Nucleon transfer reactions in D.W.B.A; Les reactions de transfert d'un nucleon dans la D.W.B.A
Energy Technology Data Exchange (ETDEWEB)
Giraud, B; Picard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-08-01
The DWBA for one nucleon transfer reaction is described as simply and completely as possible to show the possibilities and limits of this method. The extraction of spectroscopic factors is described in the appendix. (authors) [French] Le formalisme de la DWBA est decrit d'une maniere aussi simple et complete que possible pour mettre en evidence les possibilites et les limites de cette methode d'analyse des reactions de transfert. L'extraction des facteurs spectroscopiques est exposee en appendice. (auteurs)
Nucleon transfer reactions in D.W.B.A; Les reactions de transfert d'un nucleon dans la D.W.B.A
Energy Technology Data Exchange (ETDEWEB)
Giraud, B.; Picard, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-08-01
The DWBA for one nucleon transfer reaction is described as simply and completely as possible to show the possibilities and limits of this method. The extraction of spectroscopic factors is described in the appendix. (authors) [French] Le formalisme de la DWBA est decrit d'une maniere aussi simple et complete que possible pour mettre en evidence les possibilites et les limites de cette methode d'analyse des reactions de transfert. L'extraction des facteurs spectroscopiques est exposee en appendice. (auteurs)
(6Li,d) reaction on sd-, fp- and g-shell nuclei in ZR- and FR-DWBA formalisms
International Nuclear Information System (INIS)
Rahman, M.A.; Mecking, M.; Strohbusch, U.
1991-06-01
( 6 Li,d) reaction angular distributions on target nuclei 16 ≤ A ≤ 90 have been analyzed using both ZR- and FR-DWBA formalisms. The most prevalent method of analysis of alpha-transfer reactions such as( 6 Li,d) and its reverse (d, 6 Li) (where the wave function at zero distance in the p-state of relative cluster motion in the A = 6 nuclei will not have node) is the ZR-DWBA calculations due to the relatively short time of computation. It is of particular interest to verify whether FR-DWBA calculations result in similar S α - values to those of ZR-DWBA or not. It is found that to derive similar S α -values as in FR-DWBA calculations, one requires relatively large real well depth in ZR-DWBA calculations. Qualitative discussions have been made in this direction. (author). 12 refs, 3 figs, 2 tabs
Stripping reactions in a three-body system. Comparison of DWBA and exact solutions
International Nuclear Information System (INIS)
Brinati, J.R.
1976-01-01
Stripping reactions 'a estados no continuo' are studied in a three particle system. Since the three-body problem has an exact treatment, comparison will be made between the exact solution and the DWBA model solution. This problem is more complex in the continuous case, as shown in the convergence problem of the standard DWBA amplitude radial integral
DWBA calculation of positron impact ionization of argon
Energy Technology Data Exchange (ETDEWEB)
Campeanu, R I; Alam, M, E-mail: campeanu@yorku.ca [Department of Physics and Astronomy, York University, Toronto, M3J 1P3 (Canada)
2011-01-01
The ionization of the 3p and 3s orbitals of argon by 200 eV incident positrons is studied with the DWBA approximation. Our TDCS results for the 3p orbital ionization are found to be in good agreement with recent CDW-EIS data.
DWBA momentum distribution and its effect on THM
Energy Technology Data Exchange (ETDEWEB)
La Cognata, M. [Laboratori Nazionali del Sud - INFN, Catania (Italy); DMFCI - Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Spitaleri, C. [Laboratori Nazionali del Sud - INFN, Catania (Italy); DMFCI - Universita di Catania, Catania (Italy); Mukhamedzhanov, A.; Goldberg, V. [Cyclotron Institute - Texas A and M University, College Station (TX) (United States); Irgaziev, B. [GIK - Institute of Engineering Sciences and Technology, Topi District, Swabi NWFP (Pakistan); Lamia, L.; Pizzone, R.G. [Laboratori Nazionali del Sud - INFN, Catania (Italy); DMFCI - Universita di Catania, Catania (Italy); Sergi, M.L. [Laboratori Nazionali del Sud - INFN, Catania (Italy); DMFCI - Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Tribble, R.E. [Cyclotron Institute - Texas A and M University, College Station (TX) (United States)
2010-03-01
The {sup 18}O(p,alpha){sup 15}N reaction is of primary importance to pin down the uncertainties affecting present-day models of asymptotic giant branch stars. An indirect measurement of the low-energy region of the {sup 18}O(p,alpha){sup 15}N reaction has been performed by means of the Trojan Horse Method. We discuss why the plane wave approximation is justified by evaluating what changes the more correct DWBA approach introduces.
Energy Technology Data Exchange (ETDEWEB)
Shepard, J R; Anderson, R E; Kraushaar, J J; Ristinen, R A [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Comfort, J R [Pittsburgh Univ., PA (USA). Dept. of Physics; King, N S.P. [Los Alamos Scientific Lab., NM (USA); Bacher, A; Jacobs, W W [Indiana Univ., Bloomington (USA). Dept. of Physics
1979-06-11
Angular distributions have been measured for the low-lying levels of the residual nuclei for the /sup 12/C, /sup 54/Fe and /sup 208/Pb(p,t) reactions at E/sub p/ = 80 MeV. The shapes of these angular distributions are generally well reproduced by the zero-range distorted-wave Born approximation (DWBA). Enhancement factors extracted from the data show that the DWBA predicts relative strengths consistent with those observed at lower bombarding energies. However, the overall empirical DWBA normalization at E/sub p/ = 80 MeV is observed to be 1/12(1/4) of that required at 40 MeV for /sup 208/Pb(/sup 54/Fe).
An enhanced DWBA algorithm in hybrid WDM/TDM EPON networks with heterogeneous propagation delays
Li, Chengjun; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng
2011-12-01
An enhanced dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM PON is proposed and experimentally demonstrated. In addition to the fairness of bandwidth allocation, this algorithm also considers the varying propagation delays between ONUs and OLT. The simulation based on MATLAB indicates that the improved algorithm has a better performance compared with some other algorithms.
Microscopic description of 7Li and 7Be for the DWBA treatment of cluster transfer reactions
International Nuclear Information System (INIS)
Pal, K.F.; Lovas, R.G.; Gyarmati, B.; Vertse, T.; Nagarajan, M.A.
1983-01-01
The overlap of the α-t interaction times, the 7 Li wave function with the product of the α and t wave functions, and the analogous quantity for the charge-conjugate system are calculated on microscopic grounds. This quantity contains the structure information on the 7 Li nucleus in the standard finite-range DWBA description of α and t stripping from and pick-up to 7 Li. This nucleus is described in the generator-coordinate model assuming the α+t two-cluster structure and schematic nucleon-nucleon forces. The model reproduces the measured g.s. properties reasonably. The microscopic potential overlap is obtained to be very different from those calculated with using local macroscopic α-t interactions, but the difference in the 12 C( 7 Li,t) 16 O cross section is only dramatic at backward angles. To facilitate further DWBA analyses, several versions of the potential overlap as well as the overlap without the potential are given in an easily accessible form. (author)
DWBA differential and total pair production cross sections for intermediate energy photons
International Nuclear Information System (INIS)
Selvaraju, C.; Bhullar, A.S.; Sud, K.K.
2001-01-01
We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed
Analysis of (d,n) reactions via the Dirac DWBA with finite range
Hawk, Eric; McNeil, J. A.
2004-10-01
The Distorted-wave Born Approximation (DWBA) is used to calculate differential cross sections of low-energy deuteron stripping reactions. The implementation makes use of Dirac phenomenological potentials with an exact treatment of finite-range effects. The mutual interaction of these effects upon the resulting calculations will be presented. In addition, we use our finite-range implementation to study the effect on the cross sections due to the model dependence of the internal deuteron wave function. Specifically, we examine this effect using the internal deuteron wave functions generated with the Reid soft-core, Bonn, and Argonne-V18 potentials.
Fully microscopic DWBA analyses on 89Y (α, p)92Zr reaction
International Nuclear Information System (INIS)
Yuan Jian; Mao Zhiqiang; Zhang Peihua
1988-01-01
The differential cross sections have been measured for the 89 Y (α, p) 92 Zr reaction with some low-lying states and the 89 Y (α, α) 8( Y elastic scattering by using 26.1 MeV α beam. A fully microscopic DWBA analyses for 89 Y (α, α) 92 Zr have been performed by using 89 Y and 92 Zr shell-model wavefunction with or without the core excited configuration. With the core excited configuration, relative strengths of the ground state and the first excited state are greatly improved. Finally, the absolute cross sections for 89 (α, p) 92 Zr and importance of shallow well depth of α potential are discussed
Hawk, Eric
2005-04-01
An algorithm for the inclusion of both Dirac phenomenological potentials and an exact treatment of finite-range effects within the DWBA is presented. The numerical implementation of this algorithm is used to calculate low-energy deuteron stripping cross sections, analyzing powers, and polarizations. These calculations are compared with experimental data where available. The impact of using several commonly employed nuclear potentials (Reid soft-core, Bonn, Argonne v18) for the internal deuteron wave function is also examined.
Energy Technology Data Exchange (ETDEWEB)
Rost, E; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.
1975-12-08
The differential cross sections for the /sup 12/C(p,d)/sup 11/C(g.s.) reaction at 700 MeV have been calculated in a full finite range DWBA approach. The absolute cross sections agree with the data and are dominated by contributions arising from the deuteron D-state.
Energy Technology Data Exchange (ETDEWEB)
Shepard, J R; Zimmerman, W R; Kraushaar, J J [Colorado Univ., Boulder (USA). Dept. of Physics and Astrophysics
1977-01-04
Strong transitions in the /sup 58/Ni(/sup 3/He,..cap alpha..)/sup 57/Ni reaction were analyzed using both the zero-range and exact finite-range DWBA. Data considered covered a range of bombarding energies from 15 to 205 MeV. The zero-range DWBA described all data well when finite-range and non-locality corrections were included in the local energy approximation. Comparison of zero-range and exact finite-range calculations showed the local energy approximation correction to be very accurate over the entire energy region. Empirically determined D/sub 0/ values showed no energy dependence. A theoretical D/sub 0/ value calculated using an ..cap alpha.. wave function which reproduced the measured ..cap alpha.. rms charge radius and the elastic electron scattering form factor agreed well the empirical values. Comparison was made between these values and D/sub 0/ values quoted previously in the literature.
Energy Technology Data Exchange (ETDEWEB)
Anderson, R E; Kraushaar, J J; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Comfort, J R [Indiana Univ., Bloomington (USA). Dept. of Physics
1978-01-01
The (p,d) reaction has been studied on /sup 58/Ni, /sup 90/Zr and /sup 208/Pb at 121 MeV in order to test the applicability of the usual DWBA methods to higher energy data. The calculations describe the angular distribution for the strongly excited low-lying states reasonably well when adiabatic-deuteron optical potentials are used. Some discrepancies in shape persist, however, and some values of the spectroscopic factors differ from lower energy data in spite of many variations in the calculations. By use of exact finite-range calculations a value of D/sup 2//sub 0/ = 1.23 x 10/sup 4/ MeV/sup 2/.fm/sup 3/ was found for use at 121 MeV. Deuteron D-state contributions were negligible at forward angles and two-step contributions do not appear more significant than for data at lower energy.
Second-order Born effect in coplanar doubly symmetric (e,2e) collisions for sodium
Energy Technology Data Exchange (ETDEWEB)
Wang, Yang; Jiao, Liguang [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); Zhou, Yajun, E-mail: yajunzhou2003@yahoo.com.cn [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)
2012-06-18
The second-order distorted wave Born approximation (DWBA) method is employed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e,2e) collisions for alkali target sodium at excess energies of 6–60 eV. Comparing with the first-order DWBA calculations, the inclusion of second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e,2e) problems in low and intermediate energy range. -- Highlights: ► We consider second-order Born effect in (e,2e) collisions for sodium. ► Our second-order term gives a correct description on the multi scattering process. ► Our second-order DWBA model improves the agreement between theory and experiment.
From the nucleus discovery to DWBA; De la decouverte du noyau a la DWBA
Energy Technology Data Exchange (ETDEWEB)
Fernandez, B. [Ecole Joliot Curie, 33 - Gradignan (France)
2007-07-01
The author presents a brief review of the main events in the field of nuclear reactions that are acknowledged as milestones because of their importance due to either experimental setting or physical interpretation. It is shown that the pace of discoveries has been strongly dependent on the technical progress in detection means at the beginning of nuclear physics and now is linked to the development of simulation means. The discovery of the neutron, the development of the Geiger counter, the theory of the compound nucleus or the first direct reactions are among these milestones.
Distorted-wave calculation of He(e,2 e) including core-exchange amplitudes
International Nuclear Information System (INIS)
Konovalov, D.A.; McCarthy, I.E.
1992-04-01
Distorted-wave Born approximation (DWBA) calculations are reported for coplanar symmetric ionization of helium at energies of 100 and 200 eV. The best possible one-configuration incident distorted wave functions together with the capture scattering have been used to produce a better agreement with absolute measurements at 100 eV compared with the previous DWBA calculations. However the discrepancy between experiment and theory at 200 eV for large angles has not been resolved by these modifications. Moreover capture scattering has been found negligible at 28.6 to 200 eV. Similar DWBA calculations for hydrogen close to the threshold are also reported. Very good agreement with experiment has been found at 17.6 eV. 20 refs., 4 figs
From the nucleus discovery to DWBA
International Nuclear Information System (INIS)
Fernandez, B.
2007-01-01
The author presents a brief review of the main events in the field of nuclear reactions that are acknowledged as milestones because of their importance due to either experimental setting or physical interpretation. It is shown that the pace of discoveries has been strongly dependent on the technical progress in detection means at the beginning of nuclear physics and now is linked to the development of simulation means. The discovery of the neutron, the development of the Geiger counter, the theory of the compound nucleus or the first direct reactions are among these milestones
Development of neutron diffuse scattering analysis code by thin film and multilayer film
International Nuclear Information System (INIS)
Soyama, Kazuhiko
2004-01-01
To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering
Multi-step direct reactions at low energies
International Nuclear Information System (INIS)
Marcinkowski, A.; Marianski, B.
2001-01-01
Full text: The theory of the multistep direct (MSD) reactions of Feshbach, Kerman and Koonin has for quite some time become a subject of controversy due to the bi orthogonal distorted waves involved in the transition amplitudes describing the MSD cross sections. The bi orthogonal wave functions result in non-normal DWBA matrix elements, that can be expressed in terms of normal DWBA matrix elements multiplied by the inverse elastic scattering S-matrix. It has been argued that the enhancing inverse S-factors are washed out by averaging over energy in the continuum. As a result normal DWBA matrix elements are commonly used in practical calculations. Almost all analyses of inelastic scattering and charge-exchange reactions using the DWBA matrix elements have concluded that nucleon emission at low energies can be described as one-step reaction mainly. On the other hand, it has been shown that the limits imposed by the energy weighted sum rules (EWSR's) on transition of given angular momentum transfer lead to a significant reduction of the one step cross section that can be compensated by the enhanced MSD cross sections obtained with the use of the non-normal DWBA matrix elements. Very recently the MSD theory of FKK was modified to include collective excitations and the non-normal DWBA matrix elements and the prescription for calculations of the cross sections for the MSD reactions was given. In the present paper we present the results of the modified theory used for describing the 93 Nb (n,xn) 93 Nb reaction at incident energy of 20 MeV and the 65 Cu (p,xn) 65 Zn reaction at 27 MeV. The results show enhanced contributions from two-, three- and four step reactions. We investigate the importance of the multi-phonon, multi particle hole and the mixed particle hole-phonon excitations in neutron scattering to the continuum. We also show the importance of the different sequences of collisions of the leading continuum nucleon that contribute to the MSD (p,n) reaction. When all
The 208Pb(7Li,6He)209Bi reaction at 52 MeV
International Nuclear Information System (INIS)
Zeller, A.F.; Weisser, D.C.; Ophel, T.R.; Hebbard, D.F.
1979-11-01
Single proton transfers to low lying levels in 209 Bi from the 208 Pb(7Li, 6 He) reaction at 52 MeV have been measured and spectroscopic factors derived from an EFR-DWBA analysis. Relative spectroscopic factors are in good agreement with light ion results and previous heavy ion work. Absolute spectroscopic factors were generally too large and the peaks of the angular distributions were out of phase with the DWBA calculations by 1 0 - 4 0
Analyzing power measurements for the /sup 13/C(p vector,d)/sup 12/C reaction at 200 and 400 MeV
Energy Technology Data Exchange (ETDEWEB)
Liljestrand, R P; Cameron, J M; Hutcheon, D A; MacDonald, R; McDonald, W J; Miller, C A; Olsen, W C [Alberta Univ., Edmonton (Canada); Kraushaar, J J; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Rogers, J G [British Columbia Univ., Vancouver (Canada). TRIUMF Facility
1981-02-26
Cross sections and analyzing powers for the /sup 13/C(p vector,d) reaction have been measured at 200 and 400 MeV to the O/sup +/, ground state and 2/sup +/, 4.44 MeV state of /sup 12/C. While the cross sections are rather structureless, DWBA calculations in exact finite range account well for both the magnitude and shape of the angular distributions. On the other hand, the measured analyzing powers are in serious disagreement with the DWBA calculations.
Study of the (3He,t) reaction on 48Ca at 82 MeV
International Nuclear Information System (INIS)
Tanabe, T.; Yasue, M.; Sato, K.; Soga, F.; Igarashi, M.; Ogino, K.; Kadota, Y.; Saito, Y.; Shimokoshi, F.
1978-01-01
The reactions ( 3 He,t), ( 3 He, 3 He), ( 3 He,α) and ( 3 He,d) on 48 Ca have been studied at an incident energy of 82 MeV. The obtained angular distributions for the ( 3 He,t) reaction have been analyzed in terms of second-order DWBA theory, using a zero-range approximation. The relative ratio of the cross sections for the excitation of the fsub(7/2)f -1 sub(7/2) multiplets of 48 Sc could not be explained consistently by the one-step charge-exchange process only. However, the ratio was reproduced in order of magnitude by second-order DWBA calculations including the effect of two-step processes, such as ( 3 He-α-t) and ( 3 He-d-t) channels. The effects of the d- and α-channels on the elastic scattering of 3 He from 48 Ca were also examined in the framework of second-order full finite-range DWBA. (Auth.)
Missing monopole strength of the Hoyle state in the alpha inelastic scattering
International Nuclear Information System (INIS)
Kawabata, T; Kadoya, T; Yokota, N; Adachi, S; Baba, T; Furuno, T; Ishii, Y; Murata, M; Tsumura, M; Watanabe, H; Fujimura, H; Fujiwara, M; Hatanaka, K; Ito, T; Matsuda, Y; Tamii, A; Itoh, M; Sato, T; Maeda, Y; Zenihiro, J
2014-01-01
Cross sections for the alpha inelastic scattering exciting the low-lying monopole states in 12 C, 16 O, 24 Mg, 28 Si, and 40 Ca were measured and compared with the distorted- wave Born-approximation (DWBA) calculation to examine the puzzle of the missing monopole strength of the Hoyle state. It was found the DWBA calculation using the density-dependent aN interaction systematically overestimates the cross sections for the 0 + transitions, and the puzzle is a universal problem in light nuclei but not special in the Hoyle state. Since the DWBA calculation using the density-independent interaction reasonably well reproduces the experiment, this puzzle might be related to the density dependence of the effective interaction. The coupled-channel effect for the alpha inelastic scattering is also examined. The coupled- channel effect reduces the calculated cross section, and solve the puzzle of the missing monopole strengths in part, but the improvement of the density dependence of the effective interaction is still necessary to solve the puzzle
Excitation of giant monopole and quadrupole resonances
Energy Technology Data Exchange (ETDEWEB)
Ogata, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Yamagata, T.; Tanaka, M. [and others; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics
1980-01-01
Recent studies on the giant monopole resonance (GMR) and the giant quadrupole resonance (GQR) in /sup 144/Sm and /sup 208/Pb using the ..cap alpha..-scattering performed at RCNP are summarized. The observed angular range covered 1.6/sup 0/ -- 7/sup 0/ with a coupled system of a dipole and a triplet quadrupole magnet. The incident energy was changed from 84 to 119 MeV. The resonance shapes and energy-weighted sum-rule strengths of the GMR and the GQR were reliably deduced as a function of incident energy. The quadrupole strength of --20% was found in the GMR region. The observed excitation function of the GMR was compared with the DWBA calculation, in which the Satchler's Version I was used as a form factor representing the compressional motion of the nucleus. It was found that the experimental excitation function of the GMR shows steeper decrease as lowering the incident energy than the DWBA prediction whereas that of the GQR is successfully described by the DWBA. This suggests that examination of the model describing the GMR is necessary.
International Nuclear Information System (INIS)
Suck Salk, S.H.
1985-01-01
With the use of projection operators, the formal expressions of distorted-wave and coupled-channel-wave transition amplitudes for rearrangement collisions are derived. Use of projection operators (for the transition amplitudes) sharpens our understanding of the structural differences between the two transition amplitudes. The merit of each representation of the transition amplitudes is discussed. Derived perturbation potentials are found to have different structures. The rigorously derived distorted-wave Born-approximation (DWBA) transition amplitude is shown to be a generalization of the earlier DWBA expression obtained from the assumption of the dominance of elastic scattering in rearrangement collisions
Virtual photon spectra for finite nuclei
International Nuclear Information System (INIS)
Wolynec, E.; Martins, M.N.
1988-01-01
The experimental results of an isochromat of the virtual photon spectrum, obtained by measuring the number of ground-state protons emitted by the 16.28 MeV isobaric analogue state in 90 Zr as a function of electron incident energy in the range 17-105 MeV, are compared with the values predicted by a calculation of the E1 DWBA virtual photon spectra for finite nuclei. It is found that the calculations are in excellent agreement with the experimental results. The DWBA virtual photon spectra for finite nuclei for E2 and M1 multipoles are also assessed. (author) [pt
Ptolemy: a program for heavy-ion direct-reaction calculations
International Nuclear Information System (INIS)
Macfarlane, M.H.; Pieper, S.C.
1978-04-01
Ptolemy is an IBM/360 program for the computation of nuclear elastic and direct-reaction cross sections. It carries out optical-model fits to elastic-scattering data at one or more energies and for one or more combinations of projectile and target, collective model DWBA calculations of excitation processes, and finite-range DWBA calculations of nucleon-transfer reactions. It is fast and does not require large amounts of core. The input is exceptionally flexible and easy to use. The types of calculations that Ptolemy can carry out are outlined, the formulas used are summarized, and a detailed description of its input is given
(e, 2e) triple differential cross sections of alkali and alkali earth atoms: Na, K and Mg, Ca
International Nuclear Information System (INIS)
Hitawala, U; Purohit, G; Sud, K K
2008-01-01
Recently low-energy measurements have been reported for alkali targets Na and K and alkali earth targets Mg and Ca in coplanar symmetric geometry. We report the results of our calculation of triple differential cross section (TDCS) for electron impact single ionization (i.e. (e, 2e) processes) of alkali atoms Na, K and alkali earth atoms Mg, Ca in coplanar symmetric geometry. We have performed the present calculations using the distorted-wave Born approximation (DWBA) formalism at intermediate incident electron energies used in the recently performed experiments. Ionization takes place from the valence shell for all the targets investigated and the outgoing electrons share the excess energy equally. We have also considered the effect of target polarization in our DWBA calculations which may be an important quantity at incident electron energies used in the present investigation. We find that the DWBA formalism is able to reproduce most of the trend of experimental data and may provide a future direction for further investigation of ionization process on alkali and alkali earth metals. It is also observed that the second-order effects are more important to understand the collision dynamics of (e, 2e) processes on alkali earth targets
Fragmentation processes in nuclear reactions
International Nuclear Information System (INIS)
Baur, G.; Roesel, F.; Trautmann, D.; Shyam, R.
1983-10-01
Fragmentation processes in nuclear collisions are reviewed. The main emphasis is put on light ion breakup at nonrelativistic energies. The post- and prior-form DWBA theories are discussed. The post-form DWBA, appropriate for the ''spectator breakup'' describes elastic as well as inelastic breakup modes. This theory can also account for the stripping to unbound states. The theoretical models are compared to typical experimental results to illustrate the various possible mechanisms. It is discussed, how breakup reactions can be used to study high-lying single particle strength in the continuum; how it can yield information about momentum distributions of fragments in the nucleus. (orig.)
Theory of nuclear heavy-ion direct transfer reactions
International Nuclear Information System (INIS)
Crowley, B.J.B.
1979-01-01
We review the distorted-wave approach to direct transfer reactions and draw attention to some of the shortcomings of current theories. We show that a reformulated form of the distorted-wave Born approximation (DWBA) for transfer can lead to important simplifications of the theory, which are valid for nuclear heavy-ion induced reactions at energies > or approx. =MeV/nucleon. In particular, in the semiclassical limit, it leads to a new and simple formula for the transfer t-matrix which includes all the essential physics while offering several important advantages over standard ''full-recoil finite-range'' DWBA. One such advantage is that the new formula is more transparent in that it is amendable to interpretation and analytical manipulation. At high-energy it is shown to reduce to one earlier deduced using eikonal-DWBA. The conditions for the validity of the new theory are discussed in detail. They are shown to be generally well satisfied for small-mass transfer between heavy-ions at energies at or above those particularly favour transfer (> or approx. =10 MeV/nucleon for transfer of valence nucleons). The restriction to small mass is not due to any recoil approximation; in fact, it is only a necessary restriction at certain energies. The theory treats recoil exactly. Consideration of the optimum dynamical conditions for transfer leads to a set of matching conditions. The presence of hitherto neglected absorption, arising from dynamical effects of poor matching, it suggested and qualitatively discussed. Condition under which such absorption may be neglected are derived. Results of numerical calculations are presented showing that the theory is capable of good agreement with standard full-recoil finite-range DWBA, and that it is capable of giving at least as good an account of experimental data for nucleon-transfer between heavy-ions at energies approx.10 MeV/nucleon
Quantum Theory of (H,H{Sub 2}) Scattering: Approximate Treatments of Reactive Scattering
Tang, K. T.; Karplus, M.
1970-10-01
A quantum mechanical study is made of reactive scattering in the (H, H{sub 2}) system. The problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA) suitable for collisions in which all particles have finite mass. For certain incident energies, differential and total cross sections, as well as other attributes of the reactive collisions, (e.g. reaction configuration), are determined. Two limiting models in the DWBA formulation are compared; in one, the molecule is unperturbed by the incoming atom and in the other, the molecule adiabatically follows the incoming atom. For thermal incident energies and semi-empirical interaction potential employed, the adiabatic model seems to be more appropriate. Since the DWBA method is too complicated for a general study of the (H, H{sub 2}) reaction, a much simpler approximation method, the “linear model” is developed. This model is very different in concept from treatments in which the three atoms are constrained to move on a line throughout the collision. The present model includes the full three-dimensional aspect of the collision and it is only the evaluation of the transition matrix element itself that is simplified. It is found that the linear model, when appropriately normalized, gives results in good agreement with that of the DWBA method. By application of this model, the energy dependence, rotational state of dependence and other properties of the total and differential reactions cross sections are determined. These results of the quantum mechanical treatment are compared with the classical calculation for the same potential surface. The most important result is that, in agreement with the classical treatment, the differential cross sections are strongly backward peaked at low energies and shifts in the forward direction as the energy increases. Finally, the implications of the present calculations for a theory of chemical kinetics are discussed.
Integrated cross sections for the ionisation of atomic hydrogen by electron impact
International Nuclear Information System (INIS)
Konovalov, D.A.; McCarthy, I.E.
1992-05-01
Distorted-wave Born approximation (DWBA) calculations are reported for singly-differential and total cross sections for the electron impact ionisation for atomic hydrogen at 25, 40, 60, 100, 150 and 250 eV. The theory is compared with available experiments. At all the energies except 25 eV the theory predicts a lower singly-differential cross section for the low-energy side of the secondary-electron energies (<5 eV), compared to the only available absolute measurements of Shyn (1992). The DWBA calculation is in good agreement with the experiment at 25 eV but only if e-e post-collision interaction is included in the theory in some way. 23 refs., 2 figs
Analysis of transfer reactions: determination of spectroscopic factors
Energy Technology Data Exchange (ETDEWEB)
Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)
2007-07-01
An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.
Study of one-nucleon transfer reactions with polarized deuterons of 20 MeV
International Nuclear Information System (INIS)
Seichert, N.
1983-01-01
In this thesis the results of the study of (d vector,p), (d vector,t), and (d vector, 3 He) reactions at Esub(d)approx.=20 MeV on the target nuclei 16 O, 18 O, 28 Si, 36 Ar, 40 Ca, 48 Ca, 54 Cr, 65 Cu, 90 Zr, 144 Sm, and 208 Pb in the framework of a DWBA analysis are presented. The collection of the results of the analysis over this wide mass range shall permit a survey, how well the conventional DWBA describes the measured angular distributions of dsigma/dΩ(theta) and iT 11 (theta). Furthermore in justified cases the contribution of higher order processes (inelastic transfer) are studied by means of a CCBA analysis. The spectroscopical possibilities given by the measurement of the analyzing power iT 11 (theta) are presented in detail on the example of the reaction 144 Sm (d vector,p) 145 Sm. The analysis of the tensor analyzing power T 21 (theta) in the framework of a finite range DWBA in the last part of the thesis permits quantitative statements about the D state amplitude in the relative wave function of the deuteron, the triton, and of 3 He. (orig./HSI) [de
Self-consistent approach to x-ray reflection from rough surfaces
International Nuclear Information System (INIS)
Feranchuk, I. D.; Feranchuk, S. I.; Ulyanenkov, A. P.
2007-01-01
A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers [I. D. Feranchuk et al., Phys. Rev. B 67, 235417 (2003)] based on the distorted-wave Born approximation (DWBA) is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This approach takes into account the transformation of the modeling transition layer profile at the interface, which is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on the scattering angle. The experimental data are analyzed using the method developed
Investigation of the (p,p'), (p,d) and (p,t) reactions on some light Sn isotopes
International Nuclear Information System (INIS)
Blankert, P.J.
1979-01-01
The results are presented of the 112 Sn(p,p') 112 Sn reaction. Apart from the usual distorted-wave analysis the excitation of some states is described in the coupled-channels formalism. The results of the 112 Sn(p,d) 111 Sn and the 112 Sn(p,t) 110 Sn reactions are also reported. From the (p,d) reaction quasi-particle energies and occupation numbers are determined. Two-step DWBA calculations are performed for some states that are assumed to result from the coupling of a quasiparticle to the 2 + 1 or 3 - 1 state of the even core. In the gross structure above 3 MeV of excitation, pickup strength from deeply-bound hole states is observed. The (p,t) reaction provided spin and parity of a number of levels in 110 Sn. A two-step DWBA analysis of the excitation of the ground state and first excited 2 + state shows the importance of second-order processes. The combined results of the (p,t) reactions on 112 Sn, 114 Sn and 116 Sn are given with some emphasis on the systematic features. The derivation is given of some expressions for spectroscopic amplitudes necessary in the two-step DWBA calculations for the (p,t) reactions. For all reactions a comparison is made with other existing data and with the results of model calculations. (Auth.)
Relations between the simultaneous and sequential transfer of two nucleons
International Nuclear Information System (INIS)
Satchler, G.R.
1982-01-01
The author discusses the perturbative treatment of simultaneous and sequential two-nucleon transfer reactions with special regards to the DWBA. As examples the (t,p), (p,t), and (α,d) reactions are considered. (HSI)
International Nuclear Information System (INIS)
Shirato, Shoji; Hata, Kazuhiro; Ando, Yoshiaki; Shibuya, Shinji; Shibata, Keiichi.
1989-08-01
A summary of our measured cross sections for the 14.1 MeV neutron-induced reactions on lithium isotopes has been presented. Our data were measured with two counter telescopes, each of which consisted of two gas proportional counters and silicon ΔE and E detectors. Measured energy spectra of deuterons and tritons from 6 Li(n,d)n 4 He and 7 Li(n,t)n 4 He, respectively, were analyzed by a simple final-state interaction theory. Measured angular distributions for these reactions as well as 6 Li(n,t) 4 He and 7 Li(n,d) 6 He were analyzed by exact finite-range distorted wave Born approximation (EFR-DWBA) calculations. Spectroscopic factors extracted from the EFR-DWBA analyses have been compared with theoretical predictions. (author)
(e, 2e) processes on Ne, Ar and Xe targets
Energy Technology Data Exchange (ETDEWEB)
Purohit, G; Patidar, Vinod; Sud, K K, E-mail: g_vpurohit@yahoo.co, E-mail: ghanshyam.purohit@spsu.ac.i [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur-313 601 (India)
2010-06-01
Recently, there have been several attempts to explain the features of triple differential cross section (TDCS) for the (e, 2e) processes on inert targets Ne, Ar and Xe but there are still certain discrepancies in theoretical results and measurements, which require more theoretical efforts to understand the collision dynamics of these targets. We present in this paper the results of our modified distorted wave Born approximation (DWBA) calculation of TDCS for the ionization of Ne (2p), Ar (3p) and Xe (5p) targets. We modify the standard DWBA formalism by including the correlation-polarization potential (which is function of electron density) and compare our computed results with the available experimental and theoretical data. We observe that the polarization potential is able to improve the agreement with experimental results.
Evaluation of E2 form factor = 24Mg
International Nuclear Information System (INIS)
Marinelli, J.R.; Moreira, J.R.
1988-11-01
Longitudinal and transverse electron scattering form factors for the 2 + state at 1.37 Mev of the 24 Mg nucleus was evaluated with rotational model wavefunctions. Four different approaches were used for the transverse E2 form factor: PHF, cranking model, ridig rotor and irrotational flow. For the nuclear intrinsic wavefunction, the Nilsson model was assumed in all approaches yielding the calculation of the form factor in PWBA and DWBA. The results are discussed and compared with a recent measurement performed with 180 0 electron scattered from this state. The DWBA calculation, taking into account first order corrections shows that PHF and irrotational flow models give the best agreements with the available data and compete in quality with more complex calculation performed under the 'shell model' approach. (author) [pt
Coulomb breakup of 31Ne using finite range DWBA
International Nuclear Information System (INIS)
Shubhchintak; Chatterjee, R.
2013-01-01
Coulomb breakup of nuclei away from the valley of stability have been one of the most successful probes to unravel their structure. However, it is only recently that one is venturing into medium mass nuclei like 23 O and 31 Ne. This is a very new and exciting development which has expanded the field of light exotic nuclei to the deformed medium mass region. In this contribution, an extension of the previously proposed theory of Coulomb breakup within the post-form finite range distorted wave Born approximation to include deformation of the projectile is reported
Sub-coulomb transfer method of a nucleon for measure orbital radii
International Nuclear Information System (INIS)
Aguilera R, E.F.; Murillo, G.; Ramirez, J.; Avila, O.
1986-04-01
The neutron transfer method is revised to measure neutron orbital radii and possible interest systems to apply it are determined. Its were carried out DWBA preliminary calculations for the system 209 Bi(d,t) 208 Bi. (Author)
Sub-Coulomb 3He transfer and its use to extract three-particle asymptotic normalization coefficients
Avila, M. L.; Baby, L. T.; Belarge, J.; Keeley, N.; Kemper, K. W.; Koshchiy, E.; Kuchera, A. N.; Rogachev, G. V.; Rusek, K.; Santiago-Gonzalez, D.
2018-01-01
Data for the 13C(6Li,t )16O reaction, obtained in inverse kinematics at a 13C incident energy of 7.72 MeV, are presented. A distorted wave Born approximation (DWBA) analysis was used to extract spectroscopic factors and asymptotic normalization coefficients (ANCs) for the 〈" close="〉6Li∣3He +3H 〉">16O∣13C +3He overlaps, subject to the assumption of a fixed ANCs as a function of various inputs to the DWBA calculations was explored. The extracted ANCs were found to vary as a cubic function of the radius of the potential well binding the transferred 3He to the 13C core while the spectroscopic factors varied as a quartic function of the radius. The ANC values could be determined to within a factor of two for this system.
Probing α-particle wave functions using (rvec d,α) reactions
International Nuclear Information System (INIS)
Crosson, E.R.; Lemieux, S.K.; Ludwig, E.J.; Thompson, W.J.; Bisenberger, M.; Hertenberger, R.; Hofer, D.; Kader, H.; Schiemenz, P.; Graw, G.; Eiro, A.M.; Santos, F.D.
1993-01-01
Wave functions of the α particle corresponding to different S- and D-state deuteron-deuteron overlaps, left-angle dd|α right-angle, were investigated using exact finite-range distorted-wave Born-approximation (DWBA) analyses of (rvec d,α) reactions. Cross sections, vector, and tensor-analyzing powers were measured for (rvec d,α) reactions populating the lowest J π =7 + state in 56 Co at bombarding energies E d of 16 and 22 MeV, the lowest 7 + state in 48 Sc at E d =16 MeV, and the lowest 7 + state in 46 Sc at E d =22 MeV. We find that DWBA analyses of tensor-analyzing powers produce satisfactory agreement with the data and that A xx is especially sensitive to the D-state component of α-particle wave functions generated by different realistic nucleon-nucleon interactions
Study of nickel nuclei by (p,d) and (p,t) reactions. Shell model interpretation
International Nuclear Information System (INIS)
Kong-A-Siou, D.-H.
1975-01-01
The experimental techniques employed at the Nuclear Science Institute (Grenoble) and at Michigan State University are described. The development of the transition amplitude calculation of the one-or two-nucleon transfer reactions is described first, after which the principle of shell model calculations is outlined. The choices of configuration space and two-body interactions are discussed. The DWBA method of analysis is studied in more detail. The effects of different approximations and the influence of the parameters are examined. Special attention is paid to the j-dependence of the form of the angular distributions, on effect not explained in the standard DWBA framework. The results are analysed and a large section is devoted to a comparative study of the experimental results obtained and those from other nuclear reactions. The spectroscopic data obtained are compared with the results of shell model calculations [fr
Direct reactions and nuclear spectroscopy; forward into the 21st century
International Nuclear Information System (INIS)
Keeley, N.
