WorldWideScience

Sample records for dwarf galaxy ngc

  1. Dwarf galaxies in the dynamically evolved NGC 1407 Group

    Science.gov (United States)

    Trentham, Neil; Tully, R. Brent; Mahdavi, Andisheh

    2006-07-01

    The NGC 1407 Group stands out among nearby structures by its properties that suggest it is massive and evolved. It shares properties with entities that have been called fossil groups: the 1.4m differential between the dominant elliptical galaxy and the second brightest galaxy comes close to satisfying the definition that has been used to define the fossil class. There are few intermediate-luminosity galaxies, but a large number of dwarfs in the group. We estimate there are 250 group members to the depth of our survey. The slope of the faint end of the luminosity function (reaching MR = -12) is α = -1.35. Velocities for 35 galaxies demonstrate that this group with one dominant galaxy has a mass of 7 × 1013Msolar and M/LR = 340Msolar/Lsolar. Two galaxies in close proximity to NGC 1407 have very large blueshifts. The most notable is the second brightest galaxy, NGC 1400, with a velocity of -1072 km s-1 with respect to the group mean. We report the detection of X-ray emission from this galaxy and from the group.

  2. Dwarf galaxies in the Dynamically Evolved NGC 1407 Group

    CERN Document Server

    Trentham, N; Tully, R B; Mahdavi, Andisheh; Trentham, Neil

    2006-01-01

    The NGC 1407 Group stands out among nearby structures by its properties that suggest it is massive and evolved. It shares properties with entities that have been called fossil groups: the 1.4 magnitude differential between the dominant elliptical galaxy and the second brightest galaxy comes close to satisfying the definition that has been used to define the fossil class. There are few intermediate luminosity galaxies, but a large number of dwarfs in the group. We estimate there are 250 group members to the depth of our survey. The slope of the faint end of the luminosity function (reaching M_R = -12) is alpha = -1.35. Velocities for 35 galaxies demonstrate that this group with one dominant galaxy has a mass of 7 X 10^13 M_sun and M/L_R = 340. Two galaxies in close proximity to NGC 1407 have very large blueshifts. The most notable is the second brightest galaxy, NGC 1400, with a velocity of -1072 km/s with respect to the group mean. We report the detection of X-ray emission from this galaxy and from the group.

  3. Surface Photometry of the Dwarf Elliptical Galaxies NGC 185 and NGC 205

    CERN Document Server

    Kim, S C; Kim, Sang Chul; Lee, Myung Gyoon

    1998-01-01

    We present BVRI CCD surface photometry for the central (6'.35 X 6'.35) regions of the dwarf elliptical galaxies NGC 185 and NGC 205 in the Local Group. Surface brightness profiles of NGC 185 (R = 25". The colors of NGC 205 get bluer inward at 1" < R < 50", and remain flat outside. Our photometry, supplemented by the photometry based on the far-ultraviolet and visual images of the HST archive data, shows that there is an inversion of color at the very nucleus region (at about 1"). The implications of the redder color of the core part of the nucleus compared with neighboring regions are discussed. The amount of the excess components in the central regions of these galaxies is estimated to be ~10^5 solar luminosity. Distributions of dust clouds in the central regions of the two galaxies are also investigated.

  4. HST/ACS Direct Ages of the Dwarf Elliptical Galaxies NGC 147 and NGC 185

    Science.gov (United States)

    Geha, M.; Weisz, D.; Grocholski, A.; Dolphin, A.; van der Marel, R. P.; Guhathakurta, P.

    2015-10-01

    We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope Advanced Camera for Surveys (ACS) observations of the Local Group dE galaxies NGC 147 and NGC 185. Our F606W and F814W color-magnitude diagrams are the first to reach below the oldest main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located roughly ˜1.5 effective radii from the galaxy center to avoid photometric crowding. While both ACS fields show unambiguous evidence for old and intermediate age stars, the mean age of NGC 147 is ˜4-5 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyr ago (z ˜ 5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 prior to 12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr ago. Star formation has ceased in both ACS fields for at least 3 Gyr. Previous observations in the central regions of NGC 185 show evidence for star formation as recent as 100 Myr ago, and a strong metallicity gradient with radius. This implies a lack of radial mixing between the center of NGC 185 and our ACS field. The lack of radial gradients in NGC 147 suggests that our inferred SFHs are more representative of its global history. We interpret the inferred differences in star formation histories to imply an earlier infall time into the M31 environment for NGC 185 as compared to NGC 147.

  5. HST/ACS Direct Ages of the Dwarf Elliptical Galaxies NGC 147 and NGC 185

    CERN Document Server

    Geha, M; Grocholski, A; Dolphin, A; van der Marel, R P; Guhathakurta, P

    2015-01-01

    We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope ACS observations of the Local Group dE galaxies NGC 147 and NGC 185. The resulting F606W and F814W color-magnitude diagrams are the first to reach below the main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located ~1.5 effective radii from the galaxy center to avoid photometric crowding. While our ACS pointings in both dEs show unambiguous evidence for old and intermediate age stars, the mean age in NGC 147 is ~ 4 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyrs ago (z~5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 field more than12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr. Star formation ceased in both ACS fields at least 3 Gyr ago. Previous observations ...

  6. NGC 5044-N50: a link between blue compact galaxies and dwarf ellipticals

    Science.gov (United States)

    Cellone, Sergio A.; Buzzoni, Alberto

    We present new optical observations of the dwarf galaxy N50 in the NGC 5044 Group, showing that this object is probably at an intermediate BCD→dE evolutionary stage, after a realtively recent burst of star formation.

  7. Antlia B: A faint dwarf galaxy member of the NGC 3109 association

    CERN Document Server

    Sand, D J; Crnojević, D; Hargis, J R; Willman, B; Strader, J; Grillmair, C J

    2015-01-01

    We report the discovery of Antlia B, a faint dwarf galaxy at a projected distance of $\\sim$72 kpc from NGC 3109 ($M_{V}$$\\sim$$-$15 mag), the primary galaxy of the NGC 3109 dwarf association at the edge of the Local Group. The tip of the red giant branch distance to Antlia B is $D$=1.29$\\pm$0.10 Mpc, which is consistent with the distance to NGC 3109. A qualitative analysis indicates the new dwarf's stellar population has both an old, metal poor red giant branch ($\\gtrsim$10 Gyr, [Fe/H]$\\sim$$-$2), and a younger blue population with an age of $\\sim$200-400 Myr, analogous to the original Antlia dwarf, another likely satellite of NGC 3109. Antlia B has \\ion{H}{1} gas at a velocity of $v_{helio,HI}$=376 km s$^{-1}$, confirming the association with NGC 3109 ($v_{helio}$=403 km s$^{-1}$). The HI gas mass (M$_{HI}$=2.8$\\pm$0.2$\\times$10$^{5}$ M$_{\\odot}$), stellar luminosity ($M_{V}$=$-$9.7$\\pm$0.6 mag) and half light radius ($r_{h}$=273$\\pm$29 pc) are all consistent with the properties of dwarf irregular and dwarf ...

  8. Star Formation in NGC4532/DDO 137'S Tidal Dwarf Galaxies and 500 KPC HI Stream

    Science.gov (United States)

    Higdon, Sarah

    Mergers and close-passages between gas rich galaxies can result in the formation of long HI/stellar streams. The tidally induced star formation and gas concentrations can result in the creation of tidal dwarf galaxies (TDGs). TDGs may contribute significantly to the dwarf galaxy population, by far the most common galaxy type in the current epoch. We have discovered one of the longest known tidal streams (500 kpc) in the NGC 4535/DDO 137 system. We propose 3 ksec FUV/NUV images centered on the stream and its five TDGs. We will readily detect faint/low mass star forming regions (~2E-17 erg s-1 cm-2 A-1) to 5-sigma. The GALEX observations are a unique opportunity to undertake a sensitive and comprehensive study of tidally induced star formation, dwarf galaxy formation and inter-galactic enrichment in this system.

  9. Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    CERN Document Server

    Drzazga, R T; Heald, G H; Elstner, D; Gallagher, J S

    2016-01-01

    It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey. The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 muG) and ordered (3 muG) magnetic field strengths, as we...

  10. The Nature of the Low-Metallicity ISM in the Dwarf Galaxy NGC 1569

    CERN Document Server

    Galliano, F; Jones, A P; Wilson, C D; Bernard, J P; Le Peintre, F

    2002-01-01

    We are modeling the spectra of dwarf galaxies from infrared to submillimeter wavelengths to understand the nature of the various dust components in low-metallicity environments, which may be comparable to the ISM of galaxies in their early evolutionary state. The overall nature of the dust in these environments appears to differ from those of higher metallicity starbursting systems. Here, we present a study of one of our sample of dwarf galaxies, NGC 1569, which is a nearby, well-studied starbursting dwarf. Using ISOCAM, IRAS, ISOPHOT and SCUBA data with the Desert et al. (1990) model, we find consistency with little contribution from PAHs and Very Small Grains and a relative abundance of bigger colder grains, which dominate the FIR and submillimeter wavelengths. We are compelled to use 4 dust components, adding a very cold dust component, to reproduce the submillimetre excess of our observations.

  11. A Study of the Star-forming Dwarf Galaxy NGC 855 with Spitzer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We present a study of the dwarf elliptical galaxy NGC 855 using the narrow-band Ha and Spitzer data. Both the Ha and Spitzer IRAC images confirm star-forming activity in the center of NGC 855. We obtained a star formation rate (SFR) of 0.022 and 0.025 M☉yr-1, respectively, from the Spitzer IRAC 8.0 μm and MIPS 24 μm emission data. The HI observa tion suggests that the star-forming activity might be triggered by a minor merger. We also find that there is a distinct IR emission region in 5.8 and 8.0μm bands, located at about 10 "away from the nucleus of NGC 855. Given the strong 8.0μm but faint Hα emission, we expect that it is a heavily obscured star-forming region, which needs to be confirmed by further optical spectroscopic observations.

  12. Abundance ratios and IMF slope in the dwarf elliptical galaxy NGC~1396 with MUSE

    CERN Document Server

    Mentz, J J; Peletier, R F; Falcón-Barroso, J; Lisker, T; van de Ven, G; Loubser, S I; Hilker, M; Sánchez-Janssen, R; Napolitano, N; Cantiello, M; Capaccioli, M; Norris, M; Paolillo, M; Smith, R; Beasley, M A; Lyubenova, M; Munoz, R; Puzia, T

    2016-01-01

    Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (M$_V = -16.60$, Mass $\\sim 4\\times10^8$ M$_\\odot$), located in the Fornax cluster, have been performed with the VLT/ MUSE spectrograph in the wavelength region from $4750-9350$ \\AA{}. In this paper we present a stellar population analysis studying chemical abundances, the star formation history (SFH) and the stellar initial mass function (IMF) as a function of galacto-centric distance. Different, independent ways to analyse the stellar populations result in a luminosity-weighted age of $\\sim$ 6 Gyr and a metallicity [Fe/H]$\\sim$ $-0.4$, similar to other dEs of similar mass. We find unusually overabundant values of [Ca/Fe] $\\sim +0.1$, and under-abundant Sodium, with [Na/Fe] values around $-0.1$, while [Mg/Fe] is overabundant at all radii, increasing from $\\sim+0.1$ in the centre to $\\sim +0.2$ dex. We notice a significant metallicity and age gradient within this dwarf galaxy. To constrain the stellar IMF of NGC 1396, we find that the IMF of NGC 1...

  13. First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    Science.gov (United States)

    Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.

    2017-03-01

    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5 GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g' 20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results: The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7+ 1.4-1.2 Gyr and [Z/H] = -0.79 ± 0.04 dex, respectively, as well as [α/ Fe] = 0.30 ± 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = -0.86 dex). Conclusions: Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV -12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044.

  14. A tidally disrupting dwarf galaxy in the halo of NGC 253

    CERN Document Server

    Toloba, Elisa; Spekkens, Kristine; Crnojevic, Denija; Simon, Joshua; Guhathakurta, Puragra; Strader, Jay; Caldwell, Nelson; McLeod, Brian; Seth, Anil

    2015-01-01

    We report the discovery of Scl-MM-Dw2, a new dwarf galaxy at a projected separation of $\\sim$50 kpc from NGC 253, as part of the PISCeS (Panoramic Imaging Survey of Centaurus and Sculptor) project. We measure a tip of the red giant branch distance of $3.12\\pm0.30$ Mpc, suggesting that Scl-MM-Dw2 is likely a satellite of NGC 253. We qualitatively compare the distribution of red giant branch (RGB) stars in the color-magnitude diagram with theoretical isochrones and find that it is consistent with an old, $\\sim$12 Gyr, and metal poor, $-2.3<$[Fe/H]$<-1.1$, stellar population. We also detect a small number of asymptotic giant branch stars consistent with a metal poor $2-3$ Gyr population in the center of the dwarf. Our non-detection of HI in a deep Green Bank Telescope spectrum implies a gas fraction $M_{HI}/L_V<0.02$ Msun/Lsun. The stellar and gaseous properties of Scl-MM-Dw2 suggest that it is a dwarf spheroidal galaxy. Scl-MM-Dw2 has a luminosity of $M_V=-12.1\\pm0.5$ mag and a half-light radius of $r_...

  15. Herschel photometric observations of the low metallicity dwarf galaxy NGC 1705

    CERN Document Server

    O'Halloran, B; Madden, S C; Galliano, F; Hony, S; Sauvage, M; Pohlen, M; Bendo, G J; Auld, R; Baes, M; Barlow, M J; Bock, J J; Boselli, A; Bradford, M; Buat, V; Castro-Rodriguez, N; Chanial, P; Charlot, S; Ciesla, L; Clements, D L; Cooray, A; Cormier, D; Cortese, L; Davies, J I; Dwek, E; Eales, S A; Elbaz, D; Gear, W K; Glenn, J; Gomez, H L; Griffin, M; Isaak, K G; Levenson, L R; Lu, N; Okumura, K; Oliver, S; Page, M J; Panuzzo, P; Papageorgiou, A; Parkin, T J; Perez-Fournon, I; Rangwala, N; Rigby, E E; Roussel, H; Rykala, A; Sacchi, N; Schulz, B; Schirm, M R P; Smith, M W L; Spinoglio, L; Stevens, J A; Sundar, S; Symeonidis, M; Trichas, M; Vaccari, M; Vigroux, L; Wilson, C D; Wozniak, H; Wright, G S; Zeilinger, W W

    2010-01-01

    We present Herschel SPIRE and PACS photometeric observations of the low metallicity (Z ~ 0.35 solar) nearby dwarf galaxy, NGC 1705, in six wavelength bands as part of the Dwarf Galaxy Survey guaranteed time Herschel Key Program. We confirm the presence of two dominant circumnuclear IR-bright regions surrounding the central super star cluster that had been previously noted at mid-IR wavelengths and in the sub-mm by LABOCA. On constructing a global spectral energy distribution using the SPIRE and PACS photometry, in conjunction with archival IR measurements, we note the presence of an excess at sub-mm wavelengths. This excess suggests the presence of a significant cold dust component within NGC 1705 and was modeled as an additional cold component in the SED. Although alternative explanations for the sub-mm excess beyond 350 microns, such as changes to the dust emissivity cannot be ruled out, the most likely explanation for the observed submillimetre excess is that of an additional cold dust component.

  16. The Complex Neutral Gas Dynamics Of The Dwarf Starburst Galaxy NGC 625

    CERN Document Server

    Cannon, J M; Skillman, E D; Côté, S; Cannon, John M.; Skillman, Evan D.; Cote, Stephanie

    2004-01-01

    We present new multi-configuration HI aperture synthesis imaging of the nearby dwarf starburst galaxy NGC 625 obtained with the Australia Telescope Compact Array. Total HI column density images show gas well-aligned with the optical major axis, and low-column density HI extending to > 6 optical scale lengths. The HI velocity field, on the other hand, is highly disturbed, with neutral gas at nearly all detected velocities within the central region. After considering various interpretations, we find that a blowout scenario most accurately describes the data. Since at our resolution we do not detect any large evacuated holes in the HI disk, we interpret this blowout to be the result of the extended (both spatially and temporally) star formation event which NGC 625 has undergone in the last 100 Myr. This is one of the clearest examples of HI outflow detected in a dwarf galaxy. We find no obvious external trigger for this extended star formation event. We detect strong radio continuum emission from the largest HII...

  17. A state-of-the-art analysis of the dwarf irregular galaxy NGC 6822

    CERN Document Server

    Fusco, F; Hidalgo, S L; Aparicio, A; Pietrinferni, A; Bono, G; Monelli, M; Cassisi, S

    2014-01-01

    We present a detailed photometric study of the dwarf irregular galaxy NGC 6822 aimed at investigating the properties of its stellar populations and, in particular, the presence of stellar radial gradients. Our goal is to analyse the stellar populations in six fields, which cover the whole bar of this dwarf galaxy. We derived the quantitative star formation history (SFH) of the six fields using the IAC method, involving IAC-pop/MinnIAC codes. The solutions we derived show an enhanced star formation rate (SFR) in Fields 1 and 3 during the past 500 Myr. The SFRs of the other fields are almost extinguished at very recent epochs and. We study the radial gradients of the SFR and consider the total mass converted into stars in two time intervals (between 0 and 0.5 Gyr ago and between 0.5 and 13.5 Gyr ago). We find that the scale lengths of the young and intermediate-to-old populations are perfectly compatible, with the exception of the young populations in Fields 1 and 3. The recent SF in these two fields is greater...

  18. The dust SED of dwarf galaxies I. The case of NGC 4214

    CERN Document Server

    Hermelo, Israel; Relaño, Monica; Tuffs, Richard J; Popescu, Cristina C; Groves, Brent

    2012-01-01

    The goal of the present study is to establish the physical origin of dust heating and emission based on radiation transfer models, which self-consistently connect the emission components from diffuse dust and the dust in massive star forming regions. NGC 4214 is a nearby dwarf galaxy with a large set of ancillary data, ranging from the ultraviolet (UV) to radio, including maps from SPITZER, HERSCHEL and detections from PLANCK. We mapped this galaxy with MAMBO at 1.2 mm at the IRAM 30 m telescope. We extract separate dust emission components for the HII regions (plus their associated PDRs on pc scales) and for the diffuse dust (on kpc scales). We analyse the full UV to FIR/submm SED of the galaxy using a radiation transfer model which self-consistently treats the dust emission from diffuse and SF complexes components, considering the illumination of diffuse dust both by the distributed stellar populations, and by escaping light from the HII regions. While maintaining consistency with the framework of this mode...

  19. Disentangling the ISM phases of the dwarf galaxy NGC 4214 using [CII] SOFIA/GREAT observations

    CERN Document Server

    Fahrion, Katja; Bigiel, Frank; Hony, Sacha; Abel, Nick P; Cigan, Phil; Csengeri, Timea; Graf, Urs; Lebouteiller, Vianney; Madden, Suzanne C; Wu, Ronin; Young, Lisa

    2016-01-01

    The [CII] 158 um fine structure line is one of the dominant cooling lines in the interstellar medium (ISM) and is an important tracer of star formation. Recent velocity-resolved studies with Herschel/HIFI and SOFIA/GREAT showed that the [CII] line can constrain the properties of the ISM phases in star-forming regions. The [CII] line as a tracer of star formation is particularly important in low-metallicity environments where CO emission is weak because of the presence of large amounts of CO-dark gas. The nearby irregular dwarf galaxy NGC 4214 offers an excellent opportunity to study an actively star-forming ISM at low metallicity. We analyzed the spectrally resolved [CII] line profiles in three distinct regions at different evolutionary stages of NGC 4214 with respect to ancillary HI and CO data in order to study the origin of the [CII] line. We used SOFIA/GREAT [CII] 158 um observations, HI data from THINGS, and CO(2-1) data from HERACLES to decompose the spectrally resolved [CII] line profiles into componen...

  20. HI Imaging Observations of Superthin Galaxies. II. IC2233 and the Blue Compact Dwarf NGC2537

    CERN Document Server

    Matthews, Lynn D

    2007-01-01

    We have used the VLA to image the HI 21-cm line emission in the edge-on Sd galaxy IC2233 and the blue compact dwarf NGC2537. We also present new optical B,R, and H alpha imaging of IC2233 obtained with the WIYN telescope. Despite evidence of localized massive star formation, IC2233 has a low surface brightness disk with a low global star formation rate (~0.05 M_sun/yr), and no significant 21-cm radio continuum emission. The HI and ionized gas disks of IC2233 are clumpy and vertically distended, with scale heights comparable to the young stars. Both the stellar and HI disks of IC2233 appear flared, and we also find a vertically extended, rotationally anomalous HI component extending to z~2.4 kpc. The HI disk exhibits a mild lopsidedness as well as a global corrugation pattern with a period of ~7 kpc and an amplitude of ~150 pc. To our knowledge, this is the first time corrugations of the gas disk have been reported in an external galaxy; these undulations may be linked to bending instabilities or to underlying...

  1. A state-of-the-art analysis of the dwarf irregular galaxy NGC 6822

    Science.gov (United States)

    Fusco, F.; Buonanno, R.; Hidalgo, S. L.; Aparicio, A.; Pietrinferni, A.; Bono, G.; Monelli, M.; Cassisi, S.

    2014-12-01

    We present a detailed photometric study of the dwarf irregular galaxy NGC 6822 aimed at investigating the properties of its stellar populations and, in particular, the presence of stellar radial gradients. Our goal is to analyse the stellar populations in six fields, which cover the whole bar of this dwarf galaxy. We derived the quantitative star formation history (SFH) of the six fields using the IAC method, involving IAC-pop/MinnIAC codes. The solutions we derived show an enhanced star formation rate (SFR) in Fields 1 and 3 during the past 500 Myr. The SFRs of the other fields are almost extinguished at very recent epochs and. We study the radial gradients of the SFR and consider the total mass converted into stars in two time intervals (between 0 and 0.5 Gyr ago and between 0.5 and 13.5 Gyr ago). We find that the scale lengths of the young and intermediate-to-old populations are perfectly compatible, with the exception of the young populations in Fields 1 and 3. The recent SF in these two fields is greater than in the other ones. This might be an indication that in these two fields we are sampling incipient spiral arms. Further evidence and new observations are required to prove this hypothesis. In addition, we derived the age-metallicity relations. As expected, the metallicity increases with time for all of the fields. We do not observe any radial gradient in the metallicity. Based on observations collected with the ACS on board the NASA/ESA HST.The photometric catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A26

  2. Pre-existing dwarfs, tidal knots and a tidal dwarf galaxy: an unbiased HI study of the gas-rich interacting galaxy group NGC 3166/9

    CERN Document Server

    Lee-Waddell, Karen; Haynes, Martha P; Stierwalt, Sabrina; Chengalur, Jayaram; Chandra, Poonam; Giovanelli, Riccardo

    2012-01-01

    We present Arecibo Legacy Fast ALFA (ALFALFA) and follow-up Giant Metrewave Radio Telescope (GMRT) HI observations of the gas-rich interacting group NGC 3166/9. The sensitive ALFALFA data provide a complete census of HI-bearing systems in the group while the high-resolution GMRT data elucidate their origin, enabling one of the first unbiased physical studies of gas-rich dwarf companions and the subsequent identification of second generation, tidal dwarf galaxies in a nearby group. The ALFALFA maps reveal an extended HI envelope around the NGC 3166/9 group core, which we mosaic at higher resolution using six GMRT pointings spanning ~1 square degree. A thorough search of the GMRT datacube reveals eight low-mass objects with gas masses ranging from 4x10^7 to 3x10^8 M_sol and total dynamical masses up to 1.4x10^9 M_sol. A comparison of the HI fluxes measured from the GMRT data to those measured in the ALFALFA data suggests that a significant fraction (~60%) of the HI is smoothly distributed on scales greater than...

  3. Inflows and Outflows in the Dwarf Starburst Galaxy NGC 5253: High-Resolution HI Observations

    CERN Document Server

    Kobulnicky, Henry A

    2007-01-01

    VLA and Parkes 64 m radiotelescope 21-cm observations of the starburst dwarf galaxy NGC 5253 reveal a multi-component non-axisymmetric HI distribution. The component associated with the stellar body shows evidence for a small amount of rotational support aligned with the major axis, in agreement with optically measured kinematics and consistent with the small galaxian mass. Approximately 20-30% of the HI emission is associated with a second component, an HI "plume" extending along the optical minor axis to the southeast. We consider outflow, inflow, and tidal origins for this feature. Outflow appears improbable, inflow is a possibility, and tidal debris is most consistent with the observations. These observations also reveal a filamentary third component that includes an 800 pc diameter HI shell or bubble to the west of the nucleus, coinciding with an Halpha shell. The mass of HI in the shell may be as large as ~4x10^6 Msun. This large mass, coupled with the lack of expansion signatures in the neutral and ion...

  4. Planetary nebulae: the universal mass-metallicity relation for Local Group dwarf galaxies and the chemistry of NGC 205

    CERN Document Server

    Gonçalves, D R; Teodorescu, Ana M; Carneiro, Carolina M

    2014-01-01

    Here we study 16 planetary nebulae (PNe) in the dwarf irregular galaxy NGC 205 by using GMOS@Gemini spectra to derive their physical and chemical parameters. The chemical patterns and evolutionary tracks for 14 of our PNe suggest that there are no type I PNe among them. These PNe have an average oxygen abundance of 12+log(O/H)=8.08$\\pm$0.28, progenitor masses of 2-2.5M$_{\\odot}$ and thus were born ~1.0-1.7Gyr ago. Our results are in good agreement with previous PN studies in NGC 205. The present 12+log(O/H) is combined with our previous works and with the literature to study the PN metallicity trends of the Local Group (LG) dwarf galaxies, in an effort to establish the PN luminosity- and mass-metallicity relations (LZR and MZR) for the LG dwarf irregulars (dIrrs) and dwarf spheroidals (dSphs). Previous attempts to obtain such relations failed to provide correct conclusions because were based on limited samples (Richer & McCall 1995; Gon\\c{c}calves et al. 2007). As far as we are able to compare stellar wit...

  5. Theoretical determination of HI vertical scale heights in the dwarf galaxies: DDO 154, HoII, IC2574 & NGC2366

    CERN Document Server

    Banerjee, Arunima; Brinks, Elias; Bagetakos, Ioannis

    2011-01-01

    In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of {H\\,{\\sc i}} vertical scale heights. This is done for a group of four dwarf galaxies (DDO\\,154, Ho\\,II, IC\\,2574 and NGC\\,2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find tha...

  6. Chandra & XMM-Newton Observations of NGC5253. Analysis of the X-ray Emission from a Dwarf Starburst Galaxy

    CERN Document Server

    Summers, L K; Strickland, D K; Heckman, T M; Summers, Lesley K.; Stevens, Ian R.; Strickland, David K.; Heckman, Timothy M.

    2004-01-01

    We present Chandra and XMM-Newton X-ray data of NGC5253, a local starbursting dwarf elliptical galaxy, in the early stages of a starburst episode. Contributions to the X-ray emission come from discrete point sources and extended diffuse emission, in the form of what appear to be multiple superbubbles, and smaller bubbles probably associated with individual star clusters. Chandra detects 17 sources within the optical extent of NGC5253 down to a completeness level corresponding to a luminosity of 1.5E37 erg/s.The slope of the point source X-ray luminosity function is -0.54, similar to that of other nearby dwarf starburst galaxies. Several different types of source are detected within the galaxy, including X-ray binaries and the emission associated with star-clusters. Comparison of the diffuse X-ray emission with the observed Halpha emission shows similarities in their extent. The best spectral fit to the diffuse emission is obtained with an absorbed, two temperature model giving temperatures for the two gas com...

  7. Chemical behavior of the Dwarf Irregular Galaxy NGC 6822. Its PN and HII region abundances

    CERN Document Server

    Hernandez-Martinez, Liliana; Carigi, Leticia; Garcia-Rojas, Jorge

    2009-01-01

    We aim to derive the chemical behavior of a significant sample of PNe and HII regions in the irregular galaxy NGC 6822 The selected objects are distributed in different zones of the galaxy. Due to the faintness of PNe and HII regions in NGC 6822, to gather spectroscopic data with large telescopes is necessary. We obtained a well suited sample of spectra by employing VLT-FORS 2 and Gemini-GMOS spectrographs. Ionic and total abundances are calculated for the objects where electron temperatures can be determined through the detection of [OIII] \\lambda 4363 or/and [NII] \\lambda 5755 lines. A "simple" chemical evolution model has been developed and the observed data are used to compute a model for NGC 6822 in order to infer a preliminary chemical history in this galaxy. Confident determinations of He, O, N, Ne, S and Ar abundances were derived for a sample of 11 PNe and one HII region. We confirm that the present ISM is chemically homogeneous, at least in the central 2 kpc of the galaxy, showing a value 12+log O/H...

  8. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf Spheroidal galaxy?

    CERN Document Server

    Sbordone, L; Bidin, C Moni; Bonifacio, P; Villanova, S; Bellazzini, M; Ibata, R; Chiba, M; Geisler, D; Caffau, E; Duffau, S

    2015-01-01

    The tidal disruption of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, the Sgr dSph is suspected to have lost a number of globular clusters (GC). Many Galactic GC are suspected to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed due to chemical similarities, others exist whose chemical composition has never been investigated. NGC 5053 and NGC 5634 are two among these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. We analize high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of "unassociated" MW halo globulars, and of the metal poor Sgr dSph main body population...

  9. Globular cluster clustering and tidal features around ultra compact dwarf galaxies in the halo of NGC1399

    CERN Document Server

    Voggel, Karina; Richtler, Tom

    2015-01-01

    We present a novel approach to constrain the formation channels of Ultra-Compact Dwarf Galaxies (UCDs). This inhomogeneous class of objects of remnants of tidally stripped dwarf elliptical galaxies and high mass globular clusters. We use three methods to unravel their nature: 1) we analysed their surface brightness profiles, 2) we carried out a direct search for tidal features around UCDs and 3) we compared the spatial distribution of GCs and UCDs in the halo of their host galaxy. Based on FORS2 observations, we have studied the detailed structural composition of a large sample of 97 UCDs in the halo of NGC1399, the central galaxy of the Fornax cluster, by analysing theirsurface brightness profiles. We derived the structural parameters of 13 extended UCDs modelling them with a single Sersic function and decomposing them into composite King and Sersic profiles. We find evidence for faint stellar envelopes at mu=~26 mag\\arcsec^-2 surrounding the UCDs up to an extension of 90pc in radius. We also show new eviden...

  10. First results from the MADCASH Survey: A Faint Dwarf Galaxy Companion to the Low Mass Spiral Galaxy NGC 2403 at 3.2 Mpc

    CERN Document Server

    Carlin, Jeffrey L; Price, Paul; Willman, Beth; Karunakaran, Ananthan; Spekkens, Kristine; Bell, Eric F; Brodie, Jean P; Crnojević, Denija; Forbes, Duncan A; Hargis, Jonathan; Kirby, Evan; Lupton, Robert; Peter, Annika H G; Romanowsky, Aaron J; Strader, Jay

    2016-01-01

    We report the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep imaging with Subaru/Hyper Suprime-Cam. MADCASH J074238+652501-dw lies $\\sim$35 kpc in projection from NGC 2403, a dwarf spiral galaxy at $D$$\\approx$3.2 Mpc. This new dwarf has $M_{g} = -7.4\\pm0.4$ and a half-light radius of $168\\pm70$ pc, at the calculated distance of $3.39\\pm0.41$ Mpc. The color-magnitude diagram reveals no evidence of young stellar populations, suggesting that MADCASH J074238+652501-dw is an old, metal-poor dwarf similar to low luminosity dwarfs in the Local Group. The lack of either detected HI gas ($M_{\\rm HI}/L_{V} < 0.69 M_\\odot/L_\\odot$, based on Green Bank Telescope observations) or $GALEX$ NUV/FUV flux enhancement is consistent with a lack of young stars. This is the first result from the MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey, which is conducting a census of the stellar substructure and faint satellites in the halos...

  11. First Results from the MADCASH Survey: A Faint Dwarf Galaxy Companion to the Low-mass Spiral Galaxy NGC 2403 at 3.2 Mpc

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Price, Paul; Willman, Beth; Karunakaran, Ananthan; Spekkens, Kristine; Bell, Eric F.; Brodie, Jean P.; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Lupton, Robert; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay

    2016-09-01

    We report the discovery of the faintest known dwarf galaxy satellite of a Large Magellanic Cloud (LMC) stellar-mass host beyond the Local Group (LG), based on deep imaging with Subaru/Hyper Suprime-Cam. Magellanic Analog Dwarf Companions And Stellar Halos (MADCASH) J074238+652501-dw lies ˜35 kpc in projection from NGC 2403, a dwarf spiral galaxy at D ≈ 3.2 Mpc. This new dwarf has {M}g=-7.4+/- 0.4 and a half-light radius of 168 ± 70 pc, at the calculated distance of 3.39 ± 0.41 Mpc. The color-magnitude diagram reveals no evidence of young stellar populations, suggesting that MADCASH J074238+652501-dw is an old, metal-poor dwarf similar to low-luminosity dwarfs in the LG. The lack of either detected HI gas ({M}{HI}/{L}V\\lt 0.69 {M}⊙ /{L}⊙ , based on Green Bank Telescope observations) or GALEX NUV/FUV flux enhancement is consistent with a lack of young stars. This is the first result from the MADCASH survey, which is conducting a census of the stellar substructure and faint satellites in the halos of Local Volume LMC analogs via resolved stellar populations. Models predict a total of ˜4-10 satellites at least as massive as MADCASH J074238+652501-dw around a host with the mass of NGC 2403, with 2-3 within our field of view, slightly more than the one such satellite observed in our footprint. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  12. Herschel and JCMT observations of the early-type dwarf galaxy NGC 205

    CERN Document Server

    De Looze, I; Parkin, T J; Wilson, C D; Bendo, G J; Boquien, M; Boselli, A; Cooray, A; Cormier, D; Fritz, J; Galliano, F; Gear, W; Gentile, G; Lebouteillier, V; Madden, S C; Roussel, H; Sauvage, M; Smith, M W L; Spinoglio, L; Verstappen, J; Young, L

    2012-01-01

    We present Herschel dust continuum, James Clerk Maxwell Telescope CO(3-2) observations and a search for [CII] 158 micron and [OI] 63 micron spectral line emission for the brightest early-type dwarf satellite of Andromeda, NGC 205. While direct gas measurements (Mgas ~ 1.5e+6 Msun, HI + CO(1-0)) have proven to be inconsistent with theoretical predictions of the current gas reservoir in NGC 205 (> 1e+7 Msun), we revise the missing interstellar medium mass problem based on new gas mass estimates (CO(3-2), [CII], [OI]) and indirect measurements of the interstellar medium content through dust continuum emission. Based on Herschel observations, covering a wide wavelength range from 70 to 500 micron, we are able to probe the entire dust content in NGC 205 (Mdust ~ 1.1-1.8e+4 Msun at Tdust ~ 18-22 K) and rule out the presence of a massive cold dust component (Mdust ~ 5e+5 Msun, Tdust ~ 12 K), which was suggested based on millimeter observations from the inner 18.4 arcsec. Assuming a reasonable gas-to-dust ratio of ~ ...

  13. Auto-consistent metallicity and star formation history of the nearest blue compact dwarf galaxy NGC 6789

    CERN Document Server

    García-Benito, Rubén

    2012-01-01

    We present a detailed auto-consistent study of the nearest blue compact dwarf galaxy NGC 6789 by means of optical and UV archive photometry data and optical long-slit ISIS-WHT spectroscopy observations of the five brightest star-forming knots. The analysis of the spectra in all knots allowed the derivation of ionic chemical abundances of oxygen, nitrogen, sulphur, argon and neon using measures of both the high- and low-excitation electron temperatures, leading to the conclusion that NGC 6789 is chemically homogeneous with low values of the abundance of oxygen in the range 12+log(O/H) = 7.80-7.93, but presenting at the same time higher values of the nitrogen-to-oxygen ratio than expected for its metal regime. We used archival HST/WFPC2 F555W and F814W observations of NGC 6789 to perform a photometric study of the colour-magnitude diagram (CMD) of the resolved stellar populations and derive its star formation history (SFH), which is compatible with the presence of different young and old stellar populations who...

  14. High-Resolution Ultraviolet Spectra of the Dwarf Seyfert 1 Galaxy NGC 4395: Evidence for Intrinsic Absorption

    CERN Document Server

    Crenshaw, D M; Gabel, J R; Schmitt, H R; Filippenko, A V; Ho, L C; Shields, J C; Turner, T J

    2004-01-01

    We present ultraviolet spectra of the dwarf Seyfert 1 nucleus of NGC 4395, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope's Space Telescope Imaging Spectrograph at velocity resolutions of 7 to 15 km/sec. We confirm our earlier claim of C IV absorption in low-resolution UV spectra and detect a number of other absorption lines with lower ionization potentials. In addition to the Galactic lines, we identify two kinematic components of absorption that are likely to be intrinsic to NGC 4395. We consider possible origins of the absorption, including the interstellar medium (ISM) of NGC 4395, the narrow-line region (NLR), outflowing UV absorbers, and X-ray ``warm absorbers.'' Component 1, at a radial velocity of -770 km/sec with respect to the nucleus, is only identified in the C IV 1548.2 line. It most likely represents an outflowing UV absorber, similar to those seen in a majority of Seyfert 1 galaxies, although additional observations are needed to confirm the reali...

  15. Rotational Dynamics and Star Formation in the Nearby Dwarf Galaxy NGC 5238

    CERN Document Server

    Cannon, John M; Teich, Yaron G; Ball, Catherine; Banovetz, John; Brock, Annika; Eisner, Brian A; Fitzgibbon, Kathleen; Miazzo, Masao; Nizami, Asra; Reilly, Bridget; Ruvolo, Elizabeth; Singer, Quinton

    2016-01-01

    We present new HI spectral line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array (VLA). Located at a distance of 4.51+/-0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread H-alpha and UV continuum emission. The source is included in many ongoing and recent nearby galaxy surveys, but until this work the spatially resolved qualities of its neutral interstellar medium have remained unstudied. Our HI images resolve the disk on physical scales of ~400 pc, allowing us to undertake a detailed comparative study of the gaseous and stellar components. The HI disk is asymmetric in the outer regions, and the areas of high HI mass surface density display a crescent-shaped morphology that is slightly offset from the center of the stellar populations. The HI column density exceeds 10^21 cm^-2 in much of the disk. We quantify the degree of co-spatiality of dense HI gas and sites of ongoing star formation as traced by far-UV and H-alpha emission. The neutral ga...

  16. The Stellar and Gas Kinematics of the LITTLE THINGS Dwarf Irregular Galaxy NGC 1569

    CERN Document Server

    Johnson, Megan; Oh, Se-Heon; Zhang, Hong-Xin; Elmegreen, Bruce; Brinks, Elias; Tollerud, Erik; Herrmann, Kimberly

    2012-01-01

    In order to understand the formation and evolution of dIm galaxies, one needs to understand their three-dimensional structure. We present measurements of the stellar velocity dispersion in NGC 1569, a nearby post-starburst dIm galaxy. The stellar vertical velocity dispersion, $\\sigma_{\\rm z}$, coupled with the maximum rotational velocity derived from \\ion{H}{1} observations, $V_{\\rm max}$, gives a measure of how kinematically hot the galaxy is, and, therefore, indicates its structure. We conclude that the stars in NGC 1569 are in a thick disk with a $V_{\\rm max} / \\sigma_{\\rm z}$ = 2.4 $\\pm$ 0.7. In addition to the structure, we analyze the ionized gas kinematics from \\ion{O}{3} observations along the morphological major axis. These data show evidence for outflow from the inner starburst region and a potential expanding shell near supermassive star cluster (SSC) A. When compared to the stellar kinematics, the velocity dispersion of the stars increase in the region of SSC A supporting the hypothesis of an expa...

  17. A dwarf galaxy's transformation and a massive galaxy's edge: autopsy of kill and killer in NGC 1097

    CERN Document Server

    Amorisco, N C; Schedler, J

    2015-01-01

    (abridged) We present a dynamical analysis of the extended stellar stream encircling NGC 1097. Within a statistical framework, we model its surface brightness using mock streams as in Amorisco (2015) and deep imaging data from the CHART32 telescope (Stellar Tidal Stream Survey). We reconstruct the post-infall evolution of the progenitor, which has experienced 3 pericentric passages and lost more than 2 orders of magnitude in mass. At infall, $5.4\\pm0.6$ Gyr ago, the progenitor was a disky dwarf with mass of $\\log_{10}[m(<3.4\\pm1 {\\rm kpc})/ M_\\odot]=10.35\\pm0.25$. We illustrate how the 90$^\\circ$ turn in the stream, identifying the `dog leg', is the signature of the progenitor's prograde rotation. Today, the remnant is a nucleated dwarf, with a LOS velocity of $v_{\\rm p, los}^{\\rm obs}=-30\\pm 30$ kms$^{-1}$, and a luminosity of $3.3\\times 10^7 L_{V,\\odot}$ (Galianni et al. 2010). Our independent analysis predicts $v_{\\rm p, los}=-51^{-17}_{+14}$ kms$^{-1}$, and measures $\\log_{10}(m/ M_\\odot)=7.4^{+0.6}_{-...

  18. Disentangling the ISM phases of the dwarf galaxy NGC 4214 using [C ii] SOFIA/GREAT observations

    Science.gov (United States)

    Fahrion, K.; Cormier, D.; Bigiel, F.; Hony, S.; Abel, N. P.; Cigan, P.; Csengeri, T.; Graf, U. U.; Lebouteiller, V.; Madden, S. C.; Wu, R.; Young, L.

    2017-02-01

    Context. The [C ii] 158 μm fine structure line is one of the dominant cooling lines in the interstellar medium (ISM) and is an important tracer of star formation. Recent velocity-resolved studies with Herschel/HIFI and SOFIA/GREAT showed that the [C ii] line can constrain the properties of the ISM phases in star-forming regions. The [C ii] line as a tracer of star formation is particularly important in low-metallicity environments where CO emission is weak because of the presence of large amounts of CO-dark gas. Aims: The nearby irregular dwarf galaxy NGC 4214 offers an excellent opportunity to study an actively star-forming ISM at low metallicity. We analyzed the spectrally resolved [C ii] line profiles in three distinct regions at different evolutionary stages of NGC 4214 with respect to ancillary H i and CO data in order to study the origin of the [C ii] line. Methods: We used SOFIA/GREAT [C ii] 158 μm observations, H i data from THINGS, and CO(2 → 1) data from HERACLES to decompose the spectrally resolved [C ii] line profiles into components associated with neutral atomic and molecular gas. We use this decomposition to infer gas masses traced by [C ii] under different ISM conditions. Results: Averaged over all regions, we associate about 46% of the [C ii] emission with the H i emission. However, we can assign only 9% of the total [C ii] emission to the cold neutral medium (CNM). We found that about 79% of the total molecular hydrogen mass is not traced by CO emission. Conclusions: On average, the fraction of CO-dark gas dominates the molecular gas mass budget. The fraction seems to depend on the evolutionary stage of the regions: it is highest in the region covering a super star cluster in NGC 4214, while it is lower in a more compact, more metal-rich region. Reduced SOFIA/GREAT data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A9

  19. Spectroscopic Study of Extended Star Clusters in Dwarf Galaxy NGC 6822

    CERN Document Server

    Hwang, Narae; Lee, Myung Gyoon; Lim, Sungsoon; Hodge, Paul W; Kim, Sang Chul; Miller, Bryan; Weisz, Daniel

    2014-01-01

    We present a spectroscopic study of the four extended star clusters (ESCs) in NGC 6822 based on the data obtained with Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South 8.1m telescope. Their radial velocities derived from the spectra range from $-61.2 \\pm 20.4$ km s$^{-1}$ (for C1) to $-115.34 \\pm 57.9$ km s$^{-1}$ (for C4) and, unlike the intermediate age carbon stars, they do not display any sign of systematic rotation around NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old ($\\geq 8$ Gyr) and metal poor ([Fe/H]$\\lesssim -1.5$). NGC 6822 is found to have both metal poor ([Fe/H]$\\approx -2.0$) and metal rich ([Fe/H]$\\approx -0.9$) star clusters within 15 arcmin (2 kpc) from the center, while only metal poor clusters are observed in the outer halo with $r \\geq 20$ arcmin (2.6 kpc). The kinematics, old ages, and low metallicities of ESCs suggest that ESCs may have accreted into the halo of NGC 6822. Based on the velocity distribution of ESCs, we have deter...

  20. FISICA observations of the starburst galaxy, NGC 1569

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Raines, S. N.; Gruel, N.; Elston, R.; Guzman, R.; Julian, J.; Boreman, G.; Glenn, P. E.; Hull-Allen, C. G.; Hoffman, J.; Rodgers, M.; Thompson, K.; Flint, S.; Comstock, L.; Myrick, B.

    2006-06-01

    Using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) we obtained observations of the dwarf starburst galaxy NGC 1569. We present our JH band spectra, particularly noting the existence of extended emission in Paschen β and He I.

  1. Efficient star cluster formation in the core of a galaxy cluster: The dwarf irregular NGC 1427A in Fornax

    CERN Document Server

    Mora, Marcelo D; Puzia, Thomas H

    2014-01-01

    Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dIrr galaxy NGC 1427A, presently infalling towards the core of the Fornax galaxy cluster, offers a unique opportunity to study those processes in a level of detail not possible to achieve for galaxies at higher redshits. Using HST/ACS and auxiliary VLT/FORS ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ~4x10^6 yr and stellar masses from a few thousand...

  2. Dwarf-Galaxy Cosmology

    CERN Document Server

    Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey

    2010-01-01

    Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.

  3. UV Interstellar Absorption Lines towards the Starburst Dwarf Galaxy NGC 1705

    CERN Document Server

    Sahu, M S

    1997-01-01

    Archival Goddard High Resolution Spectrograph low-resolution spectra of NGC 1705, with wavelength ranges 1170.3 to 1461.7 A and 1453.5 to 1740.1 A and a velocity resolution of about 100 km\\s, have been used to derive the velocity structure and equivalent widths of the absorption lines of Si II 1190.42, 1260.42, 1304.37 and 1526.71 A, S II 1253 , Al II 1670.79 Aand Fe II 1608.45 A in this sightline. Three relatively narrow absorption components are seen at LSR velocities --20 km/s, 260 km/sand 540 km/s. Arguments are presented to show these absorption features are interstellar rather than stellar in origin based on a comparison with the C III 1175.7 A absorption feature. We identify the --20 km/s component with Milky Way disk/halo gas and the 260 km/s component with an isolated high-velocity cloud HVC 487. This small HVC is located about 10 degrees from the H I gas which envelops the Magellanic Clouds and the Magellanic Stream (MS). The (Si/H) ratio for this HVC is > 0.6 (Si/H)solar which together with velocit...

  4. Investigating Dwarf Spiral Galaxies

    Science.gov (United States)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  5. Non-axisymmetric structure in the satellite dwarf galaxy NGC 2976: Implications for its dark/bright mass distribution and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Octavio; Hernandez-Toledo, Hector; Cano, Mariana; Pichardo, Bárbara [Instituto de Astronomía, Universidad Nacional Autonóma de Mexico, A.P. 70-264, 04510 México, D.F. (Mexico); Puerari, Ivanio [Instituto Nacional de Astrofísica Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Sta. Maria Tonantzintla, Puebla (Mexico); Buta, Ronald [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Groess, Robert, E-mail: octavio@astro.unam.mx [School of Computational and Applied Mathematics, University of Witwatersrand, Private Bag 3, WITS 2050 (South Africa)

    2014-02-01

    We present the result of an extensive search for non-axisymmetric structures in the dwarf satellite galaxy of M81, NGC 2976, using multiwavelength archival observations. The galaxy is known to present kinematic evidence for a bisymmetric distortion; however, the stellar bar presence is controversial. This controversy motivated the possible interpretation of NGC 2976 as presenting an elliptical disk triggered by a prolate dark matter halo. We applied diagnostics used in spiral galaxies in order to detect stellar bars or spiral arms. The m = 2 Fourier phase has a jump around 60 arcsec, consistent with a central bar and bisymmetric arms. The CO, 3.6 μm surface brightness, and the dust lanes are consistent with a gas-rich central bar and possibly with gaseous spiral arms. The bar-like feature is offset close to 20° from the disk position angle, in agreement with kinematic estimations. The kinematic jumps related to the dust lanes suggest that the bar perturbation in the disk kinematics is non-negligible and the reported non-circular motions, the central gas excess, and the nuclear X-ray source (active galactic nucleus/starburst) might be produced by the central bar. Smoothed particle hydrodynamics simulations of disks inside triaxial dark halos suggest that the two symmetric spots at 130 arcsec and the narrow arms may be produced by gas at turning points in an elliptical disk, or, alternatively, the potential ellipticity can be produced by a tidally induced strong stellar bar/arms; in both cases the rotation curve interpretation is, importantly, biased. The M81 group is a natural candidate to trigger the bisymmetric distortion and the related evolution as suggested by the H I tidal bridge detected by Chynoweth et al. We conclude that both mechanisms, the gas-rich bar and spiral arms triggered by the environment (tidal stirring) and primordial halo triaxiality, can explain most of the NGC 2976 non-circular motions, mass redistribution, and nuclear activity

  6. Ultra-Compact Dwarfs around NGC 3268

    CERN Document Server

    Caso, Juan Pablo; Richtler, Tom; Calderón, Juan Pablo; Castelli, Analía V Smith

    2014-01-01

    We present radial velocities (from Gemini/GMOS) of the second sample of ultra-compact dwarfs (UCDs) and bright globular clusters (GCs) in the Antlia cluster. Twenty-three objects are located around the giant elliptical NGC 3268, and one is close to the fainter lenticular NGC 3273. Together with previously found UCDs around NGC 3258 a total of 35 UCDs and bright GCs has been now identified in the Antlia cluster. Their colours and magnitudes are compared with those of the nuclei of dE,N galaxies already confirmed as Antlia members. For a subsample that lie on ACS images and are brighter than M_V = -9 mag, the effective radii (R_eff) have been measured, the maximum radius being approximately 10 pc. In addition to the radial velocity sample, we find 10 objects in the magnitude range corresponding to GCs but with 10 < R_eff < 17 pc, resembling the so-called `extended clusters'. By number and magnitude, the new UCDs fit to the GC luminosity function, supporting their interpretation as bright GCs. Additionally...

  7. Optical observation of supernova remnant in elliptical galaxy NGC 185

    Science.gov (United States)

    Vučetić, M.; Arbutina, B.; Pavlovic, M. Z.; Ciprijanovic, A.; Urosevic, D.; Petrov, N.; Onić, D.; Trcka, A.

    2016-06-01

    In this paper we discuss the previously known optical supernova remnant (SNR) in NGC 185 galaxy, a dwarf elliptical companion of the Andromeda galaxy, in order to gain more information about its properties and evolutionary status. To this end, we observed a central portion of NGC 185, through the narrowband Hα and [SII]} filters, on a 2m RCC-telescope at National astronomical observatory Rozhen, Bulgaria. Also, we performed MHD simulations using the Pluto code, for the case of low environmental density and high pressure, in order to discuss evolution of a SNR in a gas poor dwarf galaxy.

  8. New Low Surface Brightness Dwarf Galaxies Detected Around Nearby Spirals

    CERN Document Server

    Karachentsev, I D; Zilch, T; Blauensteiner, M; Elvov, M; Hochleitner, P; Hubl, B; Kerschhuber, G; Küppers, S; Neyer, F; Pölzl, R; Remmel, P; Schneider, O; Sparenberg, R; Trulson, U; Willems, G; Ziegler, H

    2015-01-01

    We conduct a survey of low surface brightness (LSB) satellite galaxies around the Local Volume massive spirals using long exposures with small amateur telescopes. We identified 27 low and very low surface brightness objects around the galaxies NGC,672, 891, 1156, 2683, 3344, 4258, 4618, 4631, and 5457 situated within 10 Mpc from us, and found nothing new around NGC,2903, 3239, 4214, and 5585. Assuming that the dwarf candidates are the satellites of the neighboring luminous galaxies, their absolute magnitudes are in the range of -8.6 > M_B > -13.3, their effective diameters are 0.4-4.7 kpc, and the average surface brightness is 26.1 mag/sq arcsec. The mean linear projected separation of the satellite candidates from the host galaxies is 73 kpc. Our spectroscopic observations of two LSB dwarfs with the Russian 6-meter telescope confirm their physical connection to the host galaxies NGC,891 and NGC,2683.

  9. Physical Properties of Molecular Clouds at 2 pc Resolution in the Low-metallicity Dwarf Galaxy NGC 6822 and the Milky Way

    Science.gov (United States)

    Schruba, Andreas; Leroy, Adam K.; Kruijssen, J. M. Diederik; Bigiel, Frank; Bolatto, Alberto D.; de Blok, W. J. G.; Tacconi, Linda; van Dishoeck, Ewine F.; Walter, Fabian

    2017-02-01

    We present the Atacama Large Millimeter/submillimeter Array survey of CO(2–1) emission from the 1/5 solar metallicity, Local Group dwarf galaxy NGC 6822. We achieve high (0\\buildrel{\\prime\\prime}\\over{.} 9≈ 2 pc) spatial resolution while covering a large area: four 250 pc × 250 pc regions that encompass ∼ 2/3 of NGC 6822's star formation. In these regions, we resolve ∼ 150 compact CO clumps that have small radii (∼2–3 pc), narrow line width (∼ 1 km s‑1), and low filling factor across the galaxy. This is consistent with other recent studies of low-metallicity galaxies, but here shown with a 15× larger sample. At parsec scales, CO emission correlates with 8 μ {{m}} emission better than with 24 μ {{m}} emission and anticorrelates with Hα, so that polycyclic aromatic hydrocarbon emission may be an effective tracer of molecular gas at low metallicity. The properties of the CO clumps resemble those of similar-size structures in Galactic clouds except of slightly lower surface brightness and with CO-to-H2 ratio ∼1–2× the Galactic value. The clumps exist inside larger atomic–molecular complexes with masses typical for giant molecular clouds. Using dust to trace H2 for the entire complex, we find the CO-to-H2 ratio to be ∼ 20{--}25× the Galactic value, but with strong dependence on spatial scale and variations between complexes that may track their evolutionary state. The H2-to-H i ratio is low globally and only mildly above unity within the complexes. The ratio of star formation rate to H2 is ∼ 3{--}5× higher in the complexes than in massive disk galaxies, but after accounting for the bias from targeting star-forming regions, we conclude that the global molecular gas depletion time may be as long as in massive disk galaxies.

  10. The Low-luminosity Galaxy Population in the NGC 5044 Group

    Science.gov (United States)

    Cellone, S. A.; Buzzoni, A.

    Detailed surface photometry for 79 (mostly dwarf) galaxies in the NGC5044 Group area is analysed, revealing the existence of different morphologies among objects originally classified as early-type dwarfs. Particularly, a significant fraction of bright dwarf "ellipticals" show a distinct bulge+disc structure; we thus re-classify these objects as dwarf lenticulars (dS0).

  11. A GMOS-N IFU study of the central H ii region in the blue compact dwarf galaxy NGC 4449: kinematics, nebular metallicity and star formation

    Science.gov (United States)

    Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.

    2017-10-01

    We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H ii region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H ii region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H ii region metallicity derived here with those of H ii regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.

  12. Accretion phenomena in nearby star-forming dwarf galaxies

    Science.gov (United States)

    Annibali, F.; Tosi, M.; Aloisi, A.; Bellazzini, M.; Buzzoni, A.; Cignoni, M.; Ciotti, L.; Cusano, F.; Nipoti, C.; Sacchi, E.; Paris, D.; Romano, D.

    2017-03-01

    We present two pilot studies for the search and characterization of accretion events in star-forming dwarf galaxies. Our strategy consists of two complementary approaches: i) the direct search for stellar substructures around dwarf galaxies through deep wide-field imaging, and ii) the characterization of the chemical properties in these systems up to large galacto-centric distances. We show our results for two star-forming dwarf galaxies, the starburst irregular NGC 4449, and the extremely metal-poor dwarf DDO 68.

