or 52.59 % for 5 hours. Sabo dam PU-C8 Ngaglik can reduce the total volume that passing through about 255.6 m3 or 0.01 % for 5 hours, and reduce the sediment volume that passing through about 124.8 m3 or 0.33 % for 5 hours, and Sabo dam PU-D1 Mranggen and PU-C8 Ngaglik in series can reduce the total volume that passing through about 2,340.6 m3 or 0.08 % for 5 hours, and reduce the sediment volume that passing through about 157.8 m3 or 0.41 % for 5 hours

  18. Hydraulic Evaluation of Discharge Over Submerged Rock Wing Dams on the Upper Mississippi River

    National Research Council Canada - National Science Library

    Hendrickson, Jon

    1999-01-01

    .... This analysis was part of a study, done through the Corps of Engineers' Land Management System, to determine the impacts of zebra mussels on water quality and ecological conditions in the Upper Mississippi River (UMR). Wing dams...

  19. Seismic response of uplifting concrete gravity dams

    International Nuclear Information System (INIS)

    Leger, P.; Sauve, G.; Bhattacharjee, S.

    1992-01-01

    The foundation interaction effects on the seismic response of dam-foundation systems have generally been studied using the linear elastic finite element models. In reality, the foundation can not develop effective tensile stresses to a significant degree along the interface. A two-dimensional finite element model, in which nonlinear gap elements are used at the dam-foundation interface to determine the uplift response of concrete gravity dams subjected to seismic loads, is presented. Time domain analyses were performed for a wide range of modelling assumptions such as dam height, interface uplift pressure, interface mesh density, and earthquake input motions, that were systematically varied to find their influence on the seismic response. The nonlinear interface behavior generally reduces the seismic response of dam-foundation systems acting as a seismic isolation mechanism, and may increase the safety against sliding by reducing the base shear transmitted to the foundation. 4 refs., 5 figs., 6 tabs

  20. Effect of beaver dams on the hydrology of small mountain streams: Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium

    Science.gov (United States)

    Nyssen, J.; Pontzeele, J.; Billi, P.

    2011-05-01

    SummaryThe European beaver ( Castor fiber) was recently reintroduced to Belgium, after an absence of more than 150 years; around 120 beaver dam systems have been established. In Europe, few studies consider the hydrological effects of those dams, and the spatial scale larger than that of one beaver pond system has not been addressed at all. This research focuses on the hydrological effects of a series of six beaver dams on the Chevral R., a second order tributary of the Ourthe Orientale R. in a forested area of the Ardennes. Thereby, also the Ourthe Orientale sub-basin itself was taken into account, being the area with probably the highest density of beaver dams in Belgium. The main research questions regarded: (1) the extent to which discharge peaks are reduced at the very location and well downstream of beaver dams and (2) the impact of the beaver dams on low flows. The first approach consisted of a temporal analysis of the Ourthe Orientale discharge and precipitation data for the periods 1978-2003 (before) and 2004-2009 (after the establishment of beaver dams in the sub-basin). The second study determined the in situ impact of the beaver dams: discharges were measured (September 2009-March 2010) upstream as well as downstream of the 0.52 ha beaver dam system on the Chevral river, and changes in water level within the system of six dams were monitored. Our findings indicate that there is a significant lowering of discharge peaks in the downstream river reaches due to the effect of the beaver dams. The temporal analysis of the Ourthe Orientale sub-basin shows an increase in the recurrence interval for major floods; for instance, the recurrence interval of a reference flood of 60 m 3 s -1 increased from 3.4 years to 5.6 years since the establishment of the beaver dams. At the scale of the Chevral beaver dams' site, we measured that the dams top off the peak flows, in addition delaying them by approximately 1 day. There are also increased low flows: Q355 (i.e. the

  1. Chinese engineers and scientists urge leadership to change Three Gorges Dam operating plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-26

    An appeal to the Chinese Leadership by a group of senior engineers, water management experts and academics about the dire consequences of filling the Three Gorges reservoir on the Yangtze River to 175 metres, is reported. Originally, the plan was to keep water levels behind the Three Gorges Dam at 156 metres for the first ten years of operation, in order to allow for resettlement of people displaced by building the dam, and to evaluate the impact of silt deposits on navigation and ports at the upper end of the reservoir. Plans have changed in 1997; the water level is now scheduled to rise to 175 metres in the sixth year of the dam's operation in order to maximize the dam's power output. The appeal by 53 experts warned the Chinese Government that the filling of the reservoir to 175 metres would displace 1.13 million people and raise the water level in the Yangtze River more than 10 metres at Chongqing City, submerging drainage outlets and backing up the city's sewage, as well as increase silt deposits, blocking shipping traffic along the Yangtze River. A parallel is drawn with the Sanmenxia Dam on the Yellow River. It was completed in 1960; it has proven to be useless for controlling floods while producing only one-third of its expected output due to massive silt build-up in the reservoir.

  2. Stormwater Volume Control to Prevent Increases in Lake Flooding and Dam Failure Risk

    Science.gov (United States)

    Potter, K. W.

    2017-12-01

    Urban expansion is not often considered a major factor contributing to dam failure. But if urbanization occurs without mitigation of the hydrologic impacts, the risk of dam failure will increase. Of particular concern are increases in the volume of storm runoff resulting from increases in the extent of impervious surfaces. Storm runoff volumes are not regulated for much the U.S, and where they are, the required control is commonly less than 100%. Unmitigated increases in runoff volume due to urbanization can pose a risk to dams. A recent technical advisory committee of Dane County has recommended that the county require 100% control of stormwater volumes for new developments. The primary motivation was to prevent increases in the water levels in the Yahara Lakes, slowly draining lakes that are highly sensitive to runoff volume. The recommendations included the use of "volume trading" to achieve efficient compliance. Such recommendations should be considered for other slowly draining lakes, including those created by artificial structures.

  3. Ecosystem experiment reveals benefits of natural and simulated beaver dams to a threatened population of steelhead (Oncorhynchus mykiss)

    Science.gov (United States)

    Bouwes, Nicolaas; Weber, Nicholas; Jordan, Chris E.; Saunders, W. Carl; Tattam, Ian A.; Volk, Carol; Wheaton, Joseph M.; Pollock, Michael M.

    2016-01-01

    Beaver have been referred to as ecosystem engineers because of the large impacts their dam building activities have on the landscape; however, the benefits they may provide to fluvial fish species has been debated. We conducted a watershed-scale experiment to test how increasing beaver dam and colony persistence in a highly degraded incised stream affects the freshwater production of steelhead (Oncorhynchus mykiss). Following the installation of beaver dam analogs (BDAs), we observed significant increases in the density, survival, and production of juvenile steelhead without impacting upstream and downstream migrations. The steelhead response occurred as the quantity and complexity of their habitat increased. This study is the first large-scale experiment to quantify the benefits of beavers and BDAs to a fish population and its habitat. Beaver mediated restoration may be a viable and efficient strategy to recover ecosystem function of previously incised streams and to increase the production of imperiled fish populations. PMID:27373190

  4. Signatures of self-assembly in size distributions of wood members in dam structures of Castor canadensis

    Directory of Open Access Journals (Sweden)

    David M. Blersch

    2014-12-01

    Full Text Available Beavers (Castor canadensis construct dams on rivers throughout most of their historical range in North America, and their impact on water patterns in the landscape is considerable. Dam formation by beavers involves two processes: (1 intentional construction through the selection and placement of wood and sediment, which facilitates (2 the passive capture and accretion of suspended wood and sediment. The second process is a self-assembly mechanism that the beavers leverage by utilizing energy subsidies of watershed transport processes. The relative proportion of beaver activity to self-assembly processes in dam construction, however, is unknown. Here we show that lotic self-assembly processes account for a substantial portion of the work expended in beaver dam construction. We found through comprehensive measurement of the stick dimensions that the distributions for diameter, length, and volume are log-normal. By noting evidence of teeth markings, we determined that size distributions skewed significantly larger for wood handled by beavers compared to those that were not. Subsequent mass calculations suggest that beavers perform 50%–70% of the work of wood member placement for dam assembly, with riparian self-assembly processes contributing the remainder. Additionally, our results establish a benchmark for assessing the proportion of self-assembly work in similar riparian structures. Keywords: Beaver dam, Construction, Castor canadensis, Self-assembly, Distribution, Wood

  5. Seismic performance assessment of latyan concrete buttress dam ...

    African Journals Online (AJOL)

    In order to design earthquake resistant dams and evaluate the safety of existing dams that will be exposed to future earthquakes, it is essential to have accurate and reliable analysis procedures to predict the stresses and deformations in dams subjected to earthquake ground motion. For a damwater- foundation system, the ...

  6. Walden North Dam overtopping : emergency response and rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, S. [FortisBC Inc., South Slocan, BC (Canada); McCreanor, J. [Acres International Ltd., Calgary, AB (Canada); Cronin, D.L.R.; Daw, D. [Acres International Ltd., Vancouver, BC (Canada)

    2004-09-01

    This paper described the events that led to the overtopping of the Walden North Dam during a heavy rainfall in June 2002, resulting in a breach around an abutment wall. The dam is part of a run-of-river hydro development on Cayoosh Creek near Lillooet, British Columbia. The Walden North Dam was a low, 46 meter wide concrete dam with a single radial gate. The dam overtopping was attributed to failure of the radial gate hoist. Prior to this event, the dam had been classified by the British Columbia Dam Safety Authorities as a high and then a low consequence category of failure. As facility managers, Aquila Networks Canada Ltd. established an immediate action plan to stabilize the situation and resume normal power production by applying the following priorities: (1) ensure safety of workers and the public, (2) limit further damage to the dam and other facilities, (3) ensure environmental protection, and (4) continue to operate the generation units. Local authorities were informed to evacuate a downstream campsite and environmental agencies were contacted along with safety regulators. Repairs included demolition of the damaged portion of the structure and construction a new two-bay gate/stoplog spillway and bridge. Construction was completed by September 2003 according to the requirements of the Department of Fisheries and Oceans for minimum flow, accurate control of fish flows and environmental monitoring of the stream area. 10 figs.

  7. Developing an integrated dam safety program

    International Nuclear Information System (INIS)

    Nielsen, N. M.; Lampa, J.

    1996-01-01

    An effort has been made to demonstrate that dam safety is an integral part of asset management which, when properly done, ensures that all objectives relating to safety and compliance, profitability, stakeholders' expectations and customer satisfaction, are achieved. The means to achieving this integration of the dam safety program and the level of effort required for each core function have been identified using the risk management approach to pinpoint vulnerabilities, and subsequently to focus priorities. The process is considered appropriate for any combination of numbers, sizes and uses of dams, and is designed to prevent exposure to unacceptable risks. 5 refs., 1 tab

  8. Dams and Development in the French Alps in the Inter-war Period

    Directory of Open Access Journals (Sweden)

    Anne Dalmasso

    2009-03-01

    Full Text Available La vigueur de la « controverse des grands barrages » du début des années 2000 nous amène à nous interroger, dans cet article, sur les conditions de l’accueil fait aux barrages alpins lors de leur première phase de construction dans les années 1920 et 1930. Si l’ampleur des impacts, sociaux et environnementaux est différente, la nature des questions posées concernant les modes d’appropriation et d’usage de l’eau demeure. Au-delà des discours justificateurs ou accusateurs, structurés de façon pérenne autour de la promotion ou de la dénonciation des vertus de la modernisation et du développement, l’acceptabilité des barrages dépend d’abord des perturbations introduites dans la répartition des droits de propriétés et d’usages du territoire et de la capacité à compenser gains et pertes entre les groupes sociaux concernés. Ces questions sont travaillées à partir de deux cas de construction dans les Alpes françaises durant les années 1930, ceux du barrage du Chambon et du Sautet.The heated discussions and controversies over large dams that marked the start of the 21st century have led us in this article to examine the conditions under which Alpine dams were received during the first construction phase of the 1920s and 1930s. Although the extent of social and environ-mental impacts was not the same, the types of questions raised concerning methods of appropriation and uses to which water was put are similar. Among the arguments for and against, which always tend to be structured around the promotion or denunciation of the virtues of modernisation and development, the acceptability of dams depends firstly on the disturbances caused to the distribution of property rights and land usage rights and the ability to balance out gains and losses among the different social groups concerned. These questions are examined in the light of two dams constructed in the French Alps in the 1930s, the Chambon and Sautet dams.

  9. Thermal monitoring of leakage through Karkheh embankment dam, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Mirghasemi, A.A.; Bagheri, S.M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Civil Engineering; Heidarzadeh, M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Civil Engineering]|[Mahab Ghodss Consulting Engineers, Tehran (Iran, Islamic Republic of)

    2007-07-01

    A newly developed and simple method for monitoring seepage in embankment dams was presented. The method of temperature measurement is based on the fact that a change in permeability results in a change in seepage flow, thereby causing a temperature change that can be readily measured in the dam body and foundation. In this study, water leaking through the Karkheh embankment dam was thermally analyzed to determine a pattern and amount of water seepage. With nearly 33 million cubic metres of fill, the Karkheh earth and rock-fill dam is the largest dam in Iran. Construction was completed in 2000. The thermal processes in the embankment were studied due to the dam's complex thermo-hydraulic behaviour. Thermal data was collected and analyzed during construction and operation of the dam. This paper presented the temperature variations for the different dam zones, including core, upstream shell, downstream shell, upstream filter, downstream filter and the plastic concrete cut-off wall. It was determined that the clay core works very well as an impermeable curtain. It was also shown that temperature variations of the Karkheh reservoir water is seasonal, and decrease as water depth increases. The reservoir water temperature remains constant beyond depths of 60 metres. The thermal behaviour of the core is not similar to that of the reservoir, indicating a very low value of seepage through the core. The pattern of temperature variations in the upstream shell in the left abutment is harmonic, while in the right abutment it is not harmonic. A harmonic pattern of temperature variation exists in some aquifers of the dam foundation, indicating high seepage through these aquifers. The Karkheh dam cut-off wall performs satisfactorily. It was determined that one dimensional equations for estimating seepage cannot be applied for the Karkheh dam. 17 refs., 11 figs.

  10. Grouting Applications in Cindere Dam

    Directory of Open Access Journals (Sweden)

    Devrim ALKAYA

    2011-01-01

    Full Text Available Grouting is one of the most popular method to control the water leakage in fill dam constructions. With this regard this method is widely used in all the world. Geological and geotechnical properties of rock are important parameters affect the design of grouting. In this study, geotechnical properties of Cindere Dam's base rock and the grouting prosedure have been investigated with grouting pressure.

  11. Sinkhole investigated at B.C. Hydro's Bennett Dam

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The cause of a sinkhole which appeared in a roadway crossing an earth filled dam in B. C., was discussed. The hole measured 6 ft. across and 20 ft. deep, and occurred in B.C. Hydro's W.A.C. Bennett Dam which measures 600 ft. high, 2,600 ft. wide at the base and 35 ft. wide at the crest. The cause of the sinkhole is not known, but it is believed that a weakness in the dam may have found its way to the surface via a pipe connected to a bedrock settlement gauge buried within the dam. Sonar and ground penetrating radar were used to examine the area. The hole has been filled with gravel and monitoring continues. Experts do not anticipate immediate risk of dam failure. 1 fig

  12. Plugs or flood-makers? the unstable landslide dams of eastern Oregon

    Science.gov (United States)

    Safran, Elizabeth B.; O'Connor, Jim E.; Ely, Lisa L.; House, P. Kyle; Grant, Gordon E.; Harrity, Kelsey; Croall, Kelsey; Jones, Emily

    2015-01-01

    Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects of landslide dams and might be expected to vary among geologic settings. Here, we investigate the morphometry, stability, and effects on adjacent channel profiles of 17 former and current landslide dams in eastern Oregon. Data on landslide dam dimensions, former impoundment size, and longitudinal profile form were obtained from digital elevation data constrained by field observations and aerial imagery; while evidence for catastrophic dam breaching was assessed in the field. The dry, primarily extensional terrain of low-gradient volcanic tablelands and basins contrasts with the tectonically active, mountainous landscapes more commonly associated with large landslides. All but one of the eastern Oregon landslide dams are ancient (likely of order 103 to 104 years old), and all but one has been breached. The portions of the Oregon landslide dams blocking channels are small relative to the area of their source landslide complexes (0.4–33.6 km2). The multipronged landslides in eastern Oregon produce marginally smaller volume dams but affect much larger channels and impound more water than do landslide dams in mountainous settings. As a result, at least 14 of the 17 (82%) large landslide dams in our study area appear to have failed cataclysmically, producing large downstream floods now marked by boulder outwash, compared to a 40–70% failure rate for landslide dams in steep mountain environments. Morphometric indices of landslide dam stability calibrated in other environments were applied to the Oregon dams. Threshold values of the Blockage and Dimensionless Blockage Indices calibrated to worldwide

  13. Influence of Partial Dam Removal on Change of Channel Morphology and Physical Habitats: A Case Study of Yu-Sheng River

    Science.gov (United States)