2006-01-01
The use of direct reactions of the (d,p) (3He,d) etc. type in nuclear spectroscopy has a long history. The availability of beams of exotic nuclei has seen a resurgence of interest in the technique as a means of probing the structure of nuclei close to, or even beyond, the driplines. Analysis of these reactions to extract spectroscopic information has usually been performed with standard DWBA. However, while the DWBA is still useful, as it is based on first-order perturbation theory it should only be used where couplings are weak and proceed predominantly in a single step. Examples where either or both of these conditions are violated, with important consequences for the spectroscopic information extracted, are presented. Some of the sources of uncertainty that remain in the derived quantities are also discussed, along with possible means of reducing them
Energy Technology Data Exchange (ETDEWEB)
Aguilera R, E.F.; Murillo, G.; Ramirez, J.; Avila, O. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
1986-04-15
The neutron transfer method is revised to measure neutron orbital radii and possible interest systems to apply it are determined. Its were carried out DWBA preliminary calculations for the system {sup 209} Bi(d,t) {sup 208} Bi. (Author)
Inelastic scattering of 9Be of 27 MeV/A to giant resonances
International Nuclear Information System (INIS)
Lebrun, D.; Buenerd, M.; Bini, M.; Harvey, B.G.; Legrain, R.; Mahoney, J.; Symons, T.J.M.; Van Bibber, K.
1980-07-01
Inelastic scattering spectra have been measured with 245 MeV incident energy 9 Be ions, on 208 Pb target. They show large excitation of the 208 Pb giant quadrupole resonance. DWBA calculations are reported and compared with the data
Radivojević, Mirjana
2017-01-01
This book proposes dynamic wavelength and bandwidth allocation (DWBA), a hybrid of time-division multiplexing (TDM) and wavelength-division multiplexing (WDM), which offers a solution for service providers faced with multiservice networks. It discusses different models, architectures and implementations and evaluates their performance.
Isospin non-conservation in 14N(d,d')14N reaction
International Nuclear Information System (INIS)
Aoki, Y.; Sanada, J.; Yagi, K.; Kunori, S.; Higashi, Y.
1978-01-01
The deuteron inelastic scattering experiments on 14 N are made at E sub(d) = 10.03, 11.65, 14.82 and 17.88 MeV, laying an emphasis on the isospin-forbidden excitation of the 2.31 MeV (0 + , T = 1) state. In order to clarify the reaction mechanism, we have performed analyses assuming both the direct reaction mechanism and the compound nucleus formation. For the above isospin-forbidden transition, the calculation in the second-order DWBA which assumes the isospin mixing in the intermediate channels, reproduces fairly well the strong energy dependence of the angular distribution and the cross section. For the isospin-allowed transition the simple DWBA calculation gives reasonable agreement with the experiment. The present calculation shows that the observed isospin violation is well accounted for by the direct multi-step reaction mechanism assuming the isospin mixing in the intermediate channels. (author)
Study of ({alpha}, {sup 3}He) and ({alpha}, t) reactions on {sup 28}Si at 45 MeV
Energy Technology Data Exchange (ETDEWEB)
Darshan, V.P.; Sathyavathiamma, M.P.; Ramaswamy, C.R.; Raja Rao, M.; Puttaswamy, N.G.; Banerjee, S.R.; Chintalapudi, S.N. [Dept. of Phys., Bangalore Univ. (India)
1995-03-01
The {sup 28}Si({alpha}, {sup 3}He){sup 29}Si, {sup 28}Si({alpha}, t){sup 29}P and Si({alpha}, {alpha})Si reactions were studied at E{sub {alpha}} = 45 MeV. Exact finite-range (EFR) DWBA analysis was carried out for the transitions to the ground state and to five excited states in {sup 29}Si and {sup 29}P. Spectroscopic strengths G were extracted for all the states and were compared with the predictions from shell-model and quasi-particle core-coupling calculations. Similar EFR-DWBA analyses were carried out from available (unpublished) data for the {sup 28}Si({alpha}, {sup 3}He){sup 29}Si reaction at E{sub {alpha}} = 64.9 and 120 MeV, and for the {sup 28}Si({alpha}, t){sup 29}P reaction at E{sub {alpha}} = 50 and 64.9 MeV. The comparison of experimental and theoretical values of G are provided. (author)
A proposal for calculating the importance of exchange effects in rearrangement collisions
International Nuclear Information System (INIS)
Mihailovic, M.V.; Nagarajan, M.A.
1980-02-01
A formalism based on the generator co-ordinate method (GCM) for reactions is derived to test approximations in the most commonly used methods for calculating the rearrangement amplitudes: namely the distorted wave Born approximation (DWBA), the coupled channel Born approximation (CCBA) and the coupled reaction channel (CRC). (author)
International Nuclear Information System (INIS)
Mallet-Lemaire, M.C.
1973-01-01
One-and two-nucleon transfer reactions induced by light projectiles have long been established as powerful spectroscopic tools to test one-and two-nucleon configurations of the wave functions describing the excited states of the residual nucleus A comparatively to the target nuclei A-1 and A-2. As soon as heavy ion beams became available, a further step was made in the experimental study of few-nucleon configurations by increasing the number of transferred particles as well as the variety of reactions leading to the same residual nucleus. It is well known that many theoretical models emphasize the role played by four-nucleon correlations in the microscopic description of deformed states. An experimental study of the reaction mechanism for ( 16 0, 12 C) and ( 16 0, 14 C) has been carried out by measuring angular distributions at several incident energies and excitation functions. A semi-classical description of the experimental results shows the strong influence of nuclear distortions on multi-nucleon-transfer reactions which appear with increasing incident energies. It will be noticed that spectroscopic information concerning the transferred nucleons can be achieved only through a complete finite range DWBA calculation including a microscopic nuclear structure form factor. The relative influence of the kinematic factors and nuclear structure factors on the DWBA cross-sections has been also investigated. The preliminary results on the DWBA analysis of the 54 Fe( 16 0, 12 C) 58 Ni and 48 Ca( 16 O, 14 C) 50 Ti angular distributions are discussed. Finally, ( 16 0, 14 C) and ( 16 0, 12 C) transfer reactions on different 1f-2p shell targets are described
Energy Technology Data Exchange (ETDEWEB)
Rawitscher, G H [Connecticut Univ., Storrs (USA). Dept. of Physics; Mukherjee, S N [Banaras Hindu Univ. (India). Dept. of Physics
1982-04-01
The 'spectacular' failure of the conventional DWBA to fit this ..delta..l = 0 pickup reaction, first pointed out by Shepard et al. is not removed by inclusion of breakup. The calculation is approximate in that it includes only one breakup bin, and neglects spins as well as Pauli antisymmetrization effects.
Energy Technology Data Exchange (ETDEWEB)
Shepard, J R; Rost, E; Smith, G R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.
1979-12-01
Previous unsuccessful analyses of /sup 4/He(p,d)/sup 3/He at intermediate energies have employed densities based directly on the measured e/sup -/ + /sup 4/He elastic scattering. When the effects of pion exchange currents are removed, the resulting DWBA analysis is in qualitative agreement with the experimental data.
Neutron orbital radii in {sup 13} C; Radios orbitales neutronicos en {sup 13} C
Energy Technology Data Exchange (ETDEWEB)
Aguilera R, E.F.; Murillo, G.; Ramirez, J.J.; Avila, O.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
1988-01-15
In this work its were carried out experimental measurements of the reaction {sup 12}C(d,p) {sup 13}C at low energy. Preliminary results of a DWBA analysis of the data are presented, and the possibility of using this reaction to obtain the orbital radius of the transferred neutron is investigated. (Author)
Investigation of the 26Mg(d, p)27Mg reaction
Meurders, F.; Steld, A. van der
1974-01-01
The angular distributions of 31 protons groups from the 26Mg(d, p)27Mg reaction have been measured at Ed = 12.0 MeV with a split-pole magnetic spectrograph. Excitation energies have been determined for 29 bound states. Three new levels have been found. A DWBA analysis yields ln values for 19 levels;
Lα and Mαβ X-ray production cross-sections of Bi by 6-30 keV electron impact
Liang, Y.; Xu, M. X.; Yuan, Y.; Wu, Y.; Qian, Z. C.; Chang, C. H.; Mei, C. S.; Zhu, J. J.; Moharram, K.
2017-12-01
In this paper, the Lα and Mαβ X-ray production cross-sections for Bi impacted by 6-30 keV electron have been measured. The experiments were performed at a Scanning Electron Microscope equipped with a silicon drift detector. The thin film with thick C substrate and the thin film deposited on self-supporting thin C film were both used as the targets to make a comparison. For the thick carbon substrate target, the Monte Carlo method has been used to eliminate the contribution of backscattering particles. The measured data are compared with the DWBA theoretical model and the experimental results in the literature. The experimental data for the thin film with thick C substrate target and the thin film deposited on self-supporting thin C film target are within reasonable gaps. The DWBA theoretical model gives good fit to the experimental data both for L- and M- shells. Besides, we also analyze the reasons why the discrepancies exist between our measurements and the experimental results in the literature.
Electric dipole excitation of {sup 208}Pb by polarized electron impact
Energy Technology Data Exchange (ETDEWEB)
Jakubassa-Amundsen, D.H. [University of Munich, Mathematics Institute, Munich (Germany); Ponomarev, V.Yu. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2016-03-15
The cross sections and spin asymmetries for the excitation of 1{sup -} states in {sup 208}Pb by transversely polarized electrons with collision energy of 30-180MeV have been examined within the DWBA scattering formalism. As examples, we have considered a low-lying 1{sup -} state and also states belonging to the pygmy dipole and giant dipole resonances. The structure of these states and their corresponding transition charge and current densities have been taken from an RPA calculation within the quasiparticle phonon model. The complex-plane rotation method has been applied to achieve the convergence of the radial DWBA integrals for backward scattering. We have studied the behaviour of the cross sections and spin asymmetries as a function of electron energy and scattering angle. The role of the longitudinal and transversal contributions to the excitation has been thoroughly studied. We conclude that the spin asymmetry S, related to unpolarized outgoing electrons, is mostly well below 1% even at the backward scattering angles and its measurement provides a challenge for future experiments with polarized electrons. (orig.)
On the Chew-Low plot as a limiting case of the distorted wave theory of break-up reactions
International Nuclear Information System (INIS)
Baur, G.
1976-01-01
A recently developed formulation of break-up reactions in the frame of the DW approximation is compared to a theory of Chew and Low given in 1958. By suitably rewriting the DWBA matrix element, one can pick out a term, dominant for certain kinematical conditions, which is identical to the expression given by Chew and Low. (orig.) [de
Investigation of the 24Mg(d, p)25Mg reaction
Meurders, F.; Korte, G. de
1975-01-01
Abstract Proton angular distributions from the 24Mg(d, p)25Mg reaction at Ed = 12.0 MeV have been measured with a split-pole magnetic spectrograph for Ex < 6 MeV at an average resolution (FWHM) of 7 keV. New ln values have been determined for three levels. A DWBA analysis yielded spectroscopic
High-resolution investigation of the 35Cl(d, p)36Cl reaction
Decowski, P.
1971-01-01
The angular distributions of 15 proton groups from the 35C1(d, p)36C1 reaction have been measured with a split-pole magnetic spectrograph at Ed = 7 MeV. The 36C1 doublet at 1.95 MeV could be resolved in the angular distribution measurements. A DWBA analysis yields l-values and spectroscopic factors.
Quasiparticle-phonon coupling in inelastic proton scattering
International Nuclear Information System (INIS)
Weissbach, B.
1980-01-01
Multistep-processes in inelastic proton scattering from 89 Y are analyzed by using CCBA and DWBA on a quasiparticle phonon nuclear structure model. Indirect excitations caused by quasiparticle phonon coupling effects are found to be very important for the transition strengths and the shape of angular distributions. Core excitations are dominant for the higher order steps of the reaction. (author)
Heavy ion reactions in the transition region
International Nuclear Information System (INIS)
Hendrie, D.L.
1977-11-01
Evidence is given for a serious and systematic failure of the DWBA to predict the cross sections for single nucleon transfers induced by heavy ions above about 10 MeV/Nucleon beam energies. This is perhaps related to a coherent coupling to an increasing cross section to the quasi-elastic continuum, which also shows an anomalous energy dependence at about the same energy
The importance of the tensor interaction in the (7Li, 7Be) reaction
International Nuclear Information System (INIS)
Dodd, A.C.; Clarke, N.M.; Coopersmith, J.; Griffiths, R.J.; Pearce, K.I.; Stanley, B.; Cook, J.
1985-01-01
Data for the 28 Si( 7 Li, 7 Be) 28 Al reaction at 72 MeV and for the 26 Mg( 7 Li, 7 Be) 26 Na reaction at 88 MeV are presented together with one-step DWBA calculations using microscopic form factors. The tensor interaction is shown to be important to explain the structureless nature of the angular distributions. (author)
International Nuclear Information System (INIS)
Ozer, Zehra N; Varol, Onur; Yavuz, Murat; Dogan, Mevlut; Amami, Sadek; Madison, Don
2015-01-01
We have measured triple differential cross sections (TDCSs) for electron-impact ionization of the 3p shell of Ar at 200 eV incident electron energy. The experiments have been performed in coplanar asymmetric energy sharing geometry. The experimental results are compared with the theoretical models of three body distorted wave (3DW) and distorted wave Born approximation (DWBA). (paper)
Using Diffraction Tomography to Estimate Marine Animal Size
Jaffe, J. S.; Roberts, P.
In this article we consider the development of acoustic methods which have the potential to size marine animals. The proposed technique uses scattered sound in order to invert for both animal size and shape. The technique uses the Distorted Wave Born Approximation (DWBA) in order to model sound scattered from these organisms. The use of the DWBA also provides a valuable context for formulating data analysis techniques in order to invert for parameters of the animal. Although 3-dimensional observations can be obtained from a complete set of views, due to the difficulty of collecting full 3-dimensional scatter, it is useful to simplify the inversion by approximating the animal by a few parameters. Here, the animals are modeled as 3-dimensional ellipsoids. This reduces the complexity of the problem to a determination of the 3 semi axes for the x, y and z dimensions from just a few radial spokes through the 3-dimensional Fourier Transform. In order to test the idea, simulated scatter data is taken from a 3-dimensional model of a marine animal and the resultant data are inverted in order to estimate animal shape
The sup(40,44,48)Ca(3He, 3He) and (3He, 4He) reactions at 50 MeV
International Nuclear Information System (INIS)
Griffiths, R.J.; Duggan, F.; Clarke, N.M.
1981-01-01
Measurements have been made of the ( 3 He, 3 He) and ( 3 He, 4 He) reactions on the isotopes of calcium 40 Ca, 44 Ca and 48 Ca at an energy of 50.4 MeV. The results have been analysed with conventional optical potentials and DWBA. The adequacy of the former and inadequacy of the latter for reactions with composite particles is discussed. (author)
Investigation of the 33S(d,p)34S reaction
Baan, J.G. van der; Sikora, B.R.
1971-01-01
Angular distributions have been measured of proton groups, corresponding to 34S states up to Ex = 6.63 MeV excited in the reaction 33S(d, p)34S at Ed = 12 MeV, with the use of a split-pole magnetic spectrograph. The ground state Q-value has been measured as Qo = 9195±6 keV. A DWBA analysis yields ln
International Nuclear Information System (INIS)
Wolynec, E.
1988-01-01
Electrodisintegration cross sections related to the corresponding photonuclear process through virtual-photon spectra. A brief review of virtual-photon theory is presented. Calculations of DWBA virtual-photon spectra for finite nuclei are compared with experimental results. The multipole decomposition of electrodisintegration cross sections using these spectra is discussed and several experimental results are presented. A brief review for the bremsstrahlung cross section is also presented. (author) [pt
Structure of 78Ge from the 76Ge(t,p)78Ge reaction
International Nuclear Information System (INIS)
Ardouin, D.; Lebrun, C.; Guilbault, F.; Remaud, B.; Vergnes, M.N.; Rotbard, G.; Kumar, K.
1978-01-01
The 76 Ge(t,p) 78 Ge reaction has been performed at a bombarding energy of 17 MeV. Thirteen excited states below 3 MeV excitation are reported with Jsup(π) values obtained by comparison to DWBA analysis. A comparison to a dynamical deformation theory is made and the results suggest 78 Ge is a transitional nucleus nearing spherical shape due to the proximity of the N-50 closed shell
Determination of S17 from the 7Be(d,n)8B reaction
International Nuclear Information System (INIS)
Ogata, Kazuyuki; Kamimura, Masayasu; Yahiro, Masanobu; Iseri, Yasunori
2003-01-01
The astrophysical factor S 17 for 7 Be(p,γ) 8 B reaction is reliably extracted from the transfer reaction 7 Be(d,n) 8 B at E=7.5 MeV with the asymptotic normalization coefficient method. The transfer reaction is accurately analyzed with CDCC based on a three-body model. This analysis is free from uncertainties of the optical potentials having been crucial in the previous DWBA analyses
Importance of the tensor interaction in the (/sup 7/Li, /sup 7/Be) reaction
Energy Technology Data Exchange (ETDEWEB)
Dodd, A.C.; Clarke, N.M.; Coopersmith, J.; Griffiths, R.J.; Pearce, K.I.; Stanley, B.; Cook, J.
1985-09-01
Data for the /sup 28/Si(/sup 7/Li, /sup 7/Be)/sup 28/Al reaction at 72 MeV and for the /sup 26/Mg(/sup 7/Li, /sup 7/Be)/sup 26/Na reaction at 88 MeV are presented together with one-step DWBA calculations using microscopic form factors. The tensor interaction is shown to be important to explain the structureless nature of the angular distributions.
The total angular moment selectivity in 7Li(α, α) 7Li(4.63 MeV, 7/2-) reaction at Eα = 27.2 MeV
International Nuclear Information System (INIS)
Dmitrenko, V.N.; Kozyr', Yu.E.
1995-01-01
The DWBA calculation of tensor polarisation of residual nuclei for direct inelastic scattering 7 Li(α, α) 7 Li(4.63 MeV, 7/2 - ) gives the lest approximation to experimental data at selected total angular moment and parity values J π 13/2 + . The microscopic coupled channel calculation also predicts a significant role of total angular moment states with J ≥ 13/2. at E α 27.2 MeV
A spin filter polarimeter and an α-particle D-state study
International Nuclear Information System (INIS)
Lemieux, S.K.
1993-01-01
A Spin Filter Polarimeter (SFP) which reveals populations of individual hyperfine states of nuclear spin-polarized H ± (or D ± ) beams has been tested. the SFP is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of the hydrogen (or deuterium) atoms, created when the polarized ion beams pick up electrons in cesium vapor. The SFP has potential for an absolute accuracy of better than 1.5%, thus it could be used for calibrating polarimeters absolutely for low energy experiments for which no nuclear polarization standard exists. Test results show that the SFP provides a quick and elegant measure of the relative hyperfine state populations in the beam. This α-particle study is a small part of a larger project studying the deuteron-deuteron configuration of the α-particle wave function. The differential cross section and tensor analyzing powers (TAP) were measured for the 50 Ti(bar d,α) 48 Sc reaction to the J π = 7 + state in 48 Sc at E x = 1.097 MeV and compared with exact finite-range distorted-wave Born approximation (DWBA) calculations. The DWBA calculations use realistic α-particle wave functions generated from variational Monte-Carlo calculations
Energy Technology Data Exchange (ETDEWEB)
Ibaraki, Masanobu; Baba, Mamoru; Matsuyama, Shigeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others
1998-06-01
We have measured the neutron elastic and inelastic scattering double-differential cross sections of {sup 6}Li at incident neutron energies of 11.5, 14.1 and 18.0 MeV. Based on this data, together with information from other works, a phenomenological neutron optical model potential (OMP) of {sup 6}Li was constructed to describe the total and elastic scattering cross sections from 5 MeV to several tens MeV. This potential also describes well the inelastic scattering to the 1st excited state (E{sub x} = 2.186 MeV) via the DWBA calculation with the macroscopic vibrational model. The continuum neutron energy spectra and angular distributions were then analyzed by the theory of final-state interaction extended to the DWBA form, with the assumption that the d-{alpha} interaction is dominant in the 3-body final state consisting of n, d and {alpha} particles. Such a calculation was found to be successful in explaining the major part of the low-excitation neutron spectra and angular distribution down to the Q-value region of -9 MeV, except for the Q-value range where the n-{alpha} quasi-free scattering will give a non-negligible contribution at forward angles. (author). 60 refs.
International Nuclear Information System (INIS)
Ibaraki, Masanobu; Baba, Mamoru; Matsuyama, Shigeo
1998-06-01
We have measured the neutron elastic and inelastic scattering double-differential cross sections of 6 Li at incident neutron energies of 11.5, 14.1 and 18.0 MeV. Based on this data, together with information from other works, a phenomenological neutron optical model potential (OMP) of 6 Li was constructed to describe the total and elastic scattering cross sections from 5 MeV to several tens MeV. This potential also describes well the inelastic scattering to the 1st excited state (E x = 2.186 MeV) via the DWBA calculation with the macroscopic vibrational model. The continuum neutron energy spectra and angular distributions were then analyzed by the theory of final-state interaction extended to the DWBA form, with the assumption that the d-α interaction is dominant in the 3-body final state consisting of n, d and α particles. Such a calculation was found to be successful in explaining the major part of the low-excitation neutron spectra and angular distribution down to the Q-value region of -9 MeV, except for the Q-value range where the n-α quasi-free scattering will give a non-negligible contribution at forward angles. (author). 60 refs
International Nuclear Information System (INIS)
Bouhelal, O.K.
1982-07-01
Giant resonances have been studied through the inelastic scattering of 108.5 MeV 3 He on several nuclei. At the very small angles (theta 0 ), the quadrupole giant resonance experimental cross-section is about twice the value predicted by DWBA calculations based on a collective model. The comparison of the experimental data and the theoretical data calculations confirms the validity of DWBA for the first excited state of low energy and same multipolarity L = 2 at the very small angles. The angular distribution for L = 0 transition of energy close to that of the quadrupole giant resonance reaches its maximum at 0 0 . The presence of an L = 0 component permits to describe the shape of the quadrupole giant resonance angular distribution, but difficulties are encountered when applying the sum rule for the heavy nuclei. Better agreement with the experimental angular distribution at small angles is obtained if a semimicroscopic convolution model of the quadrupole resonance is assumed. For excited states of low energy and multipolarity L not equal to 2, the results from the convolution model are as good as those from the standard collective model. The 2 + state in heavy nuclei is, however, much better described by the collective model [fr
International Nuclear Information System (INIS)
Frey, R.W.
1978-01-01
Using high resolution inelastic electron scattering magnitic dipole and quadrupole excitations in 208 Pb were investigated in the energy range between 6 MeV and 8 MeV. The electron energy was 50 MeV and 63.5 MeV. With a mean absolute energy resolution of 33 kev. 44 excited states were found in the above energy range. The measured angular distributions were compared with DWBA-calculations using random phase approximated wave functions. (FKS)
Cross sections for multistep direct reactions
International Nuclear Information System (INIS)
Demetriou, Paraskevi; Marcinkowski, Andrzej; Marianski, Bohdan
2002-01-01
Inelastic scattering and charge-exchange reactions have been analysed at energies ranging from 14 to 27 MeV using the modified multistep direct reaction theory (MSD) of Feshbach, Kerman and Koonin. The modified theory considers the non-DWBA matrix elements in the MSD cross section formulae and includes both incoherent particle-hole excitations and coherent collective excitations in the continuum, according to the prescriptions. The results show important contributions from multistep processes at all energies considered. (author)
Tensor Force and D-state Effects Upon (d,x) Cross Sections
Hawk, Eric; McNeil, James; Cecil, F. Edward; Hofstee, Mariet; Greife, Uwe; Pallone, Arthur
2000-09-01
The effects of the inclusion of the tensor force and the internal deuteron D-state upon low-energy deuteron-stripping reactions (d,x) are examined within the context of the distorted-wave Born approximation (DWBA). Inclusion of these effects requires a relaxation of the commonly employed zero-range approximation. This relaxation is treated via a derivative expansion. Comparisons with the differential cross sections found using zero-range, S-state calculations are made for several low-Z nuclei.
Study of the threshold anomaly in the scattering of polarized 7Li from 208Pb
International Nuclear Information System (INIS)
Martel, I.; Gomez-Camacho, J.; Blyth, C.O.; Davis, N.J.; Rusek, K.; Connell, K.A.; Lilley, J.S.; Bailey, M.W.
1995-01-01
Experimental data on elastic and inelastic analysing powers T 20 and inelastic cross sections for the scattering of polarized 7 Li from a 208 Pb target are presented. The experimental data are analyzed with DWBA and coupled channels calculations, which show the sensitivity of the experimental data to the real and imaginary parts of the nuclear transition form factor. This study reveals the existence of a threshold anomaly for the transition terms of the interaction. ((orig.))
The contribution of second-order processes to (3He, n) calculations
International Nuclear Information System (INIS)
Brissaud, I.
1978-01-01
The reactions 90 Zr, 116 Cd( 3 He, n) have been analysed by adding two second-order processes to the usual one-step DWBA calculations: sequential stripping or inelastic transition followed by double stripping. These second-order contributions increase the cross sections, especially for 90 Zr, and improve the shape of the angular distribution for 116 Cd. It shows that such second-order processes cannot be omitted in the analysis of two-particle stripping reactions. (author)
High spin states excited by the (p, t) reaction on lead isotopes
Energy Technology Data Exchange (ETDEWEB)
Kumabe, I.; Hyakutake, M. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Yuasa, K.; Yamagata, T.; Kishimoto, S.; Ikegami, H.; Muraoka, M [eds.
1980-01-01
In order to find high spin states the sup(204, 206, 208)Pb (p, t) reactions have been investigated with RCNP isochronous cyclotron and a high resolution magnetic spectrograph ''RAIDEN''. The experimental angular distributions were analyzed by DWBA calculations, and the lowest 10/sup +/, 12/sup +/ (i sub(13/2))/sup 2/ and 11/sup -/ (i sub(13/2), h sub(9/2)) states in /sup 202/Pb, /sup 204/Pb and /sup 206/Pb were established.
Asymptotic normalization coefficients for 10B→9Be+p
International Nuclear Information System (INIS)
Mukhamedzhanov, A.M.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.; Trache, L.; Tribble, R.E.; Xu, H.M.; Zhou, X.G.; Burjan, V.; Cejpek, J.; Kroha, V.; Carstoiu, F.
1997-01-01
The differential cross sections for the reactions 9 Be( 10 B, 10 B) 9 Be and 9 Be( 10 B, 9 Be) 10 B have been measured at an incident energy of 100 MeV. The elastic scattering data have been used to determine the optical model parameters for the 9 Be+ 10 B system at this energy. These parameters are then used in distorted-wave Born approximation (DWBA) calculations to predict the cross sections of the 9 Be( 10 B, 9 Be) 10 B proton exchange reaction, populating the ground and low-lying states in 10 B. By normalizing the theoretical DWBA proton exchange cross sections to the experimental ones, the asymptotic normalization coefficients (ANC's), defining the normalization of the tail of the 10 B bound state wave functions in the two-particle channel 9 Be+p, have been found. The ANC for the virtual decay 10 B(g.s.)→ 9 Be+p will be used in an analysis of the 10 B( 7 Be, 8 B) 9 Be reaction to extract the ANC's for 8 B→ 7 Be +p. These ANC's determine the normalization of the 7 Be(p,γ) 8 B radiative capture cross section at very low energies, which is crucially important for nuclear astrophysics. copyright 1997 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Vallois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-03-01
{sup 206,207,208}pb have been studied by 24.5 MeV proton inelastic scattering with a resolution of 20 keV. The angular distributions of the differential cross-sections corresponding to the different excited levels have been measured in a large angular region and analysed with the DWBA.This work shows that it exists between 4 and 5 MeV of excitation energy some strongly excited levels corresponding to transfer momenta l = 2, 4, 6 and 8. The single particle-hole models do not explain these states; so it will probably be necessary to introduce some several particle - hole configurations. (author) [French] Les isotopes 206, 207 et 208 du plomb ont ete etudies par diffusion inelastique de protons de 24,5 MeV avec une resolution de 20 keV. Les distributions angulaires des sections efficaces differentielles correspondant aux differents niveaux excites ont ete mesurees sur un large domaine angulaire et analysees a l'aide de la DWBA. Ce travail met en evidence l'existence, entre 4 et 5 MeV d'excitation, de niveaux fortement excites correspondant a des moments de transfert de 2, 4, 6 et 8. Les modeles a simple particule-trou ne rendant pas compte de ces niveaux, il faudra sans doute recourir a des configurations a plusieurs particules-trous pour les expliquer. (auteur)
Assessing the foundation of the Trojan Horse Method
Bertulani, C. A.; Hussein, M. S.; Typel, S.
2018-01-01
We discuss the foundation of the Trojan Horse Method (THM) within the Inclusive Non-Elastic Breakup (INEB) theory. We demonstrate that the direct part of the INEB cross section, which is of two-step character, becomes, in the DWBA limit of the three-body theory with appropriate approximations and redefinitions, similar in structure to the one-step THM cross section. We also discuss the connection of the THM to the Surrogate Method (SM), which is a genuine two-step process.
An analysis of stripping to isolated analog resonances
International Nuclear Information System (INIS)
Pessoa, E.F.; Toledo Piza, A.F.R. de.
1983-04-01
The Feshbach projection formalism is used to calculate the form factors for the (d,n) stripping process to isolated analog resonances. These are used in a standard DWBA stripping calculation in which the radial integration over all space is accomplished by including outerspace contributions evaluated along the complex contours of Vincent and Fortune. It turns out that the shape and magnitude of the predicted cross section is quite insensitive to the continuum proton wave emanating from the resonant residual state. (Author) [pt
Alpha particles-and 3He inelastic scattering by 124Sn in the coulomb barrier region
International Nuclear Information System (INIS)
Appoloni, C.R.
1976-01-01
Angular distributions for inelastic scattering of α and 3 He particles in 124 Sn at the incident energies around Coulomb barrier were measured using the 8UD Pelletron Tandem Accelerator of The University of Sao Paulo. The results were analysed by DWBA with a collective form factor including the effects due to the interference between coulomb and nuclear excitations with the code PATIWEN (Ba75). The nuclear deformation parameters for the one phonon levels (2 + and 3 - ) have been obtained. (Author) [pt
Scattering of polarized protons by yttrium, iron and nickel nuclei
International Nuclear Information System (INIS)
Melssen, J.P.M.G.
1978-01-01
Results are presented of scattering experiments performed on yttrium and some iron and nickel isotopes with polarized proton beams at energies around 20 MeV. The angular distributions of the differential cross sections and analyzing powers have been measured and comparison of these with predictions from theoretical models has led to information about excited nuclear states like spin, parity and details of the wavefunctions. The DWBA has been mostly used to describe the reaction at the bombarding energies and for the target nuclei investigated. (C.F.)
International Nuclear Information System (INIS)
Aron, D.L.
1985-06-01
New data are presented for the 26 Mg(p,n) 26 Al reaction at E/sub p/ = 19.12 and 24.97 MeV, for the 54 Fe(p,n) 54 Co reaction at E/sub p/ = 17.20, 18.60, and 24.60 MeV, and for the 56 Fe(p,n) 56 Co reaction at E/sub p/ = 19.12 and 24.59 MeV. Data were taken with the LLNL Cyclograaff at 16 angles from 3.5 0 to 159.0 0 . A large detector at 23.8 0 with a long neutron flight path collected high resolution spectra. This large detector also collected separate 0 0 high resolution data on the 26 Mg and 56 Fe(p,n) reactions at E/sub p/ = 19 MeV. Absolute differential (p,n) cross sections were extracted for 1 + states in 26 Al, 54 Co, and 56 Co, for the 0 + isobaric analong state (IAS) in 54 Co and 56 Co, for a 2 + state in each residual nucleus, and for the 0.199 MeV 7 + state of 54 Co. No new experimental states were identified. Only relative cross sections were extracted at 0 0 . Experimental angle-integrated cross sections were obtained for all but one state. DWBA79 was used, with the G-matrix effective nucleon-nucleon interaction of Bertsch et al. (with the central triplet-odd component V/sub to/ = O) and the Livermore shell model wave functions to calculate differential (p,n) cross sections to 1 + states and to the 54 Co and 56 Co IAS. Normalization of the DWBA angle-integrated cross sections to measurements for the 54 Co and 56 Co IAS (at E/sub p/ = 24.6 MeV) yielded the renormalized V/sub tau/ = 21.4 +- 2.1 MeV. Normalization of the DWBA angle-integrated cross sections to measurements for the 24.6 MeV 54 Co and 56 Co 1 + states, coupled with the normalization of the wave functions to previously experimentally determined GT strength, yield the renormalized V/sub sigmatau/ = 12.3 +- 1.2 MeV. The experimental Gamow-Teller strength B(GT)/sub exp./ of the T = 1 26 Al state at 9.44 MeV was found to be 0.69; B(GT)/sub exp/ of the T = 1 26 Al state at 10.47 MeV was found to be 0.39
International Nuclear Information System (INIS)
Becchetti, F.D.; Harvey, B.G.; Kovar, D.; Mahoney, J.; Maguire, C.; Scott, D.K.
1975-01-01
The neutron levels in 209 Pb have been studied with the 208 Pb( 16 O, 15 O) reaction at a bomdarding energy of 139 MeV. Spectroscopic factors (S) have been deduced using a finite-range distorted-wave Born approximation (DWBA) with recoil. The 2g 9 / 2 , 1i 11 / 2 , 2g 7 / 2 , and 3d 3 / 2 levels are found to have S approximately-greater-than 0.9 while S approx. = 0.7 for the 1j 15 / 2 level at 1.4 MeV excitation. Evidence is found for other 1j 15 / 2 fragments being at 3.05 MeV and approx. 3.8 MeV with S approx. = 0.08 and 0.26, respectively, which would place the centroid of the 1j 15 / 2 level at E/subx/ approx. = 2.2 MeV. DWBA predicts a shift in the maxima of the angular distributions as a function of Q value which is not observed experimentally. A comparison with the proton transfer reaction 208 Pb( 16 O, 15 N) 209 Bi has been used to deduce the geometrical parameters of a neutron shell model potential appropriate for nuclei with A approximately-greater-than 200. The parameters of this Wood-Saxon potential are: V/subR/=-50.5 MeV,r/subR/=1.19 fm, a/subR/=0.75 fm, V)=-5.5 MeV, r)=1.01 fm, and a)=0.75 fm
Giant quadrupole resonance in 12C, 24Mg, and 27Al observed via deuteron inelastic scattering
International Nuclear Information System (INIS)
Chang, C.C.; Didelez, J.P.; Kwiatowski, K.; Wo, J.R.
1977-06-01
Giant quadrupole resonance in 12 C, 24 Mg, and 27 Al was studied using 70 MeV deuteron beam. The results clearly show, in all three targets, resonance-like structures peaked at E/sub x/ approximately 63A/sup -1/3/ MeV, with a width of about 10 MeV. The experimental angular distributions for these resonances agree well with the l = 2 DWBA prediction. For 12 C, a binary splitting was observed, and for 24 Mg, there are indications of finer structure in the main giant quadrupole resonance region
Elastic enhancement factor in the 11B(p,n0)11C reaction at Ep=14.3 MeV
International Nuclear Information System (INIS)
Hussein, M.S.; Pessoa, E.F.; Schelin, H.R.; Carlson, B.V.; Douglas, R.A.
1985-01-01
The elastic enhancement factor in charge exchange reactions proceeding via the compound nucleus, predicted to attain the value of 2 in the weak isospin mixing regime by Harney, Weidenmuller and Richter five years ago, is tested here in the system 11 B(p,n) 11 C at = 14.3 MeV. Both the DWBA and Hauser-Feshbach calculations employed in the analysis are used in a way which physically simulates a two coupled-channels model. Our results show an enhancement factor larger than 1 indicating that isospin is mainly conserved in this reaction. (Author) [pt
PTOLEMY, a program for heavy-ion direction-reaction calculations
International Nuclear Information System (INIS)
Gloeckner, D.H.; Macfarlane, M.H.; Pieper, S.C.
1976-03-01
Ptolemy is an IBM/360 program for the computation of nuclear elastic and direct-reaction cross sections. It carries out both optical-model fits to elastic-scattering data at one or more energies, and DWBA calculations for nucleon-transfer reactions. Ptolemy has been specifically designed for heavy-ion calculations. It is fast and does not require large amounts of core. The input is exceptionally flexible and easy to use. This report outlines the types of calculation that Ptolemy can carry out, summarizes the formulas used, and gives a detailed description of its input
International Nuclear Information System (INIS)
Knuepfer, W.; Frey, R.; Richter, A.; Schwierczinski, A.; Spamer, E.; Titze, O.
1977-12-01
High-resolution inelastic electron scattering (FWHM approximately equal to 33 keV) with 50 MeV and 63.5 MeV electrons on 208 Pb has been used to study magnetic excitations between Esub(x) = 6 MeV and 8 MeV. Angular distributions were analyzed in terms of the DWBA with RPA wave functions. Eight Isup(π) = 2- states carrying a total strength ΣB(M2) = 8500 μ 2 sub(K) fm 2 have been found. The strong fragmentation is in qualitative agreement with theoretical predictions. (orig.) [de
Parity dependence in the optical potential of sd-shell nuclei
International Nuclear Information System (INIS)
Ferrero, J.L.; Ruiz, J.A.; Bilwes, B.; Bilwes, R.
1989-01-01
Elastic scattering between sd-shell nuclei differing by one, two, three and four nucleons has been measured. The oscillating pattern of the angular distributions, when it is observed, is attributed to the interference between direct elastic scattering and elastic transfer. Explicit DWBA treatment of the elastic transfer or parity dependent real potential analysis allow both a good reproduction of the data. The sign and the importance of the parity potential deduced by fitting the data are in good agreement with the predictions of microscopic calculations in the two centre shell-model
Neutron emission cross sections on 93Nb at 20 MeV incident energy
International Nuclear Information System (INIS)
Marcinkowski, A.; Kielan, D.
1991-01-01
Over the last years fully quantum-mechanical theories of nuclear reactions have been developed that provide, at least in principle, parameter-free methods of calculating double-differential continuum cross sections. The DWBA-based theory of direct processes to the continuum was derived by Tamura et al. The statistical theory of Feshback, Kerman and Koonin (FKK) introduced two reaction types in parallel as complementary mechanisms contributing to the preequilibrium decay. The multistep compound mechanism (MSC) results in symmetric angular distributions of the emitted particles, whereas the multistep direct mechanism (MSD) gives rise to the forward-peaked angular distributions. The theories of the MSC reactions differ in that the FKK theory incorporates the ''never come back'' hypothesis, which allowed the formulation of an applicable model that was successfully used in practical calculations. On the other hand the FKK theory of the MSD reactions differs conceptually from the theory of Tamura et al. and from the more general theory developed most recently by Nishioka et al. The latter theories were shown to be founded upon a postulated chaos located in the residual nucleus. In contrast, the theory of FKK assumes a chaotic interaction of the continuum particle to be emitted with the residual nucleus. The continuum or leading-particle statistics of the FKK theory results in the simple, convolution like, MSD cross section formula, which facilitates numerical calculations. Nevertheless two-step statistical DWBA calculations have been also performed. This paper extends the application of the FKK theory to the 93 Nb(n,xn) reaction at 20 MeV incident energy. (author). 14 refs, 1 fig
International Nuclear Information System (INIS)
Misono, S.; Imanishi, B.