  13. Dwarf spheroidal galaxies keystones of galaxy evolution

    CERN Document Server

    Gallagher, S C; Gallagher, S; Wyse, F G

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  14. Supermassive black holes in the Sbc spiral galaxies NGC 3310, NGC 4303 and NGC 4258

    CERN Document Server

    Pastorini, G; Capetti, A; Axon, D J; Alonso-Herrero, A; Atkinson, J; Batcheldor, D; Carollo, C M; Collett, J; Dressel, L; Hughes, M A; Macchetto, D; Maciejewski, W; Sparks, W; van der Marel, R; Pastorini, Guia; Marconi, Alessandro; Capetti, Alessandro; Axon, David J.; Alonso-Herrero, Almudena; Atkinson, John; Batcheldor, Dan; Collett, James; Dressel, Linda; Hughes, Mark A.; Macchetto, Duccio; Maciejewski, Witold; Sparks, William; Marel, Roeland van der

    2007-01-01

    We present new Space Telescope Imaging Spectrograph (STIS) observations of three spiral galaxies, NGC 4303, NGC 3310 and NGC 4258. The bright optical emission lines H$\\alpha$ $\\lambda$ $6564 \\AA$, [NII] $\\lambda

  15. Submillimeter Observations of Low Metallicity Galaxy NGC 4214

    CERN Document Server

    Kiuchi, G; Sawicki, M; Allen, M; Kiuchi, Gaku; Ohta, Kouji; Sawicki, Marcin; Allen, Michael

    2004-01-01

    Results of submillimeter (450 micron and 850 micron) observations of a nearby dwarf irregular galaxy NGC 4214 with SCUBA on JCMT are presented. We aimed at examining the far-infrared to submillimeter spectral energy distribution (SED) and properties of dust thermal emission in a low metallicity environment by choosing NGC 4214 of which gas metallicity (log O/H + 12) is 8.34. We found that the SED is quite similar to those of IRAS bright galaxies sample (IBGS) which are local bright star-forming galaxies with metallicity comparable to the solar abundance. A dust temperature and an emissivity index for NGC 4214 obtained by a fitting to the single temperature greybody model are T_d = 35 \\pm 0.8 K and beta = 1.4 \\pm 0.1, respectively, which are typical values for IBGS. Compiling the previous studies on similar nearby dwarf irregular galaxies, we found that NGC 1569 shows similar results to those of NGC 4214, while NGC 4449 and IC 10 SE show different SEDs and low emissivity indices. There seems to be a variety of...

  16. Super Star Cluster Nebula in the Starburst Galaxy NGC 660

    Science.gov (United States)

    Naiman, J. P.; Turner, J. L.; Tsai, C.-W.; Beck, S. C.; Ho, P. T. P.

    2004-12-01

    We have mapped the starburst galaxy NGC 660 at 100mas resolution at K band (1.3 cm) with the NRAO Very Large Array. A peculiar galaxy at a distance of 13 Mpc, NGC 660 contains concentrated central star formation of power ˜ 2 x 1010 Lsun. Our 1.3 cm continuum image reveals a bright, compact source of less than 10 pc extent with a rising spectral index. We infer that this is optically thick free-free emission from a super star cluster nebula. The nebula is less than 10 pc in size, comparable in luminosity to the ``supernebula" in the dwarf galaxy, NGC 5253. We estimate that there are a few thousand O stars contained in this single young cluster. There are a number of other weaker continuum sources, either slightly smaller or more evolved clusters of similar size within the central 300 parsecs of the galaxy. This work is supported in part by the National Science Foundation.

  17. A PAndAS view of M31 dwarf elliptical satellites: NGC147 and NGC185

    CERN Document Server

    Crnojević, D; Irwin, M J; McConnachie, A W; Bernard, E J; Fardal, M A; Ibata, R A; Lewis, G F; Martin, N F; Navarro, J F; Noël, N E D; Pasetto, S

    2014-01-01

    We exploit data from the Pan-Andromeda Archaeological Survey (PAndAS) to study the extended structures of M31's dwarf elliptical companions, NGC147 and NGC185. Our wide-field, homogeneous photometry allows to construct deep colour-magnitude diagrams (CMDs) which reach down to $\\sim3$ mag below the red giant branch (RGB) tip. We trace the stellar components of the galaxies to surface brightness of $\\mu_g \\sim 32$ mag arcsec$^{-2}$ and show they have much larger extents ($\\sim5$ kpc radii) than previously recognised. While NGC185 retains a regular shape in its peripheral regions, NGC147 exhibits pronounced isophotal twisting due to the emergence of symmetric tidal tails. We fit single Sersic models to composite surface brightness profiles constructed from diffuse light and star counts and find that NGC147 has an effective radius almost 3 times that of NGC185. In both cases, the effective radii that we calculate are larger by a factor of $\\sim2$ compared to most literature values. We also calculate revised total...

  18. The Superwind Galaxy NGC 4666

    Science.gov (United States)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of

  19. Spitzer Observations of Tidal Dwarf Galaxies

    CERN Document Server

    Higdon, Sarah J U

    2007-01-01

    We present Spitzer observations of Tidal Dwarf Galaxies (TDGs) in three interacting systems: NGC 5291, Arp105 and Stephan's Quintet. The spectra show bright emission from polyaromatic hydrocarbons (PAHs), nebular lines and warm molecular hydrogen, characteristic of recent episodes of star formation. The PAH emission that falls in the IRAC 8.0 micron band leads to the TDGs having an extremely red IRAC color, with [4.5] - [8.0] > 3. The emission from PAHs is characterized by a model with mainly neutral 100-C PAH atoms.

  20. The link between mass distribution and starbursts in dwarf galaxies

    CERN Document Server

    McQuinn, Kristen B W; Skillman, Evan D; Dolphin, Andrew E; McGaugh, Stacy S; Williams, Benjamin F

    2015-01-01

    Recent studies have shown that starburst dwarf galaxies have steeply rising rotation curves in their inner parts, pointing to a close link between the intense star formation and a centrally concentrated mass distribution (baryons and dark matter). More quiescent dwarf irregulars typically have slowly rising rotation curves, although some "compact" irregulars with steep, inner rotation curves exist. We analyze archival Hubble Space Telescope images of two nearby "compact" irregular galaxies (NGC 4190 and NGC 5204), which were selected solely on the basis of their dynamical properties and their proximity. We derive their recent star-formation histories by fitting color-magnitude diagrams of resolved stellar populations, and find that the star-formation properties of both galaxies are consistent with those of known starburst dwarfs. Despite the small sample, this strongly reinforces the notion that the starburst activity is closely related to the inner shape of the potential well.

  1. Manganese in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    North, P.; Cescutti, G.; Jablonka, P.; Hill, V.; Shetrone, M.; Letarte, B.; Lemasle, B.; Venn, K. A.; Battaglia, G.; Tolstoy, E.; Irwin, M. J.; Primas, F.; Francois, P.

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other

  2. The white dwarf population of NGC 6397

    CERN Document Server

    Torres, S; Althaus, L G; Camisassa, M E

    2015-01-01

    NGC 6397 is one of the most interesting, well observed and theoretically studied globular clusters. The existing wealth of observations allows us to study the reliability of the theoretical white dwarf cooling sequences of low metallicity progenitors,to determine its age and the percentage of unresolved binaries, and to assess other important characteristics of the cluster, like the slope of the initial mass function, or the fraction of white dwarfs with hydrogen deficient atmospheres. We present a population synthesis study of the white dwarf population of NGC 6397. In particular, we study the shape of the color-magnitude diagram, and the corresponding magnitude and color distributions. We do this using an up-to-date Monte Carlo code that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases. We find a good agreement between our theoretical models and the observed data. In particular, we find that this agreement is best for those cooling sequences th...

  3. Lopsidedness in dwarf irregular galaxies

    CERN Document Server

    Heller, A B; Almoznino, E; Van Zee, L; Salzer, J J; Heller, Ana B.; Brosch, Noah; Almoznino, Elchanan; Zee, Liese van; Salzer, John J.

    2000-01-01

    We quantify the amplitude of the lopsidedness, the azimuthal angular asymmetry index, and the concentration of star forming regions, as represented by the distribution of the H$\\alpha$ emission, in a sample of 78 late-type irregular galaxies. We bin the observed galaxies in two groups representing blue compact galaxies (BCDs) and low surface brightness dwarf galaxies (LSBs). The light distribution is analysed with a novel algorithm, which allows detection of details in the light distribution pattern. We find that while the asymmetry of the underlying continuum light, representing the older stellar generations, is relatively small, the H$\\alpha$ emission is very asymmetric and is correlated in position angle with the continuum light. We test a model of random star formation over the extent of a galaxy by simulating HII regions in artificial dwarf galaxies. The implication is that random star formation over the full extent of a galaxy may be generated in LSB dwarf-irregular galaxies but not in BCD galaxies.

  4. Morphological Mutations of Dwarf Galaxies

    CERN Document Server

    Hensler, Gerhard

    2012-01-01

    Dwarf galaxies (DGs) are extremely challenging objects in extragalactic astrophysics. They are expected to originate as the first units in Cold Dark-Matter cosmology. They are the galaxy type most sensitive to environmental influences and their division into multiple types with various properties have invoked the picture of their variant morphological transformations. Detailed observations reveal characteristics which allow to deduce the evolutionary paths and to witness how the environment has affected the evolution. Here we review peculiarities of general morphological DG types and refer to processes which can deplete gas-rich irregular DGs leading to dwarf ellipticals, while gas replenishment implies an evolutionary cycling. Finally, as the less understood DG types the Milky Way satellite dwarf spheroidal galaxies are discussed in the context of transformation.

  5. Dwarf galaxies : Important clues to galaxy formation

    NARCIS (Netherlands)

    Tolstoy, E

    2003-01-01

    The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matt

  6. FINDING DWARF GALAXIES FROM THEIR TIDAL IMPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Sukanya [Physics Department, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Bigiel, Frank [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg Albert-Ueberle Str. 2 69120 Heidelberg (Germany); Chang, Philip [Physics Department, University of Wisconsin-Milwaukee, P.O. Box 413, 2200 E. Kenwood Blvd., Milwaukee, WI 53201-0413 (United States); Blitz, Leo, E-mail: schakra1@fau.edu, E-mail: chang65@uwm.edu [Astronomy Department, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2011-12-10

    We describe ongoing work on a new method that allows one to approximately determine the mass and relative position (in galactocentric radius and azimuth) of galactic companions purely from analysis of observed disturbances in gas disks. We demonstrate the validity of this method, which we call Tidal Analysis, by applying it to local spirals with known optical companions, namely M51 and NGC 1512. These galaxies span the range from having a very low mass companion ({approx}one-hundredth the mass of the primary galaxy) to a fairly massive companion ({approx}one-third the mass of the primary galaxy). This approach has broad implications for many areas of astrophysics-for the indirect detection of dark matter (or dark-matter-dominated dwarf galaxies), and for galaxy evolution in its use to decipher the dynamical impact of satellites on galactic disks. Here, we provide a proof of principle of the method by applying it to infer and quantitatively characterize optically visible galactic companions of local spirals, from the analysis of observed disturbances in outer gas disks.

  7. Dark and luminous matter in the NGC 3992 group of galaxies, II. The dwarf companions UGC 6923, UGC 6940, UGC 6969, and the Tully-Fisher relation

    CERN Document Server

    Bottema, R

    2002-01-01

    Detailed neutral hydrogen observations have been obtained of the large barred spiral galaxy NGC 3992 and its three small companion spiral galaxies, UGC 6923, UGC 6940, and UGC 6969. Contrary to the large galaxy, for the companions the HI distribution ends quite abruptly at the optical edges. Velocity fields have been constructed from which rotation curves have been derived. Assuming a reasonable M/L ratio, a decomposition of these rotation curves generates nearly equal dark matter halos. When comparing the position-velocity diagrams of the two brightest galaxies, UGC 6923 and UGC 6969, it is obvious that the rotation curve of the latter has a shape closer to solid body than the former, yet the same maximum rotational level is reached. This is likely generated by the equal dark matter halos in combination with UGC 6923 being a factor five more luminous than UGC 6969 and so its luminous matter gives a higher contribution to the rotation in the inner regions. An NFW-CDMLambda dark halo is consistent with the obs...

  8. An extremely optically dim tidal feature in the gas-rich interacting galaxy group NGC 871/NGC 876/NGC 877

    CERN Document Server

    Lee-Waddell, K; Cuillandre, J -C; Cannon, J; Haynes, M P; Sick, J; Chandra, P; Patra, N; Stierwalt, S; Giovanelli, R

    2014-01-01

    We present GMRT HI observations and deep CFHT MegaCam optical images of the gas-rich interacting galaxy group NGC 871/NGC 876/NGC 877 (hereafter NGC 871/6/7). Our high-resolution data sets provide a census of the HI and stellar properties of the detected gas-rich group members. In addition to a handful of spiral, irregular and dwarf galaxies, this group harbours an intriguing HI feature, AGC 749170, that has a gas mass of ~10^9.3 M_sol, a dynamical-to-gas mass ratio of ~1 (assuming the cloud is rotating and in dynamical equilibrium) and no optical counterpart in previous imaging. Our observations have revealed a faint feature in the CFHT g'- and r'-bands; if it is physically associated with AGC 749170, the latter has M/L_g > 1000 M_sol/L_sol as well as a higher metallicity (estimated using photometric colours) and a significantly younger stellar population than the other low-mass gas-rich group members. These properties, as well as its spectral and spatial location with respect to its suspected parent galaxie...

  9. WARM IONIZED-GAS IN THE EDGE-ON GALAXIES NGC-4565 AND NGC-4631

    NARCIS (Netherlands)

    RAND, RJ; KULKARNI, [No Value; HESTER, JJ

    1992-01-01

    We present H-alpha observations of two edge-on galaxies: NGC 4565 and NGC 4631. In contrast to NGC 891, which was studied in a previous paper, neither of these galaxies shows evidence for a smooth, vertically extended, diffuse, warm ionized medium. NGC 4565 is a weak H-alpha emitter, and shows no ev

  10. NGC 3934: a shell galaxy in a compact galaxy environment

    CERN Document Server

    Bettoni, D; Rampazzo, R; Marino, A; Mazzei, P; Buson, L M

    2011-01-01

    We investigate the NGC 3933 poor galaxy association, that contains NGC 3934, which is classified as a polar-ring galaxy. The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group dynamical properties and its evolutionary phase. We imaged the group in the far (FUV,lambda = 1530A) and near (NUV, lambda=2316A) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV (GALEX) to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. The N...

  11. Stars at Low Metallicity in Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, Eline; Battaglia, Giuseppina; Cole, Andrew; Hunt, LK; Madden, S; Schneider, R

    2008-01-01

    Dwarf galaxies offer an opportunity to understand the properties of low metallicity star formation both today and at the earliest times at the, epoch of the formation of the first stars. Here we concentrate on two galaxies in the Local Group: the dwarf irregular galaxy Leo A, which has been the rece

  12. Dark matter in dwarf galaxies

    OpenAIRE

    Roos, Matts

    2017-01-01

    Although the cusp-core controversy for dwarf galaxies is seen as a problem, I argue that the cored central profiles can be explained by flattened cusps because they suffer from conflicting measurements and poor statistics and because there is a large number of conventional processes that could have flattened them since their creation, none of which requires new physics. Other problems, such as "too big to fail", are not discussed.

  13. The Chandra view of NGC1800 and the X-ray scaling properties of dwarf starbursts

    CERN Document Server

    Rasmussen, J; Ponman, T J

    2004-01-01

    The superb spatial resolution of Chandra is utilized to study the X-ray morphology of the dwarf starburst galaxy NGC1800 embedded in a small group of galaxies. Diffuse galactic emission is detected, extending several kpc above the galactic plane, with an overall morphology similar to the galactic winds seen in nearby X-ray bright starburst galaxies. This makes NGC1800 the most distant dwarf starburst with a clear detection of diffuse X-ray emission. The diffuse X-ray luminosity of 1.3+/-0.3 *10^38 erg/s accounts for at least 60 per cent of the total soft X-ray output of the galaxy. A hot gas temperature of kT=0.25 keV and metallicity Z~0.05Z_Sun are derived, the latter in consistency with results from optical spectroscopy of the interstellar medium. Our failure to detect any hot gas associated with the embedding galaxy group translates into an upper limit to the group X-ray luminosity of L_X<10^41 erg/s. There is no convincing evidence that the outflowing wind of NGC1800 is currently interacting with any i...

  14. The Blue Straggler Population in Dwarf Galaxies

    CERN Document Server

    Momany, Yazan

    2014-01-01

    In this chapter I review the recent developments regarding the study of Blue Stragglers (BSS) in dwarf galaxies. The loose density environment of dwarf galaxies resembles that of the Galactic Halo, hence it is natural to compare their common BSS properties. At the same time, it is unescapable to compare with the BSS properties in Galactic Globular clusters, which constitute the reference point for BSS studies. Admittedly, the literature on BSS in dwarf galaxies is not plentiful. The limitation is mostly due to the large distance to even the closest dwarf galaxies. Nevertheless, recent studies have allowed a deeper insight on the BSS photometric properties that are worth examining.

  15. A Galaxy Cluster Near NGC 720

    CERN Document Server

    Arp, H

    2005-01-01

    The galaxy cluster RXJ 0152.7-1357 is emitting X-rays at the high rate of 148 counts $ks^{-1}$. It would be one of the most luminous X-ray clusters known if it is at its redshift distance of z = .8325. It is conspicuously elongated, however, toward the bright, X-ray active galaxy NGC 720 about 14 arcmin away. At the same distance on the other side of NGC 720, and almost perfectly aligned, is an X-ray BSO of 5.8 cts/ks. It is reported here that the redshift of this quasar is z = .8312.

  16. VizieR Online Data Catalog: Tucana dwarf galaxy VI photometry (Castellani+, 1996)

    Science.gov (United States)

    Castellani, M.; Marconi, G.; Buonanno, R.

    2000-11-01

    We present deep CCD photometry for the dwarf galaxy in Tucana (l=323, b=-47.4). The data indicate that the galaxy is dominated by an intermediate/old stellar population with metallicity similar to that of the galactic globular clusters NGC 6752 and NGC 7089 (M2) (we find [Fe/H]=~-1.56). The distance modulus we derived, (m-M)V=~24.72+/-0.2, makes clear that this galaxy belongs to the Local Gro up. Tucana is clearly different from other dwarf galaxies, such as Leo I (Lee et al., 1993AJ....106.1420L), or Phoenix (Ortolani and Gratton, 1988PASP..100.1405O), because there is no evidence of a young stellar population (t<=5Gyrs) We suggest that the Tucana Galaxy is a genuine dwarf spheroidal in which no recent burst of star formation occurred. (1 data file).

  17. Ultra-Compact Dwarfs around NGC 3258 in Antlia

    CERN Document Server

    Caso, Juan Pablo; Richtler, T; Castelli, A V Smith; Faifer, Favio; 10.1093/mnras/sts687

    2013-01-01

    We present the first compact stellar systems with luminosities in the range of ultra-compact dwarfs (UCDs), discovered in the Antlia galaxy cluster (-10.5 < M_V < -11.6). The magnitude limit between UCDs and globular clusters (CGs) is discussed. By means of imaging from VLT (FORS1), CTIO (MOSAIC), and the HST (ACS) archive, eleven UCDs/bright GCs are selected on the basis of photometry and confirmed as Antlia members through radial velocities measured on new GEMINI (GMOS-S) spectra. In addition, nine UCD candidates are identified taking into account properties derived from their surface brightness profiles. All of them, members and candidates, are located in the proximity of NGC\\,3258, one of the two brightest elliptical galaxies in the cluster core. Antlia UCDs in this sample present absolute magnitudes fainter than M_V ~ -11.6 mag and most of them have colours within the blue GC range, falling only two within the red GC range. Effective radii measured for the ones lying on the ACS field are in the ran...

  18. Manganese in dwarf spheroidal galaxies

    CERN Document Server

    North, P; Jablonka, P; Hill, V; Shetrone, M; Letarte, B; Lemasle, B; Venn, K A; Battaglia, G; Tolstoy, E; Irwin, M J; Primas, F; Francois, P

    2012-01-01

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]\\sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and ...

  19. Hyperactive galaxy NGC 7673 [heic0205

    Science.gov (United States)

    2002-03-01

    Hyperactive galaxy NGC 7673 hi-res Size hi-res: 116 kb Credits: European Space Agency & Nicole Homeier (European Southern Observatory and University of Wisconsin-Madison) Hyperactive galaxy NGC 7673 The disturbed spiral galaxy NGC 7673 is ablaze with the light from millions of new stars. Each of its infant giant blue star clusters shines 100 times as brightly in the ultraviolet as similar immense star clusters in our own Galaxy. Scientists studying this object have two pressing questions: "What has triggered this enormous burst of star formation and how will this galaxy evolve in the future?" Telltale patches of blue light are signs of the formation of millions of new stars in the tangled spiral galaxy NGC 7673. Each of the bluish areas in this image consists of immense star clusters containing thousands of young stars. These clusters lie on the spiral arms of NGC 7673 and so emphasise its somewhat ragged look. This image, taken from Earth orbit by the ESA/NASA Hubble Space Telescope in 1996 and 1997, also shows two other galaxies seen in the background of the image, to the left and right of NGC 7673. These galaxies are further away and so appear redder, due to their higher redshift, an effect caused by the expansion of the Universe. The youngest blue stars in NGC 7673 are blazing with intense ultraviolet radiation. Each star cluster radiates 100 times more ultraviolet light than the famous Tarantula Nebula (30 Doradus), the largest star-forming region known in the local group of galaxies. Telltale patches of blue light are signs of the formation of millions of new stars in the tangled spiral galaxy NGC 7673. Each of the bluish areas in this image consists of immense star clusters containing thousands of young stars. These clusters lie on the spiral arms of NGC 7673 and so emphasise its somewhat ragged look. This image, taken from Earth orbit by the ESA/NASA Hubble Space Telescope in 1996 and 1997, also shows two other galaxies seen in the background of the image

  20. The interstellar medium in Andromeda's dwarf spheroidal galaxies - I. Content and origin of the interstellar dust

    Science.gov (United States)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Fritz, Jacopo; Boquien, Médéric; Cormier, Diane; Gentile, Gianfranco; Kennicutt, Robert C.; Madden, Suzanne C.; Smith, Matthew W. L.; Young, Lisa

    2016-07-01

    Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC 147, NGC 185, and NGC 205) of the Andromeda galaxy are characterized by very different interstellar medium properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC 205 has been studied in detail in an earlier work, we present new Herschel dust continuum observations of NGC 147 and NGC 185. The non-detection of NGC 147 in Herschel SPIRE maps puts a strong constraint on its dust mass (≤128^{+124}_{-68} M⊙). For NGC 185, we derive a total dust mass Md = 5.1±1.0 × 103 M⊙, which is a factor of ˜2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae (SNe). For NGC 147, the upper limit on the dust mass is consistent with expectations of the material injected by the evolved stellar population. In NGC 185 and NGC 205, the observed dust content is one order of magnitude higher compared to the estimated dust production by AGBs and SNe. Efficient grain growth, and potentially longer dust survival times (3-6 Gyr) are required to account for their current dust content. Our study confirms the importance of grain growth in the gas phase to account for the current dust reservoir in galaxies.

  1. The ISM in nearby galaxies: NGC1365

    NARCIS (Netherlands)

    Baan, Willem; Loenen, Edo; Spaans, Marco

    2010-01-01

    We propose a sensitive spectral survey of the nuclear region of the nearby Luminous Infrared Galaxy NGC1365. These observations are to confirm a similar program carried out in 2007, which suffers from severe bandpass issues. The previous observations have resulted in 76+ tentative detections, includ

  2. The distribution of alpha elements in Andromeda dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Luis C.; Geha, Marla C.; Tollerud, Erik J., E-mail: luis.vargas@yale.edu [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States)

    2014-07-20

    We present alpha to iron abundance ratios for 226 individual red giant branch stars in nine dwarf galaxies of the Andromeda (M31) satellite system. The abundances are measured from the combined signal of Mg, Si, Ca, and Ti lines in Keck/DEIMOS medium-resolution spectra. This constitutes the first large sample of alpha abundance ratios measured in the M31 satellite system. The dwarf galaxies in our sample exhibit a variety of alpha abundance ratios, with the average values in each galaxy ranging from approximately solar ([α/Fe] ∼ + 0.0) to alpha-enhanced ([α/Fe] ∼ + 0.5). These variations do not show a correlation with internal kinematics, environment, or stellar density. We confirm radial gradients in the iron abundance of two galaxies out of the five with sufficient data (NGC 185 and And II). There is only tentative evidence for an alpha abundance radial gradient in NGC 185. We homogeneously compare our results to the Milky Way classical dwarf spheroidals, finding evidence for wider variation in average alpha abundance. In the absence of chemical abundances for the M31 stellar halo, we compare to the Milky Way stellar halo. A stellar halo comprised of disrupted M31 satellites is too metal-rich and inconsistent with the Milky Way halo alpha abundance distribution even if considering only satellites with predominantly old stellar populations. The M31 satellite population provides a second system in which to study chemical abundances of dwarf galaxies and reveals a wider variety of abundance patterns than the Milky Way.

  3. Radio spectral index images of the spiral galaxies NGC 0628, NGC 3627, and NGC 7331

    CERN Document Server

    Paladino, R; Orrù, E

    2009-01-01

    In order to understand the cosmic ray propagation mechanism in galaxies, and its correlation with the sites of star formation, we compare the spatially resolved radio spectral index of three spiral galaxies with their IR distribution. We present new low-frequency radio continuum observations of the galaxies NGC 0628, NGC 3627, and NGC 7331, taken at 327 MHz with the Very Large Array. We complemented our data set with sensitive archival observations at 1.4 GHz and we studied the variations of the radio spectral index within the disks of these spiral galaxies. We also compared the spectral index distribution and the IR distribution, using 70 $\\mu$m Spitzer observations. We found that in these galaxies the non-thermal spectral index is anticorrelated with the radio brightness. Bright regions, like the bar in NGC 3627 or the circumnuclear region in NGC 7331, are characterized by a flatter spectrum with respect to the underlying disk. Therefore, a systematic steepening of the spectral index with the increasing dis...

  4. A multiwavelength study of the starburst galaxy NGC 7771

    Science.gov (United States)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-11-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultraviolet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The FIR, radio, and X-ray fluxes suggest that a massive burst of star formation is currently in progress, but the small equivalent width of the Balmer emission lines, the weak UV flux, the low abundance of ionized oxygen, and the shape of the optical spectrum lead us to conclude that there are few O stars. This might normally suggest that star formation has ceased, but the barred gravitational potential and large gas reserves of the galaxy imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density-bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occurring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  5. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    Science.gov (United States)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  6. Modeling Interacting Galaxies: NGC 4449 revisited

    Science.gov (United States)

    Theis, C.; Jungwirth, G.; Petsch, H.; Walter, F.

    2011-01-01

    Observing nearby interacting galaxies is a key to understanding galactic physics provided that we know the spatial and temporal perturbations acting on these galaxies. Thus, we have to know the orbits and the gross internal properties of the galaxies. In order to cope with the related extended parameter space, we developed the code MINGA which combines a genetic algorithm with a fast N-body method. As an example for this method, we present a re-analysis of the prototypical system NGC 4449 which is now based on both, the full HI data cube of the NGC 4449 system and on improved determinations of the galactic orbits within a restricted N-body calculation.

  7. Near-infrared line imaging of the starburst galaxies NGC 520, NGC 1614 and NGC 7714

    CERN Document Server

    Kotilainen, J K; Laine, S; Ryder, S D

    2001-01-01

    We present high spatial resolution (0.6 arcsec) near-infrared broad-band JHK images and Br_gamma 2.1661 micron and H_2 1-0 S(1) 2.122 micron emission line images of the nuclear regions in the interacting starburst galaxies NGC 520, NGC 1614 and NGC 7714. The near-infrared emission line and radio morphologies are in general agreement, although there are differences in details. In NGC 1614, we detect a nuclear double structure in Br_gamma, in agreement with the radio double structure. We derive average extinctions of A(K) = 0.41 and A(K) = 0.18 toward the nuclear regions of NGC 1614 and NGC 7714, respectively. For NGC 520, the extinction is much higher, A(K) = 1.2 - 1.6. The observed H_2/Br_gamma ratios indicate that the main excitation mechanism of the molecular gas is fluorescence by intense UV radiation from clusters of hot young stars, while shock excitation can be ruled out. The starburst regions in all galaxies exhibit small Br_gamma equivalent widths. Assuming a constant star formation model, even with a...

  8. The Arecibo Galaxy Environments survey IV: the NGC7448 region and the HI mass function

    CERN Document Server

    Davies, J I; Burns, L; Minchin, R; Momjian, E; Schneider, S; Smith, M; Taylor, R; van Driel, W

    2011-01-01

    In this paper we describe results from the Arecibo Galaxy Environments Survey (AGES). The survey reaches column densities of ~3x10^18 cm^-2 and masses of ~10^7 M_O, over individual regions of order 10 sq deg in size, out to a maximum velocity of 18,000 km s^-1. Each surveyed region is centred on a nearby galaxy, group or cluster, in this instance the NGC7448 group. Galaxy interactions in the NGC7448 group reveal themselves through the identification of tidal tails and bridges. We find ~2.5 times more atomic gas in the inter-galactic medium than in the group galaxies. We identify five new dwarf galaxies, two of which appear to be members of the NGC7448 group. This is too few, by roughly an order of magnitude, dwarf galaxies to reconcile observation with theoretical predictions of galaxy formation models. If they had observed this region of sky previous wide area blind HI surveys, HIPASS and ALFALFA, would have detected only 5% and 43% respectively of the galaxies we detect, missing a large fraction of the atom...

  9. The low-luminosity galaxy population in the NGC 5044 Group (Conference proceeding)

    CERN Document Server

    Cellone, S A; Cellone, Sergio A.; Buzzoni, Alberto

    2006-01-01

    Detailed surface photometry for 79 (mostly dwarf) galaxies in the NGC 5044 Group area is analysed, revealing the existence of different morphologies among objects originally classified as early-type dwarfs. Particularly, a significant fraction of bright dwarf "ellipticals" show a distinct bulge+disc structure; we thus re-classify these objects as dwarf lenticulars (dS0). Our finding points at a possible scenario where these systems are the remnants of "harassed" disc galaxies. This is emphasized by the discovery of a few objects with hints for very low-surface brightness spiral-like structure. The colours, structure, and spatial distribution of the different galaxy types suggest that our classification may indeed be separating objects with different origins and/or evolutionary paths.

  10. Unveiling the Secret of a Virgo Dwarf Galaxy

    Science.gov (United States)

    2000-05-01

    Dwarf galaxies may not be as impressive in appearance as their larger brethren, but they are at least as interesting from a scientific point of view. And sometimes they may have hidden properties that will only be found by means of careful observations, probing the signals of their stars at the faintest level. Such as the entirely unexpected, well developed spiral structure within an otherwise seemingly normal dwarf elliptical galaxy! This is the surprise result of a new study by a team of astronomers [1], headed by Helmut Jerjen from the Australian National University (Canberra) who obtained detailed observations with the ESO Very Large Telescope (VLT) of the dwarf galaxy IC 3328 in the Virgo Cluster of Galaxies, some 50 million light-years away. Dwarf galaxies Dwarf galaxies are present in all major clusters of galaxies and dominate by numbers in the universe. They may contain a few (tens of) millions of stars, as compared to galaxies of normal size with hundreds of billions of stars. About two dozen dwarf galaxies are known in the "Local Group" of galaxies of which the Milky Way galaxy in which we live is also a member. The Large and Small Magellanic Clouds are some of the best known dwarf galaxies - they are of the irregular type - while NGC 147 and NGC 205, two companions to the great Andromeda Galaxy, are of the elliptical type. Dwarf elliptical galaxies are characterized by their smooth appearance. From various studies, it is known that they are tri-axial ellipsoids of different degrees of elongation. Some are almost spherical while others are more pancake- or cigar-shaped. Like the elliptical galaxies of normal size, dwarf ellipticals are almost pure aggregates of stars. In contrast, spiral galaxies also contain clouds of gas and dust. The visible mass of spiral galaxies is in a rotating disk. Dwarf ellipticals generally keep their form because of the random motions of their stars. VLT observations of dwarf elliptical galaxies Using the FORS1 multi

  11. The shell galaxy NGC4104 in an X-ray group

    Science.gov (United States)

    Lima Neto, G. B.; Durret, F.; Laganá, T.; Machado, R. E. G.; Martinet, N.

    2017-07-01

    Groups of galaxies are expected to collapse early in the history of the universe, in particular the so-called Fossil Groups, with a central galaxy that grows at the bottom of the gravitational potential well by cannibalizing smaller galaxies and/or by major mergers. An evidence of galactic cannibalism is the feature known as shells or ripples in early-type galaxies Shell galaxies are believed to be the result of a minor merger of a dwarf with an elliptical galaxy, resulting in a series of faint concentric ripples in surface brightness observed throughout the main stellar component. This contribution presents very deep r and g imaging of NGC 4104 - the brightest galaxy of an X-ray emitting group - obtained with MegaCam on the 3.6 m CFHT. Using both iraf/ellipse and galfit 2D image-fitting programs, we show the presence of strong shell features and an extended stellar halo around the group brightest galaxy. We have run a series of N-body simulations in order to gain insight on the dynamical process that shaped NGC 4104. Numerical modeling suggests a recent (around 5 Gyrs ago) collision occurred with a dwarf galaxy, which may have also led to a central absorption feature observed in the galaxy center. Moreover, given the magnitude gap between the first and second brightest galaxies, it seems that we are witnessing the formation of an object that falls within the fossil group classification.

  12. Stellar subsystems of the galaxy NGC 1313

    Science.gov (United States)

    Tikhonov, N. A.; Galazutdinova, O. A.

    2016-07-01

    Based on archival Hubble Space Telescope (HST) ACS/WFC images, we have performed stellar photometry for eight fields of the spiral galaxy NGC 1313 and its satellite, the low-mass Sph/Irr galaxy AM0319-662. Stars of various ages have been identified on the constructed Hertzsprung-Russell diagrams: young supergiants, middle-aged stars, and old stars (red giants); their apparent distributions over the body of the galaxy are presented. The red supergiants and giants have been divided into groups with larger and smaller color indices, corresponding to a difference in stellar metallicity. These groups of stars are shown to have different spatial distributions and to belong to two galaxies, NGC1313 itself and the disrupted satellite. We have determined the distance to NGC 1313, D = 3.88 ± 0.07 Mpc, by the TRGB method from six fields. Our photometry of 2014 HST images has revealed an emerged charge transfer inefficiency on the ACS/WFC CCDs, which manifests itself as a dependence of the photometry of stars on their coordinates on the CCD.

  13. Globular Cluster Systems of Spiral and S0 Galaxies: Results from WIYN Imaging of NGC1023, NGC1055, NGC7332 and NGC7339

    CERN Document Server

    Young, Michael D; Rhode, Katherine L

    2012-01-01

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies -- the SB0 galaxy NGC1023, the SBb galaxy NGC1055, and an isolated pair comprised of the Sbc galaxy NGC7339 and the S0 galaxy NGC7332 -- were observed in BVR filters with the WIYN 3.5-m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously-published data from the Hubble Space Telescope and the Keck Observatory to help characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N_GC). We find N_GC = 490+/-30, 210+/-40, 175+/-15, and 75+/-10 for NGC1023, NGC1055, NGC7332, and NGC7339, respectively. We also calculate the GC specific frequency (N_GC normalized by host galaxy luminosity or mass) and fi...

  14. Stellar Populations in Galaxies: Progress on The Milky Way, on Dwarf Irregulars, and on Elliptical Galaxies

    Directory of Open Access Journals (Sweden)

    Dante Minniti

    2001-01-01

    Full Text Available I discuss specific topics of stellar populations where major progress is occurring. Large surveys like the MACHO Project are contributing to our understanding of the inner structure of our Galaxy. Towards these inner regions , different components (bulge, inner halo, and inner thin and thick disks overlap. We can learn much about these stellar populations using the MACHO database. We expect major progress in the study of the outer Milky Way halo in following years from the SDSS database. Very distant BHB stars located in the outskirts of the halo would be identified. I also describe recent observations of nearby dwarf irregular galaxies, and discuss what they tell us about their stellar content, and about the way these galaxies form. It is now possible to construct deep luminosity functions and color-magnitude diagrams for galaxies beyond the Local Group. I finally review recent work on the resolved stellar populations of the giant early type galaxy NGC~5128.

  15. Shell Galaxies, Dynamical Friction, and Dwarf Disruption

    CERN Document Server

    Ebrova, Ivana; Canalizo, Gabriela; Bennert, Nicola; Jilkova, Lucie

    2009-01-01

    Using N-body simulations of shell galaxies created in nearly radial minor mergers, we investigate the error of collision dating, resulting from the neglect of dynamical friction and of gradual disruption of the cannibalized dwarf.

  16. Metals and ionizing photons from dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, S.; Tolstoy, E.; Ferrara, A.; Zaroubi, S.

    2014-01-01

    We estimate the potential contribution of M <10(9)M(circle dot) dwarf galaxies to the reionization and early metal enrichment of the Milky Way environment, or circum-Galactic medium. Our approach is to use the observed properties of ancient stars ()under tilde>12 Gyr old) measured in nearby dwarf ga

  17. The Isolated Elliptical NGC 1132 Evidence For a Merged Group of Galaxies?

    CERN Document Server

    Mulchaey, J S; Mulchaey, John S.; Zabludoff, Ann I.

    1999-01-01

    Numerical simulations predict that some poor groups of galaxies have merged by the present epoch into giant ellipticals (cf. Barnes 1989). To identify the possible remnants of such mergers, we have compiled a sample of nearby, isolated ellipticals (Colbert, Mulchaey, & Zabludoff 1998). ASCA observations of the first galaxy studied, NGC 1132 reveal an X-ray halo that extends out to at least 250 kpc. The temperature, metallicity and luminosity of NGC 1132's X-ray halo are comparable to those of poor group halos. The total mass inferred from the X-ray emission is also like that of an X-ray detected group. Optical imaging uncovers a dwarf galaxy population clustered about NGC 1132 that is consistent in number density and in projected radial distribution with that of an X-ray group. The similarities of NGC 1132 to poor groups in both the X-ray band and at the faint end of the galaxy luminosity function, combined with the deficit of luminous galaxies in the NGC 1132 field, are compatible with the merged group p...

  18. Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398

    Science.gov (United States)

    McQuinn, Kristen. B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Berg, Danielle; Kennicutt, Robert

    2017-08-01

    Accurate distances are fundamental for interpreting various measured properties of galaxies. Surprisingly, many of the best-studied spiral galaxies in the Local Volume have distance uncertainties that are much larger than can be achieved with modern observation techniques. Using Hubble Space Telescopeoptical imaging, we use the tip of the red giant branch method to measure the distances to six galaxies that are included in the Spitzer Infrared Nearby Galaxies Survey program and its offspring surveys. The sample includes M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. We compare our results with distances reported to these galaxies based on a variety of methods. Depending on the technique, there can be a wide range in published distances, particularly from the Tully-Fisher relation. In addition, differences between the planetary nebular luminosity function and surface brightness fluctuation techniques can vary between galaxies, suggesting inaccuracies that cannot be explained by systematics in the calibrations. Our distances improve upon previous results, as we use a well-calibrated, stable distance indicator, precision photometry in an optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. Metallic Winds in Dwarf Galaxies

    Science.gov (United States)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A.

    2017-02-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N-Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, and radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.

  20. The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    CERN Document Server

    Lee-Waddell, K; Chandra, P; Patra, N; Cuillandre, J -C; Wang, J; Haynes, M P; Cannon, J; Stierwalt, S; Sick, J; Giovanelli, R

    2016-01-01

    We present high-resolution Giant Metrewave Radio Telescope (GMRT) HI observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dIrr. Both tidal knots are located within a prominent HI tidal tail, appear to have sufficient mass (M_gas~10^8 M_sol) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four HI knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer -- with a 0.28 mag g-r colour -- and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the HI properties, estimated stellar ages and baryonic con...

  1. Understanding dwarf galaxies as galactic building blocks

    CERN Document Server

    Tosi, M P

    2003-01-01

    This is a summary of a general discussion held during the third EuroConference on galaxy evolution. Various observational features of the stellar populations in present--day dwarf galaxies were presented to introduce the discussion on the possibility that these systems be the main building blocks of spiral and elliptical galaxies. Many people in the audience turned out to think that the inconsistencies among the observed properties of large and dwarf galaxies are too many to believe that the former are built up only by means of successive accretions of the latter. However, theorists of hierarchical galaxy formation suggested that present--day dwarfs are not representative of the galactic building blocks, which may be completely invisible nowadays. Some of them suggested that, contrary to what is usually assumed in hierarchical modelling, the actual building blocks were still fully gaseous systems when their major mergers occurred. If this is the case, then most of the inconsistencies can be overcome, and the ...

  2. GMRT radio continuum study of Wolf Rayet galaxies I: NGC 4214 and NGC 4449

    CERN Document Server

    Srivastava, Shweta; Basu, Aritra; Srivastava, D C; Ananthakrishnan, S

    2014-01-01

    We report low frequency observations of Wolf-Rayet galaxies, NGC 4214 and NGC 4449 at 610, 325 and 150 MHz, using the Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from NGC 4214 at and NGC 4449. NGC 4449 is observed to be five times more radio luminous than NGC 4214, indicating vigorous star formation. We estimate synchrotron spectral index after separating the thermal free-free emission and obtain $\\alpha_{nt}=-0.63\\pm0.04$ (S$\\propto\

  3. The interstellar medium in Andromeda's dwarf spheroidal galaxies - II. Multiphase gas content and ISM conditions

    Science.gov (United States)

    De Looze, Ilse; Baes, Maarten; Cormier, Diane; Kaneko, Hiroyuki; Kuno, Nario; Young, Lisa; Bendo, George J.; Boquien, Médéric; Fritz, Jacopo; Gentile, Gianfranco; Kennicutt, Robert C.; Madden, Suzanne C.; Smith, Matthew W. L.; Wilson, Christine D.

    2017-03-01

    We make an inventory of the interstellar medium material in three low-metallicity dwarf spheroidal galaxies of the Local Group (NGC 147, NGC 185 and NGC 205). Ancillary H I, CO, Spitzer Infrared Spectrograph spectra, Hα and X-ray observations are combined to trace the atomic, cold and warm molecular, ionized and hot gas phases. We present new Nobeyama CO(1-0) observations and Herschel SPIRE FTS [C I] observations of NGC 205 to revise its molecular gas content. We derive total gas masses of Mg = 1.9-5.5 × 105 M⊙ for NGC 185 and Mg = 8.6-25.0 × 105 M⊙ for NGC 205. Non-detections combine to an upper limit on the gas mass of Mg ≤ 0.3-2.2 × 105 M⊙ for NGC 147. The observed gas reservoirs are significantly lower compared to the expected gas masses based on a simple closed-box model that accounts for the gas mass returned by planetary nebulae and supernovae. The gas-to-dust mass ratios GDR ∼ 37-107 and 48-139 are also considerably lower compared to the expected GDR ∼ 370 and 520 for the low metal abundances in NGC 185 (0.36 Z⊙) and NGC 205 (0.25 Z⊙), respectively. To simultaneously account for the gas deficiency and low gas-to-dust ratios, we require an efficient removal of a large gas fraction and a longer dust survival time (∼1.6 Gyr). We believe that efficient galactic winds (combined with heating of gas to sufficiently high temperatures in order for it to escape from the galaxy) and/or environmental interactions with neighbouring galaxies are responsible for the gas removal from NGC 147, NGC 185 and NGC 205.

  4. Evolution of dwarf galaxies : A dynamical perspective

    NARCIS (Netherlands)

    Lelli, Federico; Fraternali, Filippo; Verheijen, Marc

    2014-01-01

    For a rotating galaxy, the inner circular-velocity gradient dRV(0) provides a direct estimate of the central dynamical mass density, including gas, stars, and dark matter. We consider 60 low-mass galaxies with high-quality H I and/or stellar rotation curves (including starbursting dwarfs, irregulars

  5. Evolution of dwarf galaxies: a dynamical perspective

    NARCIS (Netherlands)

    Lelli, Federico; Fraternali, Filippo; Verheijen, Marc

    2014-01-01

    For a rotating galaxy, the inner circular-velocity gradient dRV(0) provides a direct estimate of the central dynamical mass density, including gas, stars, and dark matter. We consider 60 low-mass galaxies with high-quality H I and/or stellar rotation curves (including starbursting dwarfs, irregulars

  6. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco; /Huelva U.; Zandanel, Fabio; /IAA, Granada; Gomez, Mario E.; /Huelva U.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  7. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Conde, Miguel A. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Cannoni, Mirco; Gómez, Mario E. [Dpto. Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Zandanel, Fabio; Prada, Francisco, E-mail: masc@stanford.edu, E-mail: mirco.cannoni@dfa.uhu.es, E-mail: fabio@iaa.es, E-mail: mario.gomez@dfa.uhu.es, E-mail: fprada@iaa.es [Instituto de Astrofísica de Andalucía (CSIC), E-18008, Granada (Spain)

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  8. Missing dark matter in dwarf galaxies?

    CERN Document Server

    Oman, Kyle A; Sales, Laura V; Fattahi, Azadeh; Frenk, Carlos S; Sawala, Till; Schaller, Matthieu; White, Simon D M

    2016-01-01

    We use cosmological hydrodynamical simulations of the APOSTLE project to examine the fraction of baryons in $\\Lambda$CDM haloes that collect into galaxies. This `galaxy formation efficiency' correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of dwarfs seem to violate this constraint, having baryonic masses up to ten times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or they inhabit haloes with extreme deficits in their dark matter content. This `missing dark matter' is reminiscent of the inner mass deficits of galaxies with slowly-rising rotation curves, but extends...

  9. Discovery of a stellar tidal stream around the Whale galaxy, NGC 4631

    CERN Document Server

    Martinez-Delgado, David; Chonis, Taylor S; Beaton, Rachael L; Teuwen, Karel; GaBany, R Jay; Grebel, Eva K; Morales, Gustavo

    2014-01-01

    We report the discovery of a giant stellar tidal stream in the halo of NGC 4631, a nearby edge-on spiral galaxy interacting with the spiral NGC 4656, in deep images taken with a 40-cm aperture robotic telescope. The stream has two components: a bridge-like feature extended between NGC 4631 and NGC 4656 (stream_SE) and an overdensity with extended features on the opposite side of the NGC 4631 disk (stream_NW). Together, these features extend more than 85 kpc and display a clear (g-r) colour gradient. The orientation of stream_SE relative to the orientations of NGC 4631 and NGC 4656 is not consistent with an origin from interaction between these two spirals, and is more likely debris from a satellite encounter. The stellar tidal features can be qualitatively reproduced in an N-body model of the tidal disruption of a single, massive dwarf satellite on a moderately eccentric orbit (e=0.6) around NGC 4631 over $\\sim$ 3.5 Gyr, with a dynamical mass ratio (m1:m2) of ~40. Both modelling and inferences from the morpho...

  10. Morphological transformations of Dwarf Galaxies in the Local Group

    CERN Document Server

    Carraro, Giovanni

    2014-01-01

    In the Local Group there are three main types of dwarf galaxies: Dwarf Irregulars, Dwarf Spheroidals, and Dwarf Ellipticals. Intermediate/transitional types are present as well. This contribution reviews the idea that the present day variety of dwarf galaxy morphologies in the Local Group might reveal the existence of a transformation chain of events, of which any particular dwarf galaxy represents a manifestation of a particular stage. In other words, all dwarf galaxies that now are part of the Local Group would have formed identically in the early universe, but then evolved differently because of morphological transformations induced by dynamical processes like galaxy harassment, ram pressure stripping, photo-evaporation, and so forth. We start describing the population of dwarf galaxies and their spatial distribution in the LG. Then, we describe those phenomena that can alter the morphology of a dwarf galaxies, essentially by removing, partially or completely, their gas content. Lastly, we discuss morpholo...

  11. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  12. ISO observations of Hickson Compact Group 31 with the central Wolf-Rayet galaxy NGC 1741

    CERN Document Server

    O'Halloran, B; McBreen, B; Laureijs, R J; Leech, K; Delaney, M; Watson, D; Hanlon, L O

    2002-01-01

    Hickson Compact Group (HCG) 31, consisting of the Wolf-Rayet galaxy NGC 1741 and its irregular dwarf companions, was observed using the Infrared Space Observatory. The deconvolved ISOCAM maps of the galaxies using the 7.7 micron and 14.3 micron (LW6 and LW3) filters are presented, along with ISOPHOT spectrometry of the central starburst region of NGC 1741 and the nucleus of galaxy HCG 31A. Strong mid-IR emission was detected from the central burst in NGC 1741, along with strong PAH features and a blend of features including [S IV] at 10.5 micron. The 14.3/6.75 micron flux ratio, where the 6.75 micron flux was synthesized from the PHT-S spectrum, and 14.3/7.7 micron flux ratios suggest that the central burst within NGC 1741 may be moving towards the post-starburst phase. Diagnostic tools including the ratio of the integrated PAH luminosity to the 40 to 120 micron infrared luminosity and the far-infrared colours reveal that despite the high surface brightness of the nucleus, the properties of NGC 1741 can be ex...

  13. Photometric properties of Local Volume dwarf galaxies

    CERN Document Server

    Sharina, M E; Dolphin, A E; Karachentseva, V E; Tully, R Brent; Karataeva, G M; Makarov, D I; Makarova, L N; Sakai, S; Shaya, E J; Nikolaev, E Yu; Kuznetsov, A N

    2007-01-01

    We present surface photometry and metallicity measurements for 104 nearby dwarf galaxies imaged with the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. In addition, we carried out photometry for 26 galaxies of the sample and for Sextans~B on images of the Sloan Digital Sky Survey. Our sample comprises dwarf spheroidal, irregular and transition type galaxies located within ~10 Mpc in the field and in nearby groups: M81, Centaurus A, Sculptor, and Canes Venatici I cloud. It is found that the early-type galaxies have on average higher metallicity at a given luminosity in comparison to the late-type objects. Dwarf galaxies with M_B > -12 -- -13 mag deviate toward larger scale lengths from the scale length -- luminosity relation common for spiral galaxies, h \\propto L^{0.5}_B. The following correlations between fundamental parameters of the galaxies are consistent with expectations if there is pronounced gas-loss through galactic winds: 1) between the luminosit...

  14. Massive Star Clusters in Dwarf Galaxies

    CERN Document Server

    Larsen, Soeren S

    2015-01-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  15. Blue diffuse dwarf galaxies: a clearer picture

    Science.gov (United States)

    James, Bethan L.; Koposov, Sergey E.; Stark, Daniel P.; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.; McQuinn, Kristen B. W.

    2017-03-01

    The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), i.e. galaxies with population. In 2014, we reoriented this search using only morphological properties and uncovered a population of ∼150 'blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here, we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their Sloan Digital Sky Survey (SDSS) photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43 population synthesis models and estimated to be in the range log (M*/M⊙) ≃ 5-9. Unlike other low-metallicity star-forming galaxies, BDDs are in agreement with the mass-metallicity relation at low masses, suggesting that they are not accreting large amounts of pristine gas relative to their stellar mass. BDD galaxies appear to be a population of actively star-forming dwarf irregular (dIrr) galaxies which fall within the class of low-surface-brightness dIrr galaxies. Their ongoing star formation and irregular morphology make them excellent analogues for galaxies in the early Universe.

  16. Choirs H I galaxy groups: The metallicity of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Sarah M.; Drinkwater, Michael J. [School of Mathematics and Physics, University of Queensland, Qld 4072 (Australia); Meurer, Gerhardt; Bekki, Kenji [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Dopita, Michael A.; Nicholls, David C. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Kilborn, Virginia, E-mail: sarah@sarahsweet.com.au [Swinburne University of Technology, Mail number H30, PO Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-02-10

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M{sub R} ∼ –13. We use the Dopita et al. metallicity calibrations to calibrate the relation for all the data in this analysis. In metallicity-luminosity space, we find two subpopulations within a sample of high-confidence Sloan Digital Sky Survey (SDSS) DR8 star-forming galaxies: 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M{sub R} = –16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low-luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M{sub R} ∼ –16, our sample of 53 star-forming galaxies in 9 H I gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes, there is an increase in dispersion of the metallicity of our sample, suggestive of a wide range of H I content and environment. In our sample, we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6) and four (21%) very metal-poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.

  17. Gas dynamics in tidal dwarf galaxies: disc formation at z=0

    CERN Document Server

    Lelli, F; Brinks, E; Bournaud, F; McGaugh, S S; Lisenfeld, U; Weilbacher, P M; Boquien, M; Revaz, Y; Braine, J; Koribalski, B S; Belles, P -E

    2015-01-01

    Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting/merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can form only from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona-fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 ("Atoms for Peace"). For NGC 4694 and NGC 5291 we analyse existing HI data from the Very Large Array (VLA), while for NGC 7252 we present new HI observations from the Jansky VLA together with long-slit and integral-field optical spectroscopy. For all six TDGs, the HI emission can be described by rotating disc models. These HI discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consis...

  18. Star formation history in forming dwarf galaxies

    Science.gov (United States)

    Berczik, P.; Kravchuk, S. G.

    The processes of formation and evolution of isolated dwarf galaxies over the Hubble timescale is followed by means of SPH techniques. As an initial protogalaxy perturbation we consider an isolated, uniform, solid -- body rotated sphere involved into the Hubble flow and made of dark and baryonic matter in a 10:1 ratio. The simulations are carried out for the set of models having spin parameters lambda in the range from 0.01 to 0.08 and the total mass of dark matter 1011 M_odot . Our model includes gasdynamics, radiative processes, star formation, supernova feedback and simplified chemistry. The application of modified star formation criterion which accounts for chaotic motions and the time lag between initial development of suitable conditions for star formation and star formation itself (Berczik P.P, Kravchuk S.G. 1997, Ap.Sp.Sci.) provides the realistic description of the process of galaxy formation and evolution. Two parameters: total mass and initial angular momentum of the dwarf protogalaxy play the crucial role in its star formation activity. After the 15 Gyr of the evolution the rapidly rotated dwarf galaxies manifest themselves as an extremly gasrich, heavy element deficient objects showing the initial burst of star formation activity in several spatially separated regions. Slowly rotating objects manifest themselves finally as typical evolved dwarf galaxies.

  19. Blue straggler stars in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.; Tolstoy, E.; Sigurdsson, S.; Irwin, M. J.; Battaglia, G.

    2007-01-01

    Blue straggler star (BSS) candidates have been observed in all old dwarf spheroidal galaxies (dSphs), however whether or not they are authentic BSSs or young stars has been a point of debate. To both address this issue and obtain a better understanding of the formation of BSSs in different environme

  20. Gemini Spectroscopy of Ultra-Compact Dwarfs in the Fossil Group NGC 1132

    CERN Document Server

    Madrid, Juan P

    2013-01-01

    A spectroscopic follow up of Ultra-Compact Dwarf (UCD) candidates in the fossil group NGC 1132 is undertaken with the Gemini Multi Object Spectrograph (GMOS). These new Gemini spectra prove the presence of six UCDs in the fossil group NGC 1132 at a distance of D~100 Mpc and a recessional velocity of v_r = 6935 +/- 11 km/s. The brightest and largest member of the UCD population is an M32 analog with a size of 77.1 pc and a magnitude of M_V=-14.8 mag with the characteristics in between those of the brightest UCDs and compact elliptical galaxies. The ensemble of UCDs have an average radial velocity of = 6966 +/- 208 km/s and a velocity dispersion of sigma_v = 169 +/-18 km/s similar to the one of poor galaxy groups. This work shows that UCDs can be used as test particles to determine the dynamical properties of galaxy groups. The presence of UCDs in the fossil group environment is confirmed and thus the fact that UCDs can form across diverse evolutionary conditions.