    Hao Weng, Chung; Yeh, Chao Hsien

    2017-04-01

    The rivers in Taiwan have the characteristic of large slope gradient and fast flow velocity caused by rugged terrain. And Taiwan often aces many typhoons which will bring large rainfall in the summer. In early Taiwan, river management was more focus on flood control, flood protection and disaster reduction. In recent years, the rise of ecological conservation awareness for the precious fish species brings spotlight on the Taiwan salmon (Oncorhynchus masou formosanus) which lives in the river section of this study. In order to make sure ecological corridor continuing, dam removal is the frequently discussed measure in recent years and its impact on environmental is also highly concerned. Since the dam removal may causes severe changes to the river channel, the action of dam removal needs careful evaluation. As one of the endangered species, Taiwan salmon is considered a national treasure of Taiwan and it was originally an offshore migration of the Pacific salmon. After the ice age and geographical isolation, it becomes as an unique subspecies of Taiwan and evolved into landlocked salmon. Now the Taiwan salmon habitats only exists in few upstream creeks and the total number of wild Taiwan salmon in 2015 was about 4,300. In order to expand the connectivity of the fish habitats in Chi-Jia-Wan creek basin, several dam removal projects had completed with good results. Therefore, this paper focuses on the dam removal of Yu-Sheng creek dam. In this paper, a digital elevation model (DEM) of about 1 kilometer channel of the Yu-Sheng creek dam is obtained by unmanned aerial vehicle (UAV). Using CCHE2D model, the simulation of dam removal will reveal the impact on channel morphology. After model parameter identification and verification, this study simulated the scenarios of three historical typhoon events with recurrence interval of two years, fifteen years, and three decades under four different patterns of dam removal to identify the the head erosion, flow pattern, and

  14. Measuring taste impairment in epidemiologic studies: the Beaver Dam Offspring Study.

    Science.gov (United States)

    Cruickshanks, K J; Schubert, C R; Snyder, D J; Bartoshuk, L M; Huang, G H; Klein, B E K; Klein, R; Nieto, F J; Pankow, J S; Tweed, T S; Krantz, E M; Moy, G S

    2009-07-01

    Taste or gustatory function may play an important role in determining diet and nutritional status and therefore indirectly impact health. Yet there have been few attempts to study the spectrum of taste function and dysfunction in human populations. Epidemiologic studies are needed to understand the impact of taste function and dysfunction on public health, to identify modifiable risk factors, and to develop and test strategies to prevent clinically significant dysfunction. However, measuring taste function in epidemiologic studies is challenging and requires repeatable, efficient methods that can measure change over time. Insights gained from translating laboratory-based methods to a population-based study, the Beaver Dam Offspring Study (BOSS) will be shared. In this study, a generalized labeled magnitude scale (gLMS) method was used to measure taste intensity of filter paper disks saturated with salt, sucrose, citric acid, quinine, or 6-n-propylthiouracil, and a gLMS measure of taste preferences was administered. In addition, a portable, inexpensive camera system to capture digital images of fungiform papillae and a masked grading system to measure the density of fungiform papillae were developed. Adult children of participants in the population-based Epidemiology of Hearing Loss Study in Beaver Dam, Wisconsin, are eligible for this ongoing study. The parents were residents of Beaver Dam and 43-84 years of age in 1987-1988; offspring ranged in age from 21-84 years in 2005-2008. Methods will be described in detail and preliminary results about the distributions of taste function in the BOSS cohort will be presented.

  15. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Directory of Open Access Journals (Sweden)

    S. Harrison

    2018-04-01

    Full Text Available Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity – rather unexpectedly – have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  16. Energy dissipation by submarine obstacles during landslide impact on reservoir - potentially avoiding catastrophic dam collapse

    Science.gov (United States)

    Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  17. Flood effects provide evidence of an alternate stable state from dam management on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Hupp, Cliff R.; Schenk, Edward R.; Galloway, Joel M.; Nustad, Rochelle A.

    2017-01-01

    We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3 s−1. Channel cross-section data and aerial imagery before and after the flood were compared with historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the 2011 flood maintained trends in island area with the loss of islands in the reach just below the dam and an increase in island area downstream. Channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric, which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that the presence of dams has created an alternate geomorphic and related ecological stable state, which does not revert towards pre-dam conditions in response to the flood of record. This suggests that management of sediment transport dynamics as well as flow modification is necessary to restore the Garrison Segment of the Upper Missouri River towards pre-dam conditions and help create or maintain habitat for endangered species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  18. Dynamic analyzing procedures adopted for concrete-faced rockfill dams in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, H. [Dam Safety Association, Ankara (Turkey); Tosun, K. [TVT Hydrotech Bureau, Ankara (Turkey)

    2008-07-01

    A concrete faced rockfill dam (CFRD) has some advantages compared to other embankment types. The advantages include minimal settlement problems through the use of compacted rockfill; increased overall stability of the dam since the water pressure acts on the upstream face; and pore water pressure does not develop in the rockfill zone if it is well designed and constructed. It is thought that well-compacted CFRD has a high resistance to earthquake loading, as based on several factors including acceptable past performance of similar dams. While numerical solutions performed for this type of dams indicate that it is as safe as other embankment dams, their behavior is still questionable when they are subjected to severe seismic loading. This paper outlined the key principals of the dynamic analyzing method adopted for CFRDs in Turkey and summarized the practice of CFRDs with heights ranging from 54 to 135 metres throughout the country. Two-dimensional finite element models were executed to estimate displacements on the crest under the different loadings of earthquake. Dams that were discussed included the Kurtun Dam, the Torul Dam, the Atasu Dam, the Dim Dam, the Gordes Dam, and the Marmaris Dam. The paper also discussed the limitation about permanent settlement provided in the national dam specification and introduced the results obtained from a case study of the Pamukluk Dam located in southern Turkey. Geology and geotechnics as well as the embankment details and materials were discussed. The case study also summarized the selection of seismic parameters and dynamic analyses. 35 refs., 1 tab., 8 figs.

  19. Hydrogeophysical investigations at Hidden Dam, Raymond, California

    Science.gov (United States)

    Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.

    2011-01-01

    Self-potential and direct current resistivity surveys are carried out at the Hidden Dam site in Raymond, California to assess present-day seepage patterns and better understand the hydrogeologic mechanisms that likely influence seepage. Numerical modeling is utilized in conjunction with the geophysical measurements to predict variably-saturated flow through typical two-dimensional dam cross-sections as a function of reservoir elevation. Several different flow scenarios are investigated based on the known hydrogeology, as well as information about typical subsurface structures gained from the resistivity survey. The flow models are also used to simulate the bulk electrical resistivity in the subsurface under varying saturation conditions, as well as the self-potential response using petrophysical relationships and electrokinetic coupling equations.The self-potential survey consists of 512 measurements on the downstream area of the dam, and corroborates known seepage areas on the northwest side of the dam. Two direct-current resistivity profiles, each approximately 2,500 ft (762 m) long, indicate a broad sediment channel under the northwest side of the dam, which may be a significant seepage pathway through the foundation. A focusing of seepage in low-topography areas downstream of the dam is confirmed from the numerical flow simulations, which is also consistent with past observations. Little evidence of seepage is identified from the self-potential data on the southeast side of the dam, also consistent with historical records, though one possible area of focused seepage is identified near the outlet works. Integration of the geophysical surveys, numerical modeling, and observation well data provides a framework for better understanding seepage at the site through a combined hydrogeophysical approach.

  20. Seepage problem in Papan dam and the treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sharghi, A. [JTMA Co., Tehran (Iran, Islamic Republic of); Palassi, M. [Tehran Univ. (Iran, Islamic Republic of). Dept. of Civil Engineering

    2003-07-01

    The Papan dam in the Krygyz Republic is 97 metres high. It is located in the Osh Oblast, within a narrow and steep sided gorge on the Ak-Bura River, approximately 20 kilometres south of the City of Osh. The impoundment of the dam revealed large inflows of water to the downstream dam through the upper half of the dam and through the joints in the right abutment. A number of options were considered before a treatment method was selected. The causes of the leakage were poor grouting, and joints and fissures in the abutment. The remedial process involved the use of a plastic concrete cutoff wall extended from the crest of the dam to a depth of approximately 70 metres, in addition to the use of a grouting curtain in the right abutment. 2 figs.

  1. Design and Construction of Dams, Reservoirs, and Balancing Lakes

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2003-01-01

    The general data presented in sections two and three gives an idea of the extreme diversity of the millions of very large or very small dams worldwide. Dam design and construction methods for the most usual types of large dams are presented and justified in section four. The possibility and usefulness of building as many dams in the 21. century as have been built in the 20. is analyzed in section six. (author)

  2. Seasonal movements among river reaches, migration strategies, and population structure of the divided Connecticut River shortnose sturgeon population: the effects of Holyoke Dam

    Science.gov (United States)

    Kynard, Boyd; Kieffer, Micah; Vinogradov, Phil; Kynard, B.; Bronzi, P.; Rosenthal, H.

    2012-01-01

    Even after 155 years, each population segment seasonally migrates toward the other attempting to maintain the natural connection. Migration timing and style of pre-spawning and post-spawning males and females is discussed, as is homing. The impact of Holyoke Dam on population size and growth is characterized and turbine mortality of adult sturgeon passing through a Kaplan turbine at the dam is estimated. The chapter also identifies a behavioral dysfunction that results when migrations are blocked by a dam and are not completed at the correct stage of life. Many unknown effects of damming on other long-lived riverine fishes are likely captured in this 16-year study.

  3. Grouting of karstic arch dam foundation

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.; Rigbey, S. [Acres International, Niagara Falls, ON (Canada)

    2002-07-01

    A 200 m high arch dam and a 2000 MW underground power house complex is under development in the Middle East. The project is located in a highly seismic area in rugged, mountainous terrain. The arch dam is constructed on good quality limestone and dolomitic limestone rock mass, but it contains several zones of disturbed or sheared rock. The basement rock is slightly karstic with hydraulic conductivities in the order of 100 Lugeons. In order to get a satisfactory foundation surface for the dam, it will be necessary to excavate extensively and backfill with concrete. Because of the presence of many clay infilled cavities and fractures, geotechnicians are considering the installation of a multiple row grout curtain to a depth of 150 m below the dam foundation to ensure adequate seepage and uplift parameters when the reservoir is impounded. Initial grouting water pressure test results suggested that the grouting and drainage curtain should be extended to the left abutment beyond the current design. However, when horizontal slide models of the dam abutment were developed using the finite element program SEEPW, it was shown that there is no benefit to extending the length of grout curtains unless they are tied to an area of much lower hydraulic conductivity much deeper in the abutment. 1 tab., 5 figs.

  4. Impact of the Three Gorges Dam on the Hydrology and Ecology of the Yangtze River

    Directory of Open Access Journals (Sweden)

    Xiao Zhang

    2016-12-01

    Full Text Available Construction and operation of the Three Gorges Dam (TGD has significantly altered the downstream hydrological regime along the Yangtze River, which has in turn affected the environment, biodiversity and morphological configuration, and human development. The ecological and environmental systems of the middle and lower Yangtze River have been affected adversely, with the ecosystems of Poyang Lake and its deltas being among the most damaged. Besides posing a potential threat to the survival of migrant birds and aquatic species, operation of the TGD has also affected the human population, particularly with respect to water and food security. Though the above mentioned effects have been studied in previous papers, a comprehensive discussion has never been conducted. This paper provides the first ever summary of the impacts of the TGD on the downstream reaches of the Yangtze River. The costs and benefits identified provide a constructive reference that can be used in decision-making for sustainable development of water resources in other nations, especially those in the developing world.

  5. Predictions of total deformations in Jebba main dam by finite ...

    African Journals Online (AJOL)

    This paper examined the deformations of the Jebba Main Dam, Jebba Nigeria using the finite element method. The study also evaluated the predicted deformations and compared them with the actual deformations in the dam to identify possible causes of the observed longitudinal crack at the dam crest. The Jebba dam is a ...

  6. Assessment of check-dam groundwater recharge with water-balance calculations

    Science.gov (United States)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos

    2017-04-01

    Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without

  7. Development of Inundation Map for Hypothetical Asa Dam Break using HEC-RAS and ARC GIS

    Directory of Open Access Journals (Sweden)

    O. S. Balogun

    2017-12-01

    Full Text Available Asa Dam in Ilorin, Nigeria was constructed in the1980s. The dam made of earth material has a length of 507 meters and height of 27 meters. The maximum capacity of the impoundment during the raining season is approximately 43 x 106 m3. Years after construction, tremendous physical development is taking place along the river channel starting from the dam axis towards downstream for a distance of approximately 12 km. It is estimated that several thousands of people are currently living and performing various activities within the vicinity of the river channel. It is therefore necessary to evaluate the risk involved in case of a possible dam break disaster. In view of this, a hypothetical dam break scenario was studied and analyzed using Hydrologic Engineering Center’s River Analysis System computer model. Unsteady flow simulation was performed using geometric data obtained from Digital Terrain Model with 100-year, 24 hr flow event. The HEC-RAS was used in concert with HEC-GeoRAS to assess the flood hazard along the approximately 12 km river channel. The simulated water surface elevations were exported to Arc GIS to produce an inundation map that graphically indicates the extent of the flood hazard. The results show that some important locations such as industrial, residential, motor parks, recreational and places of worship along the river length are prone to significant flood impact. This map serves as an input for emergency preparation programme in the event of the dam break.

  8. Management of environmental and radiation data - the Olympic Dam project

    International Nuclear Information System (INIS)

    Jenkins, B.

    1987-01-01

    In terms of data management the Olympic Dam Project is in a process of transition from investigative studies to operational monitoring. The data management requirements for investigative studies are quite different requirements and indicates the progress taken in this transition, as well as the directions being taken to complete this transition. The environmental and radiation management programs for the Olympic Dam Project have already stored 70 megabytes of data on computer. With the comprehensive monitoring requirements which have been, or are in the process of being established for production operations, the volume of data is increasing. There are six main areas involving environmental and radiation data management: project area environmental monitoring; monitoring of the impact pathway from groundwater extraction for water supply to possible effects on mound springs; radiation levels in the environment; radiation exposures to designated employees; other occupational exposures in the mine; medical records relevant to occupational health

  9. Earthquake induced liquefaction analysis of Tendaho earth-fill dam ...

    African Journals Online (AJOL)

    fill dam, which is part of Tendaho Dam and Irrigation Project; the largest irrigation project in Ethiopia to date. The dam is located in the most seismic part of Ethiopia and was originally designed to be founded on potentially liquefiable alluvium ...

  10. Chixoy Dam Legacies: The Struggle to Secure Reparation and the Right to Remedy in Guatemala

    Directory of Open Access Journals (Sweden)

    Barbara Rose Johnston

    2010-06-01

    Full Text Available The World Commission on Dams brought global attention to the adverse costs of large dam development, including the disproportionate displacement of indigenous peoples and ethnic minorities and the extreme impoverishment of development refugees. The WCD recommended that governments, industry and financial institutions accept responsibility for flawed development and make proper reparation, including remedial activities such as the restoration of livelihood and land compensation for relocated communities. One exemplary case cited is Guatemala’s Chixoy dam. Completed in 1982, this internationally financed dam was built during a time when military dictatorships deployed policies of state-sponsored violence against a Mayan citizenry. Construction occurred without a resettlement plan, and forced displacement occurred through violence and massacre. This paper describes an attempt to implement WCD reparation recommendations in a context where no political will existed. To clarify events, abuses and meaningful remedy, an independent assessment process was established in 2003, auditing the development record, assessing consequential damages and facilitating the community articulation of histories and needs. The resulting 2005 study played a key role in reparation negotiations. The Chixoy case illustrates some of the more profound impacts of the WCD review. The WCD served as a catalyst in social movement formation and a force that expanded rights-protective space for dam-affected communities to negotiate an equitable involvement in development.

  11. Scale-dependency of macroinvertebrate communities: responses to contaminated sediments within run-of-river dams.

    Science.gov (United States)

    Colas, Fanny; Archaimbault, Virginie; Devin, Simon

    2011-03-01

    Due to their nutrient recycling function and their importance in food-webs, macroinvertebrates are essential for the functioning of aquatic ecosystems. These organisms also constitute an important component of biodiversity. Sediment evaluation and monitoring is an essential aspect of ecosystem monitoring since sediments represent an important component of aquatic habitats and are also a potential source of contamination. In this study, we focused on macroinvertebrate communities within run-of-river dams, that are prime areas for sediment and pollutant accumulation. Little is known about littoral macroinvertebrate communities within run-of-river dam or their response to sediment levels and pollution. We therefore aimed to evaluate the following aspects: the functional and structural composition of macroinvertebrate communities in run-of-river dams; the impact of pollutant accumulation on such communities, and the most efficient scales and tools needed for the biomonitoring of contaminated sediments in such environments. Two run-of-river dams located in the French alpine area were selected and three spatial scales were examined: transversal (banks and channel), transversal x longitudinal (banks/channel x tail/middle/dam) and patch scale (erosion, sedimentation and vegetation habitats). At the patch scale, we noted that the heterogeneity of littoral habitats provided many available niches that allow for the development of diversified macroinvertebrate communities. This implies highly variable responses to contamination. Once combined on a global 'banks' spatial scale, littoral habitats can highlight the effects of toxic disturbances. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Investigation of changes to the operation of Keenleyside Dam to reduce supersaturation of dissolved gases downstream

    International Nuclear Information System (INIS)

    Nunn, J.O.H.; Fidler, L.E.; Northcott, P.