1997-02-01
We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs
International Nuclear Information System (INIS)
Abd el-Kariem, S.E.S.
1984-01-01
In the framework of a systematic analysis of many-particle transfer reactions on light nuclei in the present thesis the two-particle transfer reactions of the type (d,α) on the nucleus 10 B at Esub(d) = 16 MeV and on the nuclei 11 B, 12 C and 13 C at Esub(d) = 24 MeV as well as the three-particle transfer reaction 13 C(p,α) 10 B at eight incident energies between 16 and 45 MeV have been studied. In the case of the residual nuclei 10 B and 11 B transitions up to an excitation energy Esub(x) approx.= 7.5 respectively approx.= 9,0 MeV, in the case of the residual nuclei 8 Be and 9 Be transitions up to Esub(x) approx.= 17 respectively 2.5 MeV were evaluated. Under the assumption that the studied reactions behave as direct one-stage transfer processes the measurement results were analyzed in the framework of the DWBA theory in zero-range approximation. The parameters for the optical potentials used in the DWBA calculations were taken from literature and partly modified by fitting to the angular distributions of the reactions studied here. Microscopic and semimicroscopic calculations were performed. In the semimicroscopic calculations the spectroscopic amplitudes calculated microscopically or in SU(3) approximation were used together with a cluster form factor, in the other case with a microscopically calculated form factor. For the residual nucleus for some higher excited states results on spin, parity, and isospin could be partly obtained, partly confirmed. (orig./HSI) [de
Near threshold absolute TDCS: First results
International Nuclear Information System (INIS)
Roesel, T.; Schlemmer, P.; Roeder, J.; Frost, L.; Jung, K.; Ehrhardt, H.
1992-01-01
A new method, and first results for an impact energy 2 eV above the threshold of ionisation of helium, are presented for the measurement of absolute triple differential cross sections (TDCS) in a crossed beam experiment. The method is based upon measurement of beam/target overlap densities using known absolute total ionisation cross sections and of detection efficiencies using known absolute double differential cross sections (DDCS). For the present work the necessary absolute DDCS for 1 eV electrons had also to be measured. Results are presented for several different coplanar kinematics and are compared with recent DWBA calculations. (orig.)
Systematics of quasi-elastic processes induced by heavy ions
International Nuclear Information System (INIS)
Baltz, A.J.
1976-01-01
An attempt is made to delineate the areas in the systematics of quasi-elastic processes induced by heavy ions that are well described theoretically from the specific features that seem not to be understood. One- and two-particle transfer reactions are considered. A general systematic seen in transfer angular distribution data and theory, some successes and failures of the DWBA and coupled-channels theories in describing heavy-ion-reaction data, and the specific example 232 Th( 40 Ar,K) and implications for deep inelastic reactions with even heavier projectiles such as Kr and Xe are considered
16O resonances near 4α threshold through 12C (6Li,d ) reaction
Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; de Faria, P. Neto; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M.; di Napoli, M.; Ukita, G. M.
2014-11-01
Several narrow alpha resonant 16O states were detected through the 12C (6Li,d ) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV).
DEFF Research Database (Denmark)
Tengborn, E.; Moro, A.M.; Nilsson, T.
2011-01-01
identified and the related angular distributions extracted and compared with coupled-channels, distorted-wave Born approximation (DWBA), and coupled-reaction-channels calculations. For the inelastic and (d,t) channels we find that higher order effects are very important and hence one needs to go beyond......The reaction 8Li + 2H has been studied in inverse kinematics at the incident energy of 3.15 MeV/nucleon, using the REX-ISOLDE post-accelerator. The reaction channels corresponding to (d,p), (d,d), and (d,t) reactions populating ground states and low-lying excited states in 7–9Li have been...
16O resonances near 4α threshold through 12C(6Li,d) reaction
International Nuclear Information System (INIS)
Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; Faria, P. Neto de; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M.; Napoli, M. di; Ukita, G. M.
2014-01-01
Several narrow alpha resonant 16 O states were detected through the 12 C( 6 Li,d) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV)
{sup 16}O resonances near 4α threshold through {sup 12}C({sup 6}Li,d) reaction
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; Faria, P. Neto de [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05314-970, São Paulo, SP (Brazil); Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Napoli, M. di; Ukita, G. M. [Faculdade de Psicologia, Universidade de Santo Amaro, R. Prof. Eneas da Siqueira Neto, 340, CEP 04829-300, São Paulo, SP (Brazil)
2014-11-11
Several narrow alpha resonant {sup 16}O states were detected through the {sup 12}C({sup 6}Li,d) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV)
Inclusive break-up reactions of 6Li at an incident energy of 26 MeV/nucleon
International Nuclear Information System (INIS)
Shyam, R.; Machner, H.; Neumann, B.; Rebel, H.; Gils, H.J.; Planeta, R.; Buschmann, J.; Klewe-Nebenius, H.; Zagromski, S.
1982-01-01
Inclusive charged particle spectra were measured from nuclear reactions induced by 156 MeV 6 Li on 40 Ca. At forward angles the spectra exhibit broad break-up distributions centered around the energy corresponding to the beam velocity. The double differential cross sections together with previous results for a 208 Pb target were analyzed in the framework of the DWBA approach to projectile break-up taking into account elastic and inelastic reactions of the break-up fragments. The high energy tails of the background due to preequilibrium emission of complex charged particles were estimated on the basis of the coalescence model. (orig.) [de
Nuclear structure in deep-inelastic reactions
International Nuclear Information System (INIS)
Rehm, K.E.
1986-01-01
The paper concentrates on recent deep inelastic experiments conducted at Argonne National Laboratory and the nuclear structure effects evident in reactions between super heavy nuclei. Experiments indicate that these reactions evolve gradually from simple transfer processes which have been studied extensively for lighter nuclei such as 16 O, suggesting a theoretical approach connecting the one-step DWBA theory to the multistep statistical models of nuclear reactions. This transition between quasi-elastic and deep inelastic reactions is achieved by a simple random walk model. Some typical examples of nuclear structure effects are shown. 24 refs., 9 figs
Nuclear reactions induced by the bombardment of 18O with 18O
International Nuclear Information System (INIS)
Kalinsky, D.; Melnik, D.; Smilansky, U.; Trautner, N.; Horowitz, Y.; Mordechai, S.
1977-01-01
Angular distributions have been measured for the elastic, inelastic, one and two-neutron transfer reactions for the system 18 O + 18 O at center of mass energies ranging from 10.0 to 18.0 MeV, at c.m. angles between 90deg and 125deg. The inelastic scattering data were analyzed assuming a collective excitation mechanism and with a coupled channels approach. In order to obtain a good fit it was necessary to include a hexadecapole deformation. The one and two neutron transfer reactions were analyzed in terms of a single step finite range plus recoil DWBA theory. (author)
International Nuclear Information System (INIS)
Thumm, M.
1976-01-01
The angular distribution of the spin-flip analysing power is stronly energy-dependent, supporting the assumption of structure effects. Elastic scattering data were also measured and analysed together with results of other authors in the frame work of the optical model. An interpretation of the inelastic scattering data was only possible by the assumption of a strong, energy-dependent deformation of the spin-orbit potential. Therefore the results of the inelastic channel were also compared with a microscopic DWBA theory. In the framework of this formalism, the energy dependence could be reproduced quite well. (BJ) [de
Disentangling the transfer and breakup contributions for the inclusive 8 Li + 208 Pb reaction
International Nuclear Information System (INIS)
Moro, A.M.; Crespo, R.; Garcia M, H.; Aguilera, E.F.; Martinez Q, E.; Gomez C, J.; Nunes, F.M.
2003-01-01
An analysis of the 8 Li + 208 Pb reaction at energies around the Coulomb barrier is presented. The study is focused on the elastic and one-neutron removal channels. For the elastic scattering, an optical model analysis of the experimental data is performed. The observed 7 Li is interpreted as the superposition of the one-neutron transfer reaction, 208 Pb ( 8 Li, 7 Li) 209 Pb, and the breakup reaction. The separate contribution of each one of these processes has been calculated within the DWBA formalism. The sum of both contributions explains adequately the experimental angular distribution of 7 Li. (Author)
Inclusive break-up reactions of 6Li at an incident energy of 26 MeV/nucleon
International Nuclear Information System (INIS)
Neumann, B.; Rebel, H.; Gils, H.J.; Planeta, R.; Buschmann, J.; Klewe-Nebenius, H.; Zagromski, S.; Shyam, R.; Machner, H.
1982-01-01
Inclusive charged particle spectra were measured from nuclear reactions induced by 156 MeV 6 Li on 40 Ca. At forward angles the spectra exhibit broad break-up distributions centered around the energy corresponding to the beam velocity. The double differential cross sections together with previous results for a 208 Pb target were analyzed in the framework of the DWBA approach to projectile break-up taking into account elastic and inelastic reactions of the break-up fragments. The high energy tails of the background due to preequilibrium emission of complex charged particles were estimated on the basis of the coalescence model. (orig.)
International Nuclear Information System (INIS)
Vallois, G.
1968-03-01
206,207,208 pb have been studied by 24.5 MeV proton inelastic scattering with a resolution of 20 keV. The angular distributions of the differential cross-sections corresponding to the different excited levels have been measured in a large angular region and analysed with the DWBA.This work shows that it exists between 4 and 5 MeV of excitation energy some strongly excited levels corresponding to transfer momenta l = 2, 4, 6 and 8. The single particle-hole models do not explain these states; so it will probably be necessary to introduce some several particle - hole configurations. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Song, In Ho; Lee, Tae Sup; Kang, Joo Hyun; Lee, Yong Jin; Kim, Kwang Il; An, Gwang Il; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)
2009-10-15
Hydrodynamic-based procedure is a simple and effective gene delivery method to lead a high gene expression in liver tissue. Non-invasive imaging reporter gene system has been used widely with herpes simplex virus type 1 thymidine kinase (HSV1-tk) and its various substrates. In the present study, we investigated to image the expression of HSV1-tk gene with 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in mouse liver by the hydrodynamicbased procedure. HSV1-tk or enhanced green fluorescence protein (EGFP) encoded plasmid DNA was transferred into the mouse liver by hydrodynamic injection. At 24 h post-injection, RT-PCR, biodistribution, fluorescence imaging, nuclear imaging and digital wholebody autoradiography (DWBA) were performed to confirm transferred gene expression. In RT-PCR assay using mRNA from the mouse liver, specific bands of HSV1-tk and EGFP gene were observed in HSV1-tk and EGFP expressing plasmid injected mouse, respectively. Higher uptake of radiolabeled IVDU was exhibited in liver of HSV1-tk gene transferred mouse by biodistribution study. In fluorescence imaging, the liver showed specific fluorescence signal in EGFP gene transferred mouse. Gamma-camera image and DWBA results showed that radiolabeled IVDU was accumulated in the liver of HSV1-tk gene transferred mouse. In this study, hydrodynamic-based procedure was effective in liver-specific gene delivery and it could be quantified with molecular imaging methods. Therefore, co-expression of HSV1-tk reporter gene and target gene by hydrodynamic-based procedure is expected to be a useful method for the evaluation of the target gene expression level with radiolabeled IVDU.
A contribution to the study of excited states of Neon 22 and Sodium 22
International Nuclear Information System (INIS)
Chambon, Bernard.
1976-01-01
The experimental study of 22 Ne has been performed. A differentially pump gas target has been used, in conjunction with E+ΔE detectors. Angular distribution measurements have been performed on the 21 Ne(d,p) 22 Ne reaction in the Esub(d) energy range from 3 to 3.6MeV. Angular momentum has been identified and spectroscopic factors extracted for 18 levels by comparison with DWBA predictions. Spin and parities of some excited levels were deduced. The study of the 21 Ne(t,d) 22 Ne reaction corroborates the results concerning the first excited state (2 + ). Experimental results are compared with the predictions of the unified rotational model and of the shell-model. The 20 Ne(t,p) 22 Ne reaction was studied at 3MeV and 3.4MeV bombarding energies. The total cross-section of most groups was analyzed in terms of Hauser-Feshbach theory and several final-state spin predictions are made. The angular distribution of the 20 Ne(t,p) 22 Ne (Esub(x)=6.24MeV) reaction was analyzed by double stripping DWBA theory and indicates 0 + for this state, the isobaric analog of which has been identified at 6.83MeV in 22 Na. Furthermore, several new isobaric analog pairs in 22 Na and 22 Ne are identified via the study of excitation functions for the reactions 21 Ne(p,p) 21 Ne and 21 Ne(p,p') 21 Ne for Esub(p)=0.6-2MeV. Implications of the present results with regard to the identification of band structure in 22 Na are discussed [fr
Theoretical nuclear physics. Task B. Technical progress report, August 1, 1982-September 30, 1983
International Nuclear Information System (INIS)
1983-01-01
Progress is reported on the following studies: (a) double delta interactions in pion double charge exchange; (b) isovector correlations in pion-nucleus scattering; (c) nuclear structure effects in pion single charge exchange; (d) a perspective on sequential transfer reactions; (e) inelastic and charge exchange scattering theory; (f) magnitude of the first order DWBA description of the two nuclear transfer reactions; (g) nonlocality effects on deuteron transfer reactions; (h) evaluation of external radial integrals in inelastic electron scattering; (i) experimental observables as a function of Dirac invariant amplitudes; (j) Dirac shell-model wavefunctions in inelastic electron scattering; and (k) impulse approximation Dirac theory of inelastic proton nucleus collective excitations. Publications are listed
International Nuclear Information System (INIS)
Dimitrova, S.S.; Gaidarov, M.K.; Antonov, A.N.; Stoitsov, M.V.; Hodgson, P.E; Lukyanov, V.K.; Zemlyanaya, E.V.; Krumova, G.Z.
1997-01-01
Overlap functions and spectroscopic factors extracted from a model one-body density matrix (OBDM) accounting for short-range nucleon-nucleon correlations are used to calculate differential cross sections of (p, d) reactions and the momentum distributions of transitions to single-particle states in 16 O and 40 Ca. A comparison between the experimental (p, d) and (e, e'p) data, their DWBA and CDWIA analyses and the OBDM calculations is made. Our theoretical predictions for the spectroscopic factors are compared with the empirically extracted ones. It is shown that the overlap functions obtained within the Jastrow correlation method are applicable to the description of the quantities considered. (author)
Two-neutron transfer in nuclei close to the drip-line
International Nuclear Information System (INIS)
Khan, E.; Nguyen, Van Giai; Grasso, M.; Sandulescu, N.
2003-01-01
We investigate the two-neutron transfer modes induced by (t,p) reactions in neutron-rich oxygen isotopes. The nuclear response to the pair transfer is calculated in the framework of continuum-Quasiparticle Random Phase Approximation (cQRPA). The cQRPA allows a consistent determination of the residual interaction and an exact treatment of the continuum coupling. The (t,p) cross sections are calculated within the DWBA approach and the form factors are evaluated by different methods: macroscopically, following the Bayman and Kallio method, and fully microscopically. The largest cross section corresponds to a high-lying collective mode built entirely upon continuum quasiparticle states. (authors)
Two-neutron transfer in nuclei close to the drip-line
Energy Technology Data Exchange (ETDEWEB)
Khan, E.; Nguyen, Van Giai; Grasso, M. [Institut de Physique Nucleaire, IN2P3-CNRS, 91406 Orsay (France); Sandulescu, N. [Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest (Romania)]|[Royal Institute of Technology, SCFAB, SE-10691, Stockholm (Sweden)
2003-07-01
We investigate the two-neutron transfer modes induced by (t,p) reactions in neutron-rich oxygen isotopes. The nuclear response to the pair transfer is calculated in the framework of continuum-Quasiparticle Random Phase Approximation (cQRPA). The cQRPA allows a consistent determination of the residual interaction and an exact treatment of the continuum coupling. The (t,p) cross sections are calculated within the DWBA approach and the form factors are evaluated by different methods: macroscopically, following the Bayman and Kallio method, and fully microscopically. The largest cross section corresponds to a high-lying collective mode built entirely upon continuum quasiparticle states. (authors)
Reaction channels of 6,7Li+28Si at near-barrier energies
International Nuclear Information System (INIS)
Pakou, A; Rusek, K; Nicolis, N G; Alamanos, N; Doukelis, G; Gillibert, A; Kalyva, G; Kokkoris, M; Lagoyannis, A; Musumarra, A; Papachristodoulou, C; Perdikakis, G; Pierroutsakou, D; Pollacco, E C; Spyrou, A; Zarkadas, Ch
2005-01-01
The production of α-particles in the reactions 6,7 Li+ 28 Si was studied as a means to disentangle the various reaction channels at near-barrier energies. The competition between compound and direct reactions was determined by using the shape of angular distributions and statistical model calculations. DWBA calculations were also performed to probe the various direct channels. It was found that, approaching barrier, transfer channels are the most dominant for both reactions. For 7 Li+ 28 Si d-transfer is one of the contributing channels without excluding t-transfer, while for 6 Li+ 28 Si, n-transfer and p-transfer have substantial contribution but without excluding d-transfer
The Dirac distorted wave Born approximation
International Nuclear Information System (INIS)
Cooper, T.; Sherif, H.S.; Johansson, J.; Sawafta, R.I.
1985-02-01
The purpose of this investigation is to illuminate the assumptions which are made when one writes down a Dirac DWBA matrix element. Due to the strong nature of the nucleon-nucleon potentials it is difficult to justify some of the steps involved in the general case; however by limiting ourselves to situations where only one (interacting) nucleon is present we can side-step this difficulty. We conclude the excellent agreement with the experiment justifies, a posteriori, the procedure, however we would like to remind the reader that, at least for proton inelastic scattering to collective states, the same quality of agreement can be obtained purely within a Schrodinger formalism
Scattering of 14.2 MeV polarized neutrons from 12C
International Nuclear Information System (INIS)
Casparis, R.; Leemann, B.Th.; Preiswerk, M.; Rudin, H.; Wagner, R.; Zupranski, P.
1976-01-01
Polarized 14.2 MeV neutrons with a polarization of approximately 50% were produced in the 3 H(d(pol),n(pol)) 4 He reaction using vector polarized deuterons from an 'atomic beam' source of polarized ions. The angular distributions of the analyzing power in the elastic and inelastic (Q = -4.43 MeV) scattering of neutrons from carbon have been measured at ten angles in the range from 22 0 to 152 0 c.m. A time-of-flight technique was used to separate elastically and inelastically scattered neutrons. The results have been compared with theoretical calculations obtained with the DWBA and the coupled channels method. (Auth.)
The 7Li(d-vector,n0)8Be and 7Li(d-vector,n1)8Be reactions below 160 keV
International Nuclear Information System (INIS)
Sabourov, A.; Ahmed, M. W.; Blackston, M. A.; Crowell, A. S.; Howell, C. R.; Joshi, K.; Nelson, S. O.; Perdue, B. A.; Sabourov, K.; Tonchev, A.; Weller, H. R.; Prior, R. M.; Spraker, M. C.; Braizinha, B.; Kalantar-Nayestanaki, N.
2006-01-01
The polarization observables have been determined for the 7 Li(d-vector,n 0 ) 8 Be and 7 Li(d-vector ,n 1 ) 8 Be reactions at beam energies between 80 and 160 keV. A Transition Matrix Element (TME) analysis revealed unique, dominant p-wave solutions for both neutron channels. The polarization observables were compared with distorted wave Born approximation (DWBA) and coupled reaction channels (CRC) calculations. The general features of the data can be reproduced by the CRC calculations when a large target spin-orbit interaction is included. However, serious discrepancies are observed when the TMEs of the theory and experiment are compared
Single-particle states in ^112Cd probed with the ^111Cd(d,p) reaction
Garrett, P. E.; Jamieson, D.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G. C.; Hertenberger, R.; Wirth, H.-F.; Kr"Ucken, R.; Faestermann, T.
2009-10-01
As part of a program of detailed spectroscopy of the Cd isotopes, the single-particle neutron states in ^112Cd have been probed with the ^111Cd(d,p) reaction. Beams of polarized 22 MeV deuterons, obtained from the LMU/TUM Tandem Accelerator, bombarded a target of ^111Cd. The protons from the reaction, corresponding to excitation energies up to 3 MeV in ^112Cd, were momentum analyzed with the Q3D spectrograph. Cross sections and analyzing powers were fit to results of DWBA calculations, and spectroscopic factors were determined. The results from the experiment, and implications for the structure of ^112Cd, will be presented.
A Simple DWBA (’Franck-Condon’) Treatment of H-Atom Transfers between Two Heavy Particles.
1984-07-02
integral over the reactants’ and products’ wavefunctions and the interaction potential. )Permanent address: DIpartarnento de Quirnica Fisica y Quimica... Cuantica , USniversidad Autonomna de Madrid, Cantoblanco. Madrid-34, Spain. blContribution No. 7020. -2- The reactants’ and products’ wavelunctions
Nucleon-nucleus scattering: a microscopic nonrelativistic approach
International Nuclear Information System (INIS)
Amos, K.; Dortmans, H.V.; Raynal, J.
1998-01-01
The authors are reviewing the nucleon based microscopic theory of nucleon-nucleus (NA) scattering and its applications taking in consideration the developments that have occurred within the last decade. The review comprises 12 Chapters. The first is a brief outline of some formal aspects of the nuclear optical potential and the scattering theory by which it is related to NN scattering amplitudes, t matrices and g matrices. Then follows a presentation of the momentum space NA optical potential formed by the folding of NN t- and g matrices with nuclear densities. Applications are discussed with the examples taken from the works of Elster et al. and of Arellano et al. A folding model defining the optical potential in coordinate space is then considered. That model presupposes an effective NN interaction to be comprised of density and energy dependent central, tensor, and two-body spin-orbit terms. Such effective interactions are basic for the computer codes DWBA91 and DWBA98 that are the current technology to calculate and use microscopic non-local coordinate space optical potentials. Thus in Chapter 4, we present the helicity formalism, the multipole expansions of the effective interactions, and the particle-hole matrix elements that underlay calculations made with those programs. A key feature of both the momentum and coordinate space formulations of the NA optical potentials are the NN t- and g matrices. Details of those are given in Chapter 5 and 6 respectively. Therein the on- and off-shell properties of the t- and g matrices from realistic bosom exchange potentials, as well as from potentials determined by inversion of phase shift data, are discussed. To form the coordinate space NA optical potentials requites the effective interaction in coordinate space. Thus a parametrisation scheme is needed to specify such front t- and g matrices. A scheme that has proven useful is then discussed. In fact, the effective interactions that result, when folded with nuclear
International Nuclear Information System (INIS)
Gregersen, A.W.
1977-01-01
A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels
Energy Technology Data Exchange (ETDEWEB)
Gastebois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-06-01
The experimental results obtained in the study of the (d,p) reactions, at E{sub d} = 12 MeV, on the three even-even deformed nuclei {sup 170}Yb, {sup 172}Yb and {sup 174}Yb have been analysed in terms of DWBA calculations. The spectroscopic information relative to the odd final nuclei have been compared with the predictions of the collective model and of the Nilsson's model. The effect of various parameters used in the DWBA analysis (form factors, optical wave functions) has been carefully studied. The observed differences between the three final nuclei are qualitatively reproduced in the experimental study of resonances, seen in excitation functions of elastically and inelastically scattered protons on the same target nuclei, and corresponding to analogue states in the three nuclei {sup 171}Lu, {sup 173}Lu and {sup 175}Lu. (author) [French] Les resultats experimentaux de l'etude des reactions (d.p) a E{sub d} = 12 MeV, sur les noyaux deformes pairs-pairs {sup 170}Yb, {sup 172}Yb et {sup 174}Yb ont ete interpretes dans le cadre de l'approximation de Born des ondes deformees. Les informations spectroscopiques relatives aux noyaux impairs finals ont ete comparees aux predictions du modele collectif et du modele de Nilsson, apres avoir examine avec soin l'influence des differents parametres (facteurs de forme, fonctions d'onde 'optiques') utilises lors de l'analyse. Les differences observees entre les trois noyaux finals sont qualitativement reproduites par les resultats experimentaux de l'etude de resonances dans les fonctions d'excitation de diffusion elastique et inelastique de protons sur les memes noyaux-cibles, lors de la recherche d'etats analogues dans les noyaux {sup 171}Lu, {sup 173}Lu et {sup 175}Lu. (auteur)
Contribution to the study of heavy-ion induced quasi-elastic processes in the 2s-1d shell
International Nuclear Information System (INIS)
Greiner, A.
1982-06-01
In the first part of this thesis, we present a study of the charge exchange reaction 28 Si( 18 O, 18 F) 28 Al at 56 MeV. This reaction can be easily understood in terms of a one-step direct charge exchange mechanism. With a very simple shell model, it can be interpreted that a neutron of the 18 O in the Jsup(π)=0 + , T=1 state interacts with a proton in the dsub(5/2) shell of 28 Si and they exchange their spin and charge forming Jsup(π)=1 + , T=0 18 F, and Jsup(π)=3 + or 2 + , T=1 28 Al. In the present analysis of data, we have first performed the direct charge exchange DWBA calculations. These results are compared with the exact-finite-range (EFR) second order DWBA calculations which take into account the successive one-nucleon stripping and pickup, and pickup and stripping process. In the second part, we wish to report results and analysis concerning the 24 Mg+ 12 C system. The 180 0 c.m. angle scattering excitation functions were measured between 12- and 27-MeV c.m. corresponding to a range in the compound 36 Ar excitation energy of 28.3 to 43.3 MeV. Several angular distributions for the elastic and inelastic scattering have been measured on the top of the bumps of the elastic scattering excitation function. These elastic scattering angular distributions cannot be fitted by a single squared Legendre polynomial of order L. A complete phase shift analysis is presented. We discuss also the shapes of the first 24 Mg 2 + inelastic scattering angular distributions with respect to the shape of the elastic scattering differential cross section [fr
Vector analyzing power and cross section for the reactions 40Ar(d(pol),p)41Ar and 40Ar(d(pol),t)39Ar
International Nuclear Information System (INIS)
Sen, S.; Darden, S.E.; Yoh, W.A.; Berners, E.D.
1975-01-01
Angular distributions of vector analyzing power and cross section for the reactions 40 Ar(d,p) 41 Ar and 40 Ar(d,t) 39 Ar have been measured at an incident deuteron energy of 14.83 MeV. The bound-state data in the (d,p) reaction and the (d,t) data are compared to DWBA calculations. The data for the neutron-unbound states are analyzed in the framework of the DWBA using (i) a form factor for weakly bound neutron and (ii) a resonance form factor, following the approach of Vincent and Fortune. The j-dependence of the (d,p) vector analyzing power permits definite spin-parity assignments to be made for 19 neutron-bound and 4 neutron unbound states in 41 Ar with excitation energy up to 6.57 MeV. Tentative Jsup(π) assignments have been made for 3 states. The l-value for the 5.62 MeV states has been determined. Data for the observed unbound states are found to be equally well reproduced by the type (i) calculations as by the type (ii) calculations. The (d,t) vector cnalyzing power data show definite J-dependence although not as strongly as in the (d,p) reaction. For relatively weakly excited states a pre-knowledge of the l-value of the transition is desirable for an unambiguous spin assignment. In general, the J-dependence in the (d,t) vector analyzing power can be utilized for definitive Jsup(π) assignments. On this basis, Jsub(π) values have been assigned for seven states in 39 Ar with excitation energies up to 4.47MeV excitation. Possible spin values for three other states are suggested. Spectroscopic factors fo the states in 41 Ar and 39 Ar have been extracted and are in fair agreement with those obtained by other workers. (Auth.)
Subshell resolved L shell ionization of Bi and U induced by 16 - 45 keV electrons
International Nuclear Information System (INIS)
Rahangdale, Hitesh; Das, Pradipta K.; Saha, S.; Mitra, D.
2015-01-01
Electron induced inner-shell ionization is important for both fundamental and applied research. Ionization of outer atomic energy levels has been studied extensively than for inner levels. Knowledge of inner shell ionization cross sections is important in X-ray and Auger electron spectroscopy and in the fields of astrophysics, plasma physics, surface science and many more. At electron impact energies near the atomic binding energies the distortion of the wave functions from plane wave towards a spherical wave, due to the electrostatic field of the atoms, needs to be considered. The distorted wave Born approximation (DWBA) calculations, taking relativistic effects and exchange interaction into account, is used to estimate the K, L and M-shell ionization cross-section for the atoms. Earlier experiments on electron impact ionization studies focused mainly on K-shell ionization cross-section, while L and M-shell ionization data were hardly reported. A review of the existing L-shell ionization cross-section data shows that, while the X-ray production cross-sections by electron impact were reported quite a few times, the reporting of subshell resolved ionization cross-sections were rarely found near the ionization threshold region. In the present work, we have measured the X ray production cross-sections of different L lines of Bi and U induced by 16-45 keV electrons and converted the obtained values to the subshell specific ionization cross-sections. The experimental data are compared with the theoretical calculations based on the (DWBA) obtained from PENELOPE. To the best of our knowledge, the subshell resolved electron induced ionization cross-sections for the L-shell of Bi and U are reported here for the first time at the energy values near the corresponding ionization threshold. (author)
Effect of compound nuclear reaction mechanism in 12C(6Li,d) reaction at sub-Coulomb energy
Mondal, Ashok; Adhikari, S.; Basu, C.
2017-09-01
The angular distribution of the 12C(6Li,d) reaction populating the 6.92 and 7.12 MeV states of 16O at sub-Coulomb energy (Ecm=3 MeV) are analysed in the framework of the Distorted Wave Born Approximation (DWBA). Recent results on excitation function measurements and backward angle angular distributions derive ANC for both the states on the basis of an alpha transfer mechanism. In the present work, we show that considering both forward and backward angle data in the analysis, the 7.12 MeV state at sub-Coulomb energy is populated from Compound nuclear process rather than transfer process. The 6.92 MeV state is however produced from direct reaction mechanism.
Write up of the codes for microscopic models of NN and NA scattering
International Nuclear Information System (INIS)
Amos, K.
1998-01-01
This report documents the essential details of the NN and NA computer programs that culminate in the prediction of elastic and inelastic nucleon scattering observables form optical potentials generated by full folding and effective NN interaction within the nuclear medium. That same (energy and density dependent) effective interaction is used as the transition operator in the distorted wave approximation (DWA) for inelastic (and charge exchange) nucleon scattering from nuclei. The report consists of four sections: 1) general remarks and program locations, 2) the t- and g-matrix codes and how to use them, 3) the effective interaction codes and how to use them, and 4) the NA codes, DWBA97 and DWBB97 and how to use them. (author)
International Nuclear Information System (INIS)
Tomizawa, M.; Aoki, T.; Aoki, Y.; Sakai, T.; Tagishi, Y.; Yagi, K.; Murayama, T.
1990-01-01
Angular distributions of differential cross section, analyzing power, spin-flip probability and spin-flip asymmetry in the excitation of the first 2 + states in 48 Ti and 50 Ti were measured at incident energies of 11 and 18 MeV using (p,p'γ) coincidence technique with polarized proton beam. The angular distributions show strong incident energy and target dependence. The results were analyzed in terms of a macroscopic coupled channels method based on the vibrational model and of the microscopic distorted wave Born approximation (DWBA) based on shell-model wave functions and effective nucleon-nucleon interactions. The spin-flip asymmetry is quite sensitive to the spin-dependent part in the interaction which causes the inelastic scattering. (author)
Geometry effects on the (e, 2e) cross section on ionic targets
International Nuclear Information System (INIS)
Khajuria, Y.
2005-01-01
The three body distorted wave Born approximation (DWBA) with spin averaged static exchange potential has been used to calculate the electron impact triple-differential cross section of Li + , Na + and K + ions in different geometries and kinematics. In coplanar geometry at high incident energy (≥ 500 eV) and scattering angle ∼10deg, both recoil and binary peaks in case of p-orbital electrons splits into two. The value of the binary to the recoil peak ratio for the specific value of the momentum transfer has been determined to understand the collision dynamics. In the non-coplanar geometry a strong interference resulting in a dip in triple differential cross section (TDCS) has been noticed. (author)
Energy Technology Data Exchange (ETDEWEB)
Behairy, Kassem O., E-mail: drkasemomar@yahoo.com [Physics Department, Aswan University (Egypt); Mahmoud, Zakaria M.M.; Hassanain, M.A. [Physics Department, Faculty of Science, Assiut University (Egypt)
2015-12-15
Real double-folding optical potentials are calculated using the S1Y effective nucleon-nucleon (NN) interaction and the tρρ approximation in order to analyze elastic and inelastic scattering of α-particles from {sup 58}Ni, {sup 116}Sn, and {sup 208}Pb targets at 288, 340, 480, and 699 MeV. The relativistic corrections for momenta and reduced masses are performed to investigate the data at the energies 480 and 699 MeV. The second-order (double-scattering) correction to the tρρ potential is also considered. The inelastic scattering to low-lying excited states (2{sup +}) is investigated using the distorted wave born approximation (DWBA) and the coupled-channel (CC) techniques. (author)
International Nuclear Information System (INIS)
Rodrigues, M. R. D.; Borello-Lewin, T.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; Souza, M. A.; Miyake, H.; Cunsolo, A.; Cappuzzello, F.; Ukita, G. M.
2011-01-01
The 9 Be( 6 Li,d) 13 C reaction was used to investigate alpha resonant states in 13 C up to 15 MeV of excitation. The reaction was measured at a bombarding energy of 25.5 MeV employing the Sao Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. An energy resolution of 50 keV was obtained. Several narrow alpha resonant states not previously measured were detected, in particular the one at the (3α+n) threshold populated by an L = 2 transfer, revealing a 9 Be+α component for the 1/2 - cluster state candidate at this threshold. Experimental angular distributions are presented in comparison with DWBA predictions.
International Nuclear Information System (INIS)
Moy, Aurelien
2014-01-01
Electron probe microanalysis (EPMA) is used to quantify with a high accuracy the amount of different elements present on a sample of unknown composition. EPMA is largely used to quantify the amount of actinides present in fresh and irradiated fuels, to manage waste disposal and to date rocks. However, quantitative EPMA is not always possible to achieve for these materials due to the lack of suitable reference standards for the radionuclides. To overcome this difficulty, standard-less methods of analysis are employed with mean of virtual calculated standards. These calculated standards are generally obtained from empirical formulae based on experimental extrapolations or from theoretical calculations that require physical parameters which are poorly known as it is the case for the X-ray production cross section. The accurate knowledge of these cross sections is required in many applications such as in particle transport code and in Monte Carlo simulations. The computer simulations are widely used in the medical field and particularly in medical imaging and in electron beam therapy. In the field of astronomy, these data are used to perform simulations that predict the compositions of stars and galactic clouds, and the formation of planetary systems. In the present work, L- and M-shell absolute x-ray production cross sections were determined experimentally for elements lead, thorium and uranium by electron impact using ultrathin self-supporting targets with thickness varying from 0.2 to 8 nm. The measured cross sections have been compared, with the distorted-wave Born approximation (DWBA) calculated by Bote et al. and with the predictions of analytical formulae widely used in practical applications. For the conversion of inner-shell ionization cross sections into x-ray production cross sections, atomic relaxation parameters were extracted from the literature. The predictions of the DWBA calculations are in excellent agreement with our measured x-ray production cross
/sup 54/Fe(p vector,d)/sup 53/Fe and /sup 140/Ce(p vector,d)/sup 139/Ce reactions at 122 MeV
Energy Technology Data Exchange (ETDEWEB)
Dickey, S A; Kraushaar, J J; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Miller, D W; Jacobs, W W; Jones, W P [Indiana Univ., Bloomington (USA). Dept. of Physics
1985-08-05
The /sup 54/Fe(p vector,d)/sup 53/Fe and /sup 140/Ce(p vector,d)/sup 139/Ce reactions have been studied at a proton energy of 122 MeV. Analyzing powers and angular distributions were obtained for outgoing deuterons to the strong low-lying single-particle states in both nuclei. These data along with the data of others at 26, 29, 41, 52 and 24, 35, 55 MeV for /sup 54/Fe and /sup 140/Ce respectively, have been compared with exact-finite-range DWBA calculations carried out in a consistent fashion to determine the energy dependence of the spectroscopic factors. A strong energy dependence was noticed for the spectroscopic factors when the l-values were large.
Evaluation of neutron cross sections to 40 MeV for 5456Fe
International Nuclear Information System (INIS)
Arthur, E.D.; Young, P.G.
1980-01-01
Cross sections for neutron-induced reactions on 54 56 Fe were calculated by employing several nuclear models: optical, Hauser-Feshbach, preequilibrium and DWBA - in the energy range between 3 and 40 MeV. As a prelude to the calculations, the necessary input parameters were determined or verified through analysis of a large body of experimental data for both neutron- and proton-induced reactions in this mass and energy region. This technique also led to cross sections in which the simultaneous influence of available data types added to their consistency and reliability. Calculated cross sections as well as neutron and gamma-ray emission spectra were incorporated into an ENDF evaluation suitable for use to 40 MeV. 12 figures, 1 table
Importance of polarization effects in electron impact single ionization of argon atom
Energy Technology Data Exchange (ETDEWEB)
Purohit, G., E-mail: g_vpurohit@yahoo.co [Department of Basic Sciences, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India); Patidar, Vinod; Sud, K.K. [Department of Basic Sciences, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India)
2009-12-15
We report the results of our calculations of triple differential cross section (TDCS) for electron impact single ionization (i.e. (e, 2e) processes) from the 3s shell of argon using a modified distorted wave Born approximation formalism by including correlation-polarization potential, which accounts for both correlation and polarization effects. We observe that DWBA formalism including polarization potential is able to reproduce most of the trends of experimental data and hence provide a future direction for further investigation of ionization process from the 3s shell of argon. We also compare our results with the available theoretical and experimental results. The present calculations significantly improve the agreement with the experimental results but still there are certain discrepancies, which is a matter of further investigation.