  1. Dwarf galaxies: quantity and varietyÂ

    Science.gov (United States)

    Cellone, S. A.; Buzzoni, A.

    The structural properties and stellar populations of 79 low- and intermediate-luminosity galaxies in the NGC5044 Group are analized. The galaxies in the sample are re-classified into different morphological subgroups, with emphasis on the identification of objects showing a bulge+disk structure. The behaviour of their properties against their (projected) position within the group is addressed, looking for evidences for possible environmental effects. The observations were obtained at ESO (1999-2000) and CASLEO (1996-1999). Nearly 50% of the data presented here are new. FULL TEXT IN SPANISH

  2. Large scale star formation in galaxies. II. The spirals NGC 3377A, NGC 3507 and NGC 4394

    CERN Document Server

    Vicari, A; Capuzzo-Dolcetta, R; Wyder, T K; Arrabito, G

    2001-01-01

    The identification of young star groupings (YSG) in the three spiral galaxies NGC 3377A, NGC 3507, NGC 4394 is obtained by mean of the statistical method described in Paper I. We find 83, 90, 185 YSGs, respectively. An identification map of YSGs, as well as their size distribution, their B-luminosity function, their surface luminosity density radial behaviour, are presented and comparatively discussed. These data, in addition to those in Paper I, constitute a first sample suitable for seeking correlations among properties of galaxies and their YSG, which we briefly discuss here.

  3. HI Recycling Formation of Tidal Dwarf Galaxies

    CERN Document Server

    Duc, P A; Duc, Pierre-Alain; Brinks, Elias

    2000-01-01

    Galactic collisions trigger a number of phenomena, such as transportation inward of gas from distances of up to kiloparsecs from the center of a galaxy to the nuclear region, fuelling a central starburst or nuclear activity. The inverse process, the ejection of material into the intergalactic medium by tidal forces, is another important aspect and can be studied especially well through detailed HI observations of interacting systems which have shown that a large fraction of the gaseous component of colliding galaxies can be expelled. Part of this tidal debris might fall back, be dispersed throughout the intergalactic medium or recondense to form a new generation of galaxies: the so-called tidal dwarf galaxies. The latter are nearby examples of galaxies in formation. The properties of these recycled objects are reviewed here and different ways to identify them are reviewed.

  4. Nuclear Outbursts in the Elliptical Galaxy NGC 4472

    Science.gov (United States)

    Biller, B.; Jones, C.; Forman, W.

    2001-12-01

    We present the analysis of the Chandra ACIS observations of the giant elliptical galaxy NGC 4472. The Chandra Observatory's arcsec resolution reveals a number of new features, specifically: 1) an ~8 arcmin streamer or arm (this corresponds to a linear size of 36 kpc) extending southwest of the galaxy and an assymetrical, somewhat truncated streamer to the northeast. Smaller, morphologically similar structures are observed in NGC 4636 (Jones et al. 2001) and are explained as shocks from a nuclear outburst in the recent past. The larger size of the NGC 4472 streamers requires a correspondingly higher energy input compared to the NGC 4636 case. The asymmetry of the streamers may be due to the interaction of NGC 4472 with the ambient Virgo cluster gas. 2) A string of small, extended sources south of the nucleus. These sources may stem from an interaction of NGC 4472 with the galaxy UGC 7637. 3) X-ray cavities corresponding to radio lobes, where expanding radio plasma has evacuated the X-ray emitting gas. We also present a luminosity function for the X-ray point sources detected within NGC 4472 which we compare to that for other early type galaxies. This work was supported by CXC contract number NAS8-39073 and the Smithsonian Institution.

  5. Satellite Dwarf Galaxies in a Hierarchical Universe: The Prevalence of Dwarf-Dwarf Major Mergers

    CERN Document Server

    Deason, Alis; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased towards larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger ...

  6. The potential role of NGC 205 in generating Andromeda's vast thin corotating plane of satellite galaxies

    Science.gov (United States)

    Angus, Garry W.; Coppin, Paul; Gentile, Gianfranco; Diaferio, Antonaldo

    2016-11-01

    The Andromeda galaxy is observed to have a system of two large dwarf ellipticals and ˜13 smaller satellite galaxies that are currently corotating in a thin plane, in addition to 2 counter-rotating satellite galaxies. We explored the consistency of those observations with a scenario where the majority of the corotating satellite galaxies originated from a subhalo group, where NGC 205 was the host and the satellite galaxies occupied dark matter sub-subhaloes. We ran N-body simulations of a close encounter between NGC 205 and M31. In the simulations, NGC 205 was surrounded by massless particles to statistically sample the distribution of the sub-subhaloes expected in a subhalo that has a mass similar to NGC 205. We made Monte Carlo samplings and found that, using a set of reference parameters, the probability of producing a thinner distribution of sub-subhaloes than the observed NGC 205 + 15 smaller satellites (thus including the two counter-rotators, but excluding M32) increased from <10-8 for the initial distribution to ˜10-2 at pericentre. The probability of the simulated sub-subhaloes occupying the locations of the observed corotating satellites in the line-of-sight velocity versus projected on-sky distance plane is at most 2 × 10-3 for 11 out of 13 satellites. Increasing the mass of M31 and the extent of the initial distribution of sub-subhaloes gives a maximum probability of 4 × 10-3 for all 13 corotating satellites, but the probability of producing the thinness would drop to ˜10-3.

  7. Young tidal dwarf galaxies cannot be used to probe dark matter in galaxies

    CERN Document Server

    Flores, H; Fouquet, S; Puech, M; Kroupa, P; Yang, Y; Pawlowski, M

    2015-01-01

    The location of dark-matter free, tidal dwarf galaxies (TDGs) in the baryonic Tully Fisher (bTF) diagram has been used to test cosmological scenarios, leading to various and controversial results. Using new high-resolution 3D spectroscopic data, we re-investigate the morpho-kinematics of these galaxies to verify whether or not they can be used for such a purpose. We find that the three observed TDGs are kinematically not virialized and show complex morphologies and kinematics, leading to considerable uncertainties about their intrinsic rotation velocities and their locations on the bTF. Only one TDG can be identify as a (perturbed) rotation disk that it is indeed a sub-component of NGC5291N and that lies at $<$1$\\sigma$ from the local bTF relation. It results that the presently studied TDGs are young, dynamically forming objects, which are not enough virialized to robustly challenge cosmological scenarios.

  8. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 \\& UGC 3574

    CERN Document Server

    Sánchez-Gil, M Carmen; Pérez, Enrique

    2015-01-01

    We address the study of the \\Ha\\ vertical velocity field in a sample of four nearly face-on galaxies using long slit spectroscopy taken with the ISIS spectrograph attached to the WHT at the Roque de los Muchachos Observatory (Spain). The spatial structure of the velocity vertical component shows a radial corrugated pattern with spatial scales higher or within the order of { one} kiloparsec. The gas is mainly ionized by high-energy photons: only in some locations of NGC~278 and NGC~1058 is there some evidence of ionization by low-velocity shocks, which, in the case of NGC~278, could be due to minor mergers. The behaviour of the gas in the neighbourhood of the spiral arms fits, in the majority of the observed cases, with that predicted by the so-called hydraulic bore mechanism, where a thick magnetized disk encounters a spiral density perturbation. The results obtained show that it is { difficult to explain the \\Ha\\ large scale velocity field without the presence of a magnetized, thick galactic disk}. Larger sa...

  9. Satellites and Haloes of Dwarf Galaxies

    CERN Document Server

    Sales, Laura V; White, Simon D M; Navarro, Julio F

    2012-01-01

    We study the abundance of satellite galaxies as a function of primary stellar mass using the SDSS/DR7 spectroscopic catalogue. In contrast with previous studies, which focussed mainly on bright primaries, our central galaxies span a wide range of stellar mass, 10^7.5 < M_*^pri/M_sun < 10^11, from dwarfs to central cluster galaxies. Our analysis confirms that the average number of satellites around bright primaries, when expressed in terms of satellite-to-primary stellar mass ratio (m_*^sat/M_*^pri), is a strong function of M_*^pri. On the other hand, satellite abundance is largely independent of primary mass for dwarf primaries (M_*^pri<10^10 M_sun). These results are consistent with galaxy formation models in the LCDM scenario. We find excellent agreement between SDSS data and semi-analytic mock galaxy catalogues constructed from the Millennium-II Simulation. Satellite galaxies trace dark matter substructure in LCDM, so satellite abundance reflects the dependence on halo mass, M_200, of both substru...

  10. An Overview of the Dwarf Galaxy Survey

    CERN Document Server

    Madden, S C; Galametz, M; Cormier, D; Lebouteiller, V; Galliano, F; Hony, S; Bendo, G J; Smith, M W L; Pohlen, M; Roussel, H; Sauvage, M; Wu, R; Sturm, E; Poglitsch, A; Contursi, A; Doublier, V; Baes, M; Barlow, M J; Boselli, A; Boquien, M; Carlson, L R; Ciesla, L; Cooray, A; Cortese, L; De Looze, I; Irwin, J A; Isaak, K; Kamenetzky, J; Karczewski, O L; Lu, N; MacHattie, J A; Halloran, B O; Parkin, T J; Rangwala, N; Schirm, M R P; Schulz, B; Spinoglio, L; Vaccari, M; Wilson, C D; Wozniak, H

    2013-01-01

    The Dwarf Galaxy Survey (DGS) program is studying low-metallicity galaxies using 230h of far-infrared (FIR) and submillimetre (submm) photometric and spectroscopic observations of the Herschel Space Observatory and draws to this a rich database of a wide range of wavelengths tracing the dust, gas and stars. This sample of 50 galaxies includes the largest metallicity range achievable in the local Universe including the lowest metallicity (Z) galaxies, 1/50 Zsun, and spans 4 orders of magnitude in star formation rates. The survey is designed to get a handle on the physics of the interstellar medium (ISM) of low metallicity dwarf galaxies, especially on their dust and gas properties and the ISM heating and cooling processes. The DGS produces PACS and SPIRE maps of low-metallicity galaxies observed at 70, 100, 160, 250, 350, and 500 mic with the highest sensitivity achievable to date in the FIR and submm. The FIR fine-structure lines, [CII] 158 mic, [OI] 63 mic, [OI] 145 mic, [OIII] 88 mic, [NIII] 57 mic and [NII...

  11. The stellar populations in the low luminosity, early-type galaxy NGC59

    CERN Document Server

    Sansom, A E; Deakin, M A; Väisänen, P; Kniazev, A Y; van Loon, J Th

    2015-01-01

    Low luminosity galaxies may be the building blocks of more luminous systems. Southern African Large Telescope (SALT) observations of the low luminosity, early-type galaxy NGC59 are obtained and analysed. These data are used to measure the stellar population parameters in the centre and off-centre regions of this galaxy, in order to uncover its likely star formation history. We find evidence of older stars, in addition to young stars in the emission line regions. The metallicity of the stellar population is constrained to be [Z/H] ~ -1.1 to -1.6, which is extremely low, even for this low luminosity galaxy, since it is not classed as a dwarf spheroidal galaxy. The measured [alpha/Fe] ratio is sub-solar, which indicates an extended star formation history in NGC59. If such objects formed the building blocks of more massive, early-type galaxies, then they must have been gaseous mergers, rather than dry mergers, in order to increase the metals to observed levels in luminous, early-type galaxies.

  12. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  13. The potential role of NGC 205 in generating Andromeda's vast thin co-rotating plane of satellite galaxies

    CERN Document Server

    Angus, Garry W; Gentile, Gianfranco; Diaferio, Antonaldo

    2016-01-01

    The Andromeda galaxy is observed to have a system of two large dwarf ellipticals and ~13 smaller satellite galaxies that are currently co-rotating in a thin plane, in addition to 2 counter-rotating satellite galaxies. We explored the consistency of those observations with a scenario where the majority of the co-rotating satellite galaxies originated from a subhalo group, where NGC 205 was the host and the satellite galaxies occupied dark matter sub-subhalos. We ran N-body simulations of a close encounter between NGC 205 and M31. In the simulations, NGC 205 was surrounded by massless particles to statistically sample the distribution of the sub-subhalos expected in a subhalo that has a mass similar to NGC 205. We made Monte Carlo samplings and found that, using a set of reference parameters, the probability of producing a thinner distribution of sub-subhalos than the observed NGC 205 + 15 smaller satellites (thus including the 2 counter-rotators, but excluding M32) increased from <1e-8 for the initial distr...

  14. Missing dark matter in dwarf galaxies?

    Science.gov (United States)

    Oman, Kyle A.; Navarro, Julio F.; Sales, Laura V.; Fattahi, Azadeh; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; White, Simon D. M.

    2016-08-01

    We use cosmological hydrodynamical simulations of the APOSTLE project along with high-quality rotation curve observations to examine the fraction of baryons in ΛCDM haloes that collect into galaxies. This `galaxy formation efficiency' correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of observed dwarfs seem to violate this constraint, having baryonic masses up to 10 times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or their dark matter content is much lower than expected from ΛCDM haloes. This `missing dark matter' is reminiscent of the inner mass deficit of galaxies with slowly rising rotation curves, but cannot be explained away by star formation-induced `cores' in the dark mass profile, since the anomalous deficit applies to regions larger than the luminous galaxies themselves. We argue that explaining the structure of these galaxies would require either substantial modification of the standard ΛCDM paradigm or else significant revision to the uncertainties in their inferred mass profiles, which should be much larger than reported. Systematic errors in inclination may provide a simple resolution to what would otherwise be a rather intractable problem for the current paradigm.

  15. Pulsar searches in nearby dwarf spheroidal galaxies

    Science.gov (United States)

    Rubio-Herrera, Eduardo; Maccarone, Thomas

    2013-03-01

    We have been undertaking a comprehensive survey for pulsars and fast radio transients in the dwarf spheroidal satellite galaxies of the Milky Way using the Green Bank Radio Telescope operating at a central frequency of 350 MHz. Our search pipeline allows the detection of periodical signals and single dispersed pulses and it is optimized to search for millisecond radio pulsars. Here we present preliminary results of the searches we have conducted in the Ursa Minoris, Draco and Leo I dwarf spheroidal satellite galaxies. Our searches have revealed no periodic signals but a few unconfirmed millisecond single pulses at various dispersion measures, possibly related to neutron stars. Detecting neutron stars in these systems can potentially help to test the existence of haloes of dark matter surrounding these systems as predicted by Dehnen & King (2006).

  16. Tests of Modified Gravity with Dwarf Galaxies

    CERN Document Server

    Jain, Bhuvnesh

    2011-01-01

    In modified gravity theories that seek to explain cosmic acceleration, dwarf galaxies in low density environments can be subject to enhanced forces. The class of scalar-tensor theories, which includes f(R) gravity, predict such a force enhancement (massive galaxies like the Milky Way can evade it through a screening mechanism that protects the interior of the galaxy from this "fifth" force). We study observable deviations from GR in the disks of late-type dwarf galaxies moving under gravity. The fifth-force acts on the dark matter and HI gas disk, but not on the stellar disk owing to the self-screening of main sequence stars. We find four distinct observable effects in such disk galaxies: 1. A displacement of the stellar disk from the HI disk. 2. Warping of the stellar disk along the direction of the external force. 3. Enhancement of the rotation curve measured from the HI gas compared to that of the stellar disk. 4. Asymmetry in the rotation curve of the stellar disk. We estimate that the spatial effects can...

  17. A GMRT Study of Seyfert Galaxies NGC4235 & NGC4594: Evidence of Episodic Activity ?

    CERN Document Server

    Kharb, P; Singh, V; Gallimore, J F; Ishwara-Chandra, C H; Hota, Ananda

    2016-01-01

    Low frequency observations at 325 and 610 MHz have been carried out for two "radio-loud" Seyfert galaxies, NGC4235 and NGC4594 (Sombrero galaxy), using the Giant Meterwave Radio Telescope (GMRT). The 610 MHz total intensity and 325-610 MHz spectral index images of NGC4235 tentatively suggest the presence of a "relic" radio lobe, most likely from a previous episode of AGN activity. This makes NGC4235 only the second known Seyfert galaxy after Mrk6 to show signatures of episodic activity. Spitzer and Herschel infrared spectral energy distribution (SED) modelling using the clumpyDREAM code predicts star formation rates (SFR) that are an order of magnitude lower than those required to power the radio lobes in these Seyferts (~0.13-0.23 M_sun/yr compared to the required SFR of ~2.0-2.7 M_sun/yr in NGC4594 and NGC4235, respectively). This finding along with the detection of parsec and sub-kpc radio jets in both Seyfert galaxies, that are roughly along the same position angles as the radio lobes, strongly support th...

  18. The Unexpected Past of a Dwarf Galaxy

    Science.gov (United States)

    1996-08-01

    New Light on Cannibalism in the Local Group of Galaxies The Local Group of Galaxies consists of a few large spiral galaxies - for instance the Milky Way galaxy in which we live, and the Andromeda galaxy that is visible to the unaided eye in the northern constellation of the same name - as well as two dozen much smaller galaxies of mostly irregular shape. Whereas the larger galaxies have extended halos of very old stars, no such halos have ever been seen around the smaller ones. Now, however, Dante Minniti and Albert Zijlstra [1], working at the ESO 3.5-metre New Technology Telescope (NTT), have found a large halo of old and metal-poor stars around one of the dwarf galaxies in the Local Group. This finding is quite unexpected. It revises our understanding of star formation in these galaxies and provides important information about the past evolution of galaxies [2]. Galaxy halos The Milky Way galaxy is surrounded by a large, roughly spherical halo of old stars. The diameter is about 100,000 light years and the stars therein, known as Population II stars, are among the oldest known, with ages of 10 billion years or even more. They also differ from the younger stars nearer to the main plane of the Milky Way (in which our 4.7 billion year old Sun is located) by being very metal-poor. Many of the halo stars consist almost solely of hydrogen and helium, reflecting the composition of matter in the young Universe. This halo is important for our understanding of the processes that led to the formation of the Milky Way galaxy. It is believed that many of the halo stars and those of the same type found in globular clusters existed already before the Milky Way had fully formed. Galaxy cannibalism Many astronomers suspect that galaxies evolve and gradually grow larger and heavier by practising cannibalism on their own kind. In this picture, when two galaxies collide in space, the stars and nebulae in the smaller one will disperse and soon be taken over by the larger one, which

  19. A STUDY OF THE RINGED GALAXIES NGC-2273, NGC-4826, AND NGC-6217 .1. H-I LINE OBSERVATIONS

    NARCIS (Netherlands)

    VANDRIEL, W; BUTA, RJ

    1991-01-01

    The ringed galaxies NGC2273, 4826, and 6217 were mapped in the 21 cm H I line at Westerbork with a velocity resolution of 40, 20 and 20 km s-1, and a spatial resolution of 23" x 27", 28" x 60" and 13" x 14" (alpha x delta), respectively. Here we use H(o) = 100 km s-1 Mpc-1. NGC 2273 (= Mk 620) is a

  20. The Molecular Interstellar Medium of the Local Group Dwarf NGC6822

    CERN Document Server

    Gratier, P; Rodriguez-Fernandez, N J; Israel, F P; Schuster, K F; Brouillet, N; Gardan, E

    2010-01-01

    Do molecular clouds collapse to form stars at the same rate in all environments? In large spiral galaxies, the rate of transformation of H2 into stars (hereafter SFE) varies little. However, the SFE in distant objects (z~1) is much higher than in the large spiral disks that dominate the local universe. Some small local group galaxies share at least some of the characteristics of intermediate-redshift objects, such as size or color. Recent work has suggested that the Star Formation Efficiency (SFE, defined as the SFRate per unit H2) in local Dwarf galaxies may be as high as in the distant objects. A fundamental difficulty in these studies is the independent measure of the H2 mass in metal-deficient environments. At 490 kpc, NGC6822 is an excellent choice for this study; it has been mapped in the CO(2-1) line using the multibeam receiver HERA on the 30 meter IRAM telescope, yielding the largest sample of giant molecular clouds (GMCs) in this galaxy. Despite the much lower metallicity, we find no clear differenc...

  1. Galaxy evolution in nearby galaxy groups. III. A GALEX view of NGC 5846, the largest group in the local universe

    CERN Document Server

    Marino, Antonietta; Rampazzo, Roberto; Bianchi, Luciana

    2016-01-01

    We explore the co-evolution of galaxies in nearby groups (V < 3000 km/s) with a multi-wavelength approach. We analyze GALEX far-UV (FUV) and near-UV (NUV) imaging and SDSS u,g,r,i,z data of groups spanning a large range of dynamical phases. We characterize the photometric properties of spectroscopically-confirmed galaxy members and investigate the global properties of the groups through a dynamical analysis. Here we focus on NGC 5846, the third most massive association of Early-Type Galaxies (ETG) after the Virgo and Fornax clusters. The group, composed of 90 members, is dominated by ETGs (about 80 per cent), and among ETGs about 40\\% are dwarfs. Results are compared with those obtained for three groups in the LeoII cloud, which are radically different both in member-galaxy population and dynamical properties. The FUV-NUV cumulative colour distribution and the normalized UV luminosity function (LF) significantly differ due to the different fraction of late-type galaxy population. The UV LF of NGC 5846 rese...

  2. Global HI Kinematics in Dwarf Galaxies

    CERN Document Server

    Stilp, Adrienne M; Warren, Steven R; Skillman, Evan; Ott, Juergen; Koribalski, Baerbel

    2013-01-01

    HI line widths are typically interpreted as a measure of ISM turbulence, which is potentially driven by star formation. In an effort to better understand the possible connections between line widths and star formation, we have characterized \\hi{} kinematics in a sample of nearby dwarf galaxies by co-adding line-of-sight spectra after removing the rotational velocity to produce an average, global \\hi{} line profile. These "superprofiles" are composed of a central narrow peak (~6-10 km/s) with higher-velocity wings to either side that contain ~10-15% of the total flux. The superprofiles are all very similar, indicating a universal global HI profile for dwarf galaxies. We compare characteristics of the superprofiles to various galaxy properties, such as mass and measures of star formation (SF), with the assumption that the superprofile represents a turbulent peak with energetic wings to either side. We use these quantities to derive average scale heights for the sample galaxies. When comparing to physical proper...

  3. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    CERN Document Server

    Hoeft, Matthias

    2010-01-01

    Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in Universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed, that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultra-violet background radiation low-mass haloes show generally are reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 km/s. The suppressed baryon accretion is caused by the...

  4. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    Directory of Open Access Journals (Sweden)

    Matthias Hoeft

    2010-01-01

    Full Text Available Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in the universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultraviolet background radiation low-mass haloes show generally a reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 kms−1. The suppressed baryon accretion is caused by the photo-heating due to the UV background. We set up a spherical halo model and show that the effective equation of the state of the gas in the periphery of dwarf galaxies determines the characteristic mass. This implies that any process which heats the gas around dwarf galaxies increases the characteristic mass and thus reduces the number of observable dwarf galaxies.

  5. Hydrogen fluoride toward luminous nearby galaxies: NGC 253 and NGC 4945

    Energy Technology Data Exchange (ETDEWEB)

    Monje, R. R.; Lis, D. C.; Phillips, T. G. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125-4700 (United States); Lord, S. [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Falgarone, E. [LERMA/LRA, Ecole Normale Supérieure and Observatoire de Paris, 24 rue Lhomond, F-75005 Paris (France); Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Güsten, R., E-mail: raquel@caltech.edu [Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-04-10

    We present the detection of hydrogen fluoride (HF) in two luminous nearby galaxies, NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H{sub 2}){sub out} ∼ 1 × 10{sup 7} M {sub ☉} and an outflow rate as large as M-dot ∼6.4 M {sub ☉} yr{sup –1}. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile are compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of ≤1.2 M {sub ☉} yr{sup –1}, inside an inner radius of ≤200 pc. The gas accretion rate to the central active galactic nucleus is much smaller, suggesting that the inflow may be triggering a nuclear starburst. From these results, the HF J = 1-0 line is seen to provide an important probe of the kinematics of absorbing material along the sight-line to nearby galaxies with bright dust continuum and a promising new tracer of molecular gas in high-redshift galaxies.

  6. NGC 5523: An Isolated Product of Soft Galaxy Mergers?

    CERN Document Server

    Fulmer, Leah M; Kotulla, Ralf

    2016-01-01

    Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger: (1) Near-infrared (NIR) images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk. (2) The bulge is offset by ~1.8 kpc from a brightness minimum at the center of the optically bright inner disk. (3) A tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions.

  7. Star formation properties in barred galaxies (SFB) Ⅱ.NGC 2903 and NGC 7080

    Institute of Scientific and Technical Information of China (English)

    Zhi-Min Zhou; Chen Cao; Hong Wu

    2012-01-01

    Stellar bars are important for the secular evolution of disk galaxies because they can drive gas into the galactic central regions.To investigate the star formation properties in barred galaxies,we presented a multi-wavelength study of two barred galaxies:NGC 2903 and NGC 7080.We performed the three-component bulge-diskbar decomposition using the 3.6 μm images,and identified the bulges in the two galaxies as pseudobulges.Based on the narrowband Hα images,the star formation clumps were identified and analyzed.The clumps in the bulge regions have the highest surface densities of star formation rates in both galaxies,while the star formation activities in the bar of NGC 2903 are more intense than those in the bar of NGC 7080.Finally,we compared our results with the scenario of bar-driven secular evolution in previous studies,and discussed the possible evolutionary stages of the two galaxies.

  8. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    Science.gov (United States)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  9. The Dragonfly Nearby Galaxies Survey. II. Ultra diffuse galaxies near the elliptical galaxy NGC 5485

    CERN Document Server

    Merritt, Allison; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I D; Makarova, L N

    2016-01-01

    We present the unexpected discovery of four ultra diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of $10"-38"$ and central surface brightnesses of $25.6-27.7$ mag arcsec$^{-2}$ in g-band. We subsequently obtained follow-up observations with $HST$ to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of $HST$/ACS, which implies distances of $D > 17.5$ Mpc. We show that the galaxies are most likely associated with a background group at $\\sim 27$ Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of $2.6-4.9$ kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonst...

  10. The Faint Globular Cluster in the Dwarf Galaxy Andromeda I

    Science.gov (United States)

    Caldwell, Nelson; Strader, Jay; Sand, David J.; Willman, Beth; Seth, Anil C.

    2017-09-01

    Observations of globular clusters in dwarf galaxies can be used to study a variety of topics, including the structure of dark matter halos and the history of vigorous star formation in low-mass galaxies. We report on the properties of the faint globular cluster (M V -3.4) in the M31 dwarf galaxy Andromeda I. This object adds to the growing population of low-luminosity Local Group galaxies that host single globular clusters.

  11. The Nature of the Peculiar Virgo Cluster Galaxies NGC 4064 and NGC 4424

    CERN Document Server

    Cortes, J R; Hardy, E

    2006-01-01

    We present a detailed study of the peculiar HI-deficient Virgo cluster spiral galaxies NGC 4064 and NGC 4424, using $^{12}$CO 1-0 interferometry, optical imaging and integral-field spectroscopic observations, in order to learn what type of environmental interactions have afected these galaxies. Optical imaging reveals that NGC 4424 has a strongly disturbed stellar disk, with banana-shaped isophotes and shells. NGC 4064, which lies in the cluster outskirts, possesses a relatively undisturbed outer stellar disk and a central bar. In both galaxies H-alpha emission is confined to the central kiloparsec. CO observations reveal bilobal molecular gas morphologies, with H-alpha emission peaking inside the CO lobes, implying a time sequence in the star formation process.Gas kinematics reveals strong bar-like non-circular motions in the molecular gas in both galaxies, suggesting that the material is radially infalling. In NGC 4064 the stellar kinematics reveal strong bar-like non-circular motions in the central 1 kpc. ...

  12. Detection of infalling hydrogen in transfer between the interacting galaxies NGC 5426 and NGC 5427

    CERN Document Server

    Font, Joan; Rosado, Margarita; Epinat, Benoît; Fathi, Kambiz; Hernandez, Olivier; Carignan, Claude; Gutiérrez, Leonel; Relaño, Monica; Blasco-Herrera, Javier; Fuentes-Carrera, Isaura

    2011-01-01

    Using velocity tagging we have detected hydrogen from NGC 5426 falling onto its interacting partner NGC 5427. Our observations, with the GHaFaS Fabry-Perot spectrometer, produced maps of the two galaxies in Halpha surface brightness and radial velocity. We found emission with the range of velocities associated with NGC 5426 along lines of sight apparently emanating from NGC 5427, superposed on the velocity map of the latter. After excluding instrumental effects we assign the anomalous emission to gas pulled from NGC 5426 during its passage close to NGC 5427. Its distribution, more intense between the arms and just outside the disk of NGC 5427, and weak, or absent, in the arms, suggests that the infalling gas is behind the disk., ionized by Lyman continuum photons escaping from NGC 5427. Modeling this, we estimate the distances of these gas clouds- behind the plane: a few hundred pc to a few kpc. We also estimate the mass of the infalling (ionized plus neutral) gas, finding an infall rate of 10 solar masses pe...

  13. The Alignment of Red-Sequence Dwarf Galaxies

    Science.gov (United States)

    Archer, Haylee; Barkhouse, Wayne; Burgad, Jaford; Foote, Gregory; Rude, Cody; Lopez-Cruz, Omar

    2015-01-01

    The alignment of cluster galaxies has been used to determine the impact of the high-density environment on the evolution of galaxies. We have undertaken a study to measure the alignment of cluster dwarf galaxies based on a sample of 57 low-redshift Abell clusters imaged at KPNO using the 0.9-meter telescope. To supplement our KPNO sample, we have included an additional 64 low-redshift clusters from the WINGS dataset. From the combined cluster sample (121 clusters), we have selected cluster dwarf galaxies based on their position relative to the cluster red-sequence. We present our preliminary results based on the alignment of the dwarf galaxies with: 1) the major axis of the brightest cluster galaxy, 2) the major axis of the cluster defined by position of the cluster members, and 3) a radius vector pointing from the cluster center to the dwarf galaxy.

  14. Formation of Isolated Dwarf Galaxies with Feedback

    CERN Document Server

    Sawala, Till; White, Simon D M

    2009-01-01

    We present results of high resolution hydrodynamical simulations of the formation and evolution of dwarf spheroidal galaxies. Our simulations start from cosmological initial conditions at high redshift. They include metal-dependent cooling, star formation, feedback from type II and type Ia supernovae and UV background radiation, with sub-grid recipes identical to those applied in a previous study of Milky Way type galaxies. We find that a combination of feedback and the cosmic UV background is necessary to explain the properties of dwarf spheroidal galaxies in isolation, and that their effect is strongly moderated by the depth of the gravitational potential. Taking this into account, our models naturally reproduce the observed luminosities and metallicities. The final objects have halo masses between 2.3*10^8 and 1.1*10^9 solar masses, mean velocity dispersions between 6.5 and 9.7 kms^-1, stellar masses ranging from 5*10^5 to 1.2*10^7 solar masses, median metallicities between [Fe/H] = -1.8 and -1.1, and half...

  15. GLOBAL H I KINEMATICS IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Stilp, Adrienne M.; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Warren, Steven R.; Skillman, Evan [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2013-03-10

    H I line widths are typically interpreted as a measure of interstellar medium turbulence, which is potentially driven by star formation (SF). In an effort to better understand the possible connections between line widths and SF, we have characterized H I kinematics in a sample of nearby dwarf galaxies by co-adding line-of-sight spectra after removing the rotational velocity to produce average global H I line profiles. These ''superprofiles'' are composed of a central narrow peak ({approx}6-10 km s{sup -1}) with higher-velocity wings to either side that contain {approx}10%-15% of the total flux. The superprofiles are all very similar, indicating a universal global H I profile for dwarf galaxies. We compare characteristics of the superprofiles to various galaxy properties, such as mass and measures of SF, with the assumption that the superprofile represents a turbulent peak with energetic wings to either side. We use these quantities to derive average scale heights for the sample galaxies. When comparing to physical properties, we find that the velocity dispersion of the central peak is correlated with ({Sigma}{sub HI}). The fraction of mass and characteristic velocity of the high-velocity wings are correlated with measures of SF, consistent with the picture that SF drives surrounding H I to higher velocities. While gravitational instabilities provide too little energy, the SF in the sample galaxies does provide enough energy through supernovae, with realistic estimates of the coupling efficiency, to produce the observed superprofiles.

  16. Dwarf satellite galaxies in the modified dynamics

    CERN Document Server

    Milgrom, M

    2000-01-01

    In the modified dynamics (MOND) the inner workings of dwarf satellites can be greatly affected by their mother galaxy-over and beyond its tidal effects. Because of MOND's nonlinearity a system's internal dynamics can be altered by an external field in which it is immersed (even when this field, by itself, is constant in space). As a result, the size and velocity dispersion of the satellite vary as the external field varies along its orbit. A notable outcome of this is a substantial increase in the dwarf's vulnerability to eventual tidal disruption-rather higher than Newtonian dynamics (with a dark-matter halo) would lead us to expect for a satellite with given observed parameters.

  17. Blue diffuse dwarf galaxies: a clearer picture

    CERN Document Server

    James, Bethan L; Stark, Daniel P; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W; McQuinn, Kristen B W

    2016-01-01

    The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), i.e., galaxies with <1/10 solar metallicity. However, due to the bright emission line based search criteria traditionally used to find XMPs, we may not be sampling the full XMP population. In 2014 we reoriented this search using only morphological properties and uncovered a population of ~150 `blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their SDSS photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43<12+log(O/H)<8.01), with ~20% of our sample classified as being XMP galaxies, and find they are actively forming stars at rates ...

  18. Globular Clusters, Ultracompact Dwarfs, and Dwarf Galaxies in Abell 2744 at the Redshift of 0.308

    CERN Document Server

    Lee, Myung Gyoon

    2016-01-01

    We report a photometric study of globular clusters (GCs), ultracompact dwarfs (UCDs), and dwarf galaxies in the giant merging galaxy cluster Abell 2744 at z = 0.308. Color-magnitude diagrams of the point sources derived from deep F814W (restframe r') and F105W (restframe I) images of Abell 2744 in the Hubble Space Telescope Frontier Field show a rich population of point sources whose colors are similar to those of typical GCs. These sources are as bright as -14.9 < M_r' < -11.4 (26.0 < F814W < 29.5) mag, being mostly UCDs and bright GCs in Abell 2744. The luminosity function (LF) of these sources shows a break at M_r' ~ -12.9 (F814W ~ 28.0) mag, indicating a boundary between UCDs and bright GCs. The numbers of GCs and UCDs are estimated to be N_GC = 385,000+-24,000, and 147 +- 26, respectively. The clustercentric radial number density profiles of the UCDs and bright GCs show similar slopes, but these profiles are much steeper than that of the dwarf galaxies and the mass density profile based on gr...

  19. Star formation in proto dwarf galaxies

    Science.gov (United States)

    Noriega-Crespo, A.; Bodenheimer, P.; Lin, D. N. C.; Tenorio-Tagle, G.

    1990-01-01

    The effects of the onset of star formation on the residual gas in primordial low-mass Local-Group dwarf spheroidal galaxies is studied by a series of hydrodynamical simulations. The models have concentrated on the effect of photoionization. The results indicate that photoionization in the presence of a moderate gas density gradient can eject most of the residual gas on a time scale of a few 10 to the 7th power years. High central gas density combined with inefficient star formation, however, may prevent mass ejection. The effect of supernova explosions is discussed briefly.

  20. A mid-IR comparative analysis of the Seyfert galaxies NGC 7213 and NGC 1386

    Science.gov (United States)

    Ruschel-Dutra, Daniel; Pastoriza, Miriani; Riffel, Rogério; Sales, Dinalva A.; Winge, Cláudia

    2014-03-01

    New Gemini mid-infrared spectroscopic observations together with Spitzer Space telescope archival data are used to study the properties of the dusty torus and circumnuclear star formation in the active galaxies NGC 7213 and NGC 1386. Our main conclusions can be summarized as follows. Polycyclic aromatic hydrocarbon (PAH) emission is absent in the Thermal-Region Camera and Spectrograph (T-ReCS) nuclear spectra but is ubiquitous in the data from Spitzer at distances above 100 pc. Star formation rates surface densities are estimated from the 12.8 μm [Ne II] line strengths leading to values close to 0.1 M⊙ yr-1 kpc-2. Analogous estimates based on photometric fluxes of Infrared Array Camera's 8 μm images are higher by a factor of almost 15, which could be linked to excitation of PAH molecules by older stellar populations. T-ReCS high-spatial-resolution data reveal silicate absorption at λ 9.7 μm in the central tens of parsecs of the Seyfert 2 NGC 1386 and silicate emission in the Seyfert 1 galaxy NGC 7213. In the case of NGC 1386, this feature is confined to the inner 20 pc, implying that the silicate might be linked to the putative dusty torus. Finally, by fitting CLUMPY models to the T-ReCS nuclear spectra, we estimate the torus physical properties for both galaxies, finding line-of-sight inclinations consistent with the AGN unified model.

  1. Nuclear stellar discs in low-luminosity elliptical galaxies: NGC 4458 and NGC 4478

    CERN Document Server

    Morelli, L; Corsini, E M; Pizzella, A; Thomas, D; Saglia, R P; Davies, R L; Bender, R; Birkinshaw, M; Bertola, F

    2004-01-01

    We present the detection of nuclear stellar discs in the low-luminosity elliptical galaxies NGC 4458 and NGC 4478, which are known to host a kinematically-decoupled core. Using archival HST imaging, and available absorption line-strength index data based on ground-based spectroscopy, we investigate the photometric parameters and the properties of the stellar populations of these central structures. Their scale length, h, and face-on central surface brightness, mu_0^c, fit on mu_0^c-h relation for galaxy discs. For NGC 4458 these parameters are typical for nuclear discs, while the same quantities for NGC 4478 lie between those of nuclear discs and the discs of discy ellipticals. We present Lick/IDS absorption line-strength measurements of Hbeta, Mgb, along the major and minor axes of the galaxies. We model these data with simple stellar populations that account for the alpha/Fe overabundance. The counter-rotating central disc of NGC 4458 is found to have similar properties to the decoupled cores of bright ell...

  2. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    Science.gov (United States)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  3. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    Science.gov (United States)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  4. Mapping Diffuse HI Content in MHONGOOSE Galaxies NGC 1744 and NGC 7424

    Science.gov (United States)

    Sardone, Amy; Pisano, Daniel J.; Pingel, Nickolas

    2017-01-01

    The universe contains an abundance of neutral atomic hydrogen, or HI. This HI holds the key to knowing how stars are born, how galaxies form and develop, and how dark matter halos accrete gas from the cosmic web. One of the most crucial questions regarding galaxy formation today is how galaxies accrete their gas and how accretion processes affect subsequent star formation. We are trying to answer these questions by mapping the HI content in a four square degree region around galaxies NGC 1744 and NGC 7424, galaxies to be observed as part of the MHONGOOSE survey. NGC 1744 has already been observed extensively with the VLA, so we will be able to quantify the differences in emission. To do this our GBT maps must be sensitive to column densities on the order of ~1018 cm-2. With such low column densities, we will be able to search for features of the cosmic web in the form of tidal interactions and cosmic web filaments with its relation to star-forming galaxies.

  5. Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: NGC 628 and NGC 6946

    CERN Document Server

    Aniano, G; Calzetti, D; Dale, D A; Engelbracht, C W; Gordon, K D; Hunt, L K; Kennicutt, R C; Krause, O; Leroy, A K; Rix, H-W; Roussel, H; Sandstrom, K; Sauvage, M; Walter, F; Armus, L; Bolatto, A D; Crocker, A; Meyer, J Donovan; Galametz, M; Helou, G; Hinz, J; Johnson, B D; Koda, J; Montiel, E; Murphy, E J; Skibba, R; Smith, J -D T; Wolfire, M G

    2012-01-01

    We characterize the dust in NGC628 and NGC6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6um to 500um, dust models are strongly constrained. Using the Draine & Li (2007) dust model, (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons (PAH)s, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082+/-0.0017 for NGC628, and 0.0063+/-0.0009 for NGC6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by...

  6. Testing modified gravity with dwarf spheroidal galaxies

    Science.gov (United States)

    Haghi, Hosein; Amiri, Vahid

    2016-12-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light (M*/L) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion (σlos) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant M*/L ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters α and μ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The H I Nearby Galaxy Survey catalogue of galaxies. We find that the derived M*/L ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of the dSph with reasonable M*/L values, we must vary α and μ on a case by case basis. A common pair of values cannot be found for all dSphs. Comparing with the values found from rotation curve fitting, it appears that μ correlates strongly with galaxy luminosity, shedding doubt on it as a universal constant.

  7. Cores in Dwarf Galaxies from Fermi Repulsion

    CERN Document Server

    Randall, Lisa; Unwin, James

    2016-01-01

    We show that Fermi repulsion can lead to cored density profiles in dwarf galaxies for sub-keV fermionic dark matter. We treat the dark matter as a quasi-degenerate self-gravitating Fermi gas and calculate its density profile assuming hydrostatic equilibrium. We find that suitable dwarf galaxy cores of larger than 130 pc can be achieved for fermion dark matter with mass in the range 70 eV - 400 eV. While in conventional dark matter scenarios, such sub-keV thermal dark matter would be excluded by free streaming bounds, the constraints are ameliorated in models with dark matter at lower temperature than conventional thermal scenarios, such as the Flooded Dark Matter model that we have previously considered. Modifying the arguments of Tremaine and Gunn we derive a conservative lower bound on the mass of fermionic dark matter of 70 eV and a stronger lower bound from Lyman-$\\alpha$ clouds of about 470 eV, leading to slightly smaller cores than have been observed. We comment on this result and how the tension is rel...

  8. The ACS Nearby Galaxy Survey Treasury VI. The Ancient Star Forming disk of NGC 404

    CERN Document Server

    Williams, Benjamin F; Gilbert, Karoline M; Stilp, Adrienne; Dolphin, Andrew; Seth, Anil C; Weisz, Daniel; Skillman, Evan

    2010-01-01

    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. Our deepest field reaches the red clump and main-sequence stars with ages 10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that ~70% of the stellar mass in the NGC 404 disk formed by z~2 (10 Gyr ago) and at least ~90% formed prior to z~1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early and late type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in GALEX images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mas...

  9. The Young Stellar Population of the Nearby Late-Type Galaxy NGC 1311

    CERN Document Server

    Eskridge, Paul B; Mager, Violet A; Jansen, Rolf A

    2010-01-01

    We have extracted PSF-fitted stellar photometry from near-ultraviolet, optical and near-infrared images, obtained with the Hubble Space Telescope, of the nearby (D ~ 5.5 Mpc) SBm galaxy NGC 1311. The ultraviolet and optical data reveal a population of hot main sequence stars with ages of 2-10 Myr. We also find populations of blue supergiants with ages between 10 and 40 Myr and red supergiants with ages between 10 and 100 Myr. Our near-infrared data shows evidence of star formation going back ~1 Gyr, in agreement with previous work. Fits to isochrones indicate a metallicity of Z ~ 0.004. The ratio of blue to red supergiants is consistent with this metallicity. This indicates that NGC 1311 follows the well-known luminosity-metallicity relation for late-type dwarf galaxies. About half of the hot main sequence stars and blue supergiants are found in two regions in the inner part of NGC 1311. These two regions are each about 200 pc across, and thus have crossing times roughly equal to the 10 Myr age we find for th...

  10. The Hydra I cluster core. I. Stellar populations in the cD galaxy NGC 3311

    Science.gov (United States)

    Barbosa, C. E.; Arnaboldi, M.; Coccato, L.; Hilker, M.; Mendes de Oliveira, C.; Richtler, T.

    2016-05-01

    Context. The history of the mass assembly of brightest cluster galaxies may be studied by mapping the stellar populations at large radial distances from the galaxy centre, where the dynamical times are long and preserve the chemodynamical signatures of the accretion events. Aims: We provide extended and robust measurements of the stellar population parameters in NGC 3311, the cD galaxy at the centre of the Hydra I cluster, and out to three effective radii. We wish to characterize the processes that drove the build-up of the stellar light at all these radii. Methods: We obtained the spectra from several regions in NGC 3311 covering an area of ~3 arcmin2 in the wavelength range 4800 ≲ λ(Å) ≲ 5800, using the FORS2 spectrograph at the Very Large Telescope in the MXU mode. We measured the equivalent widths of seven absorption-features defined in the Lick/IDS system, which were modelled by single stellar populations, to provide luminosity-weighted ages, metallicities, and alpha element abundances. Results: The trends in the Lick indices and the distribution of the stellar population parameters indicate that the stars of NGC 3311 may be divided in two radial regimes, one within and the another beyond one effective radius, Re = 8.4 kpc, similar to the distinction between the inner galaxy and the external halo derived from the NGC 3311 velocity dispersion profile. The inner galaxy (R ≤ Re) is old (age ~14 Gyr), has negative metallicity gradients and positive alpha element gradients. The external halo is also very old, but has a negative age gradient. The metal and element abundances of the external halo both have a large scatter, indicating that stars from a variety of satellites with different masses have been accreted. The region in the extended halo associated with the off-centred envelope at 0°parent galaxies, either disks with truncated star formation, or the outer regions of early-type galaxies. Late mass accretion at large radii is now coming from the tidal

  11. Evolutionary properties of the low-luminosity galaxy population in the NGC 5044 Group

    Science.gov (United States)

    Buzzoni, A.; Cellone, S. A.; Saracco, P.; Zucca, E.

    2012-03-01

    In this third paper of a series we present Johnson-Gunn B, g, V, r, i, z multicolour photometry for 79 objects, including a significant fraction of the faintest galaxies around NGC 5044, assessing group membership on the basis of apparent morphology (through accurate Sérsic-profile fitting) and low-resolution (R= 500-1000) optical spectroscopy to estimate the redshift for 21 objects. Early- and late-type systems are found to be clearly separate in Sérsic parameter space, with the well-known luminosity versus shape relation being mostly traced by different morphological types spanning different ranges in the shape parameter n. A significantly blue colour is confirmed for Magellanic irregulars (Sm/Ims), while a drift toward bluer integrated colours is also an issue for dwarf ellipticals (dEs). Both features point to moderate but pervasive star-formation activity even among nominally 'quiescent' stellar systems. Together, dEs and Ims provide the bulk of the galaxy luminosity function, around M(g) ≃-18.0 ± 1.5, while the S0 and dwarf spheroidal (dSph) components dominate the bright and faint-end tails of the distribution respectively. This special mix places the NGC 5044 Group just 'midway' between the high-density cosmic aggregation scale typical of galaxy clusters and the low-density environment of looser galaxy clumps like our Local Group. The bright mass of the 136 member galaxies with available photometry and morphological classification, as inferred from appropriate M/L model fitting, amounts to a total of 2.3 × 1012 M⊙. This is one seventh of the total dynamical mass of the group, according to its X-ray emission. The current star-formation rate within the group turns to be about 23 M⊙ yr-1, a figure that may however be slightly increased as a result of the evident activity among dwarf ellipticals, as shown by enhanced Hβ emission in their spectra. Lick narrow-band indices have been computed for 17 galaxies, probing all the relevant atomic and

  12. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes

    CERN Document Server

    García-Berro, Enrique; Althaus, Leandro G; Renedo, Isabel; Lorén-Aguilar, Pablo; Córsico, Alejandro H; Rohrmann, René D; Salaris, Maurizio; Isern, Jordi

    2010-01-01

    NGC 6791 is a well studied open cluster1 that it is so close to us that can be imaged down to very faint luminosities. The main sequence turn-off age (~8 Gyr) and the age derived from the termination of the white dwarf cooling sequence (~6 Gyr) are significantly different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, 22Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallise and phase separation of the main constituents of the core of a typical white dwarf, 12C and 16O, is expected to occur. This sequence of events is expected to introduce significant delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, solving the age discrepancy for NGC 6791.

  13. Dark Matter Deprivation in Field Elliptical Galaxy NGC 7507

    CERN Document Server

    Lane, Richard R; Richtler, Tom

    2014-01-01

    Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of LCDM cosmologies, all galaxies should have a large dark matter component. We use penalised pixel fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling we produce best fit models to the velocity dispersion. We find that NGC 7507 has a two component stellar halo, with the outer halo and inner haloes counter rotating. The velocity dispersion profile exhibits an increase at ~70" (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy which include ~100 times less dark matter than predicted by LCDM, although mildly anisotropic models that are completely dark matter free fit almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at a...

  14. Discovery of true, likely and possible symbiotic stars in the dwarf spheroidal NGC 205

    CERN Document Server

    Gonçalves, Denise R; de la Rosa, Ignacio G; Akras, Stavros

    2014-01-01

    In this paper we discuss the photometric and spectroscopic observations of newly discovered (symbiotic) systems in the dwarf spheroidal galaxy NGC 205. The Gemini Multi-Object Spectrograph on-off band [O III] 5007 A emission imaging highlighted several [O III] line emitters, for which optical spectra were then obtained (Gon\\c{c}alves et al. 2014). The detailed study of the spectra of three objects allow us to identify them as true, likely and possible symbiotic systems (SySts), the first ones discovered in this galaxy. SySt-1 is unambiguously classified as a symbiotic star, because of the presence of unique emission lines which belong only to symbiotic spectra, the well known O VI Raman scattered lines. SySt-2 is only possibly a SySt because the Ne VII Raman scattered line at 4881 A, recently identified in a well studied Galactic symbiotic as another very conspicuous property of symbiotic, could as well be identified as N III or [Fe III]. Finally, SySt-3 is likely a symbiotic binary because in the red part of...

  15. Hydrogen Fluoride toward Luminous Nearby Galaxies: NGC 253 and NGC 4945

    CERN Document Server

    Monje, R R; Falgarone, E; Lis, D C; Neufeld, D A; Phillips, T G; Güsten, R

    2014-01-01

    We present the detection of hydrogen fluoride, HF, in two luminous nearby galaxies NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared (HIFI) on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H$_2$)$_{out}$ $\\sim$ 1 $\\times$ 10$^7$ M$_\\odot$ and an outflow rate as large as \\.{M} $\\sim$ 6.4 M$_\\odot$ yr$^{-1}$. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile is compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of $\\le$ 1.2 M$_\\odot$ yr$^{-1}$, inside a inner radius of $\\le$ 200 pc. The gas accretion rate to the central AGN is much smaller, suggesting that the inflow can be triggering a nuclear starburst. From these results, the HF $J = 1-0$ ...

  16. Circumnuclear molecular gas in megamaser disk galaxies NGC 4388 and NGC 1194

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Jenny E. [Department of Astrophysics, Princeton University, Princeton, NJ 08540 (United States); Seth, Anil [University of Utah, Salt Lake City, UT 84112 (United States); Lyubenova, Mariya; Van de Ven, Glenn; Läsker, Ronald [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Walsh, Jonelle [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States)

    2014-06-20

    We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-parsec scales. We present NIR IFU data with a resolution of ∼50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ∼100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for noncircular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100 parsec scales aligned with the megamaser disk. In contrast, the high ionization lines and Brγ trace outflow along the 100 parsec-scale jet. In NGC 1194, the continuum from the accreting black hole is very strong, making it difficult to measure robust two-dimensional kinematics, but the spatial distribution and line ratios of the molecular hydrogen and Brγ have consistent properties between the two galaxies.

  17. Constraining Galaxy Formation Models with Dwarf Ellipticals in Clusters

    CERN Document Server

    Conselice, C J

    2005-01-01

    Recent observations demonstrate that dwarf elliptical (dE) galaxies in clusters, despite their faintness, are likely a critical galaxy type for understanding the processes behind galaxy formation. Dwarf ellipticals are the most common galaxy type, and are particularly abundant in rich galaxy clusters. The dwarf to giant ratio is in fact highest in rich clusters of galaxies, suggesting that cluster dEs do not form in groups that later merge to form clusters. Dwarf ellipticals are potentially the only galaxy type whose formation is sensitive to global, rather than local, environment. The dominant idea for explaining the formation of these systems, through Cold Dark Matter models, is that dEs form early and within their present environments. Recent results suggest that some dwarfs appear in clusters after the bulk of massive galaxies form, a scenario not predicted in standard hierarchical structure formation models. Many dEs have younger and more metal rich stellar populations than dwarfs in lower density enviro...

  18. The multifrequency spectrum of the starburst galaxy NGC 2782

    Science.gov (United States)

    Kinney, A. L.; Bregman, J. N.; Huggins, P. J.; Glassgold, A. E.; Cohen, R. D.

    1984-01-01

    The nuclear region of NGC 2782 has been observed at radio, millimeter, infrared, optical, ultraviolet, and X-ray frequencies to understand the ionization source that gives rise to the narrow emission lines. The continuum is probably caused by a normal galactic population plus considerable numbers of young stars and warm dust. In the ultraviolet and optical spectra, which are powerful diagnostics, no strong lines are detected in the 1200 A-3200 A region aside from L-alpha, and the optical emission lines cover only a narrow ionization range. The line and continuum properties suggest that NGC 2782 is a starburst galaxy, in which young stars photoionize the surrounding gas.

  19. Life and times of dwarf spheroidal galaxies

    CERN Document Server

    Salvadori, S; Schneider, R

    2008-01-01

    We propose a cosmological scenario for the formation and evolution of dwarf spheroidal galaxies (dSphs), satellites of the Milky Way (MW). An improved version of the semi-analytical code GAMETE (GAlaxy Merger Tree & Evolution) is used to follow the dSphs evolution simultaneously with the MW formation, matching the observed properties of both. In this scenario dSph galaxies represent fossil objects virializing at z = 7.2 +/- 0.7 (i.e. in the pre-reionization era z > z_rei = 6) in the MW environment, which at that epoch has already been pre-enriched up to [Fe/H] ~ -3; their dynamical masses are in the narrow range M = (1.6 +/- 0.7) x 10^8 M_sun, although a larger spread might be introduced by a more refined treatment of reionization. Mechanical feedback effects are dramatic in such low-mass objects, causing the complete blow-away of the gas ~100 Myr after the formation epoch: 99% of the present-day stellar mass, M_* = (3 +/- 0.7) x 10^6 M_sun, forms during this evolutionary phase, i.e. their age is >13 Gyr....

  20. Testing modified gravity with dwarf spheroidal galaxies

    CERN Document Server

    Haghi, Hosein

    2016-01-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light ($M_*/L$) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion ($\\sigma_{\\emph{los}}$) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant $M_*/L$ ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters $ \\alpha $ and $ \\mu $ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The HI Nearby Galaxy Survey catalogue of galaxies. We find that the derived $M_*/L$ ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of ...

  1. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  2. The NGC 672 and NGC 784 Galaxy Groups: Evidence for Galaxy Formation and Growth Along a Nearby Dark Matter Filament

    CERN Document Server

    Zitrin, Adi

    2008-01-01

    (Abridged): We present U, B, V, R, I, H-alpha and NUV photometry of 14 galaxies in the very local Universe (within 10 Mpc that are dwarf irregular galaxies (dIrr), are at low redshift (511-10 Gyr) and one "young" population (<30 Myr) with the recent SF bursts occurring a few to a few 10s of Myr ago, arguing for synchronicity in star formation in these objects. We propose that the ~synchronous star formation in all objects is caused by the accretion of cold gas from intergalactic space onto dark matter haloes arranged along a filament threading the void where these dwarf galaxies reside and point out this galaxy sample as an ideal target to study hierarchical clustering and galaxy formation among very nearby objects.