    1993-01-01

    Keenlyside Dam is located on the Columbia River in southeast British Columbia. It impounds Arrow Lakes Reservoir, which has a live storage of 8.8 billion m 3 . The dam is used for flood control and to increase power generation in the USA. Recent field measurements have shown that the current operation of the dam often creates high levels of total gas pressure (TGP) downstream of the dam, with supersaturation levels occasionally reaching as high as 140%. It appeared that these increased levels were associated with the use of the spillway. High levels of dissolved gases may have adverse effects on aquatic life. Therefore, a comprehensive study was initiated to investigate ways of reducing TGP levels. The discharge facilities at the dam are described, along with the effects of dissolved gas supersaturation on fish. Current studies include measurement of field TGP levels, development of a model to predict TGP levels for different modes of operation of the discharge facilities, assessing the effects of TGP on different fish species at different life stages, field testing of the discharge facilities, and assessment of long-term impacts of various operating alternatives on the dam structures and equipment. Preliminary results indicate that the north low-level ports of the spillway increase the TGP level significantly less than the other two components of the discharge facilities. Current operating practice therefore maximizes use of the north ports within current operating limits. 9 refs., 4 figs

  13. Reuse of mining dams waste for the processing of interlocking blocks for paving

    International Nuclear Information System (INIS)

    Machado, Raissa Ribeiro Lima; Ribeiro, Guilherme Borges; Silva, Sidney Nicodemos da

    2014-01-01

    The environmental impact of mining dam residues can be mitigated by their reuse in the production of interlocking blocks for pavements with a mechanical strength greater than 50 MPa. From the mixture of cement CPV-ARI, sand and gravel, the characterization of the mechanical and physicochemical properties was performed by the following procedures: SEM, FRX, XRD, compression tests and thermal analysis (DSC). These blocks produced from these residues can be considered an economical alternative for the mining depletion cycle in the State of Minas Gerais. This work sought to improve the traces with the replacement the sand of the rivers bed by residues of mining dams that can represent an opportunity for generation of employment and income

  14. Dams and Obstructions along Iowa's Canoe Routes

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This dataset represents obstruction to canoe and boat users of the canoe routes of Iowa. This may represent actual dams, rock dams (natural or man made), large...

  15. Ririe Dam Release Test Assessment

    Science.gov (United States)

    2013-06-01

    Notes HEC - RAS Location Station (ft) Observation Notes 1420 Ririe Dam Ririe Dam 119,880 Gates opened and initial release started. 1455 115th St...16°F air temperature. Table A2. Observations made on 11 February 2013. Time Location Notes HEC - RAS Location Station (ft) Observation Notes...ERDC/CRREL TR-13-10 52 Time Location Notes HEC - RAS Location Station (ft) Observation Notes Travel Time* (sec) Vel.** (fps) 1224 5th

  16. Grouting design for slope stability of kedung uling earthfill dam

    Directory of Open Access Journals (Sweden)

    Najib

    2018-01-01

    Full Text Available Kedung Uling earthfill dam locates at Wonogiri Regency, Central Java, Indonesia. The dam encountered sliding and settlement at the embankment wall. To minimize sliding and settlement and to optimize the dam, both field investigation and laboratory tests have been proceeded for slope stability analysis and remedial embankment wall. Soil and rock investigation around the dam, which is followed by 10 core drillings, have been conducted. Laboratory tests such as direct shear and index properties have also been carried on. The results were further used for dam slope stability model using slide 6.0 and were used to analyzed factor of safety (FS of Kedunguling dam. 10 conditions of dam were simulated and strengthening body of dam with grouting was designed. The results showed two conditions, which are condition of maximum water level with and without earthquake at downstream, were unsatisfy Indonesia National Standard (SNI for building and infrastructure. These conditions can be managed by using grouting for increasing stabilization of embankment wall. By setting up grouting, factor of safety increases and meet the SNI standard requirement.

  17. Non uniform nature of recorded ground accelerations at dam foundation interface

    Energy Technology Data Exchange (ETDEWEB)

    Ghaemian, Mohsen; Gilani, Morteza Sohrabi [Sharif University of Technology, Tehran, (Iran, Islamic Republic of); Noorzad, Ali [Power and Water University of Technology, Tehran, (Iran, Islamic Republic of)

    2010-07-01

    The Karun III is a double curved concrete arch dam located in Iran which was used to investigate earthquake motions and dam responses. This paper presented the study of the Karun III dam foundation interface. Using an array of 15 accelerometers, two major events that occurred on 2007.11.20 and 2007.11.21 were recorded during dam operation with a PGA at crest of 0.312 g and 0.109.g respectively. A finite element model of Karun III dam was performed. The response of the Karun III dam during the 2007 earthquake was investigated using the NSAD-DRI program. It was found that the motion of the dam foundation interface is non-uniform. There is a time shift and amplification at the abutment compared to those at the base of the dam. The results showed that the spatially varying earthquake assumption is in good agreement with the recorded displacement of the dam.

  18. Environmental considerations for the expansion of Olympic Dam, South Australia

    International Nuclear Information System (INIS)

    Marshall, D.

    2002-01-01

    A recent $2 billion expansion at Olympic Dam saw production capacity increased to 200 000 tonnes of copper cathode, 4500 tonnes of UOC, 80,000 ozs of gold and 850 000 ozs of silver from the mining and milling of about 9 million tonnes of ore. The Expansion required the prior preparation and approval of an Environmental Impact Statement (EIS). Design Criteria and Codes of Practice applied during design and construction of the Expansion ensured that no environmental incidents occurred during construction, and implementation of an Environmental Management System has ensured that operation of the expanded facilities continues to have low impacts. (author)

  19. Verifying Pressure of Water on Dams, a Case Study

    Directory of Open Access Journals (Sweden)

    Temel Bayrak

    2008-09-01

    Full Text Available Sensing and monitoring deformation pattern of dams is often one of the most effective ways to understand their safety status. The main objective of the present study is to find the extent to which rising reservoir level affects the mechanism of deformation of the Yamula dam under certain changes in the reservoir level conditions during the first filling period. A new dynamic deformation analysis technique was developed to analyze four geodetic monitoring records consisting of vertical and horizontal displacements of nine object points established on the dam and six reference points surrounding it, to see whether the rising reservoir level is responsible for the vertical and horizontal deformations during the first filling period. The largest displacements were determined in the middle points of the dam construction. There is an apparent linear relationship between the dam subsidence and the reservoir level. The dynamic deformation model was developed to model this situation. The model infers a causative relationship between the reservoir level and the dam deformations. The analysis of the results determines the degree of the correlation between the change in the reservoir level and the observed structural deformation of the dam.

  20. Beaver damming, fluvial geomorphology, and climate in Yellowstone National Park, Wyoming

    Science.gov (United States)

    Persico, L.; Meyer, G.

    2008-12-01

    Beaver habitation is an important component of many fluvial landscapes that can impact a variety of hydrologic, geomorphic, and ecologic processes. Beaver damming, via long term valley aggradation, is thought to be important to the postglacial geomorphic evolution of many smaller mountain stream networks in the western United States. Loss of beaver dams can also cause rapid channel incision. Although several studies have documented rapid short-term aggradation of channels behind single beaver dams, there is little actual data on the long-term cumulative effect of beaver damming. In Yellowstone''s Northern Range, field surveys and stratigraphic section along six streams in the Northern Range reveal net thickness of mostly beaver-pond deposits. We estimate that reaches with clear morphologic and stratigraphic evidence for beaver-related aggradation constitute about 19% of the total stream network length. Reaches with probable and possible beaver-related aggradation make up an additional 8% and 2% of the network, respectively. The remaining 71% of the network has no clear evidence for beaver-related aggradation. Thirty-nine radiocarbon ages on beaver-pond deposits in northern Yellowstone fall primarily within the last 4000 yr, but gaps in dated beaver occupation from 2200-1800 and 950-750 cal yr BP correspond with severe and persistent droughts that likely caused low to ephemeral discharges in smaller streams. In the last two decades, severe drought has also caused streams that were occupied by beaver in the 1920s to become ephemeral. Beaver have been largely absent from the Northern Range since the mid-20th century, probably due to multiple ecological and climatic factors. This loss of beaver is thought to have led to widespread degradation of stream and riparian habitat via channel incision. Although 20th-century beaver loss has caused significant channel incision at some former dam sites, downcutting elsewhere in northern Yellowstone is unrelated to beaver dams or

  1. Detection of water leaks in the dam Joumine and study of sedimentation in the dam Ghezela by nuclear method

    International Nuclear Information System (INIS)

    Sari Souha

    2013-01-01

    The objective of this study is to determinate the paths of leaks observed in the dam Joumine and to identify the origin of salinity in the drain D2. In addition, the evaluation of the sedimentation measurement of suspended elements in the dam Ghezela is our second objective. The Joumine dam located in the North-east of Tunisia (governorate of Bizerte), was built in 1983 has an upstream watershed area of 418 km 2 . The reservoir capacity is 130 Mm 3 . This dam observed a water leakage from its implementation at the two drains D1 and D2 with a emerging flow rate reached a value close to 500 l/s, about 16 pour cent of its capacity. The injection of an insulating material in Karsts networks reduces the leakage rate to a value of 120 l / s in 1993 and 88 l / s in 2013, but this decrease was accompanied by an increase in salinity level in D2. The results from a multidisciplinary approach showed that the leakage path from the left bank of the reservoir where the leak was first detected, heading both D1 and D2 drains and the salinity in drain D2 due to the dissolution of the gypsum layer downstream of the dam and the contribution of brackish water from the left bank. The Ghezela dam located in the same area, was built in 1984 has an upstream watershed area of 48 km 2 . This dam has been an increase in sedimentation of 0.3 million m3 in 1994 to 1.7 million m 3 in 2010. In this study, the suspended elements were measured with a nuclear probe composed by a radioactive source of americium 241 and a NaI detector trained by a boat at different depth in the reservoir.

  2. Critical Quality Source Diagnosis for Dam Concrete Construction Based on Quality Gain-loss Function

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2014-06-01

    Full Text Available In dam concrete construction process, it not only has quality loss arising from quality fluctuation, but also gains quality compensation effect due to the mutual cooperation and adaptation coupling between working procedures (WPs. The calculation and transmission complexity of the quality loss and quality compensation affect the quality management of dam concrete construction. As the quality compensation effect existing in the production practice cannot be described by Taguchi quality loss function, the concept of quality gain-loss function was presented in this paper, which was based on endowing the constant term in the expansion of Taylor series with physical meaning—quality compensation. Based on quality gain-loss function theory, a new quality gain-loss transmission model of dam concrete construction based on GERT network was constructed and its effective algorithm was designed. WP quality gain-loss and its impact on the final product were reasonably measured, and the critical quality routes and critical quality WPs were detected and diagnosed in dam concrete construction network. Summer temperature-controlled concrete construction in the third phase of Three Gorges Project (TGP was taken as an example to carry out the study, and the calculation results showed the validity and practicability of the presented model and algorithm.

  3. Participation with a Punch: Community Referenda on Dam Projects and the Right to Free, Prior, and Informed Consent to Development

    Directory of Open Access Journals (Sweden)

    Brant McGee

    2010-06-01

    Full Text Available The 2000 Report of the World Commission on Dams (WCD found that dams can threaten the resources that provide the basis for indigenous and other peoples’ culture, religion, subsistence, social and family structure – and their very existence, through forced relocation – and lead to ecosystem impacts harmful to agriculture, animals and fish. The WCD recommended the effective participation of potentially impacted local people in decisions regarding dam construction. The international right to free, prior, and informed consent (FPIC accorded to indigenous peoples promises not only the opportunity to participate in decisions affecting their lands and livelihoods but to stop unwanted development by refusing consent as well. The newly developed concept of community referenda, held in areas potentially impacted by development projects, provides an accurate measure of the position of local voters on the proposed project through a democratic process that discourages violence, promotes fair and informed debate, and provides an avenue for communities to express their consent or refusal of a specific project. The legal basis, practical and political implications, and Latin American examples of community referenda are explored as a means of implementing the critical goal of the principle of FPIC, the expression of community will and its conclusive impact on development decision-making.

  4. Pearl Harbor: lessons for the dam safety community

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.E. [AMEC Earth and Environmental Ltd., Burnaby, BC (Canada)

    2001-10-01

    Every good dam safety program must be based on surveillance and emergency response planning. The same principles apply to the gathering of information for military intelligence and the planning of defence tactics. Lessons learned from failure have spurred the advancement of dam engineering. Dam safety experts can benefit from the inadequacies encountered by the military community, with the most famous occurring on December 7, 1941 in Pearl Harbor. Both intelligence gathering and contingency response planning failed miserably. The data was not properly disseminated, interpreted, analysed. The proper response to the situation was not initiated. Human error and failure to communicate are the two main reasons that explain the debacle. The inquiries into the tragedy at Pearl Harbor provided valuable lessons, related to individual and organizational failures, which the authors shared in this presentation. The relevance to dam safety was made. All Federal Bureau of Investigation (FBI) agents must read the lessons drawn from Pearl Harbor, as they have responsibility for dam safety. 4 refs.

  5. Battle looms over hydroelectric dam relicensing

    International Nuclear Information System (INIS)

    Simpson, J.

    1993-01-01

    Environmental groups, buoyed by support from influential lawmakers, are vowing to change the Federal Energy Regulatory Commission's (FERC's) hydroelectric relicensing procedures. For too long, the groups say, the hydroelectric industry has benefitted from a cozy relationship with the FERC, which has emphasized economic over environmental considerations. The success or failure of the environmentalists agenda will likely prove critical to the hydroelectric industry. With 237 hydroelectric licenses up for renewal this year - the most ever considered by the FERC in one year - and four vacant seats at the Commission, FERC hydro policy appears poised for upheaval. The groups have proposed a multipoint program to address perceived shortcomings in the FERC's hydroelectric relicensing procedures. The program includes recommendations to: Shorten dam licenses (which currently stretch 30 to 50 years) and require the FERC to periodically reevaluate the terms of hydropower licenses; Increase Congressional oversight of the FERC to assure adherence to environmental laws, including the National Environmental Policy Act, which mandates the preparation of environmental impact statements where appropriate; Mandate facilities for upstream and downstream fish passage; Establish a mitigation fund, collectable from dam owners, for river conservation and restoration programs; Promote all alternatives to relicensing projects, including denial of project licenses; and Reassign the FERC's hydropower jurisdiction to another federal agency, such as the Environmental Protection Agency or the Department of the Interior

  6. Remote Sensing of Deformation of a High Concrete-Faced Rockfill Dam Using InSAR: A Study of the Shuibuya Dam, China

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-03-01

    Full Text Available Settlement is one of the most important deformation characteristics of high concrete faced rockfill dams (CFRDs, >100 m. High CFRDs safety would pose a great threat to the security of people’s lives and property downstream if this kind of deformation were not to be measured correctly, as traditional monitoring approaches have limitations in terms of durability, coverage, and efficiency. It has become urgent to develop new monitoring techniques to complement or replace traditional monitoring approaches for monitoring the safety and operation status of high CFRDs. This study examines the Shuibuya Dam (up to 233.5 m in height in China, which is currently the highest CFRD in the world. We used space-borne Interferometric Synthetic Aperture Radar (InSAR time series to monitor the surface deformation of the Shuibuya Dam. Twenty-one ALOS PALSAR images that span the period from 28 February 2007 to 11 March 2011 were used to map the spatial and temporal deformation of the dam. A high correlation of 0.93 between the InSAR and the in-situ monitoring results confirmed the reliability of the InSAR method; the deformation history derived from InSAR is also consistent with the in-situ settlement monitoring system. In addition, the InSAR results allow continuous investigation of dam deformation over a wide area that includes the entire dam surface as well as the surrounding area, offering a clear picture continuously of the dam deformation.

  7. Measurement of Dam Deformations: Case Study of Obruk Dam (Turkey)

    Science.gov (United States)

    Gulal, V. Engin; Alkan, R. Metin; Alkan, M. Nurullah; İlci, Veli; Ozulu, I. Murat; Tombus, F. Engin; Kose, Zafer; Aladogan, Kayhan; Sahin, Murat; Yavasoglu, Hakan; Oku, Guldane

    2016-04-01

    In the literature, there is information regarding the first deformation and displacement measurements in dams that were conducted in 1920s Switzerland. Todays, deformation measurements in the dams have gained very different functions with improvements in both measurement equipment and evaluation of measurements. Deformation measurements and analysis are among the main topics studied by scientists who take interest in the engineering measurement sciences. The Working group of Deformation Measurements and Analysis, which was established under the International Federation of Surveyors (FIG), carries out its studies and activities with regard to this subject. At the end of the 1970s, the subject of the determination of fixed points in the deformation monitoring network was one of the main subjects extensively studied. Many theories arose from this inquiry, as different institutes came to differing conclusions. In 1978, a special commission with representatives of universities has been established within the FIG 6.1 working group; this commission worked on the issue of determining a general approach to geometric deformation analysis. The results gleaned from the commission were discussed at symposiums organized by the FIG. In accordance with these studies, scientists interested in the subject have begun to work on models that investigate cause and effect relations between the effects that cause deformation and deformation. As of the scientist who interest with the issue focused on different deformation methods, another special commission was established within the FIG engineering measurements commission in order to classify deformation models and study terminology. After studying this material for a long time, the official commission report was published in 2001. In this prepared report, studies have been carried out by considering the FIG Engineering Surveying Commission's report entitled, 'MODELS AND TERMINOLOGY FOR THE ANALYSIS OF GEODETIC MONITORING OBSERVATIONS

  8. Seismic Analysis of Concrete Dam by Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Rozaina Ismail

    2017-01-01

    Full Text Available This paper reports a brief study on linear seismic analysis of Sg. Kinta Concrete Dam. The analysis was conducted in order to determine the performance and behaviour of the dam under seismic excitation. The dam was modelled as two-dimensional and developed based on the design drawing that is obtained from Angkasa Consulting Services Sdn. Bhd. The seismic analysis of the dam is conducted using finite element analysis software package LUSAS 14.3 and the dam has been analyse as a plain stress problem with a linear consideration. A set of historic data, with E1 Centro earthquake acceleration of about 0.50g is used as an earthquake excitation. The natural frequency and mode shape up to fifth mode of the dam has been obtained from the analysis to show the differences of the stress and deformation between each mode. The maximum horizontal and vertical stress of Sg. Kinta dam was found and the distribution of them was discussed in form of contours. The deformation of the dam were also been discussed by comparing the maximum displacement for each mode shaped.