Experimental study of peripheral reactions in the 16O +63,65 Cu systems
International Nuclear Information System (INIS)
Razeto, G.R.
1987-01-01
In this work elastic scattering and ( 16 O,N) ( 16 O,C) transfer reaction data are presented for the 16 O + 63,65 Cu systems at the incident energy range of 40 to 64MeV. The data was analized with the Optical Model, and the total reaction cross section was compared with the fusion cross section data available from a previus work. Furthermore correlation was made between transfer processes with the different optical potential parameters for these systems. The Frahnand Venter fenomelogical modelo and DWBA calculations were employed for analysis of the transfer reaction data. For the 16 O + 63 Cu system beside the threshold anomaly, an atypical angles (θ cm > 140 0 ). The Regge poles ressonances formalism was used to explain it. (author) [pt
One-neutron and two-neutron transfer in the scattering
International Nuclear Information System (INIS)
Reisdorf, W.N.; Lau, P.H.; Vandenbosch, R.
1975-01-01
Angular distributions have been measured for one- and two-neutron transfer reactions induced by 18 O beams on 16 O targets at laboratory bombarding energies of 42 and 52 MeV. The reactions populating the ground and first excited states of 17 O and 18 O are analyzed in terms of single step finite range plus recoil DWBA theory taking into account antisymmetrization effects. Special attention is paid to an internally consistent description of the observed absolute magnitudes of all the reactions and to the theoretically expected interferences between various backward-forward scattering mechanisms. The importance of neutron transfer in accounting for different absorbing properties of the 16 O- 18 O systems as compared to the 16 O- 16 O system is shown. (13 figures, 2 tables)
Single-particle and collective states in transfer reactions
International Nuclear Information System (INIS)
Lhenry, I.; Suomijaervi, T.; Giai, N. van
1993-01-01
The possibility to excite collective states in transfer reactions induced by heavy ions is studied. Collective states are described within the Random Phase Approximation (RPA) and the collectivity is defined according to the number of configurations contributing to a given state. The particle transfer is described within the Distorted Wave Born Approximation (DWBA). Calculations are performed for two different stripping reactions: 207 Pb( 20 Ne, 19 Ne) 208 Pb and 59 Co( 20 Ne, 19 F) 60 Ni at 48 MeV/nucleon for which experimental data are available. The calculation shows that a sizeable fraction of collective strength can be excited in these reactions. The comparison with experiment shows that this parameter-free calculation qualitatively explains the data. (author) 19 refs.; 10 figs
Some new effects of the deuteron D state observed in (p,d) and (d,p) reactions
International Nuclear Information System (INIS)
Ohnuma, Hajime
1980-01-01
Two previously unexplored experiments have revealed the importance of the deuteron D-state effects on (p,d) and (d,p) reactions at moderate energies. Firstly, a clear indication of the deuteron D-state effects on the polarization of the residual nuclear state has been observed in the 58 Ni(p,dγ) angular correlation measurement at E sub(p) = 30 MeV. Secondly, a comparison of the vector analyzing power and vector polarization measured at E sub(d) = 22 MeV for an l = 0 (d,p) transition has shown that the D state has significant effects even on the first-rank polarization quantities. The experimental data and the results of exact-finite-range DWBA calculations with Reid soft-core potential are presented. (author)
Pionic modes of excitation in continuum from the (p,n) reaction
International Nuclear Information System (INIS)
Izumoto, T.; Ichimura, M.; Ko, C.M.; Siemens, P.J.; Texas A and M Univ., College Station
1982-01-01
The continuum spectra of the 90 Zr(p, n) reaction at Esub(p) = 200 MeV are studied in the DWBA up to high excitation hω(approx. <= 60 MeV) and large momentum transfer q(approx. <= 3 μsub(π)). The response function is obtained in a local-density approximation, taking into account p-h and Δ-h excitations and the short-range correlation g' between them. For small g' approx. <= 0.5, a broad bump due to the opalescence effect can be seen in the calculated cross section at rather low excitation and near q approx. equal to 2.2 μsub(π). However, for larger g', this effect is suppressed, and a broader bump in cross section is located at higher excitation. (orig.)
Polarization transfer in inelastic scattering
International Nuclear Information System (INIS)
Moss, J.M.
1980-01-01
Polarization transfer experiments are now feasible for inelastic scattering experiments on complex nuclei. Experiments thus far have dealt with the spin-flip probability; this observable is sensitive to the action of spin-spin and tensor forces in inelastic scattering. Spin-flip probabilities at E approx. 40 MeV in isoscalar transitions in 12 C(12.71 MeV) and 15 O(8.89 MeV) show considerable deviation from DWBA-shell model predictions; this deviation indicates evidence for more complex reaction mechanisms. Experiments at intermediate energies will soon be possible and will yield data of much higher precision than is possible at lower (E < 100 MeV) energies. These experiments hold exciting promise in such areas as nuclear critical opalescence. 7 figures, 1 table
Measurements of Lα, Lβ X-ray production cross sections of Bi by 17-40 keV electron impact
International Nuclear Information System (INIS)
Wu, Y.; An, Z.; Duan, Y.M.; Liu, M.T.
2010-01-01
We present results of measurements of L α , L β X-ray production cross sections for the element Bi (Z = 83) by 17-40 keV electron impact. The target used in the experiment was prepared by evaporating the element Bi to the thick pure carbon substrate. The effects of multiple scattering of electrons when penetrating the target film, of electrons reflected from the thick pure carbon substrate and of bremsstrahlung photons produced by the impact of incident electrons on the target are corrected by means of Monte Carlo simulation. The experimental data, reported here for the first time in the energy region of 17-40 keV, are compared with the DWBA theory and the PWBA-C-Ex theory. They are in good agreement.
Experimental investigation of quadrupole virtual photon spectrum
International Nuclear Information System (INIS)
Gouffon, P.
1986-01-01
To test experimentally the quadrupole virtual photon spectrum calculation, the (e,α) excitation function of an isolated 2 + level at 20.14 MeV in 24 Mg was measured. The most recent calculations in DWBA, including nuclear size effects, are compared to this experimental curve. The differential cross section d 2 σ/dΩdE was measured 48 0 , 90 0 , 132 0 in the laboratory system, for total electron energies of 20.0, 20.8, 21.5, 24.0, 26.0, 28.0, 30.0, 32.0, 36.0, and 40.0 MeV. The reduced matrix element B(E2) of the 20,14 MeV level is extracted as a secondary product of this work. (author) [pt
A study of the reactions 14C( vector d, dprime)14C and 14C ( vector d, p)15C at 16.0 MeV
International Nuclear Information System (INIS)
Murillo, G.; Sen, S.; Darden, S.E.
1994-01-01
Cross-section and vector-analyzing-power measurements for 14 C(d, d prime) and 14 C(d, p) reactions have been carried out for E d =16 MeV. The inelastic-scattering data have been analyzed using the DWBA with a collective and a microscopic model form-factor and also by using the coupled-channels formalism with a vibrational model form-factor. It is observed that while the cross-section angular-distribution data for the two 2 + states at E x =7.012 and 8.318 MeV are very similar, the corresponding vector analyzing powers are quite different. The results of the analyses indicate that the distinctive characteristics probably arise from the difference in the relative importance of the proton and neutron components in the transition amplitude. The 3 - state at E x =6.728 MeV is identified as predominantly a 1p-3h state. Although the deformation parameters are relatively large, the single-particle structure aspects play a more dominant role than channel-coupling effects in populating the inelastic states. The transfer reaction data have been analyzed using the DWBA for bound and unbound states. The importance of two-step processes has been investigated via coupled-reaction-channels calculations. The g.s. and the states with excitation energies 0.770, 3.103 and 4.78 MeV in 15 C are populated primarily by a one-step process with a small two-step contribution in the case of the 3.103 MeV state. The 4.22 MeV state is populated predominantly by two-step processes. The 4.78 and the 5.83 MeV states have been identified as 1p-2h and 3p-4h, [3]/[2] + state, respectively, in an earlier report. There is close similarity in the level structures and reaction mechanisms between the states of 15 C and 17 O populated via the (d, p) reaction. ((orig.))
/sup 58/Ni(/sup 16/O, /sup 12/C)/sup 62/Zn reaction at an incident energy 80 MeV
Energy Technology Data Exchange (ETDEWEB)
Okuma, Yasuhiko [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Motobayashi, Tooru; Takimoto, Kiyohiko; Shimoura, Susumu; Ogino, Kouya; Fukada, Mamoru; Suehiro, Teruo; Matsuki, Seishi; Yanabu, Takuji
1983-03-01
Cross section angular distributions for the /sup 16/O + /sup 58/Ni elastic scattering and the /sup 58/Ni(/sup 16/O, /sup 12/C)/sup 62/Zn- 3.8416 MeV reaction leading to the discrete and continuum states at an incident energy Esub(lab)(/sup 16/O) = 80 MeV have been measured. The eight low-lying single and double energy levels were observed in the energy spectra of the /sup 58/Ni(/sup 16/O, /sup 12/C)/sup 62/Zn reaction. Populations of these levels have the cross sections of 1-200 ..mu..b/sr. The ground state cross section was proved to change with the incident energy by comparing the present data with the other 46 and 60 MeV data. The cross section angular distribution for the ground state transition changes also with the incident energy. The data points for the 46 MeV show a typical bell shape angular distribution. The angular distribution for the 60 MeV reveals a forward peaked and pronounced oscillation pattern, while that for the 80 MeV shows an oscillation damping with the angle and then a monotonous fall on the angle. Optical model parameters were deduced from the best fit to the measurements of the /sup 16/O + /sup 58/Ni elastic scattering. The EFR-DWBA calculations of the (/sup 16/O, /sup 12/C) results were performed with reasonable fits for the cross section angular distributions of observed energy levels. The optical model parameters giving good representations of the ..cap alpha..-transfer data have the property that the real diffuseness parameter has a large value almost equal to the radius parameter. The inclusion of Coulomb correction in the transfer interaction causes a reduction of 0.9 times in cross section, but no change in angular distribution. The dependence of the angular distribution shape on the incident energy can be reproduced by the EFR-DWBA calculation even if only one parameter set is used in the calculation over the wide incident energy range.
Study of the structure of the Hoyle state by refractive α-scattering
Directory of Open Access Journals (Sweden)
Goncharov S.A.
2014-03-01
Full Text Available α + 12C elastic and inelastic to the Hoyle state (0+2, 7.65 MeV differential cross-sections were measured at the energies 60 and 65 MeV with the aim of testing the microscopic wave function [1] widely used in modern structure calculations of 12C. Deep rainbow (Airy minima were observed in all four curves. The minima in the inelastic angular distributions are shifted to the larger angles relatively those in the elastic ones, which testify the radius enhancement of the Hoyle state. In general, the DWBA calculations failed to reproduce the details of the cross sections in the region of therainbow minima in the inelastic scattering data. However, by using the phenomenological density with rms radius equal 2.9 fm, we can reproduce the Airy minimum positions.
Apparent violation of isospin symmetry in the 3H(3He,2H)4He reaction
International Nuclear Information System (INIS)
Rai, G.; Blyth, C.O.; England, J.B.A.; Farooq, A.; Karban, O.; Rawas, E.; Roman, S.; Vlastou, R.
1988-01-01
Angular distributions of the vector analyzing powers for the 3 H( 3 He, 2 H) 4 He reaction have been measured over the incident energy range 18--33 MeV. The measurements centered about 18 MeV display a deviation from the antisymmetric shape expected from isospin symmetry. Concentrating on the explanation of the 90 0 analyzing powers, we report the results of a distorted-wave Born approximation (DWBA) analysis which includes the direct and exchange processes and the spin-orbit potential. It is shown that the anomalous behavior of the 90 0 vector analyzing powers can be largely explained by the effect of a single F-wave potential resonance which leads to the magnification of the short-range differences between the 3 He and 3 H wave functions
International Nuclear Information System (INIS)
Lebrun, Didier.
1981-09-01
The giant monopole resonance has been studied via inelastic scattering of 108.5 MeV 3 He at very small angles (including 0 0 ) on approximately 50 nuclei. Its angular distribution reaches its maximum in this region and leads to clear separation with GQR. DWBA analysis shows a smooth increase of the strength from few per cent of the sum rule in light nuclei up to 100% in heavier ones. The excitation energy analysis shows a crossing effect of the monopole and quadrupole frequencies in A = 40-50 region, a coupling effect between the two modes in deformed nuclei, an asymmetry effect in several series of isotopes. Compressibility moduli of nuclear matter Ksub(infinity), surface Ksub(s) and asymmetry Ksub(tau) have seen extracted, as well as the Landau parameter F 0 at saturation [fr
Evaluation of neutron and gamma-ray-production cross-section data for lead
International Nuclear Information System (INIS)
Fu, C.Y.; Perey, F.G.
1975-01-01
A survey was made of the available information on neutron and gamma-ray-production cross-section measurements of lead. From these and from relevant nuclear-structure information on the Pb isotopes, recommended neutron cross-section data sets for lead covering the neutron energy range from 0.00001 eV to 20.0 MeV have been prepared. The cross sections are derived from experimental results available to February 1972 and from calculations based on optical-model, DWBA, and Hauser--Feshbach theories. Comparisons which show good agreement between theoretical and experimental values are displayed in a number of graphs. Also presented graphically are smoothed total cross sections, Legendre coefficients for angular distributions, and a representative energy distribution of gamma rays from resonance capture. 15 tables, 36 figures, 104 references
Triple differential cross-sections of Ne (2s2) in coplanar to perpendicular plane geometry
Chen, L. Q.; Khajuria, Y.; Chen, X. J.; Xu, K. Z.
2003-10-01
The distorted wave Born approximation (DWBA) with the spin averaged static exchange potential has been used to calculate the triple differential cross-sections (TDCSs) for Ne (2s^2) ionization by electron impact in coplanar to perpendicular plane symmetric geometry at 110.5 eV incident electron energy. The present theoretical results at gun angles Psi = 0^circ (coplanar symmetric geometry) and Psi = 90^circ (perpendicular plane geometry) are in satisfactory agreement with the available experimental data. A deep interference minimum appears in the TDCS in the coplanar symmetric geometry and a strong peak at scattering angle xi = 90^circ caused by the single collision mechanism has been observed in the perpendicular plane geometry. The TDCSs at the gun angles Psi = 30^circ, and Psi = 60^circ are predicted.
An orthogonality condition model treatment of elastic and inelastic (α, 12C) scattering
International Nuclear Information System (INIS)
Suzuki, Y.; Imanishi, B.
1981-02-01
Elastic and inelastic scattering of α-particles on the deformed nucleus 12 C are investigated in the range of incident α-particle energies of 9 to 11 MeV by using the coupled-channel method with orthogonality condition. A doubly folded potential generated by the shell model wave functions of the α-particle and the deformed nucleus 12 C is employed for the relative motion between the α-particle and 12 C. Good agreement between theory and experiment is obtained for the elastic and inelastic angular distributions and the resonance structures. It is found, from the Born series expansion of the T-matrix, that the orthogonality constraint stresses the effects of the channel-coupling between the elastic and inelastic processes, and it indicates that the DWBA does not work well in this system. (author)
Electroexcitation of giant resonances in 181Ta
International Nuclear Information System (INIS)
Hicks, R.S.; Auer, I.P.; Bergstrom, J.C.; Caplan, H.S.
1977-01-01
The giant resonance region of 181 Ta has been investigated by means of inelastic electron scattering with primary electron energies of 79.1 to 118.3 MeV. A peak-fitting procedure was employed to separate the measured spectrum into nine different resonance components. Multipolarity and strength assignments were deduced using DWBA analysis with the Goldhaber-Teller and Steinwedel-Jensen models. In addition to the well-known giant dipole structure, other resonances were identified at 23.2+-0.3 MeV (E2), 9.5+-0.2 and 11.5+-0.2 MeV (E2 or E0), 19.5+-0.8 MeV (E3), 3.70+-0.14 MeV (E3 or E4), and 5.40+-0.15 MeV (E4 or E5). The model dependence of the analysis is discussed. (Auth.)
Interference of Coulomb and nuclear excitation in inelastic scattering of 20Ne from 40Ca
International Nuclear Information System (INIS)
Ratel, Guy.
1976-01-01
Angular distributions at 54 and 63MeV and excitation functions from 35 to 95MeV for the elastic and inelastic scattering of 20 Ne by 40 Ca have been measured. Experimental data for the inelastic scattering leading to the 20 Ne (2 + , 1.63MeV) state show a characteristic minimum for the angular distributions and excitation functions. This phenomenon was explained by an interference effect between Coulomb and nuclear excitation amplitudes with the DWBA and the coupled-channel formalism. The existence of this interference minimum could be explained only by assuming a nuclear deformation stronger than these obtained with light ion scattering. However a small shift between the experimental data and theoretical curves suggests that effects of a stronger complex coupling or nuclear reorientation due to the large quadrupole moment of 20 Ne must be included [fr
Observation of Λ-hypernuclei in the reaction 12C(π+,K+)/sub Λ/12C
International Nuclear Information System (INIS)
Milner, E.C.
1985-12-01
The observation of Λ-hypernuclear levels in /sub Λ/ 12 C by associated production through the (π + ,K + ) reaction is reported. Spectrometers used in the measurements are discussed. The /sub Λ/ 12 C excitation energy spectra were recorded at laboratory scattering angles of 5.6 0 , 10.3 0 , and 15.2 0 . The spectra show two major peaks - one attributed to the ground state, and one about 11 MeV higher in excitation. The peak near 11 MeV excitation energy is believed to be almost entirely composed of a multiplet of three J/sup π/ = 2 + states. Relativistic DWBA calculations imply support for the expectation that higher spin states are preferentially populated in the (π + ,K + ) reaction, compared to the (K - ,π - ) reaction in which lower spin states are excited. 29 refs., 40 figs
Proton pickup from /sup 27/Al via the (n,d) reaction at 56. 3 MeV
Energy Technology Data Exchange (ETDEWEB)
Brady, F P; Shepard, J R; King, N S.P.; McNaughton, M W; Wang, J C [California Univ., Davis (USA)
1977-09-26
Energy spectra of deuterons from the /sup 27/Al(n,d)/sup 26/Mg reaction due to 56.3 MeV neutrons incident have been measured for 10/sup 0/ <= thetasub(c.m.) <= 55 /sup 0/. The angular distributions for the excitations observed at 0.0, 1.81, and 4.33 MeV are quite well described by DWBA calculations and yield spectroscopic factors in agreement with shell model calculations; but with calculations based on the rotational model, the agreement is less satisfactory particularly for the 4.33 MeV level. For the states at 7.86 and 9.16 MeV the fits, assuming p-shell pick-up, are only fair. Comparison with /sup 27/Al(d,/sup 3/He)/sup 26/Mg measurements shows that the deduced spectroscopic factors for the two reactions agree quite well.
Signatures of projectile-nucleus scattering in three-dimensional (e,2e) cross sections for argon
Energy Technology Data Exchange (ETDEWEB)
Ren Xueguang; Senftleben, Arne; Pflueger, Thomas; Dorn, Alexander; Ullrich, Joachim [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Bartschat, Klaus, E-mail: Xueguang.Ren@mpi-hd.mpg.d, E-mail: Alexander.Dorn@mpi-hd.mpg.d [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States)
2010-02-14
Electron impact ionization (E{sub 0} = 195 eV) of the 3p-orbital in argon is investigated experimentally and theoretically. The triple-differential cross sections (TDCS) obtained using a multi-particle momentum spectrometer (reaction microscope) cover more than 80% of the full solid angle for the slow emitted electron up to an energy of 25 eV and a range of projectile scattering angles from -5 deg. to -15 deg. Inside the projectile scattering plane the TDCS shape is in rather good agreement with a hybrid distorted-wave plus R-matrix (DWBA-RM) calculation. Outside the scattering plane relatively strong electron emission is observed which is reproduced by theory in magnitude but not in shape. A systematic study of the TDCS behaviour and structure in this region indicates that its origin lies in high-order projectile-target interaction.
Low-energy magnetic dipole response in 56Fe from high-resolution electron scattering
International Nuclear Information System (INIS)
Fearick, R.W.; Hartung, G.; Langanke, K.; Martinez-Pinedo, G.; Neumann-Cosel, P. von; Richter, A.
2003-01-01
The 56 Fe(e, e') reaction has been studied for excitation energies up to about 8 MeV and momentum transfers q≅0.4-0.55 fm -1 at the Darmstadt electron linear accelerator (DALINAC) with kinematics emphasizing M1 transitions. Additional data have been taken for q≅0.8-1.7 fm -1 at the electron accelerator NIKHEF, Amsterdam. A PWBA analysis allows spin and parity determination of the excited states. For M1 excitations, transition strengths are derived with a DWBA analysis using shell-model form factors. The resulting B(M1) strength distribution is compared to shell-model calculations employing different effective interactions. The form factor of the prominent low-lying M1 transition at 3.449 MeV demonstrates its dominant orbital nature. It represents a major part of the scissors mode in 56 Fe
Coulomb-nuclear interference in the inelastic scattering of 6Li on 76Ge
International Nuclear Information System (INIS)
Zhang, X X; Rodrigues, M R D; Borello-Lewin, T; Rodrigues, C L; Benevides, L R B; Duarte, J L M; Horodynski-Matsushigue, L B; Ukita, G M
2015-01-01
Angular distribution for the inelastic scattering of 28 MeV 6 Li on 76 Ge was measured using the Sao Paulo PelletronEngeSplit-pole Spectrograph facility. The coulomb-nuclear interference (CNI) analysis was applied to the first quadrupole state transition. The values of C L = δ C L /δ N L , the ratio of charge to isoscalardeformation lengths, and of (δ N L 0 2 were extracted through the comparison of experimental and DWBA-DOMP predicted cross section. The ratio of reduced charge to isoscalartransition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C L and were thus obtained with the advantage of scale uncertainties cancellation. The value of C 2 = 1.10(2) obtained indicate a slight predominance of the protons relative to the neutrons for 76 Ge. (paper)
Study of some direct reactions at 00 in 18O+26Mg and 18O+12C systems
International Nuclear Information System (INIS)
Payet, J.
1984-01-01
Direct transfer reactions induced by a 18 O beam on 12 C and 26 Mg targets, have been studied at the MP tandem (Orsay) with an experimental set up giving the possibility to have angular distributions up to 0 0 . Transfer reactions to discrete levels were analysed in the D.W.B.A. framework. This analysis confirms the interest as a spectroscopic tool of this 0 0 measurements. The ( 18 O, 16 O) and ( 18 O, 20 Ne) reactions were observed up to 40 MeV excitation energy. A diffractionnal model, including the one step direct transfer hypothesis, gives a qualitative agreement with the angular distributions and the energy spectra. A parametrization of a specific small angles development of the transfer amplitudes does not give good results with physical values for the parameters. 32 refs [fr
Progress in applyiong the FKK multistep reaction theory to intermediate-energy data evaluation
International Nuclear Information System (INIS)
Chadwick, M.B.; Young, P.G.
1994-01-01
Recent developments to the physics modeling in the FKK-GNASH code system are reviewed. We describe modifications to include a linking of multistep direct and multistep compound processes, which are important when the incident energy is less than about 30 MeV. A model for multiple preequilibrium emission is given, and compared with experimental measurements of proton reactions on 90 Zr at 160 MeV. We also give some preliminary observations concerning FKK calculations which use both normal and non-normal DWBA matrix elements. We describe the application of the FKK-GNASH code to a range of nuclear data applications, including intermediate energy reactions of importance in the accelerator transmutation of waste, and fast neutron and proton cancer radiation treatment. We outline areas where further work is needed for the accurate modeling of nuclear reactions using the FKK theory
Break up of light ions in the nuclear and Coulomb field of nuclei
International Nuclear Information System (INIS)
Srivastava, D.K.
1985-12-01
The break up of light ion projectiles in the nuclear and Coulomb field of nuclei is considered. Current theoretical concepts for describing break up processes and their theoretical features are discussed. An alternative method, based on a prior-interaction DWBA, is introduced for the calculation of the direct elastic break up cross sections. This method reveals the role of the internal momentum distribution of the break up fragments and includes corresponding 'finite range' effects. The Coulomb break up of 6 Li is studied on the basis of a quasi-sequential break up approach (following Rybicki and Austern) and results are obtained for very low relative energies of the emerging α-particles and deuteron fragments. The astrophysical interest in these cross sections is noted. A view on further extensions of the break up theory is given. (orig.) [de
Study of non-static behavior of tauσ-modes by (p,n) reactions
International Nuclear Information System (INIS)
Ichimura, M.; Izumoto, T.; Ko, C.M.; Siemens, P.J.
1984-01-01
The nuclear response function of tauσ-modes are investigated in the wide range of the energy-momentum plane (ω,q). The opalescence phenomena associated with the pion condensation is clearly seen at q asymptotically equals 2.2 μ (μ being the pion mass) and rather low ω in the response function of the normal nuclear matter if the Migdal parameter g' >= 0.5. To investigate such behavior of the nuclear response to the tauσ-modes, 90 Zr(p,n) reaction to the continuum states is analyzed by DWBA. The response functions of the finite nucleus are constructed by the local density approximation from those of the nuclear matter. It is found that the finiteness and the distorted wave effects smear the enhancement (the opalescence phenomena) considerably, but it would still be seen if q' >= 0.4. (author)
Nuclear theory research. Technical progress report
International Nuclear Information System (INIS)
1982-01-01
Progress is briefly described on the following studies: (1) Dirac phenomenology for deuteron elastic scattering, (2) Dirac wave functions in nuclear distorted wave calculations, (3) impulse approximation for p→p → dπ + reaction above the 3-3 resonance, (4) coherent π production, (5) nuclear potentials from Dirac bound state wavefunctions, (6) nonlocality effects in nuclear reactions, (7) unhappiness factors in DWBA description of (t,p) and (p,t) reactions, (8) absolute normalization of three-nucleon transfer reactions, (9) formulation of a finite-range CCBA computer program, (10) crossing symmetric solutions of the low equations, (11) pion scattering from quark bags, (12) study of the p 11 channel in the delta model, (13) isovector corrections in pion-nucleus scattering, (14) pionic excitation of nuclear giant resonances, and (15) isospin dependence of the second-order pion-nucleus optical potential
Energy Technology Data Exchange (ETDEWEB)
Harar, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-06-01
A systematic study of ({sup 3}He, d) reactions at 18 MeV incident energy and (d, {sup 3}He) reactions at 22 MeV incident energy on {sup 112,114,116,118,120,122,124}Sn is presented. The distorted wave Born approximation (DWBA) is used to extract informations on (a) the transferred angular momentum l{sub p}, (b) the change of parity and (c) the spectroscopic factor. We have investigated the influence of the proton-neutron residual interaction on the spread of the pure proton configuration (particle or hole), and on the observed level sequence. Experimental results and predictions of the Kisslinger and Sorensen model are in reasonable agreement. A study of {sup 113,115}In ({sup 3}He, d) {sup 114,116}Sn reactions shows strong experimental evidence that the proton particle hole components are weak in the first excited states of tin nuclei. Furthermore, highly excited states ({approx} 4 to 6 MeV) having a simple structure with one predominant particle-hole configuration have been located. (authors) [French] Nous presentons une etude systematique des reactions ({sup 3}He, d) a 18 MeV et (d, {sup 3}He) a 22 MeV sur {sup 112,114,116,118,120,122,124}Sn. L'approximation des ondes deformees (DWBA) est utilisee pour obtenir des informations sur le moment angulaire transfere l{sub p}, sur le changement de parite et le facteur spectroscopique. Nous avons etudie l'influence de l'interaction residuelle proton-neutron sur la repartition de l'intensite a une seule particule ou trou de proton, et sur les sequences des niveaux observes. Les resultats experimentaux et les previsions theoriques du modele de Kisslinger et Sorensen sont en assez bon accord. L'etude des reactions {sup 113,115}In ({sup 3}He, d) {sup 114,116}Sn apporte la preuve experimentale que les composantes particule - trou de protons des premiers etats excites des noyaux residuels sont faibles. Elle permet aussi de localiser des niveaux a une energie d'excitation elevee ({approx} 4 a 6 MeV), ayant une structure simple a
Energy Technology Data Exchange (ETDEWEB)
Song, I. H.; Lee, T. S.; Woo, S. G.; Jeong, J. H.; Kang, J. H.; Kim, K. M.; Chun, K. J.; Choi, C. W.; Lim, S. M. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)
2007-07-01
The liver is an important target organ for gene transfer due to its capacity for synthesizing serum protein and its involvement in numerous genetic diseases. High level of foreign gene expression in liver can be achieved by a large-volume and high-speed intravenous injection of naked plasmid DNA (pDNA), so called hydrodynamic injection. This study is aimed to evaluate liver specific-gene expression of herpes simplex virus type 1 thymidine kinase(HSV1-tk) by hydrodynamic injection and image HSV1-tk expression using {sup 124}IVDU-PET. We constructed herpes simplex virus type 1 thymidine kinase (HSV1-tk)-expressing pDNA (pHSV1-tk) modified from pEGFP-N1. Hydrodynamic injection was performed using 40 {mu}g of plasmid (pEGFP/N1 or pHSV1-tk) in 2 ml of 0.85% saline solution for 20{approx}22g mice in 5 seconds intravenously. At 1 d post-hydrodynamic injection, biodistribution study was performed at 2 h post-injection of radiolabeled IVDU, fluorescence image was obtained using optical imager and small animal PET image was acquired with {sup 124}IVDU at 2 h post-injection. After PET imaging, digital whole body autoradiography (DWBA) was performed. Expression of HSV1-tk and EGFP was confirmed by RT-PCR in each liver tissue. In liver of pHSV1-tk and pEGFP/N1 injection groups, {sup 123}IVDU uptake was 5.65%ID/g and 0.98%ID/g, respectively. {sup 123}IVDU uptake in liver of pHSV1-tk injection group showed 5.7-fold higher than that of pEGFP/N1 injection group (p<0.01). On the other hand, the liver of pEGFP/N1 injection group showed fluorescence activity. In small animal PET images, {sup 124}IVDU uptake was selectively localized in liver of pHSV1-tk injection group and also checked in DWBA, but showed minimal uptake in liver of pEGFP/N1 injection mice. Hydrodynamic injection was effective to liver-specific delivery of plasmid DNA. Small animal PET image of {sup 124}IVDU could be used in the evaluation of noninvasive reporter gene imaging in liver.
Energy Technology Data Exchange (ETDEWEB)
Harar, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-06-01
A systematic study of ({sup 3}He, d) reactions at 18 MeV incident energy and (d, {sup 3}He) reactions at 22 MeV incident energy on {sup 112,114,116,118,120,122,124}Sn is presented. The distorted wave Born approximation (DWBA) is used to extract informations on (a) the transferred angular momentum l{sub p}, (b) the change of parity and (c) the spectroscopic factor. We have investigated the influence of the proton-neutron residual interaction on the spread of the pure proton configuration (particle or hole), and on the observed level sequence. Experimental results and predictions of the Kisslinger and Sorensen model are in reasonable agreement. A study of {sup 113,115}In ({sup 3}He, d) {sup 114,116}Sn reactions shows strong experimental evidence that the proton particle hole components are weak in the first excited states of tin nuclei. Furthermore, highly excited states ({approx} 4 to 6 MeV) having a simple structure with one predominant particle-hole configuration have been located. (authors) [French] Nous presentons une etude systematique des reactions ({sup 3}He, d) a 18 MeV et (d, {sup 3}He) a 22 MeV sur {sup 112,114,116,118,120,122,124}Sn. L'approximation des ondes deformees (DWBA) est utilisee pour obtenir des informations sur le moment angulaire transfere l{sub p}, sur le changement de parite et le facteur spectroscopique. Nous avons etudie l'influence de l'interaction residuelle proton-neutron sur la repartition de l'intensite a une seule particule ou trou de proton, et sur les sequences des niveaux observes. Les resultats experimentaux et les previsions theoriques du modele de Kisslinger et Sorensen sont en assez bon accord. L'etude des reactions {sup 113,115}In ({sup 3}He, d) {sup 114,116}Sn apporte la preuve experimentale que les composantes particule - trou de protons des premiers etats excites des noyaux residuels sont faibles. Elle permet aussi de localiser des niveaux a une energie d'excitation elevee ({approx} 4 a 6 Me
Nuclear reactions as structure probes
International Nuclear Information System (INIS)
Fernandez, Bernard; Cugnon, Joseph; Roussel-Chomaz, Patricia; Sparenberg, Jean-Marc; Oliveira Santos, Francois de; Bauge, Eric; Poves, Alfredo; Keeley, Nicholas; Simenel, Cedric; Avez, Benoit; Lacroix, Denis; Baye, Daniel; Cortina-Gil, Dolores; Pons, Alexandre
2007-09-01
This publication gathers courses which aim at giving a view on new experiments which are performed by using radioactive beams, notably low intensity beams, in different accelerators, and allow the structure of very exotic nuclei to be characterized. Experimental as well as theoretical aspects are thus addressed. The contributions propose: a brief history of nuclear reactions and of instruments used to study them from the discovery of nucleus to the DWBA (Distorted Wave Born Approximation); an overview of nuclear reactions; experimental techniques; the theory of collisions at low energy; resonant elastic scattering, inelastic scattering and astrophysical reactions; to probe nuclear structure with nucleons; shell model and spectroscopic factors; analysis of transfer reactions and determination of spectroscopic factors; microscopic approaches of nuclear dynamics; theoretical aspects of dissociation reactions; experimental aspects of knockout reactions; research in oenology with the chemical characterisation of defective ageing of dry white wines
Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro
2017-11-01
Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elastic and inelastic scattering of alpha particles from sup 46 Ti at E sub. alpha. = 35 MeV
Energy Technology Data Exchange (ETDEWEB)
Raghunatha Rao, V.; Sudarshan, M.; Sarma, A.; Singh, R. (North-Eastern Hill Univ., Shillong (India). Dept. of Physics); Banerjee, S.R.; Chintalapudi, S.N. (Bhabha Atomic Research Centre, Bombay (India). Variable Energy Cyclotron Project)
1991-12-01
Differential cross sections for elastic and inelastic scattering of 35 MeV alpha particles have been measured from {theta}{sub lab} =10{sup o} to 100{sup o} in 1{sup o}-2{sup o} steps. An optical model analysis of the elastic scattering data has been carried out using Woods-Saxon and Woods-Saxon squared radial dependences for real as well as imaginary parts of the potential. The most sensitive region of the potential in predicting the elastic scattering cross sections has been determined using a notch perturbation test. The problem of discrete family ambiguity in the optical model analysis of elastic data has also been investigated. The inelastic scattering data have been analysed in terms of the collective model using the distorted-wave Born approximation (DWBA), where the distorted waves are generated by the optical potential obtained from the elastic scattering data. (author).
105Ag and 107Ag with the (p, t) reaction
International Nuclear Information System (INIS)
Del Vecchio, R.M.; Oelrich, I.C.; Naumann, R.A.
1975-01-01
The 107 , 109 Ag(p, t) 105 , 107 Ag reactions have been studied at 30 MeV bombarding energy. Tritons were detected with a 60 cm position-sensitive wire proportional counter backed by a plastic scintillator in the focal plane of a quadrupole-dipole-dipole-dipole (QDDD) spectrograph. Multiplet structure, interpretable as the coupling of a 2p 1 / 2 proton to vibrational core states, was observed in both nuclei. In addition, some 50 levels in each nucleus were seen below about 3 MeV of excitation with a resolution of 10 keV. DWBA calculations with simple two particle configurations worked rather well and permitted the determination of L transfers. A considerable amount of (p, t) strength in the region from 2-3 MeV of excitation in each nucleus was observed, not all of which could be associated with expected weak coupling to the 3 - core state
Scattering of 130 MeV helions on 58Ni
International Nuclear Information System (INIS)
Djaloeis, A.; Alderliesten, C.; Bojowald, J.; Oelert, W.; Turek, P.
1982-01-01
Angular distributions for the tau + 58 Ni scattering to the (g.s., 0 + ) (1.45 MeV, 2 + ) and giant resonance (Esub(x) approximately 63Asup(-1/3) MeV) states in 58 Ni have been measured at Esub(tau) = 130 MeV in an angular range thetasub(c.m.) = 6 0 -83 0 . Optical model and DWBA analyses have been performed. The use of helion optical potentials with either a volume (Woods-Saxon) or a surface (Woods-Saxon derivative) absorption results in good fits to the g.s. and 1.45 MeV data. However, the volume absorption gives consistently a better fit quality. The discrete ambiguity of the helion optical potential has been resolved in favour of the shallow potential family. The giant resonance is found to have a dominant quadrupole (L=2) character with about 6% (EWSR) L=4 admixture. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Roussel, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-05-01
We describe an experimental study of ({alpha},t), ({alpha},{sup 3}He) reactions at 44 MeV using a solid-state identifier, on the target-nuclei {sup 54}Fe and {sup 58,60,62,64}Ni. A critical study of optical model and of disturbed wave analysis has been performed. We show the complementarity of different transfer-reactions, the ambiguity of spectroscopic factors, the importance of the problem of the reaction mechanism. (author) [French] On decrit une etude experimentale des reactions ({alpha},t), ({alpha},{sup 3}He) a 44 MeV utilisant un systeme identificateur de particules sur les noyaux-cibles {sup 54}Fe et {sup 58,60,62,64}Ni. Une etude critique de modele optique et d'analyse en ondes deformees (D.W.B.A.) a ete entreprise. On montre la complementarite des differentes reactions de transfert, l'ambiguite des facteurs spectroscopiques, l'importance du probleme du mecanisme. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Milner, E.C.
1985-12-01
The observation of ..lambda..-hypernuclear levels in /sub ..lambda..//sup 12/C by associated production through the (..pi../sup +/,K/sup +/) reaction is reported. Spectrometers used in the measurements are discussed. The /sub ..lambda..//sup 12/C excitation energy spectra were recorded at laboratory scattering angles of 5.6/sup 0/, 10.3/sup 0/, and 15.2/sup 0/. The spectra show two major peaks - one attributed to the ground state, and one about 11 MeV higher in excitation. The peak near 11 MeV excitation energy is believed to be almost entirely composed of a multiplet of three J/sup ..pi../ = 2/sup +/ states. Relativistic DWBA calculations imply support for the expectation that higher spin states are preferentially populated in the (..pi../sup +/,K/sup +/) reaction, compared to the (K/sup -/,..pi../sup -/) reaction in which lower spin states are excited. 29 refs., 40 figs.