  3. The interstellar medium in Andromeda's dwarf spheroidal galaxies: II. Multi-phase gas content and ISM conditions

    CERN Document Server

    De Looze, Ilse; Cormier, Diane; Kaneko, Hiroyuki; Kuno, Nario; Young, Lisa; Bendo, George J; Boquien, Mederic; Fritz, Jacopo; Gentile, Gianfranco; Kennicutt, Robert C; Madden, Suzanne C; Smith, Matthew W L; Wilson, Christine D

    2016-01-01

    We make an inventory of the interstellar medium material in three low-metallicity dwarf spheroidal galaxies of the Local Group (NGC147, NGC185 and NGC205). Ancillary HI, CO, Spitzer IRS spectra, H{\\alpha} and X-ray observations are combined to trace the atomic, cold and warm molecular, ionised and hot gas phases. We present new Nobeyama CO(1-0) observations and Herschel SPIRE FTS [CI] observations of NGC205 to revise its molecular gas content. We derive total gas masses of M_gas = 1.9-5.5x10^5 Msun for NGC185 and M_gas = 8.6-25.0x10^5 Msun for NGC205. Non-detections combine to an upper limit on the gas mass of M_gas =< 0.3-2.2x10^5 Msun for NGC147. The observed gas reservoirs are significantly lower compared to the expected gas masses based on a simple closed-box model that accounts for the gas mass returned by planetary nebulae and supernovae. The gas-to-dust mass ratios GDR~37-107 and GDR~48-139 are also considerably lower compared to the expected GDR~370 and GDR~520 for the low metal abundances in NGC 1...

  4. VizieR Online Data Catalog: Dwarf galaxies surface brightness profiles. I. (Herrmann+, 2013)

    Science.gov (United States)

    Herrmann, K. A.; Hunter, D. A.; Elmegreen, B. G.

    2014-07-01

    Our galaxy sample (see Table 1) is from the survey of Hunter & Elmegreen (2004, Cat. J/AJ/128/2170), which includes 94 dwarf Irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 20 Magellanic-type spirals (Sms).4 (The Sm F567-2 is missing from this study and two dIms, F473-V1 and F620-V3, have been added.) UBV images from 27 observing runs are given by Hunter & Elmegreen (2006, Cat. J/ApJS/162/49) for 136 dwarfs and images from at least one band of JHK are presented for 41 (26 dIm, 12 BCD, and 3 Sm) from an additional 9 observing runs. The remaining 5 out of 141 galaxies (DDO 125, Mrk 67, NGC 1705, NGC 2101, and NGC 3109) were observed earlier with a different detector and so were not included in Hunter & Elmegreen (2006). Most of the UBV and JHK images were obtained with the Lowell Observatory 1.1m or 1.8m telescopes. Satellite UV images were also obtained with the Galaxy Evolution Explorer (GALEX). GALEX produced images in two passbands: FUV, with a bandpass of 1350-1750Å, an effective wavelength of 1516Å, and a resolution of 4" and NUV with a bandpass of 1750-2800Å, an effective wavelength of 2267Å, and a resolution of 5.6". The FUV and NUV data are on the AB magnitude system whereas the data in all other broad bands are on the Johnson/Cousin system. Hunter et al. (2010AJ....139..447H) analyzed surface photometry and derived SF rates from archival GALEX images of 44 galaxies. (Note that NUV data were available for DDO 88, DDO 165, and DDO 180 but FUV images were not.) Hunter et al. (2011AJ....142..121H) obtained deep GALEX UV images of an additional four galaxies and a deeper image of DDO 53. The LITTLE THINGS team obtained data on another 12 galaxies (Zhang et al., 2012AJ....143...47Z). We obtained mid-infrared (3.6 and 4.5{micro}m) images with the Infrared Array Camera (IRAC) from the Spitzer archives. Hunter et al. (2006, Cat. J/ApJS/162/49) analyzed data on 21 galaxies in our sample. Other data were taken by several Spitzer Legacy projects: The Local

  5. The star formation history of the Sculptor Dwarf Irregular Galaxy

    CERN Document Server

    Lianou, Sophia

    2012-01-01

    [abridged] We study the resolved stellar populations and derive the SFH of the SDIG, a gas-rich dwarf galaxy member of the NGC7793 subgroup in the Sculptor group. We construct a CMD using archival HST observations and examine its stellar content. We derive its SFH using a maximum-likelihood fit to the CMD. The CMD shows that SDIG contains stars from 10Myr to several Gyr old, as revealed from the MS, BL, luminous AGB, and RGB stars. The young stars with ages less than ~250Myr show a spatial distribution confined to its central regions, and additionally the young MS stars exhibit an off-center density peak. The intermediate-age and older stars are more spatially extended. SDIG is dominated by intermediate-age stars with an average age of 6.4Gyr. The average metallicity inferred is [M/H]\\approx -1.5dex. Its SFH is consistent with a constant SFR, except for ages younger than ~200Myr. The lifetime average SFR is 1.3x10^{-3} Mo/yr. More recently than 100Myr, there has been a burst of SF at a rate ~2-3 times higher ...

  6. A Survey of Satellite Galaxies around NGC 4258

    CERN Document Server

    Spencer, Meghin; Yoachim, Peter

    2014-01-01

    We conduct a survey of satellite galaxies around the nearby spiral NGC 4258 by combining spectroscopic observations from the Apache Point Observatory 3.5-meter telescope with SDSS spectra. New spectroscopy is obtained for 15 galaxies. Of the 47 observed objects, we categorize 8 of them as probable satellites, 8 as possible satellites, and 17 as unlikely to be satellites. We do not speculate on the membership of the remaining 14 galaxies due to a lack of velocity and distance information. Radially integrating our best fit NFW profile for NGC 4258 yields a total mass of 1.8e12 Msun within 200 kpc. We find that the angular distribution of the satellites appears to be random, and not preferentially aligned with the disk of NGC 4258. In addition, many of the probable satellite galaxies have blue u-r colors and appear to be star-forming irregulars in SDSS images; this stands in contrast to the low number of blue satellites in the Milky Way and M31 systems at comparable distances.

  7. Nuclear Starburst Activity in the Seyfert 2 Galaxy NGC 2273

    Institute of Scientific and Technical Information of China (English)

    Qiu-Sheng Gu; Lei Shi; Shi-Jun Lei; Wen-Hao Liu; Jie-Hao Huang

    2003-01-01

    We present spectrophotometric results of the Seyfert 2 galaxy NGC 2273.The presence of high-order Balmer absorption lines (H8, H9, H10) and weak equiv-alent widths of CaII K λ3933, CN λ4200, G-band λ4300 and MgIb λ5173 clearlyindicate recent star-forming activity in the nuclear region. Using a simple stel-lar population synthesis model, we find that for the best fit, the contributionsof a power-law featureless continuum, an intermediate-age (~ 108 yr) and an old(> 109 yr) stellar population to the total light at the reference normalization wave-length are 10.0%, 33.4% and 56.6%, respectively. The existence of recent starburstactivity is also consistent with its high fax-infrared luminosity (log LFIR/L = 9.9),its infrared color indexes [α(25, 60) = -1.81 and α(60, 100) = -0.79, typical valuesfor Seyfert galaxies with circuclear starburst], and its q-value (2.23, ratio ofinfrared to radio flux, very similar to that of normal spirals and starburst galaxies).Byrd et al. have suggested that NGC 2273 might have interacted with NGC 2273Bin less than 109 yr ago, so the starburst activity in this galaxy could have beentriggered by tidal interaction, as indicated in recent numerical simulations.

  8. Kinematics in the Interacting, Star-Forming Galaxies NGC 3395/3396 and NGC 3991/3994/3995

    Science.gov (United States)

    Weistrop, Donna; Nelson, Charles H.

    1999-01-01

    It has been suggested that induced star formation is more sensitive to galaxy dynamics than to local phenomena and that enhanced star formation is found in galaxies with disturbed velocity structures. We are studying the stellar populations of several UV-bright, interacting galaxies to try to understand the detailed star formation process in these systems. We present preliminary results of an investigation of the kinematics of star-forming regions in the interacting systems NGC 3395/3396 and NGC 3991/3994/3995. Regions of powerful star formation are observed throughout these galaxies. The observatation will be used to investigate rotation curves in the galaxies and motion in the tidal tails.

  9. Characterizing the population of active galactic nuclei in dwarf galaxies

    Science.gov (United States)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-01-01

    Clues to super-massive black hole (BH) formation and growth reside in the population and properties of BHs in local dwarf galaxies. The masses of BHs in these systems are our best observational constraint on the masses of the first BH "seeds" at high redshift. Moreover, present-day dwarf galaxies are unlikely to have undergone major mergers, making them a relatively pristine testbed for studying triggers of BH accretion. However, in order to find BHs in dwarf galaxies outside the Local Group, it is necessary to search for signatures of accretion, i.e., active galactic nuclei (AGN). Until recently, only a handful of dwarf galaxies were known to contain AGN. However, large surveys such as the SDSS have led to the production of samples of over a hundred dwarf galaxies with AGN signatures (see e.g., Reines et al. 2013). My dissertation work has involved in-depth, multi-wavelength follow-up of nearby (z<0.055) dwarf galaxies with optical spectroscopic AGN signatures in SDSS.I analyzed high resolution spectra of dwarf galaxies with narrow-line AGN, which led to the discovery of a 50,000 MSun BH in the nucleus of RGG 118 - the smallest BH yet reported in a galaxy nucleus (Baldassare et al. 2015). I also used multi-epoch optical spectroscopy to study the nature of broad H-alpha emission in dwarf galaxies. A characteristic signature of dense gas orbiting around a BH, broad emission can also be produced by transient stellar processes. I showed that broad H-alpha in star-forming dwarf galaxies fades over a baseline of 5-10 years, and is likely produced by e.g., a Type II SN as opposed to an AGN. However, broad emission in dwarf galaxies with AGN/composite narrow lines is persistent and consistent across observations, suggesting an AGN origin (Baldassare et al. 2016). Finally, I analyzed X-ray and UV observations of dwarf galaxies with broad and narrow-line AGN signatures. All targets had nuclear X-ray detections at levels significantly higher than expected from X-ray binaries

  10. Drivers of HI Turbulence in Dwarf Galaxies

    CERN Document Server

    Stilp, Adrienne M; Skillman, Evan D; Warren, Steven R; Ott, Juergen; Koribalski, Baerbel

    2013-01-01

    Neutral hydrogen (HI) velocity dispersions are believed to be set by turbulence in the interstellar medium (ISM). Although turbulence is widely believed to be driven by star formation (SF), recent studies have shown that this driving mechanism may not be dominant in regions of low SF rate surface density (SFRSD), such as found in dwarf galaxies or the outer regions of spirals. We have generated average HI line profiles in a number of nearby dwarfs and low-mass spirals by co-adding HI spectra in regions with either a common radius or SFRSD. We find that the spatially-resolved superprofiles are composed of a central narrow peak (5-15 km/s) with higher velocity wings to either side. With the assumption that the central peak reflects the turbulent velocity dispersion, we compare HI kinematics to local ISM properties, including surface mass densities and measures of SF. The HI velocity dispersion is correlated most strongly with surface mass density, which points at a gravitational origin for turbulence, but it is...

  11. Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM

    Science.gov (United States)

    Read, J. I.; Iorio, G.; Agertz, O.; Fraternali, F.

    2016-11-01

    The shape and diversity of dwarf galaxy rotation curves is at apparent odds with dark matter halos in a Λ Cold Dark Matter (ΛCDM) cosmology. We use mock data from isolated dwarf galaxy simulations to show that this owes to three main effects. Firstly, stellar feedback heats dark matter, leading to a `CORENFW' dark matter density profile with a slowly rising rotation curve. Secondly, if close to a recent starburst, large H I bubbles push the rotation curve out of equilibrium, deforming the rotation curve shape. Thirdly, when galaxies are viewed near face-on, their best fit inclination is biased high. This can lead to a very shallow rotation curve that falsely implies a large dark matter core. All three problems can be avoided, however, by a combination of improved mass models and a careful selection of target galaxies. Fitting our CORENFW model to mock rotation curve data, we show that we can recover the rotation curve shape, dark matter halo mass M200 and concentration parameter c within our quoted uncertainties. We fit our CORENFW model to real data for four isolated dwarf irregulars, chosen to span a wide range of rotation curve shapes. We obtain an excellent fit for NGC 6822 and WLM, with tight constraints on M200, and c consistent with ΛCDM. However, IC 1613 and DDO 101 give a poor fit. For IC 1613, we show that this owes to disequilibria and its uncertain inclination i; for DDO 101, it owes to its uncertain distance D. If we assume iIC1613 ˜ 15° and DDDO101 ˜ 12 Mpc, consistent with current uncertainties, we are able to fit both galaxies very well. We conclude that ΛCDM appears to give an excellent match to dwarf galaxy rotation curves.

  12. Dwarf galaxies in the Antlia Cluster: First results

    CERN Document Server

    Castelli, A V S; Cellone, S A; Richtler, T; Dirsch, B; Infante, L; Aruta, C; Gómez, M

    2006-01-01

    We present the first results of a project aimed to study the galaxy population of the Antlia cluster, the third nearest galaxy cluster after Virgo and Fornax. The observations for the Antlia project consist of Washington wide-field images taken with the MOSAIC camera mounted at the prime focus of the CTIO 4-m Blanco telescope. Our preliminary results correspond to the identification and classification of dwarf galaxies in the central cluster region, extending the list of Ferguson & Sandage (1990). The final aim of our project is to study the luminosity function, morphology and structural parameters of dwarf galaxies in the Antlia cluster with a more complete sample.

  13. The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies

    CERN Document Server

    Goerdt, Tobias; Kazantzidis, Stelios; Kaufmann, Tobias; Macciò, Andrea V; Stadel, Joachim

    2007-01-01

    Ultra compact dwarf galaxies (UCDs) have similar properties as massive globular clusters or the nuclei of nucleated galaxies. Recent observations suggesting a high dark matter content and a steep spatial distribution within groups and clusters provide new clues as to their origins. We perform high-resolution N-body / Smoothed Particle Hydrodynamics simulations designed to elucidate two possible formation mechanisms for these systems: the merging of globular clusters in the centre of a dark matter halo, or the massively stripped remnant of a nucleated galaxy. Both models produce density profiles as well as the half light radii that can fit the observational constraints. However, we show that the first scenario results to UCDs that are underluminous and contain no dark matter. This is because the sinking process ejects most of the dark matter particles from the halo centre. Stripped nuclei give a more promising explanation, especially if the nuclei form via the sinking of gas, funneled down inner galactic bars,...

  14. White Dwarfs in the Metal-Rich Open Cluster NGC 6253

    CERN Document Server

    Jeffery, Elizabeth J; Romero, Alejandra; Kepler, S O

    2016-01-01

    We have obtained 53 images with the $g$ filter and 19 images with the $i$ filter, each with 600-second exposures of the super metal rich open cluster NGC 6253 with the Gemini-South telescope to create deep images of the cluster to observe the cluster white dwarfs for the first time. We will analyze the white dwarf luminosity function to measure the cluster's white dwarf age, search for any anomalous features (as has been seen in the similarly metal rich cluster NGC 6791), and constrain the initial-final mass relation at high metallicities. We present an update on these observations and our program to study the formation of white dwarfs in super high metallicity environments.

  15. NGC 55: a disc galaxy with flat abundance gradients

    CERN Document Server

    Magrini, Laura; Vajgel, Bruna

    2016-01-01

    We present new spectroscopic observations obtained with GMOS@Gemini-S of a sample of 25 hii regions located in NGC 55, a late-type galaxy in the nearby Sculptor group. We derive physical conditions and chemical composition through the te-method for 18 hii regions, and strong-line abundances for 22 hii regions. We provide abundances of He, O, N, Ne, S, Ar, finding a substantially homogenous composition in the ionised gas of the disc of NGC 55, with no trace of radial gradients. The oxygen abundances, both derived with \\te- and strong-line methods, have similar mean values and similarly small dispersion: 12+$\\log$(O/H)=8.13$\\pm$0.18~dex with the former and 12+$\\log$(O/H)=8.17$\\pm$0.13~dex with the latter. The average metallicities and the flat gradients agree with previous studies of smaller samples of \\hii\\ regions and there is a qualitative agreement with the blue supergiant radial gradient as well. We investigate the origin of such flat gradients comparing NGC 55 with NGC 300, its companion galaxy, which is ...

  16. XMM-NEWTON OBSERVATIONS OF LUMINOUS SOURCES IN NEARBY GALAXIES NGC 4395, NGC 4736, AND NGC 4258

    Energy Technology Data Exchange (ETDEWEB)

    Akyuz, A.; Avdan, H. [Department of Physics, University of Cukurova, 01330 Adana (Turkey); Kayaci, S. [Department of Astronomy, University of Erciyes, Kayseri (Turkey); Ozel, M. E. [Faculty of Arts and Sciences, Cag University, 33800 Yenice, Tarsus, Mersin (Turkey); Sonbas, E. [Department of Physics, University of Ad Latin-Small-Letter-Dotless-I yaman, 02040 Ad Latin-Small-Letter-Dotless-I yaman (Turkey); Balman, S., E-mail: aakyuz@cu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2013-03-15

    We present the results of a study of non-nuclear discrete sources in a sample of three nearby spiral galaxies (NGC 4395, NGC 4736, and NGC 4258) based on XMM-Newton archival data supplemented with Chandra data for spectral and timing analyses. A total of 75 X-ray sources have been detected within the D{sub 25} regions of the target galaxies. The large collecting area of XMM-Newton makes the statistics sufficient to obtain spectral fitting for 16 (about 20%) of these sources. Compiling the extensive archival exposures available, we were able to obtain the detailed spectral shapes of diverse classes of point sources. We have also studied temporal properties of these luminous sources. Eleven of them are found to show short-term (less than 80 ks) variation while eight of them show long-term variation within factors of {approx}2-5 during a time interval of {approx}2-12 years. Timing analysis provides strong evidence that most of these sources are accreting X-ray binary systems. One source that has properties different from others was suspected to be a supernova remnant, and our follow-up optical observation confirmed this. Our results indicate that sources within the three nearby galaxies are showing a variety of source populations, including several ultraluminous X-ray sources, X-ray binaries, transients together with a super soft source, and a background active galactic nucleus candidate.

  17. A Mid-IR comparative analysis of the Seyfert galaxies NGC 7213 and NGC 1386

    CERN Document Server

    Ruschel-Dutra, Daniel; Riffel, Rogério; Sales, Dinalva A; Winge, Cláudia

    2014-01-01

    New Gemini mid-infrared spectroscopic observations together with Spitzer Space telescope archival data, are used to study the properties of the dusty torus and circumnuclear star formation in the active galaxies NGC 7213 and NGC 1386. Our main conclusions can be summarised as follows. Polycyclic aromatic hydrocarbon (PAH) emission is absent in the T-ReCS nuclear spectra but is ubiquitous in the data from Spitzer at distances above 100 pc. Star formation rates surface densities are estimated from the 12.8 $\\mu m$ [Ne{\\sc ii}] line strengths leading to values close to 0.1M$_\\odot\\,\\,{\\rm yr}^{-1}\\,\\,{\\rm kpc}^{-2}$. Analogous estimates based on photometric fluxes of IRAC's 8 $\\mu m$ images are higher by a factor of almost 15, which could be linked to excitation of PAH molecules by older stellar populations. T-ReCS high spatial resolution data reveal silicate absorption at $\\lambda$ 9.7 $\\mu m$ in the central tens of parsecs of the Seyfert 2 NGC 1386, and silicate emission in the Seyfert 1 galaxy NGC 7213. In th...

  18. Circumnuclear Molecular Gas in Megamaser Disk Galaxies NGC 4388 and NGC 1194

    CERN Document Server

    Greene, Jenny E; Lyubenova, Mariya; Walsh, Jonelle; van de Ven, Glenn; Laesker, Ronald

    2014-01-01

    We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-pc scales. We present NIR IFU data with a resolution of ~50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ~100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for non-circular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100-pc scales aligned with the megamaser disk. In contrast, the high ionization lines and Br-gamma trace outflow along the 100 pc-scale jet. In NGC 119...

  19. A supernova distance to the anchor galaxy NGC 4258

    CERN Document Server

    Polshaw, J; Chambers, K C; Smartt, S J; Taubenberger, S; Kromer, M; Gall, E E E; Hillebrandt, W; Huber, M; Smith, K W; Wainscoat, R J

    2015-01-01

    The fortuitous occurrence of a type II-Plateau (IIP) supernova, SN~2014bc, in a galaxy for which distance estimates from a number of primary distance indicators are available provides a means with which to cross-calibrate the standardised candle method (SCM) for type IIP SNe. By applying calibrations from the literature we find distance estimates in line with the most precise measurement to NGC~4258 based on the Keplerian motion of masers (7.6$\\pm$0.23\\,Mpc), albeit with significant scatter. We provide an alternative local SCM calibration by only considering type IIP SNe that have occurred in galaxies for which a Cepheid distance estimate is available. We find a considerable reduction in scatter ($\\sigma_I = 0.16$\\, mag.), but note that the current sample size is limited. Applying this calibration, we estimate a distance to NGC~4258 of $7.08\\pm0.86$ Mpc.

  20. Dwarf galaxies beyond our doorstep: the Centaurus A group

    CERN Document Server

    Crnojević, D; Cole, A A; Koch, A; Rejkuba, M; Da Costa, G; Jerjen, H

    2010-01-01

    The study of dwarf galaxies in groups is a powerful tool for investigating galaxy evolution, chemical enrichment and environmental effects on these objects. Here we present results obtained for dwarf galaxies in the Centaurus A complex, a dense nearby (~4 Mpc) group that contains two giant galaxies and about 30 dwarf companions of different morphologies and stellar contents. We use archival optical (HST/ACS) and near-infrared (VLT/ISAAC) data to derive physical properties and evolutionary histories from the resolved stellar populations of these dwarf galaxies. In particular, for early-type dwarfs we are able to construct metallicity distribution functions, find population gradients and quantify the intermediate-age star formation episodes. For late-type dwarfs, we compute recent (~1 Gyr) star formation histories and study their stellar distribution. We then compare these results with properties of the dwarfs in our Milky Way and in other groups. Our work will ultimately lead to a better understanding of the e...

  1. Noncircular Outer Disks in Unbarred S0 Galaxies: NGC 502 and NGC 5485

    CERN Document Server

    Sil'chenko, Olga K

    2016-01-01

    Strongly noncircular outer stellar disks have been found in two unbarred SA0 galaxies by analyzing spectroscopic data on the rotation of stars and photometric data on the shape and orientation of the isophotes. In NGC 502, the oval distortion of the disk is manifested as two elliptical rings, the inner and the outer ones, covering wide radial zones between the bulge and the disk and at the outer edge of the stellar disk. Such a structure may be a consequence of the so-called "dry" minor merger - multiple accretion of gas-free satellites. In NGC 5485, the kinematical major axis does not coincide with the orientation of isophotes in the disk-dominated region, and for this galaxy the conclusion about its global triaxial structure is unavoidable.

  2. Gas-phase Oxygen Abundances and Radial Metallicity Gradients in the Two nearby Spiral Galaxies NGC 7793 and NGC 4945

    Science.gov (United States)

    Stanghellini, Letizia; Magrini, Laura; Casasola, Viviana

    2015-10-01

    Gas-phase abundances in H ii regions of two spiral galaxies, NGC 7793 and NGC 4945, have been studied to determine their radial metallicity gradients. We used the strong-line method to derive oxygen abundances from spectra acquired with GMOS-S, the multi-object spectrograph on the 8 m Gemini South telescope. We found that NGC 7793 has a well-defined gas-phase radial oxygen gradient of -0.321 ± 0.112 dex {R}25-1 (or -0.054 ± 0.019 dex kpc-1) in the galactocentric range 0.17 < RG/R25 < 0.82, not dissimilar from gradients calculated with direct abundance methods in galaxies of similar mass and morphology. We also determined a shallow radial oxygen gradient in NGC 4945, -0.253 ± 0.149 dex {R}25-1 (or -0.019 ± 0.011 dex kpc-1) for 0.04 < RG/R25 < 0.51, where the larger relative uncertainty derives mostly from the larger inclination of this galaxy. NGC 7793 and NGC 4945 have been selected for this study because they are similar, in mass and morphology, to M33 and the Milky Way, respectively. Since at zeroth order we expect the radial metallicity gradients to depend on mass and galaxy type, we compared our galaxies in the framework of radial metallicity models best suited for M33 and the Galaxy. We found a good agreement between M33 and NGC 7793, pointing toward similar evolution for the two galaxies. We notice instead differences between NGC 4945 and the radial metallicity gradient model that best fits the Milky Way. We found that these differences are likely related to the presence of an active galactic nucleus combined with a bar in the central regions of NGC 4945, and to its interacting environment.

  3. Extraplanar HII regions in the edge-on spiral galaxies NGC 3628 and NGC 4522

    Science.gov (United States)

    Stein, Y.; Bomans, D. J.; Ferguson, A. M. N.; Dettmar, R.-J.

    2017-08-01

    Context. Gas infall and outflow are critical for determining the star formation rate and chemical evolution of galaxies but direct measurements of gas flows are difficult to make. Young massive stars and Hii regions in the halos of galaxies are potential tracers for accretion and/or outflows of gas. Aims: Gas phase abundances of three Hii regions in the lower halos of the edge-on galaxies NGC 3628 and NGC 4522 are determined by analyzing optical long-slit spectra. The observed regions have projected distances to the midplane of their host from 1.4 to 3 kpc. Methods: With the measured flux densities of the optical nebular emission lines, we derived the oxygen abundance 12 + log(O/H) for the three extraplanar Hii regions. The analysis was based on one theoretical and two empirical strong-line calibration methods. Results: The resulting oxygen abundances of the extraplanar Hii regions are comparable to the disk Hii regions in one case and are a little lower in the other case. Since our results depend on the accuracy of the metallicity determinations, we critically discuss the difference of the calibration methods we applied and confirm previously noted offsets. From our measurements, we argue that these three extraplanar Hii regions were formed in the disk or at least from disk material. We discuss the processes that could transport disk material into the lower halo of these systems and conclude that gravitational interaction with a companion galaxy is most likely for NGC 3628 while ram pressure is favored in the case of NGC 4522. Based on observations gathered as part of observing program 64.N-0208(A), 3.6 m telescope with European Southern Observatory (ESO) Faint Object Spectrograph and Camera (EFOSC2) at ESO, La Silla observatory.

  4. The low-luminosity galaxy population in the NGC 5044 Group

    CERN Document Server

    Cellone, S A; Cellone, Sergio A.; Buzzoni, Alberto

    2004-01-01

    We present multicolour imaging for 33 dwarf and intermediate-luminosity galaxies in the field of the NGC 5044 Group, complemented with mid-resolution spectroscopy for a subsample of 13 objects. With these data, a revised membership and morphological classification is made for the galaxies in the sample. We were able to confirm all but one of the "definite members" included in the spectroscopic subsample, which were originally classified based on morphological criteria; however, an important fraction of background galaxies is probably present among "likely" and "possible" members. The presence of a nucleus could be detected in just five out of the nine galaxies originally classified as dE,N, thus confirming the intrisic difficulty of photographic-plate morphological classification for this kind of object. Our deep surface photometry provided clear evidences for disc structure in at least three galaxies previously catalogued as dE or dS0. Their transition-type properties are also evident from the colour-magnitu...

  5. Chemodynamic evolution of dwarf galaxies in tidal fields

    CERN Document Server

    Williamson, David; Romeo, Alessandro B

    2016-01-01

    The mass-metallicity relation shows that the galaxies with the lowest mass have the lowest metallicities. As most dwarf galaxies are in group environments, interaction effects such as tides could contribute to this trend. We perform a series of smoothed particle hydrodynamics (SPH) simulations of dwarf galaxies in external tidal fields to examine the effects of tides on their metallicities and metallicity gradients. In our simulated galaxies, gravitational instabilities drive gas inwards and produce centralized star formation and a significant metallicity gradient. Strong tides can contribute to these instabilities, but their primary effect is to strip the outer low-metallicity gas, producing a truncated gas disk with a large metallicity. This suggests that the role of tides on the mass-metallicity relation is to move dwarf galaxies to higher metallicities.

  6. NGC 5523: An isolated product of soft galaxy mergers?

    Science.gov (United States)

    Fulmer, Leah M.; Gallagher, John S.; Kotulla, Ralf

    2017-02-01

    Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger. (1) Near-infrared images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk; (2) the bulge is offset by 1.8 kpc from a brightness minimum at the center of the optically bright inner disk; (3) a tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A119

  7. The prevalence of dwarf galaxy compact groups over cosmic time

    Science.gov (United States)

    Wiens, Christopher

    2017-01-01

    Galaxy interactions are critical to the evolution of the universe, influencing everything from star formation to the structure of the known universe. By studying galaxy interactions through computer simulations, we are instantaneously able to observe processes that normally take billions of years. “Compact groups” are extremely dense assemblies of at least 3 but typically no more than 10 galaxies that are interacting gravitationally. These groups yield much information about galaxy interactions and mergers in dense environments but are difficult to observe at high redshifts. Compact groups of only dwarf galaxies probe a regime of galaxy evolution that has been hypothesized to be common in the early universe. Here we investigate the populations of such dwarf galaxy compact groups in the Millennium II simulation. Millennium II is a massive n-body simulation of cold dark matter particles on a time scale equivalent to the known universe; allowing us to access to high redshift galaxies and the ability to track their descendants. Our preliminary findings indicate that these dwarf galaxy compact groups do exist in the Millennium II simulation. In the simulation, there is a non-inconsequential number of dwarf compact groups with an evolutionary track that mirrors the more massive compact groups with a peak in groups around a redshift of 2.

  8. The effect of gravitational tides on dwarf spheroidal galaxies

    CERN Document Server

    Nichols, Matthew; Jablonka, Pascale

    2014-01-01

    The effect of the local environment on the evolution of dwarf spheroidal galaxies is poorly understood. We have undertaken a suite of simulations to investigate the tidal impact of the Milky Way on the chemodynamical evolution of dwarf spheroidals that resemble present day classical dwarfs using the SPH code GEAR. After simulating the models through a large parameter space of potential orbits the resulting properties are compared with observations from both a dynamical point of view, but also from the, often neglected, chemical point of view. In general, we find that tidal effects quench the star formation even inside gas-endowed dwarfs. Such quenching, may produce the radial distribution of dwarf spheroidals from the orbits seen within large cosmological simulations. We also find that the metallicity gradient within a dwarf is gradually erased through tidal interactions as stellar orbits move to higher radii. The model dwarfs also shift to higher $\\langle$[Fe/H]$\\rangle$/L ratios, but only when losing $>$$20...

  9. Herschel-SPIRE observations of the disturbed galaxy NGC4438

    CERN Document Server

    Cortese, L; Boselli, A; Davies, J I; Gomez, H L; Pohlen, M; Auld, R; Baes, M; Bock, J J; Bradford, M; Buat, V; Castro-Rodriguez, N; Chanial, P; Charlot, S; Ciesla, L; Clements, D L; Cooray, A; Cormier, D; Dwek, E; Eales, S A; Elbaz, D; Galametz, M; Galliano, F; Gear, W K; Glenn, J; Griffin, M; Hony, S; Isaak, K G; Levenson, L R; Lu, N; Madden, S; O'Halloran, B; Okumura, K; Oliver, S; Page, M J; Panuzzo, P; Papageorgiou, A; Parkin, T J; Perez-Fournon, I; Rangwala, N; Rigby, E E; Roussel, H; Rykala, A; Sacchi, N; Sauvage, M; Schulz, B; Schirm, M R P; Smith, M W L; Spinoglio, L; Stevens, J A; Srinivasan, S; Symeonidis, M; Trichas, M; Vaccari, M; Vigroux, L; Wilson, C D; Wozniak, H; Wright, G S; Zeilinger, W W

    2010-01-01

    We present Herschel-SPIRE observations of the perturbed galaxy NGC4438 in the Virgo cluster. These images reveal the presence of extra-planar dust up to ~4-5 kpc away from the galaxy's disk. The dust closely follows the distribution of the stripped atomic and molecular hydrogen, supporting the idea that gas and dust are perturbed in a similar fashion by the cluster environment. Interestingly, the extra-planar dust lacks a warm temperature component when compared to the material still present in the disk, explaining why it was missed by previous far-infrared investigations. Our study provides evidence for dust stripping in clusters of galaxies and illustrates the potential of Herschel data for our understanding of environmental effects on galaxy evolution.

  10. Wave Dark Matter and Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Parry, Alan R.

    We explore a model of dark matter called wave dark matter (also known as scalar field dark matter and boson stars) which has recently been motivated by a new geometric perspective by Bray. Wave dark matter describes dark matter as a scalar field which satisfies the Einstein-Klein-Gordon equations. These equations rely on a fundamental constant Upsilon (also known as the "mass term'' of the Klein-Gordon equation). Specifically, in this dissertation, we study spherically symmetric wave dark matter and compare these results with observations of dwarf spheroidal galaxies as a first attempt to compare the implications of the theory of wave dark matter with actual observations of dark matter. This includes finding a first estimate of the fundamental constant Upsilon. In the introductory Chapter 1, we present some preliminary background material to define and motivate the study of wave dark matter and describe some of the properties of dwarf spheroidal galaxies. In Chapter 2, we present several different ways of describing a spherically symmetric spacetime and the resulting metrics. We then focus our discussion on an especially useful form of the metric of a spherically symmetric spacetime in polar-areal coordinates and its properties. In particular, we show how the metric component functions chosen are extremely compatible with notions in Newtonian mechanics. We also show the monotonicity of the Hawking mass in these coordinates. Finally, we discuss how these coordinates and the metric can be used to solve the spherically symmetric Einstein-Klein-Gordon equations. In Chapter 3, we explore spherically symmetric solutions to the Einstein-Klein-Gordon equations, the defining equations of wave dark matter, where the scalar field is of the form f(t, r) = eiotF(r) for some constant o ∈ R and complex-valued function F(r). We show that the corresponding metric is static if and only if F( r) = h(r)eia for some constant alpha ∈ R and real-valued function h(r). We describe the

  11. Comparing the white dwarf cooling sequences in 47 Tuc and NGC 6397

    Energy Technology Data Exchange (ETDEWEB)

    Richer, Harvey B.; Goldsbury, Ryan; Heyl, Jeremy [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Hurley, Jarrod [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Dotter, Aaron [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Kalirai, Jason S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Woodley, Kristin A. [Department of Astronomy and Astrophysics, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Fahlman, Gregory G. [National Research Council, Herzberg Institute of Astrophysics, Victoria, BC, V9E 2E7 (Canada); Rich, R. Michael [Division of Astronomy and Astrophysics, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Shara, Michael M., E-mail: richer@astro.ubc.ca, E-mail: rgoldsb@phas.ubc.ca, E-mail: heyl@phas.ubc.ca, E-mail: jhurley@swin.edu.au, E-mail: dotter@mso.anu.edu.au, E-mail: jkalirai@stsci.edu, E-mail: kwoodley@ucolick.org, E-mail: greg.fahlman@nrc-cnrc.gc.ca, E-mail: rmr@astro.ucla.edu, E-mail: mshara@amnh.org [Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024 (United States)

    2013-12-01

    Using deep Hubble Space Telescope imaging, color-magnitude diagrams are constructed for the globular clusters 47 Tuc and NGC 6397. As expected, because of its lower metal abundance, the main sequence of NGC 6397 lies well to the blue of that of 47 Tuc. A comparison of the white dwarf cooling sequences of the two clusters, however, demonstrates that these sequences are indistinguishable over most of their loci—a consequence of the settling out of heavy elements in the dense white dwarf atmosphere and the near equality of their masses. Lower quality data on M4 continues this trend to a third cluster whose metallicity is intermediate between these two. While the path of the white dwarfs in the color-magnitude diagram is nearly identical in 47 Tuc and NGC 6397, the numbers of white dwarfs along the path are not. This results from the relatively rapid relaxation in NGC 6397 compared to 47 Tuc and provides a cautionary note that simply counting objects in star clusters in random locations as a method of testing stellar evolutionary theory is likely dangerous unless dynamical considerations are included.

  12. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  13. Dark influences: imprints of dark satellites on dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.

    2015-01-01

    Context. In the context of the current Λ cold dark matter cosmological model small dark matter halos are abundant and satellites of dwarf galaxies are expected to be predominantly dark. Since low mass galaxies have smaller baryon fractions, interactions with these satellites may leave particularly d

  14. Nucleated Dwarf Elliptical Galaxies in the Coma Cluster

    NARCIS (Netherlands)

    Matkovic, Ana; Ferguson, H. C.; Peng, E.; den Brok, M.

    2010-01-01

    Recent studies show that most dwarf elliptical galaxies (dE) in nearby clusters possess nuclear star clusters. Earlier studies used photographic plates and frequently missed the faint nuclei in dEs. For the first time, we are able to identify nuclei in a large number of dE galaxies in the Coma clust

  15. The mass content of the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Battaglia, G.; Helmi, A.; Tolstoy, E.; Irwin, M.; Andersen, J; BlandHawthorn, J; Nordstrom, B

    2009-01-01

    We present a new determination of the mass content of the Sculptor dwarf spheroidal galaxy, based on a novel approach which takes into account the two distinct stellar populations present in this galaxy. This method helps to partially break the well-known mass-anisotropy degeneracy present in the mo

  16. Formation Histories of Dwarf Galaxies in the Local Group

    CERN Document Server

    Ricotti, M; Ricotti, Massimo; Gnedin, Nickolay Y.

    2004-01-01

    We compare the properties of dwarf galaxies in the Local Group with the simulated galaxies formed before reionization in a cosmological simulation of unprecedented spatial and mass resolution. We find that a subset of the Local Group dwarfs are remarkably similar to the simulated dwarf galaxies in all their properties. Based on this similarity, we propose the hypothesis that Local Group dwarfs form in a variety of ways: some of them are ``true fossils'' of the pre-reionization era, some of them form most of their stars later, after reionization (we call them ``survivors'' of the reionization era), and the rest of them form an intermediate group of ``polluted fossils''. We also identify a simple observational test that is able to falsify our hypothesis.

  17. The Cold Gas Content of Bulgeless Dwarf Galaxies

    CERN Document Server

    Pilkington, K; Calura, F; Brooks, A M; Mayer, L; Brook, C B; Stinson, G S; Thacker, R J; Few, C G; Cunnama, D; Wadsley, J

    2011-01-01

    We present an analysis of the neutral hydrogen (HI) properties of a fully cosmological hydrodynamical dwarf galaxy, run with varying simulation parameters. As reported by Governato et al. (2010), the high resolution, high star formation density threshold version of this galaxy is the first simulation to result in the successful reproduction of a (dwarf) spiral galaxy without any associated stellar bulge. We have set out to compare in detail the HI distribution and kinematics of this simulated bulgeless disk with what is observed in a sample of nearby dwarfs. To do so, we extracted the radial gas density profiles, velocity dispersion (e.g., velocity ellipsoid, turbulence), and the power spectrum of structure within the cold interstellar medium from the simulations. The highest resolution dwarf, when using a high density star formation threshold comparable to densities of giant molecular clouds, possesses bulk characteristics consistent with those observed in nature, though the cold gas is not as radially exten...

  18. The Mass Dependence of Dwarf Satellite Galaxy Quenching

    Science.gov (United States)

    Slater, Colin T.; Bell, Eric F.

    2014-09-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M sstarf 5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  19. Fornax compact object survey FCOS: On the nature of Ultra Compact Dwarf galaxies

    CERN Document Server

    Mieske, S; Infante, L

    2004-01-01

    The results of the Fornax Compact Object Survey (FCOS) are presented. The FCOS aims at investigating the nature of the Ultra Compact Dwarf galaxies (UCDs) recently discovered in the center of the Fornax cluster (Drinkwater et al. 2000). 280 unresolved objects in the magnitude space covering UCDs and bright globular clusters (1820 mag) at 96% confidence. The mean velocity of the bright compact objects is consistent with that of the dwarf galaxy population in Fornax, but inconsistent with that of NGC 1399's globular cluster system at 93.5% confidence. The compact objects follow a colour magnitude relation with a slope very similar to that of normal dEs, but shifted about 0.2 mag redwards. The magnitude distribution of compact objects shows a fluent transition between UCDs and GCs with an overpopulation of 8 +/- 4 objects for V<20 mag with respect to the extrapolation of NGC 1399's GC luminosity function. The spatial distribution of bright compact objects is in comparison to the faint ones more extended at 88...

  20. IC3328 a "dwarf elliptical galaxy" with spiral structure

    CERN Document Server

    Jerjen, H; Binggeli, B; Jerjen, Helmut; Kalnajs, Agris; Binggeli, Bruno

    2000-01-01

    We present the 2-D photometric decomposition of the Virgo galaxy IC3328. The analysis of the global light distribution of this morphologically classified nucleated dwarf elliptical galaxy (dE1,N) reveals a tightly wound, bi-symmetric spiral structure with a diameter of 4.5 kpc, precisely centered on the nucleus of the dwarf. The amplitude of the spiral is only three percent of the dwarf's surface brightness making it the faintest and smallest spiral ever found in a galaxy. In terms of pitch angle and arm winding the spiral is similar to the intermediate-type galaxy M51, but it lacks the dust and prominent HII regions which signal the presence of gas. The visual evidence of a spiral pattern in an early-type dwarf galaxy reopens the question on whether these dwarfs are genuine rotationally supported or anisotropic stellar systems. In the case of IC3328, we argue for a nearly face-on disk (dS0) galaxy with an estimated maximum rotation velocity of v_c,max = 55kms-1. The faintness of the spiral and the small moti...

  1. Star Formation and the ISM in Dwarf Galaxies

    CERN Document Server

    Young, L M; Dohm-Palmer, R C; Lo, K Y

    2000-01-01

    High spatial and spectral resolution observations of the atomic interstellar medium in nearby dwarf galaxies reveal evidence for warm and cold neutral gas, just like the phases in our own Galaxy. The cold or quiescent phase (about 20% of the HI in the galaxies studied, except for LGS 3) seems to be associated with star formation activity--- it may mark the regions where the conditions are right for star formation. These results help to explain the patterns of star formation activity which are seen in color-magnitude data for the dwarf irregulars.

  2. Stellar Populations in the Barred Spiral Galaxy NGC 4900

    CERN Document Server

    Cantin, Simon; Mollá, Mercedes; Pellerin, Anne

    2010-01-01

    We present OASIS observations obtained at the Canada-France-Hawaii Telescope for the SB(rs)c galaxy NGC 4900. About 800 spectra in the wavelength range 4700-5500 AA and 6270- 7000 AA have been collected with a spatial resolution of ~50 pc. This galaxy is part of a sample to study the stellar populations and their history in the central region of galaxies. In this paper, we present our iterative technique developed to describe consistently the different stellar com- ponents seen through emission and absorption lines. In NGC 4900 we find many young bursts of star formation distributed along the galaxy large scale bar on each side of the nucleus. They represent nearly 40 per cent of the actual stellar mass in the field of view. The age for these bursts ranges from 5.5 to 8 Myr with a metallicity near and above 2 Zsun . The extinction map gives E(B-V) values from 0.19+/-0.01 near the youngest bursts to 0.62+/-0.06 in a dusty internal bar perpendicular to the large scale bar. The Mg 2 and Fe I absorption lines ind...

  3. The PAndAS View of the Andromeda Satellite System. II. Detailed Properties of 23 M31 Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Lewis, Geraint F.; McConnachie, Alan; Babul, Arif; Bate, Nicholas F.; Bernard, Edouard; Chapman, Scott C.; Collins, Michelle M. L.; Conn, Anthony R.; Crnojević, Denija; Fardal, Mark A.; Ferguson, Annette M. N.; Irwin, Michael; Mackey, A. Dougal; McMonigal, Brendan; Navarro, Julio F.; Rich, R. Michael

    2016-12-01

    We present a comprehensive analysis of the structural properties and luminosities of the 23 dwarf spheroidal galaxies that fall within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS). These dwarf galaxies represent the large majority of Andromeda’s known satellite dwarf galaxies and cover a wide range in luminosity (-11.6≲ {M}V≲ -5.8 or {10}4.2≲ L≲ {10}6.5 {L}⊙ ) and surface brightness (25.1≲ {μ }0≲ 29.3 mag arcsec-2). We confirm most previous measurements, but we find And XIX to be significantly larger than before ({r}h={3065}-935+1065 {pc}, {M}V=-{10.1}-0.4+0.8) and cannot derive parameters for And XXVII as it is likely not a bound stellar system. We also significantly revise downward the luminosities of And XV and And XVI, which are now {M}V˜ -7.5 or L˜ {10}5 {L}⊙ . Finally, we provide the first detailed analysis of Cas II/And XXX, a fairly faint system ({M}V=-{8.0}-0.3+0.4) of typical size ({r}h=270+/- 50 {pc}), located in close proximity to the two bright elliptical dwarf galaxies NGC 147 and NGC 185. Combined with the set of homogeneous distances published in an earlier contribution, our analysis dutifully tracks all relevant sources of uncertainty in the determination of the properties of the dwarf galaxies from the PAndAS photometric catalog. We further publish the posterior probability distribution functions of all the parameters we fit for in the form of MCMC chains available online; these inputs should be used in any analysis that aims to remain truthful to the data and properly account for covariance between parameters.

  4. Dark matter deprivation in the field elliptical galaxy NGC 7507

    Science.gov (United States)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  5. The Ha Velocity Fields and Galaxy Interaction in the Quartet of Galaxies NGC 7769, 7770, 7771 and 7771A

    CERN Document Server

    Yeghiazaryan, A A; Hakobyan, A A

    2015-01-01

    The quartet of galaxies NGC 7769, 7770, 7771 and 7771A is a system of interacting galaxies. Close interaction between galaxies caused characteristic morphological features: tidal arms and bars, as well as an induced star formation. In this study, we performed the Fabry-Perot scanning interferometry of the system in Ha line and studied the velocity fields of the galaxies. We found that the rotation curve of NGC 7769 is weakly distorted. The rotation curve of NGC 7771 is strongly distorted with the tidal arms caused by direct flyby of NGC 7769 and flyby of a smaller neighbor NGC 7770. The rotation curve of NGC 7770 is significantly skewed because of the interaction with much massive NGC 7771. The rotation curves and morphological disturbances suggest that the NGC 7769 and NGC 7771 have passed the first pericenter stage, however, probably the second encounter has not happened yet. Profiles of surface brightness of NGC 7769 have a characteristic break, and profiles of color indices have a minimum at a radius of i...

  6. The Arecibo Environment Galaxy Survey: The NGC 2577/UGC 4375-galaxy pair

    Science.gov (United States)

    Iguina, Ashley Ann; Minchin, Robert F.

    2017-01-01

    We searched for and catalogued galaxy candidates in an area of 5 square degrees around the NGC 2577/UGC 4375-galaxy pair via the 21-cm emission of the neutral hydrogen gas emitted by the candidates' interstellar media. The data were taken as a part of the Arecibo Galaxy Environment Survey (AGES) and consist of a data cube with the dimensions right ascension, declination, and the recessional velocity of the 21-cm line. We used the FITS viewer FRELLED to assist in visually extracting sources. We have cross identified the galaxy candidates with optical counterparts via the NASA Extragalactic Database and data from the Sloan Digital Sky Survey. We made a total of 49 HI detections in the vicinity of the galaxy pair. We did not detect the S0 galaxy, NGC 2577, but we did detect the SB galaxy, UGC 4375, and four galaxies in the region around the galaxy pair at ~2000 km/s. We detected another overdensity at 4000 km/s. Additionally, an HI detection appears in our local neighborhood at 426 km/s. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association. The Arecibo Observatory REU program is funded under grant AST-1559849 to Universidad Metropolitana.

  7. Slow Jets in Seyfert Galaxies NGC 1068

    CERN Document Server

    Roy, A L; Ulvestad, J S; Colbert, E J M

    2000-01-01

    We have used the Very Long Baseline Array at 5 GHz to image the nucleus of NGC 1068 at two epochs separated by 2.92 yr. No relative motion was detected between the high brightness-temperature knots within components NE and C relative to the nuclear component S1, placing an upper limit of 0.075 c on the relative component speeds at distances of 21 pc and 43 pc from the AGN. The low speed is consistent with the low bulk flow speed previously inferred from indirect arguments based on ram pressure at the bow shock and on line emission from the jet-cloud collision at cloud C. The components are probably shocks in the jet, and the bulk flow speed could conceivably be higher than the limit reported here.

  8. NGC 4388 - A Seyfert 2 galaxy in the Virgo cluster

    Science.gov (United States)

    Phillips, M. M.; Malin, D. F.

    1982-06-01

    Direct photographic data and preliminary spectroscopy of the spiral galaxy NGC 4388 are presented. The galaxy appears to be a barred spiral of morphological class SB(s)b pec and is almost certainly a member of the Virgo cluster. The nucleus was studied with a photon-counting image intensifier/reticon scanner and was found to emit a high-excitation, narrow emission-line spectrum of relatively low luminosity. Image-tube spectrograms and spectroscopy using an image photon-counting system revealed optical, X-ray, and radio nuclear properties consistent with a classical Seyfert 2 galaxy. The radial velocity of the peaks of the asymmetric nuclear emission lines is 55 km/s less than the H I 21 cm systemic velocity.

  9. CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Samantha L.; Macri, Lucas M., E-mail: lmacri@tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2015-06-15

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period–Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  10. Cepheid Variables in the Maser-Host Galaxy NGC 4258

    CERN Document Server

    Hoffmann, Samantha L

    2015-01-01

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via VLBI observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and GMOS, obtaining 16 epochs of data in the SDSS gri bands over 4 years. We carried out PSF photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period-Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope (LSST) should enable Cepheid searches out to at least 10 Mpc.

  11. Identification of old tidal dwarfs near early-type galaxies from deep imaging and HI observations

    CERN Document Server

    Duc, Pierre-Alain; McDermid, Richard M; Cuillandre, Jean-Charles; Serra, Paolo; Bournaud, Frédéric; Cappellari, Michele; Emsellem, Eric

    2014-01-01

    It has recently been proposed that the dwarf spheroidal galaxies located in the Local Group disks of satellites (DoSs) may be tidal dwarf galaxies (TDGs) born in a major merger at least 5 Gyr ago. Whether TDGs can live that long is still poorly constrained by observations. As part of deep optical and HI surveys with the CFHT MegaCam camera and Westerbork Synthesis Radio Telescope made within the ATLAS3D project, and follow-up spectroscopic observations with the Gemini-North telescope, we have discovered old TDG candidates around several early-type galaxies. At least one of them has an oxygen abundance close to solar, as expected for a tidal origin. This confirmed pre-enriched object is located within the gigantic, but very low surface brightness, tidal tail that emanates from the elliptical galaxy, NGC 5557. An age of 4 Gyr estimated from its SED fitting makes it the oldest securely identified TDG ever found so far. We investigated the structural and gaseous properties of the TDG and of a companion located in...

  12. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, Fife KY16 9SS (United Kingdom); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 298409 (Russian Federation); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Minezaki, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1, Osawa, Mitaka, 181-0015 Tokyo (Japan); Siverd, R. J. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Bord, D. J., E-mail: peterson.12@osu.edu [Department of Natural Sciences, The University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  13. Reverberation Mapping of the Seyfert 1 Galaxy NGC 7469

    CERN Document Server

    Peterson, B M; Horne, Keith; Pogge, R W; Bentz, M C; De Rosa, G; Denney, K D; Martini, Paul; Sergeev, S G; Kaspi, S; Minezaki, T; Zu, Y; Kochanek, C S; Siverd, R J; Shappee, B; Salvo, C Araya; Beatty, T G; Bird, J C; Bord, D J; Borman, G A; Che, X; Chen, C T; Cohen, S A; Dietrich, M; Doroshenko, V T; Drake, T; Efimov, Yu S; Free, N; Ginsburg, I; Henderson, C B; King, A L; Koshida, S; Mogren, K; Molina, M; Mosquera, A M; Motohara, K; Nazarov, S V; Okhmat, D N; Pejcha, O; Rafter, S; Shields, J C; Skowron, D M; Skowron, J; Valluri, M; van Saders, J L; Yoshii, Y

    2014-01-01

    A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black hole mass measurement of about 10 million solar masses, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hbeta measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hbeta-emitting broad-line region and the AGN luminosity. It was necessary to detrend the continuum and Hbeta and He II 4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  14. Reverberation Mapping of the Seyfert 1 Galaxy NGC 7469

    Science.gov (United States)

    Peterson, B. M.; Grier, C. J.; Horne, Keith; Pogge, R. W.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Martini, Paul; Sergeev, S. G.; Kaspi, S.; Minezaki, T.; Zu, Y.; Kochanek, C. S.; Siverd, R. J.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Bord, D. J.; Borman, G. A.; Che, X.; Chen, C.-T.; Cohen, S. A.; Dietrich, M.; Doroshenko, V. T.; Drake, T.; Efimov, Yu. S.; Free, N.; Ginsburg, I.; Henderson, C. B.; King, A. L.; Koshida, S.; Mogren, K.; Molina, M.; Mosquera, A. M.; Motohara, K.; Nazarov, S. V.; Okhmat, D. N.; Pejcha, O.; Rafter, S.; Shields, J. C.; Skowron, D. M.; Skowron, J.; Valluri, M.; van Saders, J. L.; Yoshii, Y.

    2014-11-01

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M BH ≈ 1 × 107 M ⊙, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  15. Infrared emission from dust in the Seyfert galaxy NGC 4151

    Science.gov (United States)

    Mayes, A. J.; Evans, A.; Pearce, G.

    1985-02-01

    The nonvariable infrared radiation from the nucleus of NGC 4151 is discussed in terms of radiation from circumnuclear dust heated by nuclear radiation. The dust is modeled by a spherical shell and by a torus, both consisting of silicate and graphite dust grains similar to those found in the Galaxy. The model predictions are compared with the observations in an attempt to determine some parameters of the circumnuclear dust. The comparison indicates a spherical shell rather than a torus with a silicate-to-graphite dust-mass ratio of 90:10, an inner radius of about 4 pc, and an outer radius of 20 pc or more. It is proposed that the outer radius could be determined observationally, and that the silicate-to-graphite mass ratio of dust in the spiral arms of NGC 4151 could be determined from far-infrared observations.

  16. Time Variability and Luminosity of X-ray Sources of Face-on Spiral Galaxy NGC 1232

    Science.gov (United States)

    Cantua, Oscar; Rucas, Tyler; Singh, Pranjal; Schlegel, Eric M.

    2017-01-01

    The ACIS detector (Advanced CCD Imaging Spectrometer) onboard the Chandra X-ray Observatory has imaged the face-on spiral NGC 1232 over six epochs for a total exposure of ~250 ksec. We describe each observation as well as the merged data set. Each exposure contains ~50 individual sources. We focus on the time variability and luminosity distributions of the sources. We also describe our search for diffuse emission as well as our search for evidence for a reported collision with a dwarf galaxy. Finally, we compare the merged data set and the detected sources with other wavebands.

  17. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    CERN Document Server

    Wheeler, Coral; Bullock, James S; Boylan-Kolchin, Michael; Elbert, Oliver; Garrison-Kimmel, Shea; Hopkins, Philip F; Keres, Dusan

    2015-01-01

    We present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies ($M_{\\rm vir} \\simeq 10^{10} M_{\\odot}$) and ultra-faint galaxies ($M_{\\rm vir} \\simeq 10^9 M_{\\odot}$), and with two feedback implementations. The resultant central galaxies lie on an extrapolated abundance matching relation from $M_{\\star} \\simeq 10^6$ to $10^4 M_{\\odot}$ without a break. Every host is filled with subhalos, many of which form stars. Our dwarfs with $M_{\\star} \\simeq 10^6 M_{\\odot}$ each have 1-2 well-resolved satellites with $M_{\\star} = 3-200 \\times 10^3 M_{\\odot}$. Even our isolated ultra-faint galaxies have star-forming subhalos. If this is representative, dwarf galaxies throughout the universe should commonly host tiny satellite galaxies of their own. We combine our results with the ELVIS simulations to show that targeting $\\sim 50~ \\rm kpc$ regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by $\\sim 35\\%...