  9. Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru

    Science.gov (United States)

    Emmer, Adam

    2017-12-01

    Outburst floods originating in moraine-dammed lakes represent a significant geomorphological process as well as a specific type of threat for local communities in the Cordillera Blanca, Peru (8.5°-10° S; 77°-78° W). An exceptional concentration of catastrophic floods has been reported from the Cordillera Blanca in the first half of 20th Century (1930s-1950s), leading to thousands of fatalities. The main objective of this paper is to provide a revised and comprehensive overview of geomorphologically effective floods in the area of interest, using various documentary data sources, verified by analysis of remotely sensed images (1948-2013) and enhanced by original field data. Verified events (n = 28; 4 not mentioned before) are analysed from the perspective of spatiotemporal distribution, pre-flood conditions, causes, mechanisms and geomorphological impacts as well as socioeconomical consequences, revealing certain patterns and similar features. GLOFs are further classified according to their magnitude: 5 extreme events, 8 major events and 15 minor events are distinguished, referring to the quantified geomorphological and socioeconomical impacts. Selected moraine dams and flood deposits are dated using lichenometric dating. Special attention is given to moraine dam breaches - the most frequent type of water release with the most significant consequences. Selected major events and their consequences are studied in detail in a separate section. Finally, a general schematic model of lake formation, growth and post-flood evolution reflecting initial topographical setting and glacier retreat is introduced and the utilization of the obtained results is outlined.

  10. National Program for Inspection of Non-Federal Dams. Tihonet Pond Number 2 Dam (MA 00030), Massachusetts Coastal Basin, Wareham, Massachusetts. Phase I Inspection Report.

    Science.gov (United States)

    1981-07-01

    drainage area above the dam is 8.1 square miles. The watershed is characterized by irregular topography: cranberry bogs, small ponds and depressions ...and recreational purposes. Water from this pond is used in the U irrigation of cranberry bogs downstream. The maximum storage capacity of the dam is...295-1000 g. PURPOSE OF DAM The dam impounds Tihonet Pond which is a storage reservoir 4_- 4 4: . * used principally for irrigating cranberry bogs which

  11. National Program for Inspection of Non-Federal Dams. Paper Mill Pond Dam (CT 00621), Connecticut River Basin, Vernon, Connecticut. Phase I Inspection Report.

    Science.gov (United States)

    1981-03-01

    HYDROLOGIC AND HYDRAULIC COMPUTATIONS E INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS ,v ’walL.it, AM I OVERVIEV \\ PHOTO Iv 390 L-( ibb~ ~5~4 N...AS-A144 539 NATIONAL PROGRAM FOR INSPEGTION 0F NON-FEDERAL DAMS / PAPER MIL POND DAM (.(U CORPS OF ENGINEERS WALTHAM A S MA NEW ENGLANA DIV MAR...CATALOG NUMBER CT 00621A 4 TITLE (amdSubtile) S. TYPE OF REPORT & PERIOD’COVERED Paper Mill Pond Dam INSPECTION REPORT NATIONAL PROGRAM FOR INSPECTION

  12. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  13. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren

    2014-06-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family with attractive dense film properties for several potential applications. The work reported here for the 6FDA-DAM polyimide provides insight for the challenging fabrication of defect-free asymmetric hollow fiber membranes for this class of 6FDA-polyimides, which behave rather different from lower free volume polymers. Specifically, the 6FDA based materials show relatively slow phase separation rate in water quench baths, which presents a challenge for fiber spinning. For convenience, we refer to the behavior as more "non-solvent resistant" in comparison to other lower free volume polymers, since the binodal phase boundary is displaced further from the conventional position near the pure polymer-solvent axis on a ternary phase diagram in conventional polymers like Matrimid® and Ultem®. The addition of lithium nitrate to promote phase separation has a useful impact on 6FDA-DAM asymmetric hollow fiber formation. 6FDA-DAM phase diagrams using ethanol and water as non-solvent are reported, and it was found that water is less desirable as a non-solvent dope additive for defect-free fiber spinning. Phase diagrams are also reported for 6FDA-DAM dope formulation with and without the addition of lithium nitrate, and defect-free asymmetric hollow fiber membranes are reported for both cases. The effect of polymer molecular weight on defect-free fiber spinning was also investigated. Gas transport properties and morphology of hollow fibers were characterized. With several thorough case studies, this work provides a systematic guideline for defect-free fiber formation from 6FDA-polymers. © 2014 Elsevier B.V.

  14. Characterization of landslide dams in the San Juan province (Argentina)

    Science.gov (United States)

    Penna, Ivanna; Longchamp, Celine; Derron, Marc-Henri; Jaboyedoff, Michel

    2013-04-01

    River blockages caused by landslide deposition are common phenomena in active mountain chains, influencing erosion-sedimentation patterns and acting as primary and secondary hazards. Regional scale analyses regarding their spatial distribution and morphometry allow establishing boundary conditions for their occurrence and stability, and determine differences among regions with different landscape and climatic conditions. Owing to the combination of endogenous and exogenous factors, landslide dams are frequent phenomena in the Andes. In the Argentinean NW and the Patagonian Andes, previous studies showed that stability of landslide dams determined by morphometric parameters generally matched satisfactorily with dam behavior, with some exceptions in which climatic component played an important role in dam longevity. Aiming to expand the knowledge of landslide dams in the Argentinean Andes, in this work we analyzed the stability of rock avalanche dams in the Pampeam flat slab subduction zone. In the study area, mountain dynamics creates suitable conditions for the occurrence of 34 rock avalanches with volumes up to 0.3 km3. They developed in deeply carved valleys (Cordillera) and Inter-thrust valleys (Precordillera). 22 impoundments of rivers resulted from channelized rock avalanches with long runouts (4-10 km) that blocked tributaries rivers, but most of them by rock avalanches that filled the valley bottom, with run up in the opposite slope and limited movement parallel to the valley axis. Most of the dams breached in unknown times, except for the last event that occurred on November 12th 2005. The quantification of morphometric parameters and contributing areas indicates the existence of dams with dimensionless blockage index above 2.75 (stable domain) and below 3.08 (instable domain). The Los Erizos dam in our study area and the Barrancas dam in the Patagonian Andes show that besides morphometric parameters, climatic conditions are decisive. Stable landslide dams

  15. Engineers find climbing techniques work well for dam inspections

    Energy Technology Data Exchange (ETDEWEB)

    O`Shea, M.; Graves, A. [Bureau of Reclamation, Denver, CO (United States)

    1996-10-01

    Climbing techniques adopted by the Bureau of Reclamation to inspect previously inaccessible or difficult to reach features at dams are described. Following the failure of the steel radial-arm gate at Folsom Dam, engineers mounted an effort to reach and inspect the dam`s seven other spillway gates. This close-up examination was performed to: (1) determine the condition of these gates; and (2) gather clues about the failure of the one gate. The access techniques described involved mountaineering techniques, as opposed to high scaling techniques, performed with dynamic and static nylon kermantle ropes.

  16. Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    1992-06-01

    The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

  17. Responses of riparian reptile communities to damming and urbanization

    Science.gov (United States)

    Hunt, Stephanie D.; Guzy, Jacquelyn C.; Price, Steven J.; Halstead, Brian J.; Eskew, Evan A.; Dorcas, Michael E.

    2013-01-01

    Various anthropogenic pressures, including habitat loss, threaten reptile populations worldwide. Riparian zones are critical habitat for many reptile species, but these habitats are also frequently modified by anthropogenic activities. Our study investigated the effects of two riparian habitat modifications-damming and urbanization-on overall and species-specific reptile occupancy patterns. We used time-constrained search techniques to compile encounter histories for 28 reptile species at 21 different sites along the Broad and Pacolet Rivers of South Carolina. Using a hierarchical Bayesian analysis, we modeled reptile occupancy responses to a site's distance upstream from dam, distance downstream from dam, and percent urban land use. The mean occupancy response by the reptile community indicated that reptile occupancy and species richness were maximized when sites were farther upstream from dams. Species-specific occupancy estimates showed a similar trend of lower occupancy immediately upstream from dams. Although the mean occupancy response of the reptile community was positively related to distance downstream from dams, the occupancy response to distance downstream varied among species. Percent urban land use had little effect on the occupancy response of the reptile community or individual species. Our results indicate that the conditions of impoundments and subsequent degradation of the riparian zones upstream from dams may not provide suitable habitat for a number of reptile species.

  18. Ecologic impacts on the Three Gorges Dam. BMBF supported German-Chinese water projects; Oekologische Auswirkungen des Drei-Schluchten-Damms. BMBF gefoerderte Deutsch-Chinesische Wasserprojekte

    Energy Technology Data Exchange (ETDEWEB)

    Wilken, Rolf-Dieter [IWW Rhein-Main, Biebesheim am Rhein (Germany); Subklew, Guenter; Kueppers, Stephan [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    2011-06-15

    Water quality and water supply are a global challenge. In many regions of the world this is more clearly visible than in Germany. The Federal Ministry of Education and Research (Berlin, Federal Republic of Germany) supports joint ventures at which German scientists and foreign partners address current issues and propose solutions to their practical implementation. In cooperation with China, now projects on the environmental impact of the Three Gorges Dam on the Yangtze as well as projects to water management issues have been started. These projects are presented in this paper.

  19. Sinkhole investigated at B.C. Hydro`s Bennett Dam

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-07-01

    The cause of a sinkhole which appeared in a roadway crossing an earth filled dam in B. C., was discussed. The hole measured 6 ft. across and 20 ft. deep, and occurred in B.C. Hydro`s W.A.C. Bennett Dam which measures 600 ft. high, 2,600 ft. wide at the base and 35 ft. wide at the crest. The cause of the sinkhole is not known, but it is believed that a weakness in the dam may have found its way to the surface via a pipe connected to a bedrock settlement gauge buried within the dam. Sonar and ground penetrating radar were used to examine the area. The hole has been filled with gravel and monitoring continues. Experts do not anticipate immediate risk of dam failure. 1 fig.

  20. Analytical Solution and Application for One-Dimensional Consolidation of Tailings Dam

    Directory of Open Access Journals (Sweden)

    Hai-ming Liu

    2018-01-01

    Full Text Available The pore water pressure of tailings dam has a very great influence on the stability of tailings dam. Based on the assumption of one-dimensional consolidation and small strain, the partial differential equation of pore water pressure is deduced. The obtained differential equation can be simplified based on the parameters which are constants. According to the characteristics of the tailings dam, the pore water pressure of the tailings dam can be divided into the slope dam segment, dry beach segment, and artificial lake segment. The pore water pressure is obtained through solving the partial differential equation by separation variable method. On this basis, the dissipation and accumulation of pore water pressure of the upstream tailings dam are analyzed. The example of typical tailings is introduced to elaborate the applicability of the analytic solution. What is more, the application of pore water pressure in tailings dam is discussed. The research results have important scientific and engineering application value for the stability of tailings dam.

  1. Dam construction in salt rock

    International Nuclear Information System (INIS)

    Stockmann, N.; Beinlich, A.; Flach, D.; Jockwer, N.; Klarr, K.; Krogmann, P.; Miehe, R.; Schmidt, M.W.; Schwaegermann, H.F.; Walter, F.; Yaramanci, U.

    1991-11-01

    Barriers are a major component of the satefy concept for the Gorleben repository. The construction and performance of dams are currently tested within the framework of a project carried out in the Asse salt mine. A measuring programme has been established to give evidence of the sealing capacities of a barrier consisting of an abatement, long-term sealing material, and a hydraulic sealing system. Tests are to be made to verify the barrier's performance for shorter of long time periods (up to about 500 years). The tests are assisted by computed models established for the project. The long-term safety aspects to be studied include such conditions as permeability changes due to mechanical impacts, circulation conditions at the roadside, and the serviceable life and efficiency of the sealing components. (DG) [de

  2. Geophysics Methods in Electrometric Assessment of Dams

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, V. A., E-mail: davydov-va@yandex.ru; Baidikov, S. V., E-mail: badikek@mail.ru; Gorshkov, V. Yu., E-mail: vitalaa@yandex.ru; Malikov, A. V., E-mail: alex.mal.1986@mail.ru [Russian Academy of Sciences, Geophysical Institute, Ural Branch (Russian Federation)

    2016-07-15

    The safety assessment of hydraulic structures is proposed to be conducted via geoelectric measurements, which are capable of assessing the health of earth dams in their natural bedding without intervention in their structure. Geoelectric measurements are shown as being capable of pinpointing hazardous parts of a dam, including areas of elevated seepage. Applications of such methods are shown for a number of mini-dams in the Sverdlovsk region. Aparameter (effective longitudinal conductivity) that may be used to monitor the safety of hydraulic structures is proposed. Quantitative estimates of this parameter are given in terms of the degree of safely.

  3. THE INFLUENCE OF CHECK DAMS ON FLUVIAL PROCESSES AND RIPARIAN VEGETATION IN MOUNTAIN REACHES OF TORRENTS

    Directory of Open Access Journals (Sweden)

    Giuseppe Bombino

    2010-09-01

    Full Text Available The complex hydrogeomorphological processes within the active channel of rivers strongly influence riparian vegetation development and organization, particularly in mountain streams where such processes can be remarkably impacted by engineering control works. In four mountain reaches of Calabrian fiumaras we analyze, through previously arranged methods (integrated by a multivariate statistic analysis, the relationships among hydrogeomorphological river characteristics and structure and the development of riparian vegetation within the active channel in transects located in proximity of check dams and in less disturbed sites. The results of this study demonstrate clear and relevant contrasts, due to the presence of check dams, in the physical and vegetation properties of upstream, downstream and intermediate sites around check dams. The multivariate statistical approach through the Principal Component Analysis (PCA highlighted evident relationships in all transects between groups of physical and vegetation properties. The regression analysis performed between the vegetation properties and the width:depth ratio or the specific discharge showed very different relationships between groups of transects, due to evident changes in channel morphology and in flow regime locally induced by check dams. Overall we have shown that check dams have far reaching effects in the extent and development of riparian vegetation of mountain torrent reaches, which extend far beyond physical adjustments to changed morphological, hydraulic and sedimentary conditions.

  4. Assessment of Useful Plants in the Catchment Area of the Proposed Ntabelanga Dam in the Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Alfred Maroyi

    2017-01-01

    Full Text Available Background. The developmental projects, particularly construction of dams, result in permanent changes of terrestrial ecosystems through inundation. Objective. The present study was undertaken aiming at documenting useful plant species in Ntabelanga dam catchment area that will be impacted by the construction of the proposed dam. Methods. A total of 55 randomly selected quadrats were used to assess plant species diversity and composition. Participatory rural appraisal (PRA methods were used to identify useful plant species growing in the catchment area through interviews with 108 randomly selected participants. Results. A total of 197 plant species were recorded with 95 species (48.2% utilized for various purposes. Use categories included ethnoveterinary and herbal medicines (46 species, food plants (37 species, construction timber and thatching (14 species, firewood (five species, browse, live fence, and ornamental (four species each, and brooms and crafts (two species. Conclusion. This study showed that plant species play an important role in the daily life and culture of local people. The construction of Ntabelanga dam is, therefore, associated with several positive and negative impacts on plant resources which are not fully integrated into current decision-making, largely because of lack of multistakeholder dialogue on the socioeconomic issues of such an important project.

  5. National Dam Safety Program. Lakeview Estates Dam (MO 11004), Mississippi - Kaskaskia - St. Louis Basin, Warren County, Missouri. Phase I Inspection Report.

    Science.gov (United States)

    1979-09-01

    ificatiozh Distributon/ Availabilit oe LAKEVIEW ESTATES DAM WARREN COUNTY, MISSOURI MISSOURI INVENTORY NO. 11004 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY...and *impounds less than 1,000 acre-feet of water . Our inspection and evaluation indicates that the spill- way of Lakeview Estates Dam does not meet...not be measured because of high reservoir level, scalloping near the crest and a berm just under the water surface. Limestone riprap in sizes from sand

  6. Seismic Fortification Analysis of the Guoduo Gravity Dam in Tibet, China

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2015-01-01

    Full Text Available The primary aim of this research was to analyze the seismic performance of the Guoduo gravity dam. A nonlinear FEM method was implemented to study the deformation, stress, and overall stability of dam under both static and dynamic loading conditions, including both normal and overloading conditions. A dam seismic failure risk control method is proposed based on the cracking mechanism induced by the dynamic load to ensure dam safety and stability. Numerical simulation revealed that (1 under normal static and dynamic loading the symmetry of the displacement distributions is good, showing that the dam abutments and riverbed foundation have good overall stiffness. The stress distribution is a safe one for operation under both normal water loading and seismic loading. (2 Attention should be paid to the reinforcement design of outlets of the diversion dam monoliths, and enhance the capability of sustaining that tensile stress of dam monoliths. (3 The shape of the dam profile has a significant effect on the dynamic response of the dam. (4 By employing the “overload safety factor method,” the overall seismic fortification is as follows: K1=1.5, K2= 2~3, and K3= 3~4.

  7. National Inventory of Dams Coastal California Extract 2010

    Data.gov (United States)

    California Department of Resources — The National Inventory of Dams (NID) is a congressionally authorized database, which documents dams in the U.S. and its territories. The NID was most recently...

  8. National Inventory of Dams Coastal California Extract 2010

    Data.gov (United States)

    California Natural Resource Agency — The National Inventory of Dams (NID) is a congressionally authorized database, which documents dams in the U.S. and its territories. The NID was most recently...