Vectorization of nuclear codes on FACOM 230-75 APU computer
International Nuclear Information System (INIS)
Harada, Hiroo; Higuchi, Kenji; Ishiguro, Misako; Tsutsui, Tsuneo; Fujii, Minoru
1983-02-01
To provide for the future usage of supercomputer, we have investigated the vector processing efficiency of nuclear codes which are being used at JAERI. The investigation is performed by using FACOM 230-75 APU computer. The codes are CITATION (3D neutron diffusion), SAP5 (structural analysis), CASCMARL (irradiation damage simulation). FEM-BABEL (3D neutron diffusion by FEM), GMSCOPE (microscope simulation). DWBA (cross section calculation at molecular collisions). A new type of cell density calculation for particle-in-cell method is also investigated. For each code we have obtained a significant speedup which ranges from 1.8 (CASCMARL) to 7.5 (GMSCOPE), respectively. We have described in this report the running time dynamic profile analysis of the codes, numerical algorithms used, program restructuring for the vectorization, numerical experiments of the iterative process, vectorized ratios, speedup ratios on the FACOM 230-75 APU computer, and some vectorization views. (author)
Direct reactions induced by 16O on 208Pb at high incident energy
International Nuclear Information System (INIS)
Mermaz, M.C.
1978-01-01
Direct reactions induced by 16 O mainly on 208 Pb at 20 MeV/nucleon are reviewed. The quasi-elastic transfer reaction, such as one-proton and one-neutron transfer respectively leading to 209 Bi and 209 Pb single-particle-states, is first discussed, the fragmentation of 16 O projectile on heavy targets is then envisaged. The one-nucleon transfer can be described within the framework of one-step processes using the DWBA formalism to calculate the cross sections. At high incident energy (312.6 MeV), transfer reactions involving nucleons from the deeper 1p 3/2 orbit of 16 O are kinematically favoured and well observed. At 20 MeV/A and above, a large part of the reaction cross sections seems to be due to the fragmentation of the projectile; more especially, an abrasion-ablation model have to be used in order to explain the general trend of the data (energy spectra and angular distribution)
Analyzing power measurements in the (p,α) reaction on sup(58,60,62)Ni and 54Fe
International Nuclear Information System (INIS)
Katori, K.; Tagishi, Y.; Toba, Y.; Sasagase, M.; Sato, M.
1980-01-01
Two topics are discussed: (1) Analyzing powers for the (p, α) reactions on sup(58,60,62)Ni at E sub(p) = 22 MeV and (2) Excitation of the analog state in the 54 Fe(p, α) 51 Mn reaction at E sub(p) = 21 MeV. For the first topic, isotope (sup(58,60,62)Ni) and orbit (0f sub(7/2), 1s sub(1/2) and 0d sub(3/2)) dependences on angular distributions were compared for analyzing powers and cross sections. All the measured analyzing powers could not be reproduced within the frame work of a simple DWBA calculation. For the second topic, spin and parity of a state at 4.459 MeV in 51 Mn (the analog of the ground state of the 51 Cr nucleus) were assigned to be 7/2 - by the measurements of the analyzing power and cross section. (author)
Research on the quantum multistep theory for pre-equilibrium nuclear reaction
Su Zong Di; Abdurixit, A; Wang Shu Nuan; Li Bao Xian; Huang Zhong; Liu Jian Feng; Zhang Benai; Zhu Yao Yin; Li Zhi Wen
2002-01-01
The Feshbach-Kerman-Koonin (FKK) quantum multistep theory of the pre-equilibrium reaction is further improved and perfected. A unified description for the multistep compound (MSC) process of the pre-equilibrium reaction and the compound nucleus (CN) process of full equilibrium reaction can be presented. This formula can integrate MSC and CN theories with the optical model and Hauser-Feshbach formula, and can get self-consistent expression. In multistep direct (MSD) process of the pre-equilibrium reaction, the mu-step cross section can be expressed by the convolution of mu one-step cross section. And the one step cross section for continuum can be written as the product of an averaged DWBA matrix element and the state density. For calculating the multistep direct reaction cross section, two methods, the state densities and full microscopic model, are used and compared. Some typical experiments are analyzed by using the work mentioned above. The calculated results are reasonable and in good agreement with the e...
Molecular versus squared Woods-Saxon α-nucleus potentials in the 27Al(α, t)28Si reaction
International Nuclear Information System (INIS)
Abdullah, M N A; Das, S K; Tariq, A S B; Mahbub, M S; Mondal, A S; Uddin, M A; Basak, A K; Gupta, H M Sen; Malik, F B
2003-01-01
The differential cross-section of the 27 Al(α, t) 28 Si reaction for 64.5 MeV incident energy has been reanalysed in DWBA with full finite range using a squared Woods-Saxon (Michel) α-nucleus potential with the modified value of the depth parameter α = 2.0 as reported in a comment article by Michel and Reidemeister. This new value produces significant improvement in fitting the data of the reaction with its overall performance, in some cases, close to that previously observed for the molecular potential. Although the non-monotonic shallow molecular potential with a soft repulsive core and the Michel potentials produce the same quality fits to the elastic scattering and non-elastic processes, they are not phase equivalent. The two types of potential produce altogether different cross-sections, particularly at large reaction angles. The importance of the experimental cross-sections at large angles for both elastic scattering and non-elastic processes is elucidated
Multiple scattering in the nuclear rearrangement reactions at medium energy
International Nuclear Information System (INIS)
Tekou, A.
1980-09-01
It is shown that the multiple scattering mechanism is very important in the transfer of the large momenta involved in the nuclear rearrangement reactions at medium energy. In contrast to the usual belief, the reaction cross-section is not very sensitive to the high momenta components of the nuclear wave function. The multiple scattering mechanism is especially important in 4 He(p,d) 3 He reaction around 800 MeV. Here the collisions involving two nucleons of the target nucleus are dominant. The triple collisions contribution is also important. The four collision contribution is negligible in the forward direction and sizeable at large angles. Thus, using the K.M.T. approach in DWBA calculations, the second order term of the optical potential must be included. So, is it not well established that the second term of the K.M.T. optical potential is important for the proton elastic scattering on light nuclei. (author)
Nuclear structure of 41Ca from inelastic proton scattering
International Nuclear Information System (INIS)
Vold, P.B.; Cline, D.; Voigt, M.J.A. de
1977-01-01
Angular distributions have been measured for inelastic and elastic scattering of 19 MeV protons on 40 41 Ca. A total of 89 levels were identified below 6.4 MeV in 41 Ca with an energy resolution of 12 keV. Inelastic transition strengths have been extracted using DWBA theory with a vibrational model form factor. These transition strengths correlate well with inelastic α-scattering and electromagnetic values. The quadrupole strengths are interpreted in terms of the coexistence model and imply that the excited-core admixture in the ground states of both 40 Ca and 41 Ca are approximately 5%. The octupole strengths in 41 Ca exhibits features characteristic of the weak coupling of an fsub(7/2) neutron to the lowest 3 - state in 40 Ca. The l = 5 strength exhibits a similar weak-coupling behavior. In both cases the microscopic structure appreciably reduces the transition strength for the highest spin member of the weak-coupling multiplets. (Auth.)
Electron Scattering from MERCURY-198 and Mercury -204.
Laksanaboonsong, Jarungsaeng
This experiment is the first electron scattering study on mercury isotopes. Electron scattering from ^{198}Hg and ^{204 }Hg has been performed at the NIKHEF-K Medium Energy Accelerator. Measured cross sections cover an effective momentum transfer range from 0.4 to 2.9 fm^ {-1}. Elastic cross sections were determined for scattering from both isotopes. Cross section for inelastic excitations in ^{198}Hg below 3 MeV were also determined. Measured cross sections were fit using DWBA phase shift codes to determine coefficients for Fourier-Bessel expansions of ground state and transition charge densities. Differences between the ground state charge densities of the two isotopes reveal the effect of the polarization of the proton core in response to the addition of neutrons. Spin and parity of several excited states of ^{198}Hg were determined. Extracted transition densities of these states show their predominantly collective nature. Charge densities for members of the ground state rotational band were compared with axially symmetric Hartree-Fock and geometrical model predictions.
Inclusive projectile fragmentation in the spectator model
International Nuclear Information System (INIS)
Hussein, M.S.; McVoy, K.W.
1985-01-01
Crazing-angle single spectra for projectile fragments from nuclear collisions exhibit a broad peak centered near the beam velocity, suggesting that these observed fragments play only a 'spectator' role in the reaction. Using only this spectator assumption (but not DWBA), it is found that a 'prior form' formulation of the reaction leads, via closure, to a -type estimate of the inclusive spectator spectrum, thus relating it to the reaction cross section for the 'participant' with the target. It is shown explicitly that this expression includes an improved multi-channel version of the Udagawa-Tamura formula for the 'breakup-fusion' or incomplete fusion cross section, and identifies it as the fluctuation part of the participant-target reaction cross section. A Glauber-type estimate of the distorted wave functions which enter clearly shows how the width of the peak in the spectator spectrum arises from the 'Fermi motion' within the projectile, as in the simple Serber model, but is modified by the 'overlap geometry' of the collision. (Author) [pt
International Nuclear Information System (INIS)
Rodrigues, C.L.; Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Hanninger, G.N.; Ukita, G.M.
2004-01-01
The study of the odd 99,101 Ru nuclei complements the investigation of the collectivity of the first quadrupolar excitations in 100,102,104 Ru. Angular distributions for the 99,101 Ru(d, d') reactions at 13 MeV were obtained in the Pelletron Laboratory using nuclear emulsion plates on the focal plane of the Enge spectrograph. A Coulomb- Nuclear Interference analysis employing DWBA-DOMP predictions with global optical potential parameters was applied to the excitation of states which could belong to the multiplet built on the first quadrupolar excitation of the core. In the analysis, three states were identified for each of the isotopes and associated, respectively, with adopted levels in the Nuclear Data Sheets Compilation of Jπ = 5=2 + , 7=2 + and 9=2 + . Through the comparison of experimental and predicted cross section angular distributions, the values of (δ L N ) 2 and of the ratio C = δ L C /δ L N were obtained. (author)
54Fe neutron elastic and inelastic scattering differential cross sections from 2-6 MeV
Vanhoy, J. R.; Liu, S. H.; Hicks, S. F.; Combs, B. M.; Crider, B. P.; French, A. J.; Garza, E. A.; Harrison, T.; Henderson, S. L.; Howard, T. J.; McEllistrem, M. T.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; Ramirez, A. P. D.; Rice, B. G.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Thompson, B. K.; Yates, S. W.
2018-04-01
Measurements of neutron elastic and inelastic scattering cross sections from 54Fe were performed for nine incident neutron energies between 2 and 6 MeV. Measured differential scattering cross sections are compared to those from previous measurements and the ENDF, JENDL, and JEFF data evaluations. TALYS calculations were performed and modifications of the default parameters are found to better describe the experimental cross sections. A spherical optical model treatment is generally adequate to describe the cross sections in this energy region; however, in 54Fe the direct coupling is found to increase suddenly above 4 MeV and requires an increase in the DWBA deformation parameter by approximately 25%. This has little effect on the elastic scattering differential cross sections but makes a significant improvement in both the strength and shape of the inelastic scattering angular distribution, which are found to be very sensitive to the size and extent of the surface absorption region.
Energy Technology Data Exchange (ETDEWEB)
Ellegaard, C; Barnes, P D [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Flynn, E R [Los Alamos Scientific Lab., N.Mex. (USA)
1976-03-22
The reactions /sup 210/Pb(t,..cap alpha..)/sup 209/Tl and /sup 210/Pb(t,d)/sup 211/Pb have been studied with 20 MeV tritons. Seven levels in /sup 209/Tl have been identified in the /sup 210/Pb(t,..cap alpha..)/sup 209/Tl reaction. Level spins have been suggested by comparing the observed spectrum with that of the corresponding reaction on /sup 208/Pb. Nineteen levels in /sup 211/Pb were identified in the /sup 210/Pb(t,d)/sup 211/Pb reaction. Angular distributions were measured and lsub(n) values and spectroscopic factors were extracted by DWBA calculations. In both cases the spectra are very similar to the spectra obtained with /sup 208/Pb as a target. The deviations from these simple spectra would appear to be amenable to a description in terms of a coupling of the extra particle or hole to the /sup 210/Pb core.
International Nuclear Information System (INIS)
Schmitt, R.
1986-01-01
With the Erlangen QDQ magnetic spectrometer angular distributions of the depolarization in the elastic scattering of protons on 27 Al, 89 Y at 11 MeV and 1 H at 12 MeV were measured. The evaluation was performed for yttrium and aluminium by adding of additional terms in the optical model which regard the spin-spin interaction. The optical-model parameter without spin-spin potentials were stated by measurements of the cross section and the analyzing power in the 4π scattering chamber in Erlangen at several energies. The calculation of the depolarization which emerges because of the spin-spin interaction was performed by means of DWBA. The depolarization of the proton-proton scattering was evaluated by scattering-phase analysis. The fits were thereby performed on analyzing-power data. The electrical P-wave scattering phases resulted to δ 10 = 4.442±0.121, δ 11 = -2.515±0.026, and δ 12 = 0.937±0.038 (all in degrees). (orig./HSI) [de
Multipole components of 235U photofission
International Nuclear Information System (INIS)
Carvalheiro, Z.
1985-01-01
The absolute electrofission cross section for 235 U has been experimentally obtained in the energy range 5.8 - 18.0 MeV, using the electron beam of the Linear Accelerator of Institute of Physics of the University of Sao Paulo. From a combined analysis of this cross section and a previously measured photofission cross section, using virtual photon spectra calculated in the Distorted Wave Born Approximation (DWBA), the '' non electric dipole photofission'' cross section σ NDE γ,f (ω) has been obtained, which contains all multipolarities allowed by the reaction Kinematics, except El. This cross section presents a resonant shape, probably associated with the Giant Quadrupole Resonance (GQR). Once the fission channel exhausts a great amount of the Energy Weighted Sum Rule (EWSR), it is therefore the major decay mode of the GQR. All these aspects agree with the ones verified for the other Uranium isotopes previously analysed in this Laboratory. (author) [pt
Energy Technology Data Exchange (ETDEWEB)
Poškus, A., E-mail: andrius.poskus@ff.vu.lt
2016-09-15
This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic K{sub α}, total K (=K{sub α} + K{sub β}) and L{sub α} X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the K{sub α} yield by more than 40% for the elements with Z > 25. The L{sub α} yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the L{sub α} yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated K{sub α} yields are typically underestimated by (20–30)% for the elements with Z > 25, whereas the L{sub α} yields are underestimated by (60–70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner
Calculation of 235U(n,n') cross sections for ENDF/B-VI
International Nuclear Information System (INIS)
Young, P.G.; Arthur, E.D.
1988-01-01
Cross sections for neutron-induced reactions on 235 U between 0.01 and 20 MeV have been calculated in a preliminary analysis for the ENDF/B-VI evaluation with particular emphasis on neutron inelastic scattering. A deformed optical model potential that fits total, elastic, inelastic, and low-energy average resonance data is used to calculate direct (n,n') cross sections and transmission coefficients for a Hauser-Feshbach statistical theory analysis using a multiple fission barrier representation. Direct cross sections for higher-lying vibrational states are provided from DWBA calculations, normalized using B(E/ital l/) values determined from (d,d') and Coulomb excitation data. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. Further modifications to fit 235 U(n,f) data were small, and the final fission parameters are generally consistent with published values. The results from this preliminary analysis are compared with the ENDF/B-V evaluation as well as with experimental data. 26 refs., 5 figs., 3 tabs
Study of the deformation-driving $\
Diriken, J.; Andreyev, A.N.; Antalic, S.; Bildstein, V.; Blazhev, A.; Darby, I.G.; De Witte, H.; Eberth, J.; Elseviers, J.; Fedosseev, V.N.; Flavigny, F.; Fransen, Ch.; Georgiev, G.; Gernhauser, R.; Hess, H.; Huyse, M.; Jolie, J.; Kröll, Th.; Krücken, R.; Lutter, R.; Marsh, B.A.; Mertzimekis, T.; Muecher, D.; Nowacki, F.; Orlandi, R.; Pakou, A.; Raabe, R.; Randisi, G.; Reiter, P.; Roger, T.; Seidlitz, M.; Seliverstov, M.; Sieja, K.; Sotty, C.; Tornqvist, H.; Van De Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.
2014-01-01
The $νg_{9/2} , d_{5/2}, s_{1/2}$ orbitals are assumed to be responsible for the swift onset of collectivity observed in the region below $^{68}$Ni. Especially the single-particle energies and strengths of these orbitals are of importance. We studied such properties in the nearby $^{67}$Ni nucleus, by performing a ($d, p$)-experiment in inverse kinematics employing a post-accelerated radioactive ion beam (RIB) at the REX-ISOLDE facility. The experiment was performed at an energy of 2.95 MeV / u using a combination of the T-REX particle detectors, the Miniball $\\gamma$-detection array and a newly-developed delayed-correlation technique as to investigate $\\mu$s-isomers. Angular distributions of the ground state and multiple excited states in $^{67}$Ni were obtained and compared with DWBA cross-section calculations, leading to the identification of positive-parity states with substantial $νg_{9/2}$ (1007 keV) and $νd_{5/2}$ (2207 keV and 3277 keV) single- particle strengths up to an excitation energy of 5.8 M...
Deuteron stripping reactions with Tabakin potential
International Nuclear Information System (INIS)
Osman, A.
1976-05-01
Deuteron stripping reactions are considered. Due to the strong repulsion between nucleons at very short distances, we have investigated the nuclear short-range correlations. The neutron proton nuclear potential in the deuteron is taken as a short-range repulsive core surrounded by a long-range attractive potential. The neutron-proton potential is taken as the Tabakin separable potential to take into account the short-range correlations. The differential cross-sections for deuteron stripping reactions have been calculated in two different cases by taking Yamaguchi or Breit et al type parameters for the Tabakin potential used. The angular distributions for different (d,p) stripping reactions on the different target nuclei 28 Si, 32 , 34 S, 36 Ar, 40 , 48 Ca, 50 , 52 , 54 Cr have been calculated using the DWBA calculations. Our present theoretical calculations for the angular distributions of the different reactions cosidered have been fitted to the experimental data, where good agreement is obtained. The extracted spectroscopic factors from the present work are found to be more reliable
International Nuclear Information System (INIS)
Bernas, M.; Pougheon, F.; Roy-Stephan, M.; Berg, G.P.A.; Kernforschungsanlage Juelich G.m.b.H.; Berthier, B.; Le Fevre, J.P.; Wildenthal, B.H.
1980-01-01
Cross section angular distributions of 24 Mg( 18 O, 16 O) 26 Mg reaction at 50 MeV incident energy leading to the first four excited states in 26 Mg and the elastic and inelastic scattering for 18 O + 24 Mg at 50 MeV and 16 O + 26 Mg at 56 MeV have been measured in order to investigate the reaction mechanism of the two-nucleon transfer reaction including the analysis of incident and exit channels. The measured angular distributions were analyzed in the framework of the EFR-DWBA. Two neutron transfer amplitudes were determined using the 2s-1d shell model amplitudes calculated by Chung and Wildenthal. The large experimental cross section in contrast to the smallness of the direct transfer amplitude and the peculiar shape of the measured angular distribution of the lowest 2 1 + state suggests that this level is mainly excited by two-step processes. It is shown that a CCBA calculation describes successfully the angular distributions of the ground state and the 2 1 + state in 26 Mg
Directory of Open Access Journals (Sweden)
J. Tanaka
2017-11-01
Full Text Available Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex=0.80±0.02 MeV with a width of Γ=1.15±0.06 MeV. A DWBA (distorted-wave Born approximation analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1 transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30∼296 Weisskopf units, exhausting 2.2%∼21% of the isoscalar E1 energy-weighted sum rule (EWSR value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, C.L.; Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Hanninger, G.N. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia
2004-09-15
The study of the odd {sup 99,101}Ru nuclei complements the investigation of the collectivity of the first quadrupolar excitations in {sup 100,102,104}Ru. Angular distributions for the {sup 99,101}Ru(d, d') reactions at 13 MeV were obtained in the Pelletron Laboratory using nuclear emulsion plates on the focal plane of the Enge spectrograph. A Coulomb- Nuclear Interference analysis employing DWBA-DOMP predictions with global optical potential parameters was applied to the excitation of states which could belong to the multiplet built on the first quadrupolar excitation of the core. In the analysis, three states were identified for each of the isotopes and associated, respectively, with adopted levels in the Nuclear Data Sheets Compilation of J{pi} = 5=2{sup +}, 7=2{sup +} and 9=2{sup +}. Through the comparison of experimental and predicted cross section angular distributions, the values of ({delta}{sup L}{sub N}){sup 2} and of the ratio C = {delta}{sub L}{sup C} /{delta}{sub L}{sup N} were obtained. (author)
International Nuclear Information System (INIS)
Jahn, Helmut
2005-01-01
Compound and geometry-dependent pre-compound nuclear reactions are very useful concepts of nuclear theory to calculate cross sections of neutrons of around 14 MeV and below scattered by nuclei of material of installations producing energy of nuclear fusion. If these concepts are used to discuss and improve the experimental data they have to be completed by DWBA-type contributions to the small-step region of the incident neutron which can account for the angular distribution of the scattered neutron because there is the difficulty to separate experimentally the incoming from the scattered beam. The angle integrated cross-section in this region can be shown to be accounted for the surface dependent components of Blanns geometry-dependent precompound mechanism of the statistical state density and level density contributions of the compound and precompound components beeing calculated according to the recent developments of Anzaldo using the analytic number theory. The experimental data have been taken from the results of Hermsdorf, Meister, Sassonov, Seeliger, Seidel, Shahin and of A.Takahashi
Jamieson, D. S.; Garrett, P. E.; Ball, G. C.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.
The single-particle neutron states in 112Cd have been probed with the 111Cd(d,p) reaction. Beams of up to 1.2 µA of polarized 22 MeV deuterons bombarded 111Cd targets. The reaction protons were momentum analyzed with a Q3D magnetic spectrograph, with spectra were recorded at 10 angles between 10 and 60° with a resolution of 6-7 keV FWHM. In addition to the (d,p) transfer data, (d,d) elastic-scattering data were also obtained and used to ascertain the proper optical model parameters. Cross sections and analyzing powers for all levels observed to be populated were fit to results of DWBA and ADWA calculations, and spectroscopic factors were determined. The 5- level at 2373 keV, previously assigned as a member on the quadrupole-octupole quintuplet set of states because of its enhanced B(E2;5 - to 31 - ) value, was observed to be one of the strongest peaks in the spectrum, and is reassigned as the s1/2 otimes h11/2 two-quasineutron configuration.
Spectroscopy of neutron-rich isotopes of nickel and iron
International Nuclear Information System (INIS)
Girod, M.; Dessagne, P.; Bernas, M.; Langevin, M.; Pougheon, F.; Roussel, P.
1987-01-01
Spectroscopy of neutron rich isotopes of 67 Ni, 68 Ni and 62 Fe is studied using the quasi-elastic transfer reactions ( 14 C, 16 O) and ( 14 C, 17 O) on mass separated targets of 70 Zn and of 64 Ni. The structure of these new nuclei is investigated through the Hartree-Fock-Bogoliubov (HFB) calculations, using the D1SA interaction. Inertial parameters are calculated in the cranking approximation. Collective excited states are obtained consistently by solving the Bohr Hamiltonian. Based on these results, quantum numbers are tentatively assigned to the observed states and angular distributions, measured and calculated from the DWBA, are used to check this assignment. The spectroscopy of more neutron rich nuclei, yet unknown, is anticipated. A sharper test of wave functions is provided by the monopole operator of the O 2 + → O 1 + transition in 68 Ni, which have been deduced from the halflife measurement performed in delayed coincidence experiments. An impressive agreement is obtained between the measured halflife and its value calculated using complete HFB wave functions
Double-step processes in the 12C(p,d)11C reaction at 45 MeV
International Nuclear Information System (INIS)
Couvert, Pierre.
1974-01-01
12 C(p,d) 11 C pick-up reaction was performed with a 45 MeV proton beam. A 130keV energy resolution was obtained and angular distributions of nine of the ten first levels of 11 C have been extracted within a large angular range. Assuming only neutron direct transfert, the strong relative excitation of high spin levels cannot be reproduced by a DWBA analysis. The double-step process assumption seems to be verified by a systematical analysis of the (p,d) reaction mechanisms. This analysis is done in the coupled-channel formalism for the five first negative parity states of 11 C. The 3/2 - ground state is essentially populated by the direct transfer of a Psub(3/2) neutron. The contribution of a double-step process, via the 2 + inelastic excitation of 12 C, is important for the four other states. A mechanism which assumes a deuteron inelastic scattering on the 11 C final nucleus after the neutron transfer cannot be neglected and improves the fits when it is taken into account [fr
Neutron transfer reactions in the fp-shell region
International Nuclear Information System (INIS)
Mahgoub, Mahmoud
2008-01-01
Neutron transfer reactions were used to study the stability of the magic number N=28 near 56 Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in 55 Fe. On the other hand we investigated the two-neutron transfer mechanism into 56 Ni using the pickup reaction 58 Ni(vectorp,t) 56 Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t( 40 Ar,p) 42 Ar and d( 54 Fe,p) 55 Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction (vectord,p) on 54 Fe the 1f 7/2 shell in the ground state configuration was found to be partly broken. The instability of the 1f 7/2 shell and the magic number N=28 was confirmed once by observing a number of levels with J π = 7/2 - at low excitation energies, which should not be populated if 54 Fe has a closed 1f 7/2 shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f 7/2 shell show better agreement with the experiment. The instability of the 1f 7/2 shell was confirmed also by performing the two-neutron pick-up reaction (vectorp,t) on 58 Ni to study 56 Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f 7/2 as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies (∝ 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of 54 Fe ions and a deuteron target. From this inverse kinematics experiment we were able to reproduce the absolute cross-section and angular
Spectroscopy of 919395Nb and 9395Tc via the (3He,d) reaction at 25 MeV
International Nuclear Information System (INIS)
Cooney, P.J.
1975-01-01
Low-lying and analog states in 91 93 95 Nb and 93 95 Tc have been studied using the ( 3 He,d) reaction at a 3 He lab energy of 25 MeV. Outgoing deuteron angular distributions were measured using cooled surface barrier detector telescopes with a typical energy resolution of 70 keV and were compared with DWBA calculations in order to obtain l-values and proton spectroscopic factors. Reasonable agreement with sum rule limits for low-lying g-, p-, and f-states was obtained without any ad hoc adjustment of the calculated differential cross sections. Considerable fragmentation of the T/sub less than/ component of the d 5 / 2 single proton strength was observed, particularly in 93 95 Nb and its centroid was found to shift to lower excitation energies with increasing neutron number. The spectroscopic factors of the analog states were extracted using previously untried wavefunctions and were in good agreement with those of the parent states. Finally, the splitting between the analog and anti-analog d 5 / 2 states was found to be proportional to (T/sub A/ + 1 / 2 ), the constant of proportionality being about 150 MeV/A
Explosive hydrogen brning of 35Cl
International Nuclear Information System (INIS)
Ilidas, C.; Goerres, J.; Ross, J.G.; Scheller, K.W.; Wiescher, M.; Azuma, R.E.; Roters, G.; Trautvetter, H.P.; Evans, H.C.
1994-01-01
Proton threshold states in 36 Ar have been studied via the reactions 35 Cl( 3 He,d) 36 Ar, 32 S( 6 Li,d) 36 Ar, 32 S(α,γ) 36 Ar, 35 Cl(p,γ) 36 Ar and 35 Cl(p,α) 32 S to investigate their influence on a possible SCl reaction cycle in explosive hydrogen burning. Three new states in 36 Ar have been observed in the ( 3 He,d) reaction at E x =8806, 8887 and 8923 keV. Deuteron angular distributions were measured for 14 states near the 35 Cl+p threshold and were analyzed with DWBA calculations. Values of transferred orbital angular momenta, spectroscopic factors and proton partial widths were determined. Gamma-ray spectra have been measured at ten (p,γ) resonances. Three new resonances were observed at E R =311, 416 and 627 keV, corresponding to 36 Ar states at E x =8806, 8909 and 9117 keV, respectively. Excitation and resonance energies, γ-ray branching ratios and resonance strengths are presented. The astrophysical implications of our results for explosive hydrogen burning of 35 Cl are discussed. (orig.)
International Nuclear Information System (INIS)
Jelitto, H.
1987-05-01
6 Li-induced break-up reactions have been investigated at reaction angles in extreme forward direction including O 0 with the Karlsruhe Magnetic Spectrograph 'Little John'. The experiments were characterized by the minimization of the high experimental background that dominates at small emission angles. Inclusive alpha-particle and deuteron spectra from the bombardement of 12 C- and 208 Pb-targets with 156 MeV 6 Li-ions have been measured. Below the grazing angle the Coulomb interaction shows a distinct influence on the angular distributions of the fragments. A simple spectator-model and a more realistic description within the DWBA-formalism largely allows a reproduction of the data. In the light of the reverse reaction α + d → 6 Li + γ at small α-d-relative energies, which is of considerable interest for astrophysics, a particle-particle-coincidence measurement with θ α = 5 0 and θ d = -2 0 has been performed. The result could be reproduced reasonably well by a simple Monte-Carlo-simulation. Beside the treatment of a physical problem this work deals with the start-up of the magnetic spectrograph and the clarification of spectrograph specific questions concerning the data reduction. (orig.) [de
Coulomb-nuclear interference with 6Li: Isospin character of the 21+ excitation in 70,72,74Ge
International Nuclear Information System (INIS)
Barbosa, M.D.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Rodrigues, M.R.D.; Ukita, G.M.
2005-01-01
Ratios of B(E2) to B(IS2), that is, of the reduced quadrupole transition probabilities related, respectively, to charge and mass were extracted through Coulomb-nuclear interference (CNI) for the excitation of the 2 1 + states in 70,72,74 Ge, with a relative accuracy of less than 4%. For this purpose, the CNI angular distributions associated with the inelastic scattering of 28-MeV incident 6 Li ions accelerated by the Sao Paulo Pelletron, and momentum analyzed by the Enge magnetic spectrograph were interpreted within the DWBA-DOMP approach (distorted wave approximation for the scattering process and deformed optical model for the structure representation) with global 6 Li optical parameters. The present CNI results demonstrate an abrupt change in the B(E2)/B(IS2) ratio for 74 Ge: although for 70,72 Ge, values of the order of 1.0 or slightly higher were obtained, this ratio is 0.66 (7) for 74 Ge. The heavier Ge isotope is thus one of the few nuclei that, so far, have been shown to present clear mixed symmetry components in their ground-state band
Single neutron pick-up on {sup 104}Pd
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, M.R.D.; Andre, J.P.A.M. de; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L. [Universidade de Sao Paulo, SP (Brazil). Inst. de Fisica; Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia
2006-12-15
Low-lying levels of {sup 103}Pd have been investigated through the (d,t) reaction on {sup 104}Pd, at an incident deuteron energy of 15.0 MeV. Outgoing particles were momentum analyzed by an Enge magnetic spectrograph and detected in nuclear emulsion plates, with an energy resolution of 8 keV. Previous (d,t) work suffered from a much worse resolution than that here achieved. A partial analysis of the data obtained is reported, referring to six out of the fourteen scattering angles for which data were obtained. Angular distributions associated with eight of the thirteen levels seen up to 1.1 MeV of excitation have been compared to DWBA one-neutron pick-up predictions. Both, the attributed excitation energy values and the transferred angular momenta are in excellent agreement with the results of other kind of experiments, as tabulated by the Nuclear Data Sheets. Some peculiar structure characteristics, associated with the yrast 5/2{sup +}, 3/2{sup +} and 7/2{sup +} states found in the Ru chain could be recognized also in {sup 103}Pd, pointing to the possibility of a more global understanding of this transitional mass region. (author)
Jamieson, D. S.; Garrett, P. E.; Ball, G. C.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Wirth, H.-F.
2014-03-01
Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(overrightarrow {{d}} ,p)112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p) study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.
Moving Towards a State of the Art Charge-Exchange Reaction Code
Poxon-Pearson, Terri; Nunes, Filomena; Potel, Gregory
2017-09-01
Charge-exchange reactions have a wide range of applications, including late stellar evolution, constraining the matrix elements for neutrinoless double β-decay, and exploring symmetry energy and other aspects of exotic nuclear matter. Still, much of the reaction theory needed to describe these transitions is underdeveloped and relies on assumptions and simplifications that are often extended outside of their region of validity. In this work, we have begun to move towards a state of the art charge-exchange reaction code. As a first step, we focus on Fermi transitions using a Lane potential in a few body, Distorted Wave Born Approximation (DWBA) framework. We have focused on maintaining a modular structure for the code so we can later incorporate complications such as nonlocality, breakup, and microscopic inputs. Results using this new charge-exchange code will be shown compared to the analysis in for the case of 48Ca(p,n)48Sc. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. DOE Cooperative Agreement No. DE- FG52-08NA2855.
Single neutron pick-up on 104Pd
International Nuclear Information System (INIS)
Rodrigues, M.R.D.; Andre, J.P.A.M. de; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Ukita, G.M.
2006-01-01
Low-lying levels of 103 Pd have been investigated through the (d,t) reaction on 104 Pd, at an incident deuteron energy of 15.0 MeV. Outgoing particles were momentum analyzed by an Enge magnetic spectrograph and detected in nuclear emulsion plates, with an energy resolution of 8 keV. Previous (d,t) work suffered from a much worse resolution than that here achieved. A partial analysis of the data obtained is reported, referring to six out of the fourteen scattering angles for which data were obtained. Angular distributions associated with eight of the thirteen levels seen up to 1.1 MeV of excitation have been compared to DWBA one-neutron pick-up predictions. Both, the attributed excitation energy values and the transferred angular momenta are in excellent agreement with the results of other kind of experiments, as tabulated by the Nuclear Data Sheets. Some peculiar structure characteristics, associated with the yrast 5/2 + , 3/2 + and 7/2 + states found in the Ru chain could be recognized also in 103 Pd, pointing to the possibility of a more global understanding of this transitional mass region. (author)
Directory of Open Access Journals (Sweden)
Jamieson D.S.
2014-03-01
Full Text Available Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.
Neutron transfer reactions in the fp-shell region
Energy Technology Data Exchange (ETDEWEB)
Mahgoub, Mahmoud
2008-06-26
Neutron transfer reactions were used to study the stability of the magic number N=28 near {sup 56}Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in {sup 55}Fe. On the other hand we investigated the two-neutron transfer mechanism into {sup 56}Ni using the pickup reaction {sup 58}Ni((vector)p,t){sup 56}Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t({sup 40}Ar,p){sup 42}Ar and d({sup 54}Fe,p){sup 55}Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction ((vector)d,p) on {sup 54}Fe the 1f{sub 7/2} shell in the ground state configuration was found to be partly broken. The instability of the 1f{sub 7/2} shell and the magic number N=28 was confirmed once by observing a number of levels with J{sup {pi}} = 7/2{sup -} at low excitation energies, which should not be populated if {sup 54}Fe has a closed 1f{sub 7/2} shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f{sub 7/2} shell show better agreement with the experiment. The instability of the 1f{sub 7/2} shell was confirmed also by performing the two-neutron pick-up reaction ((vector)p,t) on {sup 58}Ni to study {sup 56}Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f{sub 7/2} as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies ({proportional_to} 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of {sup 54}Fe ions and a
Electron scattering from 36Ar and 40Ar
International Nuclear Information System (INIS)
Finn, J.M.
1975-01-01
The argon isotopes, 36 Ar and 40 Ar, have been investigated using electron scattering at the high-resolution Linac facilities of the National Bureau of Standards. Both elastic scattering and scattering to low-lying states have been observed. A high-pressure, low-volume gas target cell was designed and developed for this experiment. The cell features a transmission geometry and has resolution comparable to solid targets. Spectra were obtained at incident beam energies ranging from 65 to 115 MeV at scattering angles of 92.5 0 and 110 0 . Values obtained for the rms charge radii are 3.327 +- 0.015 and 3.393 +- 0.015 fm for 36 Ar and 40 Ar respectively. A sensitive measurement was made of the difference in the two radii yielding a value of Δ r = 0.079 +- 0.006 fm. The inelastic levels observed are the 1.97 (2 + ) and 4.18 MeV (3 - ) levels in 36 Ar, and the 1.46 (2 + ), 2.52 (2 + ), 3.21 (2 + ), and 3.68 MeV (3 - ) levels in 40 Ar. A Tassie model analysis was made of the inelastic transitions in the DWBA approximation and transition strengths of these levels were extracted
Population and particle decay of isobaric analog states in medium heavy nuclei
International Nuclear Information System (INIS)
Gales, S.
1980-05-01
The systematic features of proton stripping and neutron pick-up reactions to Isobaric Analog States in medium heavy nuclei are presented. The ( 3 He,d) reaction investigated at high incident energy is shown to selectively excite high-spin particle-analog states. Similarly the ( 3 He,α) reaction populates hole-analog states. The recent results related to such highly excited states in a wide range of nuclei ( 48 Ca to 208 Pb) are discussed in the framework of the DWBA theory of direct reactions with special emphasis on the treatment of unbound proton states or deeply-bound neutron hole states. The particle decay of Isobaric Analog States are investigated using the ( 3 He,d p) and ( 3 He, α p) sequential processes. The experimental method developed at Orsay (0 0 detection) for particle-particle angular correlations is presented. The advantage and the limits of such approach are illustrated by typical examples of particle decays: core-excited states, neutron particle-hole multiplets and the first observation of the proton emission of hole-analog levels. In conclusion new experimental approaches such as asymmetry measurements for analog states observed in transfer reactions or possible population of double analog states in heavy nuclei are discussed
Energy Technology Data Exchange (ETDEWEB)
Yuanda, Wang; Xiuming, Bao; Zhiqiang, Mao; Rongfang, Yuan; Keling, Wen; Binyin, Huang; Zhifu, Wang; Shuming, Li; Jianan, Wang; Zuxun, Sun; others, and
1985-11-01
The differential cross sections are measured using 26.0 MeV ..cap alpha.. particle for /sup 58,62/Ni(..cap alpha.., ..cap alpha..) /sup 58,62/Ni and /sup 58,62/Ni(..cap alpha..,p) /sup 61,65/Cu reactions as well as 25.4 MeV ..cap alpha.. particle for /sup 60/Ni(..cap alpha.., ..cap alpha..)/sup 69/Ni and /sup 60/Ni(..cap alpha.., p)/sup 63/Cu reactions. Consistent calculations with optical model and ZR DWBA are made for (..cap alpha.., ..cap alpha..) and (..cap alpha.., p) reactions by using of single, two, three and four nucleon optical potential parameters. For elastic scattering due to the ..cap alpha.. optical potential ambiguities, all the above optical potential can reproduce the experimental angular distributions. However, the single, two and three nucleon potential, including the Baird's mass systematics and the Chang's energy systematics of ..cap alpha.. potentials, obviously can not provide a reasonable fitting with the (..cap alpha..,p) reaction experimental data. Only the results from the four nucleon potential is in good agreement with the (..cap alpha..,p) reaction experimental data. This reveals that in the ..cap alpha..-particle induced transfer reactions, the real depth of the ..cap alpha..-nucleus optical potential should be rather deep.