  18. 3D Simulations of Galactic Winds in Dwarf Galaxies

    CERN Document Server

    Marcolini, A; D'Ercole, A; Marcolini, Andrea; Brighenti, Fabrizio; Ercole, Annibale D'

    2002-01-01

    We present 3D hydrodynamical simulations of galactic winds in dwarf, gas-rich galaxies. The galaxy is moving through the ICM of a small galaxy group at v=200 km/s. The ram pressure removes the galactic gas at large radii, but does not strongly influence the ISM near the center. A starburst generates a galactic wind. The newly produced metals are expelled in the ICM and carried to large distance from the galaxy by the ram pressure. 500 Myr after the starburst only a few percent of the heavy elements produced are present in the central region of the dwarf galaxy. A large collection of ram pressure + wind models will be presented in a forthcoming paper.

  19. On the Metallicity of Star-forming Dwarf Galaxies

    CERN Document Server

    Legrand, F; Silich, S A; Kunth, D; Cerviño, M; Legrand, Francois; Tenorio-Tagle, Guillermo; Silich, Sergiy; Kunth, Daniel; Cervino, Miguel

    2001-01-01

    We construct three extreme different scenarios of the star formation histories applicable to a sample of dwarf galaxies, based either on their present metallicity or their luminosity. The three possible scenarios imply different mechanical energy input rates and these we compare with the theoretical lower limits established for the ejection of processed matter out of dwarf galaxies. The comparison strongly points at the existence of extended gaseous haloes in these galaxies, acting as the barrier that allows galaxies to retain their metals and enhance their abundance. At the same time our findings strongly point at a continuous star-forming process, rather than to coeval bursts, as the main contributors to the overall metallicity in our galaxy sample.

  20. Molecular Gas Kinematics and Line Diagnostics in Early-type Galaxies: NGC4710 and NGC5866

    CERN Document Server

    Topal, Selcuk; Davis, Timothy A; Krips, Melanie; Young, Lisa M; Crocker, Alison F

    2016-01-01

    We present interferometric observations of CO lines (12CO(1-0, 2-1) and 13CO(1-0, 2-1)) and dense gas tracers (HCN(1-0), HCO+(1-0), HNC(1-0) and HNCO(4-3)) in two nearby edge-on barred lenticular galaxies, NGC 4710 and NGC 5866, with most of the gas concentrated in a nuclear disc and an inner ring in each galaxy. We probe the physical conditions of a two-component molecular interstellar medium in each galaxy and each kinematic component by using molecular line ratio diagnostics in three complementary ways. First, we measure the ratios of the position-velocity diagrams of different lines, second we measure the ratios of each kinematic component's integrated line intensities as a function of projected position, and third we model these line ratios using a non-local thermodynamic equilibrium radiative transfer code. Overall, the nuclear discs appear to have a tenuous molecular gas component that is hotter, optically thinner and with a larger dense gas fraction than that in the inner rings, suggesting more dense ...

  1. On the formation of dwarf galaxies and stellar haloes

    Science.gov (United States)

    Read, J. I.; Pontzen, A. P.; Viel, M.

    2006-09-01

    Using analytic arguments and a suite of very high resolution (~103Msolar per particle) cosmological hydrodynamical simulations, we argue that high-redshift, z ~ 10, M ~ 108Msolar haloes, form the smallest `baryonic building block' (BBB) for galaxy formation. These haloes are just massive enough to efficiently form stars through atomic line cooling and to hold on to their gas in the presence of supernova (SN) winds and reionization. These combined effects, in particular that of the SN feedback, create a sharp transition: over the mass range 3-10 × 107Msolar, the BBBs drop two orders of magnitude in stellar mass. Below ~2 × 107Msolar, galaxies will be dark with almost no stars and no gas. Above this scale is the smallest unit of galaxy formation: the BBB. We show that the BBBs have stellar distributions which are spheroidal, of low rotational velocity, old and metal poor: they resemble the dwarf spheroidal galaxies (dSphs) of the Local Group (LG). Unlike the LG dSphs, however, they contain significant gas fractions. We connect these high-redshift BBBs to the smallest dwarf galaxies observed at z = 0 using linear theory. A small fraction (~100) of these gas-rich BBBs at high redshift fall in to a galaxy the size of the Milky Way (MW). We suggest that 10 per cent of these survive to become the observed LG dwarf galaxies at the present epoch. This is consistent with recent numerical estimates. Those infalling haloes on benign orbits which keep them far away from the MW or Andromeda manage to retain their gas and slowly form stars - these become the smallest dwarf irregular galaxies; those on more severe orbits lose their gas faster than they can form stars and become the dwarf spheroidals. The remaining 90 per cent of the BBBs will be accreted. We show that this gives a metallicity and total stellar mass consistent with the MW old stellar halo.

  2. Chandra ACIS Observations of the Nearby Spiral Galaxy NGC 300

    Science.gov (United States)

    Bobar, Dale; Turner, Kevin; Schlegel, Eric M.

    2017-01-01

    The ACIS detector (Advanced CCD Imaging Spectrometer) onboard the Chandra X-ray Observatory has imaged the nearby spiral NGC 300 over three epochs for a total exposure of 1.885x102 ksec. We describe each observation as well as the merged data set. Each exposure contains 132 individual sources. We focus on the time variability and luminosity distributions of the sources. Initial results show no diffuse emissions in the galaxy. Finally, we compare the merged data set and the detected sources with other wavebands.

  3. Charting Unexplored Dwarf Galaxy Territory With RR Lyrae

    CERN Document Server

    Baker, Mariah

    2015-01-01

    Observational bias against finding Milky Way (MW) dwarf galaxies at low Galactic latitudes (b 50 kpc in these unmined regions of parameter space, with only modest contamination from interloper groups when large halo structures are excluded. For example, a friends-of-friends (FOF) search with a linking length of 500 pc could reveal dwarf galaxies more luminous than M_V = -3.2 mag and with surface brightnesses as faint as 31 mag arcsec^-2 (or even fainter, depending on RR Lyrae specific frequency). Although existing public RR Lyrae catalogs are highly incomplete at d > 50 kpc and/or include 600 kpc, LSST is the only planned survey that will be both wide-field and deep enough to use RR Lyrae to definitively measure the Milky Way's dwarf galaxy census to extremely low surface brightnesses, and through the Galactic plane.

  4. Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter

    CERN Document Server

    Diez-Tejedor, Alberto; Profumo, Stefano

    2014-01-01

    We constrain the parameters of a self-interacting massive dark matter scalar particle in a condensate using the kinematics of the eight brightest dwarf spheroidal satellites of the Milky Way. For the case of an attractive self-interaction the condensate develops a mass density profile with a characteristic scale radius that is closely related to the fundamental parameters of the theory. We find that the velocity dispersion of dwarf spheroidal galaxies suggests a scale radius of the order of 1 kpc, in tension with previous results found using the rotational curve of low-surface-brightness and dwarf galaxies. We discuss the implications of our findings for the particle dark matter model and argue that a single classical coherent state cannot play, in general, a relevant role for the description of dark matter in galaxies.

  5. Formation of ultra-compact blue dwarf galaxies and their evolution into nucleated dwarfs

    CERN Document Server

    Bekki, Kenji

    2015-01-01

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf-dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf-dwarf mergers. We find that the remnants of dwarf-dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z~[0.2-1]Z_sun). We also find that the remnants of these mergers can have rather high mass-densities (10^4 M_sun pc^-3) within the central 10 pc and small half-light radii (40-100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R<100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multi...

  6. Emission from the Galaxy NGC 1275 at High and Very High Energies and its Origin

    CERN Document Server

    Sinitsyna, V G

    2014-01-01

    The Seyfert galaxy NGC 1275 is the central, dominant galaxy in the Perseus cluster of galaxies. NGC1275 is known as a powerful source of radio and X-ray emission. The well-known extragalactic object NGC 1275 has been observed by the SHALON high-altitude mirror Cherenkov telescopes within the framework of long-term studies of metagalactic gamma-ray sources. In 1996, the SHALON observations revealed a new metagalactic source of very high energy gamma-ray emission coincident in its coordinates with the galaxy NGC 1275. Having analyzed the SHALON data, we have determined such characteristics of NGC 1275 as the spectral energy distributions and images at energies >800 GeV for the first time. The results obtained at high and very high energies are needed for understanding the emission generation processes in an entire wide energy range.

  7. An Ultramassive 1.28 M$_\\odot$ White Dwarf in NGC 2099

    CERN Document Server

    Cummings, Jeffrey D; Tremblay, P -E; Ramirez-Ruiz, Enrico; Bergeron, P

    2016-01-01

    With the Keck I Low-Resolution Imaging Spectrometer we have observed nine white dwarf candidates in the very rich open cluster NGC 2099 (M37). The spectroscopy shows seven to be DA white dwarfs, one to be a DB white dwarf, and one to be a DZ white dwarf. Three of these DA white dwarfs are consistent with singly evolved cluster membership: an ultramassive (1.28$^{+0.05}_{-0.08}$ M$_\\odot$) and two intermediate-mass (0.70 and 0.75 M$_\\odot$) white dwarfs. Analysis of their cooling ages allows us to calculate their progenitor masses and establish new constraints on the initial-final mass relation. The intermediate-mass white dwarfs are in strong agreement with previous work over this mass regime. The ultramassive white dwarf has $V$ = 24.5, $\\sim$2 mag fainter than the other two remnants. The spectrum of this star has lower quality, so the derived stellar properties (e.g., T$_{\\rm eff}$, log g) have uncertainties that are several times higher than the brighter counterparts. We measure these uncertainties and est...

  8. Stellar counter-rotation in lenticular galaxy NGC 448

    CERN Document Server

    Katkov, Ivan Yu; Chilingarian, Igor V; Uklein, Roman I; Egorov, Oleg V

    2016-01-01

    The counter-rotation phenomenon in disc galaxies directly indicates a complex galaxy assembly history which is crucial for our understanding of galaxy physics. Here we present the complex data analysis for a lenticular galaxy NGC 448, which has been recently suspected to host a counter-rotating stellar component. We collected deep long-slit spectroscopic observations using the Russian 6-m telescope and performed the photometric decomposition of Sloan Digital Sky Survey (SDSS) archival images. We exploited (i) a non-parametric approach in order to recover stellar line-of-sight velocity distributions and (ii) a parametric spectral decomposition technique in order to disentangle stellar population properties of both main and counter-rotating stellar discs. Our spectral decomposition stays in perfect agreement with the photometric analysis. The counter-rotating component contributes $\\approx$30 per cent to the total galaxy light. We estimated its stellar mass to be $9.0^{+2.7}_{-1.8}\\cdot10^{9}M_\\odot$. The radia...

  9. Kinematics of dwarf galaxies in gas-rich groups, and the survival and detectability of tidal dwarf galaxies

    CERN Document Server

    Sweet, Sarah M; Meurer, Gerhardt; Kilborn, Virginia; Audcent-Ross, Fiona; Baumgardt, Holger; Bekki, Kenji

    2015-01-01

    We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly-discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-metallicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L=0.73$\\pm0.39M_\\odot/L_\\odot$) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly-falling rotation curve, reaching zero rotational velocity outside the turnover radius of $r_{turn}=1.2r_e$. This may be 1) a polar ring galaxy, with a tilted bar within a face-on disk; 2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as H$\\alpha$ emission. When the tidal radius i...

  10. Discovery of a close pair of faint dwarf galaxies in the halo of Centaurus A

    CERN Document Server

    Crnojević, D; Caldwell, N; Guhathakurta, P; McLeod, B; Seth, A; Simon, J; Strader, J; Toloba, E

    2014-01-01

    As part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) we report the discovery of a pair of faint dwarf galaxies (CenA-MM-Dw1 and CenA-MM-Dw2) at a projected distance of $\\sim$90 kpc from the nearby elliptical galaxy NGC5128 (CenA). We measure a tip of the red giant branch distance to each dwarf, finding $D=3.63 \\pm 0.41$ Mpc for CenA-MM-Dw1 and $D=3.60 \\pm 0.41$ Mpc for CenA-MM-Dw2, both of which are consistent with the distance to NGC5128. A qualitative analysis of the color magnitude diagrams indicates stellar populations consisting of an old, metal-poor red giant branch ($\\gtrsim 12$ Gyr, [Fe/H]$\\sim-1.7$ to -1.9). In addition, CenA-MM-Dw1 seems to host an intermediate-age population as indicated by its candidate asymptotic giant branch stars. The derived luminosities ($M_V=-10.9\\pm0.3$ for CenA-MM-Dw1 and $-8.4\\pm0.6$ for CenA-MM-Dw2) and half-light radii ($r_{h}=1.4\\pm0.04$ kpc for CenA-MM-Dw1 and $0.36\\pm0.08$ kpc for CenA-MM-Dw2) are consistent with those of Local Group dwarfs. Cen...

  11. Infrared Observations of Star-Forming Dwarf Galaxies with Spitzer

    Science.gov (United States)

    Rosenberg, J. L.; Ashby, M. L. N.; Salzer, J. J.

    2004-12-01

    We present a study of the infrared properties of a sample of actively star-forming dwarf galaxies (MB >-18) drawn from the KPNO International Spectroscopic Survey. Nearby actively star-forming dwarf galaxies are possible analogs to the high redshift star-forming systems that serve as galactic building blocks in hierarchical galaxy formation scenarios. These galaxies are gas-rich, metal-poor systems undergoing bursts of star formation in the local universe. A subset of such objects from the line-flux limited objective-prism survey of Salzer et al. (2001) lie in the NOAO Bootes field, and have therefore been observed by Spitzer as part of the IRAC Shallow Survey. We use the IRAC data to measure the stellar mass in these galaxies. In addition, we examine whether these metal-poor dwarf galaxies show warm dust emission, and examine whether it traces the star formation as it does in normal disk galaxies. J. L. Rosenberg would like to acknowledge the NSF Astronomy and Astrophysics Fellowship for support of this work. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA.

  12. Spitzer-IRS Spectroscopy of the Prototypical Starburst Galaxy NGC7714

    CERN Document Server

    Brandl, B R; Higdon, S J U; Charmandaris, V; Spoon, H W W; Herter, T L; Hao, L; Bernard-Salas, J; Houck, J R; Armus, L; Soifer, B T; Grillmair, C J; Appleton, P N

    2004-01-01

    We present observations of the starburst galaxy NGC 7714 with the Infrared Spectrograph IRS on board the Spitzer Space Telescope. The spectra yield a wealth of ionic and molecular features that allow a detailed characterization of its properties. NGC 7714 has an HII region-like spectrum with strong PAH emission features. We find no evidence for an obscured active galactic nucleus, and with [NeIII]/[NeII]~0.73, NGC7714 lies near the upper end of normal-metallicity starburst galaxies. With very little slicate absorption and a temperature of the hottest dust component of 340K, NGC 7714 is the perfect template for a young, unobscured starburst

  13. The Arecibo Galaxy Environment Survey: Precursor Observations of the NGC 628 group

    CERN Document Server

    Auld, R; Davies, J I; Catinella, B; Henning, P A; Linder, S; Momjian, E; Müller, E; O'Neil, K; Sabatini, S; Schneider, S; Bothun, G; Cortese, L; Disney, M; Hoffman, G L; Putman, M; Rosenberg, J L; Baes, M; De Blok, W J G; Boselli, A; Brinks, E; Brosch, N; Irwin, J; Karachentsev, I D; Kilborn, V A; Koribalski, B; Spekkens, K

    2006-01-01

    The Arecibo Galaxy Environment Survey (AGES) is one of several HI surveys utilising the new Arecibo L-band Feed Array (ALFA) fitted to the 305m radio telescope at Arecibo. The survey is specifically designed to investigate various galactic environments to higher sensitivity, higher velocity resolution and higher spatial resolution than previous fully sampled, 21 cm multibeam surveys. The emphasis is on making detailed observations of nearby objects although the large system bandwidth (100 MHz) will allow us to quantify the HI properties over a large instantaneous velocity range. In this paper we describe the survey and its goals and present the results from the precursor observations of a 5 degree x 1 degree region containing the nearby (~10 Mpc) NGC 628 group. We have detected all the group galaxies in the region including the low mass (M{HI}~10^7Mo) dwarf, dw0137+1541 (Briggs, 1986). The fluxes and velocities for these galaxies compare well with previously published data. There is no intra-group neutral gas...

  14. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Teresa L.; Holtzman, Jon [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Saha, Abhijit [NOAO, 950 Cherry Avenue, Tucson, AZ 85726-6732 (United States); Anthony-Twarog, Barbara J., E-mail: rosst@nmsu.edu, E-mail: holtz@nmsu.edu, E-mail: bjat@ku.edu [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045-7582 (United States)

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  15. Far Ultraviolet Spectroscopic Explorer(FUSE) Observations Of The Antennae Galaxies (ngc4038/ngc4039)

    Science.gov (United States)

    Iping, Rosina; Sonneborn, G.; Neff, S.

    2006-06-01

    The brightest UV region of the Antennae galaxies (NGC4038/4039), Knots R/S/T, has been observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The observation used a 30x30 arcsec aperture, encompassing several stellar groups. The high-resolution FUV spectrum detects broad ( 150 km/s FWHM) O VI 1032, 1038 absorption blueward of the systemic velocity (1642 km/s) in the galactic outflow. This outflowing gas has a temperature of a few times 105 K and may dominate the radiative cooling of the supernova-heated interstellar medium. Strong C II 1036, H I 1026, S III 1012, 1015, S IV 1062, 1072 and Si IV 1122, 1128 have symmetric absorption features centered at the systemic velocity. These features probably originate from the OB stellar population in the galaxies. This work has been supported in part by a FUSE Guest Investigator grant from NASA (NAG5-13014) to the Catholic University of America.

  16. Exploring the Interstellar Media of Optically Compact Dwarf Galaxies

    CERN Document Server

    Most, Hans P; Salzer, John J; Rosenberg, Jessica J; Engstrom, Eric; Fliss, Palmer

    2013-01-01

    We present new Very Large Array HI spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii less than 1 kpc). These systems have faint blue absolute magnitudes (M_B >= -17), ongoing star formation (based on emission-line selection by the H alpha or [OIII] lines), and are nearby (mean velocity = 3315 km/s = 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an HI halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have HI radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the HI disk in the "giant disk" dwarf galaxy ADBS 113845+2008 appears to be unusual as compared to similarly compact stellar populations.

  17. Variable Stars in Local Group Galaxies. III. And VII, NGC 147, and NGC 185: Insight into the Building Blocks of the M31 Halo

    Science.gov (United States)

    Monelli, M.; Fiorentino, G.; Bernard, E. J.; Martínez-Vázquez, C. E.; Bono, G.; Gallart, C.; Dall'Ora, M.; Stetson, P. B.

    2017-06-01

    We present the discovery of 1568 RR Lyrae stars in three of the most luminous M31 satellites: And VII (573), NGC 147 (177), and NGC 185 (818). We use their properties to study the formation history of Local Group spiral haloes, and in particular, to infer about the nature of their possible building blocks by comparison with available data for RR Lyrae stars in the halo and in a sample of satellites of M31 and the Milky Way. We find that the brightest satellites and the halos of both galaxies host a number of High Amplitude Short Period (HASP) RR Lyrae variable stars, which are missing in the faintest satellites. HASP variable stars have been shown by Fiorentino et al. to be tracers of a population of stars as metal-rich as [Fe/H] ≃ -1.5 and older than ≃ 10 {Gyr}. This suggests that the metal-rich M31 and MW halo component, which manifests through the HASP phenomenon, comes from massive dwarf galaxy building blocks, as the low-mass dwarfs did not chemically enrich fast enough to produce them. All detected variable stars are new discoveries; in particular, this work presents the first detections of RR Lyrae stars in And VII. Moreover, a number of candidate Anomalous Cepheids, and binary and long-period variable stars have been detected. We provide pulsation properties (period, amplitude, mean magnitude), light curves, and time series photometry for all of the variable stars in the three galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10430 and #11724.

  18. The Extraordinary Mid-infrared Spectrum of the Blue Compact Dwarf Galaxy SBS0335-052

    CERN Document Server

    Houck, J R; Brandl, B R; Weedman, D; Herter, T; Uchida, K I; Armus, L; Soifer, B T; Bernard-Salas, J; Spoon, H W W; Devost, D

    2004-01-01

    SBS0335-052 is a blue compact dwarf galaxy (BCD) with one of the lowest known metallicities, Z$\\sim$Z$_{\\sun}$/41, making it a local example of how primordial starburst galaxies and their precursors might appear. A spectrum obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope clearly shows silicate absorption features, emission lines of [SIV] and [NeIII], and puts strong upper limits on the PAH emission features. The observed low resolution spectrum (R~90) extends from 5.3 to 35microns and peaks at ~28microns. The spectrum is compared to IRS observations of the prototypical starburst nucleus NGC7714. SBS0335-052 is quite unlike normal starburst galaxies, which show strong PAH bands, low ionization emission lines, and a continuum peak near 80microns. The continuum difference for $\\lambda >30 \\mu$m implies a substantial reduction in the mass of cold dust. If the spectrum of this very low metallicity galaxy is representative of star forming galaxies at higher redshifts, it may be difficul...

  19. Gas-phase oxygen abundances and radial metallicity gradients in the two nearby spiral galaxies NGC7793 and NGC4945

    CERN Document Server

    Stanghellini, Letizia; Casasola, Viviana

    2015-01-01

    Gas-phase abundances in HII regions of two spiral galaxies, NGC7793 and NGC4945, have been studied to determine their radial metallicity gradients. We used the strong-line method to derive oxygen abundances from spectra acquired with GMOS-S, the multi-object spectrograph on the 8m- Gemini South telescope. We found that NGC7793 has a well-defined gas-phase radial oxygen gradient of -0.321 $\\pm$ 0.112 dex R$_{\\rm 25}^{-1}$ (or -0.054 $\\pm$ 0.019 dex kpc$^{-1}$) in the galactocentric range 0.17$<$R$_{\\rm G}$/R$_{\\rm 25}$ $<$ 0.82, not dissimilar from gradients calculated with direct abundance methods in galaxies of similar mass and morphology. We also determined a shallow radial oxygen gradient in NGC4945, -0.253 $\\pm$ 0.149 dex R$_{\\rm 25}^{-1}$ (or -0.019 $\\pm$ 0.011 dex kpc$^{-1}$) for 0.04$<$R$_{\\rm G}$/R$_{\\rm 25}$ $<$ 0.51, where the larger relative uncertainty derives mostly from the larger inclination of this galaxy. NGC7793 and NGC4945 have been selected for this study because they are simil...

  20. Hydrodynamical Simulations of the Barred Spiral Galaxy NGC 1097

    CERN Document Server

    Lin, Lien-Hsuan; Hsieh, Pei-Ying; Taam, Ronald E; Yang, Chao-Chin; Yen, David C C

    2013-01-01

    NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ring extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable which is consistent with the observation in \\citet{hsieh11}. Our simulations show that the gas inflow rate is 0.17 M$_\\sun$ yr$^{-1}$ into the region within the starbu...

  1. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia 35 Stirling Highway, Crawley Western Australia, 6009 (Australia)

    2015-10-10

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z{sub ⊙}). We also find that the remnants of these mergers can have rather high mass densities (10{sup 4} M{sub ⊙} pc{sup −3}) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs.

  2. Magnetic fields in barred galaxies. IV. NGC 1097 and NGC 1365

    CERN Document Server

    Beck, R; Shukurov, A; Snodin, A; Sokoloff, D D; Ehle, M; Moss, D; Shoutenkov, V

    2005-01-01

    We present 3.5cm and 6.2cm radio continuum maps in total and polarized intensity of the barred galaxies NGC 1097 and NGC 1365. Both galaxies exhibit radio ridges roughly overlapping with the massive dust lanes in the bar region. The contrast in total intensity across the radio ridges is compatible with compression and shear of an isotropic random magnetic field. The contrast in polarized intensity is significantly smaller than that expected from compression and shearing of the regular magnetic field; this could be the result of decoupling of the regular field from the dense molecular clouds. The regular field in the ridge is probably strong enough to reduce significantly shear in the diffuse gas (to which it is coupled) and hence to reduce magnetic field amplification by shearing. This contributes to the misalignment of the observed field orientation with respect to the velocity vectors of the dense gas. Our observations, for the first time, indicate that magnetic forces can control the flow of the diffuse in...

  3. Compact Stellar Systems in the Fornax Cluster Super-massive Star Clusters or Extremely Compact Dwarf Galaxies?

    CERN Document Server

    Drinkwater, M J; Gregg, M D; Phillipps, S

    2000-01-01

    We describe a population of compact objects in the centre of the Fornax Cluster which were discovered as part of our 2dF Fornax Spectroscopic Survey. These objects have spectra typical of old stellar systems, but are unresolved on photographic sky survey plates. They have absolute magnitudes -13dwarf galaxies. These objects are all within 30 arcminutes of the central galaxy of the cluster, NGC 1399, but are distributed over larger radii than the globular cluster system of that galaxy. We suggest that these objects are either super-massive star clusters (intra-cluster globular clusters or tidally stripped nuclei of dwarf galaxies) or a new type of low-luminosity compact elliptical dwarf (M32-type) galaxy. The best way to test these hypotheses will be to obtain high resolution imaging and high-dispersion spectroscopy to determine their structures and mass-to-light ratios. This will allow us ...

  4. An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations

    CERN Document Server

    Dooley, Gregory A; Yang, Tianyi; Willman, Beth; Griffen, Brendan F; Frebel, Anna

    2016-01-01

    A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has inspired the idea of searching for faint satellites, $10^3\\, \\mathrm{M_{\\odot}}99\\%$ chance that at least one satellite with stellar mass $M_*> 10^5 \\, \\mathrm{M_{\\odot}}$ exists around the combined five Local Group field dwarf galaxies with the largest stellar mass. When considering satellites with $M_*> 10^4 \\, \\mathrm{M_{\\odot}}$, we predict a combined $5-25$ satellites for the five largest field dwarfs, and $10-50$ for the whole Local Group field dwarf population. Because of the relatively small number of predicted dwarfs, and their extended spatial distribution, a large fraction each Local Group dwarf's virial volume will need to be surveyed to guarantee discoveries. We compute the predicted number of satellites in a given field of view of specific Local Group galaxies, as a function of minimum satellite luminosity, and explicitly obtain such values for the Solitary Local dwarfs survey. Uncertainties in abundance matc...

  5. A Blue Tilt in the Globular Cluster System of the Milky Way-like Galaxy NGC 5170

    CERN Document Server

    Forbes, Duncan; Harris, William; Bailin, Jeremy; Strader, Jay; Brodie, Jean; Larsen, Soeren

    2009-01-01

    Here we present HST/ACS imaging, in the B and I bands, of the edge-on Sb/Sc galaxy NGC 5170. Excluding the central disk region region, we detect a 142 objects with colours and sizes typical of globular clusters (GCs). Our main result is the discovery of a `blue tilt' (a mass-metallicity relation), at the 3sigma level, in the metal-poor GC subpopulation of this Milky Way like galaxy. The tilt is consistent with that seen in massive elliptical galaxies and with the self enrichment model of Bailin & Harris. For a linear mass-metallicity relation, the tilt has the form Z ~ L^{0.42 +/- 0.13}. We derive a total GC system population of 600 +/- 100, making it much richer than the Milky Way. However when this number is normalised by the host galaxy luminosity or stellar mass it is similar to that of M31. Finally, we report the presence of a potential Ultra Compact Dwarf of size ~ 6 pc and luminosity M_I ~ -12.5, assuming it is physically associated with NGC 5170.

  6. The galaxy-wide distributions of mean electron density in the HII regions of M51 and NGC 4449

    CERN Document Server

    Gutiérrez, Leonel

    2010-01-01

    Using ACS-HST images to yield continuum subtracted photometric maps in H\\alpha of the Sbc galaxy M51 and the dwarf irregular galaxy NGC 4449, we produced extensive (over 2000 regions for M51, over 200 regions for NGC4449) catalogues of parameters of their HII regions: their H\\alpha luminosities, equivalent radii and coordinates with respect to the galaxy centers. From these data we derived, for each region, its mean luminosity weighted electron density, , determined from the H\\alpha luminosity and the radius, R, of the region. Plotting these densities against the radii of the regions we find excellent fits for varying as R^{-1/2}. This relatively simple relation has not, as far as we know, been predicted from models of HII region structure, and should be useful in constraining future models. Plotting the densities against the galactocentric radii, r, of the regions we find good exponential fits, with scale lengths of close to 10 kpc for both galaxies. These values are comparable to the scale lengths of the H...

  7. The Metallicity of Void Dwarf Galaxies

    NARCIS (Netherlands)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumptio

  8. Near-Infrared Photometric Properties of Red Supergiant Stars in Neaby Galaxies: NGC 4214, NGC 4736 and M51

    Science.gov (United States)

    Jung, DooSeok; Chun, Sang-Hyun; Choudhury, Samyaday; Sohn, Young-Jong

    2017-01-01

    Red supergiant stars (RSGs) are post-main sequence phase of massive stars which can be easily resolved in nearby galaxies due to their bright luminosity as compared to the low-mass stars. RSGs are cool, and hence have a dominant light output at near-infrared (NIR) wavelengths. To investigate the photometric properties of RSGs in a few nearby galaxies, we observed NGC 4214, NGC 4736 and M51 by using the WFCAM detector mounted on the UKIRT telescope at Hawaii, and obtained the NIR (JHK bands) imaging data. After carrying out the photometry, the age ranges of RSGs in each galaxy were estimated by over-plotting PARSEC isochrones to the (J-K, K) colour-magnitude diagram: log(tyr) = 6.9 - 7.3 for NGC 4214; log(tyr) = 7.0 - 8.0 for NGC 4736; and log(tyr) = 6.7 - 6.9 for M51. The effective temperatures and luminosities of RSGs were calculated using MARCS synthetic fluxes, and these results were used to compare the properties of RSGs in Hertzsprung-Russell (H-R) diagram of dominant H II regions within each galaxy, over-plotted with PARSEC evolutionary tracks. The RSGs in NGC 4214 and NGC 4736 are found to have a mass of 9 M⊙ - 30 M⊙, and the maximum luminosities found to be almost constant with log(L/L⊙) = 5.6 - 5.7. However, the location of the RSGs in the H-R diagram are not consistent with the evolutionary tracks for M51.(Key Words: stars: massive - supergiants - galaxies: photometry - galaxies: stellar content - infrared: stars)

  9. The Dwarf Galaxy Population in Nearby Groups. The data

    CERN Document Server

    Carrasco, E R; Infante, L; Carrasco, Eleazar R.; Oliveira, Claudia M. de; Infante, Leopoldo

    2006-01-01

    We used V and I CCD photometry to search for low-surface brightness dwarf galaxies (LSBD) in the central ( 22.5 V mag/arcsec^2, h > 1.5 arcsec, and diameters larger than 1.2 h^-1 kpc. Twenty of the eighty galaxies are extended LSB galaxies that were detected only on smoothed images, after masking all high surface brightness objects. The completeness in the detection is ~80% for galaxies with V<=20 and 22.5galaxies in smoothed images instead. The detected LSBD galaxies are highly concentrated towards the center of the four groups in the inner 250 h^-1 kpc. The best fit power-law slope of the surface density distribution is, on average, beta ~ -1.5 (R < 250 h^-1 kpc), in agreement with the values found for satellites dwarfs around isolated E/S0 galaxies and in X-ray groups. The LSBD galaxies in the Mv-mu0 plane does not show a clear c...

  10. The Horizontal Branch of the Sculptor Dwarf galaxy

    NARCIS (Netherlands)

    Salaris, Maurizio; Boer, Thomas de; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-01-01

    We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch

  11. Sulphur, zinc and carbon in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Skúladóttir, Ása

    2016-01-01

    The Sculptor dwarf spheroidal galaxy is a Milky Way satellite with predominantly old stellar population, and therefore the ideal target to study early chemical evolution. The chemical abundances of photospheres of stars reveal the composition of their birth environment; studying stars of different a

  12. Fast radio burst tied to distant dwarf galaxy (Image 2)

    National Science Foundation

    2017-06-07

    Full Text Available Radio telescope at Arecibo only localized the fast radio burst to the area inside the two circles in this image, but the Very Large Array was able to pinpoint it as a dwarf galaxy within the square (shown at intersection of cross hairs in enlarged box)

  13. The environment of nearby Blue Compact Dwarf Galaxies

    CERN Document Server

    Lopez-Sanchez, Angel R; van Eymeren, Janine; Esteban, Cesar; Popping, Attila; Hibbard, John

    2009-01-01

    We are obtaining deep multiwavelength data of a sample of nearby blue compact dwarf galaxies (BCDGs) combining broad-band optical/NIR and H$\\alpha$ photometry, optical spectroscopy and 21-cm radio observations. Here we present HI results obtained with the Australia Telescope Compact Array for some BCDGs, all showing evident interaction features in their neutral gas component despite the environment in which they reside. Our analysis strongly suggests that interactions with or between low-luminosity dwarf galaxies or HI clouds are the main trigger mechanism of the star-forming bursts in BCDGs; however these dwarf objects are only detected when deep optical images and complementary HI observations are performed. Are therefore BCDGs real isolated systems?

  14. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC 4214 and Detection of a Distant Galaxy

    Indian Academy of Sciences (India)

    Shweta Srivastava; N. G. Kantharia; D. C. Srivastava

    2011-12-01

    In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emission closely follows the ultraviolet emission mapped by GALEX. The galaxy is undergoing continuous star formation which can explain the diffuse emission. We suggest that the diffuse radio continuum emission and X-ray emission detected in the northern part of NGC 4214 is associated with a background galaxy, 2MASX J12153795+3622218.

  15. The Local Tully–Fisher Relation for Dwarf Galaxies

    Science.gov (United States)

    Karachentsev, Igor D.; Kaisina, Elena I.; Kashibadze (Nasonova, Olga G.

    2017-01-01

    We study different incarnations of the Tully–Fisher (TF) relation for the Local Volume (LV) galaxies taken from Updated Nearby Galaxy Catalog. The UNGC sample contains 656 galaxies with W50 H i-line-width estimates, mostly belonging to low-mass dwarfs. Of them, 296 objects have distances measured with accuracies better than 10%. For the sample of 331 LV galaxies having baryonic masses {log}{M}{bar}> 5.8{log} {M}ȯ , we obtain a relation {log}{M}{bar}=2.49{log}{W}50+3.97 with an observed scatter of 0.38 dex. The largest factors affecting the scatter are observational errors in K-band magnitudes and W50 line widths for the tiny dwarfs, as well as uncertainty of their inclinations. We find that accounting for the surface brightness of the LV galaxies or their gas fraction, specific star-formation rate, or isolation index does not essentially reduce the observed scatter on the baryonic TF diagram. We also notice that a sample of 71 dSph satellites of the Milky Way and M31 with a known stellar velocity dispersion σ* tends to follow nearly the same bTF relation, having slightly lower masses than that of late-type dwarfs.

  16. Dwarf Galaxy Starburst Statistics in the Local Volume

    CERN Document Server

    Lee, Janice C; Funes, José G S J; Shoko Sakai; Akiyama, Sanae

    2008-01-01

    An unresolved question in galaxy evolution is whether the star formation histories of low mass systems are preferentially dominated by starbursts or modes that are more quiescent and continuous. Here, we quantify the prevalence of global starbursts in dwarf galaxies at the present epoch, and infer their characteristic durations and amplitudes. The analysis is based on the H-alpha component of the 11 Mpc H-alpha UV Galaxy Survey (11HUGS), which is providing H-alpha and GALEX UV imaging for an approximately volume-limited sample of ~300 star-forming galaxies within 11 Mpc. We first examine the completeness properties of the sample, and then directly tally the number of bursting dwarfs and compute the fraction of star formation that is concentrated in such systems. Our results are consistent with a picture where dwarfs that are currently experiencing massive global bursts are just the ~6% tip of a low-mass galaxy iceberg. Moreover, bursts are only responsible for about a quarter of the total star formation in th...

  17. THE PRIMEVAL POPULATIONS OF THE ULTRA-FAINT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C., E-mail: tbrown@stsci.edu, E-mail: tumlinson@stsci.edu, E-mail: jkalirai@stsci.edu, E-mail: avila@stsci.edu, E-mail: ferguson@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2012-07-01

    We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter-dominated, and least chemically evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within {approx}1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.

  18. HI study of the warped spiral galaxy NGC5055 : a disk/dark matter halo offset?

    NARCIS (Netherlands)

    Battaglia, G; Fraternali, F; Oosterloo, T; Sancisi, R

    2006-01-01

    We present a study of the Hi distribution and dynamics of the nearby spiral galaxy NGC 5055 based on observations with the Westerbork Synthesis Radio Telescope. The gaseous disk of NGC5055 extends out to about 40 kpc, equal to 3.5 R-25, and shows a pronounced warp that starts at the end of the brigh

  19. HI study of the warped spiral galaxy NGC5055 : a disk/dark matter halo offset?

    NARCIS (Netherlands)

    Battaglia, G.; Fraternali, F.; Oosterloo, T.; Sancisi, R.

    2005-01-01

    Abstract: We present a study of the HI distribution and the dynamics of the nearby spiral galaxy NGC5055 based on observations with the Westerbork Synthesis Radio Telescope. The gaseous disk of NGC5055 extends out to about 40 kpc, equal to 3.5 R_25 and shows a pronounced warp, starting at the end of

  20. The `shook up' galaxy NGC 3079: the complex interplay between H I, activity and environment

    NARCIS (Netherlands)

    Shafi, N.; Oosterloo, T. A.; Morganti, R.; Colafrancesco, S.; Booth, R.

    2015-01-01

    We present deep neutral hydrogen (H I) observations of the starburst/Seyfert galaxy NGC 3079 and its environment, obtained with the Westerbork Synthesis Radio Telescope. Our observations reveal previously unknown components, both in H I emission and in absorption, that show that NGC 3079 is going th

  1. Suppression of dwarf galaxy formation by cosmic reionization.

    Science.gov (United States)

    Wyithe, J Stuart B; Loeb, Abraham

    2006-05-18

    A large number of faint galaxies, born less than a billion years after the Big Bang, have recently been discovered. Fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of megaparsecs, as observed along the lines of sight to the earliest known quasars. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized, leading to a drop in the cosmic star-formation rate. Here we report evidence for this suppression. We show that the post-reionization galaxies that produced most of the ionizing radiation at a redshift z approximately 5.5 must have had a mass in excess of approximately 10(10.9 +/- 0.5) solar masses (M(o)) or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (approximately 10(8) M(o)). We predict that future surveys with space-based infrared telescopes will detect a population of smaller galaxies that reionized the Universe at an earlier time, before the epoch of dwarf galaxy suppression.

  2. Optical imaging and high spatial resolution 21 cm H I observations of the peculiar galaxy NGC 2782 (Arp 215)

    Science.gov (United States)

    Smith, Beverly J.

    1994-01-01

    We have used the Very Large Array (VLA) B and C Arrays to make 21 cm H I observations of the peculiar galaxy NGC 2782 (Arp 215). These observations are complementary to previously published D Array VLA data, which revealed the presence of a long (5 min to 54 kpc) H I plume near the western side of this galaxy. We have also obtained BVRI H alpha images of the main body of this galaxy using the McDonald Observatory 30 inch telescope. The optical images of this galaxy show a strong stellar tail extending to the east, opposite the H I plume. Within the disk of NGC 2782, unsharp masking of the optical images at all 4 broadband wavelengths reveals three bright 'ripples', separated by approximately 15 sec. The light profiles across these ripples are symmetric, without a sharp outer edge. H alpha is strong at the starburst nucleus and along the northern and western sections of the inner ripple. The new higher resolution H I data show that the atomic gas is very clumpy. We have identified ten H I clumps in the long western plume, with H I masses of approximately 10(exp 8) solar mass, similar to those of dwarf galaxies, and column densities of approximately 10(exp 21) cm(exp -2) over surface areas of approximately 10 kpc(exp 2). No CO (1-0) emission has been detected from this plume, suggesting that it is material stripped from the outer edge of a disk galaxy. The H alpha peaks, in contrast, are generally not coincident with H I peaks. No H I is seen at the tip of the eastern extension. The H I distribution near this structure is ring-like rather than tail-like as in the optical data. We have detected redshifted H I absorption toward the central continuum source, indicating gas infall into the nuclear region. Using a restricted 3-body dynamical model, we have successfully reproduced the basic properties of NGC 2782 with an off-center collision between two galaxies, where a lower mass disk companion (M(sub 2)/M(sub 1) approximately 0.25) collides almost head-on with a larger

  3. Cosmological simulations of dwarf galaxies with cosmic ray feedback

    Science.gov (United States)

    Chen, Jingjing; Bryan, Greg L.; Salem, Munier

    2016-08-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  4. Cosmological Simulations of Dwarf Galaxies with Cosmic Ray Feedback

    CERN Document Server

    Chen, Jingjing; Salem, Munier

    2016-01-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic-rays generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain cosmic ray parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8-30 $\\times 10^{10}$ Msun. We find that including cosmic ray feedback (with diffusion) consistently leads to disk dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  5. New Ultra-Compact Dwarf Galaxies in Clusters

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and

  6. Alfalfa discovery of the nearby gas-rich dwarf galaxy Leo P. IV. Distance measurement from LBT optical imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J.; Rhode, Katherine L. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Dolphin, Andrew, E-mail: kmcquinn@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: jcannon@macalester.edu, E-mail: rhode@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States)

    2013-12-01

    Leo P is a low-luminosity dwarf galaxy discovered through the blind H I Arecibo Legacy Fast ALFA survey. The H I and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with both active star formation and an underlying older population, as well as an extremely low oxygen abundance. Here, we measure the distance to Leo P by applying the tip of the red giant branch (TRGB) distance method to photometry of the resolved stellar population from new Large Binocular Telescope V and I band imaging. We measure a distance modulus of 26.19{sub −0.50}{sup +0.17} mag corresponding to a distance of 1.72{sub −0.40}{sup +0.14} Mpc. Although our photometry reaches 3 mag below the TRGB, the sparseness of the red giant branch yields higher uncertainties on the lower limit of the distance. Leo P is outside the Local Group with a distance and velocity consistent with the local Hubble flow. While located in a very low-density environment, Leo P lies within ∼0.5 Mpc of a loose association of dwarf galaxies which include NGC 3109, Antlia, Sextans A, and Sextans B, and 1.1 Mpc away from its next nearest neighbor, Leo A. Leo P is one of the lowest metallicity star-forming galaxies known in the nearby universe, comparable in metallicity to I Zw 18 and DDO 68, but with stellar characteristics similar to dwarf spheriodals (dSphs) in the Local Volume such as Carina, Sextans, and Leo II. Given its physical properties and isolation, Leo P may provide an evolutionary link between gas-rich dwarf irregular galaxies and dSphs that have fallen into a Local Group environment and been stripped of their gas.

  7. Molecular gas and star formation in the Tidal Dwarf Galaxy VCC 2062

    CERN Document Server

    Lisenfeld, U; Duc, P A; Boquien, M; Brinks, E; Bournaud, F; Lelli, F; Charmandaris, V

    2016-01-01

    The physical mechanisms driving star formation (SF) in galaxies are still not fully understood. Tidal dwarf galaxies (TDGs), made of gas ejected during galaxy interactions, seem to be devoid of dark matter and have a near-solar metallicity. The latter makes it possible to study molecular gas and its link to SF using standard tracers (CO, dust) in a peculiar environment. We present a detailed study of a nearby TDG in the Virgo Cluster, VCC 2062, using new high-resolution CO(1--0) data from the Plateau de Bure, deep optical imaging from the Next Generation Virgo Cluster Survey (NGVS), and complementary multiwavelength data. Until now, there was some doubt whether VCC 2062 was a true TDG, but the new deep optical images from the NGVS reveal a stellar bridge between VCC 2062 and its parent galaxy, NGC 4694, which is clear proof of its tidal origin. Several high-resolution tracers (\\halpha, UV, 8~\\mi, and 24~\\mi) of the star formation rate (SFR) are compared to the molecular gas distribution as traced by the CO(1-...

  8. The Most Massive Ultra-Compact Dwarf Galaxy in the Virgo Cluster

    CERN Document Server

    Liu, Chengze; Toloba, Elisa; Mihos, J Christopher; Ferrarese, Laura; Alamo-Martínez, Karla; Zhang, Hong-Xin; Côté, Patrick; Cuillandre, Jean-Charles; Cunningham, Emily C; Guhathakurta, Puragra; Gwyn, Stephen; Herczeg, Gregory; Lim, Sungsoon; Puzia, Thomas H; Roediger, Joel; Sánchez-Janssen, Rubén; Yin, Jun

    2015-01-01

    We report on the properties of the most massive ultra-compact dwarf galaxy (UCD) in the nearby Virgo Cluster of galaxies using imaging from the Next Generation Virgo Cluster Survey (NGVS) and spectroscopy from Keck/DEIMOS. This object (M59-UCD3) appears to be associated with the massive Virgo galaxy M59 (NGC 4621), has an integrated velocity dispersion of 78 km/s, a dynamical mass of $3.7\\times10^8 M_\\odot$, and an effective radius ($R_e$) of 25 pc. With an effective surface mass density of $9.4\\times10^{10} M_\\odot/kpc^2$, it is the densest galaxy in the local Universe discovered to date, surpassing the density of the luminous Virgo UCD, M60-UCD1. M59-UCD3 has a total luminosity of $M_{g'}=-14.2$ mag, and a spectral energy distribution consistent with an old (14 Gyr) stellar population with [Fe/H]=0.0 and [$\\alpha$/Fe]=+0.2. We also examine deep imaging around M59 and find a broad low surface brightness stream pointing towards M59-UCD3, which may represent a tidal remnant of the UCD progenitor. This UCD, alo...

  9. Study of the structure and kinematics of the NGC 7465/64/63 triplet galaxies

    Science.gov (United States)

    Merkulova, O. A.; Karataeva, G. M.; Yakovleva, V. A.; Burenkov, A. N.

    2012-05-01

    We analyze new observational data obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the multimode SCORPIO instrument and the Multi-Pupil Fiber Spectrograph for the group of galaxies NGC 7465/64/63. For one of the group members (NGC 7465), the presence of a polar ring has been suspected. We have constructed the large-scale brightness distributions, the ionized-gas velocity and velocity dispersion fields for all three galaxies as well as the line-of-sight velocity curves based on emission and absorption lines and the stellar velocity field in the central region for NGC 7465. As a result of our analysis of the data obtained, we have discovered an inner stellar disk ( r ≈ 0.5 kpc) and a warped gaseous disk in NGC 7465, in addition to the main stellar disk. Based on a joint study of our photometric and spectroscopic data, we have established that NGC 7464 is an irregular IrrI-type galaxy whose structural and kinematic peculiarities most likely resulted from its gravitational interaction with NGC 7465. The velocity field of the ionized gas in NGC 7463 turns out to be typical of barred spiral galaxies, and the warp of the outer parts of its disk could arise from a close encounter with one of the galaxies of the environment.

  10. The white dwarf cooling sequence of NGC 6791: an unique tool for stellar astrophysics

    CERN Document Server

    García-Berro, E; Renedo, I; Camacho, J; Althaus, L G; Córsico, A H; Salaris, M; Isern, J

    2011-01-01

    NGC 6791 is a well-studied, metal-rich open cluster that is so close to us that can be imaged down to luminosities fainter than that of the termination of its white dwarf cooling sequence, thus allowing for an in-depth study of its white dwarf population. We use a Monte Carlo simulator that employs up-to-date evolutionary cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, with carbon-oxygen and helium cores. The cooling sequences for carbon-oxygen cores account for the delays introduced by both Ne^22 sedimentation in the liquid phase and by carbon-oxygen phase separation upon crystallization. We do not find evidence for a substantial fraction of helium-core white dwarfs, and hence our results support the suggestion that the origin of the bright peak of the white dwarf luminosity function can only be attributed to a population of unresolved binary white dwarfs. Moreover, our results indicate that the number distribution of secondary masses of the population of unresolved ...

  11. Magnetic fields in barred galaxies. V. Modelling NGC 1365

    CERN Document Server

    Moss, D; Englmaier, P; Shukurov, A; Beck, R; Sokoloff, D D; 10.1051/0004-6361:20066222

    2009-01-01

    We present a model of the global magnetic field in the barred galaxy NGC 1365 based jointly on the large-scale velocity field of interstellar gas fitted to HI and CO observations of this galaxy and on mean-field dynamo theory. The aim of the paper is to present a detailed quantitative comparison of a galactic dynamo model with independent radio observations. We consider several gas dynamical and nonlinear dynamo models that include plausible variations of parameters that are poorly known. Models of cosmic ray distribution in the galaxy are introduced to produce synthetic radio polarization maps allowing direct comparison with those observed at 3.5cm and 6.2cm. We show that the dynamo model is robust in that the most important magnetic features are controlled by the relatively well established properties of the density distribution and gas velocity field. The optimal agreement between the synthetic polarization maps and observations is obtained when a uniform cosmic ray distribution is adopted. We find some in...

  12. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    CERN Document Server

    Sanchez-Conde, Miguel A; Zandanel, F; Gomez, Mario E; Prada, F

    2011-01-01

    In the last few years, most of the attention in gamma-ray dark matter (DM) searches has been devoted to neutralino annihilations in nearby dwarf galaxies. However, massive galaxy clusters in the local Universe may constitute very good targets as well. The main aim of this work is to compare both dwarf galaxies and local galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies and galaxy clusters, and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman~1 appears as the best candidate in the sample and, given the morphology of its annihilation signal, it is also one of the objects more readily observable by IACTs. As for galaxy clusters, Virgo represents the one with the hi...

  13. UVES Abundances of Stars in Nearby Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Tolstoy, Eline; Venn, Kim; Shetrone, Matt; Primas, Francesca; Hill, Vanessa; Kaufer, Andreas; Szeifert, Thomas

    2002-07-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I & Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for

  14. OGLE Study of the Sagittarius Dwarf Spheroidal Galaxy and its M54 Globular Cluster

    CERN Document Server

    Hamanowicz, A; Udalski, A; Mroz, P; Soszynski, I; Szymanski, M K; Skowron, J; Poleski, R; Wyrzykowski, L; Kozlowski, S; Pawlak, M; Ulaczyk, K

    2016-01-01

    We use the fundamental-mode RR Lyr-type variable stars (RRab) from OGLE-IV to draw a 3D picture of the central part of the tidally disrupted Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy. We estimate the line-of-sight thickness of the Sgr dSph stream to be 6sigma~6.2 kpc. Based on OGLE-IV observations collected in seasons 2011-2014 we conduct a comprehensive study of stellar variability in the field of the globular cluster M54 (NGC 6715) residing in the core of this dwarf galaxy. Among the total number of 270 detected variables we report the identification of 173 RR Lyr stars, 4 Type II Cepheids, 51 semi-regular variable red giants, 3 SX Phe-type stars, 18 eclipsing binary systems. Seventy-three variables are new discoveries. The distance to the cluster determined from RRab stars is d_M54=26.2+/-0.2_stat+/-1.3_sys kpc. From the location of RRab stars in the period-amplitude (Bailey) diagram we confirm the presence of two old populations, both in the cluster and the Sgr dSph stream.

  15. The Evolution of Nearby Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, E.; Koleva, M; Prugniel, P; Vauglin,

    2011-01-01

    Within the Local Universe galaxies can be studied in great detail star by star. The Colour-Magnitude Diagram synthesis analysis method is well established as the most accurate way to determine the detailed star formation history of galaxies going back to the earliest times. This approach has benefit

  16. Dwarf Galaxies in the Local Group

    NARCIS (Netherlands)

    Tolstoy, Eline; Bruzual, GA; Charlot, S

    2010-01-01

    Within the Local Universe galaxies can be studied in great detail star by star. The Color-Magnitude Diagram synthesis analysis method is well established as the most accurate way to determine the detailed star formation history of galaxies going back to the earliest times. This approach received a s

  17. Molecular Superbubbles in the Starburst Galaxy NGC 253

    CERN Document Server

    Sakamoto, K; Iono, D; Keto, E R; Mao, R Q; Matsushita, S; Peck, A B; Wiedner, M C; Wilner, D J; Zhao, J H; Sakamoto, Kazushi; Ho, Paul T. P.; Iono, Daisuke; Keto, Eric R.; Mao, Rui-Qing; Matsushita, Satoki; Peck, Alison B.; Wiedner, Martina C.; Wilner, David J.; Zhao, Jun-Hui

    2006-01-01

    The central 2x1 kpc of the starburst galaxy NGC 253 has been imaged using the Submillimeter Array at a 60 pc resolution in the J=2-1 transitions of 12CO, 13CO, and C18O as well as in the 1.3 mm continuum. Molecular gas and dust are mainly in the circumnuclear disk of ~500 pc radius, with warm (~40 K) and high area-filling factor gas in its central part. Two gas shells or cavities have been discovered in the circumnuclear disk. They have ~100 pc diameters and have large velocity widths of 80-100 km/s, suggestive of expansion at ~50 km/s. Modeled as an expanding bubble, each shell has an age of ~0.5 Myr and needed kinetic energy of ~1E46 J as well as mean mechanical luminosity of ~1E33 W for its formation. The large energy allows each to be called a superbubble. A ~10^6 Msun super star cluster can provide the luminosity, and could be a building block of the nuclear starburst in NGC 253. Alternatively, a hypernova can also be the main source of energy for each superbubble, not only because it can provide the mec...

  18. The nature of the extended H I gas around NGC 4449 : The Dr. Jekyll Mr. Hyde of irregular galaxies

    NARCIS (Netherlands)

    Hunter, DA; Wilcots, EM; van Woerden, H; Gallagher, JS; Kohle, S

    1998-01-01

    We present interferometric H I 21 cm line observations of the extended gas around the irregular galaxy NGC 4449 covering 67' on the sky at a resolution of similar to 1'. The main star-forming body of NGC 4449 is relatively normal for a Magellanic irregular galaxy, but the galaxy is unusual in that

  19. Gas, Stars and Star Formation in ALFALFA Dwarf Galaxies

    CERN Document Server

    Huang, S; Giovanelli, R; Brinchmann, J; Stierwalt, S; Neff, S G

    2012-01-01

    We examine the global properties of the stellar and HI components of 229 low HI mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with HI masses < 10^{7.7} M_sun and HI line widths < 80 km s^{-1}. SDSS data are combined with photometric properties derived from GALEX to derive stellar masses (M_*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs) and estimates of their SFRs and M_* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M_* < 10^8 M_sun is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of t...

  20. Mid-infrared Colors of Dwarf Galaxies: Young Starbursts Mimicking Active Galactic Nuclei

    Science.gov (United States)

    Hainline, Kevin N.; Reines, Amy E.; Greene, Jenny E.; Stern, Daniel

    2016-12-01

    Searching for active galactic nuclei (AGNs) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ˜18,000 nearby dwarf galaxies (M * great care must be taken when selecting AGNs in dwarf galaxies using infrared colors, as star-forming dwarf galaxies are capable of heating dust in such a way that mimics the infrared colors of more luminous AGNs. In particular, a simple W1-W2 color cut alone should not be used to select AGNs in dwarf galaxies. With these complications in mind, we present a sample of 41 dwarf galaxies that fall in the WISE infrared color space typically occupied by more luminous AGNs and that are worthy of follow-up observations.

  1. The unexpected diversity of dwarf galaxy rotation curves

    CERN Document Server

    Oman, Kyle A; Fattahi, Azadeh; Frenk, Carlos S; Sawala, Till; White, Simon D M; Bower, Richard; Crain, Robert A; Furlong, Michelle; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2015-01-01

    We examine the circular velocity profiles of galaxies in {\\Lambda}CDM cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark matter-dominated systems, reflecting the expected similarity of the underlying cold dark matter haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for cold dark matter haloes and include many galaxies where previous work claims the presence of a con...

  2. Multimolecule ALMA observations toward the Seyfert 1 galaxy NGC 1097

    Science.gov (United States)

    Martín, S.; Kohno, K.; Izumi, T.; Krips, M.; Meier, D. S.; Aladro, R.; Matsushita, S.; Takano, S.; Turner, J. L.; Espada, D.; Nakajima, T.; Terashima, Y.; Fathi, K.; Hsieh, P.-Y.; Imanishi, M.; Lundgren, A.; Nakai, N.; Schinnerer, E.; Sheth, K.; Wiklind, T.