  9. Influence of Beaver Dams on Channel Complexity, Hydrology, and Temperature Regime in a Mountainous Stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2013-12-01

    Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on

  10. Seismic risks at Elsie Lake Main Dam

    International Nuclear Information System (INIS)

    McCammon, N.R.; Momenzadeh, M.; Hawson, H.H.; Nielsen, N.M.

    1991-01-01

    The Elsie Lake dams are located on Vancouver Island in an area of high seismic risk. A safety review in 1986 indicated potential deficiencies in the earthfill main dam with respect to modern earthquake design standards. A detailed field investigation program comprising drilling and penetration tests was carried out and the results used in an assessment of seismic stability. A 0.8 m thick less dense layer in the granular shell of the dam, possibly caused by wet construction conditions, would likely liquefy in a major earthquake but sufficient residual strength would likely remain to prevent catastrophic failure. The dam shell might undergo some distortion, and an assessment was initiated to determine the requirements for reservoir drawdown following an extreme earthquake to ensure the timely lowering of the reservoir for inspection and repair. It was suggested that an adequate evacuation capability would be 25% and 50% drawdown in not more than 30 and 50 days, respectively. 9 refs., 11 figs., 1 tab

  11. Discussion on the Safety Factors of Slopes Recommended for Small Dams

    Directory of Open Access Journals (Sweden)

    Jan Vrubel

    2017-01-01

    Full Text Available The design and assessment of the slope stability of small embankment dams is usually not carried out using slope stability calculations but rather by the comparison of proposed or existing dam slopes with those recommended by technical standards or guidelines. Practical experience shows that in many cases the slopes of small dams are steeper than those recommended. However, most of such steeper slopes at existing dams do not exhibit any visible signs of instability, defects or sliding. For the dam owner and also for dam stability engineers, the safety of the slope, expressed e.g. via a factor of safety, is crucial. The aim of this study is to evaluate the safety margin provided by recommended slopes. The factor of safety was evaluated for several dam shape and layout variants via the shear strength reduction method using PLAXIS software. The study covers various dam geometries, dam core and shoulder positions and parameter values of utilised soils. Three load cases were considered: one with a steady state seepage condition and two with different reservoir water level drawdown velocities – standard and critical. As numerous older small dams lack a drainage system, variants with and without a toe drain were assessed. Calculated factors of safety were compared with required values specified by national standards and guidelines.

  12. Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru

    Czech Academy of Sciences Publication Activity Database

    Emmer, Adam

    2017-01-01

    Roč. 177, DEC (2017), s. 220-234 ISSN 0277-3791 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : Andes * Documentary data * Geomorphology * glof * Lichenometry * Little Ice Age * Moraine-dammed lake * Outburst flood * South America Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.797, year: 2016

  13. Environmental considerations for the expansion of Olympic Dam, South Australia

    International Nuclear Information System (INIS)

    Marshall, D.

    2000-01-01

    A recent $A2 billion expansion at Olympic Dam saw production capacity increased to 200,000 tonnes of copper cathode, 4,500 tonnes of UOC, 80,000 ozs of gold and 850,000 ozs of silver from the mining and milling of about 9 million tonnes of ore. The Expansion required the prior preparation and approval of an Environmental Impact Statement (EIS). Design Criteria and Codes of Practice applied during design and construction of the Expansion ensured that no environmental incidents occurred during construction and implementation of an Environmental Management System has ensured that operation of the expanded facilities continues to have low impacts. (author)

  14. Some aspects in the legal regulation of the dams

    International Nuclear Information System (INIS)

    Tancev, Ljubomir

    1996-01-01

    In order to ensure high quality and low cost design and building of dams and appurtenant structures, as well as safe exploitation, it is obvious to have appropriate legislation. Keeping in mind that the dams are unique structures, for the design stage the legislation should be less strong. For the next phases - building, maintenance and exploitation - detail and rigorous legislation is recommended. It is emphasised that the engineers should have more freedom designing the dams, but they should be obvious to apply the most recent achievement in the field of the dam design and construction. For illustration, some aspects of three important questions are discussed - 1) the choice of maximum flood discharge, 2) the application of new materials and construction methods and 3) the application of modern methods for static and dynamic analysis of dams. (Author)

  15. Analytical Solution and Application for One-Dimensional Consolidation of Tailings Dam

    OpenAIRE

    Liu, Hai-ming; Nan, Gan; Guo, Wei; Yang, Chun-he; Zhang, Chao

    2018-01-01

    The pore water pressure of tailings dam has a very great influence on the stability of tailings dam. Based on the assumption of one-dimensional consolidation and small strain, the partial differential equation of pore water pressure is deduced. The obtained differential equation can be simplified based on the parameters which are constants. According to the characteristics of the tailings dam, the pore water pressure of the tailings dam can be divided into the slope dam segment, dry beach seg...

  16. 33 CFR 117.705 - Beaver Dam Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  17. Dams. Bulletin of the technical service of electric power and big dams; Barrages. Bulletin du service technique de l`energie electrique et des grands barrages

    Energy Technology Data Exchange (ETDEWEB)

    Davard, J.

    1997-12-31

    The Dams bulletin reports on technical news concerning big French dams in operation. This issue comprises 5 papers. Two of them are examples of granting problems which led to the dismantling of the dams of Kernansquillec (Cotes d`Armor, France) and Maisons-Rouges (Indre-et-Loire, France) for economical and environmental reasons. The 3 other papers concern the life of French dams (technical control reports of the French dams in operation), the activities of the control service (annual inspections, preparation of draining operations, renewing of granting), and some general information (organisation of competent authorities, colloquium reports, hydro-power production during the first quarter of 1997). (J.S.)

  18. Impact of dam failure-induced flood on road network using combined remote sensing and geospatial approach

    Science.gov (United States)

    Foumelis, Michael

    2017-01-01

    The applicability of the normalized difference water index (NDWI) to the delineation of dam failure-induced floods is demonstrated for the case of the Sparmos dam (Larissa, Central Greece). The approach followed was based on the differentiation of NDWI maps to accurately define the extent of the inundated area over different time spans using multimission Earth observation optical data. Besides using Landsat data, for which the index was initially designed, higher spatial resolution data from Sentinel-2 mission were also successfully exploited. A geospatial analysis approach was then introduced to rapidly identify potentially affected segments of the road network. This allowed for further correlation to actual damages in the following damage assessment and remediation activities. The proposed combination of geographic information systems and remote sensing techniques can be easily implemented by local authorities and civil protection agencies for mapping and monitoring flood events.

  19. THE INFLUENCE OF SPECIFIC EXPENSES OF SPILLWAY DAM ON NOT ROCK THE BASIS OF THE MAGNITUDE OF THE EROSION OF THE RIVERBED DOWNSTREAM

    Directory of Open Access Journals (Sweden)

    Z. A. Kurbanova

    2013-01-01

    Full Text Available When you select a specific consumption of the dam, the corresponding minimum Noah value crest front of the dam, it is necessary to take into account possible changes of the water level regime due to a General erosion of the river channel for attaching in the downstream. Considering this circumstance, has developed a methodology and computer program for calculation of total washout of the bottom of the riverbed downstream waterworks depending on the specific consumption of the dam. In the course of the research were graphic and analytical depending on the impact of specific economical expenditure on the depth of the total washout for fastening downstream of the spillway dam.

  20. Fosfortab fra det dyrkede areal til Stevning Dam, Hindemaj og Haderslev Dam

    DEFF Research Database (Denmark)

    Andersen, Hans Estrup; Heckrath, Goswin; Thodsen, Hans

    Størrelsen af dyrkningsbidraget til søerne i Haderslev Dam-systemet er vurderet med to forskellige metoder til at udgøre ca. 42 % af den samlede tilførsel. En risikokortlægning med det nye, danske P-indeks viser, at i alt 15 % af det dyrkede areal er i højrisiko mht. fosfortab. P-indeks-kortlægni......Størrelsen af dyrkningsbidraget til søerne i Haderslev Dam-systemet er vurderet med to forskellige metoder til at udgøre ca. 42 % af den samlede tilførsel. En risikokortlægning med det nye, danske P-indeks viser, at i alt 15 % af det dyrkede areal er i højrisiko mht. fosfortab. P...

  1. The impact of small irrigation diversion dams on the recent migration rates of steelhead and redband trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Weigel, Dana E.; Connolly, Patrick J.; Powell, Madison S.

    2013-01-01

    Barriers to migration are numerous in stream environments and can occur from anthropogenic activities (such as dams and culverts) or natural processes (such as log jams or dams constructed by beaver (Castor canadensis)). Identification of barriers can be difficult when obstructions are temporary or incomplete providing passage periodically. We examine the effect of several small irrigation diversion dams on the recent migration rates of steelhead (Oncorhynchus mykiss) in three tributaries to the Methow River, Washington. The three basins had different recent migration patterns: Beaver Creek did not have any recent migration between sites, Libby Creek had two-way migration between sites and Gold Creek had downstream migration between sites. Sites with migration were significantly different from sites without migration in distance, number of obstructions, obstruction height to depth ratio and maximum stream gradient. When comparing the sites without migration in Beaver Creek to the sites with migration in Libby and Gold creeks, the number of obstructions was the only significant variable. Multinomial logistic regression identified obstruction height to depth ratio and maximum stream gradient as the best fitting model to predict the level of migration among sites. Small irrigation diversion dams were limiting population interactions in Beaver Creek and collectively blocking steelhead migration into the stream. Variables related to stream resistance (gradient, obstruction number and obstruction height to depth ratio) were better predictors of recent migration rates than distance, and can provide important insight into migration and population demographic processes in lotic species.

  2. Dam-break studies for mine tailings impoundments

    International Nuclear Information System (INIS)

    Jeyapalan, J.K.

    1982-01-01

    This paper describes simple procedures for performing dam-break analyses. Tailings from dam failures usually liquefy and flow for substantial distances as a viscous fluid. The prediction of the possible extent of flow slide movement is illustrated using two case histories. Topics considered include the flow behavior of liquefied talings, dimensionsless numbers for mine tailings and associated flow regimes, laminar flow, and turbulent flow. The potential inundation regions downstream of mine tailings dams are assessed. It is concluded that instances of flow slides of mine waste embankments indicate that the failure of these structures has considerable potential for damage to life and property in many cases

  3. Colonial Era Impoundment of the Northeastern United States: Beaver Trapping and Low- head Dam Construction

    Science.gov (United States)

    Salant, N.; Bain, D.; Brandt, S.

    2008-12-01

    Hydrologic systems of the northeastern United States were transformed by European settler activities. The colonial economy shifted engineered water structures from beaver dams to human dams built for power generation. While the geomorphic effects of human-constructed dams have recently garnered considerable attention, few studies have investigated how intensive trapping for the fur trade, the near extermination of the Northeast beaver population, and the consequent loss of beaver ponds altered the regional water balance. Although reconstructions of colonial beaver populations have been made, none link the decline in beavers to its hydrologic impact. Beaver population models based on pre-colonial population estimates, historic harvest rates, and current-day population dynamics were used to simulate the corresponding decrease in pond numbers over time. Beaver populations declined dramatically during the seventeenth century, with harvest rates estimated at 2,000-10,000 beavers per year, resulting in expatriation in some sub-regions by the early 1700s. Using contemporary estimates of beaver pond volumes, the calculated loss in pond storage between 1600 and 1840 was approximately 17 million cubic meters of water and sediment, considerably larger than estimated storage gains from dam construction in the same period, suggesting that beaver eradication was a major driver of hydrologic change during the colonial era.

  4. Dynamic probability evaluation of safety levels of earth-rockfill dams using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Zi-wu Fan

    2009-06-01

    Full Text Available In order to accurately predict and control the aging process of dams, new information should be collected continuously to renew the quantitative evaluation of dam safety levels. Owing to the complex structural characteristics of dams, it is quite difficult to predict the time-varying factors affecting their safety levels. It is not feasible to employ dynamic reliability indices to evaluate the actual safety levels of dams. Based on the relevant regulations for dam safety classification in China, a dynamic probability description of dam safety levels was developed. Using the Bayesian approach and effective information mining, as well as real-time information, this study achieved more rational evaluation and prediction of dam safety levels. With the Bayesian expression of discrete stochastic variables, the a priori probabilities of the dam safety levels determined by experts were combined with the likelihood probability of the real-time check information, and the probability information for the evaluation of dam safety levels was renewed. The probability index was then applied to dam rehabilitation decision-making. This method helps reduce the difficulty and uncertainty of the evaluation of dam safety levels and complies with the current safe decision-making regulations for dams in China. It also enhances the application of current risk analysis methods for dam safety levels.

  5. Hydrological modeling of stream flow in small Mediterranean dams and impact of climate change : case study of wadi Rmel catchment

    Science.gov (United States)

    Habaieb, Hamadi; Hermassi, Taoufik; Moncef Masmoudi, Mohamed; Ben Mechlia, Nétij

    2015-04-01

    Northern Tunisia is characterized by a semi-arid climate with an irregular and high spatial variability of rainfall. This situation is expected to aggravate under the expected increase of temperature and modification of rainfall regime predicted by most climate models for the Mediterranean region. Water is a major limiting factor for agriculture in Tunisia and mobilization of surface water resources is approaching its maximum. Dams are installed on almost all large watersheds and concerned also medium size and small ones. Hydrological functioning of such structures and their capacity to satisfy user's demand under the changing climate will be addressed using simple models and results will be discussed in this paper. The small catchment of Wadi Rmel is considered here for methodological development. This watershed (675 Km2) is situated in North-East Tunisia with average annual rainfall of 420 mm and was equipped in 1998 with a small dam. Data on rainfall collected at 12 rainfall stations during the period 1908 - 2012 are analyzed and used to build a coherent series of monthly rainfalls and spatially averaged on the watershed by the Thiessen method. In a second step, rainfall-runoff modeling was used to estimate runoff and water budget of the dam. Tow rainfall-runoff models GR2M and SWAT were considered and evaluated when using i) the rainfall observed at the dam and ii) the average rainfall on the watershed. The observed and simulated level in the dam were compared for both models and situations. Results showed that taking into account the spatial distribution of rainfall improved the simulation of stream flows and that SWAT model performs better than GR2M. The use of such models to make prediction of stream flow using downscaled climatic data from GCM will be discussed. Analysis of the results considering tow standardized sets of future greenhouse gas emissions used by the General Circulation Models for the IPCC 5th approximation RCP4.5 and RCP8.5 and three future

  6. How Physical Processes are Informing River Management Actions at Marble Bluff Dam, Truckee River, Nevada

    Science.gov (United States)

    Bountry, J.; Godaire, J.; Bradley, D. N.

    2017-12-01

    At the terminus of the Truckee River into Pyramid Lake (Nevada, USA), upstream river management actions have dramatically reshaped the river landscape, posing significant challenges for the management of endangered aquatic species and maintenance of existing infrastructure. Within the last 100 years, upstream water withdrawal for human uses has resulted in a rapid lowering of Pyramid Lake which initiated up to 90 ft of channel incision. In 1976 Marble Bluff Dam was constructed to halt the upstream progression of channel incision and protect upstream agricultural lands, tribal resources, and infrastructure. Since construction an additional 40 ft of lake lowering and subsequent channel lowering now poses a potential risk to the structural integrity of the dam. The dynamic downstream river combined with ongoing reservoir sedimentation pose challenges to fish passage facilities that enable migration of numerous endangered cui-ui and threatened Lahontan Cutthroat Trout (LCT) to upstream spawning areas each year. These facilities include a fish lock at the dam, a fish bypass channel which allows fish to avoid the shallow delta area during low lake levels, and a meandering channel constructed by the Nature Conservancy to connect the bypass channel to the receding Pyramid Lake. The reservoir formed by Marble Bluff Dam has completely filled with sediment which impacts fish passage facilities. The original operating manual for the dam recommends year-round flushing of sediment through radial gates, but this can no longer be accomplished. During critical fish migration periods in the spring operators must ensure fish entrance channels downstream of the dam are not buried with released sediment and fish are not trapped in a portion of the reservoir full of sediment that would risk sending them back over the dam. To help inform future reservoir sediment and infrastructure management strategies, we bracket a range of potential river responses to lake level lowering and floods

  7. Mechanism Research of Arch Dam Abutment Forces during Overload

    Directory of Open Access Journals (Sweden)

    Yu Xia

    2015-01-01

    Full Text Available This paper presents research on the abutment forces of a double-curvature arch dam during overload based on numerical calculation results obtained through finite element method by Ansys. Results show that, with an increase in elevation, the abutment forces and bending moment of the arch dam increase first and then decrease from the bottom to the top of the dam. Abutment forces and bending moment reach their maximum at the middle or middle-down portion of the dam. The distributions of abutment forces and moment do not change during overload. The magnitude of each arch layer’s forces and moment increases linearly during overload. This result indicates that each arch layer transmits bearing loads to the rocks of the left and right banks steadily. This research explains the operating mechanism of an arch dam under normal and overload conditions. It provides a simple method to calculate the distribution of forces Fx and Fy and a new method to calculate the overload factor of an arch dam through the estimation of arch layers based on the redistribution characteristic of arch abutment forces.