International Nuclear Information System (INIS)
Meuer, D.; Frey, R.; Hoffmann, D.H.H.; Richter, A.; Spamer, E.; Titze, O.; Knuepfer, W.
1980-01-01
High-resolution (FWHM approx. 30 keV) inelastic electron scattering on 90 Zr at low momentum transfer (0.20 -1 ) has been used to study magnetic transitions at excitation energies Esub(x) = 8-10 MeV. The experimental data were analyzed in the distorted-wave Born approximation (DWBA) with wave functions calculated in the random phase approximation (RPA). Three Jsup(π) = 1 + states have been identified Esub(x) = 8.233, 9.000 and 9.371 MeV. There is some indication of further very fragmented dipole strength and the upper limit for the total M1 strength in the investigated energy region is ΣB(M1)up 2 sub(K). It is much smaller than any theoretical prediction. Furthermore, a large number of 2 - states has been observed, with the center of gravity located at Esub(x) approx. 9 MeV. These states carry a total strength of ΣB(M2)up = 1000 μ 2 sub(K) x fm 2 . Their strong fragmentation is in qualitative agreement with theoretical calculations, but the deduced strength is much smaller than theoretically predicted. In addition the distributions of spacings and radiative widths of the 2 - states are consistent with a Wigner and a Porter-Thomas distribution, respectively. (orig.)
The breakout of the Hot CNO cycle via ^18Ne resonant states
Almaraz-Calderon, S.; Tan, W.; Aprahamian, A.; Bucher, B.; Gorres, J.; Roberts, A.; Villano, A.; Wiescher, M.; Brune, C.; Heinen, Z.; Massey, T.; Ozkan, N.; Guray, R. T.; Mach, H.
2010-11-01
The energy generation rate in the HCNO cycle is limited by the β decay of the waiting point nuclei ^14O and ^15O. However, when the temperatures and densities are high enough (e.g. Novae and X-ray Bursts) it is possible to bypass them by p/α captures resulting in a thermonuclear runaway towards the rp-process. One of the two paths for breakouts from the HCNO cycle is the reaction chain ^14O(α,p)^17F(p,γ)^18Ne(α,p), which proceeds through resonant states on ^18Ne, making their reactions rates very sensitive on the partial and total widths, excitation energies and spins of such resonances. We studied the resonant states in ^18Ne via ^16O(^3He,n) reaction. The neutrons were measured with an array of liquid scintillators using Time-of-Flight and pulse-shape discrimination techniques. The charged particles were detected in coincidence with neutrons by an array of silicon detectors, allowing us to measure α, p, p' and 2p decay branching ratios. Tentative spin assignments were made in comparison with zero range DWBA calculations. This new information will be included in reaction network calculations to evaluate its impact on the nuclear energy generation that occurs in these stellar explosive environments.
Impulse transfer and light particles emission during the reaction α + 232Th at 70 MeV/u
International Nuclear Information System (INIS)
Nguyen, M.S.
1988-02-01
We have measured during the reaction 4 He + 232 Th at 70 MeV/u the angular correlation of heavy fragments of fission, the inclusive energy spectra of light particles (p, d, t, 3 He and α) and triple coincidence between two fission fragments and a light ejectile. Energy spectra show an evaporation component at low energy, a component of projectile fragmentation at energy equivalent to beam velocity and an intermediate component attributed to pre-equilibrium emission. The analysis of the correlation between linear momentum transfer to the fissioning nucleus and the characteristics of the ejectile in coincidence shows a phenomenon of incomplete massive transfer. We run an Intra-Nuclear Cascade (INC) computation to reproduce ejectile energy spectra, but the agreement with experiment was very bad. We conclude to the impossibility to apply INC computation at intermediate energy of 70 MeV/u. We also applied Distorted Wave Born Approximation (DWBA) for direct transfer reaction extended to continuum states: but the agreement with experiment was again deceiving. Finally, we used an analysis by moving sources for which we propose a model of generalized fragmentation giving a continuous representation of the emission source phenomenon from low energy up to high energy [fr
International Nuclear Information System (INIS)
Guillot, J.
1979-01-01
Neutron hole states in the 207 Pb, 206 Pb, 205 Pb isotopes were studied up to 25 MeV excitation energy using the ( 3 He,α) reaction at 100MeV incident energy, with 100 keV energy resolution. Angular distributions for the low-lying levels and inner hole states have been analyzed with DWBA and spectroscopic factors extracted for 1 > 3 levels. Missing strengths for the first levels from 1i13/2 and 1h9/2 orbits are found in the bump located around 5MeV excitation energy. The fragmented bump observed around 8MeV excitation energy is attributed to 1h11/2 pick-up with 45% of the sum-rule limit. Finally, the structure extending up to 21 MeV excitation energy is attributed to 1g7/2+1g9/2 pick-up with 80% of the total strength. In 207 Pb, the four first isobaric analog states Tsub(>) = 45/2 are identifierd around 20MeV excitation energy. The second part of this work presents the first tests in (d,t) reaction at 108 MeV on 90 Zr and 208 Pb using the achromatic line of the Orsay synchrocyclotron [fr
The nuclear structure dependence of (p,α) reactions on light nuclei
International Nuclear Information System (INIS)
Leitner, W.
1985-01-01
As the theoretical predictions on nuclear structure and on nucleon-nucleon correlations implied by the nuclear wave functions are not subject to an immediate experimental verification the authors require a reaction theory connecting these state functions with observable quantities. The application of (rho,α) reactions as a spectroscopic tool has found widespread interest, as a number of microscopic descriptions of the reaction mechanism have facilitated the extraction of nuclear structure information. A microscopic formulation results in a strong dependence of the cross section on the nuclear structure of the reaction partners. The different basic configurations of the transferred nucleon system contribute coherently, thus causing a great sensitivity to the relative phases of the wave functions' amplitudes. A major disadvantage inherent to these microscopic theories of multinucleon-transfer reactions is based on the destruction of the transition amplitude's formal symmetry in the dynamic and in the nuclear structure part. In order to retain the factorization of the reaction amplitude, the authors applied the cluster ansatz to the microscopic theory of an earlier studies. The attractive features of this procedure are the conservation of the coherence properties of the structure term and the straightforward determination of transition strengths, independent of an elaborate DWBA treatment
Structure of the excited states of 11Be reached through the reaction d(10Be,p)11Be
International Nuclear Information System (INIS)
Delaunay, F.
2003-10-01
The one-neutron transfer reaction d( 10 Be,p) 11 Be has been studied at 32 A.MeV at GANIL with a 10 Be secondary beam. Protons were detected by the silicon strip array MUST. The ground state and excited states of 11 Be at 0.32, 1.78 and 3.41 MeV were populated, demonstrating the feasibility of transfer reactions induced by radioactive beams leading to bound and unbound states. A DWBA (distorted wave born approximation) analysis indicates for the 3.41 MeV state spin and parity 3/2 + or 5/2 + and a spectroscopic factor of 0.18 or 0.11, respectively. A broad structure centered at 10 MeV is also observed and corresponds to transfer to the 1d sub-shells. If one assumes that only the 1d3/2 orbital contributes to this structure, the splitting of the 1d neutron states in 11 Be is estimated to be 6.3 MeV. Using a 2-particle-RPA (random phase approximation) model, we have shown that neutron-neutron correlations play an important role in the inversion between the 2s1/2 and 1p1/2 neutron states in 11 Be. (author)
Determination by transfer reaction of alpha widths in fluorine for astrophysical interest
International Nuclear Information System (INIS)
Oliveira Santos, F. de
1995-04-01
The nucleosynthesis of fluorine is not known. Several astrophysical models predict the alpha radiative capture onto N 15 as the main fluorine production reaction. In the expression of the reaction rate, one parameter is missing: the alpha width of the resonance on the E = 4.377 MeV level in fluorine. A direct measurement is excluded due to the very low cross-section expected. We have determined this alpha width using a transfer reaction followed by analyses with FR-DWBA (Finite Range Distorted Wave Born Approximation) in a simple cluster alpha model. This experiment was carried out with a Li 7 beam with E = 28 MeV onto a N 15 gas target. The 16 first levels were studied. Spectroscopic factors were extracted for most of them. Alpha widths for unbound levels were determined. Many alpha width were compared with known values from direct reaction and the differences lie within the uncertainty range (factor 2). The alpha width for the E = 4.377 MeV level was determined (Γ α = 1.5*10 -15 MeV), its value is about 60 times weaker than the used value. The influence of our new rate was studied in AGB (Asymptotic Giant Branch) stars during thermal pulses. In this model the alteration is sensitive. (author)
Quantum mechanical theory of positron production in heavy ion collisions with nuclear contact
International Nuclear Information System (INIS)
Heinz, U.
1986-01-01
The interplay between atomic and nuclear interactions in heavy ion collisions with nuclear contact is studied. The general theoretical description is outlined and analyzed in a number of different limits (semiclassical approximation, DWBA, fully quantal description). The two most important physical mechanisms for generating atomic-nuclear interference, i.e., energy conservation and the introduction of additional phase shifts by nuclear reactions, are extracted. The resulting typical coupling matrix elements are analyzed for their relative importance in atomic and nuclear excitations. The description of nuclear influence on atomic excitations in terms of a classical time delay caused by nuclear reactions is reviewed, and its relationship to the underlying quantal character of the nuclear reaction is discussed. The theory is applied to spontaneous positron emission in supercritical heavy-ion collisions (Z/sub tot/ ≥ 173). It is shown that nuclear contact can lead to line structures in the positron energy spectra if the probability distribution for nuclear delay times caused by the contact has contributions for T ≥ 10 -19 sec. We explicitly evaluate a model where a pocket in the internuclear potential near the touching configuration leads to formation of nuclear molecules, and predict a resonance-like excitation function for the positron peak. 25 refs., 7 figs
Theoretical predictions for alpha particle spectroscopic strengths
International Nuclear Information System (INIS)
Draayer, J.P.
1975-01-01
Multinucleon transfers induced in heavy-ion reactions of the type ( 6 Li,d) furnish a selective probe with which to study the interplay between rotational and clustering phenomena so characteristic of the structure of the light sd-shell nuclei. For these nuclei, theoretical predictions for inter-band as well as intra-band transfer strengths can be made using recently tabulated results for angular momentum dependent SU 3 inclusion R 3 relative spectroscopic strengths and angular momentum independent SU 6 inclusion SU 3 coefficients of fractional parentage. The pure SU 3 (oscillator)-SU 4 (supermultiplet) symmetry limit agrees well with results obtained using available eigenfunctions determined in large shell model calculations. In particular, the scalar nature of a transferred ''alpha''-cluster insures that the effect of spatial symmetry admixtures in the initial and final states of the target and residual nuclei are minimized. Sum rule quantities provide a measure of the probable effects of symmetry breaking. Strength variations within a band are expected; transfers to core excited states are often favored. Results extracted from exact finite range DWBA analyses of ( 6 Li,d) data on 16 , 18 O, 20 , 21 , 22 Ne, 24 , 25 Mg show some anomalies in our understanding of the structure and/or reaction mechanisms. (18 figures) (U.S.)
Energy Technology Data Exchange (ETDEWEB)
Delaunay, F
2003-10-01
The one-neutron transfer reaction d({sup 10}Be,p){sup 11}Be has been studied at 32 A.MeV at GANIL with a {sup 10}Be secondary beam. Protons were detected by the silicon strip array MUST. The ground state and excited states of {sup 11}Be at 0.32, 1.78 and 3.41 MeV were populated, demonstrating the feasibility of transfer reactions induced by radioactive beams leading to bound and unbound states. A DWBA (distorted wave born approximation) analysis indicates for the 3.41 MeV state spin and parity 3/2{sup +} or 5/2{sup +} and a spectroscopic factor of 0.18 or 0.11, respectively. A broad structure centered at 10 MeV is also observed and corresponds to transfer to the 1d sub-shells. If one assumes that only the 1d3/2 orbital contributes to this structure, the splitting of the 1d neutron states in {sup 11}Be is estimated to be 6.3 MeV. Using a 2-particle-RPA (random phase approximation) model, we have shown that neutron-neutron correlations play an important role in the inversion between the 2s1/2 and 1p1/2 neutron states in {sup 11}Be. (author)
International Nuclear Information System (INIS)
Aoki, Y.; Kunori, S.; Nagano, K.; Toba, Y.; Yagi, K.
1981-01-01
Differential cross sections and vector analyzing powers for 14 N(p, p') and 14 N(p, d) reactions have been measured at E sub(p) = 21.0 MeV to elucidate the reaction mechanism and the effective interaction for the ΔS = ΔT = 1 transition in 14 N(p, p') 14 N(2.31 MeV) reaction. The data are analyzed in terms of finite-range distorted wave Borm approximation (DWBA) which include direct, knock-on exchange and (p, d)(d, p') two-step processes. Shell model wave functions of Cohen and Kurath are used. The data for the first excited state is reasonably well explained by introducing two-step process. The two-step process explains half of the experimental intensity. Moreover vector analyzing power can hardly be explained without introducing this two-step process. Vector analyzing power of protons leading to the second excited state in 14 N is better explained by introducing macroscopic calculation. The data for 14 N(p, d) 13 N(gs) reaction are well explained by a suitable choice of deuteron optical potential. Knock-on exchange contribution is relatively small. Importance of this two-step process for ΔS = ΔT = 1 transition is discussed up to 40 MeV. (author)
Energy Technology Data Exchange (ETDEWEB)
Swiniarski, R de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-10-01
The elastic and inelastic scattering of the 18.6 MeV polarized proton beam from the Saclay variable energy cyclotron has been studied for the following nuclei: {sup 48}Ti, {sup 50}Ti, {sup 52}C, {sup 54}Fe, {sup 56}Fe, {sup 58}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu: the targets {sup 52}Cr, {sup 60}Ni and {sup 62}Ni have also been investigated at 16.5 MeV. The measured asymmetries for the strong l = 2 transitions tend to fall into two categories, distinguished by the magnitude of the asymmetries at 30 degrees and 90 degrees. For the transitions studied, only those to the first 2+ state of the 28-neutron nuclei present large asymmetries at these angles. Strong l = 3 and l = 4 transitions show also interesting variations. When the entire optical potential is deformed, coupled channels or DWBA calculations predict the 'small' l = 2 asymmetry reasonably well, but only an abnormal increase of the strength of the spin-orbit distortion or the introduction of an imaginary and negative spin-orbit potential can reproduce the amplitude of the large asymmetries. Calculations with a microscopic model indicate that the asymmetry is sensitive to the form factor and no important differences were found between S=0 and S=1 predictions. (author) [French] Nous avons etudie la diffusion elastique et inelastique a l'aide du faisceau de protons polarises du cyclotron a energie variable de Saclay a 18.6 MeV pour les cibles suivantes: {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Ni, {sup 62}Ni, {sup 63}Cu et {sup 64}Ni: les cibles {sup 52}Cr, {sup 60}Ni et {sup 62}Ni ont egalement ete etudiees a 16.5 MeV. Les asymetries mesurees pour les transitions fortement excitees l = 2 se divisent en deux groupes differant par l'amplitude de l'asymetrie a 30 degres et 90 degres. Seules les asymetries mesurees pour les premiers niveaux 2+ des noyaux a couche complete en neutrons (N=28) sont tres grandes a ces angles. Les asymetries mesurees pour les niveaux 3{sup -} et 4{sup
Asymptotic normalization coefficients, nuclear vertex constants and nuclear astrophysics problems
International Nuclear Information System (INIS)
Yarmukhamedov, R.; Artemov, S.V.; Igamov, S.B.; Burtebaev, N.; Peterson, R.J.
2007-01-01
Full text: We will review the results of a comprehensive analysis of the experimental astrophysical S- factors S(E) for the t(α, γ ) 7 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 B, 12 C(p , γ) 13 N and 13 C(p,γ) 14 N reactions at extremely low energies, performed within a three-sided collaboration (Uzbekistan-Kazakhstan-USA). In the analysis, the new experimental data for the 12 C(p, γ) 13 N reaction are also included, as measured with the accelerator UKP-2-1 at the Institute of Nuclear Physics in Kazakhstan. The analysis is carried out within the framework of a new two-body potential approach and the R-matrix method, taking into account information about the asymptotic normalization coefficient (ANC) (or the respective nuclear vertex constant for virtual decay of the residual nuclei into two fragments of the initial states of the aforesaid reactions, which belong to the fundamental nuclear constants). Nowadays ANC's are obtained from analysis of peripheral one nucleon transfer reactions by method combining dispersion theory and DWBA (CM). It is shown that ANC can be also reliably obtained from analysis of proton capture reactions at astrophysical energies by new modified two-body potential method where the CM is used. A comparative analysis of the results obtained by different authors in the framework of different methods is also done
International Nuclear Information System (INIS)
Morais, M.C.; Lichtenthaele, R.; Arazi, A.; Hojman, D.; Cardona, M.A.; Fimiani, L.; Carnelli, P.F.; Marti, G.V.; Pacheco, A.J.; Martinez Heimann, D.; Negri, A.E.; Capurro, O.A.; Niello, Fernandez; Montero, P.
2011-01-01
Full text: The 16 O+ 12 C elastic scattering was investigated considering the effect of exchange of an alpha particle between projectile and target leading to the same nuclei of the entrance channel (elastic transfer). Angular distributions were analyzed in an energy range from 8.55 MeV to 56.57 MeV in the center of mass frame. The Coulomb barrier is around 11MeV for this system. Measurements of angular distributions of elastic and inelastic transfer reactions to states of the 16 O in the 16 O+ 12 C system were performed at the TANDAR Laboratory in Buenos Aires, using an 16 O beam of E lab = 46; 26 MeV. The transfer angular distributions were analyzed by DWBA using the computer code FRESCO. Those measurements provided the spectroscopic factors of 12 C + α → 16 O for the ground state and for J π = 2 + and J π = 1 - 16 O excited states, both just below the α-threshold at 7.16 MeV. The Asymptotic Normalization Coefficient (ANC) for the J π = 2 + state was obtained (1.05 ±0,13(10 5 fm -1/2 )) and used to calculate the reduced width of this state, with this value a R-matrix calculation was performed to determine the astrophysical S-factor in energies around the Gamow peak, S(E2)=37keVb. (author)
Application of multistep compound and multistep direct models for data evaluation
International Nuclear Information System (INIS)
Chadwick, M.B.; Young, P.G.
1992-01-01
We have implemented the quantum mechanical multistep compound (MSC) and multistep direct (MSD) theories of Feshbach, Kerman, and Koonin (FKK) for the calculation of nucleon-induced multistep reactions. Our code system, FKK-GNASH, uses the FKK theory for primary preequilibrium emission and describes subsequent equilibrium emission using the Hauser-Feshbach code GNASH. The MSC contribution yields emitted particles with angular distributions symmetric about ninety degrees, whereas the MSD contribution, calculated by averaging DWBA cross sections for particle-hole excitations in the continuum, results in forward-peaked preequilibrium emission. The original picture of the evolution of the reaction, as described by FKK, is modified to allow transitions from the MSD to MSC chain. This modification is consistent with semiclassical preequilibrium descriptions, and allows a good description of preequilibrium spectra and angular distributions for a range of different reactions. As an example of our methodology, we calculate 93 Nb(n,n') reactions at 14, 20 and 26 MeV, and 93 Nb(n,p) at 14 MeV, comparing our results with experimental data. Use of the FKK theory has the advantage that preequilibrium calculations are based on rigorous physical principles, and (unlike semiclassical approaches) allow a good description of angular distributions. We argue that our implementation of the FKK theory maximizes the level of predictability, which is needed for data evaluations
International Nuclear Information System (INIS)
Dardi, P.S.
1984-11-01
Within the very broad field of molecular dynamics, we have concentrated on two simple yet important systems. The systems are simple enough so that they are adequately described with a single Born-Oppenheimer potential energy surface and that the dynamics can be calculated accurately. They are important because they give insight into solving more complicated systems. First we discuss H + H 2 reactive scattering. We present an exact formalism for atom-diatom reactive scattering which avoids the problem of finding a coordinate system appropriate for both reactants and products. We present computational results for collinear H + H 2 reactive scattering which agree very well with previous calculations. We also present a coupled channel distorted wave Born approximation for atom-diatom reactive scattering which we show is a first order approximation to our exact formalism. We present coupled channel DWBA results for three dimensional H + H 2 reactive scattering. The second system is an isolated HF molecule in an intense laser field. Using classical trajectories and quantum dynamics, we look at energy absorbed and transition probabilities as a function of the laser pulse time and also averaged over the pulse time. Calculations are performed for both rotating and nonrotating HF. We examine one and two photon absorption about the fundamental frequency, multiphoton absorption, and overtone absorption. 127 references, 31 figures, 12 tables
Study of the 18F(p,α)15O reaction by transfer reaction for application to γ-ray emission from Novae
International Nuclear Information System (INIS)
Sereville, N. de
2003-12-01
The gamma emission from novae at/or below 511 keV is due to the annihilation of the positrons produced in the beta + decay of F 18 . The interpretation of this emission through observations made by the Integral satellite for instance, requires a good knowledge of F 18 nucleosynthesis. The reaction rate of the F 18 (p,α)O 15 is the least known because of 2 resonances corresponding to the levels 6.419 and 6.449 MeV of Ne 19 whose proton widths are completely unknown. We have determined these proton widths via the study of one-nucleon transfer reaction D(F 18 ,pα)N 15 populating equivalent levels in F 19 . We have used a 14 MeV F 18 radioactive beam on a CD 2 target for inverse kinematics studies and the multi-track silicon detector LEDA. A DWBA (Distorted Wave Bound Approximation) has enabled us to determine the proton width of both resonances and has showed that they have an impact in the calculation of the reaction rate. A thorough study of the remaining uncertainties of the reaction rate has been undertaken, particularly for those concerning interferences between these resonances and a higher resonance of Ne 19 . The reaction rate that we have obtained is very similar to the previous rate used but now it rests on a more solid basis
GISAXS analysis of 3D nanoparticle assemblies—effect of vertical nanoparticle ordering
International Nuclear Information System (INIS)
Vegso, K; Siffalovic, P; Benkovicova, M; Jergel, M; Luby, S; Majkova, E; Capek, I; Kocsis, T; Perlich, J; Roth, S V
2012-01-01
We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions—layer-by-layer Langmuir–Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished—no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir–Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found. (paper)
On the theory of direct reactions with many particle final states
International Nuclear Information System (INIS)
Trautmann, D.; Baur, G.
1977-01-01
We study the theory of direct reactions with many particle final states. First, we concentrate on the DWBA formulation of the break-up of deuterons on heavy nuclei below the Coulomb barrier. Because there are no free parameters, this permits a clean test of the theory by comparing it to the experimental data. The agreement is very good. The theory is applied to the break-up of antideuteronic atoms. Then the effect of virtual deuteron break-up on Rutherford scattering is studied. It is small, but it seems to be measurable. Also the deuteron break-up above the Coulomb barrier can be well explained theoretically. In this context, small effects are studied briefly. A semiclassical theory of the break-up process is given, which results in an intuitive picture and a fast computational method. Our theory lends itself in a natural way to the study of stripping reactions to unbound states. The relation of stripping into the continuum to elastic scattering of the transferred particle on the same target nucleus is explained. Then the connection of stripping to bound and unbound states is established. Finally various examples of stripping of uncharged and charged particles into the continuum are given to illustrate the theory. Resonance wave functions describing the transferred particle are discussed. In a conclusion an outlook for possible future developments of experiment and theory is given. (author)
Energy Technology Data Exchange (ETDEWEB)
Oliveira Santos, F. de
1995-04-15
The nucleosynthesis of fluorine is not known. Several astrophysical models predict the alpha radiative capture onto N{sup 15} as the main fluorine production reaction. In the expression of the reaction rate, one parameter is missing: the alpha width of the resonance on the E = 4.377 MeV level in fluorine. A direct measurement is excluded due to the very low cross-section expected. We have determined this alpha width using a transfer reaction followed by analyses with FR-DWBA (Finite Range Distorted Wave Born Approximation) in a simple cluster alpha model. This experiment was carried out with a Li{sup 7} beam with E = 28 MeV onto a N{sup 15} gas target. The 16 first levels were studied. Spectroscopic factors were extracted for most of them. Alpha widths for unbound levels were determined. Many alpha width were compared with known values from direct reaction and the differences lie within the uncertainty range (factor 2). The alpha width for the E = 4.377 MeV level was determined ({gamma}{sub {alpha}} = 1.5*10{sup -15} MeV), its value is about 60 times weaker than the used value. The influence of our new rate was studied in AGB (Asymptotic Giant Branch) stars during thermal pulses. In this model the alteration is sensitive. (author)
Energy Technology Data Exchange (ETDEWEB)
Dardi, P.S.
1984-11-01
Within the very broad field of molecular dynamics, we have concentrated on two simple yet important systems. The systems are simple enough so that they are adequately described with a single Born-Oppenheimer potential energy surface and that the dynamics can be calculated accurately. They are important because they give insight into solving more complicated systems. First we discuss H + H/sub 2/ reactive scattering. We present an exact formalism for atom-diatom reactive scattering which avoids the problem of finding a coordinate system appropriate for both reactants and products. We present computational results for collinear H + H/sub 2/ reactive scattering which agree very well with previous calculations. We also present a coupled channel distorted wave Born approximation for atom-diatom reactive scattering which we show is a first order approximation to our exact formalism. We present coupled channel DWBA results for three dimensional H + H/sub 2/ reactive scattering. The second system is an isolated HF molecule in an intense laser field. Using classical trajectories and quantum dynamics, we look at energy absorbed and transition probabilities as a function of the laser pulse time and also averaged over the pulse time. Calculations are performed for both rotating and nonrotating HF. We examine one and two photon absorption about the fundamental frequency, multiphoton absorption, and overtone absorption. 127 references, 31 figures, 12 tables.
Energy Technology Data Exchange (ETDEWEB)
Oliveira Santos, F de
1995-04-15
The nucleosynthesis of fluorine is not known. Several astrophysical models predict the alpha radiative capture onto N{sup 15} as the main fluorine production reaction. In the expression of the reaction rate, one parameter is missing: the alpha width of the resonance on the E = 4.377 MeV level in fluorine. A direct measurement is excluded due to the very low cross-section expected. We have determined this alpha width using a transfer reaction followed by analyses with FR-DWBA (Finite Range Distorted Wave Born Approximation) in a simple cluster alpha model. This experiment was carried out with a Li{sup 7} beam with E = 28 MeV onto a N{sup 15} gas target. The 16 first levels were studied. Spectroscopic factors were extracted for most of them. Alpha widths for unbound levels were determined. Many alpha width were compared with known values from direct reaction and the differences lie within the uncertainty range (factor 2). The alpha width for the E = 4.377 MeV level was determined ({gamma}{sub {alpha}} = 1.5*10{sup -15} MeV), its value is about 60 times weaker than the used value. The influence of our new rate was studied in AGB (Asymptotic Giant Branch) stars during thermal pulses. In this model the alteration is sensitive. (author)
Study of the reaction of astrophysical interest 60Fe(n,γ)61Fe via (d,pγ) transfer reaction
International Nuclear Information System (INIS)
Giron, S.
2011-12-01
60 Fe is of special interest in nuclear astrophysics. Indeed the recent observations of 60 Fe characteristic gamma-ray lines by the RHESSI and INTEGRAL spacecrafts allowed to measure the total flux of 60 Fe over the Galaxy. Moreover the observation in presolar grains of an excess of the daughter-nuclei of 60 Fe, 60 Ni, gives constraints on the conditions of formation of the early solar system. However, the cross-sections of some reactions involved in 60 Fe nucleosynthesis and included to stellar models are still uncertain. The destruction reaction of 60 Fe, 60 Fe(n, γ) 61 Fe, is one of them. The total cross-section can be separate into two contributions: the direct one, involving states below the neutron separation threshold of 61 Fe, and the resonant one.We improved 61 Fe spectroscopy in order to evaluate the direct capture part of the 60 Fe(n, γ) 61 Fe reaction cross-section. 60 Fe(n, γ) 61 Fe was thus studied via d( 60 Fe, pγ) 61 Fe transfer reaction with the CATS/MUST2/EXOGAM setup at LISE-GANIL. DWBA analysis of experimental proton differential cross-sections allowed to extract orbital angular momentum and spectroscopic factors of different populated states identified below the neutron threshold. A comparison of experimental results for 61 Fe with experimental results for similar nuclei and with shell-model calculations was also performed. (author) [fr
Technical progress report, October 1, 1974--September 30, 1975
International Nuclear Information System (INIS)
Richards, H.T.
1975-01-01
The study of the scattering of polarized deuterons yielded improved optical potentials, particularly spin--orbit and tensor potentials. Extensive measurements of vector and tensor analyzing powers for (d,p), (d,n), and (d,t) reactions corrected several J/sup π/ assignments, revealed deficiencies in DWBA calculations, showed some interesting systematics, gave evidence for two-step processes, and demonstrated important deuteron D-state effects. New vector and tensor polarimeters permitted routine beam-polarization checks. Analyzing powers measured to +-- 2 x 10 -4 for p--p scattering at E/sub p/ = 10 MeV gave model-independent phase-shift analysis for E/sub p/ less than 25 MeV. Accurate analyzing powers and cross sections for p + α suggested a D-state component in the α particle. Precise absolute cross sections for several (n,p) and (n,α) reactions resulted from associated-particle measurements. Instrumentation for (p,n) and (α, 8 Be) studies at intermediate energies is underway. Extensive isospin-forbidden cross sections gave level parameters for isospin-mixed 18 F states and implied intermediate structure and ''bridge'' states. Level parameters for 18 F unnatural-parity states resulted from 16 O(d vector,α 3 ) 14 N(J = 0 - ) measurements. Radiative capture and scattering of α's by 14 N, 16 O, and 20 Ne gave data about 18 F, 20 Ne, and 24 Mg. Ion-source development work included a new type polarized source, a new sputter source, and a device for beam emittance measurements
12C(d,p) 13C reaction at Esub(d) = 30 MeV to the positive-parity states in 13C
International Nuclear Information System (INIS)
Ohnuma, H.; Hoshino, N.; Mikoshiba, O.
1985-07-01
The 12 C(d, p) 13 C reaction has been studied at Esub(d) = 30 MeV. All the known positive-parity states of 13 C below 10 MeV in excitation energy, including the 7/2 + and 9/2 + states, are observed in this reaction. The angular distributions for these positive-parity bound and unbound states are analyzed in CCBA frame work. The 13 C wave functions, which reproduce the resonant and non-resonant scattering of neutrons from 12 C, also give good accounts of the experimentally observed angular distributions and energy spectra of outgoing protons in the 12 C(d, p) 13 C reaction. In most cases the cross section magnitude and the angular distribution shape are primarily determined by the 0 + x j component, even if it is only a small fraction of the total wave function. An exception is the 7/2 + state, where the main contribution comes from the 2 + x dsub(5/2) component. The inclusion of the 4 + state in 12 C and the gsub(9/2) and gsub(7/2) neutron components in the n + 12 C system has very small effects on the low-spin states, but is indispensable for a good fit to the 7/2 + and 9/2 + angular distributions. The transitions to the negative-parity states, 1/2 1 - , 3/2 1 - , 5/2 - , 7/2 - and 1/2 3 - , are also observed experimentally, and analyzed by DWBA. (author)
A realistic solvable model for the Coulomb dissociation of neutron halo nuclei
International Nuclear Information System (INIS)
Baur, G.; Hencken, K.; Trautmann, D.
2003-01-01
As a model of a neutron halo nucleus we consider a neutron bound to an inert core by a zero range force. We study the breakup of this simple nucleus in the Coulomb field of a target nucleus. In the post-form DWBA (or, in our simple model CWBA (''Coulomb wave born approximation'')) an analytic solution for the T-matrix is known. We study limiting cases of this T-matrix. As it should be, we recover the Born approximation for weak Coulomb fields (i.e., for the relevant Coulomb parameters much smaller than 1). For strong Coulomb fields, high beam energies, and scattering to the forward region we find a result which is very similar to the Born result. It is only modified by a relative phase (close to 0) between the two terms and a prefactor (close to 1). A similar situation exists for bremsstrahlung emission. This formula can be related to the first order semiclassical treatment of the electromagnetic dissociation. Since our CWBA model contains the electromagnetic interaction between the core and the target nucleus to all orders, this means that higher order effects (including postacceleration effects) are small in the case of high beam energies and forward scattering. Our model also predicts a scaling behavior of the differential cross section, that is, different systems (with different binding energies, beam energies and scattering angles) show the same dependence on two variables x and y. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Monrozeau, Ch
2007-07-15
Giant monopole (GMR) and quadrupole (GQR) resonances have been measured in the {sup 56}Ni using inelastic scattering of 50 A.MeV deuteron at the Grand Accelerateur National d'Ions Lourds facility. This is the first experimental observation of isoscalar collective modes in a short-lived nucleus. The secondary beam was impinged on the active target Maya filled with a pure deuterium gas. Recoiling deuterons were detected in Maya and in a wall of nine silicon detectors. The GMR and GQR are centered at 19.3(0.5) and 16.2(0.5) MeV, respectively. Corresponding angular distributions were extracted from 3 to 7 degrees in the centre of mass frame. DWBA analysis based on RPA transition densities yields the percentage of the energy weighted sum rule exhausted: 136(27) % for the GMR et 76(13) % for the GQR. A finite temperature Hartree-Fock-Bogoliubov model was implemented to describe the 10 Wigner-Seitz cells which compose the inner crust of neutron stars and to microscopically calculate their specific heat. Calculations are performed with two contact pairing forces chosen to simulate the pairing properties of uniform neutron matter corresponding to the BCS approximation and to polarisation effects. Under the assumption of a rapid cooling of the core and an initial temperature of 100 keV in the inner crust, the cooling time of the star was estimated at 9 and 34 years, respectively. (author)
International Nuclear Information System (INIS)
Monrozeau, Ch.
2007-07-01
Giant monopole (GMR) and quadrupole (GQR) resonances have been measured in the 56 Ni using inelastic scattering of 50 A.MeV deuteron at the Grand Accelerateur National d'Ions Lourds facility. This is the first experimental observation of isoscalar collective modes in a short-lived nucleus. The secondary beam was impinged on the active target Maya filled with a pure deuterium gas. Recoiling deuterons were detected in Maya and in a wall of nine silicon detectors. The GMR and GQR are centered at 19.3(0.5) and 16.2(0.5) MeV, respectively. Corresponding angular distributions were extracted from 3 to 7 degrees in the centre of mass frame. DWBA analysis based on RPA transition densities yields the percentage of the energy weighted sum rule exhausted: 136(27) % for the GMR et 76(13) % for the GQR. A finite temperature Hartree-Fock-Bogoliubov model was implemented to describe the 10 Wigner-Seitz cells which compose the inner crust of neutron stars and to microscopically calculate their specific heat. Calculations are performed with two contact pairing forces chosen to simulate the pairing properties of uniform neutron matter corresponding to the BCS approximation and to polarisation effects. Under the assumption of a rapid cooling of the core and an initial temperature of 100 keV in the inner crust, the cooling time of the star was estimated at 9 and 34 years, respectively. (author)
The nuclear reaction model code MEDICUS
International Nuclear Information System (INIS)
Ibishia, A.I.
2008-01-01
The new computer code MEDICUS has been used to calculate cross sections of nuclear reactions. The code, implemented in MATLAB 6.5, Mathematica 5, and Fortran 95 programming languages, can be run in graphical and command line mode. Graphical User Interface (GUI) has been built that allows the user to perform calculations and to plot results just by mouse clicking. The MS Windows XP and Red Hat Linux platforms are supported. MEDICUS is a modern nuclear reaction code that can compute charged particle-, photon-, and neutron-induced reactions in the energy range from thresholds to about 200 MeV. The calculation of the cross sections of nuclear reactions are done in the framework of the Exact Many-Body Nuclear Cluster Model (EMBNCM), Direct Nuclear Reactions, Pre-equilibrium Reactions, Optical Model, DWBA, and Exciton Model with Cluster Emission. The code can be used also for the calculation of nuclear cluster structure of nuclei. We have calculated nuclear cluster models for some nuclei such as 177 Lu, 90 Y, and 27 Al. It has been found that nucleus 27 Al can be represented through the two different nuclear cluster models: 25 Mg + d and 24 Na + 3 He. Cross sections in function of energy for the reaction 27 Al( 3 He,x) 22 Na, established as a production method of 22 Na, are calculated by the code MEDICUS. Theoretical calculations of cross sections are in good agreement with experimental results. Reaction mechanisms are taken into account. (author)
Study of the 76788082Se(d,p)77798183Se reactions using polarized deuterons
International Nuclear Information System (INIS)
Montestruque, L.A.