    2015-01-01

    Context. The nearby Sy 1 galaxy NGC 1097 represents an ideal laboratory for exploring the molecular chemistry in the surroundings of an active galactic nucleus (AGN). Aims: Exploring the distribution of different molecular species allows us to understand the physical processes affecting the interstellar medium both in the AGN vicinity and in the outer star forming molecular ring. Methods: We carried out 3 mm ALMA observations that include seven different molecular species, namely HCN, HCO+, CCH, CS, HNCO, SiO, HC3N, and SO, as well as the 13C isotopologues of the first two. Spectra were extracted from selected positions and all species were imaged over the central 2 kpc (~30'') of the galaxy at a resolution of ~2.2'' × 1.5'' (150 pc × 100 pc). Results: HCO+ and CS appear to be slightly enhanced in the star forming ring. CCH shows the largest variations across NGC 1097 and is suggested to be a good tracer of both obscured and early stage star formation. HNCO, SiO, and HC3N are significantly enhanced in the inner circumnuclear disk surrounding the AGN. Conclusions: Differences in the molecular abundances are observed between the star forming ring and the inner circumnuclear disk. We conclude that the HCN/HCO+ and HCN/CS differences observed between AGN-dominated and starburst (SB) galaxies are not due to a HCN enhancement due to X-rays, but rather this enhancement is produced by shocked material at distances of 200 pc from the AGN. Additionally, we claim that lower HCN/CS is a combination of a small underabundance of CS in AGNs, together with excitation effects, where a high density gas component (~106 cm-3) may be more prominent in SB galaxies. However, the most promising are the differences found among the dense gas tracers that, at our modest spatial resolution, seem to outline the physical structure of the molecular disk around the AGN. In this picture, HNCO probes the well-shielded gas in the disk, surrounding the dense material moderately exposed to the X

  3. A Dynamical Model for the cD Galaxy NGC 6086

    Science.gov (United States)

    De Rijcke, S.; Dejonghe, H.; Carter, D.; Bridges, T. J.; Hau, G. K. T.

    We present a dynamical model for the cD galaxy NGC6086 in the Abell 2162 cluster. Deep long-slit major axis spectra of NGC6086, NGC6166 and NGC6173 were obtained on the INT in La Palma by D. Carter, T. Bridges and G. Hau in order to probe the halo dynamics and metallicity gradients out to at least 1.5 Re. The dynamical model was fitted directly to the spectra using a modeling technique developed at the University of Gent. This approach makes parameterization of the LOSVDs unnecessary and allows the use of a mix of several template stars to avoid template mismatch.

  4. THE FORMATION OF SHELL GALAXIES SIMILAR TO NGC 7600 IN THE COLD DARK MATTER COSMOGONY

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Andrew P. [Max Planck Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Martinez-Delgado, David [Max Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Helly, John; Frenk, Carlos; Cole, Shaun [Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, DH1 3LE Durham (United Kingdom); Crawford, Ken [Rancho del Sol Observatory, Camino, CA 95709 (United States); Zibetti, Stefano [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Carballo-Bello, Julio A. [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Jay GaBany, R., E-mail: acooper@mpa-garching.mpg.de, E-mail: delgado@mpia-hd.mpg.de [Black Bird Observatory II, 5660 Brionne Drive, San Jose, CA 95118 (United States)

    2011-12-10

    We present new deep observations of 'shell' structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  5. The Mass Dependence of Dwarf Satellite Galaxy Quenching

    CERN Document Server

    Slater, Colin T

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic clouds. While almost all of the low mass ($M_\\star \\lesssim 10^7$ $M_\\odot$) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40-50%. This change in the quenched fraction is large, and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell in to their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to acco...

  6. Near-infrared spectrophotometry of four Seyfert 1 galaxies and NGC 1275

    Science.gov (United States)

    Rudy, R. J.; Jones, B.; Levan, P. D.; Puetter, R. C.; Smith, H. E.; Willner, S. P.; Tokunaga, A. T.

    1982-01-01

    Low-resolution spectrophotometry from 2 to 4 microns is reported for the four Seyfert 1 galaxies Mrk 335, 3C 120, Mrk 509, NGC 7469, and the peculiar emission-line galaxy NGC 1275. The spectrum of NGC 7469 exhibits a strong 3.3-micron dust feature, indicating a thermal origin for the bulk of its considerable nonstellar infrared emission. NGC 1275 has a large stellar contribution to its infrared flux at wavelengths shortward of 3 microns. The spectrum from 3 to 4 microns fits a power law which fits the 10-micron and 20-micron broad bands, as well. A thermal model which can explain the spectrum of NGC 1275 is discussed. Mrk 335 displays a complex spectrum suggestive of thermal dust emission. 3C 120 and Mrk 509 have nonstellar infrared emission shortward of 2 microns, but the data are ambiguous as to whether this emission is thermal or nonthermal in origin.

  7. The star cluster system of the luminous elliptical galaxy NGC 1600

    CERN Document Server

    Santiago, B X

    2008-01-01

    Luminous elliptical galaxies generally display a rich star cluster system, whose properties provide strong constraints on the physics of galaxy formation and evolution. Star cluster system studies, however, concentrate on galaxies located in nearby or rich galaxy clusters. We acquired deep B and I images of NGC 1600, a luminous elliptical in a galaxy group to study its star cluster system. The images were obtained with the Optical Imager at the SOAR telescope. The sample selection incompleteness was assessed as a function of magnitude and image background level. Source counts were measured for different elliptical annuli from the centre of NGC 1600, background subtracted, and fitted with a Gaussian function. Colour distributions were derived as a function of galactocentric distance for sources measured successfully in both filters. Typical ages and metallicities were estimated based on single stellar population models. A clear excess of point sources around NGC 1600 was found in relation to the nearby field. ...

  8. The Carnegie-Chicago Hubble Program: Discovery of the Most Distant Ultra-faint Dwarf Galaxy in the Local Universe

    Science.gov (United States)

    Lee, Myung Gyoon; Jang, In Sung; Beaton, Rachael; Seibert, Mark; Bono, Giuseppe; Madore, Barry

    2017-02-01

    Ultra-faint dwarf galaxies (UFDs) are the faintest known galaxies, and due to their incredibly low surface brightness, it is difficult to find them beyond the Local Group. We report a serendipitous discovery of a UFD, Fornax UFD1, in the outskirts of NGC 1316, a giant galaxy in the Fornax cluster. The new galaxy is located at a projected radius of 55 kpc in the south–east of NGC 1316. This UFD is found as a small group of resolved stars in the Hubble Space Telescope images of a halo field of NGC 1316, obtained as part of the Carnegie-Chicago Hubble Program. Resolved stars in this galaxy are consistent with being mostly metal-poor red giant branch (RGB) stars. Applying the tip of the RGB method to the mean magnitude of the two brightest RGB stars, we estimate the distance to this galaxy, 19.0 ± 1.3 Mpc. Fornax UFD1 is probably a member of the Fornax cluster. The color–magnitude diagram of these stars is matched by a 12 Gyr isochrone with low metallicity ([Fe/H] ≈ ‑2.4). Total magnitude and effective radius of Fornax UFD1 are MV ≈ ‑7.6 ± 0.2 mag and reff = 146 ± 9 pc, which are similar to those of Virgo UFD1 that was discovered recently in the intracluster field of Virgo by Jang & Lee. Fornax UFD1 is the most distant known UFD that is confirmed by resolved stars. This indicates that UFDs are ubiquitous and that more UFDs remain to be discovered in the Fornax cluster. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10505 and #13691.

  9. Dynamical mass modeling of dispersion-supported dwarf galaxies

    Science.gov (United States)

    Wolf, Joseph

    The currently favored cold dark matter cosmology (LCDM) has had much success in reproducing the large scale structure of the universe. However, on smaller scales there are some possible discrepancies when attempting to match galactic observations with properties of halos in dissipationless LCDM simulations. One advantageous method to test small scale simulations with observations is through dynamical mass modeling of nearby dwarf spheroidal galaxies (dSphs). The stellar tracers of dSphs are dispersion-supported, which poses a significant challenge in accurately deriving mass profiles. Unlike rotationally-supported galaxies, the dynamics of which can be well-approximated by one-dimensional physics, modeling dispersion-supported systems given only line-of-sight data results in a well-known degeneracy between the mass profile and the velocity dispersion anisotropy. The core of this dissertation is rooted in a new advancement which we have discovered: the range of solutions allowed by the mass-anisotropy degeneracy varies as a function of radius, with a considerable minimal near the deprojected half-light radius of almost all observed dispersion-supported galaxies. This finding allows for a wide range of applications in galaxy formation scenarios to be explored in an attempt to address, amongst other hypotheses, whether the LCDM framework needs to be modified in order to reproduce observations on the small scale. This thesis is comprised of both the derivation of this finding, and its applicability to all dispersion-supported systems, ranging from dwarfs galaxies consisting of a few hundred stars to systems of 'intracluster light', containing over a trillion stars. Rarely does one have the privilege of working with systems that span such a large range in luminosity (or any intrinsic property) in a short graduate career. Although the large applicability of this scale-free finding allows for discussion in many subfields, this thesis will mainly focus on one topic: dwarf

  10. NGC 4449: The Dr. Jekyll/Mr. Hyde of Magellanic Irregular Galaxies

    Science.gov (United States)

    Wilcots, E. M.; Hunter, D.; Gallagher, J. S.; van Woerden, H.

    1996-09-01

    NGC 4449 is a nearby galaxy that has long been considered to be representative of normal giant Magellanic irregulars with an unusually large, quiescent disk. We present a VLA mosaic of the extended HI disk around NGC 4449 that shatters this preconception. Our data show NGC 4449 to contain a bright central condensation of gas associated with the optical galaxy. A long stream of gas emanates from the southern end of this condensation and curves 3/4 of the way around the galaxy. We estimate the total length of this arc to be ~ 80 kpc. Additionally, a second streamer emanates from the northern end of the central condensation. While the morphology of the gas suggests that it has been disturbed by an external perturbation, it is dynamically cold and in regular rotation about the center of NGC 4449.

  11. Solo Dwarfs I: Survey introduction and first results for the Sagittarius Dwarf Irregular Galaxy

    CERN Document Server

    Higgs, C R; Irwin, M; Bate, N F; Lewis, G F; Walker, M G; Cote, P; Venn, K; Battaglia, G

    2016-01-01

    We introduce the Solitary Local Dwarfs Survey (Solo), a wide field photometric study targeting every isolated dwarf galaxy within 3 Mpc of the Milky Way. Solo is based on (u)gi multi-band imaging from CFHT/MegaCam for northern targets, and Magellan/Megacam for southern targets. All galaxies fainter than Mv = -18 situated beyond the nominal virial radius of the Milky Way and M31 (>300 kpc) are included in this volume-limited sample, for a total of 42 targets. In addition to reviewing the survey goals and strategy, we present results for the Sagittarius Dwarf Irregular Galaxy (Sag DIG), one of the most isolated, low mass galaxies, located at the edge of the Local Group. We analyze its resolved stellar populations and their spatial distributions. We provide updated estimates of its central surface brightness and integrated luminosity, and trace its surface brightness profile to a level fainter than 30 mag./sq.arcsec. Sag DIG is well described by a highly elliptical (disk-like) system following a single component...

  12. The elusive radio loud Seyfert 2 galaxy NGC 2110

    CERN Document Server

    Beckmann, Volker

    2011-01-01

    The AGN NGC 2110 presents a peculiar case among the Seyfert 2 galaxies, as it displays also features of radio-loud objects and is classified as FR-I radio galaxy. Here we analyse simultaneous INTEGRAL and Swift data taken in 2008 and 2009. We reconstruct the spectral energy distribution in order to provide further insight. The combined X-ray spectrum is well represented by an absorbed cut-off power law model plus soft excess. Combining all available data, the spectrum appears flat (photon index 1.25 \\pm 0.04) with the high-energy cut-off being at 82 \\pm 9 keV. The intrinsic absorption is moderate (NH = 4E22 1/cm**2), the iron K-alpha line is weak (EW = 114 eV), and no reflection component is detected in the INTEGRAL spectrum. The data indicate that the X-ray spectrum is moderately variable both in flux and spectral shape. The 2008 spectrum is slightly steeper (photon index 1.5, Ec = 90 keV) with the source being brighter, and flatter in 2009 (photon index 1.4, Ec = 120 keV) in the lower flux state. The spectr...

  13. CO excitation in the Seyfert galaxy NGC 7130

    Science.gov (United States)

    Pozzi, F.; Vallini, L.; Vignali, C.; Talia, M.; Gruppioni, C.; Mingozzi, M.; Massardi, M.; Andreani, P.

    2017-09-01

    We present a coherent multiband modelling of the carbon monoxide (CO) spectral energy distribution of the local Seyfert galaxy NGC 7130 to assess the impact of the active galactic nucleus (AGN) activity on the molecular gas. We take advantage of all the available data from X-ray to the submillimetre, including ALMA data. The high-resolution (˜0.2 arcsec) ALMA CO(6-5) data constrain the spatial extension of the CO emission down to an ˜70 pc scale. From the analysis of the archival Chandra and NuSTAR data, we infer the presence of a buried, Compton-thick AGN of moderate luminosity, L2-10 keV ˜ 1.6 × 1043 erg s-1. We explore photodissociation and X-ray-dominated-region (PDR and XDR) models to reproduce the CO emission. We find that PDRs can reproduce the CO lines up to J ˜ 6; however, the higher rotational ladder requires the presence of a separate source of excitation. We consider X-ray heating by the AGNs as a source of excitation, and find that it can reproduce the observed CO spectral energy distribution. By adopting a composite PDR+XDR model, we derive molecular cloud properties. Our study clearly indicates the capabilities offered by the current generation of instruments to shed light on the properties of nearby galaxies by adopting state-of-the-art physical modelling.

  14. Indirect dark matter detection for flattened dwarf galaxies

    Science.gov (United States)

    Sanders, Jason L.; Evans, N. Wyn; Geringer-Sameth, Alex; Dehnen, Walter

    2016-09-01

    Gamma-ray experiments seeking to detect evidence of dark matter annihilation in dwarf spheroidal galaxies require knowledge of the distribution of dark matter within these systems. We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulas and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulas are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are all prolate or all oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered (typical correction factors for an ellipticity of 0.4 are 0.75 for the oblate case and 1.6 for the prolate case). We demonstrate that spherical estimates of the D-factors are very insensitive to the flattening and introduce uncertainties significantly less than the uncertainties in the D-factors from the other observables for all the dwarf spheroidals (for example, +10 per cent/-3 per cent for a typical ellipticity of 0.4). We conclude by investigating the spread in correction factors produced by triaxial figures and provide uncertainties in the J-factors for the dwarf spheroidals using different physically motivated assumptions for their intrinsic shape and axis alignments. We find that the uncertainty in the J-factors due to triaxiality increases with the observed ellipticity and, in general, introduces

  15. Dark Matter Identification with Gamma Rays from Dwarf Galaxies

    CERN Document Server

    Perelstein, Maxim

    2010-01-01

    If the positron fraction and combined electron-positron flux excesses recently observed by PAMELA, FERMI and HESS are due to dark matter annihilation into lepton-rich final states, the accompanying final state radiation (FSR) photons may be detected by ground-based atmospheric Cherenkov telescopes (ACTs). Satellite dwarf galaxies in the vicinity of the Milky Way are particularly promising targets for this search. We find that current and near-future ACTs have an excellent potential for discovering the FSR photons from dwarfs, although a discovery cannot be guaranteed due to large uncertainties in the fluxes resulting from lack of precise knowledge of dark matter distribution within the dwarfs. We also investigate the possibility of discriminating between different dark matter models based on the measured FSR photon spectrum. For typical parameters, we find that the ACTs can reliably distinguish models predicting dark matter annihilation into two-lepton final states from those favoring four-lepton final states...

  16. HST detection of spiral structure in two Coma Cluster dwarf galaxies

    CERN Document Server

    Graham, A W; Guzmán, R; Graham, Alister W.; Jerjen, Helmut; Guzman, Rafael

    2003-01-01

    We report the discovery of (stellar) spiral-like structure in Hubble Space Telescope images of two dwarf galaxies (GMP 3292 and GMP 3629) belonging to the Coma cluster. GMP 3629 is the faintest such galaxy detected in a cluster environment, and it is the first such galaxy observed in the dense Coma cluster. The large bulge and the faintness of the broad spiral-like pattern in GMP 3629 suggests that its disk may have been largely depleted. >We may therefore have found an example of the ``missing link'' in theories of galaxy evolution which have predicted that dwarf spiral galaxies, particularly in clusters, evolve into dwarf elliptical galaxies.

  17. Spectroscopic observations of southern nearby galaxies. I. NGC 2442

    Science.gov (United States)

    Bajaja, E.; Agüero, E.; Paolantonio, S.

    1999-04-01

    The galaxy NGC 2442 was observed with a REOSC spectrograph, installed in the 2.15 m CASLEO telescope, in order to derive galactic parameters from the observed optical lines and to compare them with the results of radioastronomical observations made in the continuum, at 843 MHz, with the MOST and in the CO lines with the SEST telescope. Recent publications allowed us to extend the comparison to results from interferometric observations of Hα and H I 21 cm lines and of the continuum at 1415 MHz. The long slit observations were made placing the 5farcm 8 slit at six different positions on the optical image of the galaxy. The emission line intensity ratios at the nuclear region indicate that NGC 2442 is a LINER. The electron temperature and volume density are Te ~ 14 000 K and Ne ~ 530 cm(-3) , respectively. In contrast, a spectrum of a region 87arcsec to the NE shows the typical characteristics of a H Ii region. In this case Te ~ 6,500 K and Ne ~ 10 cm(-3) . Good correlations between the distributions of intensities, velocity fields and rotation curves have been found for the optical and radio lines. It is shown that the three intensity peaks along the line at PA = 40degr were not resolved by the observations at radio frequencies. The steep central rotation curve seen in CO has been confirmed and improved showing the existence of a disc or a ring, with a radius of 12.5 arcsec, rotating at 216/sin(i) km s(-1). Two velocity components in three optical spectra obtained in the nuclear region, have been related to two small Hα regions close to the nucleus and to the central ring. Asymmetries in the distributions of the emitting sources and irregularities in their velocity fields indicate the need of modelling the galaxy before any dynamical study is attempted. Based on observations made in the Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina and the National

  18. Calibrating UV Star Formation Rates for Dwarf Galaxies from STARBIRDS

    CERN Document Server

    McQuinn, Kristen B W; Dolphin, Andrew E; Mitchell, Noah P

    2015-01-01

    Integrating our knowledge of star formation traced by observations at different wavelengths is essential for correctly interpreting and comparing star formation activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The datasets are from the panchromatic STARBurst IRregular Dwarf Survey (STARBIRDS) and include deep legacy GALEX UV imaging, HST optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near UV fluxes predicted from the CMD-based SFRs - using four different models - agree with the measured, extinction corrected, integrated near UV fluxes from GALEX images, but the far UV predicted fluxes do not. Further, we find a systematic deviation between the SFRs based on integrated far U...

  19. Constraints on mass loss of globular clusters in dwarf galaxies

    CERN Document Server

    Larsen, S S; Brodie, J P

    2013-01-01

    The Fornax dwarf spheroidal galaxy is well known for its very high globular cluster specific frequency, SN=26. Furthermore, while the field star metallicity distribution peaks at [Fe/H]=-1, four of the five GCs have [Fe/H]<-2. Only about 5 percent of the field stars have such low metallicities. Hence, a very large fraction of about 1/5-1/4 of the most metal-poor stars belong to the four most metal-poor GCs. This implies that these clusters could, at most, have been a factor of 4-5 more massive initially. A second, even more extreme case may be the IKN dwarf galaxy where SN=124. Although metallicities are not accurately known, the GCs account for about 13 percent of the total V-band luminosity of IKN.

  20. The local Tully-Fisher relation for dwarf galaxies

    CERN Document Server

    Karachentsev, Igor D; Kashibadze, Olga G

    2016-01-01

    We study different incarnations of the Tully-Fisher (TF) relation for the Local Volume (LV) galaxies taken from Updated Nearby Galaxy Catalog. The UNGC sample contains 656 galaxies with $W_{50}$ HI-line-width estimates, mostly belonging to low mass dwarfs. Of them, 296 objects have distances measured with accuracy better than 10%. For the sample of 331 LV galaxies having baryonic masses $\\log M_{bar} > 5.8 \\log M_\\odot$ we obtain a relation $\\log M_{bar}= 2.49 \\log W_{50} + 3.97$ with observed scatter of 0.38 dex. The largest factors affecting the scatter are observational errors in $K$-band magnitudes and $W_{50}$ line widths for the tiny dwarfs, as well as uncertainty of their inclinations. We find that accounting for the surface brightness of the LV galaxies, or their gas fraction, or specific star formation rate, or the isolation index do not reduce essentially the observed scatter on the baryonic TF-diagram. We also notice that a sample of 71 dSph satellites of the Milky Way and M31 with known stellar ve...

  1. New dwarf galaxy candidates in the Centaurus group

    CERN Document Server

    Müller, Oliver; Binggeli, Bruno

    2015-01-01

    Recent studies of the distribution and kinematics of the Milky Way and Andromeda satellite galaxy systems have confirmed the existence of coplanar, corotating structures of galaxies. In addition to the 'missing satellite problem', these structures pose a major challenge to the standard $\\Lambda$CDM scenario of structure formation. We complement the efforts made by the dwarf galaxy community to extend these studies to other nearby galaxy groups by systematically searching for faint, unresolved dwarf members with a low surface brightness in the Southern Centaurus group of galaxies. The aim is to determine whether these coplanar, corotating structures are a universal phenomenon. We imaged an area of 60 square degrees (0.3 Mpc$^2$) around the M83 subgroup with the wide-field Dark Energy Camera (DECam) at the CTIO 4 m Blanco telescope in $g$ and $r$ down to a limiting surface brightness of $\\mu_r\\approx 30$ mag arcsec$^{-2}$. Various image-filtering techniques were applied to the DECam data to enhance the visibili...

  2. Color-magnitude Diagrams of the Star-forming Galaxies Ho IX, Cam B, NGC 2976, and UGC 1281

    Science.gov (United States)

    Georgiev, T. B.; Bomans, D. J.

    We report results on a study of nearby late type galaxies performed with the 2m RC telescope of the Rozhen NAO with with 1×1 K CCD camera. The scale and the frame size are 0.32''/pix and 5.4'×5.4', respectively. At typical seeing of 1'' the data reach routinely a limiting magnitude of ˜4 mag. With these parameters many nearby galaxies, including the members of the IC 342 and M81 groups can be resolved into star-like and diffuse objects. This allows the determination of several fundamental properties of the galaxies, based on surface photometry and study of the brightest resolved objects. The most crucial parameter is the distance to the galaxy. It can be estimated to a standard error of 20 % using the brightest red and blue stars. Selection of these stars is greatly improved by analysis of the image shapes, which allows to detect diffuse objects, like cluster candidates and background galaxies. Further improvement gives the analysis of color-magnitude (CMD) and color-color diagrams. The CMDs also allow to estimate the age of the most recent star formation event and may hint at the metallicity. The CMDs of the low surface brightness irregular galaxies Ho IX and Cam B are very similar. Especially Cam B seems to be an extreme case of a low-mass star-forming dwarf galaxy. The CMD of NGC 2976 is very similar to this of the star burst galaxy M82 (Georgiev T., 2000, Compt. Rend. Acad. Bulg. Sci. 53/2, 5-8). The edge-on galaxy UGC 1281 is of intermediate star-forming activity, but the CMD is quite sparse.

  3. Ultra-diffuse galaxies: the high-spin tail of the abundant dwarf galaxy population

    CERN Document Server

    Amorisco, N C

    2016-01-01

    Recent observations have revealed the existence of an abundant population of faint, low surface brightness (SB) galaxies, which appear to be numerous and ubiquitous in nearby galaxy clusters, including the Virgo, Coma and Fornax clusters. With median stellar masses of dwarf galaxies, these ultra-diffuse galaxies (UDGs) have unexpectedly large sizes, corresponding to a mean SB of $24\\lesssim\\langle\\mu_e\\rangle_r\\ {\\rm mag}^{-1} {\\rm arcsec}^2\\lesssim27$ within the effective radius. We show that the UDG population represents the tail of galaxies formed in dwarf-sized haloes with higher-than-average angular momentum at collapse. By adopting the standard model of disk formation -- in which the size of galaxies is set by the spin of the halo -- we recover both the abundance of UDGs as a function of the host cluster mass and the distribution of sizes within the UDG population. According to this model, UDGs are not failed $L_*$ galaxies, but genuine dwarfs, and their low SB is not uniquely connected to the harsh clu...

  4. Near-infrared line imaging of the circumnuclear starburst rings in the active galaxies NGC 1097 and NGC 6574

    CERN Document Server

    Kotilainen, J K; Laine, S; Ryder, S D

    1999-01-01

    We present high spatial resolution near-infrared broad-band JHK and Br_gamma 2.166 micron and H_2 1-0 S(1) 2.121 micron emission line images of the circumnuclear star formation rings in the LINER/Seyfert 1 galaxy NGC 1097 and the Seyfert 2 galaxy NGC 6574. We investigate the morphology, extinction, and the star formation properties and history of the rings, by comparing the observed properties with an evolutionary population synthesis model. The clumpy morphology in both galaxies varies strongly with wavelength, due to a combination of extinction, hot dust and red supergiants, and the age of the stellar populations. The near-infrared and radio morphologies are in general agreement, although there are differences in the detailed morphology. From the comparison of Br_gamma and H_alpha fluxes, we derive average extinctions toward the hot spots A_V = 1.3 for NGC 1097 and A_V = 2.1 for NGC 6574. The observed H_2/Br_gamma ratios indicate that in both rings the main excitation mechanism of the molecular gas is UV ra...

  5. Proceedings of the Bonn/Bochum-Graduiertenkolleg Workshop 'The Magellanic Clouds and Other Dwarf Galaxies'

    OpenAIRE

    Richtler, Tom; Braun, Jochen M.

    1998-01-01

    The Workshop 'The Magellanic Clouds and Other Dwarf Galaxies' was held at the Physikzentrum Bad Honnef in January 1998. The proceedings comprise 79 contributions. About 1/3 of the 352 pages contain the following Reviews: The Violent Interstellar Medium in Dwarf Galaxies: Atomic Gas (Elias Brinks and Fabian Walter), Hot Gas in the Large Magellanic Cloud (You-Hua Chu), Astrophysics of Dwarf Galaxies: Structures and Stellar Populations (John S. Gallagher), Star-forming regions and ionized gas in...

  6. VERITAS Deep Observations of the Dwarf Spheroidal Galaxy Segue 1

    CERN Document Server

    Aliu, E; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Christiansen, J L; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Decerprit, G; Dickherber, R; Dumm, J; Errando, M; Falcone, A; Feng, Q; Ferrer, F; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Holder, J; Huan, H; Hughes, G; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lee, K; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Ong, R A; Orr, M; Otte, A N; Park, N; Perkins, J S; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Saxon, D B; Schroedter, M; Sembroski, G H; Senturk, G D; Skole, C; Smith, A W; Staszak, D; Telezhinsky, I; Tesic, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Varlotta, A; Vassiliev, V V; Vincent, S; Vivier, M; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Zitzer, B

    2012-01-01

    The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant $\\gamma$-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are $\\mathrm{^{95% CL} \\lesssim 10^{-23} cm^{3} s^{-1}}$, improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of two for dark matter particle masses $\\mathrm{m_{\\chi}\\gtrsim 300 GeV}$. The lower limits on the decay lifetime are at the level of $\\mathrm{\\tau^{95% CL} \\gtrsim 10^{24} s}$. Finally, we address the inte...

  7. Faint Dwarf Galaxies in Hickson Compact Group 90

    CERN Document Server

    Ordenes-Briceño, Yasna; Puzia, Thomas H; Muñoz, Roberto P; Eigenthaler, Paul; Georgiev, Iskren Y; Goudfrooij, Paul; Hilker, Michael; Lançon, Ariane; Mamon, Gary; Mieske, Steffen; Miller, Bryan W; Peng, Eric W; Sánchez-Janssen, Rubén

    2016-01-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range $0.7\\!\\lesssim\\! r_{\\rm eff}/{\\rm kpc}\\! \\lesssim\\! 1.5$ with luminosities of $-11.65\\!\\lesssim\\! M_U\\! \\lesssim\\! -9.42$ and $-12.79\\!\\lesssim\\! M_I\\! \\lesssim\\! -10.58$ mag, corresponding to a color range of $(U\\!-\\!I)_0\\!\\simeq\\!1.1\\!-\\!2.2$ mag and surface brightness levels of $\\mu_U\\!\\simeq\\!28.1\\,{\\rm mag/arcsec^2}$ and $\\mu_I\\!\\simeq\\!27.4\\,{\\rm mag/arcsec^2}$. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z$_\\odot$ metallicities we obtain stellar masses in the range $M_*|_{Z_\\odot} \\simeq 10^{5.7-6.3} M_{\\odot}$ and $M_*|_{0.02\\,Z_\\odot}\\!\\simeq\\!10^{6.3-8}\\,M_{\\odot}$. Three dwarfs are ol...

  8. Dwarf Galaxies, MOND, and Relativistic Gravitation

    Directory of Open Access Journals (Sweden)

    Arthur Kosowsky

    2010-01-01

    Certain limits of these theories can also give the accelerating expansion of the Universe. The standard dark matter cosmology boasts numerous manifest triumphs; however, alternatives should also be pursued as long as outstanding observational issues remain unresolved, including the empirical successes of MOND on galaxy scales and the phenomenology of dark energy.

  9. The nuclear ring in the unbarred galaxy NGC 278 : result of a minor merger?

    NARCIS (Netherlands)

    Knapen, J. H.; Whyte, L. F.; Blok, W. J. G. de; Van der Hulst, J. M.

    2004-01-01

    Abstract: We present fully sampled high angular resolution two-dimensional kinematics in the H alpha spectral line, optical and near-infrared imaging, as well as 21 cm atomic hydrogen data of the spiral galaxy NGC 278. This is a small non-barred galaxy, which has a bright star forming inner region o

  10. Counter-rotating gaseous disks in the 'Evil Eye' galaxy NGC4826

    Science.gov (United States)

    Braun, Robert; Walterbos, Rene A. M.; Kennicutt, Robert C., Jr.

    1992-12-01

    The discovery of two counterrotating gaseous disks in the otherwise normal early-type spiral NGC4826 is reported. This is the most disklike galaxy in which any kinematic substructure has yet been found. This discovery raises the possibility that even spiral galaxies may have undergone a significant degree of structural evolution due to mergers.

  11. The PN.S Elliptical Galaxy Survey: a standard ΛCDM halo around NGC 4374?

    NARCIS (Netherlands)

    Napolitano, N. R.; Romanowsky, A. J.; Capaccioli, M.; Douglas, N. G.; Arnaboldi, M.; Coccato, L.; Gerhard, O.; Kuijken, K.; Merrifield, M. R.; Bamford, S. P.; Cortesi, A.; Das, P.; Freeman, K. C.

    2011-01-01

    As part of our current programme to test ΛCDM predictions for dark matter (DM) haloes using extended kinematical observations of early-type galaxies, we present a dynamical analysis of the bright elliptical galaxy NGC 4374 (M84) based on ˜450 planetary nebulae (PNe) velocities from the PN.Spectrogra

  12. Molecular Superbubbles in the Starburst Galaxy NGC 253

    Science.gov (United States)

    Sakamoto, Kazushi; Ho, Paul T. P.; Iono, Daisuke; Keto, Eric R.; Mao, Rui-Qing; Matsushita, Satoki; Peck, Alison B.; Wiedner, Martina C.; Wilner, David J.; Zhao, Jun-Hui

    2006-01-01

    The central 2×1 kpc of the starburst galaxy NGC 253 have been imaged using the Submillimeter Array at a 60 pc resolution in the J=2-1 transitions of 12CO, 13CO, and C18O, as well as in the 1.3 mm continuum. Molecular gas and dust are distributed mainly in a circumnuclear disk of ~500 pc radius, with warm (~40 K) and high area filling factor gas in its central part. Two gas shells or cavities have been discovered in the circumnuclear disk. They have ~100 pc diameters and have large velocity widths of 80-100 km s-1, suggestive of expansion at ~50 km s-1. Modeled as an expanding bubble, each shell has an age of ~0.5 Myr and needed kinetic energy of ~1×1046 J, as well as mean mechanical luminosity of ~1×1033 W, for its formation. The large energy allows each to be called a superbubble. A ~106 Msolar super star cluster can provide the luminosity and could be a building block of the nuclear starburst in NGC 253. Alternatively, a hypernova can also be the main source of energy for each superbubble, not only because it can provide the mechanical energy and luminosity but also because the estimated rate of superbubble formation and that of hypernova explosions are comparable. Our observations indicate that the circumnuclear molecular disk harboring the starburst is highly disturbed on 100 pc or smaller scales, presumably by individual young clusters and stellar explosions, in addition to being globally disturbed in the form of the well-known superwind.

  13. HERSCHEL SPECTROSCOPIC OBSERVATIONS OF LITTLE THINGS DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cigan, Phil; Young, Lisa [Physics Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Cormier, Diane [Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Lebouteiller, Vianney; Madden, Suzanne [Laboratoire AIM, CEA/DSM—CNRS—Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Hunter, Deidre [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Brinks, Elias [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Elmegreen, Bruce [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Hts., NY 10598 (United States); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Heesen, Volker, E-mail: pcigan@alumni.nmt.edu [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Collaboration: LITTLE THINGS Team

    2016-01-15

    We present far-infrared (FIR) spectral line observations of five galaxies from the Little Things sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [C ii] 158 μm, [O i] 63 μm, [O iii] 88 μm, and [N ii] 122 μm emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the FIR properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate photodissociation regions (PDRs) in some of the regions we observed. Our systems have widespread [C ii] emission that is bright relative to continuum, averaging near 0.5% of the total infrared (TIR) budget—higher than in solar-metallicity galaxies of other types. [N ii] is weak, suggesting that the [C ii] emission in our galaxies comes mostly from PDRs instead of the diffuse ionized interstellar medium (ISM). These systems exhibit efficient cooling at low dust temperatures, as shown by ([O i]+[C ii])/TIR in relation to 60 μm/100 μm, and low [O i]/[C ii] ratios which indicate that [C ii] is the dominant coolant of the ISM. We observe [O iii]/[C ii] ratios in our galaxies that are lower than those published for other dwarfs, but similar to levels noted in spirals.

  14. Nuclei of dwarf spheroidal galaxies KKs 3 and ESO 269-66 and their counterparts in our Galaxy

    Science.gov (United States)

    Sharina, M. E.; Shimansky, V. V.; Kniazev, A. Y.

    2017-10-01

    We present the analysis of medium-resolution spectra obtained at the Southern African Large Telescope for nuclear globular clusters (GCs) in two dwarf spheroidal galaxies (dSphs). The galaxies have similar star formation histories, but they are situated in completely different environments. ESO 269-66 is a close neighbour of the giant S0 NGC 5128. KKs 3 is one of the few truly isolated dSphs within 10 Mpc. We estimate the helium abundance Y = 0.3, age = 12.6 ± 1 Gyr, [Fe/H] = -1.5, -1.55 ± 0.2 dex, and abundances of C, N, Mg, Ca, Ti, and Cr for the nuclei of ESO 269-66 and KKs 3. Our surface photometry results using Hubble Space Telescope images yield the half-light radius of the cluster in KKs 3, rh = 4.8 ± 0.2 pc. We demonstrate the similarities of medium-resolution spectra, ages, chemical compositions, and structure for GCs in ESO 269-66 and KKs 3 and for several massive Galactic GCs with [Fe/H] ∼ -1.6 dex. All Galactic GCs posses Extended Blue Horizontal Branches and multiple stellar populations. Five of the selected Galactic objects are iron-complex GCs. Our results indicate that the sample GCs observed now in different environments had similar conditions of their formation ∼1 Gyr after the Big Bang.

  15. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral Rose

    2016-06-01

    The high dark matter content and the shallow potential wells of low mass galaxies (10^3 Msun 10 Gyr), having had their star formation shut down by reionization. Additionally, we show that the kinematics and ellipticities of isolated simulated dwarf centrals are consistent with observed dSphs satellites without the need for harassment from a massive host. We further show that most (but not all) observed *isolated* dIrrs in the Local Volume also have dispersion-supported stellar populations, contradicting the previous view that these objects are rotating. Finally, we investigate the stellar age gradients in dwarfs — showing that early mergers and strong feedback can create an inverted gradient, with the older stars occupying larger galactocentric radii.These results offer an interesting direction in testing models that attempt to solve dark matter problems via explosive feedback episodes. Can the same models that create large cores in simulated dwarfs preserve the mild stellar rotation that is seen in a minority of isolated dIrrs? Can the bursty star formation that created a dark matter core also match observed stellar gradients in low mass galaxies? Comparisons between our simulations and observed dwarfs should provide an important benchmark for this question going forward.

  16. HI Gas in Disk and Dwarf Galaxies in the Semi-analytic Models of Galaxy Formation†

    Science.gov (United States)

    Fu, Jian; Wang, Jing; Luo, Yu

    We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models run on the halo outputs of ΛCDM cosmology N-body simulation. Our models can reproduce varies observations of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We also give the physical origin of HI size-mass relation. Based on our model results for local dwarf galaxies, we show that the ``missing satellite problem'' also exists in the HI component, i.e., the models over-predict dwarf galaxies with low HI mass around the Milky Way. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in local dwarf galaxies (e.g. MeerKAT, SKA & FAST) can help to verify the nature of dark matter (cold or warm).

  17. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy.

    Science.gov (United States)

    Ibata, Rodrigo A; Lewis, Geraint F; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M

    2013-01-03

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.

  18. Andromeda IV, a solitary gas-rich dwarf galaxy

    CERN Document Server

    Karachentsev, I D; Tully, R B; Makarova, L N; Sharina, M E; Begum, A; Rizzi, L

    2015-01-01

    Observations are presented of the isolated dwarf irregular galaxy And IV made with the Hubble Space Telescope Advanced Camera for Surveys and the Giant Metrewave Radio Telescope in the 21 cm HI line. We determine the galaxy distance of $7.17\\pm0.31$ Mpc using the Tip of Red Giant Branch method. The galaxy has a total blue absolute magnitude of -12.81 mag, linear Holmberg diameter of 1.88 kpc and an HI-disk extending to 8.4 times the optical Holmberg radius. The HI mass-to-blue luminosity ratio for And IV amounts $12.9~M_{\\odot}/L_{\\odot}$. From the GMRT data we derive the rotation curve for the HI and fit it with different mass models. We find that the data are significantly better fit with an iso-thermal dark matter halo, than by an NFW halo. We also find that MOND rotation curve provides a very poor fit to the data. The fact that the iso-thermal dark matter halo provides the best fit to the data supports models in which star formation feedback results in the formation of a dark matter core in dwarf galaxies...

  19. The universal rotation curve of dwarf disk galaxies

    CERN Document Server

    Karukes, Ekaterina V

    2016-01-01

    We use the concept of the spiral rotation curves universality (see Parsic et al. 1996) to investigate the luminous and dark matter properties of the dwarf disk galaxies in the local volume (size $\\sim11$ Mpc). Our sample includes 36 objects with rotation curves carefully selected from the literature. We find that, despite the large variations of our sample in luminosities ($\\sim$ 2 of dex), the rotation curves in specifically normalized units, look all alike and lead to the lower-mass version of the universal rotation curve of spiral galaxies found in Parsic et al. 1996. We mass model $V(R/R_{opt})/V_{opt}$, the double normalized universal rotation curve of dwarf disk galaxies: the results show that these systems are totally dominated by dark matter whose density shows a core size between 2 and 3 stellar disk scale lengths. Similar to galaxies of different Hubble types and luminosities, the core radius $r_0$ and the central density $\\rho_0$ of the dark matter halo of these objects are related by $ \\rho_0 r_0 ...

  20. Structure and Kinematics of the Nearby Dwarf Galaxy UGCA 105

    CERN Document Server

    Schmidt, Philip; Gentile, Gianfranco; Oh, Se-Heon; Schuberth, Ylva; Bekhti, Nadya Ben; Winkel, Benjamin; Klein, Uli

    2013-01-01

    Owing to their shallow stellar potential, dwarf galaxies possess thick gas disks, which makes them good candidates for studies of the galactic vertical kinematical structure. We present 21 cm line observations of the isolated nearby dwarf irregular galaxy UGCA 105, taken with the Westerbork Synthesis Radio Telescope (WSRT), and analyse the geometry of its neutral hydrogen (HI) disk and its kinematics. The galaxy shows a fragmented HI distribution. It is more extended than the optical disk, and hence allows one to determine its kinematics out to very large galacto-centric distances. The HI kinematics and morphology are well-ordered and symmetric for an irregular galaxy. The HI is sufficiently extended to observe a substantial amount of differential rotation. Moreover, UGCA 105 shows strong signatures for the presence of a kinematically anomalous gas component. Performing tilted-ring modelling by use of the least-squares fitting routine TiRiFiC, we found that the HI disk of UGCA 105 has a moderately warped and ...

  1. Structural analysis of the Sextans dwarf spheroidal galaxy

    Science.gov (United States)

    Roderick, T. A.; Jerjen, H.; Da Costa, G. S.; Mackey, A. D.

    2016-07-01

    We present wide-field g- and i-band stellar photometry of the Sextans dwarf spheroidal galaxy and its surrounding area out to four times its half-light radius (rh = 695 pc), based on images obtained with the Dark Energy Camera at the 4-m Blanco telescope at CTIO. We find clear evidence of stellar substructure associated with the galaxy, extending to a distance of 82 arcmin (2 kpc) from its centre. We perform a statistical analysis of the overdensities and find three distinct features, as well as an extended halo-like structure, to be significant at the 99.7 per cent confidence level or higher. Unlike the extremely elongated and extended substructures surrounding the Hercules dwarf spheroidal galaxy, the overdensities seen around Sextans are distributed evenly about its centre, and do not appear to form noticeable tidal tails. Fitting a King model to the radial distribution of Sextans stars yields a tidal radius rt = 83.2 arcmin ± 7.1 arcmin (2.08 ± 0.18 kpc), which implies the majority of detected substructure is gravitationally bound to the galaxy. This finding suggests that Sextans is not undergoing significant tidal disruption from the Milky Way, supporting the scenario in which the orbit of Sextans has a low eccentricity.

  2. How Typical Are The Local Group Dwarf Galaxies?

    CERN Document Server

    Weisz, Daniel R; Dalcanton, Julianne J; Skillman, Evan D; Holtzman, Jon; Williams, Benjamin F; Gilbert, Karoline M; Seth, Anil C; Cole, Andrew; Gogarten, Stephanie M; Rosema, Keith; Karachentsev, Igor D; McQuinn, Kristen B W; Zaritsky, Dennis

    2011-01-01

    We compare the star formation histories (SFHs) of Local Group (LG) dwarf galaxies with those in the volume-limited ACS Nearby Galaxy Survey Treasury (ANGST) sample (D~4Mpc). The SFHs were derived in a uniform manner from high quality optical color-magnitude diagrams constructed from HST imaging. The mean cumulative SFHs of the LG and ANGST dwarf galaxies are all very similar for the three different morphological types (dSph/dE, dI, dI/dSph). The star formation rates (SFRs) at earliest times are measurably higher than the average lifetime SFRs, while SFRs are lower at later times. We find that the systematic uncertainties, due to varying photometric depths and uncertainties in the stellar models, are similar to any differences between the mean cumulative SFHs of the LG and ANGST samples, indicating consistency between the samples. As for the ANGST galaxies alone, we find the combined LG and ANGST samples, are generally consistent with the cosmic SFH and that the mean cumulative SFHs are not well described by s...

  3. Comparison of Alternative Gravity Models in Dwarf Galaxy Rotation Curves

    Science.gov (United States)

    Harrington, Justin; Saintable, Taylor; O'Brien, James

    2017-01-01

    Galactic rotation curves have proven to be the testing ground for dark matter bounds in spiral galaxies of all morphologies. Dwarf Galaxies serve as an increasingly interesting testing ground of rotation curve dynamics due to their increased stellar formation and typically rising rotation curve. These galaxies usually are not dominated by typical stellar structure and mostly terminate at small radial distances. This, coupled with the fact that Cold Dark Matter theories such as NFW (∧ CDM) struggle with the universality of galactic rotation curves, allow for exclusive features of alternative gravitational models to be analyzed. Here, we present a thorough application of alternative gravitational models (conformal gravity and MOND) to a 2010 dwarf galaxy sample from Swaters et al. An analysis and discussion of the results of the fitting procedure of the two alternative gravitational models are explored. We posit here that both the Conformal Gravity and MOND can provide an accurate description of the galactic dynamics without the need for copious dark matter.

  4. EXPLORING THE INTERSTELLAR MEDIA OF OPTICALLY COMPACT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Most, Hans P.; Cannon, John M.; Engstrom, Eric; Fliss, Palmer [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L., E-mail: hmost@macalester.edu, E-mail: jcannon@macalester.edu, E-mail: slaz@astro.indiana.edu, E-mail: jrosenb4@gmu.edu [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States)

    2013-06-15

    We present new Very Large Array H I spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii <1 kpc). These systems have faint blue absolute magnitudes (M{sub B} {approx}> -17), ongoing star formation (based on emission-line selection by the H{alpha} or [O III] lines), and are nearby (mean velocity = 3315 km s{sup -1} {approx_equal} 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H I halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H I radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H I disk in the 'giant disk' dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

  5. The old globular cluster system of the dIrr galaxy NGC1427A in the Fornax cluster

    CERN Document Server

    Georgiev, I Y; Goudfrooij, P; Hilker, M; Infante, L; Mieske, S; Puzia, T; Reisenegger, A; Chaname, Julio; Georgiev, Iskren Y.; Goudfrooij, Paul; Hilker, Michael; Mieske, Steffen; Puzia, Thomas H.; Reisenegger, Andreas

    2006-01-01

    We present a study of the old globular cluster (GC) population of the dwarf irregular galaxy NGC 1427A using multi-wavelength VLT observations in U, B, V, I, H_alpha, J, H, and Ks bands under excellent observing conditions. We applied color and size selection criteria to select old GC candidates and made use of archival ACS images taken with the Hubble Space Telescope to reject contaminating background sources and blended objects from the GC candidates' list. The H_alpha observations were used to check for contamination due to compact, highly reddened young star clusters whose colors and sizes could mimic those of old GCs. After accounting for contamination we obtain a total number of 38+/-8 GC candidates with colors consistent with an old (~10 Gyr) and metal-poor (Z < 0.4xZ_solar) population as judged by simple stellar population models. Our contamination analysis indicates that the density distribution of GCs in the outskirts of the Fornax central cD galaxy NGC1399 may not be spherically symmetric. We de...

  6. The Star Formation History of NGC 1705: a Post-Starburst Galaxy on the Verge of Activity

    CERN Document Server

    Annibali, F; Tosi, M P; Aloisi, A; Leitherer, C

    2003-01-01

    We infer the star formation history in different regions of the blue compact dwarf NGC 1705 by comparing synthetic color-magnitude diagrams with HST optical and near-infrared photometry. We find that NGC 1705 is not a young galaxy because its star formation commenced at least 5 Gyr ago. On the other hand, we confirm the existence of a recent burst of star formation between 15 and 10 Myr ago. We also find evidence for new strong activity, which started 3 Myr ago and is still continuing. The old population is spread across the entire galaxy, while the young and intermediate stars are more concentrated in the central regions. We derive an almost continuous star formation with variable rate, and exclude the presence of long quiescent phases between the episodes during the last ~1 Gyr. The central regions experienced an episode of star formation of \\~0.07 Msun/yr (for a Salpeter initial mass function [IMF]) 15 to 10 Myr ago. This coincides with the strong activity in the central super star cluster. We find a rate ...

  7. Chemical Abundance Patterns and the Early Environment of Dwarf Galaxies

    CERN Document Server

    Corlies, Lauren; Tumlinson, Jason; Bryan, Greg

    2013-01-01

    Recent observations suggest that abundance pattern differences exist between low metallicity stars in the Milky Way stellar halo and those in the dwarf satellite galaxies. This paper takes a first look at what role the early environment for pre-galactic star formation might have played in shaping these stellar populations. In particular, we consider whether differences in cross-pollution between the progenitors of the stellar halo and the satellites could help to explain the differences in abundance patterns. Using an N-body simulation, we find that the progenitor halos of the main halo are primarily clustered together at z=10 while the progenitors of the satellite galaxies remain on the outskirts of this cluster. Next, analytically modeled supernova-driven winds show that main halo progenitors cross-pollute each other more effectively while satellite galaxy progenitors remain more isolated. Thus, inhomogeneous cross-pollution as a result of different high-z spatial locations of each system's progenitors can ...

  8. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. II. Implications for understanding galaxy evolution

    NARCIS (Netherlands)

    Tolstoy, E; Venn, KA; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    2003-01-01

    We have used the Ultraviolet Visual-Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies (dSph's) : Sculptor, Fornax, Carina, and Leo I. We measure the abundance variations of

  9. Search for Blue Compact Dwarf Galaxies During Quiescence

    CERN Document Server

    Almeida, J Sanchez; Amorin, R; Aguerri, J A; Sanchez-Janssen, R; Tenorio-Tagle, G

    2008-01-01

    Blue Compact Dwarf (BCD) galaxies are metal poor systems going through a major starburst that cannot last for long. We have identified galaxies which may be BCDs during quiescence (QBCD), i.e., before the characteristic starburst sets in or when it has faded away. These QBCD galaxies are assumed to be like the BCD host galaxies. The SDSS/DR6 database provides ~21500 QBCD candidates. We also select from SDSS/DR6 a complete sample of BCD galaxies to serve as reference. The properties of these two galaxy sets have been computed and compared. The QBCD candidates are thirty times more abundant than the BCDs, with their luminosity functions being very similar except for the scaling factor, and the expected luminosity dimming associated with the end of the starburst. QBCDs are redder than BCDs, and they have larger HII region based oxygen abundance. QBCDs also have lower surface brightness. The BCD candidates turn out to be the QBCD candidates with the largest specific star formation rate (actually, with the largest...

  10. Stellar Contents and Globular Cluster Candidates in the Sculptor Group Galaxy NGC 300

    CERN Document Server

    Kim, S C; Lee, M G; Kim, Sang Chul; Sung, Hwankyung; Lee, Myung Gyoon

    2002-01-01

    We present UBVI CCD photometry of the stellar contents and globular cluster(GC) candidates in the spiral galaxy NGC 300 in the Sculptor group. Color-magnitude diagrams for 18 OB associations having more than 30 member stars are presented. The slope of the initial mass function for the bright stars in NGC 300 is estimated to be Gamma = -2.6 +/- 0.3. Assuming the distance to NGC 300 of (m-M)_0 = 26.53 +/- 0.07, the mean absolute magnitude of three brightest blue stars is obtained to be = -8.95 mag. We have performed search for GCs in NGC 300 and have found 17 GC candidates in this galaxy. Some characteristics of these GC candidates are discussed.

  11. Cataclysmic Variables and a Candidate Helium White Dwarf in the Globular Cluster NGC 6397

    CERN Document Server

    Edmonds, P D; Cool, A M; Cohn, H N; Lugger, P M; Bailyn, C D; Edmonds, Peter D.; Grindlay, Jonathan E.; Cool, Adrienne M.; Cohn, Haldan N.; Lugger, Phyllis N.; Bailyn, Charles D.

    1999-01-01

    We have used HST/FOS to study faint UV stars in the core of the nearby globular cluster NGC 6397. We confirm the presence of a 4th cataclysmic variable (CV) in NGC 6397 (CV 4), and we use the photometry of Cool et al. (1998) to present evidence that CVs 1--4 all have faint disks and probably low accretion rates. By combining these results with new UV spectra of CV 1 and the published spectra of Grindlay et al. (1995) we present new evidence that CVs 1--3 may be DQ Her systems, and we show that CV 4 may either be a dwarf nova or another magnetic system. Another possibility is that the CVs could be old novae in hibernation between nova eruptions. We also present the first spectrum of a member of a new class of UV bright stars in NGC 6397. These faint, hot stars do not vary, unlike the CVs, and are thus denoted as ``non-flickerers'' (NFs). Like the CVs, their spatial concentration is strongly concentrated toward the cluster center. Using stellar atmosphere models we have determined log g = 6.25, and T_eff = 17,5...

  12. $\\rm{H}\\alpha$ Velocity Fields and Galaxy Interaction in the Quartet of Galaxies NGC 7769, 7770, 7771 and 7771A

    Indian Academy of Sciences (India)

    A. A. Yeghiazaryan; T. A. Nazaryan; A. A. Hakobyan

    2016-03-01

    The quartet of galaxies NGC 7769, 7770, 7771 and 7771A is a system of interacting galaxies. Close interaction between galaxies caused characteristic morphological features: tidal arms and bars, as well as an induced star formation. In this study, we performed the Fabry–Perot scanning interferometry of the system in $\\rm{H}\\alpha$ line and studied the velocity fields of the galaxies. We found that the rotation curve of NGC 7769 is weakly distorted. The rotation curve of NGC 7771 is strongly distorted with the tidal arms caused by direct flyby of NGC 7769 and flyby of a smaller neighbor NGC 7770. The rotation curve of NGC 7770 is significantly skewed because of the interaction with the much massive NGC 7771. The rotation curves and morphological disturbances suggest that the NGC 7769 and NGC 7771 have passed the first pericenter stage, however, probably the second encounter has not happened yet. Profiles of surface brightness of NGC 7769 have a characteristic break, and profiles of color indices have a minimum at a radius of intensive star formation induced by the interaction with NGC 7771.

  13. The Evolution of Interacting Spiral Galaxy NGC 5194

    CERN Document Server

    Kang, Xiaoyu; Zhang, Fenghui; Cheng, Liantao; Wang, Lang

    2015-01-01

    NGC 5194 (M51a) is a grand-design spiral galaxy and undergoing interactions with its companion. Here we focus on investigating main properties of its star-formation history (SFH) by constructing a simple evolution model, which assumes that the disc builds up gradually by cold gas infall and the gas infall rate can be parameterizedly described by a Gaussian form. By comparing model predictions with the observed data, we discuss the probable range for free parameter in the model and then know more about the main properties of the evolution and SFH of M51a. We find that the model predictions are very sensitive to the free parameter and the model adopting a constant infall-peak time $t_{\\rm p}\\,=\\,7.0{\\rm Gyr}$ can reproduce most of the observed constraints of M51a. Although our model does not assume the gas infall time-scale of the inner disc is shorter than that of the outer disc, our model predictions still show that the disc of M51a forms inside-out. We find that the mean stellar age of M51a is younger than t...