  8. Social norms for population displacements caused by large dams France, 20th century

    Directory of Open Access Journals (Sweden)

    Armelle Faure

    2009-03-01

    Full Text Available With the passage of time and insights from a number of historical studies it is now possible to take a look back at the way rural populations in France were displaced for the construction of large dams during and after the Second World War. Today, international standards relating to the social implications of dam development projects are imposed on dam builders by both governments and financing institutions. However, in the absence of these international social standards, how did population displacements take place in the past? This paper provides a retrospective look in the light of the current "protection policies" developed by the World Bank and the Asian Development Bank. Retrospective case studies are based on research conducted in the Alps by Virginie Bodon on Tignes and Serre-Ponçon for her doctoral thesis in history (1999 and on the book by D. Varaschin on Tignes. The author uses her own studies on the impact of the large dams of the Upper Dordogne, based on research conducted in departmental and municipal archives and on interviews with those who witnessed the implementation of displacement policies and with their children (1998-2005. The author draws on her experience as an anthropologist for the World Bank to analyse the ways in which these displacements were actually carried out. The forced displacements, euphemistically referred to as "involuntary resettlement" in discourses on development, took on increasing notoriety with the international energy crisis. The dams gave rise to an international debate on their social and environmental impacts, a debate continued by the World Commission on Dams. Today, when financing has again become available for the construction of new dams throughout the world, it seems opportune to provide some insights into the social implications of large dam development projects based on the experience of France, a country that has been, in many respects, one of the most innovative in the implementation of

  9. Determining The Water Quality of Maruf Dam (Boyabat–Sinop

    Directory of Open Access Journals (Sweden)

    Ekrem MUTLU

    2017-06-01

    Full Text Available In this study, the preliminary findings obtained from 3 sampling points, which represent the whole, on Maruf Irrigation Dam, which is located in Boyabat district of Sinop province, for 12 months between September 2015 and August 2016 were examined. The parameters monitored are temperature, dissolved oxygen, pH, electrical conductivity, total hardness, total alkalinity, chemical oxygen demand, biological oxygen demand, and dissolved anions and cations (sodium, potassium, calcium, magnesium, ammonium, nitrate, phosphate, chloride, sulfate, and sulfite. Because of its low dissolved ionic matter content, Maruf Dam was characterized as an alkali dam with mid-hard water and low electrical conductivity. In terms of parameters A and B of Surface Water Quality Management Regulation, the dam is considered “high-quality” and “unpolluted”. Besides the irrigation purposes, for which the barrage was constructed, the dam can also be used for aquaculture, animal breeding, and farming needs.

  10. MNR's role in public safety around dams

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Jennifer [Ministry of Natural Resources, Peterborough, ON (Canada)

    2011-07-01

    The Ministry of Natural Resources (MNR) is the largest dam owner in Ontario with around 400 dams located all across the province. MNR works to exercise stewardship of Ontario's water resources in a context of public safety, employee safety and environmental awarenes. This presentation shows the different measures MNR implemented to reduce risks. Warning signs, safety booms, barrel buoys and pedestrian fencing have been installed around dams to alert the public to possible dangers. In addition, MNR employees receive training in how to inspect dams for safety concerns, how to identify problems which could result in hazards to the public and how to work safely.

  11. Detection of Water Leaks in Beni-Haroun Dam (Algeria)

    International Nuclear Information System (INIS)

    Hocini, N.; Mami, M.

    2011-01-01

    The main objective of this work was to detect water leakage origin combining conventional, tracing and isotope techniques. The investigation was performed by a research team from the 'Algiers Nuclear Research Centre' in collaboration with engineers from the 'National Agency for Dams'. The chemical and isotopic results have shown no influence of dam water on the water sampled at the piezometers and drains that are present in the close neighbourhood of the dam. However, the water flowing at drain D15 has exhibited the nearest quality to that dam. Dye tracing has shown a water circulation through complex pathways for the left bank. (author)

  12. Inventory of Dams in the State of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Permitted dams in Iowa and associated attributes, as recorded by the Floodplain Section of the DNR. The dams regulated are those with the parameters listed below: a....

  13. User's Guide: Arch Dam Stress Analysis System (ADSAS)

    National Research Council Canada - National Science Library

    1997-01-01

    .... ADSAS assumes linear elastic behavior for the entire dam, i.e. the dam is assumed to support the computed tensile stresses within the concrete mass and across the monolith joints without cracking or opening the joints...

  14. Tailings dams stability analysis using numerical modelling of geotechnical and geophysical data

    Science.gov (United States)

    Mihai, S.; Zlagnean, M.; Oancea, I.; Petrescu, A.

    2009-04-01

    Methods for monitoring seepage and detecting internal erosion are essential for the safety evaluation of embankment dams. Internal erosion is one of the major reasons for embankment dam failures, and there are thousands of large tailings dams and waste-rock dumps in the world that may pe considered as hotspots for environmental impact. In this research the geophysical survey works were performed on Cetatuia 2 tailings dam. Electrical resistivity imaging (ERI) method was able to detect spatially anomalous zones inside the embankment dam. These anomalies are the results of internal erosion phenomena which may progressing inside the dam and is difficult to detect by conventional methods. Data aquired by geophysical survey together with their interpretations were used in the numerical model for slope stability assessment. The final results show us the structural weakness induced by the presence of internal erosion elements especially for seismic loading case. This research methodology may be also available for tailings dam monitoring purposes. Electrical Rezistivity Imaging (ERI) was performed on Cetatuia 2 dam at the Uranium Milling Plant Feldioara, in order to map areas with lateral and vertical changes in resistivity. The electrodes are connected to an automated computer operated switch box that selects the 4 electrodes to be used. A computer controls the switch box and the measuring device, and runs a program that selects the electrodes, makes the measurement, and stores the measurement. For inversion processing procedures was used Res2Din software. The measured resistivity were plotted by the pseudo section contouring method. There are five resistivity pseudosections obtained from the Cetatuia 2 tailings dam during the october 2007 measurements. Four transversal profiles trans1 to trans4 are perpendicular to the berms and the longitudinal one long1 is placed along dam's crest. The high resistivities near the berms surfaces corresponds to unsaturated fill materials

  15. Dams. Bulletin of the Technical Service of Electric Power and Big Dams; Barrages. Bulletin du Service Technique de l`Energie Electrique et des Grands Barrages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Four papers were selected in this issue of the bulletin of the Technical Service of Electric Power and Big Dams. The first one concerns the `Catastrophe Medicine` congress which took place in Amiens (France) in December 5 to 7 1996 and during which the analysis of experience feedbacks and lessons gained after dam accidents and organisation of emergency plans was discussed. The second one is a report of the conclusions of the decennial and annual inspections of French dams. The third paper describes the reinforcement of the Lavaud-Gelade dam embankment and the last paper reports on the Control Services activities concerning the French dams in operation for the forth quarter of the year 1996. (J.S.)

  16. Malaria and water resource development: the case of Gilgel-Gibe hydroelectric dam in Ethiopia.

    Science.gov (United States)

    Yewhalaw, Delenasaw; Legesse, Worku; Van Bortel, Wim; Gebre-Selassie, Solomon; Kloos, Helmut; Duchateau, Luc; Speybroeck, Niko

    2009-01-29

    classification tree revealed insights in the importance of the dam as a risk factor for malaria. Assuming that the relationship between the dam and malaria is causal, 43% of the malaria occurring in children was due to living in close proximity to the dam. This study indicates that children living in close proximity to a man-made reservoir in Ethiopia are at higher risk of malaria compared to those living farther away. It is recommended that sound prevention and control programme be designed and implemented around the reservoir to reduce the prevalence of malaria. In this respect, in localities near large dams, health impact assessment through periodic survey of potential vectors and periodic medical screening is warranted. Moreover, strategies to mitigate predicted negative health outcomes should be integral parts in the preparation, construction and operational phases of future water resource development and management projects.

  17. Changes in a temperate estuary during the filling of the biggest European dam.

    Science.gov (United States)

    Morais, Pedro; Chícharo, Maria Alexandra; Chícharo, Luís

    2009-03-15

    This study aimed to determine whether and how the disruption of river flow, during the filling of the Alqueva dam, influenced the variability of abiotic and biotic factors in the Guadiana estuary, particularly the abundance and distribution of anchovy eggs. River inflow was found to be the most important factor in determining abiotic and biotic variability in the Guadiana estuary. Seasonal patterns were obscured by long periods of low inflow (mid April to early December 2002), which caused marked changes in the estuary. The estuarine turbidity maximum zone was displaced towards the upper estuary, to at least 38 km from the river mouth, 8 to 16 km upstream from previous records. The dynamics of nutrient stoichiometry was also affected. In the upper and middle estuary, P was more potential limiting than N and potential Si limitation was only frequent on the coast, with direct and/or indirect influence in changing phytoplankton dynamics and composition. Previously, the upper estuary alternated between potential P limitation during winter, Si limitation during spring and mid summer and N limitation during mid summer and autumn. The flooding of vast areas in the catchment of the dam probably caused the increase of DSi concentrations, as well as maximal N and P loadings. The abundance of larval stages of anchovy decreased, putatively because estuarine productivity has also decreased. In April 2002 there was an uncontrolled discharge from the Alqueva dam, which reduced the abundance of anchovy eggs by 99.99%. It is suggested that dam managers should mimic, as much as possible, the natural river flow, in order to minimize the impact on downstream ecosystems. Management efforts should not be restricted to the areas upstream of the dam, but should also encompass the estuary and adjacent coastal area.

  18. Integrating Disciplines, Sectors, and Societies to Improve the Definition and Implementation of Environmental Flows for Dammed Amazonian Rivers

    Science.gov (United States)

    Kaplan, D. A.; Livino, A.; Arias, M. E.; Crouch, T. D.; Anderson, E.; Marques, E.; Dutka-Gianelli, J.

    2017-12-01

    The Amazon River watershed is the world's largest river basin and provides US$30 billion/yr in ecosystem services to local populations, national societies, and humanity at large. The Amazon is also a relatively untapped source of hydroelectricity for Latin America, and construction of >30 large hydroelectric dams and >170 small dams is currently underway. Hydropower development will have a cascade of physical, ecological, and social effects at local to global scales. While Brazil has well-defined environmental impact assessment and mitigation programs, these efforts often fail to integrate data and knowledge across disciplines, sectors, and societies throughout the dam planning process. Resulting failures of science, policy, and management have had widespread environmental, economic, and social consequences, highlighting the need for an improved theoretical and practical framework for understanding the impacts of Amazon dams and guiding improved management that respects the needs and knowledge of diverse set of stakeholders. We present a conceptual framework that links four central goals: 1) connecting research in different disciplines (interdisciplinarity); 2) incorporating new knowledge into decision making (adaptive management); 3) including perspectives and participation of non-academic participants in knowledge generation (transdisciplinarity); and 4) extending the idea of environmental flows ("how much water does a river need?") to better consider human uses and users through the concept of fluvial anthropology ("how much water does a society need?"). We use this framework to identify opportunities for improved integration strategies within the (Brazilian) hydroelectric power plant planning and implementation "lifecycle." We applied this approach to the contentious Belo Monte dam, where compliance with regulatory requirements, including monitoring for environmental flows, exemplifies the opportunity for applying adaptive management, but also highlights an

  19. Strobe Light Testing and Kokanee Population Monitoring : Dworshak Dam Impacts Assessment and Fisheries Investigation Project, 97-99 : annual Progress Report for 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Maiolie, Melo A.; Harryman, Bill; Ament, William J.

    1999-12-01

    We tested the response of kokanee Oncorhynchus nerka to strobe lights. Testing was conducted on wild, free-ranging fish in their natural environment (i.e., the pelagic region of two large Idaho lakes). Split-beam hydroacoustics were used to record the distance kokanee moved away from the lights as well as the density of kokanee in the area near the lights. In control tests, where the strobe lights were lowered into the lake but kept turned off, kokanee remained within a few meters of the lights. Once the lights began flashing, kokanee quickly moved away from the light source. Kokanee were found to move an average of 30 to 136 m away from the lights in waters with Secchi transparencies from 2.8 to 17.5 m (p=0.00 to p=0.04). Kokanee densities near the lights were significantly lower (p=0.00 to p=0.07) when the lights were turned on than in control samples with no lights flashing. Flash rates of 300, 360, and 450 flashes/min elicited strong avoidance responses from the fish. Kokanee remained at least 24 m away from the lights during our longest test that lasted for 5 h 50 min. Kokanee appeared to be responding to flashes that were well less than 0.00016 lux above background lighting.

  20. Risk Perception Analysis Related To Existing Dams In Italy

    Science.gov (United States)

    Solimene, Pellegrino

    2013-04-01

    In the first part of this work, the progress of Italian National Rules about dams design, construction and operation are presented to highlight the strong connection existing between the promulgation of new decrees, as a consequence of a dam accidents, and the necessity to prevent further loss of lives and goods downstream. Following the Gleno Dam failure (1923), a special Ministerial Committee wrote out the first Regulations and made the proposal to establish, within the High Council of Public Works, a special department that become soon the "Dam Service", with the tasks of control and supervision about construction and operation phases of the dams and their reservoirs. A different definition of tasks and the structure of Dam Service were provided in accordance with law n° 183/1989, which transferred all the technical services to the Office of the Prime Minister; the aim was to join the Dam Office with the Department for National Technical Services, with the objective of increasing the knowledge of the territory and promoting the study on flood propagation downstream in case of operations on bottom outlet or hypothetical dam-break. In fact, population living downstream is not ready to accept any amount of risk because has not a good knowledge of the efforts of experts involved in dam safety, both from the operators and from the safety Authority. So it's important to optimize all the activities usually performed in a dam safety program and improve the emergency planning as a response to people's primary needs and feeling about safety from Civil Protection Authority. In the second part of the work, a definition of risk is provided as the relationship existing between probability of occurrence and loss, setting out the range within to plan for prevention (risk mitigation), thanks to the qualitative assessment of the minimum safety level that is suited to assign funds to plan for Civil Protection (loss mitigation). The basic meaning of the reliability of a zoned

  1. Dam safety review using non-destructive methods for reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, Alain; Saint-Pierre, Francois; Turcotte, Bernard [Le Groupe S.M. International Inc., Sherbrooke, (Canada)

    2010-07-01

    Dams built at the beginning of the twentieth century include concrete structures that were put in under rehabilitation works. In some cases, the details of the structures are not well documented. In other cases, concrete damage can be hidden under new layers of undamaged material. This requires that the dam safety review in a real investigation gather the information necessary for carrying out the hydraulic and stability studies required by the Dam Safety Act. This paper presented the process of dam safety review using non-destructive methods for reinforced concrete structures. Two reinforced concrete dams built in the 1900's, the Eustic dam on the Coaticook River and the Frontenac dam on the Magog River near Sherbrooke, were evaluated by S.M. International using non-destructive methods such as sonic and ground penetrating radar methods. The studies allowed mapping of concrete damage and provided geometric information on some non visible structure elements that were part of previous reinforcement operations.

  2. How to manage the cumulative flood safety of catchment dams ...

    African Journals Online (AJOL)

    Dam safety is a significant issue being taken seriously worldwide. However, in Australia, although much attention is being devoted to the medium- to large-scale dams, minimal attention is being paid to the serious potential problems associated with smaller dams, particularly the potential cumulative safety threats they pose ...

  3. Human action impact on water quality of Juturnaiba Dam - Silva Jardim, RJ

    Directory of Open Access Journals (Sweden)

    Marla Regina Domingues de Morais

    2016-12-01

    Full Text Available The Juturnaiba Dam, located between the municipalities of Silva Jardim and Araruama, is the only fresh water source supplying the entire Lake District, State of Rio de Janeiro. The objective of this research was to evaluate the water quality of the Juturnaiba reservoir through physical, chemical and microbiological analyses conducted upstream and downstream in the rivers, comparing them in to identify its hydrodynamics. Six collections were made in six strategic points. The Capivari river was the tributary with greater restrictions on water quality. The river with better water quality was the São João River.

  4. Priority ranking for maintenance activities on embankment dams

    International Nuclear Information System (INIS)

    Chouinard, L.E.; Andersen, G.R.; Robichaud, J.G.; Blanchette, G.; Gervais, R.

    1998-01-01

    Operators of dams in Canada and the U.S. are steadily shifting from construction of new facilities to the maintenance and repairs of existing ones. This paper emphasized the importance of prioritizing maintenance activities on embankment dams whose maintenance needs vary from structure to structure. Two parallel procedures were developed, one for monitoring devices and the other for defense groups. Both procedures are intended to be used together to rate the condition of the embankment dams. The term 'defense groups' is used to refer to the collection of physical components on dams to prevent adverse conditions from occurring that would result in an uncontrolled release of the reservoir. The priority rankings and condition indices developed by means of this procedure reflects the judgment of a panel of engineers and geologists who implement them. They are not to be interpreted as an index of dam safety. While the process is sufficiently well developed to warrant wide-spread distribution, it is considered to be still in the developmental stage. Therefore, it should be used in conjunction with other parallel processes evaluating structural, mechanical and electrical features of the structure under consideration. 6 refs., 7 tabs

  5. Cleveland Dam East Abutment : seepage control project

    Energy Technology Data Exchange (ETDEWEB)

    Huber, F.; Siu, D. [Greater Vancouver Regional District, Burnaby, BC (Canada); Ahlfield, S.; Singh, N. [Klohn Crippen Consultants Ltd., Vancouver, BC (Canada)

    2004-09-01

    North Vancouver's 91 meter high Cleveland Dam was built in the 1950s in a deep bedrock canyon to provide a reservoir for potable water to 18 municipalities. Flow in the concrete gravity dam is controlled by a gated spillway, 2 mid-level outlets and intakes and 2 low-level outlets. This paper describes the seepage control measures that were taken at the time of construction as well as the additional measures that were taken post construction to control piezometric levels, seepage and piping and slope instability in the East Abutment. At the time of construction, a till blanket was used to cover the upstream reservoir slope for 200 meters upstream of the dam. A single line grout curtain was used through the overburden from ground surface to bedrock for a distance of 166 meters from the dam to the East Abutment. Since construction, the safety of the dam has been compromised through changes in piezometric pressure, seepage and soil loss. Klohn Crippen Consultants designed a unique seepage control measure to address the instability risk. The project involved excavating 300,000 cubic meters of soil to form a stable slope and construction bench. A vertical wall was constructed to block seepage. The existing seepage control blanket was also extended by 260 meters. The social, environmental and technical issues that were encountered during the rehabilitation project are also discussed. The blanket extension construction has met design requirements and the abutment materials that are most susceptible to internal erosion have been covered by non-erodible blanket materials such as plastic and roller-compacted concrete (RCC). The project was completed on schedule and within budget and has greatly improved the long-term stability of the dam and public safety. 2 refs., 8 figs.