1978-01-01
Differential cross sections and vector analyzing powers were measured at an incident deuteron energy of 12.5 MeV for the 76 78 80 82 Se(d,p) 77 79 81 83 Se reactions. The data are compared with the predictions of the DWBA theory to determine the l-value, spin, parity and spectroscopic factor of the resolved states. High resolution measurements were made with a 100 cm broad-range magnetic spectrograph to determine the excitation energies of the states studied, and the possible existence of contaminants in the targets. Definitive spin and parity assignments are made to 16 states in 77 Se, 22 states in 79 Se, 17 states in 81 Se, and 18 states in 83 Se, fifteen of which were previously assigned. In addition, tentative spin assignments were made to one state in 83 Se. The spectrograph measurements allowed the determination of the excitation energies of anumber of additional states in each isotope. Among the 76 states studied in this work, ther are 8 2P/sub 3/2/ states, 4 1F/sub 5/2/ states 6 2P/sub 1/2/ states 4 1G/sub 9/2/ states, 31 2D/sub 5/2/ states, 10 3S/sub 1/2/ states, and 13 2D/sub 3/2 states. A sum-rule analysis was made and the results compared to previous work and to the predictions of the simple pairing theory
International Nuclear Information System (INIS)
Okuma, Yasuhiko
1992-01-01
The isobaric analog states (IAS's) T=0, 1, 2 and 2 in isobars 60 Zn (Tz=0), 60 Cu (Tz=1) and 60 Ni (Tz=2) were studied by the three types of two-nucleon (2p, pn, 2n) stripping transfer reactions induced by the same beams 16 O and targets 58 Ni at an incident energy 80 MeV. The excitation energies of observed IAS's are in good fits with those calculated theoretically. The g'nd state 2 + , T=1 in 60 Cu may not be populated vy the ( 16 O, 14 N) reaction. The mutual excitation ( 16 O, 14 N * ) may be considered in the present population in 50 Cu. The isospin aspects of these reactions are quite prominent. All angular distributions of these IAS's have a forward peaked shape. Those of the O + states show a strongly oscillated pattern. Those of the 2 + states have no evidences of the clear oscillations. The similarities are observed between the angular distributions of IAS's. The EFR-DWBA calculations, in which the direct one-step cluster transferrs of two nucleons are assumed, reproduce reasonably the data points. The similarities between the heavy and the light ion induced two-nucleon stripping transfer reactions appear in both the reaction mechanisms and the spectroscopies of residual nuclei. The excitations of these IAS's will be an appearances of the single particle properties of transferred two-nucleons. (author)
Quasi-elastic transfer and charge-exchange reactions in collisions of 48Ti on 42Ca and 26Mg
International Nuclear Information System (INIS)
Brendel, C.
1985-01-01
At the GSI magnetic spectrometer quasi-elastic transfer and charge-exchange reactions of the system 48 Ti + 42 Ca at incident energies E lab = 240, 300, and 385 MeV and additionally at the higher projectile energy the system 48 Ti + 26 Mg were studied each in the excitation energy range up to E x ≅ 80 MeV. The transition strength was for each particle-hole configuration of the final system calculated by means of the DWBA and subsequently folded with a Breit-Wigner distribution. The localization of the strength of the cross section and the specific structure of the energy spectra were at incident energies between 6 and 8 MeV/amu for all angles well reproduced. By an extension of the core-excitation model to many-stage reactions the charge-exchange reaction 48 Ti + 42 Ca → 48 Sc + 42 Sc could be described as sequential two-stage process. In the two-neutron stripping reaction 48 Ti + 42 Ca → 46 Ti + 44 Ca a surprisingly narrow line with a width of the experimental resolution and an excitation energy of E x = 17.8 MeV was measured at angles smaller than the grazing angle. In the 48 Ti + 26 Mg system the corresponding 46 Ti spectra show also under forward angles structures at excitation energies between 8 and 16 MeV. These lines can be explained as two-neutron states with high spin. (orig./HSI) [de
Energy Technology Data Exchange (ETDEWEB)
Sereville, N. de
2003-12-15
The gamma emission from novae at/or below 511 keV is due to the annihilation of the positrons produced in the beta + decay of F{sup 18}. The interpretation of this emission through observations made by the Integral satellite for instance, requires a good knowledge of F{sup 18} nucleosynthesis. The reaction rate of the F{sup 18}(p,{alpha})O{sup 15} is the least known because of 2 resonances corresponding to the levels 6.419 and 6.449 MeV of Ne{sup 19} whose proton widths are completely unknown. We have determined these proton widths via the study of one-nucleon transfer reaction D(F{sup 18},p{alpha})N{sup 15} populating equivalent levels in F{sup 19}. We have used a 14 MeV F{sup 18} radioactive beam on a CD{sub 2} target for inverse kinematics studies and the multi-track silicon detector LEDA. A DWBA (Distorted Wave Bound Approximation) has enabled us to determine the proton width of both resonances and has showed that they have an impact in the calculation of the reaction rate. A thorough study of the remaining uncertainties of the reaction rate has been undertaken, particularly for those concerning interferences between these resonances and a higher resonance of Ne{sup 19}. The reaction rate that we have obtained is very similar to the previous rate used but now it rests on a more solid basis.
Technical progress report, Contracts DE-AC02-81ER40014, 40015 and 40016
International Nuclear Information System (INIS)
1981-01-01
This Progress Report summarizes work carried out at the Nuclear Physics Laboratory of the University of Colorado from November 1, 1980 through July 31, 1981, under contracts between the University of Colorado and the United States Department of Energy. The shorter report period of nine months is due to a change to an earlier submission date this year for our proposal for support to begin February 1, 1982. Cyclotron operation, research, and development have been supported under contract DE-AC02-81ER40014. The AVF cyclotron has continued to provide reliable and versatile beams of protons, deuterons, 3 He and 4 He. A wide variety of research results in direct reactions, nuclear structure, and compound reaction mechanisms can be noted in this Progress Report, correlated in many cases to current problems in intermediate energy physics. Theoretical work on nuclear reactions, carried out under contract DE-AC02-81ER40015, has been well matched to our experimental programs in low and intermediate energy physics. One important result has been the recasting of the DWBA in an eikonal expansion suited to high energy reactions. Our efforts in intermediate energy physics, under contract DE-AC02-81ER40016, have emphasized pion scattering studies at LAMPF and TRIUMF and proton induced charge exchange reactions at IUCF. Data for an important test of hadronic charge symmetry have been completed at two energies, using elastic pion-deuteron scattering
Study of the alpha+12C →16O capture via 12C(16O,12C)16O transfer reaction
International Nuclear Information System (INIS)
Morais, M.C.; Lichtenthaeler, R.; Arazi, A.; Hojman, D.; Cardona, M.A.; Fimiani, L.; Carnelli, P.F.; Marti, G.V.; Pacheco, A.J.; Heimann, D. Martinez; Negri, A.E.; Capurro, O.A.; Niello, J.O. Fernandez; Montero, P.
2009-01-01
Full text: The 12 C(α γ) 16 O reaction is one of the most important in nuclear astrophysics. The rate of this reaction influences the subsequent nucleosynthesis of heavier elements in massive stars and consequently determines the stellar evolution. The 12 C(α γ) 16 O reaction cross section is extremely small at stellar temperature, this is mainly due to the Gamow energy (∼ 300KeV at T= 2x10 8 K) be much lower than the Coulomb barrier, E C.B. : = 3:142MeV. The α+ 12 C → 16 O at low energies is dominated by subthreshold states (1 - , 7:12MeV) and (2 + , 6:92MeV) of the 16 O, thus spectroscopic factors measurements of these states are very important. We propose to use the α-transfer reaction 12 C( 16 O, 12 C) 16 O * at very forward angles to obtain those spectroscopic factors. In this way, measurements of elastic and inelastic angular distributions for the 12 C+ 16 O system were performed at the TANDAR Laboratory in Buenos Aires, using an 16 O beam of E lab = 46.3MeV. These angular distributions were obtained using 8 adjacent surface barrier detectors and the measurements were performed from 5 deg to 48.5 deg with steps of 1 deg. The scattering chamber has an angular precision better than 0.1 deg. The transfer angular distributions are being analysed by DWBA using the computer code FRESCO in order to obtain the two spectroscopic factors. (author)
Study of the deformation-driving νd5/2 orbital in 6728Ni39 using one-neutron transfer reactions
Directory of Open Access Journals (Sweden)
J. Diriken
2014-09-01
Full Text Available The νg9/2,d5/2,s1/2 orbitals are assumed to be responsible for the swift onset of collectivity observed in the region below 68Ni. Especially the single-particle energies and strengths of these orbitals are of importance. We studied such properties in the nearby 67Ni nucleus, by performing a (d,p-experiment in inverse kinematics employing a post-accelerated radioactive ion beam (RIB at the REX-ISOLDE facility. The experiment was performed at an energy of 2.95 MeV/u using a combination of the T-REX particle detectors, the Miniball γ-detection array and a newly-developed delayed-correlation technique as to investigate μs-isomers. Angular distributions of the ground state and multiple excited states in 67Ni were obtained and compared with DWBA cross-section calculations, leading to the identification of positive-parity states with substantial νg9/2 (1007 keV and νd5/2 (2207 keV and 3277 keV single-particle strengths up to an excitation energy of 5.8 MeV. 50% of the νd5/2 single-particle strength relative to the νg9/2-orbital is concentrated in and shared between the first two observed 5/2+ levels. A comparison with extended Shell Model calculations and equivalent (3He, d studies in the region around 9040Zr50 highlights similarities for the strength of the negative-parity pf and positive-parity g9/2 state, but differences are observed for the d5/2 single-particle strength.
Valence and inner proton hole states in 207Tl via the (d,3He) reaction at 108 MeV
International Nuclear Information System (INIS)
Langevin-Joliot, H.; Gerlic, E.; Guillot, J.; Van de Wiele, J.
1983-01-01
The excitation energy spectra of the residual nucleus 207 Tl have been investigated up to 14 MeV using the (d, 3 He) reaction at 108 MeV. New groups and high lying structures are first observed up to 8.3 MeV, in addition to the five known low lying levels. Beyond a minimum at 7.13 MeV, weaker structures are observed riding over an asymetric bump located around 9 MeV. DWBA analysis of angular distributions have allowed l attributions and the determination of valence and inner hole spectroscopic factors. It is found that the valence levels at 1.33 MeV, 1.67 MeV and 3.47 MeV exhaust respectively about 65%, 60% and 45% of the 1hsub(11/2), 2dsub(5/2) and 1gsub(7/2) sum rules. The missing strengths are found below 8.3 MeV. The 2dsub(5/2) and 1gsub(7/2) holes contribute mainly to some well concentrated groups, whereas the 1hsub(11/2) strength is distributed more smoothly. Small contributions of 1gsub(9/2) and 2p strengths are tentatively identified below 7.13 MeV. The highest lying energy region up to 14 MeV may approximately account for the 1gsub(9/2) and (1fsub(5/2)) total sum-rule and about 70% of the 2p strength. The 1gsub(9/2) strength gives the largest contribution to the asymetric bump around 9 MeV. The deduced experimental strength functions are compared with theoretical calculations
Scattering of 11Be around the Coulomb barrier
International Nuclear Information System (INIS)
Acosta, L.; Alvarez, M. A. G.; Andres, M. V.
2009-01-01
The 1 1B e is a halo nucleus composed of a 1 0B e core and a weakly bound neutron. Due to its loosely bound structure, the coupling of the ground and exited states to the continuum should strongly affect the elastic cross sections at energies around the Coulomb barrier [1, 2]. Another important issue is the role played by the highly deformed 1 0B e core on the scattering cross sections [3]. Accurate data on 1 1B e scattering are needed to study these effects. However, existing data for 1 1B e + 2 09B i scattering [4, 5], suffer of large experimental uncertainties, and elastic and other reaction channels could not be studied separately. Aiming to improve the experimental situation we have recently performed measurements of 1 1B e scattered on 1 20S n at 32 MeV (Lab) at the REX-ISOLDE facility at CERN (Geneva), covering a wide angular range. In this work, we present preliminary results of the experiment for the 1 1B e+1 20S n quasi-elastic scattering as well as for the 1 1B e→ 1 0B e + n breakup. The accuracy and angular range of the presented results provide stronger constrains to the theoretical interpretation than existing published results. We compare the experimental results with CDCC and DWBA calculations performed as in references [6-8] for the 6 H e + 2 08P b system. The role played by transfer and breakup channels in the elastic scattering is discussed.(author)
Deuteron breakup mechanism in the intermediate-energy region
International Nuclear Information System (INIS)
Divadeenam, M.; Ward, T.E.
1991-01-01
In an earlier investigation, we have explored the possibility of explaining the deuteron breakup mechanism in terms of the Udagawa and Tannura (UT) formalism of the breakup-fusion process. The experimental doubly differential data were very well reproduced for the test case studies. However, the application of UT formalism of the spirit of DWBA involves the use of optical-model parameters for different nuclei and at different energies. The optical model parameters are not always unique. In the present study we investigate the deuteron breakup mechanism in terms of the semiclassical models of Serber (for the nuclear interaction part) and Dancoff (for the electromagnetic dissociation). In the case of Serber model the modification due to the finite range of the deuteron and the Glauber correction for the diffractive disassociation are considered. The modified deuteron breakup cross section either for the (d,p) or the (d,n) process is proportional to the product of the target radius and the deuteron radius (R target · R deuteron ). The predicted proton/neutron spectrum is centered around 1/2 E d and forward peaked. The Coulomb dissociation of deuteron is attributed to the deuteron dipole excitation in the presence of the nuclear Coulomb field. The neutron/proton spectrum, resulting from the Coulomb breakup of the deuteron, is highly forward peaked and also centered around 1/2 E d . The systematics of the deuteron breakup neutron/proton spectra are investigated for medium to heavy target nuclei at 50--200 MeV deuteron energies. 10 refs., 4 figs
Two-component multistep direct reactions: A microscopic approach
International Nuclear Information System (INIS)
Koning, A.J.; Chadwick, M.B.
1998-03-01
The authors present two principal advances in multistep direct theory: (1) A two-component formulation of multistep direct reactions, where neutron and proton excitations are explicitly accounted for in the evolution of the reaction, for all orders of scattering. While this may at first seem to be a formidable task, especially for multistep processes where the many possible reaction pathways becomes large in a two-component formalism, the authors show that this is not so -- a rather simple generalization of the FKK convolution expression 1 automatically generates these pathways. Such considerations are particularly relevant when simultaneously analyzing both neutron and proton emission spectra, which is always important since these processes represent competing decay channels. (2) A new, and fully microscopic, method for calculating MSD cross sections which does not make use of particle-hole state densities but instead directly calculates cross sections for all possible particle-hole excitations (again including an exact book-keeping of the neutron/proton type of the particle and hole at all stages of the reaction) determined from a simple non-interacting shell model. This is in contrast to all previous numerical approaches which sample only a small number of such states to estimate the DWBA strength, and utilize simple analytical formulae for the partial state density, based on the equidistant spacing model. The new approach has been applied, along with theories for multistep compound, compound, and collective reactions, to analyze experimental emission spectra for a range of targets and energies. The authors show that the theory correctly accounts for double-differential nucleon spectra
International Nuclear Information System (INIS)
Wienands, U.
1983-05-01
The (α, 2 He)-reaction was studied at 56-57 MeV incident energy at the target nuclei sup(58,60,62,64)Ni. In a laboratory angular range from 15 0 -37.5 0 the angular distributions of the absolute differential cross section were taken up. The measurements were performed with the position resolving 2 He detector developed in Bonn. By means of DWBA calculations for the first time in all final nuclei states with the configurations (fsub(5/2), gsub(9/2)) 7 -(gsub(9/2)) 8 2 +, and (gsub(9/2), dsub(5/2)) 6 + could be identified; these were except the Jsup(π)=7 - states in 60 Ni hitherto not known. The two-neutron binding energies of these states were under inclusion of further states known from literature compared with shell model calculations according to the weak coupling method of Bansal and French. By a set of 4 parameters both the two-neutron binding energies of the (fsub(5/2), gsub(9/2)) 7 - and (gsub(9/2)) 2 sub(8+) states and the one-particle binding energies of the f - sub(5/2) and g + sub(5/2) one-neutron states over a large number of nuclei could very well be reproduced. For calculations on the states with the configuration (gsub(9/2), dsub(5/2)) 6 + the present data set is not yet sufficient. The found agreement of the calculations with the experimental data shows that two-neutron high spin states in the fp shell nuclei can be correctly described by this simple picture. (orig.) [de
Time-dependent, many-body scattering theory and nuclear reaction applications
International Nuclear Information System (INIS)
Levin, F.S.
1977-01-01
The channel component state form of the channel coupling array theory of many-body scattering is briefly reviewed. These states obey a non-hermitian matrix equation whose exact solution yields the Schroedinger eigenstates, eigenvalues and scattering amplitudes. A time-dependent formulation of the theory is introduced in analogy to the time-dependent Schrodinger equation and several consequences of the development are noted. These include an interaction picture, a single (matrix) S operator, and the usual connection between the t = 0 time-dependent and the time-independent scattering states. Finally, the channel component states (psi/sub j/) are shown to have the useful property that only psi/sub j/ has (two-body) outgoing waves in channel j: psi/sub m/, m not equal to j, is asymptotically zero in two-body channel j. This formalism is then considered as a means for direct nuclear reaction analysis. Typical bound state approximations are introduced and it is shown that a DWBA amplitude occurs in only one channel. The non-time-reversal invariance of the approximate theory is noted. Results of calculations based on a realistic model for two sets of light-ion induced, one-particle transfer reactions are discussed and compared with the coupled reaction channel (CRC) results using the CRC procedure of Cotanch and Vincent. Angular distributions for the two calculational methods are found to be similar in shape and magnitude. Higher ordercorrections are small as are time-reversal non-invariant effects. Post- and prior-type CRC calculations are seen to differ; the latter are closer to the full CRC results
International Nuclear Information System (INIS)
Loeh, H.
1981-01-01
For the study of the spin-spin interaction in the optical potential the depolarisation in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD-magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials was performed by the fitting of these to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al(p vector,p 0 ) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richert, Tepel and Weidenmueller. Because the target nucleus 27 Al possesses in the ground state a spin I=5/2, also the possible quadrupole spin flip had to be included. This was performed by coupled-channel calculations. The respecting compound contributions and quadrupole effects corrected depolarization data could by used for the study of the spin-spin potentials by means of DWBA calculations. As result it was shown that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. (orig.) [de
International Nuclear Information System (INIS)
Igamov, S.B.; Yarmukhamedov, R.
2004-01-01
Full text: Despite the impressive progress in our understanding of these processes has been made in the last decades, there are still many problems connected with obtaining precise data on the A(p,γ )B and A(α,γ )B reactions cross sections at stellar energies to be solved. One of the possibilities of solving these problems is based on the principally peripheral character of charged particles interaction at low energy and the possibility of using the information on asymptotic normalization coefficients (ANC) (or respective nuclear vertex constants (NVC) for the virtual decay B→A+a ) of the overlap functions for the A(p,γ )B and A(α,γ)B reactions. This review is devoted to critical analysis of traditional methods of obtaining ANC information from DWBA - method calculation of proton transfer reactions and two - body potential model calculation of the direct capture reactions. Moreover in this review modified two - body potential approach allowing to determine both the ANC for virtual decays B→p+A and B→α+A and astrophysical S-factor, S(E), for the A(p,γ)B and A(α,γ)B at stellar energies E (∼ 25 keV) is discussed. This method involves two additional conditions that allow to verify the peripheral character of the considered reactions. New information about rates of t( α ,γ ) 7 Li, 3 He(α ,γ ) 7 Be, 7 Be(p,γ ) 8 B and 12 C(p,γ ) 13 N reactions and estimation of the values of the ANC's for 7 Li →α+t, 7 Be→α+ 3 He, and 8 B→ 7 Be+p has also been presented
Three-nucleon transfer reactions and cluster structure in the A = 15 to A = 19 nuclei
International Nuclear Information System (INIS)
Martz, L.M.
1978-01-01
The ( 6 Li,t) and ( 6 Li, 3 He) reactions were studied on targets of 12 C, 13 C, 14 N, 15 N, and 16 O at E/sub Li/ approx. = 44 MeV and theta/sub lab/ approx. = 15 0 . A preferential population of final states was exhibited in spectra for the A = 15 to A = 19 nuclei. The strong forward peaking of angular distributions in the 13 C( 6 Li,t) 16 O and 13 C( 6 Li, 3 He) 16 N reactions can be reproduced by DWBA calculations but not by the Hauser-Feshbach model. Such indications of a primarily direct mechanism at forward angles suggest use of these three-nucleon-transfer reactions to identify candidates for 3p-nh states. A comparison with other multinucleon transfer data, e.g., those from ( 7 Li,α) and ( 7 Li,t) reactions on 13 C and 15 N targets, further tests dominant particle-hole configurations. The relationship between ( 6 Li,t) and ( 6 Li, 3 He) spectra reveals analog states, notably T = 1, T/sub z/ = 0 levels at high excitation in 16 O. Nuclear theory is used to investigate the role of triton clustering in such structure. The 2N + L = 6 band predicted by a folded-potential model of 18 O = 15 N + t shows an underlying correspondence to the experimental levels in triton-transfer data. Triton spectroscopic factors calculated from the SU(3) shell model further suggest the broad influence of clustering phenomena in this mass region. Experimental evidence of systematic behavior in the triton binding energies of proposed p/sup -n/(sd) 3 configurations was found
Cross section measurements of the 10B(d,n0)11C reaction below 160 keV
International Nuclear Information System (INIS)
Stave, S.; Ahmed, M. W.; Blackston, M. A.; Crowell, A. S.; Henshaw, S. S.; Howell, C. R.; Kingsberry, P.; Perdue, B. A.; Weller, H. R.; Antolak, A. J.; Doyle, B. L.; Rossi, P.; Prior, R. M.; Spraker, M. C.
2008-01-01
New data were taken at the Triangle Universities Nuclear Laboratory to investigate the plausibility of using low energy deuterons and the 10 B(d,n) 11 C reaction as a portable source of 6.3 MeV neutrons. Analysis of the data at and below incident deuteron energies of 160 keV indicates an n 0 neutron cross section that is lower than previous estimates by at least three orders of magnitude. In separate runs, deuterons with two different energies (160 and 140 keV) were stopped in a 10 B target. The resulting n 0 neutrons of approximately 6.3 MeV were detected at angles between 0 deg. and 150 deg. The angle integrated yields were used to determine the astrophysical S factor for this reaction assuming a constant value for the S factor below 160 keV. The cross sections reported between 130 and 160 keV were calculated using the extracted value of the S factor. The measured n 0 cross section is several orders of magnitude smaller than previous results, thus eliminating 10 B(d,n) 11 C as a portable source of intense neutrons with low energy deuteron beams on the order of tens of microamps. In order to gain insight into the reaction dynamics at these low energies the cross section results have been compared with results from calculations using the distorted wave Born approximation (DWBA) and a detailed Hauser-Feshbach calculation performed by the authors. The angular distribution is consistent with the Hauser-Feshbach calculation suggesting a statistical compound nucleus reaction rather than a direct reaction
Convergence of the Distorted Wave Born series
International Nuclear Information System (INIS)
MacMillan, D.S.
1981-01-01
The aim of this thesis is to begin to understand the idea of reaction mechanisms in nonrelativistic scattering systems. If we have a complete reaction theory of a particular scattering system, then we claim that the theory itself must contain information about important reaction mechanisms in the system. This information can be used to decide what reaction mechanisms should be included in an approximate calculation. To investigate this claim, we studied several solvable models. The primary concept employed in studying our models is the convergence of the multistep series generated by iterating the corresponding scattering integral equation. We known that the eigenvalues of the kernel of the Lippmann-Schwinger equation for potential scattering determine the rate of convergence of the Born series. The Born series will converge only if these eigenvalues all life within the unit circle. We extend these results to a study of the distorted wave Born series for inelastic scattering. The convergence criterion tells us when approximations are valid. We learn how the convergence of the distorted wave series depends upon energy, coupling constants, angular momentum, and angular momentum transfer. In one of our models, we look at several possible distorting potentials to see which one gives the best convergence. We have also applied our results to several actual DWBA or coupled channel calculations in the literature. In addition to the study of models of two-body scattering systems, we have considered the case of rearrangement scattering. We have discussed the formulation of (N greater than or equal to 3)-body distorted wave equations in which the interior dynamics have been redistributed by introducing compact N-body distortion potentials
International Nuclear Information System (INIS)
Kuehner, E.G.F.
1982-01-01
In the nucleus 208 Pb giant multipole resonances were looked for by inelastic electron scattering up to excitation energies of Esub(x) = 35 MeV. Twelve spectra were taken up at incident energies of Esub(o) = 45-65 MeV under scattering angles from upsilon = 93 0 to 165 0 . The cross sections extracted from this were analyzed by means of DWBA calculations using RPA amplitudes from a model with separable residual interaction. Basing on this analysis for the first time it could be shown that the maximum in the electron scattering cross section at Esub(x) approx.= 14 MeV can be consistently described as a superposition of the Jsup(π) = 1 - , ΔT = 1 with a Jsup(π) = 0 + , ΔT = 0 giant resonance. Furthermore the spectra under backward scattering angles indicate the existence of a magnetic excitation at Esub(x) approx.= 15 MeV which is interpreted as Jsup(π) = 3 + giant resonance. Besides under forwards angles a further weak excitation appears at Esub(x) approx.= 14.6 MeV which is very well compatible with Jsup(π) = 2 + . At Esub(x) = 17.5 MeV a Jsup(π) = 3 - resonance was found which recently is also observed in (α,α') scattering experiments and therefore gets a ΔT = 0 assignment. A further resonance at Esub(x) approx.= 21 MeV has also Jsup(π) = 3 - character but has partly to be assigned to a Jsup(π) = 1 - , ΔT = 0 excitation. At Esub(x) = 23.8 MeV a Jsup(π) = 2 + excitation was found which gels because of model predictions a ΔT = 1 assignment. (orig./HSI) [de
International Nuclear Information System (INIS)
Kuehner, G.
1982-01-01
In the nucleus 208 Pb giant multipole resonances up to excitation energies of Esub(x) = 35 MeV were looked for by medium resolution inelastic electron scattering. Twelve spectra were taken up at incident energies of E 0 = 45-65 MeV under scattering angles from upsilon = 93 0 to 165 0 . The cross sections extracted from this were analyzed by means of DWBA calculations using RPA amplitudes from a model with separable residual interaction. On the base of this analysis for the first time it could be shown that the maximum in the electron scattering cross section at Esub(x) approx.= 14 MeV can be consistently described as superposition of the Jsup(π) = 1 - , ΔT = 1 with a Jsup(π) = 0 + , ΔT = 0 giant resonance. Furthermore the spectra under backward scattering angles indicate the existence of a magnetic excitation at Esub(x) approx.= 15 MeV which is interpreted as Jsup(π) = 3 + giant resonance. Besides under forward angles a further weak excitation at Esub(x) approx.= 14.6 MeV appears which is very well compatible with Jsup(π) = 2 + . At Esub(x) = 17.5 MeV a Jsup(π) = 3 - resonance was found which recently is observed also in (α, α') experiments and therefore gets a ΔT = 0 assignment. A further resonance at Esub(x) approx.= 21 MeV has also a Jsup(π) = 3 - character but has to be partly assigned to a Jsup(π) = 1 - , ΔT = 0 excitation. At Esub(x) = 23.8 MeV a Jsup(π) = 2 + excitation was found which gets because of model predictions a ΔT = 1 assignment. (orig./HSI) [de
International Nuclear Information System (INIS)
Loeh, H.
1981-01-01
For the study of the spin-spin interactions in the optical potential the depolarization in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials resulted by the fit of those to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al (p vector,psub(o)) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richard, Tepel, and Weidenmueller. Because of the target nucleus 27 Al posesses in the ground state a spin I=5/2 also the possible quadrupole spin flip had to be included in the analysis. This was performed by coupled channel calculations. The depolarization data corrected according to compound contributions and quadrupole effects could now be applied to the study of the spin-spin potentials by means of DWBA calculations. As result it turned out that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. For the addition of a tensor term however no necessity resulted. (orig.) [de
Fourteenth Exotic Beam Summer School EBSS 2015
Energy Technology Data Exchange (ETDEWEB)
Wiedenhoever, Ingo [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics
2016-07-11
The Fourteenth Annual Exotic Beam Summer School EBSS 2015 was held August 2nd - August 7th, 2015, and belongs to the series of summer programs aimed at educating future workforce in nuclear physics-related areas, mostly about the challenges of radioactive ion beam physics. Through these schools the research community will be able to exploit fully the opportunities created by the exotic beam facilities. These facilities in the US include CARIBU at ANL, the NSCL and the future FRIB laboratory as well as smaller-scale university laboratories. The skill set needed by the future workforce is very diverse and a fundamental understanding of theoretical, technical, computational and applied fields are all important. Therefore, the Exotic Beam Summer Schools follow a unique approach, in which the students not only receive lectures but also participate in hands-on activities. The lectures covered broad topics in both the experimental and theoretical physics of nuclei far from stability as well as radioactive ions production and applications. The afternoons provided opportunities for "hands-on" projects with experimental equipment and techniques useful in FRIB research. Five activities were performed in groups of eight students, rotating through the activities over the five afternoons of the school. The center of the activities was an experiment at the FSU tandem accelerator, measuring the angular distribution and cross section of the ^{12}C(d,p)^{13}C transfer reaction, measured with a silicon telescope in a scattering chamber. The experimental data were analyzed by performing a DWBA calculation with the program DWUCK, and the resulting spectroscopic factors were compared to a shell model calculation. The other activities included target preparation, digital gamma-spectroscopy and modern neutron detection methods.
Microscopic calculation of absolute values of two-nucleon transfer cross sections
International Nuclear Information System (INIS)
Potel, G.; Bayman, B. F.; Barranco, F.
2009-01-01
Arguably, the greatest achievement of many-body physics in the fifties was that of providing the basis for a complete description and a thorough understanding of superconductivity in metals. At the basis of it one finds BCS theory and Josephson effect. The first recognized the central role played by the appearance of a macroscopic coherent field -usually viewed as a condensate of strongly overlapping Cooper pairs-, the quasiparticle vacuum. The second realized that a true gap is not essential for such a state of matter to exist, but rather a finite expectation value of the pair field. Consequently, the specific probe to study the superconducting state is Cooper pair tunneling. Important progress in the understanding of pairing in atomic nuclei may arise from the systematic study of two-particle transfer reactions. Although this subject of research started about the time of the BCS papers, the quantitative calculation of absolute cross sections taking properly into account the full non-locality of the Cooper pairs (correlation length much larger than nuclear dimensions) is still an open problem. We present in this talk the results obtained within a second order DWBA framework for two- nucleon transfer reactions around the Coulomb barrier induced both by heavy and light ions. The calculations were done using a computer code developed for this purpose including the sequential and simultaneous contributions to the process, with microscopic form factors which take into account the relevant structure aspects of the process, such as the nature of the single-particle wavefunctions, the spectroscopic factors, and the interaction potential responsible for the transfer. Reasonable agreement with the experimental absolute values of the differential cross section is obtained without any parameter adjustment (see Figure 1).(author)
Study of inelastic proton scattering at isobaric analog resonances
International Nuclear Information System (INIS)
Davis, S.L.
1974-01-01
Inelastic proton scattering at isobaric analog resonances (IAR's) was studied using the targets 138 Ba and 92 Mo. Differential cross sections and analyzing powers were measured at the 10.00, 10.63, 11.09, 11.45, and 11.70 MeV resonances in 138 Ba + p and at the 5.89, 6.09, and 6.55 MeV resonances in 92 Mo + p. In addition, a new measurement, the spin flip asymmetry, was developed. The experiment was performed by using a polarized beam to make spin flip measurements. Angular distributions for the spin flip probability and spin flip asymmetry were measured at all of the above energies except for the lowest three resonances in 138 Ba, where only the spin flip probability was measured. A DWBA code modified to include the coherent addition of resonance amplitudes was used to analyze the 138 Ba data. The partial widths extracted from this analysis were converted to expansion coefficients for parent states in 139 Ba. The coefficients were found to be in good agreement with unified model calculations. For 92 Mo, inelastic polarizations, deduced from the spin flip and spin flip asymmetry, were found to be large. Attempts using Hauser Feshbach theory to describe both the cross section and polarization data repeatedly failed for both the 6.55 and 5.87 MeV IAR's. This failure represents strong evidence that Hauser Feshbach theory is not valid when extended to describe scattering at an IAR. The 92 Mo data were analyzed using a reaction theory modified to include channel-channel correlations. This theory predicts that the enhanced compound scattering is identical to the resonance scattering. Good fits have been obtained with the use of this modified Hauser Feshbach theory. (U.S.)
Depolarization in the elastic scattering of 17 MeV polarized protons from 9Be
International Nuclear Information System (INIS)
Baker, M.P.
1975-01-01
The Wolfenstein depolarization parameter D(theta) was measured for the elastic scattering of 17-MeV protons from 9 Be at laboratory scattering angles between 70 0 and 120 0 in 10 0 steps with uncertainties ranging from 0.05 to 0.07. The reaction was initiated by polarized protons and the polarization of those protons elastically scattered by the 9 Be analyzed using a high-resolution, silicon polarimeter. Several of the measured values of D(theta) differed significantly from unity, indicating non-zero probability for proton spin-flip in the elastic scattering process. Theoretical estimates of the depolarization-parameter angular distribution have been made using a multipole expansion of the elastic-scattering amplitude in terms of the amount of angular momentum transferred to the target nucleus during the scattering process. Here the J = 0, 1 and 2 contributions to the scattering amplitude have been explicitly treated for the scattering from 9 Be(I = 3 / 2 ). The J = 0 terms are calculated using the standard, spherical optical-model. The J = 1 and 2 terms can be calculated using DWBA. Both spherical and tensor forms are considered for the J = 1 interaction. The spin-flip probabilities predicted assuming reasonable strengths for the J = 1 potentials are much smaller than those observed experimentally. The J = 2 contribution to the spin-flip probability is calculated assuming a rotational model for 9 Be. Predictions of the J = 2, elastic spin-flip probability are substantially larger than the predictions for the J = 1 contribution and are in rough agreement with the present data. The results of recent coupled-channels calculations also support the conclusion that large elastic spin-flip probabilities can be produced by the J = 2 term in the elastic scattering amplitude
Energy Technology Data Exchange (ETDEWEB)
Young, P.G.; Arthur, E.D.
1991-01-01
Theoretical analyses were performed of neutron-induced reactions on {sup 235}U, {sup 238}U, {sup 237}Np, and {sup 239}Pu between 0.01 and 20 MeV in order to calculate neutron emission cross sections and spectra for ENDF/B-VI evaluations. Coupled-channel optical model potentials were obtained for each target nucleus by fitting total, elastic, and inelastic scattering cross section data, as well as low-energy average resonance data. The resulting deformed optical model potentials were used to calculate direct (n,n{prime}) cross sections and transmission coefficients for use in Hauser-Feshbach statistical theory analyses. A fission model with multiple barrier representation, width fluctuation corrections, and preequilibrium corrections were included in the analyses. Direct cross sections for higher-lying vibrational states were calculated using DWBA theory, normalized using B(E{ell}) values determined from (d,d{prime}) and Coulomb excitation data, where available, and from systematics otherwise. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. The parameters for the fission model were adjusted for each target system to obtain optimum agreement with direct (n,f) cross section measurements, taking account of the various multichance fission channels, that is, the different compound systems involved. The results from these analyses were used to calculate most of the neutron (n,n), (n,n{prime}), and (n,xn) cross section data in the ENDF/B/VI evaluations for the above nuclei, and all of the energy-angle correlated spectra. The deformed optical model and fission model parameterizations are described. Comparisons are given between the results of these analyses and the previous ENDF/B-V evaluations as well as with the available experimental data. 14 refs., 3 figs., 1 tab.
Fourteenth Exotic Beam Summer School EBSS 2015
International Nuclear Information System (INIS)
Wiedenhoever, Ingo
2016-01-01
The Fourteenth Annual Exotic Beam Summer School EBSS 2015 was held August 2nd - August 7th, 2015, and belongs to the series of summer programs aimed at educating future workforce in nuclear physics-related areas, mostly about the challenges of radioactive ion beam physics. Through these schools the research community will be able to exploit fully the opportunities created by the exotic beam facilities. These facilities in the US include CARIBU at ANL, the NSCL and the future FRIB laboratory as well as smaller-scale university laboratories. The skill set needed by the future workforce is very diverse and a fundamental understanding of theoretical, technical, computational and applied fields are all important. Therefore, the Exotic Beam Summer Schools follow a unique approach, in which the students not only receive lectures but also participate in hands-on activities. The lectures covered broad topics in both the experimental and theoretical physics of nuclei far from stability as well as radioactive ions production and applications. The afternoons provided opportunities for 'hands-on' projects with experimental equipment and techniques useful in FRIB research. Five activities were performed in groups of eight students, rotating through the activities over the five afternoons of the school. The center of the activities was an experiment at the FSU tandem accelerator, measuring the angular distribution and cross section of the "1"2C(d,p)"1"3C transfer reaction, measured with a silicon telescope in a scattering chamber. The experimental data were analyzed by performing a DWBA calculation with the program DWUCK, and the resulting spectroscopic factors were compared to a shell model calculation. The other activities included target preparation, digital gamma-spectroscopy and modern neutron detection methods.
An investigation of proton pair correlations relevant to the neutrinoless double beta decay of 76Ge
Ticehurst, David R.
The observation of neutrinoless double beta decay (0nubetabeta ) would demonstrate that the neutrino is a Majorana particle and allow determination of its mass by comparing the measured decay rate to the calculated rate. The main uncertainty in the calculation of the 0 nubetabeta rate is due to uncertainties in the nuclear structure models used in the computation of the nuclear matrix elements for the decay process. This project tested the validity of using wavefunctions for the nuclear states involved in the 0nubetabeta process that are based on a first-order application of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. In the BCS approximation, most of the strength for two-nucleon transfer reactions should be for transitions to the 0 + ground state of the final nucleus (i.e., little strength should go to the 0+ excited states). This experiment measured the strength to the first 0+ excited state for the 74Ge( 3He,n)76Se and 76Ge( 3He,n)78Se reactions relative to the strength for transition to the 0+ ground state in selenium. For both nuclei, and at 3He beam energies of 15 and 21 MeV, the observed relative strength for transfer to the first 0+ excited state was less than 13%. This result supports the validity of using the BCS approximation to describe the ground state of both 76Se and 78Se and is consistent with the results of recent ( 3He,n) cross section measurements on 74Ge and 76Ge. In addition, the magnitude and shape of the measured angular distributions suggest that contribution of the sequential two-nucleon transfer process, which is an indicator of long-range nucleon-nucleon correlations, is over-predicted by the DWBA code FRESCO.
International Nuclear Information System (INIS)
Nagano, K.; Aoki, Y.; Kishimoto, T.; Yagi, K.