  14. Extended Red Emission in the Evil Eye Galaxy (NGC 4826)

    Science.gov (United States)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2002-04-01

    NGC 4826 (M64) is a nearby Sab galaxy with an outstanding, absorbing dust lane (called the Evil Eye) asymmetrically placed across its prominent bulge. In addition, its central region is associated with several regions of ongoing star formation activity. We obtained accurate low-resolution (4.3 Å pixel-1) long-slit spectroscopy (KPNO 4 m) of NGC 4826 in the 5300-9100 Å spectral range, with a slit of 4.4‧ length, encompassing the galaxy's bulge size, positioned across its nucleus. The wavelength-dependent effects of absorption and scattering by the dust in the Evil Eye are evident when comparing the observed stellar spectral energy distributions (SEDs) of pairs of positions symmetrically located with respect to the nucleus, one on the dust lane side and one on the symmetrically opposite side of the bulge, under the assumption that the intrinsic (i.e., unobscured) radiation field is to first-order axisymmetric. We analyzed the SED ratios for a given number of pairs of positions through the multiple-scattering radiative transfer model of Witt & Gordon. As a main result, we discovered strong residual extended red emission (ERE) from a region of the Evil Eye within a projected distance of about 13" from the nucleus, adjacent to a broad, bright H II region, intercepted by the spectrograph slit. ERE is an established phenomenon well-covered in the literature and interpreted as originating from photoluminescence by nanometer-sized clusters, illuminated by UV/optical photons of the local radiation field. In the innermost part of the Evil Eye, the ERE band extends from about 5700 to 9100 Å, with an estimated peak intensity of ~3.7×10-6 ergs s -1 Å-1 cm-2 sr-1 near 8300 Å and with an ERE to scattered light band integrated intensity ratio, I(ERE)/I(sca), of about 0.7. At farther distances, approaching the broad, bright H II region, the ERE band and peak intensity shift toward longer wavelengths, while the ERE band-integrated intensity, I(ERE), diminishes and, eventually

  15. Chandra Observation of the Starburst Galaxy NGC 2146

    CERN Document Server

    Inui, T; Tsuru, T G; Koyama, K; Matsushita, S; Peck, A B; Tarchi, A; Inui, Tatsuya; Matsumoto, Hironori; Tsuru, Takeshi Go; Koyama, Katsuji; Matsushita, Satoki; Peck, Alison B.; Tarchi, Andrea

    2004-01-01

    We present six monitoring observations of the starburst galaxy NGC 2146 using the Chandra X-ray Observatory. We have detected 67 point sources in the 8'.7 x 8'.7 field of view of the ACIS-S detector. Six of these sources were Ultra-Luminous X-ray Sources, the brightest of which has a luminosity of 5 x 10^{39} ergs s^{-1}. One of the source, with a luminosity of ~1 x 10^{39} ergs s^{-1}, is coincident with the dynamical center location, as derived from the ^{12}CO rotation curve. We suggest that this source may be a low-luminosity active galactic nucleus. We have produced a table where the positions and main characteristics of the Chandra-detected sources are reported. The comparison between the positions of the X-ray sources and those of compact sources detected in NIR or radio does not indicate any definite counterpart. Taking profit of the relatively large number of sources detected, we have derived a logN-logS relation and a luminosity function. The former shows a break at \\~10^{-15} ergs cm^{-2} s^{-1}, t...

  16. Hierarchical Star Formation across the ring galaxy NGC 6503

    CERN Document Server

    Gouliermis, Dimitrios A; Elmegreen, Bruce G; Elmegreen, Debra M; Calzetti, Daniela; Lee, Janice C; Adamo, Angela; Aloisi, Alessandra; Cignoni, Michele; Cook, David O; Dale, Daniel; Gallagher, John S; Grasha, Kathryn; Grebel, Eva K; Davo, Artemio Herrero; Hunter, Deidre A; Johnson, Kelsey E; Kim, Hwihyun; Nair, Preethi; Nota, Antonella; Pellerin, Anne; Ryon, Jenna; Sabbi, Elena; Sacchi, Elena; Smith, Linda J; Tosi, Monica; Ubeda, Leonardo; Whitmore, Brad

    2015-01-01

    We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep HST photometry obtained with the Legacy ExtraGalactic UV Survey (LEGUS). We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95% being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviors, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ~1.7 for length-scales between ~20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances betwe...

  17. Metallicity in the merger Seyfert galaxy NGC 6240

    CERN Document Server

    Contini, M

    2012-01-01

    We have calculated the physical conditions throughout the NLR of the merger Seyfert galaxy NGC 6240 by modelling the observed optical and infrared line ratios. We have found that the optical spectra are emitted by clouds photoionised by the power-law radiation flux from the AGN (or AGNs), and heated mainly by the shock accompanying the propagation of the clouds outwards. The infrared line ratios are emitted from clouds ejected from a starburst which photoionises the gas by the black-body radiation flux corresponding to a stellar colour temperature of about 50,000 K. Both the flux from the AGN and the ionization parameters are low. The most characteristic physical parameters are the relatively high shock velocities (>400 km/s) and low preshock densities (about 40-60 cm-3) of the gas. The C/H, N/H, O/H relative abundances are higher than solar by a factor lower or about 1.5. We suggest that those high relative abundances indicate trapping of H into H2 molecules rather than high metallicities. Adopting an initia...

  18. Indirect Dark Matter Detection for Flattened Dwarf Galaxies

    CERN Document Server

    Sanders, Jason L; Geringer-Sameth, Alex; Dehnen, Walter

    2016-01-01

    We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulae and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulae are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are prolate or oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered. We demonstrate that spherical ...

  19. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Radburn-Smith, David [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dolphin, Andrew [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: adrienne@astro.washington.edu, E-mail: dolphin@raytheon.com, E-mail: skillman@astro.umn.edu [Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States)

    2013-03-10

    We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGC 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.

  20. Model of Outgrowths in the Spiral Galaxies NGC 4921 and NGC 7049 and the Origin of Spiral Arms

    CERN Document Server

    Carlqvist, Per

    2012-01-01

    NGC 4921 and 7049 are two spiral galaxies presenting narrow, distinct dust features. A detailed study of the morphology of those features has been carried out using Hubble Space Telescope archival images. NGC 4921 shows a few but well-defined dust arms midway to its centre while NGC 7049 displays many more dusty features, mainly collected within a ring-shaped formation. Numerous dark and filamentary structures, called outgrowths, are found to protrude from the dusty arms in both galaxies. The outgrowths point both outwards and inwards in the galaxies. Mostly they are found to be V-shaped or Y-shaped with the branches connected to dark arm filaments. Often the stem of the Y appears to consist of intertwined filaments. Remarkably, the outgrowths show considerable similarities to elephant trunks in H II regions. A model of the outgrowths, based on magnetized filaments, is proposed. The model provides explanations of both the shapes and orientations of the outgrowths. Most important, it can also give an account f...

  1. Star Formation Rates in Resolved Galaxies: Calibrations with Near and Far Infrared Data for NGC5055 and NGC6946

    CERN Document Server

    Li, Yiming; Calzetti, Daniela; Wilson, Christine D; Kennicutt, Robert C; Murphy, Eric J; Brandl, Bernhard R; Draine, B T; Galametz, M; Johnson, B D; Armus, L; Gordon, K D; Croxall, K; Dale, D A; Engelbracht, C W; Groves, B; Hao, C -N; Helou, G; Hinz, J; Hunt, L K; Krause, O; Roussel, H; Sauvage, M; Smith, J D T

    2013-01-01

    We use the near--infrared Br\\gamma hydrogen recombination line as a reference star formation rate (SFR) indicator to test the validity and establish the calibration of the {\\it Herschel} PACS 70 \\mu m emission as a SFR tracer for sub--galactic regions in external galaxies. Br\\gamma offers the double advantage of directly tracing ionizing photons and of being relatively insensitive to the effects of dust attenuation. For our first experiment, we use archival CFHT Br\\gamma and Ks images of two nearby galaxies: NGC\\,5055 and NGC\\,6946, which are also part of the {\\it Herschel} program KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel). We use the extinction corrected Br\\gamma emission to derive the SFR(70) calibration for H{\\sc ii} regions in these two galaxies. A comparison of the SFR(70) calibrations at different spatial scales, from 200 pc to the size of the whole galaxy, reveals that about 50% of the total 70\\mu m emission is due to dust heated by stellar populations that are unr...

  2. Globular Clusters and Spur Clusters in NGC 4921, the Brightest Spiral Galaxy in the Coma Cluster

    CERN Document Server

    Lee, Myung Gyoon

    2016-01-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in Coma. Also we find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3x10^5 M_odot. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions (LF) of the blue (metal-poor) GCs (0.70<(V-I)<1.05) in the halo are estimated to be V(max) =27.11+-0.09 mag and I(max)=26.21+-0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max)=26.25+-0.03 mag. Adopting M_I (max) = -8.56+-0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies, 91+-4 Mpc. Combining this and the Coma radial velocity, we derive a value of the Hubble constant, ...

  3. Herschel Spectroscopic Observations of LITTLE THINGS Dwarf Galaxies

    CERN Document Server

    Cigan, Phil; Cormier, Diane; Lebouteiller, Vianney; Madden, Suzanne; Hunter, Deidre; Brinks, Elias; Elmegreen, Bruce; Schruba, Andreas; Heesen, Volker

    2015-01-01

    We present far-infrared spectral line observations of five galaxies from the LITTLE THINGS sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [CII] 158um, [OI] 63um, [OIII] 88um, and NII 122um emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the far-infrared properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate PDRs in some of the regions we observed. Our systems have widespread [CII] emission that is bright relative to continuum, averaging near 0.5% of the total infrared budget - higher than in solar-metallicity galaxi...

  4. Candidate tidal dwarf galaxies associated with the Stephan's Quintet

    CERN Document Server

    De Oliveira, C M; Amram, P; Balkowski, C; Bolte, M

    2001-01-01

    We present kinematic and photometric evidence for the presence of seven candidate tidal dwarf galaxies in Stephan's quintet. The central regions of the two most probable parent galaxies, N7319 and N7318B, contain little or no gas whereas the intragroup medium, and particularly the optical tails that seem to be associated with N7318B are rich in cold and ionized gas. Two tidal-dwarf candidates may be located at the edge of a tidal tail, one within a tail and for four others there is no obvious stellar/gaseous bridge between them and the parent galaxy. Two of the candidates are associated with HI clouds, one of which is, in addition, associated with a CO cloud. All seven regions have low continuum fluxes and high H$\\alpha$ luminosity densities (F(H$\\alpha$) = 1 -- 60 $\\times$ 10$^{-14}$ erg s$^{-1}$ cm$^{-2}$). Their magnitudes (M$_B =$ --16.1 to --12.6), sizes ($\\sim$ 3.5 h$_{75}^{-1}$ kpc), colors (typically $B-R = 0.7$) and gas velocity gradients ($\\sim$ 8 -- 26 h$_{75}$ km s$^{-1}$ kpc$^{-1}$) are typical f...

  5. Metallicity Distribution Functions of Four Local Group dwarf galaxies

    CERN Document Server

    Ross, Teresa L; Saha, Abhijit; Anthony-Twarog, Barbara J

    2015-01-01

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 (WFC3) instrument aboard the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, 1) matching stars to isochrones in color-color diagrams, and 2) solving for the best linear combination of synthetic populations to match the observed color-color diagram. The synthetic technique reduces the effect of photometric scatter, and produces MDFs 30-50 % narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEM) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spher...

  6. Hubble Space Telescope study of resolved red giant stars in the outer halos of nearby dwarf starburst galaxies

    CERN Document Server

    Ryś, Agnieszka; van der Marel, Roeland P; Aloisi, Alessandra; Annibali, Francesca

    2011-01-01

    [abridged] Aims. We observed the outer parts of NGC 1569 and NGC 4449, two of the closest and strongest dwarf starburst galaxies in the local universe, to characterize their stellar density and populations, and obtain new insights into the structure, formation, and evolution of starburst galaxies and galaxy halos. Methods. We obtained HST/WFPC2 images between 5 and 8 scale radii from the center, along the intermediate and minor axes. We performed point-source photometry to determine color magnitude diagrams of I vs. V-I. We compared the results at different radii, including also our prior HST/ACS results for more centrally located fields. Results. We detect stars in the RGB and TP-AGB (carbon star) phases in all outer fields, but not younger stars such as those present at smaller radii. The RGB star density profile is well fit by either a de Vaucouleurs profile or a power-law profile, but has more stars at large radii than a single exponential. To within the uncertainties, there are no radial gradients in the...

  7. Dark Matter Identification using Gamma Rays from Dwarf Galaxies

    CERN Document Server

    Shakya, Bibhushan

    2010-01-01

    If the positron fraction and combined electron-positron flux excesses recently observed by PAMELA, Fermi and HESS have a dark matter origin, final state radiation (FSR) photons from dark matter annihilation into lepton-rich final states may be detected with observations of satellite dwarf galaxies of the Milky Way by ground-based atmospheric Cherenkov telescopes (ACTs). We find that current and near-future ACTs have excellent potential for such detection, although a discovery cannot be guaranteed due to large uncertainties in the distribution of dark matter within the dwarfs. We find that models predicting dark matter annihilation into two-lepton final states and those favoring four-lepton final states (as in, for example, "axion portal" models) can be reliably distinguished using the FSR photon spectrum once measured, and the dark matter particle mass can also be accurately determined.

  8. A VIRIAL CORE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Agnello, A.; Evans, N. W., E-mail: aagnello@ast.cam.ac.uk, E-mail: nwe@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2012-08-01

    The projected virial theorem is applied to the case of multiple stellar populations in the nearby dwarf spheroidal galaxies. As each population must reside in the same gravitational potential, this provides strong constraints on the nature of the dark matter halo. We derive necessary conditions for two populations with Plummer or exponential surface brightnesses to reside in a cusped Navarro-Frenk-White (NFW) halo. We apply our methods to the Sculptor dwarf spheroidal, and show that there is no NFW halo compatible with the energetics of the two populations. The dark halo must possess a core radius of {approx}120 pc for the virial solutions for the two populations to be consistent. This conclusion remains true, even if the effects of flattening or self-gravity of the stellar populations are included.

  9. Blasting away a dwarf galaxy: The "tail" of ESO 324-G024

    CERN Document Server

    Johnson, Megan C; Koribalski, Baerbel S; Wang, Jing; Oh, Se-Heon; Hil, Alex; O'Sullivan, Shane; Haan, Sebastian; Serra, Paolo

    2015-01-01

    We present Australia Telescope Compact Array radio data of the dwarf irregular galaxy ESO 324-G024 which is seen in projection against the giant, northern lobe of the radio galaxy Centaurus A (Cen A, NGC 5128). The distorted morphology and kinematics of ESO 324-G024, as observed in the 21 cm spectral line emission of neutral hydrogen, indicate disruptions by external forces. We investigate whether tidal interactions and/or ram pressure stripping are responsible for the formation of the HI tail stretching to the northeast of ESO 324-G024 with the latter being most probable. Furthermore, we closely analyze the sub-structure of Cen A's polarized radio lobes to ascertain whether ESO 324-G024 is located in front, within or behind the northern lobe. Our multi-wavelength, multi-component approach allows us to determine that ESO 324-G024 is most likely behind the northern radio lobe of Cen A. This result helps to constrain the orientation of the lobe, which is likely inclined to our line of sight by approximately 60 ...

  10. Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Cenarro, A. J.; Peletier, R. F.; Gorgas, J.; Gil de Paz, A.; Munoz-Mateos, J. C.

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy

  11. Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Cenarro, A. J.; Peletier, R. F.; Gorgas, J.; Gil de Paz, A.; Munoz-Mateos, J. C.

    2011-01-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy

  12. Effects of Tides on Milky Way Dwarf Satellite Galaxies

    Science.gov (United States)

    Wang, Mei-Yu; Strigari, Louis; Fattahi, Azadeh; Frenk, Carlos S.; Cooper, Andrew; Lovell, Mark; Navarro, Julio F.; Sawala, Till; Zentner, Andrew

    2017-01-01

    Using detailed observations of the Local Group to study wide-ranging questions in galaxy formation and dark matter physics - has become a rich field over the past decade. In this talk, I will present frameworks that address some of these questions by combining high-precision stellar kinematic measurements with state-of-art cosmological hydrodynamical N-body simulations. I will demonstrate that the properties of dark matter subhalo of individual satellite galaxies implied by stellar kinematic data can be linked to the galaxy evolution mechanisms such as infall time and the gravitational tidal interaction with Milky Way potential. In the cold dark matter (CDM) scenario, some dwarf galaxies explicitly require to be shaped under significant gravitational tidal forces, which will leave imprints on their stellar distribution and kinematics. I will discuss how these features could serve as a test to the nature of dark matter or stellar feedback strength. I will also discuss how we can study the tidally “disturbed” or even “destroyed” satellite galaxies as building blocks to our Milky Way stellar halo by understanding the properties of their progenitors and observation limit imposed by current and future surveys.

  13. Globular clusters indicate ultra diffuse galaxies are dwarfs

    CERN Document Server

    Beasley, Michael A

    2016-01-01

    We present an analysis of archival {\\it HST/ACS} imaging in the F475W ($g_{475}$), F606W ($V_{606}$) and F814W ($I_{814}$) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5$\\sigma$ completeness limit of the imaging ($I_{814}=$27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of $32\\pm6$ and a $V$-band specific frequency, $S_N=33\\pm6$. Based on comparisons to the GC systems of Local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter dominated dwarf galaxy with virial mass $\\sim1.0\\times10^{11}$~\\msun and a dark-to-stellar mass ratio, $M_{vir} / M_{ star}\\sim 1300$. Based on the stellar mass-growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky Way-like system, but is more similar to quenched Large Magel...

  14. Black Holes at the Centers of Nearby Dwarf Galaxies

    CERN Document Server

    Moran, Edward C; Sugarman, Hannah R; Velez, Darik O; Eracleous, Michael

    2014-01-01

    Using a distance-limited portion of the Sloan Digital Sky Survey (SDSS) Data Release 7, we have identified 28 active galactic nuclei (AGNs) in nearby (d < 80 Mpc) low-mass, low-luminosity dwarf galaxies. The accreting objects at the galaxy centers are expected to be intermediate-mass black holes (IMBHs) with M_BH < 1e6 M_sun. The AGNs were selected using several optical emission-line diagnostics after careful modeling of the continuum present in the spectra. We have limited our survey to objects with spectral characteristics similar to those of Seyfert nuclei, excluding emission-line galaxies with ambiguous spectra that could be powered by stellar processes. The host galaxies in our sample are thus the least massive objects in the very local universe certain to contain central black holes. Given our focus on the nearest objects included in the SDSS, our survey is more sensitive to low-luminosity emission than previous optical searches for AGNs in low-mass galaxies. The [O III] lambda5007 luminosities of...

  15. Dissipative dark matter and the rotation curves of dwarf galaxies

    Science.gov (United States)

    Foot, R.

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or `equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and Hα fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

  16. The evolutionary history of low-luminosity local group dwarf galaxies

    Science.gov (United States)

    van den Bergh, Sidney

    1994-06-01

    The stellar content of Local Group dwarfs fainter than MV = -14.0 is found to correlate with distance from the Galaxy (or M31). Dwarf spheroidals located close to the Galaxy, such as Ursa Minor and Draco, only experienced star formation early in their lifetimes. Dwarf spheroidals at intermediate distances, like Leo I, Fornax, and Carina, underwent significant star formation more recently. Finally, star formation is presently still going on in distant dwarfs such as DDO 210 and Phoenix. Leo II and Tucana are, however, dwarfs that do not conform to this pattern. It is tentatively suggested that ram pressure stripping, strong supernova-driven winds, or a high UV flux form the protoGalaxy (or proto-M31) might have removed gas from dwarf galaxies at small galactocentric distances.

  17. Chemical enrichment in Ultra-Faint Dwarf galaxies

    Science.gov (United States)

    Romano, Donatella

    2016-08-01

    Our view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.

  18. Chemical Evolution of Mn in Three Dwarf Spheroidal Galaxies

    Indian Academy of Sciences (India)

    Men-Quan Liu; Jie Zhang

    2014-09-01

    Based on an improved model, more reasonable nucleosyn-thesis and explosion rate of SNeIa and CCSNe, we studied Mn evolution for three local dwarf spheroidal galaxies (dSphs), considering the detailed SNe yield and explosion rates for different types of progenitors. The results can explain the main observation ofMn abundance for tens stars in those dSphs, and give some constraints to the nucleosynthesis and explosion ratio of different types of supernovae and Star Formation Rates (SFR) in those dSphs.

  19. Globular Clusters Indicate That Ultra-diffuse Galaxies Are Dwarfs

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio

    2016-10-01

    We present an analysis of archival HST/ACS imaging in the F475W (g 475), F606W (V 606), and F814W (I 814) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed to be located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5σ completeness limit of the imaging (I 814 = 27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of 27 ± 5 and a V-band specific frequency S N = 28 ± 5. Based on comparisons to the GC systems of local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter-dominated dwarf galaxy with virial mass ˜9.0 × 1010 M ⊙ and a dark-to-stellar mass ratio M vir/M star ˜ 1000. Based on the stellar mass growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky-Way-like system, but is more similar to quenched Large-Magellanic-Cloud-like systems. We find that the mean color of the GC population, g 475-I 814 = 0.91 ± 0.05 mag, coincides with the peak of the color distribution of intracluster GCs and is also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue peak in the GC populations of massive galaxies may be fed—at least in part—by the disrupted equivalents of systems such as DF17.

  20. Abundances as Tracers of the Formation and Evolution of (Dwarf) Galaxies

    CERN Document Server

    Tolstoy, E

    2004-01-01

    This aims to be an overview of what detailed observations of individual stars in nearby dwarf galaxies may teach us about galaxy evolution. This includes some early results from the DART (Dwarf Abundances and Radial velocity Team) Large Programme at ESO. This project has used 2.2m/WFI and VLT/FLAMES to obtain spectra of large samples of individual stars in nearby dwarf spheroidal galaxies and determine accurate abundances and kinematics. These results can be used to trace the formation and evolution of nearby galaxies from the earliest times to the present.

  1. The influence of binary stars on dwarf spheroidal galaxy kinematics

    CERN Document Server

    Hargreaves, J C; Annan, J D

    1995-01-01

    We have completed a Monte-Carlo simulation to estimate the effect of binary star orbits on the measured velocity dispersion in dwarf spheroidal galaxies. This paper analyses previous attempts at this calculation, and explains the simulations which were performed with mass, period and ellipticity distributions similar to that measured for the solar neighbourhood. The conclusion is that with functions such as these, the contribution of binary stars to the velocity dispersion is small. The distributions are consistent with the percentage of binaries detected by observations, although this is quite dependent on the measuring errors and on the number of years over which measurements have been taken. For binaries to be making a significant contribution to the dispersion measured in dSph galaxies, the distributions of the orbital parameters would need to be very different from those of stars in the solar neighbourhood. In particular more smaller period orbits with higher mass secondaries would be required. The shape...

  2. The Horizontal Branch of the Sculptor Dwarf galaxy

    CERN Document Server

    Salaris, Maurizio; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-01-01

    We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques,taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch spectroscopic observations. The only free parameter in the whole analysis is the integrated mass loss of red giant branch stars. This is the first time that synthetic horizontal branch models, consistent with the complex star formation history of a galaxy, are calculated and matched to the observations. We find that the metallicity range covered by the star formation history, as constrained by observations, plus a simple mass loss law, enable us to cover both the full magnitude and colour range of HB stars. In addition the number count distribution along the observed horizontal branch, can be also reproduced, provided that the red giant branch mass loss is mildly metallicity dependent, with a very small dispersion ...

  3. Star formation rate in Holmberg IX dwarf galaxy

    Directory of Open Access Journals (Sweden)

    Anđelić M.M.

    2011-01-01

    Full Text Available In this paper we use previously determined Hα fluxes for dwarf galaxy Holmberg IX (Arbutina et al. 2009 to calculate star formation rate (SFR in this galaxy. We discuss possible contaminations of Hα flux and, for the first time, we take into account optical emission from supernova remnants (SNRs as a possible source of contamination of Hα flux. Derived SFR for Holmberg IX is 3:4 x 10-4M.yr-1. Our value is lower then in previous studies, due to luminous shock-heated source M&H 9-10, possible hypernova remnant, which we excluded from the total Hα flux in our calculation of SFR.

  4. The dynamics of Andromeda's dwarf galaxies and stellar streams

    CERN Document Server

    Collins, Michelle L M; Ibata, Rodrigo A; Martin, Nicolas F; Preston, Janet

    2016-01-01

    As part of the Z-PAndAS Keck II DEIMOS survey of resolved stars in our neighboring galaxy, Andromeda (M31), we have built up a unique data set of measured velocities and chemistries for thousands of stars in the Andromeda stellar halo, particularly probing its rich and complex substructure. In this contribution, we will discuss the structural, dynamical and chemical properties of Andromeda's dwarf spheroidal galaxies, and how there is no observational evidence for a difference in the evolutionary histories of those found on and off M31's vast plane of satellites. We will also discuss a possible extension to the most significant merger event in M31 - the Giant Southern Stream - and how we can use this feature to refine our understanding of M31's mass profile, and its complex evolution.

  5. Cusp-core transformations in dwarf galaxies: observational predictions

    CERN Document Server

    Teyssier, Romain; Dubois, Yohan; Read, Justin

    2012-01-01

    The presence of a dark matter core in the central kiloparsec of many dwarf galaxies has been a long standing problem in galaxy formation theories based on the standard cold dark matter paradigm. Recent cosmological simulations, based on Smooth Particle Hydrodynamics and rather strong feedback recipes have shown that it was indeed possible to form extended dark matter cores using baryonic processes related to a more realistic treatment of the interstellar medium. Using adaptive mesh refinement, together with a new, stronger supernovae feedback scheme that we have recently implemented in the RAMSES code, we show that it is also possible to form a prominent dark matter core within the well-controlled framework of an isolated, initially cuspy, 10 billion solar masses dark matter halo. Although our numerical experiment is idealized, it allows a clean and unambiguous identification of the dark matter core formation process. Our dark matter inner profile is well fitted by a pseudo-isothermal profile with a core radi...

  6. Dwarfs and Giants in the local flows of galaxies.

    Science.gov (United States)

    Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.

    We use recent Hubble Space Telescope data on nearby dwarf and giant galaxies to study the dynamical structure and evolutionary trends of the local expansion flows of galaxies. It is found that antigravity of dark energy dominates the force field of the flows and makes them expand with acceleration. It also cools the flows and introduces to them the nearly linear velocity-distance relation with the time-rate close to the global Hubble's factor. There are grounds to expect that this is the universal physical regularity that is common not only for the nearby flows we studied here, but also for all the expansion flows of various spatial scales from the 1 Mpc scale and up to the scale of the global cosmological expansion.

  7. The Mid-Infrared Properties of Blue Compact Dwarf Galaxies

    CERN Document Server

    Yanling Wu; Houck, J R; Bernasrd-Salas, J; Lebouteiller, V

    2008-01-01

    The unprecedented sensitivity of the Spitzer Space Telescope has enabled us for the first time to detect a large sample of Blue Compact Dwarf galaxies (BCDs), which are intrinsically faint in the infrared. In the present paper we present a summary of our findings which providing essential information on the presence/absence of the Polycyclic Aromatic Hydrocarbon features in metal-poor environments. In addition, using Spitzer/IRS high-resolution spectroscopy, we study the elemental abundances of neon and sulfur in BCDs and compare with the results from optical studies. Finally, we present an analysis of the mid- and far-infrared to radio correlation in low luminosity low metallicity galaxies.

  8. Hunting for Infrared Signatures of Supermassive Black Hole Activity in Dwarf Galaxies

    Science.gov (United States)

    Hainline, Kevin; Reines, Amy; Greene, Jenny; Stern, Daniel

    2016-08-01

    In order to explore the origin of the relationship between the growth of a galaxy and its central supermassive black hole, evidence must be found for black holes in galaxies at a wide range in masses. Searching for supermassive black holes in dwarf galaxies is especially important as these objects have less complicated merger histories, and they may host black holes that are similar to early proposed ``seed'' black holes. However, this selection is complicated by the fact that star formation in these dwarf galaxies can often mask the optical signatures of supermassive black hole growth and active galactic nucleus (AGN) activity in these objects. The all-sky infrared coverage offered by the Wide-field Infrared Survey Explorer (WISE) has been used to great success to select AGNs in more massive galaxies, but great care must be used when using infrared selection techniques on samples of dwarf galaxies. In particular, compact, highly star-forming dwarf galaxies can have infrared colors that may lead them to be erroneously selected as AGNs. In this talk, I will discuss recent work exploring infrared selection of AGN candidates in dwarf galaxies, and present a set of potential IR dwarf-galaxy AGN candidates. I will also outline the importance in these results with respect to future selection of AGNs in low-metallicity galaxies at high-redshift.

  9. Delayed Star Formation in Isolated Dwarf Galaxies: HST Star Formation History of the Aquarius Dwarf Irregular

    CERN Document Server

    Cole, Andrew A; Dolphin, Andrew E; Skillman, Evan D; McConnachie, Alan W; Brooks, Alyson M; Leaman, Ryan

    2014-01-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CD...

  10. A Study of Dwarf Galaxies in Five Rich Clusters I: Abell 1689 and Abell 1703

    Science.gov (United States)

    Bruursema, Justice; Riley, S.; Ford, H. C.; Zekser, K. C.; Infante, L.; Postman, M.

    2008-05-01

    Dwarf galaxies play an important role in understanding galactic formation, cluster dynamics, and large scale structure. Although local dwarf populations have been well studied, dwarf galaxies outside the local supercluster remain relatively unexamined. Using ACS Investigation Definition Team data, we examine the dwarf galaxy populations of A1689 (z=0.1832), A1703 (z=0.2580), A2218 (z=0.1756), CL0024+16 (z=0.395), and MS1358+62 (z=0.328). We have modeled and subtracted the light from the brighter elliptical galaxies using the XVISTA subroutine SNUC. An assumption of concentric elliptical isophotes is made and the position angle, ellipticity, and brightness are fit using a nonlinear least-squares algorithm. The subtraction of the models reveals a population of dwarf galaxies usually hidden by the light of bright ellipticals. SExtractor and Bayesian Photometric Redshifts (BPZ) are used in order to identify cluster members. With the 0.05" per pixel resolution of ACS and a completeness of mF625 = 28 we are able to identify approximately 1000 dwarf galaxies candidates, defined as MF625 > -18, in all five clusters combined. We will discuss the results of this research including, but not limited to, dwarf galaxy luminosity functions, radial distribution, and the characteristics of dwarfs compared to those in other well studied clusters. ACS was developed under NASA contract NAS5-32865, and this research was supported by NASA grant NAG5-7697.

  11. The isolated interacting galaxy pair NGC 5426/27 (Arp 271)

    CERN Document Server

    Fuentes-Carrera, I; Amram, P; Dultzin-Hacyan, D; Cruz-Gonzalez, I; Salo, H; Laurikainen, E; Bernal, A; Ambrocio-Cruz, P; Le Coarer, E

    2003-01-01

    We present H alpha observations of the isolated interacting galaxy pair NGC 5426/27 using the scanning Fabry-Perot interferometer PUMA. The velocity field, various kinematical parameters and rotation curve for each galaxy were derived. The FWHM map and the residual velocities map were also computed to study the role of non-circular motions of the gas. Most of these motions can be associated with the presence of spiral arms and structure such as central bars. We found a small bar-like structure in NGC 5426, a distorted velocity field for NGC 5427 and a bridge-like feature between both galaxies which seems to be associated with NGC 5426. Using the observed rotation curves, a range of possible masses was computed for each galaxy. These were compared with the orbital mass of the pair derived from the relative motion of the participants. The rotation curve of each galaxy was also used to fit different mass distribution models considering the most common theoretical dark halo models. An analysis of the interaction ...

  12. At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores

    CERN Document Server

    Governato, Fabio; Mayer, Lucio; Brooks, Alyson; Rhee, George; Wadsley, James; Jonsson, Patrik; Willman, Beth; Stinson, Greg; Quinn, Thomas; Madau, Piero

    2009-01-01

    For almost two decades the properties of "dwarf" galaxies have challenged the Cold Dark Matter (CDM) paradigm of galaxy formation. Most observed dwarf galaxies consists of a rotating stellar disc embedded in a massive DM halo with a near constant-density core. Yet, models based on the CDM scenario invariably form galaxies with dense spheroidal stellar "bulges" and steep central DM profiles, as low angular momentum baryons and DM sink to the center of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different DM particle candidate. This Letter presents new hydrodynamical simulations in a Lambda$CDM framework where analogues of dwarf galaxies, bulgeless and with a shallow central DM profile, are formed. This is achieved by resolving the inhomogeneous interstellar medium, resultin...

  13. The 0.3-30 Kev Spectra Of Powerful Starburst Galaxies: Nustar And Chandra Observations Of Ngc 3256 And Ngc 3310

    DEFF Research Database (Denmark)

    Lehmer, B. D.; Tyler, J. B.; Hornschemeier, A. E.;

    2015-01-01

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are significantly detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these two galaxies spanning 0.3-30 ke...... with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the star formation rate (SFR) normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes at energies above 3-6 keV primarily due to ULX populations. Our......-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that NGC 3310 exhibits a factor of ≈3-10 elevation of X-ray emission over the other star-forming galaxies due to a corresponding overabundance of ULXs. We argue that the excess of ULXs in NGC 3310 is most...

  14. TiNy Titans: The Role of Dwarf-Dwarf Interactions in the Evolution of Low Mass Galaxies

    CERN Document Server

    Stierwalt, S; Patton, D; Johnson, K; Kallivayalil, N; Putman, M; Privon, G; Ross, G

    2014-01-01

    We introduce TiNy Titans (TNT), the first systematic study of star formation and the subsequent processing of the interstellar medium in interacting dwarf galaxies. Here we present the first results from a multiwavelength observational program based on a sample of 104 dwarf galaxy pairs selected from a range of environments within the SDSS and caught in various stages of interaction. The TNT dwarf pairs span mass ratios of M1/M2 100 A, occur in 20% of TNT dwarf pairs, regardless of environment, compared to only 6-8% of matched unpaired dwarfs. Starbursts can be triggered throughout the merger (out to large pair separations) and not just approaching coalescence. Despite their enhanced star formation, most TNT dwarf pairs have similar gas fractions relative to unpaired dwarfs. Thus, there may be significant reservoirs of diffuse, non-starforming gas surrounding the dwarf pairs or the gas consumption timescales may be long in the starburst phase. The only TNT dwarf pairs with low gas fractions (fgas <0.4) and...

  15. The three rings of the isolated galaxy NGC 7217.

    Science.gov (United States)

    Verdes-Montenegro, L.; Bosma, A.; Athanassoula, E.

    1995-08-01

    We present WSRT H I line observations, together with CCD-BVRI photometry, of NGC 7217, which is known to be an isolated galaxy with an inner ring, an inner pseudoring and an outer ring, but for which no clear bi-symmetric distortion is immediately apparent. Assuming, as is known to be the case for barred galaxies, that the outer ring corresponds to the outer Lindblad resonance, we have derived the expected locations for the other resonances using a combined optical/H I rotation curve. Our result is that the observed inner ring coincides with the inner Lindblad resonance and the inner pseudoring with the ultraharmonic (4:1) resonance. The associated pattern speed is 86.0km/s/kpc. However, it is less clear which feature is actually setting up this pattern. The outer ring, which has a size of =~6.3x5.9kpc, contains roughly two-thirds of the total H I mass, and has bluer colours and more intense Hα emission than the main disk. A Fourier analysis of the B-I colour along this ring suggests that it is composed of 9 blobs, indicating the existence of a bead instability. This is in agreement with a simple calculation showing that the number of Jeans lengths along the ring is also 9, and that self-gravity is probably important here. Clumps also exist in the inner pseudoring, but they are less well defined, and there is no H I concentration along it. This ring has redder colours than the outer ring. The blue inner ring is incomplete, coincides with a complete and intense Hα ring, and is surrounded by a redder ring. A spiral-like structure extends from the inner ring out to the inner pseudoring, with the same winding direction as the outer flocculent arms. We have constructed a mass model, from which we obtain a mass-to-I-band luminosity ratio of 5.1 for the bulge, and 1.8 for the disk. The core radius of the halo is 11.0kpc, and its central density 0.062Msun_pc^-3^. The ratio of halo core radius to optical radius is thus of order unity.

  16. An Over-Massive Black Hole in the Compact Lenticular Galaxy NGC1277

    CERN Document Server

    Bosch, Remco C E van den; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L; 10.1038/nature11592

    2012-01-01

    All massive galaxies likely have supermassive black holes at their centers, and the masses of the black holes are known to correlate with properties of the host galaxy bulge component. Several explanations have been proposed for the existence of these locally-established empirical relationships; they include the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, or galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are thus important for distinguishing between various theoretical models of galaxy evolution, and they further form the basis for all black hole mass measurements at large distances. In particular, observations have shown that the mass of the black hole is typically 0.1% of the stellar bulge mass of the galaxy. The small galaxy NGC4486B currently has the largest published fraction of its mass in a black hole at 11%. Here we report observations of the stellar kinematics of NGC...

  17. A Forming Pair of Dwarf Galaxies and Its DM Halo

    Science.gov (United States)

    Pustilnik, S. A.; Brinks, E.; Thuan, T. X.; Izotov, Yu.; Lipovetsky, V.

    SBS 0335-052 and its companion 0335-052W are shown to be a unique pair of currently forming dwarf galaxies associated with a huge HI cloud (Izotov et al. 1997, Lipovetsky et al. 1997, Thuan et al. 1997, Pustilnik et al. 1997). We present the analysis of the velocity field of this HI cloud, obtained with the VLA, and the model of its rotation curve to derive the total mass distribution in this system. We argue that this gas cloud is rotationally supported in the gravitational potential of a massive DM halo, and discuss the implications of this fact for galaxy formation and evolution scenarios. This unique system apparently preserves the original unperturbed structure of its DM halo and is thus very valuable to confront halo properties with model predictions. The parameters of the DM halo and neutral gas set limits, based on observational evidence, to the range of physical conditions under which a pristine hydrogen cloud can survive as a stable object over cosmlogical time scales. We discuss the possible effect of the massive spiral galaxy at the projected distance of about 100/h kpc to these forming galaxies.

  18. The Correlation Dimension of Young Stars in Dwarf Galaxies

    CERN Document Server

    Odekon, M C

    2006-01-01

    We present the correlation dimension of resolved young stars in four actively star-forming dwarf galaxies that are sufficiently resolved and transparent to be modeled as projections of three-dimensional point distributions. We use data in the Hubble Space Telescope archive; photometry for one of them, UGCA 292, is presented here for the first time. We find that there are statistically distinguishable differences in the nature of stellar clustering among the sample galaxies. The young stars of VII Zw 403, the brightest galaxy in the sample, have the highest value for the correlation dimension and also the most dramatic decrease with logarithmic scale, falling from $1.68\\pm0.14$ to $0.10\\pm0.05$ over less than a factor of ten in $r$. This decrease is consistent with the edge effect produced by a projected Poisson distribution within a 2:2:1 ellipsoid. The young stars in UGC 4483, the faintest galaxy in the sample, exhibit very different behavior, with a constant value of about 0.5 over this same range in $r$, e...

  19. Integral Field Spectroscopy of Blue Compact Dwarf Galaxies

    CERN Document Server

    Garcia-Lorenzo, Begona; Caon, Nicola; Monreal-Ibero, Ana; Kehrig, Carolina

    2008-01-01

    We present results on integral-field optical spectroscopy of five luminous Blue Compact Dwarf galaxies. The data were obtained using the fiber system INTEGRAL attached at the William Herschel telescope. The galaxies Mrk 370, Mrk 35, Mrk 297, Mrk 314 and III Zw 102 were observed. The central 33"x29" regions of the galaxies were mapped with a spatial resolution of 2"/spaxel, except for Mrk 314, in which we observed the central 16"x12" region with a resolution of 0.9"/spaxel$. We use high-resolution optical images to isolate the star-forming knots in the objects; line ratios, electron densities and oxygen abundances in each of these regions are computed. We build continuum and emission-line intensity maps as well as maps of the most relevant line ratios: [OIII]5007\\Hb, [NII]6584\\Ha, and Ha\\Hb, which allow us to obtain spatial information on the ionization structure and mechanisms. We also derive the gas velocity field from the Ha and [OIII]5007 emission lines. We find that all the five galaxies are in the high e...

  20. Galactic winds and circulation of the ISM in dwarf galaxies

    CERN Document Server

    D'Ercole, A

    1999-01-01

    We study, through 2D hydrodynamical simulations, the feedback of a starburst on the ISM of typical gas rich dwarf galaxies. The main goal is to address the circulation of the ISM and metals following the starburst. We assume a single-phase rotating ISM in equilibrium in the galactic potential generated by a stellar disk and a spherical dark halo. The starburst is assumed to occur in a small volume in the center of the galaxy, and it generates a mechanical power of 3.8e39 erg/s or 3.8e40 erg/s for 30 Myr. We found, consistently with previous investigations, that the galactic wind is not very effective in removing the ISM. The metal rich stellar ejecta, instead, may be efficiently expelled from the galaxy and dispersed in the intergalactic medium. Moreover, we found that the central region of the galaxy is always replenished with cold and dense gas after a few 100 Myr from the starbust, achieving the requisite for a new star formation event in 0.5-1 Gyr. The hydrodynamical evolution of galactic winds is thus co...

  1. Stellar Substructures Around the Hercules Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Roderick, T. A.; Jerjen, H.; Mackey, A. D.; Da Costa, G. S.

    2015-05-01

    We present deep g and i band Dark Energy Camera stellar photometry of the Hercules Milky Way satellite galaxy, and its surrounding field, out to a radial distance of 5.4 times the tidal radius. We have identified nine extended stellar substructures associated with the dwarf; preferentially distributed along the major axis of the galaxy. Two significant over-densities lie outside the 95% confidence band for the likely orbital path of the galaxy and appear to be free-floating tidal debris. We estimate the luminosity of the new stellar substructures, and find that approximately the same amount of stellar flux is lying in these extended structures as inside the main body of Hercules. We also analyze the distribution of candidate blue-horizontal-branch stars and find agreement with the alignment of the substructures at a confidence level greater than 98%. Our analysis provides a quantitative demonstration that Hercules is a strongly tidally disrupted system, with noticeable stellar features at least 1.9 kpc away from the galaxy.

  2. On the unification of dwarf and giant elliptical galaxies

    CERN Document Server

    Graham, Alister W

    2008-01-01

    The near orthogonal distributions of dwarf elliptical (dE) and giant elliptical (E) galaxies in the mu_e-Mag and mu_e-log(R_e) diagrams have been interpreted as evidence for two distinct galaxy formation processes. However, continuous, linear relationships across the alleged dE/E boundary at M_B = -18 mag - such as those between central surface brightness (mu_0) and (i) galaxy magnitude and (ii) light-profile shape (n) - suggest a similar, governing formation mechanism. Here we explain how these latter two linear trends necessitate a different behavior for dE and E galaxies, exactly as observed, in diagrams involving mu_e (and also _e). A natural consequence is that the distribution of dEs and Es in Fundamental Plane type analyses that use the associated intensity I_e, or _e, are expected to appear different. Together with other linear trends across the alleged dE/E boundary, such as those between luminosity and color, metallicity, and velocity dispersion, it appears that the dEs form a continuous extension t...

  3. Evolution of dwarf galaxies simulated in the cosmological LCDM scenario

    Science.gov (United States)

    Gonzalez-Samaniego, Alejandro; Colin, Pedro; Avila-Reese, Vladimir; Rodriguez-Puebla, Aldo; Valenzuela, Octavio

    2014-03-01

    We present results from numerical simulations of low-mass galaxies with the aim to explore the way their stellar masses are assembled. We analyze how the mass assembly histories of the parent halo determine the growth of their host galaxy and its implications on the current paradigm of formation and evolution of low-mass structures in the LCDM scenario. We have found that low-mass galaxies simulated in this scenario assemble their stellar masses following roughly the dark matter halo assembly, which seems to be in tension with the downsizing trend suggested by current observational inferences. We show that there is no more room to increase the strength of feedback from astrophysical processes in order to deviate strongly the stellar mass assembly from the dark halo one, as has been recently invoked to solve some of the potential issues faced by CDM-based simulations of dwarf galaxies. Alejandro González acknowledges finacial support from UNAM, Fundacion UNAM, and the APS to attend this meeting.

  4. The Origin of Dwarf Early-Type Galaxies

    CERN Document Server

    Toloba, Elisa

    2012-01-01

    Abridge. We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both...

  5. Radio Galaxy NGC 1265 unveils the Accretion Shock onto the Perseus Galaxy Cluster

    CERN Document Server

    Pfrommer, Christoph

    2010-01-01

    We present a consistent 3D model for NGC 1265 that explains the complex radio morphology and spectrum by a past passage of the galaxy and radio bubble through a shock wave. This transformed the plasma bubble into a torus that adiabatically compressed and energized the aged electron population to emit low-surface brightness and steep-spectrum radio emission. The large infall velocity of NGC 1265 - which is barely gravitationally bound to the Perseus cluster - and the low Faraday rotation measure values and variance of jet and torus strongly argue that this transformation was due to the accretion shock onto Perseus situated roughly at R_200. Estimating the volume change of the radio cocoon enables inferring a shock Mach number of M = 4.2_{-1.2}^{+0.8}, a density jump of 3.4_{-0.4}^{+0.2}, a temperature jump of 6.3_{-2.7}^{+2.5}, and a pressure jump of 21.5 +/- 10.5 while allowing for uncertainties in the equation of state of the radio plasma and volume of the torus. Extrapolating X-ray profiles, we obtain upper...

  6. The Dearth of Neutral Hydrogen in Galactic Dwarf Spheroidal Galaxies

    CERN Document Server

    Spekkens, K; Mason, B S; Willman, B; Aguirre, J E

    2014-01-01

    We present new upper limits on the neutral hydrogen (HI) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA (ALFALFA) survey and Galactic All-Sky Survey (GASS) data. All of the limits Mlim are more stringent than previously reported values, and those from the GBT improve upon contraints in the literature by a median factor of 23. Normalizing by V-band luminosity Lv and dynamical mass Mdyn, we find Mlim/Lv ~ 10^{-3} Mo/Lo and Mlim/Mdyn ~ 5 x 10^{-5}, irrespective of location in the Galactic halo. Comparing these relative HI contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our HI upper limits therefore provide the clearest picture yet of the environmental dependence of the HI content in Local Volume dwarfs. If ram pressure stripping explains the dearth of HI in these ...

  7. Metal Diffusion in Smoothed Particle Hydrodynamics Simulations of Dwarf Galaxies

    Science.gov (United States)

    Williamson, David; Martel, Hugo; Kawata, Daisuke

    2016-05-01

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]-[Fe/H] distribution in the gas and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.

  8. PERSEUS I: A DISTANT SATELLITE DWARF GALAXY OF ANDROMEDA

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nicolas F.; Laevens, Benjamin P. M. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Schlafly, Edward F.; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Slater, Colin T.; Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bernard, Edouard J.; Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Draper, Peter W.; Metcalfe, Nigel [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, Paul A., E-mail: nicolas.martin@astro.unistra.fr [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); and others

    2013-12-10

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3π survey. Located 27.°9 away from M31, Perseus I has a heliocentric distance of 785 ± 65 kpc, compatible with it being a satellite of M31 at 374{sub −10}{sup +14} kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M{sub V} = –10.3 ± 0.7), with an exponential half-light radius of r{sub h} = 1.7 ± 0.4 arcmin or r{sub h}=400{sub −85}{sup +105} pc at this distance, and a moderate ellipticity (ϵ=0.43{sub −0.17}{sup +0.15}). The late discovery of Perseus I is due to its fairly low surface brightness (μ{sub 0}=25.7{sub −0.9}{sup +1.0} mag arcsec{sup –2}), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.

  9. Using M Dwarfs to Map Extinction in the Local Galaxy

    Science.gov (United States)

    Jones, David; West, A. A.; Foster, J.

    2011-01-01

    We use spectra of more than 56,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) to create a high-latitude extinction map of the local Galaxy. Our technique compares spectra from low-extinction lines of sight as determined by Schlegel, Finkbeiner, & Davis to other SDSS spectra in order to derive improved distances and accurate extinctions for the stars in the SDSS data release 7 M dwarf sample. Unlike most previous studies, which have used a two-color method to determine extinction, we fit extinction curves to fluxes across the entire spectral range from 5700 to 9200 angstroms for every star in our sample. Our result is an extinction map that extends from a few tens of pc to approximately 2 kpc from the Sun. We also use a similar technique to create a map of Rv values within approximately 1 kpc of the Sun and find that they are roughly consistent with the widely accepted diffuse interstellar medium value of 3.1. Using our extinction data, we derive a dust scale height for the local galaxy of 176 ± 15 parsecs.

  10. New low surface brightness dwarf galaxies in the Centaurus group

    CERN Document Server

    Müller, Oliver; Binggeli, Bruno

    2016-01-01

    We conducted an extensive CCD search for faint, unresolved dwarf galaxies of very low surface brightness in the whole Centaurus group region encompassing the Cen A and M 83 subgroups lying at a distance of roughly 4 and 5 Mpc, respectively. The aim is to significantly increase the sample of known Centaurus group members down to a fainter level of completeness, serving as a basis for future studies of the 3D structure of the group. Following our previous survey of 60 square degrees covering the M 83 subgroup, we extended and completed our survey of the Centaurus group region by imaging another 500 square degrees area in the g and r bands with the wide-field Dark Energy Survey Camera at the 4m Blanco telescope at CTIO. The limiting central surface brightness reached for suspected Centaurus members is $\\mu_r \\approx 29$ mag arcsec$^{-2}$, corresponding to an absolute magnitude $M_r \\approx -9.5$. The images were enhanced using different filtering techniques. We found 41 new dwarf galaxy candidates, which togethe...

  11. Dwarf Galaxies in the Coma Cluster: I. Velocity Dispersion Measurements

    CERN Document Server

    Kourkchi, E; Carter, D; Karick, A M; Mármol-Queraltó, E; Chiboucas, K; Tully, R B; Mobasher, B; Guzmán, R; Matković, A; Gruel, N

    2011-01-01

    We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is $-21

  12. Perseus I: A distant satellite dwarf galaxy of Andromeda

    CERN Document Server

    Martin, Nicolas F; Slater, Colin T; Bernard, Edouard J; Rix, Hans-Walter; Bell, Eric F; Ferguson, Annette M N; Finkbeiner, Douglas P; Laevens, Benjamin P M; Burgett, William S; Chambers, Kenneth C; Draper, Peter W; Hodapp, Klaus W; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A; Metcalfe, Nigel; Morgan, Jeffrey S; Price, Paul A; Tonry, John L; Wainscoat, Richard J; Waters, Christopher

    2013-01-01

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3{\\pi} survey. Located 27.9{\\deg} away from M31, Perseus I has a heliocentric distance of 785 +/- 65 kpc, compatible with it being a satellite of M31 at 374 +14/-10 kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M_V = -10.3 +/- 0.7), with an exponential half-light radius of r_h = 1.7 +/- 0.4 arcminutes or r_h = 400 +105/-85 pc at this distance, and a moderate ellipticity (\\epsilon = 0.43 +0.15/-0.17). The late discovery of Perseus I is due to its fairly low surface brightness (\\mu_0=25.7 +1.0/-0.9 mag/arcsec^2), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.

  13. Study of the structure and kinematics of the NGC 7465/64/63 triplet galaxies

    CERN Document Server

    Merkulova, O A; Yakovleva, V A; Burenkov, A N

    2012-01-01

    This paper is devoted to the analysis of new observational data for the group of galaxies NGC 7465/64/63, which were obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) with the multimode instrument SCORPIO and the Multi Pupil Fiber Spectrograph. For one of group members (NGC 7465) the presence of a polar ring was suspected. Large-scale brightness distributions, velocity and velocity dispersion fields of the ionized gas for all three galaxies as well as line-of-sight velocity curves on the basis of emission and absorption lines and a stellar velocity field in the central region for NGC 7465 were constructed. As a result of the analysis of the obtained information, we revealed an inner stellar disk (r ~ 0.5 kpc) and a warped gaseous disk in addition to the main stellar disk, in NGC 7465. On the basis of the joint study of photometric and spectral data it was ascertained that NGC 7464 is the irregular galaxy of the IrrI type, whose structural and k...

  14. Cold dust but warm gas in the unusual elliptical galaxy NGC 4125

    CERN Document Server

    Wilson, C D; Foyle, K; Parkin, T J; Cooper, E Mentuch; Roussel, H; Sauvage, M; Smith, M W L; Baes, M; Bendo, G; Boquien, M; Boselli, A; Ciesla, L; Clements, D L; Cooray, A; De Looze, I; Galametz, M; Gear, W; Lebouteiller, V; Madden, S; Pereira-Santaella, M; Remy-Ruyer, A

    2013-01-01

    Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and HI emission. Depending on the dust emissivity, the total dust mass is 2-5x10^6 Msun. While the neutral gas-to-dust mass ratio is extremely low (= 10^4 K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.

  15. The Globular Cluster System of the Coma cD Galaxy NGC 4874 from Hubble Space Telescope ACS and WFC3/IR Imaging

    Science.gov (United States)

    Cho, Hyejeon; Blakeslee, John P.; Chies-Santos, Ana L.; Jee, M. James; Jensen, Joseph B.; Peng, Eric W.; Lee, Young-Wook

    2016-05-01

    We present new Hubble Space Telescope (HST) optical and near-infrared (NIR) photometry of the rich globular cluster (GC) system NGC 4874, the cD galaxy in the core of the Coma cluster (Abell 1656). NGC 4874 was observed with the HST Advanced Camera for Surveys in the F475W (g 475) and F814W (I 814) passbands and with the Wide Field Camera 3 IR Channel in F160W (H 160). The GCs in this field exhibit a bimodal optical color distribution with more than half of the GCs falling on the red side at g 475-I 814 > 1. Bimodality is also present, though less conspicuously, in the optical-NIR I 814-H 160 color. Consistent with past work, we find evidence for nonlinearity in the g 475-I 814 versus I 814-H 160 color-color relation. Our results thus underscore the need for understanding the detailed form of the color-metallicity relations in interpreting observational data on GC bimodality. We also find a very strong color-magnitude trend, or “blue tilt,” for the blue component of the optical color distribution of the NGC 4874 GC system. A similarly strong trend is present for the overall mean I 814-H 160 color as a function of magnitude; for M 814 law and becomes much weaker at lower masses. As in other similar systems, the spatial distribution of the blue GCs is more extended than that of the red GCs, partly because of blue GCs associated with surrounding cluster galaxies. In addition, the center of the GC system is displaced by 4 ± 1 kpc toward the southwest from the luminosity center of NGC 4874, in the direction of NGC 4872. Finally, we remark on a dwarf elliptical galaxy with a noticeably asymmetrical GC distribution. Interestingly, this dwarf has a velocity of nearly -3000 km s-1 with respect to NGC 4874; we suggest it is on its first infall into the cluster core and is undergoing stripping of its GC system by the cluster potential. Based on observations with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute (STScI), which is

  16. EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wel, A.; Rix, H.-W.; Jahnke, K. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Finkelstein, S. L.; Salmon, B. W. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Koekemoer, A. M.; Ferguson, H. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Weiner, B. J. [Steward Observatory, 933 N. Cherry St., University of Arizona, Tucson, AZ 85721 (United States); Wuyts, S. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Faber, S. M.; Trump, J. R.; Koo, D. C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. S.E. Minneapolis, MN 55455 (United States); Hathi, N. P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Dunlop, J. S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Newman, J. A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); De Mello, D. F., E-mail: vdwel@mpia.de [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); and others

    2011-12-01

    We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z {approx} 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [O III] emission lines-with rest-frame equivalent widths {approx}1000 A-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with {approx}10{sup 8} M{sub Sun} in stellar mass, undergoing an enormous starburst phase with M{sub *}/ M-dot{sub *} of only {approx}15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 Multiplication-Sign 10{sup -4} Mpc{sup -3}) can produce in {approx}4 Gyr much of the stellar mass density that is presently contained in 10{sup 8}-10{sup 9} M{sub Sun} dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  17. STAR FORMATION RATES IN RESOLVED GALAXIES: CALIBRATIONS WITH NEAR- AND FAR-INFRARED DATA FOR NGC 5055 AND NGC 6946

    Energy Technology Data Exchange (ETDEWEB)

    Li Yiming; Crocker, Alison F.; Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Wilson, Christine D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Kennicutt, Robert C.; Galametz, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Murphy, Eric J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Brandl, Bernhard R.; Groves, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Draine, B. T. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Johnson, B. D. [Institut d' Astrophysique de Paris, UMR7095 CNRS, Universite Pierre and Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Gordon, K. D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Croxall, K. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Engelbracht, C. W.; Hinz, J. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hao, C.-N. [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Helou, G. [NASA Herschel Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Hunt, L. K., E-mail: yimingl@astro.umass.edu [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); and others

    2013-05-10

    We use the near-infrared Br{gamma} hydrogen recombination line as a reference star formation rate (SFR) indicator to test the validity and establish the calibration of the Herschel/PACS 70 {mu}m emission as a SFR tracer for sub-galactic regions in external galaxies. Br{gamma} offers the double advantage of directly tracing ionizing photons and of being relatively insensitive to the effects of dust attenuation. For our first experiment, we use archival Canada-France-Hawaii Telescope Br{gamma} and Ks images of two nearby galaxies: NGC 5055 and NGC 6946, which are also part of the Herschel program KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel). We use the extinction corrected Br{gamma} emission to derive the SFR(70) calibration for H II regions in these two galaxies. A comparison of the SFR(70) calibrations at different spatial scales, from 200 pc to the size of the whole galaxy, reveals that about 50% of the total 70 {mu}m emission is due to dust heated by stellar populations that are unrelated to the current star formation. We use a simple model to qualitatively relate the increase of the SFR(70) calibration coefficient with decreasing region size to the star formation timescale. We provide a calibration for an unbiased SFR indicator that combines the observed H{alpha} with the 70 {mu}m emission, also for use in H II regions. We briefly analyze the PACS 100 and 160 {mu}m maps and find that longer wavelengths are not as good SFR indicators as 70 {mu}m, in agreement with previous results. We find that the calibrations show about 50% difference between the two galaxies, possibly due to effects of inclination.