  6. Descriptive characteristics of the large Italian dams

    International Nuclear Information System (INIS)

    Dello Vicario, E.; Petaccia, A.; Savanella, V.

    1999-01-01

    In the present note the characteristics of the Italian dams are examined, underlining, in a statistical view, story, geographical location, types and use of the most important works. Such a review can be useful for a more detailed analysis, both for the dams characterization and for further studies relevant to water resources utilization [it

  7. Primary Productivity of the Cengklik Dam Boyolali

    Directory of Open Access Journals (Sweden)

    WIRYANTO

    2002-01-01

    Full Text Available Primary productivity dynamic of the water ecosystem was conducted faster in the last decades. This study was intended to find out the primary productivity of Cengklik dam Boyolali, Central Java to explain the ecosystem dynamic and to lead the maintenance of dam. This study used quantitative methods in completely randomized group design (CRD, and the data was analized by Analysis of Variance (ANAVA. Samples were taken horizontally in four sampling point, respectively in the riparian zone, around of the floating net (“karamba”, in the center of dam water and around of the ex-paddy fields. There were taken vertically in three-depth point in each of the sampling point, respectively 0.5 meter, 1.5 meter, and 2.5 meter. The results showed that the gross primary productivity of the dam was 11.122.500-22.545.600 mgC/m3/days, and the primary productivity differences in each of the point sampling caused by light intensity, nutrient supply, and abundance of the chlorophyll organisms.

  8. Contaminated Sediment Management in Dam Removals and River Restoration Efforts: Critical Need for Research and Policy Development

    Science.gov (United States)

    Evans, J. E.

    2015-12-01

    Over 1,000 U.S. dams have been removed (1975-2015) for reasons including obsolescence, liability concerns, water quality upgrades, fisheries, or ecosystem enhancements. Contaminated sediment can significantly complicate the approval process, cost, and timeline of a dam removal, or stop it entirely. In a dam removal, reservoir sediment changes from a sink to a source of contaminants. Recently, the Sierra Club sued to stop the removal of a large dam in Ohio because of the potential impact of phosphate releases on toxic algal blooms in Lake Erie. Heavy metals, PCBs, PAHs, pesticides, and petroleum hydrocarbons can be present in reservoir sediments. In a non-dam removal scenario, reservoir management tools range from "no action" to dredging, dewatering and removal, or sediment capping. But it is not clear how these reservoir management techniques apply to dam removals. Case studies show typically >80% of the reservoir sediment is eventually eroded, precluding sediment capping as a containment option. However, the released contaminants are diluted by mixing with "clean" sediment and are transported to different physio-chemical environments which may immobilize or biodegrade the contaminants. Poorly understood options include phased drawdown/reseeding the former reservoir to contain sediments, diking contaminant "hot spots," and addressing contaminant stratigraphy (where historical use created "hot layers" in the reservoir sediment). Research and policy development needs include: (1) assessment methods based on synergistic effects of multiple contaminants being present; (2) ways to translate the pre-removal contaminant concentrations to post-removal health risks downstream; (3) evaluation of management practices for contaminant "hot spots" and "hot layers;" (4) tools to forecast the presence of contaminated sediment using easily accessible information; and (5) ways to limit liability risk for organizations participating in dam removals involving contaminated sediment.

  9. Management of agro-pastoral dams in Benin: stakeholders, institutions and rehabilitation research

    NARCIS (Netherlands)

    Kpéra, G.N.; Aarts, N.; Saïdou, A.; Tossou, R.C.; Eilers, C.H.A.M.; Mensah, G.A.; Sinsin, B.A.; Kossou, D.K.; van der Zijpp, A.J.

    2012-01-01

    Agro-pastoral dams are waterholes constructed to provide water for livestock and for agricultural development. In Benin, agro-pastoral dams are managed by dam management committees. This study seeks to (1) characterize the stakeholders involved in agro-pastoral dam use and management, (2) identify

  10. Fast changes in seasonal forest communities due to soil moisture increase after damming

    Directory of Open Access Journals (Sweden)

    Vagner Santiago do Vale

    2013-12-01

    Full Text Available Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20m x10m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths 0-10, 20-30 and 40-50cm. A tree minimum DBH of 4.77cm community inventory was made before T0 and at two T2 and four T4 years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years T2-T4, indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil

  11. National Dam Safety Program. Clove Lake Dam (NJ 00259) Delaware River Basin, Shimers Brook, Sussex County, New Jersey. Phase I Inspection Report.

    Science.gov (United States)

    1981-08-01

    it be reclassified as low hazard. The spillway will pass the 100-year flood and is considered adequate. e. Ownership. The dam is owned by Clubhouse ...Associates. For information, contact Mr. Gerald Roby, Clubhouse Associates, RD 4, Box 108, Montague, New Jersey 07827. f. Purpose. The Clove Lake Dam...into what appears to be a man-made lake downstream of Clove Lake Dam about 0.5 mile. Although no homes are presently constructed around this downstream

  12. Use of aerial videography to evaluate the effects of Flaming Gorge Dam operations on natural resources of the Green River

    International Nuclear Information System (INIS)

    Snider, M.A.; Hayse, J.W.; Hlohowskyj, I.; LaGory, K.E.; Greaney, M.M.; Kuiper, J.A.; Van Lonkhuyzen, R.A.

    1993-01-01

    Peaking hydropower operations can profoundly alter natural stream flow and thereby affect the natural resources dependent on these flows. In this paper, we describe how aerial videography was used to collect environmental data and evaluate impacts of hydropower operations at Flaming Gorge Dam on natural resources of the Green River. An airborne multispectral video/radiometer remote sensing system was used to collect resource data under four different flow conditions from seven sites (each about one mile in length) located downstream from the dam. Releases from Flaming Gorge Dam during data collection ranged from approximately 800 to 4,000 cubic feet/sec (cfs), spanning most of the normal operating range for this facility. For each site a series of contiguous, non-overlapping images was prepared from the videotapes and used to quantify surface water area, backwater habitats, and areas of riparian vegetation under varying flow conditions. From this information, relationships between flow and habitat parameters were developed and used in conjunction with hydrologic modeling and ecological information to evaluate impacts of various modes of operation

  13. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  14. Effects of hydropower operations on recreational use and nonuse values at Glen Canyon and Flaming Gorge Dams

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.L.

    1995-03-01

    Increases in streamflows are generally positively related to the use values of angling and white-water boating, and constant flows tend to increase the use values more than fluctuating flows. In most instances, however, increases in streamflows beyond some threshold level cause the use values to decrease. Expenditures related to angling and white-water boating account for about $24 million of activity in the local economy around Glen Canyon Dam and $24.8 million in the local economy around flaming Gorge Dam. The range of operational scenarios being considered in the Western Area Power Administration`s Electric Power Marketing Environmental Impact Statement, when use rates are held constant, could change the combined use value of angling and white-water boating below Glen Canyon Dam, increasing it by as much as 50%, depending on prevailing hydrological conditions. Changes in the combined use value below Flaming Gorge Dam could range from a decrease of 9% to an increase of 26%. Nonuse values, such as existence and bequest values, could also make a significant contribution to the total value of each site included in this study; however, methodological and data limitations prevented estimating how each operational scenario could change nonuse values.

  15. Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions

    Science.gov (United States)

    Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah

    2018-03-01

    This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.

  16. COMPREHENSIVE ANALYSIS ON SEEPAGE AND STRUCTURAL STABILITY OF EARTH-ROCK DAM: A CASE STUDY OF XIQUANYAN DAM IN CHINA

    Directory of Open Access Journals (Sweden)

    Qingqing GUO

    2016-07-01

    Full Text Available Earth-rock dam is commonly used in the high-dam engineering around the world. It has been widely accepted that the analysis on structural and seepage stability plays a very important role, and it is necessary to take into account while designing the earth-rock dam. In performing the analysis of structural and seepage stability, many remarkable methods are available at current stage. However, there are still some important issues remaining unsolved, including: (1 Finite element methods (FEMs is a means of solutions to analysis seepage process, but it is often a difficult task to determine the so-called seepage coefficient, because the common-used water injection test is limited in the practical work due to the high cost and complex procedure. (2 It has long been discussed that the key parameters for structural stability analysis show a significant spatial and temporal variations. It may be partly explained by the inhomogeneous dam-filling during construction work and the developing seepage process. The consequence is that one constant value of the parameter cannot represent the above variations. In this context, we solve the above issues and introduce the solution with a practical earth-rock dam project. For determining the seepage coefficient, the data from the piezo metric tube is used to calculate the potential value, based on which the seepage coefficient can be back-analysed. Then the seepage field, as well as the seepage stability are numerically analysed using the FEM-based SEEP/W program. As to the structural safety, we take into account the spatial and temporal variations of the key parameters, and incorporate the Monte-Carlo simulation method into the commonly used M-P method to calculate the frequency distribution of the obtained structural safety factor. In this way, the structural and seepage safety can be well analysed. This study is also beneficial to provide a mature method and a theoretical insight into the earth-rock dam design

  17. The behaviour of a large dam at severe frost

    Directory of Open Access Journals (Sweden)

    M. C. SPADEA

    1972-06-01

    Full Text Available Synthesizing the problem, the action of the thrusts in the
    behaviour of t h e dam of Pieve di Cadore, makes itself conspicuous expecially
    during three periods of the year:
    1. - About the end of June, the air temperature, 011 t h e average, overcomes
    the water one in the watershed upstream the dam: the bending of
    t h e dam upstream increases from the bottom to the top.
    2. - About the end of October, the thermal conditions change; the
    mean air temperature grows lower than the mean water temperature; the
    dam begins her bending dowstream.
    3. - When the air temperature is distinctly below 0 °C, the action of
    t h e t h r u s t s grows more complexe; t h e rocky waterlogged system downstream
    of t h e dam, while cooling, swells and pushes t h e bottom of t h e dam upstream;
    at t h e higher quote, on the contrary, the t h r u s t downstream continues.
    When the strenght limit of the medium is surpassed, arises a contrast
    between the rocky system and the concrete structure: this contrast can origin
    a t e very small fractures, revealed from seismic station installed into the
    central ashlar (XIV a t 660 metres height of t h e dam, under t h e form of microshocks
    which energy is of about 10I0-10U erg.

  18. National Dam Safety Program. Potake Lake Dam (Inventory Number N.Y. 970), Passaic River Basin, Lower Hudson River Area, Rockland County, New York. Phase I Inspection Report,

    Science.gov (United States)

    1981-08-14

    facilitate thedischarge of storm flows. 2. The animal burrows, depressions , and tire ruts onthe crest of the dam should be filled, compacted and seeded. 3...storm flows. 2. The animal burrows, depressions , and tire ruts on the crest of the dam should be filled, compacted, and seeded...defined by the Recommended Guidelines for Safety Inspection of Dams (Reference 13, Appendix D). d. Hazard Classifications - Cranberry Lake Dam is one mile

  19. Hydrological Effects of Chashm Dam on the Downstream of Talar River Watershed

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khaleghi

    2017-02-01

    Full Text Available Introduction: In the last century, dams have constructed with the objective of water supplies for agriculture, drinking water and industry. However, the results from the performance review of dams show adverse effects on the downstream environment and the availability of water resources. The purpose of the Chashm dam construction on the TalarRiver's tributaries is the water supply for Semnan city. Materials and Methods: This study was conducted in TalarRiver watershed. TalarRiveroriginatesfrom AlborzMountains in Mazandaran province, in the southern Caspian Sea basin, in north of Iran and flows parallel with the Firouzkooh-Ghaemshahr road and it arrives to the Caspian beach area in the Malek Kala village. In order to supply the water requirements of Semnan city, the construction of Chashm dam on the TalarRiver's tributaries placed on the agenda of the Ministry of Energy. However, because of the uncontrolled exploitation of agricultural streams and invasion of privacy riverbed, the TalarRiver has acute and critical conditions from the point of hydrologic and environmental. To study the hydrological impacts of Chashm dam, Talar watershed was considered with an area of approximately 1057 square kilometers of the Pole Sefid gauging station using a rainfall-runoff model. Results and Discussion: Simulation of the study area hydrological behavior shows that the Chashm Dam average water discharge is near to 8.6 million m3. This figure will be significant changes during wet and droughtperiods. The minimum and maximum monthly discharge of the Chashm Dam watershed in August and February is equal to 0.31 and 0.55 m3/s respectively. The minimum and maximum monthly water demand in turn in October and August is equal to 0.015 and 0.4 m3/s respectively and this shows that the river discharge in June is lower than the downstream water demand. Based on confirmed studies of the Kamandab Consulting Engineers, drinking water requirement of Semnan province, water

  20. Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring - a preliminary study

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Høy, Carl-Erik

    2003-01-01

    The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed experime......The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed...... experimental diets from the 8(th) day of pregnancy throughout lactation. After weaning and until 13 weeks of age, the offspring were fed the same diet as their dams. The experimental diets contained either a specific structured oil, linseed oil or fish oil. In the specific structured oil, a-linolenic acid (18...... fatty acids. Samples from three animals in each group were analyzed. The highest level of 22:6n-3 in the breast milk was obtained with diets containing this fatty acid itself. The fatty acid profile of rat dam liver PL was very different from the milk lipids indicating that the maternal dietary fats...

  1. Dam failure analysis for the Lago de Matrullas Dam, Orocovis, Puerto Rico

    Science.gov (United States)

    Torres-Sierra, Heriberto; Gómez-Fragoso, Julieta

    2015-01-01

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed a hydrologic and hydraulic study to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago de Matrullas Dam, located within the headwaters of the Río Grande de Manatí. The hydrologic study yielded outflow hydrographs and peak discharges for Lago de Matrullas and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation (PMP) event, (2) a 24-hour PMP event, and (3) a 100-year-recurrence, 24-hour rainfall event. The hydraulic study simulated the hypothetical dam failure of Lago de Matrullas using hypothetical flood hydrographs generated from the hydrologic study and selected dam breach parameters. The flood wave resulting from the failure was downstream-routed through the lower reaches of the Río Matrullas, the Río Toro Negro, and the Río Grande de Manatí for determination of water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” (no precipitation) conditions. The Hydrologic Modeling System (HEC–HMS) and the River Analysis System (HEC–RAS) computer programs, developed by the Hydrologic Engineering Center (HEC) of the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was performed using the unsteady-state flow module available in the HEC–RAS model.

  2. Is your dam vulnerable to climate change? Using the PIEVC engineering protocol

    International Nuclear Information System (INIS)

    Bourgeois, Gilles; Dickson, Stewart; Ness, Ryan; Lapp, David

    2010-01-01

    The potential impacts of climate change on public infrastructure are currently studied to advance planning and prioritization of adaption strategies. This paper investigated the potential vulnerability of the Claireville and G. Ross Lord dams and reservoirs by considering the projected character, its magnitude and its rate of change in future local climatic conditions, the sensitivity of infrastructure to the changes, and the built-in capacity of the infrastructure to absorb any net negative consequence from the predicted changes in climatic conditions. This study used the public infrastructure engineering vulnerability (PIEV) engineering protocol to study the vulnerabilities of both facilities to current climate, as well as future climate change at the 2050 time horizon. Recommendations were provided for actions to be taken to address the potential vulnerabilities that were identified. The project determined that the two dams have the capacity to withstand the existing and projected future climate.

  3. DESIGN OF SLIT DAMS FOR CONTROLLING STONY DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Hui-Pang LIEN

    2003-01-01

    A new method to a slit dam for controlling the stony debris flow has been derived based on the mass conservation law of the stony debris flow passing through a slit dam and the laboratory experiment results.This new method is then combined with three primary efficiency expressions: the dimensionless sediment outflow ratio,the sediment concentration ratio,and the sediment storage rate to develop a simple module,with which the height and the spacing of the posts,as well as the total spacing of slit dam are determined.Furthermore,these expressions can also be applied to check those slit dams that have already been constructed with their effectiveness against various magnitudes of the debris flow. The comparison between these expressions and laboratory data is in reasonable agreement.

  4. Putting Roman Dams in Context: a Virtual Approach

    Science.gov (United States)

    Decker, M. J.; Du Vernay, J. P.; Mcleod, J. B.

    2017-08-01

    Water resources and management have become a critical global issue. During the half-millennium of its existence, the Roman Empire developed numerous strategies to cope with water management, from large-scale urban aqueduct systems, to industrial-scale water mills designed to cope with feeding growing city populations. Roman engineers encountered, adopted, and adapted indigenous hydraulic systems, and left lasting imprints on the landscape of the Mediterranean and temperate Western Europe by employing a range of water technologies. A recent academic study has enabled the identification of remains of and references to seventy-two dams from the Roman era, constructed in Spain between the 1st and 4th century AD. Such unique heritage, without comparisons in the Mediterranean makes Spain an emblematic case study for the analysis of Roman hydraulic engineering and water management policies. Fifty dams have been located and detailed. The twenty-two outstanding, although identified on the ground, have not been able to be acceptably characterized, due in some cases to their being ruins in a highly degraded state, others due to their being masked by repairs and reconstructions subsequent to the Roman era. A good example of such neglected dams is the buttress dam of Consuegra , in Toledo province (Castilla-La Mancha). Dating to the 3rd - 4th century AD, the Dam of Consuegra, on the basin of the Guadiana, with its over 600 metres length and 4,80 metres height, is a remarkable case of Roman engineering mastery. It had a retaining wall upstream, numerous buttresses and perhaps an embankment downstream, of which no remains are left. The application of 3D digital imaging technique to create a high quality virtual model of such monuments has proved to be successful especially for the study of the technological aspects related its construction. The case study of the Roman dam of Muel (Zaragoza) has shown, in fact, as best practices in digital archaeology can provide an original and

  5. Defining ecological and economical hydropoweroperations: a framework for managing dam releasesto meet multiple conflicting objectives

    Science.gov (United States)

    Irwin, Elise R.