1983-01-01
Vector analyzing powers A(theta) and differential cross sections σ(theta) have been measured, with the use of a polarized proton beam of 22.0 MeV and a magnetic spectrograph, for (p,t) reactions leading to the first-excited 2 + (2 1 + ) states of the following eighteen nuclei of N = 50 - 82: sup(92,94,96)Mo, sup(98,100,102)Ru, sup(102,104,106,108)Pd, sup(110,112,114)Cd, 116 Sn, sup(120,126,128)Te, and 136 Ba. In addition A(theta) and σ(theta) for sup(104,110)Pd(p,t) sup(102,108) Pd(0sub(g) + ,2 1 + ) transitions have been measured at Esub(p) = 52.2 MeV. The experimental results are analyzed in terms of the first- and second-order DWBA including both inelastic two-step processes and sequential transfer (p,d)(d,t) two-step processes. Inter-ference effect between the direct and the two-step processes is found to play an essential role in the (p,t) reactions. A sum-rule method for calculating the (p,d)(d,t) spectroscopic amplitudes has been developed so as to take into account the ground-state correlation in odd-A nuclei. The nuclear-structure wave functions are constructed under the boson expansion method and the quasiparticle random phase approximation (qp RPA) method by using the monopole-pairing, quadrupole-pairing, and QQ forces. The characteristic features of the experimental A(theta) and σ(theta) are better explained in terms of the boson expansion method than in terms of the qp RPA. Dependence of the (p,t) analyzing powers on the static electric quadrupole moment of the 2 1 + state is found to be strong because of the reorientation (anharmonic) effect in the 2 1 + yiedls 2 1 + transfer process. (J.P.N.)
(3He,α) reaction mechanism at high energy and neutron inner shell structure
International Nuclear Information System (INIS)
Wiele, J. van de.
1980-01-01
The ( 3 He,α) reaction on 12 C, 16 O, 28 Si, 58 Ni, 90 Zr, 118 Sn, 124 Sn and 208 Pb targets has been studied at Esub( 3 He) = 217 MeV (or 205 MeV) in order to investigate the reaction mechanism at high energy and large momentum transfer. The reaction yields large cross sections at very forward angles and strongly enhances the largest orbital momentum transfer. The angular distribution shapes are well reproduced in the frame-work of the Z-R- D.W.B.A. analysis if we use a unique empirical α-potential: Vsub(α)(Esub(α)) = Vsub( 3 He)(3/4 Esub(α)) + Vsub(n)(1/4 Esub(α)). The excitation energy spectra have been measured up to 100 MeV in the residual light and medium nuclei and up to about 16 MeV in heavy nuclei. In addition to the well-known low-lying levels, peaks or broad structures are observed for each nucleus at higher excitation energies. They are attributed to pick up from inner shells: 1s( 11 C and 15 O), 1p( 27 Si), 1d5/2 + 1p( 57 Ni), 1f7/2( 89 Zr) 1g9/2 117 Sn, 123 Sn and 1h11/2( 207 Pb). Selectivity and localization of direct and indirect pick up ( 3 He,α) reactions were studied. Finite range calculations show that this reaction is not very sensitive to the details of the range from function but only to D 0 coefficient and range R. A microscopic α-nucleus optical potential calculated with n-n dependent and independent density forces is able to reproduce both elastic scattering and pick up reaction angular distributions [fr
Study of high-spin analog resonances near the N=50 neutron shell
International Nuclear Information System (INIS)
Gales, S.; El Hage, Y.; Schapira, J.P.; Fortier, S.; Laurent, H.; Maison, J.M.
1979-01-01
The 96 Zr( 3 He,d) 97 Nb and the 92 Mo( 3 He,d) 93 Tc reactions, investigated at, respectively 39.0 and 28.5 MeV incident energies, were used to selectively populate high-spin analog resonances in the 97 Nb and 93 Tc nuclei. Angular distributions were measured for the dsub(3/2), gsub(7/2) and hsub(11/2) analog states of the low-lying levels in 97 Zr. A DWBA analysis of the data for these unbound levels (using Gamov functions as form factors) was carried out and spectroscopic strengths extracted. The 96 Zr( 3 He,dp) and 92 Mo( 3 He,dp) reactions were performed, respectively, at 37.5 and 30 MeV incident energies. The angular distributions of the emitted protons were measured in coincidence using method II of Litherland and Ferguson with 0 0 detection of deuteron groups. Spins, population parameters and proton branching ratios to the ground state and excited states of the targets were determined from the analysis of the angular correlation data. The position of the neutron threshold as compared with the excitation energies of the analog states in 97 Nb and 93 Tc is found to be an important parameter in the extraction of the structure informations on core-excited components in the parent levels wave functions. Neutron particle-hole multiplets are observed for the first time in 96 Zr through the decay of the gsub(7 /2) and hsub(11/2) analog resonances. The limitation of the present method due to the neutron threshold or to the energy resolution in the proton channel is discussed and compared with the results of inelastic resonant scattering through isobaric analog resonances
A study of the 10, 11B(p,n)10, 11C reactions between Ep=13,7 and 14,7 MeV
International Nuclear Information System (INIS)
Schelin, H.R.
1985-01-01
Using time-of-flight facilities of the Sao Paulo 8UD Pelletron Accelerator, absolute differential cross sections for the n 0 , n 1 , n 2 , n 3 , (n 4 +n 5 ), n 6 and n 7 groups for the reaction 11 B(p,n) 11 C and the n 0 and n 1 neutron groups for the reaction 10 B(p,n) 10 C have been measured at incident proton energies of 14.0, 14.3 and 14.6 MeV in the angular interval of 20 to 160 degrees. Excitation functions at θ lab =20 deg from Ep=13.7 to 14.7 MeV in intervals of 100 KeV were also measured. The theoretical analysis was conducted to determine relative contributions of the diret and compound nucleus processes in the differential cross sections. To this end, a two couple channel model model for the reactions was assumed. The DWBA model for the direct and the Hauser-Feshbch for the compound nucleus processes were in such a way as to simulate the exact coupled channels calculation through an appropriate choice of the absorption term W in the optical potential. The results indicate that about half of the cross section is due to the compound nucleus mechanism. The theoretical analysis aimed at obtaining the elastic enhancement factor for the channel 11 B(p,n 0 ) 11 C at Ep=14.3 MeV. This has been demonstrated to appear in compound nucleus charge reactions by Harney, Weidemueller and Richter and predicted to attain the value 2 when isospin is conserved. Our results show an enhancement factor larger than 1 indicating that isospin mixing is weak in this reaction. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Kremer, Christoph
2016-01-27
The first part of this thesis revolves around symmetries in the sd-IBA-1. A region of approximate O(6) symmetry for the ground-state band, a partial dynamical symmetry (PDS) of type III, in the parameter space of the extended consistent-Q formalism is identified through quantum number fluctuations. The simultaneous occurrence of a SU(3) quasi dynamical symmetry for nuclei in the region of O(6) PDS is explained via the β=1, γ=0 intrinsic state underlying the ground-state band. The previously unrelated concepts of PDS and QDS are connected for the first time and many nuclei in the rare earth region that approximately satisfy both symmetry requirements are identified. Ground-state to ground-state (p, t) transfer reactions are presented as an experimental signature to identify pairs of nuclei that both exhibit O(6) PDS. In the second part of this thesis inelastic electron scattering off {sup 96}Zr is studied. The experiment was performed at the high resolution Lintott spectrometer at the S-DALINAC and covered a momentum-transfer range of 0.28 - 0.59 fm{sup -1}. Through a relative analysis using Plane Wave Born Approximation (PWBA) the B(E2;2{sup +}{sub 2}→0{sup +}{sub 1}) value is extracted without incurring the additional model dependence of a Distorted Wave Born Approximation (DWBA). By combining this result with known multipole mixing ratios and branching ratios all decay strengths of the 2{sup +}{sub 2} state are determined. A mixing calculation establishes very weak mixing (V{sub mix}=76 keV) between states of the ground-state band and those of the band build on top of the 0{sup +}{sub 2} state which includes the 2{sup +}{sub 2} state. The occurrence of these two isolated bands is interpreted within the shell model in terms of type II shell evolution.
Search for the reaction 40Ca(π+,γγ) at T/sub π/ = 50 MeV and critical opalescence
International Nuclear Information System (INIS)
Cooper, M.D.; Baer, H.; Bolton, R.D.
1982-01-01
We have searched for the inclusive process 40 Ca(π + ,γγ) at T/sub π/ = 50 MeV in order to look for nuclear critical opalescence in the double radiation capture. The reaction appeared to offer several advantages over others, including the high nuclear transparency of 50 MeV pions in a relatively heavy nucleus and the longitudinal coupling of the captured pion to the nucleus. The coincident γ-rays were detected in the arms of the LAMPF π 0 spectrometer, which consists of active converters and multi-wire proportional chambers to locate the direction of the photons as well as total absorption lead glass counters to measured their energy. Backgrounds from the beam were reduced by demanding a positive signature of interaction in the target from four arrays of 10 scintillators each before and after the target. Data were acquired for momentum transfers of 140 MeV/c and 280 MeV/c and over the lowest 125 MeV of excitation of the final state. Theoretical estimates of the free cross section p(π - ,γγ)n are 23 nb/sr 2 in the experimental acceptance, a result which has been successfully linked to the measured 12 C(π - ,γγ) stopping rate. Being an inclusive experiment at large momentum transfer, it was expected that the 40 Ca(π + ,γγ) cross section would be some multiple of the free cross section. DWBA estimates of the cross section have been made in a relativistivic momentum space treatment. These calculations indicate the cross section should be 100 nb/sr 2 . The preliminary result for 140 MeV/c shows no signal for the reaction at a 90% confidence limit of 32 nb/sr 2 . The discrepancy between the calculations and the measurement possibly suggests a more complex reaction mechanism for in-flight radiative capture than for stopped capture
International Nuclear Information System (INIS)
Al-Abdullah, T.; Carstoiu, F.; Chen, X.; Clark, H. L.; Fu, C.; Gagliardi, C. A.; Lui, Y.-W.; Mukhamedzhanov, A.; Tabacaru, G.; Tokimoto, Y.; Trache, L.; Tribble, R. E.
2010-01-01
The production of 22 Na in ONe novae can be influenced by the 22 Mg(p,γ) 23 Al reaction. To investigate this reaction rate at stellar energies, we have determined the asymptotic normalization coefficient (ANC) for 22 Mg+p→ 23 Al through measurements of the ANCs in the mirror nuclear system 22 Ne+n→ 23 Ne. The peripheral neutron-transfer reactions 13 C( 12 C, 13 C) 12 C and 13 C( 22 Ne, 23 Ne) 12 C were studied. The identical entrance and exit channels of the first reaction make it possible to extract independently the ground-state ANC in 13 C. Our experiment gives C p 1/2 2 ( 13 C)=2.24±0.11 fm -1 , which agrees with the value obtained from several previous measurements. The weighted average for all the obtained C p 1/2 2 is 2.31±0.08 fm -1 . This value is adopted to be used in obtaining the ANCs in 23 Ne. The differential cross sections for the reaction 13 C( 22 Ne, 23 Ne) 12 C leading to the J π =5/2 + and 1/2 + states in 23 Ne have been measured at 12 MeV/u. Optical model parameters for use in the DWBA calculations were obtained from measurements of the elastic scatterings 22 Ne+ 13 C and 22 Ne+ 12 C. The extracted ANC for the ground state in 23 Ne, C d 5/2 2 =0.86±0.08±0.12 fm -1 , is converted to its corresponding value in 23 Al using mirror symmetry to give C d 5/2 2 ( 23 Al)=(4.63±0.77)x10 3 fm -1 . The astrophysical S factor S(0) for the 22 Mg(p,γ) reaction was determined to be 0.96±0.11 keV b. The consequences for nuclear astrophysics are discussed.
Energy Technology Data Exchange (ETDEWEB)
Kreuzpaintner, Wolfgang
2010-06-22
Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of
International Nuclear Information System (INIS)
Kreuzpaintner, Wolfgang
2010-01-01
Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of
Mass measurement and structure studies of neutron-rich isotopes of Zn, Ni, Fe
International Nuclear Information System (INIS)
Dessagne, P.
1982-01-01
With the Orsay MP Tandem, the reaction ( 14 C, 16 O) on 58 - 60 - 62 - 64 Ni, 64 - 66 - 68 - 70 Zn, 74 - 76 Ge and 82 Se targets, and the reaction ( 14 C, 15 O) on 60 - 62 - 64 Ni, 68 - 70 Zn, 76 Ge targets, have been investigated at 72 MeV bombarding energy. The mass excess of neutron rich nuclei: 63 Fe (-55.19+-.06MeV), 69 Ni(-60.14+-.06 MeV), 75 Zn(.62.7+-08 MeV) have been measured for the first time, and those of 62 Fe, 68 Ni, 74 Zn, 80 Ge have been remeasured. A new equipment has been designed in order to perform measurements at zero degree. From the angular distribution around 0 0 for the 70 Zn( 14 C, 16 O) reaction, the first state of 68 Ni observed for the first time (1.77 MeV +- .04 MeV) has been shown to be a 0 + . This result establishes a new case of 2 1+ - 0 2+ inversion. The systematics of the ( 14 C, 16 O) measurements on the even Ni and Zn isotopes have shown a different behaviour with two series. For the Ni → Fe (g.s.) transitions, the ratio σsub(exp)/σsub(DWBA) increases by a factor of four when the neutron number varies from 30 to 36. Whereas for the Zn → Ni (gs) transitions this ratio remains constant for the first three isotopes and decrease by a factor of two when N=40. For the Ni → Fe transitions, axial and spherical symmetries have been used. In agreement with the shell model no change are found with the spherical symmetry. For the axial symmetry a variation is observed but strongly dapendant of the sub-shell. Hence no clear conclusion can be deduced for the cross section estimate. For the Zn → Ni transitions, the spherical symmetry has been used. One configuration prevails, leading to a qualitative agreement with the experimental results [fr
International Nuclear Information System (INIS)
Petrascu, M.; Bordeanu, C.; Isbasescu, A.; Mihai, I.; Giurgiu, M.
1997-01-01
Recently, an inclusive fusion experiment of 9,11 Li projectiles with Si targets, in the energy range (9.5 - 25) AMeV has been performed at Riken Ring Cyclotron-Japan using, for the detection of the fusion products, an ionization chamber, MUSIC, built in NIPNE-HH, Bucharest. In this experiment, the contribution of elastic and inelastic scattering, at forward detection angles is eliminated through the experimental set-up. For a clear investigation of the fusion process, the estimation of elastic and inelastic scattering at backward angles, between 80 angle - 180 angle was considered necessary. This estimation was made by the coupled channels computer code ECIS. ECIS is an iterative method, the first iteration of this procedure being DWBA. In the analysis of elastic and inelastic scattering of 9,11 Li projectile on Si target we assumed that the incident 9 Li and 11 Li waves are diffracted by an optical potential with an Woods-Saxon geometry. The adopted optical potential is given. For the depth of the real and imaginary volume terms we used values dependent on projectile energy and target mass number. These values have been chosen in good agreement with a semi-microscopic model with a double-folding potential. The set of optical parameters selected for the system 9,11 Li (13 AMeV) + Si is given. The presence of neutron halo of 11 Li nucleus was taken into account by using adjusted values for the parameters r R and a R . The 28 Si nucleus is considered a rigid rotor, including the couplings involving the ground state and a first to excited states. The quadrupole deformation parameter was β 2 = - 0.24. The results for the scattering of 11 Li projectile on Si target at 13 AMeV energy are given with the parameters R match , I and J max taken from the Monte Carlo simulations with PACE code. We found that the contribution of elastic and inelastic scattering for background angles, between 80 angle - 180 angle is under 2%. The contribution of a inelastic scattering taken
International Nuclear Information System (INIS)
Pita, S.
2000-09-01
The structure of the neutron rich light nuclei 11 Be and 10 Li has been investigated by means of one nucleon transfer reactions. The experiments have been carried out at GANIL in inverse kinematics using 11 Be secondary beams. The 11 Be(p,d) 10 Be reaction bas been studied at 35.3 MeV/u. The 10 Be ejectiles were analyzed by the spectrometer SPEG, and coincident deuterons were detected in the position sensitive silicon detector CHARISSA. Transfer cross sections to 0 + 1 and 2 + 1 , states in 10 Be were measured up to θ CM = 16 deg. and compared to DWBA and CRC predictions. The effects of neutron-cure couplings on reaction form factors have been studied by solving coupled equations in the framework of a vibrational model. It is shown that the rate of core excitation 10 Be 2+ in the 11 Be gs wave function is overestimated by a standard analysis with form factors given by the usual Separation Energy prescription. The former model predicts a rate of core excitation of 16% and leads to theoretical cross sections which are in good agreement with the experimental data. The aim of the 11 Be(d, 3 He) 10 Li experiment, realized at 37 MeV/u, was to measure the distribution of the 2s neutron strength in the unbound nucleus 10 Li. The energy spectrum was deduced from the 3 He energy and angle measured by the silicon strip detector array MUST. An asymmetric peak is clearly observed near the threshold, with a maximum at -S n = 130 keV. This constitutes a direct proof of the inversion of 2s and 1p 1/2 shells in 10 Li, which was until now a controversial question in spite of many experimental efforts. On the other band the analysis of the 11 Be(d,t) 10 Be reaction studied in the same experiment confirms the results obtained in the 11 Be(p,d) 10 Be reaction concerning the 11 Be gs structure. This work shows the interest and feasibility of studies of the shell properties of exotic nuclei using transfer reactions induced by radioactive beams and constitutes the beginning of a program
International Nuclear Information System (INIS)
Baghdadi, Ahmed.
1974-01-01
The overlap of t and d or 3 He and d wave functions may be measured by one neutron transfer in (d,t) or one proton transfer in ( 3 He,d). The measurement of the resulting normalization constant has been performed in subcoulombic conditions in the case of 58 Ni( 3 He,d) 59 Cu and 60 Ni( 3 He,d) 61 Cu leading to the first 3/2 - and 1/2 - states with a position sensitive detector in a Buechner spectrograph. The result: D 2 =2.7+-0.2 10 4 MeV 2 fm 3 is in agreement with the D 2 measurement for (t,d) reactions [3.1+-0.2 10 4 MeV 2 fm 3 ] and with the theoretical value proposed by L.J.B. Goldfarg and coworkers. This result was used for a determination of the spectroscopic factors of the 1.379MeV 3/2 - state, the 1.507MeV 1/2 - state and the 1.758MeV 3/2 - state in 57 Co. The subcoulombic approximation is also shown to be valid even in the case of (d,p) reactions, by the measurement of angular distributions and excitation curves of 60 Ni(d,p) reactions leading to the excited states at 4.760MeV (l=2) and 4.907MeV (l=0). In the second part, some spectroscopic factors in the s-d shell were measured by ( 3 He,d) reactions at MP Tandem energies. In the case of 27 Al( 3 He,d) 28 Si (states at 4.62, 6.88, 6.89, 9.32 and 0.38MeV) the normalization constant D 0 2 (deduced from the subcoulombic D 2 value) together with the first order finite range approximation leads to spectroscopic factors in good agreement with Wildenthal theoretical results. For 28 Si( 3 He,d) 29 p however, the values are too high compared to 29 Si. The conclusion is that it is better to use the DWBA treatment at subcoulombic energies everytime the experimental conditions may be fulfilled [fr
International Nuclear Information System (INIS)
Kotthaus, Tanja
2010-01-01
In this thesis five heavy deformed isotopes from the mass region A≥230, namely 234 U, 233 U, 231 Th, 230 Pa and 232 Pa, were investigated by means of deuteron-induced neutron transfer reactions. The even-even isotope 234 U has been studied with the 4π-γ-spectrometer MINIBALL at the Cologne Tandem accelerator. Excited nuclei in the isotope 234 U were produced using the reaction 235 U(d,t) at a beam energy of 11 MeV. The target thickness was 3.5 mg/cm 2 . The analysis of the γγ-coincidence data yielded a reinterpretation of the level scheme in 12 cases. Considering its decay characteristics, the 4 + state at an excitation energy of 1886.7 keV is a potential candidate for a two-phonon vibrational state. The isotopes 233 U, 231 Th, 230 Pa and 232 Pa were investigated at the Munich Q3D spectrometer. For each isotope an angular distribution with angles between 5 and 45 were measured. In all four cases the energy of the polarized deuteron beam (vector polarization of 80%) was 22 MeV. As targets 234 U (160 μg/cm 2 ), 230 Th (140 μg/cm 2 ) and 231 Pa (140 μg/cm 2 ) were used. The experimental angular distributions were compared to results of DWBA calculations. For the odd isotope 233 U spin and parity for 33 states are assigned and in the other odd isotope 231 Th 22 assignments are made. The excitation spectra of the two odd-odd isotopes 230 Pa and 232 Pa were investigated for the first time. For the isotope 230 Pa 63 states below an excitation energy of 1.5 MeV are identified. Based on the new experimental data the Nilsson configuration of the ground state is either 1/2[530] p -5/2[633] n or 1/2[530] p +3/2[631] n . In addition 12 rotational bands are proposed and from this six values for the GM splitting energy are deduced as well as two new values for the Newby shift. In the other odd-odd isotope 232 Pa 40 states below an excitation energy of 850 keV are observed and suggestions for the groundstate band and its GM partner are made. From this one GM splitting
The proton spectral function of 40Ca and 48Ca studied with the (e,e'p) reaction
International Nuclear Information System (INIS)
Kramer, G.J.
1990-01-01
This thesis presents the results of an experimental study into the occupation of the orbitals around the Fermi level for 40 Ca and 48 Ca with quasi-elastic proton knock-out (e,e'p). Experiments have been carried out with the 500 MeV electron beam of the linear accelerator MEA at NIKHEF, Amsterdam. For 40 Ca the mechanism of the (e,e'p) reaction has been studied by comparing the measured momentum distributions of some strong transitions to discrete states in 39K , with various theoretical calculations. From this it has been concluded that uncertainties caused by deviations of the impulse approximation can be minimized if the measurements are carried out under parallel kinematical conditions. The spectroscopic strengths of the shell-model orbitals in states just below the Fermi level, for 40 Ca the 1d 3/2 , 1d 5/2 and 2s 1/2 orbitals, turned out to amount 50 to 70% of the IPSM limit. A small part of the missing strength has been found in the 1f 7/2 and 2p 3/2 orbitals which are just above the Fermi level (resp. 11 and 2% of the 2j+1 limit), which is an indication for ground state correlations. The spectroscopic strengths for the 1d 3/2 , 2s 1/2 and 1d 3/2 orbitals of 48 Ca turned out to be the same as for 40C a within the actual measuring accuracy. Above the Fermi level only strength in the 1f 7/2 orbital has been found (1% of the 2j+1 limit). The spectroscopic strengths determined with (e,e'p) experiments are about a factor two smaller than those obtained from (d, 3 He) experiments. This discrepancy has been studied by reviewing the model dependency of the DWBA analysis for the (d, 3 He) reaction with special emphasis on the sensitivities of the spectroscopic factors to the various approximations made in this theory. It is also investigated which part of the bound state wave function is probed by the (e,e'p) and the (d, 3 He) reactions in order to understand the model sensitivities arising from the exact shape of the bound state wave function. (H.W.).97 refs.; 48
Energy Technology Data Exchange (ETDEWEB)
Pita, S
2000-09-01
The structure of the neutron rich light nuclei {sup 11}Be and {sup 10}Li has been investigated by means of one nucleon transfer reactions. The experiments have been carried out at GANIL in inverse kinematics using {sup 11}Be secondary beams. The {sup 11}Be(p,d){sup 10}Be reaction bas been studied at 35.3 MeV/u. The {sup 10}Be ejectiles were analyzed by the spectrometer SPEG, and coincident deuterons were detected in the position sensitive silicon detector CHARISSA. Transfer cross sections to 0{sup +}{sub 1} and 2{sup +}{sub 1}, states in {sup 10}Be were measured up to {theta}{sub CM} = 16 deg. and compared to DWBA and CRC predictions. The effects of neutron-cure couplings on reaction form factors have been studied by solving coupled equations in the framework of a vibrational model. It is shown that the rate of core excitation {sup 10}Be{sub 2+} in the {sup 11}Be{sub gs} wave function is overestimated by a standard analysis with form factors given by the usual Separation Energy prescription. The former model predicts a rate of core excitation of 16% and leads to theoretical cross sections which are in good agreement with the experimental data. The aim of the {sup 11}Be(d,{sup 3}He){sup 10}Li experiment, realized at 37 MeV/u, was to measure the distribution of the 2s neutron strength in the unbound nucleus {sup 10}Li. The energy spectrum was deduced from the {sup 3}He energy and angle measured by the silicon strip detector array MUST. An asymmetric peak is clearly observed near the threshold, with a maximum at -S{sub n} = 130 keV. This constitutes a direct proof of the inversion of 2s and 1p{sub 1/2} shells in {sup 10}Li, which was until now a controversial question in spite of many experimental efforts. On the other band the analysis of the {sup 11}Be(d,t){sup 10}Be reaction studied in the same experiment confirms the results obtained in the {sup 11}Be(p,d){sup 10}Be reaction concerning the {sup 11}Be{sub gs} structure. This work shows the interest and feasibility
Evaluation of Neutron Induced Reactions for 32 Fission Products
International Nuclear Information System (INIS)
Kim, Hyeong Il
2007-02-01
Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10 -5 eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, 95 Mo, 101 Ru, 103 Rh, 105 Pd, 109 Ag, 131 Xe, 133 Cs, 141 Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross sections for almost all reaction channels
Examination of the Coulomb-nuclear interference in inelastic scattering of 6Li in 76Ge
International Nuclear Information System (INIS)
Zhang, Xinxin
2015-01-01
The inelastic scattering of 28,0 MeV 6 Li on 76 Ge in the excitation of the 2 + 1 state, has been studied with the Coulomb-Nuclear Interference (CNI) analysis. The data were measured at the Pelletron-Enge-Spectrograph facility at LAFN-IFUSP. A solid-state position sensitive silicon detector (PSD) (500μm thickness and 47 × 8 mm 2 area) was used to measure the data at the spectrometer focal plane. Digital pulse processing (DPP) was implemented in the acquisition system. Twenty-six spectra were measured at carefully chosen scattering angles in the range of 10 deg ≤ θ Lab ≤ 55 deg to obtain an angular distribution. The analysis was performed with the Distorted Wave Born Approximation (DWBA) and applied for the nuclear transition potential, the Deformed Optical Potential Model (DOMP), under well-established global optical parameters. The fit of the predicted cross sections to the experimental data through χ 2 minimization, using the iterative method of Gauss, allowed for the extraction of the correlated parameters, δ N 2 , the mass deformation length, and C 2 = Ν C 2 /δ N 2 , the ratio between charge and mass deformation lengths. The correlated parameters obtained in the present work were C 2 = 1,101 (20) and δ N 2 = 1,08(21)fm. Statistical tests, through a Monte Carlo simulation of 5000 new data sets, validated the method employed in the correlated parameters fit. The methodology applied for the CNI analysis allowed the extraction of ratio B(EL)/B(ISL), which is proportional to the square of C 2 , with a good precision due to the scale uncertainties cancellation of the absolute cross sections. The values of B(IS2) and of the ratios B(E2)/B(IS2) obtained in the present work have not been reported before and allow the study of the evolution of the collectivity throughout the even-A germanium chain together with former results obtained for the 70 , 72 , 74 Ge isotopes. The results along the chain indicate that although the protons relative to the neutrons
Energy Technology Data Exchange (ETDEWEB)
Eswaran, M A; Gove, H E; Cook, R; Sikora, B [Rochester Univ., NY (USA). Nuclear Structure Research Lab.
1979-08-13
The ..cap alpha..-transfer reactions /sup 27/Al(/sup 6/Li,d)/sup 31/P,/sup 29/Si(/sup 6/Li,d) /sup 33/S and /sup 31/P(Li,d)/sup 35/Cl have been studied at a /sup 6/Li energy of 36 MeV. Absolute cross sections and angular distributions have been measured and an exact finite-range distorted-wave Born approximation analysis assuming a direct cluster transfer has been used to extract from the data ..cap alpha..-particle spectroscopic strengths for levels populated in /sup 31/P, /sup 33/S and /sup 35/Cl in three reactions respectively. The results show that in the case of most of the low-lying excited states of /sup 31/P a single value of L of the transferred ..cap alpha..-particle contributes, though a multiplicity of L-values are allowed by angular momentum selection rules. It is also found that the ..cap alpha..-particle spectroscopic strength of the ground state of /sup 31/P is a factor of 2 more than the strengths of the ground states of /sup 33/S and /sup 35/Cl. The ..cap alpha..-spectroscopic strengths of ground states of these, as well as other odd-A s-d shell nuclei, are compared with the presently available shell model calculations.
Exploring the island of inversion with the d({sup 30}Mg,p){sup 31}Mg reaction
Energy Technology Data Exchange (ETDEWEB)
Bildstein, Vinzenz
2010-12-07
In this thesis the results of a d({sup 30}Mg,p){sup 31}Mg experiment at REX-ISOLDE are presented. {sup 31}Mg is located directly on the border of the so-called ''Island of Inversion'', a region of the nuclear chart around {sup 32}Mg where deformed intruder states of the fp shell form the ground states of the nuclei instead of the normal spherical states of the sd shell. A recent experiment has shown the ground state of {sup 31}Mg to be a 1/2{sup +} state and indicates more than 90% intruder configuration. The question whether the low-lying excited states of {sup 31}Mg are deformed intruder states as well or rather spherical states from the sd shell, indicating shape coexistence, is still open. The d({sup 30}Mg,p) {sup 31}Mg reaction is thus a good tool to gain more insight into the nature of the Island of Inversion. In the framework of this thesis the angular distribution of protons was measured for the second excited state at 221 keV in coincidence with de-excitation {gamma}-rays. The angular distribution was compared to DWBA calculations for different transferred orbital momenta, identifying the state for the first time as an l=1 state. The experiment was performed with the new charged particle detector setup T-REX. The setup is optimized for transfer reactions with radioactive beams in inverse kinematics. T-REX was developed, built, installed, and used for this first one neutron transfer experiment in the context of this thesis. The T-REX setup consists of {delta}E-E{sub Rest} telescopes made out of position sensitive silicon detectors that cover almost 4{pi} of the solid angle and can be combined with the MINIBALL {gamma}-ray detector array. It has a large solid angle for the detection and identification of the light recoils from transfer reactions. T-REX allows in combination with the MINIBALL Germanium detector array the tagging of the excited states by their characteristic {gamma}-rays. The combination of T-REX and MINIBALL achieves an
Evaluation of Neutron Induced Reactions for 32 Fission Products
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyeong Il
2007-02-15
Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10{sup -5} eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xinxin
2015-07-01
The inelastic scattering of 28,0 MeV {sup 6}Li on {sup 76}Ge in the excitation of the 2{sup +}{sub 1} state, has been studied with the Coulomb-Nuclear Interference (CNI) analysis. The data were measured at the Pelletron-Enge-Spectrograph facility at LAFN-IFUSP. A solid-state position sensitive silicon detector (PSD) (500μm thickness and 47 × 8 mm{sup 2} area) was used to measure the data at the spectrometer focal plane. Digital pulse processing (DPP) was implemented in the acquisition system. Twenty-six spectra were measured at carefully chosen scattering angles in the range of 10 deg ≤ θ{sub Lab} ≤ 55 deg to obtain an angular distribution. The analysis was performed with the Distorted Wave Born Approximation (DWBA) and applied for the nuclear transition potential, the Deformed Optical Potential Model (DOMP), under well-established global optical parameters. The fit of the predicted cross sections to the experimental data through χ{sup 2} minimization, using the iterative method of Gauss, allowed for the extraction of the correlated parameters, δ{sup N}{sub 2}, the mass deformation length, and C{sub 2} = Ν{sup C}{sub 2}/δ{sup N}{sub 2}, the ratio between charge and mass deformation lengths. The correlated parameters obtained in the present work were C{sub 2} = 1,101 (20) and δ{sup N}{sub 2} = 1,08(21)fm. Statistical tests, through a Monte Carlo simulation of 5000 new data sets, validated the method employed in the correlated parameters fit. The methodology applied for the CNI analysis allowed the extraction of ratio B(EL)/B(ISL), which is proportional to the square of C{sub 2}, with a good precision due to the scale uncertainties cancellation of the absolute cross sections. The values of B(IS2) and of the ratios B(E2)/B(IS2) obtained in the present work have not been reported before and allow the study of the evolution of the collectivity throughout the even-A germanium chain together with former results obtained for the {sup 70},{sup 72},{sup 74}Ge
International Nuclear Information System (INIS)
Herman, M.; Capote, R.; Sin, M.
2013-08-01
EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. The system can be used for theoretical investigations of nuclear reactions as well as for nuclear data evaluation work. Photons, nucleons, deuterons, tritons, helions ( 3 He), α's, and light or heavy ions can be selected as projectiles. The energy range starts just above the resonance region in the case of a neutron projectile, and extends up to few hundred MeV for heavy ion induced reactions. The code accounts for the major nuclear reaction models, such as optical model, Coupled Channels and DWBA (ECIS06 and OPTMAN), Multi-step Direct (ORION + TRISTAN), NVWY Multi-step Compound, exciton model (PCROSS), hybrid Monte Carlo simulation (DDHMS), and the full featured Hauser-Feshbach model including width fluctuations and the optical model for fission. Heavy ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters based on the RIPL-3 library covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, and γ-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations (BARFIT, MOMFIT). The results can be converted into the ENDF-6 format using the accompanying EMPEND code. Modules of the ENDF Utility Codes and the ENDF Pre-Processing codes are applied for ENDF file verification. The package contains the full EXFOR library of experimental data in computational format C4 that are automatically retrieved during the calculations. EMPIRE contains the resonance module that retrieves data from the electronic version of the Atlas of Neutron Resonances by Mughabghab (not provided with the EMPIRE distribution), to produce resonance section and related covariances for the
Energy Technology Data Exchange (ETDEWEB)
Sheikh Obeid, Abdulrahman
2014-11-01
In the framework of this thesis electron scattering experiments on low-energy excitations of {sup 92}Zr and {sup 94}Zr were performed at the S-DALINAC in a momentum transfer range q=0.3-0.6 fm{sup -1}. The nature of one-phonon symmetric and mixed-symmetric 2{sup +} and 3{sup -} states of {sup 92}Zr was investigated by comparison with predictions of the quasi-particle phonon model (QPM). Theoretical (e,e') cross sections have been calculated within the distorted wave Born approximation (DWBA) to account for Coulomb distortion effects. The reduced strengths of the one-quadrupole phonon states and the one-octupole phonon state have been extracted. The similarity of the momentum-transfer dependence of the form factors between the 2{sup +} states supports the one-phonon nature of the 2{sup +}{sub 2} state of {sup 92}Zr. A new method based on the Plane Wave Born Approximation (PWBA) for a model-independent determination of the ratio of the E2 transition strengths of fully symmetric (FSS) and mixed-symmetry (MSS) one-phonon excitations of heavy vibrational nuclei is introduced. Due to the sensitivity of electron scattering to charge distributions, the charge transition-radii difference can be determined. The basic assumptions (independence from the ratio of Coulomb corrections and from absolute values of transition radii) are tested within the Tassie model, which makes no specific assumptions about the structure of the states other than collectivity. It is shown that a PWBA analysis of the form factors, which usually fails for heavy nuclei, can nevertheless be applied in a relative analysis. This is a new promising approach to determine the ground state transition strength of the 2{sup +} MSS of vibrational nuclei with a precision limited only by the experimental information about the B(E2;2{sup +}{sub 1}→0{sup +}{sub 1}) strength. The PWBA approach furthermore provides information about differences of the proton transition radii of the respective states
Mechanisms of the p(He 6,He 5)d, p(He 6,α)t and p(He 6,t)α reactions
International Nuclear Information System (INIS)
Heiberg-Andersen, Henning
2002-07-01
however regard structure aspects rather than reaction mechanisms. It has been shown that the existing data can be explained by means of the methods of standard reaction theory, although not by the simplest prescription - DWBA with optical potentials obtained by fitting elastic data in the coupled channels. It is also found that the problems connected with thee reproduction of these data do not originate from inadequate nuclear models. The best available three-body overlap models are used in the calculations. The sensitivity to two-bode overlaps that could not be compared with microscopic models like the t x t overlap of He 6 is investigated by variation of parameters in the WD calculations. Within reasonable limits, the sensitivity to these parameters was found to be weak. Except from the unavoidable sensitivity to the spectroscopic amplitudes, the insensitivity to the binding potentials used for the weakly bound clusters is largely caused by the L-space localization discussed. For the overlap of the lightest clusters involved, except the deuteron, the insensitivity follows from the large separation energies which give overlaps constricted in space independent of the detailed geometry of the binding potential. The question that must be asked in the end is how the transfer experiments should be designed in order to serve as useful probes for halo structure. Simpler reaction mechanisms than those identified in this work should be pursued in order to get conclusive results. If the 6He beam is directed against a heavier target. 1ike C 12, at an appropriate energy, the exchange complications will be reduced by L-space localization, and cleaner tests of the one- and two-neutron overlaps should be possible. However, the L-space localization will probably cause some degree of model independence also in this case. It appears that decisive tests of the t x t component will be very hard to achieve. (Author)
Mechanisms of the p(He 6,He 5)d, p(He 6,{alpha})t and p(He 6,t){alpha} reactions
Energy Technology Data Exchange (ETDEWEB)
Heiberg-Andersen, Henning
2002-07-01
modest amount of available data. This limitation does however regard structure aspects rather than reaction mechanisms. It has been shown that the existing data can be explained by means of the methods of standard reaction theory, although not by the simplest prescription - DWBA with optical potentials obtained by fitting elastic data in the coupled channels. It is also found that the problems connected with thee reproduction of these data do not originate from inadequate nuclear models. The best available three-body overlap models are used in the calculations. The sensitivity to two-bode overlaps that could not be compared with microscopic models like the t x t overlap of He 6 is investigated by variation of parameters in the WD calculations. Within reasonable limits, the sensitivity to these parameters was found to be weak. Except from the unavoidable sensitivity to the spectroscopic amplitudes, the insensitivity to the binding potentials used for the weakly bound clusters is largely caused by the L-space localization discussed. For the overlap of the lightest clusters involved, except the deuteron, the insensitivity follows from the large separation energies which give overlaps constricted in space independent of the detailed geometry of the binding potential. The question that must be asked in the end is how the transfer experiments should be designed in order to serve as useful probes for halo structure. Simpler reaction mechanisms than those identified in this work should be pursued in order to get conclusive results. If the 6He beam is directed against a heavier target. 1ike C 12, at an appropriate energy, the exchange complications will be reduced by L-space localization, and cleaner tests of the one- and two-neutron overlaps should be possible. However, the L-space localization will probably cause some degree of model independence also in this case. It appears that decisive tests of the t x t component will be very hard to achieve. (Author)