    2014-01-01

    Hydroelectric dams are a flexible source of power, provide flood control, and contribute to the economic growth of local communities through real-estate and recreation. Yet the impoundment of rivers can alter and fragment miles of critical riverine habitat needed for other competing needs such as downstream consumptive water use, fish and wildlife population viability, or other forms of recreation. Multiple conflicting interests can compromise progressive management especially with recognized uncertainties related to whether management actions will fulfill the objectives of policy makers, resource managers and/or facility owners. Decision analytic tools were used in a stakeholder-driven process to develop and implement a template for evaluation and prediction of the effects of water resource management of multiple-use systems under the context provided by R.L. Harris Dam on the Tallapoosa River, Alabama, USA. The approach provided a transparent and structured framework for decision-making and incorporated both existing and new data to meet multiple management objectives. Success of the template has been evaluated by the stakeholder governing body in an adaptive resource management framework since 2005 and is ongoing. Consequences of management of discharge at the dam were evaluated annually relative to stakeholder satisfaction to allow for adjustment of both management scenarios and objectives. This template can be applied to attempt to resolve conflict inherent in many dam-regulated systems where management decisions impact diverse values of stakeholders.

  6. 76 FR 58833 - Notice of Availability of the Draft Environmental Impact Statement/Environmental Impact Report...

    Science.gov (United States)

    2011-09-22

    ...The Department of the Interior and the California Department of Fish and Game have prepared a draft environmental impact statement and environmental impact report (EIS/EIR) evaluating the effects of removing four dams on the Klamath River in southern Oregon and northern California. These documents are one part of the total record that will inform the decision of the Secretary of the Interior on whether removing the dams will advance restoration of the fisheries of the Klamath River Basin and will be in the public interest.

  7. Calculating earth dam seepage using HYDRUS software applications

    Directory of Open Access Journals (Sweden)

    Jakub Nieć

    2017-06-01

    Full Text Available This paper presents simulations of water seepage within and under the embankment dam of Lake Kowalskie reservoir. The aim of the study was to compare seepage calculation results obtained using analytical and numerical methods. In April 1985, after the first filling of the reservoir to normal storage levels, water leaks was observed at the base of the escarpment, on the air side of the dam. In order to control seepage flow, drainage was performed and additional piezometers installed. To explain the causes of increased pressure in the aquifer under the dam in May 1985 a simplified calculation of filtration was performed. Now, on the basis of archived data from the Department of Hydraulic and Sanitary Engineering using 3D HYDRUS STANDARD software, the conditions of seepage under the dam have been recreated and re-calculated. Piezometric pressure was investigated in three variants of drainage, including drainage before and after modernization.

  8. Safety management of the Karapiro dam, New Zealand

    International Nuclear Information System (INIS)

    Everitt, S.C.

    1995-01-01

    The dam safety program for 36 hydraulic structures in New Zealand were presented, with special emphasis on the application of this program to the Karapiro dam. The management of the hazard presented by the dam was detailed, and the proposed solutions for its remediation were presented. Dynamic analysis was employed using an elastic 3-D finite element model, using actual earthquake time history records as an input, scaled to the required Maximum Credibility Earthquake (MCE). The results confirmed that the arch section of the Karapiro dam was satisfactory, as was the spillway block, provided that drainage was preserved, however, the left abutment and thrust block were considered unstable. Four options were proposed for strengthening the abutment: (1) lowering the groundwater, (2) installation of stresses anchors, (3) mass concrete buttressing upstream and/or downstream, and (4) installation of reinforced concrete shear keys. However, prior to undertaking any remediation work, rock mass properties and groundwater conditions should be re-investigated. 1 ref., 7 figs

  9. Feasibility of groundwater recharge dam projects in arid environments

    Science.gov (United States)

    Jaafar, H. H.

    2014-05-01

    A new method for determining feasibility and prioritizing investments for agricultural and domestic recharge dams in arid regions is developed and presented. The method is based on identifying the factors affecting the decision making process and evaluating these factors, followed by determining the indices in a GIS-aided environment. Evaluated parameters include results from field surveys and site visits, land cover and soils data, precipitation data, runoff data and modeling, number of beneficiaries, domestic irrigation demand, reservoir objectives, demography, reservoirs yield and reliability, dam structures, construction costs, and operation and maintenance costs. Results of a case study on more than eighty proposed dams indicate that assessment of reliability, annualized cost/demand satisfied and yield is crucial prior to investment decision making in arid areas. Irrigation demand is the major influencing parameter on yield and reliability of recharge dams, even when only 3 months of the demand were included. Reliability of the proposed reservoirs as related to their standardized size and net inflow was found to increase with increasing yield. High priority dams were less than 4% of the total, and less priority dams amounted to 23%, with the remaining found to be not feasible. The results of this methodology and its application has proved effective in guiding stakeholders for defining most favorable sites for preliminary and detailed design studies and commissioning.

  10. Atmospheric Rivers, Climate Change, and the Howard Hanson Dam

    Science.gov (United States)

    Warner, M.; Mass, C.; Shaffer, K.; Brettman, K.

    2017-12-01

    All wintertime extreme precipitation and major flooding events in Western Washington are associated with Atmospheric Rivers (ARs), narrow bands of elevated integrated water vapor transport (IVT) stretching from the tropical Pacific Ocean to the Pacific Northwest coast. Several studies over the last decade have suggested that climate change could impact the intensity, frequency, timing, and structure of Pacific Northwest extreme precipitation. The Howard Hanson Dam is situated on the Green River in the central Cascade Mountains in Western Washington and is operated by the US Army Corps of Engineers (USACE) in Seattle. The reservoir behind the dam has two functions: It is the main water supply for the city of Tacoma and is filled during the summer months, and it is empty during winter months when it is used for flood risk management during AR events, protecting billions of dollars of infrastructure downstream. The reservoir is maintained by the Cascade Mountains' abundant winter snowpack and precipitation. Since the reservoir behind Howard Hanson Dam must be empty before the flood season starts and is reliant on snowpack and precipitation to fill in late spring, impacts due to climate change are important for how the USACE operates and manages flood risk and water supply in the future. This work describes changes in the structure, climatology, and seasonality of cool-season atmospheric rivers influencing the west coast of North America by examining the projections of Coupled Model Intercomparison Project 5 (CMIP5) climate simulations forced by the Representative Concentration Pathway (RCP) 8.5 scenario. There are only slight changes in AR frequency and seasonality between historical (1970-1999) and future (2070-2099) periods considering the most extreme days (99th percentile) in integrated water vapor transport (IVT) along the West Coast, particularly along the southern part of the U.S. west coast, where some changes in the most extreme events are statistically

  11. Strategies of Successful Anti-Dam Movements: Evidence from Myanmar and Thailand

    NARCIS (Netherlands)

    Kirchherr, J.W.|info:eu-repo/dai/nl/411261487

    2018-01-01

    Scholars are rarely able to examine anti-dam movements that result in project suspensions or cancellations since these cases are rare empirically. Yet, they are central to understanding how anti-dam movements can succeed. This paper analyzes the movements against Myanmar’s Myitsone Dam and

  12. The impact of Manjil and Tarik dams (Sefidroud River, southern Caspian Sea basin on morphological traits of Siah Mahi Capoeta gracilis (Pisces: Cyprinidae

    Directory of Open Access Journals (Sweden)

    Adeleh Heidari

    2013-08-01

    Full Text Available It has been postulated that the building of the Manjil and Tarik dams on Sefidroud River has led to the body shape variation of Capoeta gracilis in up- and downstream populations due to the isolation. In this study, Geometric morphometric approach was used to explore body shape variations of Capoeta gracilis populations in up- and downstream Manjil and Tarik dams in Sefidroud River from south of the Caspian Sea basin. The shape of 90 individuals from three sampling sites was extracted by recording the 2-D coordinates of 13 landmark points. PCA, CVA, DFA and CA analysis were used to examine shape differences among the populations. The significant differences were found among the shape of the populations and these differences were observed in the snout, the caudal peduncle and head. The present study indicated the body shape differences in the populations of Capoeta gracilis in the Sefidroud River across the Manjil and Tarik dams, probably due to the dam construction showing anthropogenic transformation of rivers influences body shape in an aquatic organism.

  13. Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq)

    Science.gov (United States)

    Dafny, Elad; Tawfeeq, Kochar Jamal; Ghabraie, Kazem

    2015-10-01

    Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.

  14. Endocrine-disruptor molecular responses, occurrence of intersex and gonado-histopathological changes in tilapia species from a tropical freshwater dam (Awba Dam) in Ibadan, Nigeria

    International Nuclear Information System (INIS)

    Adeogun, Aina O.; Onibonoje, Kolawole; Ibor, Oju R.; Omiwole, Roseline A.; Chukwuka, Azubuike V.; Ugwumba, Alex O.; Ugwumba, Adiaha A.A.; Arukwe, Augustine

    2016-01-01

    Highlights: • Occurrence and severity of intersex in Nigerian aquatic environment. • Estrogenic and reproductive developmental effects of effluents from a University community. • Biomarker of endocrine disruption in fish from a developing country. • Relationship between estrogenic responses and sediment contaminants burden in a dam used for University domestic water supply and for fisheries. • Possible health consequences of environmental contamination - Abstract: In the present study, the occurrence of endocrine disruptive responses in Tilapia species from Awba Dam has been investigated, and compared to a reference site (Modete Dam). The Awba Dam is a recipient of effluents from University of Ibadan (Nigeria) and several other anthropogenic sources. A total of 132 Tilapia species (Sarotherodon malenotheron (n = 57 and 32, males and females, respectively) and Tilapia guineensis (n = 23 and 20, males and females, respectively)) were collected from June to September 2014. At the reference site, samples of adult male and female S. melanotheron (48 males and 47 females) and T. guineensis (84 males and 27 females) were collected. Gonads were morphologically and histologically examined and gonadosomatic index (GSI) was calculated. Hepatic mRNA transcriptions of vitellogenin (Vtg) and zona radiata protein (Zrp) genes were analyzed using validated RT-qPCR. Significant increase in Vtg and Zrp transcripts were observed in male tilapias from Awba Dam, compared to males from the reference site. In addition, male tilapias from Awba Dam produced significantly higher Vtg and Zrp mRNA, compared to females in June and July. However, at the natural peak spawning period in August and September, females produced, significantly higher Vtg and Zrp mRNA, compared to males. Fish gonads revealed varying incidence of intersex with a striking presence of two (2) pairs of testes and a pair of ovary in S. melanotheron from Awba Dam. The entire fish population examined at Awba Dam

  15. Endocrine-disruptor molecular responses, occurrence of intersex and gonado-histopathological changes in tilapia species from a tropical freshwater dam (Awba Dam) in Ibadan, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Adeogun, Aina O.; Onibonoje, Kolawole; Ibor, Oju R.; Omiwole, Roseline A.; Chukwuka, Azubuike V.; Ugwumba, Alex O.; Ugwumba, Adiaha A.A. [Department of Zoology, University of Ibadan, Ibadan (Nigeria); Arukwe, Augustine, E-mail: arukwe@bio.ntnu.no [Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)

    2016-05-15

    Highlights: • Occurrence and severity of intersex in Nigerian aquatic environment. • Estrogenic and reproductive developmental effects of effluents from a University community. • Biomarker of endocrine disruption in fish from a developing country. • Relationship between estrogenic responses and sediment contaminants burden in a dam used for University domestic water supply and for fisheries. • Possible health consequences of environmental contamination - Abstract: In the present study, the occurrence of endocrine disruptive responses in Tilapia species from Awba Dam has been investigated, and compared to a reference site (Modete Dam). The Awba Dam is a recipient of effluents from University of Ibadan (Nigeria) and several other anthropogenic sources. A total of 132 Tilapia species (Sarotherodon malenotheron (n = 57 and 32, males and females, respectively) and Tilapia guineensis (n = 23 and 20, males and females, respectively)) were collected from June to September 2014. At the reference site, samples of adult male and female S. melanotheron (48 males and 47 females) and T. guineensis (84 males and 27 females) were collected. Gonads were morphologically and histologically examined and gonadosomatic index (GSI) was calculated. Hepatic mRNA transcriptions of vitellogenin (Vtg) and zona radiata protein (Zrp) genes were analyzed using validated RT-qPCR. Significant increase in Vtg and Zrp transcripts were observed in male tilapias from Awba Dam, compared to males from the reference site. In addition, male tilapias from Awba Dam produced significantly higher Vtg and Zrp mRNA, compared to females in June and July. However, at the natural peak spawning period in August and September, females produced, significantly higher Vtg and Zrp mRNA, compared to males. Fish gonads revealed varying incidence of intersex with a striking presence of two (2) pairs of testes and a pair of ovary in S. melanotheron from Awba Dam. The entire fish population examined at Awba Dam

  16. Application of the Periodic Average System Model in Dam Deformation Analysis

    Directory of Open Access Journals (Sweden)

    Yueqian Shen

    2015-01-01

    Full Text Available Dams are among the most important hydraulic engineering facilities used for water supply, flood control, and hydroelectric power. Monitoring of dams is crucial since deformation might have occurred. How to obtain the deformation information and then judge the safe conditions is the key and difficult problem in dam deformation monitoring field. This paper proposes the periodic average system model and creates the concept of “settlement activity” based on the dam deformation issue. Long-term deformation monitoring data is carried out in a pumped-storage power station, this model combined with settlement activity is used to make the single point deformation analysis, and then the whole settlement activity profile is drawn by clustering analysis. Considering the cumulative settlement value of every point, the dam deformation trend is analyzed in an intuitive effect way. The analysis mode of combined single point with multipoints is realized. The results show that the key deformation information of the dam can be easily grasped by the application of the periodic average system model combined with the distribution diagram of settlement activity. And, above all, the ideas of this research provide an effective method for dam deformation analysis.

  17. Optimization design of foundation excavation for Xiluodu super-high arch dam in China

    Directory of Open Access Journals (Sweden)

    Qixiang Fan

    2015-04-01

    Full Text Available With better understanding of the quality and physico-mechanical properties of rocks of dam foundation, and the physico-mechanical properties and structure design of arch dam in association with the foundation excavation of Xiluodu arch dam, the excavation optimization design was proposed for the foundation surface on the basis of feasibility study. Common analysis and numerical analysis results demonstrated the feasibility of using the weakly weathered rocks III1 and III2 as the foundation surface of super-high arch dam. In view of changes in the geological conditions at the dam foundation along the riverbed direction, the design of extending foundation surface excavation area and using consolidating grouting and optimizing structure of dam bottom was introduced, allowing for harmonization of the arch dam and foundation. Three-dimensional (3D geomechanics model test and finite element analysis results indicated that the dam body and foundation have good overload stability and high bearing capacity. The monitoring data showed that the behaviors of dam and foundation correspond with the designed patterns in the construction period and the initial operation period.

  18. A progressive methodology for seismic safety evaluation of gravity dams

    International Nuclear Information System (INIS)

    Ghrib, F.; Leger, P.; Tinawi, R.; Lupien, R.; Veilleux, M.

    1995-01-01

    A progressive methodology for the seismic safety evaluation of existing concrete gravity dams was described. The methodology was based on five structural analysis levels with increasing complexity to represent inertia forces, dam-foundation and dam-interaction mechanisms, as well as concrete cracking. The five levels were (1) preliminary screening, (2) pseudo-static method, (3) pseudo-dynamic method, (4) linear time history analysis, and (5) non-linear history analysis. The first four levels of analysis were applied for the seismic safety evaluation of Paugan gravity dam (Quebec). Results showed that internal forces from pseudo-dynamic, response spectra and transient finite element analyses could be used to interpret the dynamic stability of dams from familiar strength-based criteria. However, as soon as the base was cracked, the seismically induced forces were modified, and level IV analyses proved more suitable to handle rationally these complexities. 8 refs., 7 figs., 1 tab

  19. Dam-Break Flood Analysis Upper Hurricane Reservoir, Hartford, Vermont

    National Research Council Canada - National Science Library

    Acone, Scott

    1995-01-01

    .... Various dam break flood conditions were modeled and inundation maps developed. Based on this analysis the dam is rated a Class 2 or significant hazard category in terms of its potential to cause downstream damage...

  20. Review Article: Numerical analysis of the seismic behaviour of earth dam

    Directory of Open Access Journals (Sweden)

    Y. Parish

    2009-03-01

    Full Text Available The present study concerns analysis of the seismic response of earth dams. The behaviour of both the shell and core of the dam is described using the simple and popular non associated Mohr-Coulomb criterion. The use of this constitutive model is justified by the difficulty to obtain constitutive parameters for more advanced constitutive relations including isotropic and kinematic hardening. Analyses with real earthquake records show that the seismic loading induces plasticity in a large part of the shell and in the lower part of the core. Analysis shows that plasticity should be considered in the analysis of the seismic response of the dam, because it leads to a decrease in the natural frequencies of the dam together to energy dissipation, which could significantly affect the seismic response of the dam. Plastic analysis constitutes also a good tool for the verification of the stability of the dam under seismic loading.