  18. VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Bautista, M; Beilicke, M; Benbow, W; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Ciupik, L; Cogan, P; Cui, W; Dickherber, R; Duke, C; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Galante, N; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, Philip; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Mukherjee, R; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Theiling, M; Toner, J A; Varlotta, A; Vasilev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B; Kataoka, J; Cavazzuti, E; Cheung, C C; Lott, B; Thompson, D J; Tosti, G

    2009-01-01

    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei (AGN) with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope (LAT) result.

  19. The Total Mass of the Early-Type Galaxy NGC 4649 (M60

    Directory of Open Access Journals (Sweden)

    Ćirković, M. M.

    2008-12-01

    Full Text Available In this paper the problem of the total mass and the total mass-to-light ratio of the early-type galaxy NGC~4649 (M60 is analyzed. Use is made of two independent techniques: the X-ray methodology which is based on the temperature of the X-ray halo of NGC~4649 and the tracer mass estimator (TME which uses globular clusters (GCs observed in this galaxy. The mass is calculated in Newtonian and MOdified Newtonian Dynamics (MOND approaches and it is found that inside 3 effective radii ($R_e$ there is no need for large amounts of dark matter. Beyond $3R_e$ the dark matter starts to play important dynamical role. The possible reasons for the discrepancy between the estimates of the total mass based on X-rays and TME in the outer regions of NGC~4649 are also discussed.

  20. Early-type dwarf galaxies with multicomponent stellar structure: Are they remnants of disc galaxies strongly transformed by their environment?

    CERN Document Server

    Aguerri, J Alfonso L

    2016-01-01

    The surface brightness distribution of $\\sim$30-40$\\%$ of the early-type dwarf galaxies with $-18 \\leq M_{B} \\leq -15$ in the Virgo and the Coma clusters is fitted by models that include two structural components (S\\`ersic + exponential) as for bright disc galaxies.The goal of the present study is to determine whether early-type dwarf galaxies with a two-component stellar structure in the Virgo and the Coma clusters are low-luminosity copies of bright disc galaxies or are the remnants of bright galaxies strongly transformed by cluster environmental effects.I analysed the location of bright disc galaxies and early-type dwarfs in the $r_{b,e}/h$- $n$ plane. The location in this plane of the two-component dwarf galaxies was compared with the remnants of tidally disrupted disc galaxies reported by numerical simulations. Bright unbarred disc galaxies show a strong correlation in the $r_{b,e}/h$-$n$ plane. Galaxies with larger S\\`ersic shape parameters show a higher $r_{b,e}/h$ ratio. In contrast, two-component ear...

  1. The Nature of the Extended H I Gas around NGC 4449: The Dr. Jekyll/Mr. Hyde of Irregular Galaxies

    Science.gov (United States)

    Hunter, Deidre A.; Wilcots, Eric M.; van Woerden, Hugo; Gallagher, J. S.; Kohle, Sven

    1998-03-01

    We present interferometric H I 21 cm line observations of the extended gas around the irregular galaxy NGC 4449 covering 67' on the sky at a resolution of ~1'. The main star-forming body of NGC 4449 is relatively normal for a Magellanic irregular galaxy, but the galaxy is unusual in that it has two counterrotating gas systems and H I that extends to 6 times the Holmberg radius. Our new, detailed H I maps of this extended gas show that most of the extended H I is located in large, highly structured, extended clouds and very long streamers. We compare NGC 4449 with other systems in the context of possible models for the origin of these structures, the most likely of which involves an interaction with another galaxy. Thus, NGC 4449 no longer fits the standard picture of an irregular galaxy quietly evolving in isolation.

  2. The faint outer regions of the Pegasus Dwarf Irregular galaxy: a much larger and undisturbed galaxy

    CERN Document Server

    Kniazev, Alexei; Hoffman, G Lyle; Grebel, Eva K; Zucker, Daniel B; Pustilnik, Simon A

    2009-01-01

    We investigate the spatial extent and structure of the Pegasus dwarf irregular galaxy using deep, wide-field, multicolour CCD photometry from the Sloan Digital Sky Survey (SDSS) and new deep HI observations. We study an area of ~0.6 square degrees centred on the Pegasus dwarf that was imaged by SDSS. Using effective filtering in colour-magnitude space we reduce the contamination by foreground Galactic field stars and increase significantly the contrast in the outer regions of the Pegasus dwarf. Our extended surface photometry, reaches down to a surface brightness magnitude mu_r~32 mag/sq.arcsec. It reveals a stellar body with a diameter of ~8 kpc that follows a Sersic surface brightness distribution law, which is composed of a significantly older stellar population than that observed in the ~2 kpc main body. The galaxy is at least five times more extended than listed in NED. The faint extensions of the galaxy are not equally distributed around its circumference; the north-west end is more jagged than the sout...

  3. VARIABLE-STARS IN THE IRREGULAR GALAXY NGC-2366 (DDO-42)

    NARCIS (Netherlands)

    TOLSTOY, E; SAHA, A; HOESSEL, JG; MCQUADE, K

    1995-01-01

    Observations of the resolved stars in the Irregular galaxy NGC 2366, obtained over the ten year period from March 1984 to March 1994, are presented. Thirty separate epochs were used to search for variable stars, and a total of 13 were found, of which 6 have characteristic Cepheid light curves and co

  4. Chandra Data Analysis of H2O Megamaser Galaxy NGC 4258

    Indian Academy of Sciences (India)

    Baisheng Liu; Jiangshui Zhang; Jin Wang

    2011-03-01

    Chandra observations of NGC 4258 were analyzed to investigate the circumnuclear environment of the H2O megamaser galaxy. Its adaptively-smoothed image shows a bright nucleus and another weak source nearby. For the maser host nucleus, our preferred fitting of its spectra gives the absorption of ∼ 7 × 1022cm-2.

  5. Giant Molecular Clouds in the Early-Type Galaxy NGC4526

    CERN Document Server

    Utomo, Dyas; Davis, Timothy; Rosolowsky, Erik; Bureau, Martin; Cappellari, Michele; Sarzi, Marc

    2015-01-01

    We present a high spatial resolution ($\\approx 20$ pc) of $^{12}$CO($2-1$) observations of the lenticular galaxy NGC4526. We identify 103 resolved Giant Molecular Clouds (GMCs) and measure their properties: size $R$, velocity dispersion $\\sigma_v$, and luminosity $L$. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC4526 is gravitationally bound, with a virial parameter $\\alpha \\sim 1$. The mass distribution, $dN/dM \\propto M^{-2.39 \\pm 0.03}$, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no size-linewidth correlation for the NGC4526 clouds, in contradiction to the expectation from Larson's relation. In general, the GMCs in NGC4526 are more luminous, denser, and have a higher velocity dispersion than equal size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the ...

  6. Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Peterson, B. M.

    2005-01-01

    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability ...

  7. A Critical Review of the Evidence for M32 being a Compact Dwarf Satellite of M31 rather than a More Distant Normal Galaxy

    Institute of Scientific and Technical Information of China (English)

    C. Ke-shih Young; Malcolm J. Currie; Robert J. Dickens; A-Li Luo; Tong-Jie Zhang

    2008-01-01

    Since Baade's photographic study of M32 in the mid 1940s, it has been accepted as an established fact that M32 is a compact dwarf satellite of M31. The purpose of this paper is to report on the findings of our investigation into the nature of the existing evidence. We find that the case for M32 being a satellite of M31 rests upon Hubble Space Telescope (HST) based stellar population studies which have resolved red-giant branch (RGB) and red clump stars in M32 as well as other nearby galaxies. Taken in isolation, this recent evidence could be considered to be conclusive in favour of the existing view. However, the conventional scenario does not explain M32's anomalously high central velocity dispersion for a dwarf galaxy (several times that of either NGC 147, NGC 185 or NGC 205) or existing planetary nebula observations (which suggest that M32 is more than twice as distant as M31) and also requires an elaborate physical explanation for M32's inferred compactness. Conversely, we find that the case for M32 being a normal galaxy, of the order of three times as distant as M31, is supported by: (1) a central velocity dispersion typical of intermediate galaxies, (2) the published planetary nebula observations, and (3) known scaling relationships for normal early-type galaxies. However, this novel scenario cannot account for the high apparent luminosities of the RGB stars resolved in the M32 direction by HST observations. We are therefore left with two apparently irreconcilable scenarios, only one of which can be correct, but both of which suffer from potentially fatal evidence to the contrary. This suggests that current understanding of some relevant fields is still very far from adequate.

  8. Cusp-core transformations in dwarf galaxies: observational predictions

    Science.gov (United States)

    Teyssier, Romain; Pontzen, Andrew; Dubois, Yohan; Read, Justin I.

    2013-03-01

    The presence of a dark matter core in the central kiloparsec of many dwarf galaxies has been a long-standing problem in galaxy formation theories based on the standard cold dark matter paradigm. Recent simulations, based on smooth particle hydrodynamics and rather strong feedback recipes, have shown that it was indeed possible to form extended dark matter cores using baryonic processes related to a more realistic treatment of the interstellar medium. Using adaptive mesh refinement, together with a new, stronger supernova feedback scheme that we have recently implemented in the RAMSES code, we show that it is also possible to form a prominent dark matter core within the well-controlled framework of an isolated, initially cuspy, 1010 M⊙ dark matter halo. Although our numerical experiment is idealized, it allows a clean and unambiguous identification of the dark matter core formation process. Our dark matter inner profile is well fitted by a pseudo-isothermal profile with a core radius of 800 pc. The core formation mechanism is consistent with the one proposed by Pontzen & Governato. We highlight two key observational predictions of all simulations that find cusp-core transformations: (i) a bursty star formation history with a peak-to-trough ratio of 5 to 10 and a duty cycle comparable to the local dynamical time and (ii) a stellar distribution that is hot with v/σ ˜ 1. We compare the observational properties of our model galaxy with recent measurements of the isolated dwarf Wolf-Lundmark-Mellote (WLM). We show that the spatial and kinematical distribution of stars and H I gas are in striking agreement with observations, supporting the fundamental role played by stellar feedback in shaping both the stellar and dark matter distribution.

  9. The origin of prolate rotation in dwarf spheroidal galaxies formed by mergers of disky dwarfs

    CERN Document Server

    Ebrova, Ivana

    2015-01-01

    Motivated by the discovery of prolate rotation of stars in Andromeda II, a dwarf spheroidal companion of M31, we study the origin of this type of streaming motion via mergers of disky dwarf galaxies. We simulate merger events between two identical dwarfs changing the initial inclination of their disks with respect to the orbit and the amount of orbital angular momentum. On radial orbits the amount of prolate rotation in the merger remnants correlates strongly with the inclination of the disks and is well understood as due to the conservation of the angular momentum component of the disks along the merger axis. For non-radial orbits prolate rotation may still be produced if the orbital angular momentum is initially not much larger than the intrinsic angular momentum of the disks. The orbital structure of the remnants with significant rotation is dominated by box orbits in the center and long-axis tubes in the outer parts. We also detect significant figure rotation resulting from the tidal distortion of the dis...

  10. Anomalous evolution of the dwarf galaxy HIPASS J1321-31

    NARCIS (Netherlands)

    Pritzl, BJ; Knezek, PM; Gallagher, JS; Grossi, M; Disney, MJ; Minchin, RF; Freeman, KC; Tolstoy, E; Saha, A

    2003-01-01

    We present Hubble Space Telescope/WFPC2 observations of the dwarf galaxy HIPASS J1321-31. This unusual galaxy lies in the direction of the Centaurus A group of galaxies and has a color-magnitude diagram with a distinctive red plume of luminous stars. This feature could arise from (1) a red giant bra

  11. Alignment of Red-Sequence Cluster Dwarf Galaxies: From the Frontier Fields to the Local Universe

    Science.gov (United States)

    Barkhouse, Wayne Alan; Archer, Haylee; Burgad, Jaford; Foote, Gregory; Rude, Cody; Lopez-Cruz, Omar

    2015-08-01

    Galaxy clusters are the largest virialized structures in the universe. Due to their high density and mass, they are an excellent laboratory for studying the environmental effects on galaxy evolution. Numerical simulations have predicted that tidal torques acting on dwarf galaxies as they fall into the cluster environment will cause the major axis of the galaxies to align with their radial position vector (a line that extends from the cluster center to the galaxy's center). We have undertaken a study to measure the redshift evolution of the alignment of red-sequence cluster dwarf galaxies based on a sample of 57 low-redshift Abell clusters imaged at KPNO using the 0.9-meter telescope, and 64 clusters from the WINGS dataset. To supplement our low-redshift sample, we have included galaxies selected from the Hubble Space Telescope Frontier fields. Leveraging the HST data allows us to look for evolutionary changes in the alignment of red-sequence cluster dwarf galaxies over a redshift range of 0 < z < 0.35. The alignment of the major axis of the dwarf galaxies is measured by fitting a Sersic function to each red-sequence galaxy using GALFIT. The quality of each model is checked visually after subtracting the model from the galaxy. The cluster sample is then combined by scaling each cluster by r200. We present our preliminary results based on the alignment of the red-sequence dwarf galaxies with: 1) the major axis of the brightest cluster galaxy, 2) the major axis of the cluster defined by the position of cluster members, and 3) a radius vector pointing from the cluster center to individual dwarf galaxies. Our combined cluster sample is sub-divided into different radial regions and redshift bins.

  12. The observed properties of dwarf galaxies in and around the Local Group

    CERN Document Server

    McConnachie, Alan W

    2012-01-01

    Positional, structural and dynamical parameters for all dwarf galaxies in and around the Local Group are presented, and various aspects of our observational understanding of this volume-limited sample are discussed. Over 100 nearby galaxies that have distance estimates placing them within 3Mpc of the Sun are identified. This distance threshold samples dwarfs in a large range of environments, from the satellite systems of the MW and M31, to the dwarfs in the outer regions of the Local Group, to the numerous isolated galaxies found in its surroundings. It extends to, but does not include, the galaxies associated with the next nearest groups. Our basic knowledge of this important galactic subset and their resolved stellar populations will continue to improve dramatically over the coming years with existing and future observational capabilities, and they will continue to provide the most detailed information available on numerous aspects of dwarf galaxy formation and evolution. Basic observational parameters, suc...

  13. MASSIVE STAR FORMATION IN TWO SPIRAL GALAXIES: NGC 3938 AND NGC 3184; MULTIWAVELENGTH ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. Caldú-Primo

    2008-01-01

    Full Text Available Se analiza la naturaleza grumosa de las galaxias espirales NGC 3184 (SAB(rscd HII y NGC 3938 (SA(sc HII en varias longitudes de onda (8 and 24 Mm, NUV, H , and CO utilizando el algoritmo \\Clump nd2d" (Williams et al. 1994. Con los grumos encontrados por el algoritmo, se calculan las tasas de formaci n estelar en ambas galaxias utilizando varios m todos. La dispersi n de los resultados obtenidos es grande. Para cada longitud de onda encontramos una relaci n entre la luminosidad y el rea del grumo. Proponemos nuevas f rmulas para calcular la tasa de formaci n estelar para las longitudes de onda consideradas. Encontramos que la tasa media de formaci n estelar es 0.72+-0.40 M yr-1 para NGC 3184 y 0.33+-0.09 M yr-1 para NGC 3938.

  14. Dark and luminous matter in the NGC 3992 group of galaxies, I. The large barred spiral NGC 3992

    CERN Document Server

    Bottema, R; Bottema, Roelof; Verheijen, Marc A.W.

    2002-01-01

    Detailed neutral hydrogen observations have been obtained of the large barred spiral galaxy NGC 3992 and its three small companion galaxies, UGC 6923, UGC 6940, and UGC 6969. For the main galaxy, the HI distribution is regular with a low level radial extension outside the stellar disc. However, at exactly the region of the bar, there is a pronounced central HI hole in the gas distribution. Likely gas has been transported inwards by the bar and because of the emptyness of the hole no large accretion events can have happened in recent galactic times. The gas kinematics is very regular and it is demonstrated that the influence of the bar potential on the velocity field is negligible. A precise and extended rotation curve has been derived showing some distinct features which can be explained by the non-exponential radial light distribution of NGC 3992. The decomposition of the rotation curve gives a slight preference for a sub maximal disc, though a range of disc contributions, up to a maximum disc situation fits...

  15. Transient Low-Mass X-Ray Binary Populations in Elliptical Galaxies NGC 3379 and NGC 4278

    CERN Document Server

    Fragos, T; Willems, B; Belczynski, K; Fabbiano, G; Brassington, N J; Kim, D -W; Angelini, L; Davies, R L; Gallagher, J S; King, A R; Pellegrini, S; Trinchieri, G; Zepf, S E; Zezas, A

    2009-01-01

    We propose a physically motivated and self-consistent prescription for the modeling of transient neutron star (NS) low-mass X-ray binary (LMXB) properties, such as duty cycle (DC), outburst duration and recurrence time. We apply this prescription to the population synthesis (PS) models of field LMXBs presented by Fragos et al. (2008), and compare the transient LMXB population to the Chandra X-ray survey of the two elliptical galaxies NGC 3379 and NGC 4278, which revealed several transient sources (Brassington et al., 2008, 2009). We are able to exclude models with a constant DC for all transient systems, while models with a variable DC based on the properties of each system are consistent with the observed transient populations. We predict that the majority of the observed transient sources in these two galaxies are LMXBs with red giant donors. Our comparison suggests that LMXBs formed through evolution of primordial field binaries are dominant in globular cluster (GC) poor elliptical galaxies, while they sti...

  16. Optical spectroscopy of the candidate luminous white dwarf in the young LMC cluster NGC1818

    CERN Document Server

    Burleigh, M R; Gilmore, G F; Napiwotzki, R

    1999-01-01

    An optical spectrum of the Elson et al. (1998) candidate luminous white dwarf in the young LMC cluster NGC1818 shows conclusively that it is not a degenerate star. A model atmosphere fit gives T=31,500K and log g=4.4, typical of a garden-variety main sequence B star. However, if it is a true LMC member then the star is under-luminous by almost three magnitudes. Its position in the cluster colour-magnitude diagram also rules out the possibility that this is an ordinary B star. The luminosity is, however, consistent with a ~0.5 solar mass post-AGB or post-EHB object, although if it has evolved via single star evolution from a high mass (7.6-9.0 solar masses) progenitor then we might expect it to have a much higher mass, $\\sim0.9\\Msun$. Alternatively, it has evolved in a close binary. In this case the object offers no implications for the maximum mass for white dwarf progenitors, or the initial-final mass relation. Finally, we suggest that it could in fact be an evolved member of the LMC disk, and merely project...

  17. Helium-Core White Dwarfs in the Globular Cluster NGC 6397

    CERN Document Server

    Strickler, R R; Anderson, J; Cohn, H N; Lugger, P M; Serenelli, A M

    2009-01-01

    We present results of a study of the central regions of NGC 6397 using Hubble Space Telescope's Advanced Camera for Surveys, focusing on a group of 24 faint blue stars that form a sequence parallel to, but brighter than, the more populated sequence of carbon-oxygen white dwarfs (CO WDs). Using F625W, F435W, and F658N filters with the Wide Field Channel we show that these stars, 18 of which are newly discovered, have magnitudes and colors consistent with those of helium-core white dwarfs (He WDs) with masses ~ 0.2-0.3 Msun. Their H-alpha--R625 colors indicate that they have strong H-alpha absorption lines, which distinguishes them from cataclysmic variables in the cluster. The radial distribution of the He WDs is significantly more concentrated to the cluster center than that of either the CO WDs or the turnoff stars and most closely resembles that of the cluster's blue stragglers. Binary companions are required to explain the implied dynamical masses. We show that the companions cannot be main-sequence stars ...

  18. Episodic model for star formation history and chemical abundances in giant and dwarf galaxies

    Science.gov (United States)

    Debsarma, Suma; Chattopadhyay, Tanuka; Das, Sukanta; Pfenniger, Daniel

    2016-11-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic haloes, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The derived periods of oscillation vary in the range (0.1-3.0) × 107 yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies is responsible for variation in metallicity in dwarf galaxies of similar masses as suggested by various authors.

  19. Direct evidence of hierarchical assembly at low masses from isolated dwarf galaxy groups

    Science.gov (United States)

    Stierwalt, S.; Liss, S. E.; Johnson, K. E.; Patton, D. R.; Privon, G. C.; Besla, G.; Kallivayalil, N.; Putman, M.

    2017-01-01

    The demographics of dwarf galaxy populations have long been in tension with predictions from the Λ cold dark matter (ΛCDM) paradigm 1-4 . If primordial density fluctuations were scale-free as predicted, dwarf galaxies should themselves host dark-matter subhaloes 5 , the most massive of which may have undergone star formation resulting in dwarf galaxy groups. Ensembles of dwarf galaxies are observed as sate­llites of more massive galaxies 6-9 , and there is observational 10 and theoretical 11 evidence to suggest that these satellites at redshift z = 0 were captured by the massive host halo as a group. However, the evolution of dwarf galaxies is highly susceptible to environment 12-14 , making these satellite groups imperfect probes of ΛCDM in the low-mass regime. Here we report one of the clearest examples yet of hierarchical structure formation at low masses: using deep multi-wavelength data, we identify seven isolated, spectroscopically confirmed groups of only dwarf galaxies. Each group hosts three to five known members, has a baryonic mass of ~4.4 × 109 to 2 × 1010 solar masses (M ⊙), and requires a mass-to-light ratio of <100 to be gravitationally bound. Such groups are predicted to be rare theoretically and found to be rare observationally at the current epoch, and thus provide a unique window into the possible formation mechanism of more massive, isolated galaxies.

  20. Radio continuum JVLA observations of the dwarf galaxy Sextans A

    Science.gov (United States)

    Monkiewicz, Jacqueline A.; Powell, Devon; Dettmar, Ralf-Juergen; Bomans, Dominik; Bowman, Judd D.; Scannapieco, Evan

    2017-06-01

    We present 20-cm Jansky Very Large Array (JVLA) observations of the star-forming dwarf galaxy Sextans A. Located at the outer edge of the Local Group, with an oxygen abundance of less than one-tenth of the Solar abundance (12+log O/H = 7.49), Sextans A provides a nearby laboratory for the study of low-metallicity star formation processes. This galaxy is a weak source in the infrared, but exhibits evidence for vigorous star formation-powered outflows in ionized gas, including large-scale H-alpha shells and filaments up to a kpc in length. Sextans A has not previously been detected in radio continuum. The upgraded JVLA and WIDAR correlator provide enhanced sensitivity over previous studies. We resolve a 3.0 mJy (+/- 0.3 mJy) continuum source centered on the brightest star formation region in Sextans A. Using two relatively interference-free windows at 1.4 GHz and 1.85 GHz, we are able to measure the spectral slope of the detected emission. We estimate the non-thermal contribution and the strength of the galaxy's magnetic field. We discuss the impact of low metallicity on the reliability of the IR/radio relation.

  1. The structure of Andromeda II dwarf spheroidal galaxy

    CERN Document Server

    del Pino, Andrés; Hidalgo, Sebastian L; Fouquet, Sylvain

    2016-01-01

    We analyze in detail the spatial distribution and kinematic properties of two different stellar populations in Andromeda II (And II) dwarf spheroidal galaxy. We obtained their detailed surface density maps, together with their radial density profiles. The two populations differ not only in age and metallicity, but also in their spatial distribution and kinematics. Old stars ($\\gtrsim 11$ Gyr) follow a round distribution well fitted by truncated density profiles. These stars rotate around the projected optical major axis of the galaxy with line-of-sight velocities $v_{los}(r_h) = 16 \\pm 3$ km s$^{-1}$ and a velocity gradient of $2.06 \\pm 0.21$ km s$^{-1}$ arcmin$^{-1}$. Intermediate-age stars ($\\lesssim 9$ Gyr) concentrate in the centre of the galaxy and form an elongated structure extending along the projected optical major axis. This structure appears to rotate with a steeper velocity gradient, $2.24 \\pm 0.22$ km s$^{-1}$ arcmin$^{-1}$, and around the optical minor axis. The centres of rotation and kinetic p...

  2. Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies

    CERN Document Server

    Gonzáles-Morales, Alma X; Peñarrubia, Jorge; Ureña-López, Luis

    2016-01-01

    It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with $m_a\\sim 10^{-22}\\text{eV}$ are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here we use realistic kinematic mock data catalogs of Milky Way dSph's to show that the "mass-anisotropy degeneracy" in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSph's with ...

  3. In-spiraling Clumps in Blue Compact Dwarf Galaxies

    CERN Document Server

    Elmegreen, Bruce G; Hunter, Deidre

    2012-01-01

    Giant star-formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the central region in 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration of old stars, gas, and star formation that can produce a long-lived starburst in the inner region, identified with the BCD phase. This central concentration is proposed to be analogous to the bulge in a young spiral galaxy. Observations of star complexes in five local BCDs confirm the relatively large clump masses that are expected for this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case the clumps may be long-lived....

  4. On the Fate of Processed Matter in Dwarf Galaxies

    CERN Document Server

    Silich, S A; Silich, Sergey A.; Tenorio-Tagle, Guillermo

    1998-01-01

    Two dimensional calculations of the evolution of remnants generated by the strong mechanical energy deposited by stellar clusters in dwarf galaxies (M \\si $10^9 - 10^{10}$ \\msun) are presented. The evolution is followed for times longer than both the blowout time and the presumed span of energy injection generated by a coeval massive stellar cluster. The remnants are shown to end up wrapping around the central region of the host galaxy, while growing to kpc-scale dimensions. Properties of the remnants such as luminosity, size, swept up mass, and expansion speed are given as a function of time for all calculated cases. The final fate of the swept-up galactic gas and of the matter processed by the central starburst is shown to be highly-dependent on the properties of the low density galactic halo. Superbubbles powered by star clusters, with properties similar to those inferred from the observations, slow down in the presence of an extended halo to expansion speeds smaller than the host galaxy escape velocity. V...

  5. The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies

    CERN Document Server

    Revaz, Y; Sawala, T; Hill, V; Letarte, B; Irwin, M; Battaglia, G; Helmi, A; Shetrone, M D; Tolstoy, E; Venn, K A

    2009-01-01

    We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the s...

  6. Dwarf galaxy formation with H2-regulated star formation

    CERN Document Server

    Kuhlen, M; Madau, P; Smith, B; Wise, J

    2011-01-01

    We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low mass halos (M_h 4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with "supernova feedback". We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z=4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized 1D radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic--molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Sigma_gas cutoff due to the transi...

  7. The Molecular ISM of Dwarf Galaxies on Kiloparsec Scales: A New Survey for CO in Northern, IRAS-detected Dwarf Galaxies

    CERN Document Server

    Leroy, A; Simon, J D; Blitz, L; Leroy, Adam; Bolatto, Alberto D.; Simon, Joshua D.; Blitz, Leo

    2005-01-01

    We present a new survey for CO in dwarf galaxies using the Kitt Peak 12m telescope. We observed the central regions of 121 northern dwarfs with IRAS detections and no known CO emission. We detect CO in 28 of these galaxies and marginally detect another 16, increasing by about 50% the number of such galaxies known to have significant CO emission. The galaxies we detect are comparable in mass to the LMC, although somewhat brighter in CO and fainter in the FIR. Within dwarfs, we find that the CO luminosity, L_CO, is most strongly correlated with the K-band and the far infrared luminosities. There are also strong correlations with the radio continuum and B-band luminosities, and linear diameter. We suggest that L_CO and L_K correlate well because the stellar component of a galaxy dominates the midplane gravitational field and thus sets the pressure of the atomic gas, which controls the formation of H_2 from HI. We compare our sample with more massive galaxies and find that dwarfs and large galaxies obey the same ...

  8. The Origin of Dwarf Galaxies in Clusters: The Faint-End Slope of Abell 85 Galaxy Luminosity Function

    Science.gov (United States)

    Agulli, I.; Aguerri, J. A. L.; Barrena, R.; Diaferio, A.; Sánchez-Janssen, R.

    2016-10-01

    Dwarf galaxies (Mb>-18) are important because of their cosmological interest as tests of hierarchical theories. The formation of these galaxies is still an open question but red dwarf galaxies are preferentially located in high density environments, indicating that they are end-products of galaxy transformations in clusters. Deep spectroscopic studies of galaxy clusters are needed to put some constraints on dwarf galaxy formation and evolution. We have observed and analyzed Abell 85, a nearby (z = 0.055) and massive cluster down to M*+6, using the MOS instruments VIMOS@VLT and AF2@WHT. The first and powerful tool to study the characteristics of galaxies and compare with different density environments is the galaxy luminosity function. The comparison of the results for Abell 85 with literature outcomes for clusters and field, allows us to conclude that, at least for this cluster, the environment plays a major role in the nature of the faint-end galaxies, transforming blue dwarfs in the field into red ones in the cluster, but not in the formation of the luminosity function slope.

  9. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    CERN Document Server

    Kirby, Evan N; Zhang, Andrew J; Deng, Michelle; Cohen, Judith G; Guhathakurta, Puragra; Shetrone, Matthew D; Lee, Young Sun; Rizzi, Luca

    2015-01-01

    We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in...

  10. HI in NGC 5433 and its Environment: High-Latitude Emission in a Small Galaxy Group

    CERN Document Server

    Spekkens, K; Saikia, D J

    2004-01-01

    We present HI synthesis maps of the edge-on starburst NGC 5433 and its environment, obtained with the VLA in its C and D configurations. The observations and spectral model residuals of the main disc emission in NGC 5433 reveal 3 extraplanar features. We associate 2 of these features with coherent extraplanar extensions across multiple spectral channels in our data, including a complete loop in position-velocity space. Interpreting the latter as an expanding shell we derive a corresponding input energy of 2 x 10^54 ergs, comparable to that for the largest supershells found in the Galaxy and those in other edge-on systems. NGC 5433 is in a richer environment than previously thought. We confirm that KUG 1359+326 is a physical companion to NGC 5433 and find two new faint companions, both with Minnesota Automated Plate Scanner identifications, that we label SIS-1 and SIS-2. Including the more distant IC 4357, NGC 5433 is the dominant member of a group of at least 5 galaxies, spanning over 750 kpc in a filamentary...

  11. The "shook up" galaxy NGC 3079: the complex interplay between HI, activity and environment

    CERN Document Server

    Shafi, N; Morganti, R; Colafrancesco, S; Booth, R

    2015-01-01

    We present deep neutral hydrogen (HI) observations of the starburst/Seyfert galaxy NGC 3079 and its environment, obtained with the Westerbork Synthesis Radio Telescope. Our observations reveal previously unknown components, both in HI emission and in absorption, that show that NGC 3079 is going through a hectic phase in its evolution. The HI disk appears much more extended than previously observed and is morphologically and kinematically lopsided on all scales with evidence for strong non-circular motions in the central regions. Our data reveal prominent gas streams encircling the entire galaxy suggesting strong interacting with its neighbours. A 33-kpc long HI bridge is detected between NGC 3079 and MCG 9-17-9, likely caused by ram-pressure stripping of MGC 9-17-9 by the halo of hot gas of NGC 3079. The cometary HI tail of the companion NGC 3073, earlier discovered by Irwin et al., extends about twice as long in our data, while a shorter, second tail is also found. This tail is likely caused by ram-pressure ...

  12. The Arecibo Galaxy Environment Survey VIII : Discovery of an Isolated Dwarf Galaxy in the Local Volume

    CERN Document Server

    Taylor, R; Herbst, H; Smith, R

    2014-01-01

    The Arecibo Galaxy Environment Survey (AGES) has detected a nearby HI source at a heliocentric velocity of +363 km/s . The object was detected through its neutral hydrogen emission and has an obvious possible optical counterpart in Sloan Digital Sky Survey (SDSS) data (though it does not have an optical redshift measurement). We discuss three possible scenarios for the object : 1) It is within the Local Group, in which case its HI properties are comparable with recently discovered ultra-compact high velocity clouds; 2) It is just behind the Local Group, in which case its optical characteristics are similar to the newly discovered Leo P galaxy; 3) It is a blue compact dwarf galaxy within the local volume but not associated with the Local Group. We find the third possibility to be the most likely, based on distance estimates from the Tully-Fisher relation and its velocity relative to the Local Group.

  13. The Hydra I cluster core. I. Stellar populations in the cD galaxy NGC 3311

    CERN Document Server

    Barbosa, Carlos Eduardo; Coccato, Lodovico; Hilker, Michael; de Oliveira, Cláudia Mendes; Richtler, Tom

    2016-01-01

    (Abridged for arXiv) The history of the mass assembly of brightest cluster galaxies may be studied by the mapping the stellar populations at large radial distances from the galaxy centre. We provide extended and robust measurements of the stellar population parameters in NGC 3311, the cD galaxy at the centre of the Hydra I cluster and out to three effective radii. Using seven absorption-features defined in the Lick/IDS system and single stellar populations models, we obtained luminosity-weighted ages, metallicities and alpha element abundances. The trends in the Lick indices and the distribution of the stellar population parameters indicate that the stars of NGC 3311 may be divided into two radial regimes, one within and the another beyond one effective radius, $R_e = 8.4$ kpc, similar to the distinction between inner galaxy and external halo derived from the NGC 3311 velocity dispersion profile. The inner galaxy ($R\\leq R_e$) is old (age $\\sim 14$ Gyr), have negative metallicity gradients and positive alpha ...

  14. Globular clusters kinematics and dynamical models of the massive early-type galaxy NGC 1399

    Science.gov (United States)

    Samurović, S.

    2016-06-01

    We analyze the dynamical models of the massive early-type galaxy NGC 1399, the central galaxy of the Fornax cluster. We use the sample of 790 globular clusters as tracers of gravitational potential and we first extract the kinematics, which is then dynamically modeled. We find that the velocity dispersion remains high and approximately constant throughout the whole galaxy and that the departures from the Gaussian distribution of the orbits are not large. We use the spherical Jeans equation in both Newtonian and MOND approaches, assuming three cases of orbital anisotropies: we study isotropic, tangentially and radially anisotropic models in order to establish the best-fitting values of the mass-to-light ratios. We found that in the Newtonian approximation a significant amount of dark matter is needed and that Navarro-Frenk-White (NFW) model with a dark halo provides a satisfactory description of the kinematics of NGC 1399. We tested three MOND models (standard, simple and toy) and found that none of them can provide a fit of the velocity dispersion profile without the inclusion of dark matter. Finally, using our findings, we placed the galaxy NGC 1399 within the context of other observed early-type galaxies and discuss its location among them.

  15. Bright stars and recent star formation in the irregular magellanic galaxy NGC2366

    CERN Document Server

    Aparicio, A; Gallart, C; Castaneda, H O; Chiosi, C; Bertelli, G; Muñoz-Tunón, C; Telles, E; Tenorio-Tagle, G; Díaz, A I; García-Vargas, M L; Garzón, F; González-Delgado, R M; Mas-Hesse, J M; Pérez, E; Rodríguez-Espinosa, J M; Terlevich, E; Terlevich, R J; Varela, A M; Vílchez, J M; Cepa, J; Gallart, C; Castaneda, H; Chiosi, C; Bertelli, G; Munoz-Tunon, Casiana; Telles, Eduardo; Tenorio-Tagle, G; Diaz, A I; Garcia-Vargas, M L; Garzon, F; Gonzalez-Delgado, R Ma; Mas-Hesse, M; Perez, E; Rodriguez-Espinosa, J M; Terlevich, E; Terlevich, R J; Varela, A M; Vilchez, J M

    1995-01-01

    The stellar content of the Im galaxy NGC 2366 is discussed on the basis of CCD BVR photometry. The three brightest blue and red stars have been used to estimate its distance, obtaining a balue of 2.9 Mpc. The spatial distribution of the young stellar population is discussed in the light of the integrated color indices and the color-magnitude diagrams of different zones of the galaxy. A generalized star formation burst seems to have taken place about 50 Myr ago. The youngest stars are preferentially formed in the South-West part of the bar, where the giant HII complex NGC 2363 is located, being younger and bluer. The bar seems to play a role favouring star formation in one of its extremes. Self-propagation however, does not seem to be triggering star formation at large scale. A small region, populated by very young stars has also been found at the East of the galaxy.

  16. Low dark matter content of the nearby early-type galaxy NGC 821

    Directory of Open Access Journals (Sweden)

    Samurović S.

    2014-01-01

    Full Text Available In this paper we analyze the kinematics and dynamics of the nearby early-type galaxy NGC 821 based on its globular clusters (GCs and planetary nebulae (PNe. We use PNe and GCs to extract the kinematics of NGC 821 which is then used for the dynamical modelling based on the Jeans equation. We apply the Jeans equation using the Newtonian mass-follows-light approach assuming constant mass-to-light ratio and find that using such an approach we can successfully fit the kinematic data. The inferred constant mass-to-light ratio, 4:2 < M=LB < 12:4 present throughout the whole galaxy, implies the lack of significant amount of dark matter. We also used three different MOND approaches and found that we can fit the kinematic data without the need for additional, dark, component. [Projekat Ministarstva nauke Republike Srbije, br. 176021: Visible and invisible matter in nearby galaxies: theory and observations

  17. The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera

    Science.gov (United States)

    Lauer, Tod R.; Faber, S. M.; Holtzman, Jon A.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common.

  18. The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, T.R.; Faber, S.M.; Holtzman, J.A.; Baum, W.A.; Currie, D.G.; Ewald, S.P.; Groth, E.J.; Hester, J.J.; Kelsall, T. (Kitt Peak National Observatory, Tucson, AZ (USA) Lick Observatory, Santa Cruz, CA (USA) Lowell Observatory, Flagstaff, AZ (USA) Washington Univ., Seattle (USA) Maryland Univ., College Park (USA) Space Telescope Science Institute, Baltimore, MD (USA) Princeton Univ., NJ (USA) California Institute of Technology, Pasadena (USA) NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-03-01

    A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common. 20 refs.

  19. Gravitational wave radiation from a double white dwarf system inside our galaxy: a potential method for seeking strange dwarfs

    Institute of Scientific and Technical Information of China (English)

    Zhan-Kui Lü; Shi-Wei Wu; Zhi-Cheng Zeng

    2009-01-01

    Like the investigation of double white dwarf (DWD) systems, strange dwarf (SD) - white dwarf (WD) system evolution in Laser Interferometer Space Antenna (LISA)'s absolute amplitude-frequency diagram is investigated. Since there is a strange quark core inside an SD, SDs' radii are significantly smaller than the value predicted by the standard WD model, which may strongly affect the gravitational wave (GW) signal in the mass-transferring phases of binary systems. We study how an SD-WD binary evolves across LISA's absolute amplitude-frequency diagram. In principle, we provide an executable way to detect SDs in the Galaxy's DWD systems by radically new windows offered by GW detectors.

  20. Abundant Molecular Gas in Tidal Dwarf Galaxies On-going Galaxy Formation

    CERN Document Server

    Braine, J; Lisenfeld, U; Charmandaris, V; Vallejo, O; Leon, S; Brinks, E

    2001-01-01

    [Abridged...] We investigate the process of galaxy formation as can be observed in the only currently forming galaxies -- the so-called Tidal Dwarf Galaxies, hereafter TDGs -- through observations of the molecular gas detected via its CO emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (two of them have already been published in Braine et al. 2000), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 10^8 M_sun. The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the tran...

  1. Metal diffusion in smoothed particle hydrodynamics simulations of dwarf galaxies

    CERN Document Server

    Williamson, David John; Kawata, Daisuke

    2016-01-01

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows, and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths, by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]-[Fe/H] distribution in the gas, and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between "metal mass-loading" (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even...

  2. Dark Matter in $\\gamma$ lines: Galactic Center vs dwarf galaxies

    CERN Document Server

    Lefranc, Valentin; Panci, Paolo; Sala, Filippo; Silk, Joseph

    2016-01-01

    We provide CTA sensitivities to Dark Matter (DM) annihilation in $\\gamma$-ray lines, from the observation of the Galactic Center (GC) as well as, for the first time, of dwarf Spheroidal galaxies (dSphs). We compare the GC reach with that of dSphs as a function of a putative core radius of the DM distribution, which is itself poorly known. We find that the currently best dSph candidates constitute a more promising target than the GC, for core radii of one to a few kpc. We use the most recent instrument response functions and background estimations by CTA, on top of which we add the diffuse photon component. Our analysis is of particular interest for TeV-scale electroweak multiplets as DM candidates, such as the supersymmetric Wino and the Minimal Dark Matter fiveplet, whose predictions we compare with our projected sensitivities.

  3. The Intrinsic Shapes of Low-Surface-Brightness Dwarf Irregular Galaxies and Comparison to Other Types of Dwarf Galaxies

    CERN Document Server

    Sung, E C; Ryden, S; Patterson, J; Chun, M S; Kim, H I; Lee, W B; Sung, Eon-Chang; Han, Cheongho; Chun, Moon-Suk; Kim, Ho-Il; Lee, Woo-Baik

    1998-01-01

    In this paper, we measure the ellipticities of 30 LSB dI galaxies and compare the ellipticity distribution with that of 80 dEs (Ryden & Terndrup 1994; Ryden et al. 1998) and 62 BCDs (Sung et al. 1998). We find that the ellipticity distribution of LSB dIs is very similar to that of BCDs, and marginally different from that of dEs. We then determine the distribution of intrinsic shapes of dI galaxies and compare to those of other type dwarf galaxies under various assumptions. First, we assume that LSB dIs are either all oblate or all prolate, and use non-parametric analysis to find the best-fitting distribution of intrinsic shapes. With this assumption, we find that the scarcity of nearly circular LSB dIs implies, at the 99% confidence level, that they cannot be a population of randomly oriented oblate or prolate objects. Next, we assume that dIs are triaxial, and use parametric analysis to find permissible distributions of intrinsic shapes. We find that if the intrinsic axis ratios, $\\beta$ and parameters f...

  4. Disky elliptical galaxies and the allegedly over-massive black hole in the compact massive `ES' galaxy NGC 1271

    CERN Document Server

    Graham, Alister W; Savorgnan, Giulia A D

    2016-01-01

    While spiral and lenticular galaxies have large-scale disks extending beyond their bulges, and most local early-type galaxies with 10^{10} < M_*/M_Sun < 2x10^{11} contain a disk (e.g., ATLAS^3D), the early-type galaxies do possess a range of disk sizes. The edge-on, `intermediate-scale' disk in the `disky elliptical' galaxy NGC 1271 has led to some uncertainty as to what is its spheroidal component. Walsh et al. reported a directly measured black hole mass of 3x10^9 M_Sun for this galaxy; which they remarked was an order of magnitude greater than what they expected based on their derivation of the host spheroid's luminosity. Our near-infrared image analysis supports a small embedded disk within a massive spheroidal component with M_{sph,*} = (0.9+/-0.2)x10^{11} M_Sun (using M_*/L_H = 1.4 from Walsh et al.). This places NGC 1271 just 1.6-sigma above the near-linear M_bh-M_{sph,*} relation for early-type galaxies. Therefore, past speculation that there may be a systematic difference in the black hole scal...

  5. Mapping the inner regions of the polar disk galaxy NGC4650A with MUSE

    CERN Document Server

    Iodice, E; Combes, F; de Zeeuw, T; Arnaboldi, M; Weilbacher, P M; Bacon, R; Kuntschner, H; Spavone, M

    2015-01-01

    [abridged] The polar disk galaxy NGC4650A was observed during the commissioning of the MUSE at the ESO VLT to obtain the first 2D map of the velocity and velocity dispersion for both stars and gas. The new MUSE data allow the analysis of the structure and kinematics towards the central regions of NGC4650A, where the two components co-exist. These regions were unexplored by the previous long-slit literature data available for this galaxy. The extended view of NGC~4650A given by the MUSE data is a galaxy made of two perpendicular disks that remain distinct and drive the kinematics right into the very centre of this object. In order to match this observed structure for NGC4650A, we constructed a multicomponent mass model made by the combined projection of two disks. By comparing the observations with the 2D kinematics derived from the model, we found that the modelled mass distribution in these two disks can, on average, account for the complex kinematics revealed by the MUSE data, also in the central regions of...

  6. The flaring HI disk of the nearby spiral galaxy NGC 2683

    CERN Document Server

    Vollmer, B; Ibata, R

    2015-01-01

    New deep VLA D array HI observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model HI data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80 degrees; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution of the gas disk; (iii) a slight warp in inclination; (iv) an exponential flare; and (v) a low surface-density gas ring. The slope of NGC 2683's flare is comparable, but somewhat steeper than those of other spiral galaxies. NGC 2683's maximum height of the flare is also comparable to those of other galaxies. On the other hand, a saturation of the flare is only observed in NGC 2683. Based on the comparison between the high resolution model and observations, we exclude the existence of an extended atomic gas halo around the ...

  7. A variable ultra-luminous X-ray source in the colliding galaxy NGC 7714

    CERN Document Server

    Soria, R; Soria, Roberto; Motch, Christian

    2004-01-01

    We studied the colliding galaxy NGC 7714 with two XMM-Newton observations, six months apart. The galaxy contains two bright X-ray sources: we show that they have different physical nature. The off-nuclear source is an accreting compact object, one of the brightest ultraluminous X-ray sources (ULXs) found to date. It showed spectral and luminosity changes between the two observations, from a low/soft to a high/hard state; in the high state, it reached L_x ~ 6 x 10^{40} erg/s. Its lightcurve in the high state suggests variability on a ~ 2-hr timescale. Its peculiar location, where the tidal bridge between NGC 7714 and NGC 7715 joins the outer stellar ring of NGC 7714, makes it an interesting example of the connection between gas flows in colliding galaxies and ULX formation. The nuclear source (L_x ~ 10^{41} erg/s) coincides with a starburst region, and is the combination of thin thermal plasma emission and a point-source contribution (with a power-law spectrum). Variability in the power-law component between t...

  8. A neutral hydrogen study of the barred spiral galaxy NGC 3319

    Science.gov (United States)

    Moore, E. M.; Gottesman, S. T.

    1998-03-01

    Neutral hydrogen line observations of the late-type barred spiral galaxy NGC 3319 are presented. The distribution and kinematics of the galaxy are studied using the Very Large Array, with spatial resolutions between 11 and 50 arcsec and a channel separation of 10.33 km/s. As is typical for late-type galaxies, NGC 3319 is rich in H I, with a gaseous bar and spiral features. Several large, low-density regions are present, and the H I spiral structure is distorted, especially in the south. The gas distribution is asymmetric and extends significantly further to the southeast due to a long, off-center tail. Noncircular motions caused by the bar, spiral structure, and low-density regions are present in the radial velocity field, complicating the rotation curve analysis. These nonaxisymmetric structures cause the values of the position angle and inclination derived from the velocity field to vary across the disk. In addition, beyond a radius of 180 arcsec, the velocity field is severely perturbed on the approaching (southern) side of the galaxy, and the disk becomes nonplanar. However, the galaxy does not show the typical 'integral sign' shape of a warped system. We detect a small system approximately 11 arcmin south of the center of NGC 3319. It is seen in eight velocity channels and is coincident with a small, resolved object in the Palomar Sky Survey. A tidal interaction between this object and NGC 3319 is the most likely cause of the distorted spiral structure, the H I tail, and the velocity perturbations found in the southern half of the galaxy. Infalling tidal debris from such an event may account for the large, low-density regions found in the disk, several of which show kinematic evidence that suggest they are expanding superstructures.

  9. THE DEARTH OF NEUTRAL HYDROGEN IN GALACTIC DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spekkens, Kristine; Urbancic, Natasha [Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, Ontario K7K 7B4 (Canada); Mason, Brian S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Willman, Beth [Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Aguirre, James E., E-mail: kristine.spekkens@rmc.ca [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits M{sub H} {sub I}{sup lim} are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity L{sub V} and dynamical mass M {sub dyn}, we find M{sub H} {sub I}{sup lim}/L{sub V}∼10{sup −3} M{sub ⊙}/L{sub ⊙} and M{sub H} {sub I}{sup lim}/M{sub dyn}∼5×10{sup −5}, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds M{sub H} {sub I}{sup lim} by a factor of ∼30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  10. The same with less: The cosmic web of warm versus cold dark matter dwarf galaxies

    CERN Document Server

    Reed, Darren S; Smith, Robert E; Potter, Doug; Stadel, Joachim; Moore, Ben

    2014-01-01

    We explore fundamental properties of the distribution of low mass dark matter halos within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self abundance-matched mock galaxy catalogs, we show that the distribution of dwarf galaxies in a WDM universe, wherein low mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low mass halos are not seen because galaxy formation is suppressed below some threshold halo mass. However, if the scatter between dwarf galaxy luminosity and halo properties is large enough, low mass CDM halos would sometimes host relatively bright galaxies thereby populating CDM voids with the occasional isolated galaxy and reducing the numbers of completely empty voids. Otherwise, without high mass to light scatter, all mock galaxy clustering statistics that we consider--the auto-correlation function, the numbers and radial profiles of satellites, the numbers of isolated galaxies, and the PDF ...

  11. Ionization processes in a local analogue of distant clumpy galaxies: VLT MUSE IFU spectroscopy and FORS deep images of the TDG NGC 5291N

    CERN Document Server

    Fensch, J; Weilbacher, P M; Boquien, M; Zackrisson, E

    2016-01-01

    We present IFU observations with MUSE@VLT and deep imaging with FORS@VLT of a dwarf galaxy recently formed within the giant collisional HI ring surrounding NGC 5291. This TDG-like object has the characteristics of typical z=1-2 gas-rich spiral galaxies: a high gas fraction, a rather turbulent clumpy ISM, the absence of an old stellar population, a moderate metallicity and star formation efficiency. The MUSE spectra allow us to determine the physical conditions within the various complex substructures revealed by the deep optical images, and to scrutinize at unprecedented spatial resolution the ionization processes at play in this specific medium. Starburst age, extinction and metallicity maps of the TDG and surrounding regions were determined using the strong emission lines Hbeta, [OIII], [OI], [NII], Halpha and [SII] combined with empirical diagnostics. Discrimination between different ionization mechanisms was made using BPT--like diagrams and shock plus photoionization models. Globally, the physical condit...

  12. First Stellar Abundances in the Dwarf Irregular Galaxy IC 1613

    Science.gov (United States)

    Tautvaišienė, Gražina; Geisler, Doug; Wallerstein, George; Borissova, Jura; Bizyaev, Dmitry; Pagel, Bernard E. J.; Charbonnel, Corinne; Smith, Verne

    2007-12-01

    Chemical abundances in three M supergiants in the Local Group dwarf irregular galaxy IC 1613 have been determined using high-resolution spectra obtained with the UVES spectrograph on the ESO 8.2 m Kueyen telescope. A detailed synthetic-spectrum analysis has been used to determine the atmospheric parameters and abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Fe, Co, Ni, La, and Eu. We find the overall metallicity of the stars to be [Fe/H] = -0.67 ± 0.09 and the age 9-13 Myr, which is in excellent agreement with the present-day values in the age-metallicity relationship model of IC 1613 by Skillman et al. We have found that the three supergiants investigated have a mean [α/Fe] equal to about -0.1, which is lower than seen in Galactic stars at the same metallicity and is in agreement with the results obtained in other dwarf irregular galaxies. The oxygen abundances are in agreement with the upper values of the nebular oxygen determinations in IC 1613. The abundance ratios of s- and r-process elements to iron are enhanced relative to solar by about 0.3 dex. The abundance pattern of the elements studied is similar to that of the Small Magellanic Cloud, except for Co and Ni, which are underabundant in the SMC. The observed elemental abundances are generally in very good agreement with the recent chemical evolution model of Yuk and Lee. Based on observations collected with the Very Large Telescope and the 2.2 m Telescope of the European Southern Observatory within the Observing Programs 70.B-0361(A) and 072.D-0113(D).

  13. Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fragile, P C; Murray, S D; Lin, D C

    2004-06-15

    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10{sup 8} and 10{sup 9} M{sub {circle_dot}} with supernova rates of 30, 300, and 3000 Myr{sup -1}. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, we find the loss of enriched material to be much less efficient (as low as 21%) when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density ''chimneys'' swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.

  14. The early days of the Sculptor dwarf spheroidal galaxy

    CERN Document Server

    Jablonka, P; Mashonkina, L; Hill, V; Revaz, Y; Shetrone, M; Starkenburg, E; Irwin, M; Tolstoy, E; Battaglia, G; Venn, K; Helmi, A; Primas, F; Francois, P

    2015-01-01

    We present the high resolution spectroscopic study of five -3.9<=[Fe/H]<=-2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed analysis of the chemical abundances of alpha, iron peak, light and heavy elements, and draw comparisons with the Milky Way halo and the ultra faint dwarf stellar populations. We show that the bulk of the Sculptor metal-poor stars follows the same trends in abundance ratios versus metallicity as the Milky Way stars. This suggests similar early conditions of star formation and a high degree of homogeneity of the interstellar medium. We find an outlier to this main regime, which seems to miss the products of the most massive of the TypeII supernovae. In addition to its value to help refining galaxy formation models, this star provides clues to the production of cobalt and zinc. Two of our sample stars have low odd-to-even barium isotope abundance ratios, suggesti...

  15. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  16. UB CCD PHOTOMETRY OF THE OLD, METAL-RICH, OPEN CLUSTERS NGC 6791, NGC 6819, AND NGC 7142

    Energy Technology Data Exchange (ETDEWEB)

    Carraro, G. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago 19 (Chile); Buzzoni, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Bertone, E. [INAOE-Instituto Nacional de Astrofísica Optica y Electrónica, Calle L.E. Erro 1, 72840 Tonantzintla, Puebla (Mexico); Buson, L., E-mail: gcarraro@eso.org, E-mail: alberto.buzzoni@oabo.inaf.it, E-mail: ebertone@inaoep.mx, E-mail: lucio.buson@oapd.inaf.it [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy)

    2013-11-01

    We report on a UV-oriented imaging survey in the fields of the old, metal-rich open clusters NGC 6791, NGC 6819, and NGC 7142. With their super-solar metallicity and ages ∼> 3-8 Gyr, these three clusters represent both very near and ideal stellar aggregates to match the distinctive properties of the evolved stellar populations, as in elliptical galaxies and bulges of spirals. Following a first discussion of NGC 6791 observations in an accompanying paper, here we complete our analysis, also presenting for NGC 6819 and NGC 7142 the first-ever U CCD photometry. The color-magnitude diagram of the three clusters is analyzed in detail, with special emphasis on the hot stellar component. We report, in this regard, one new extreme horizontal-branch star candidate in NGC 6791. For NGC 6819 and 7142, the stellar luminosity function clearly points to a looser radial distribution of faint lower main sequence stars, either as a consequence of cluster dynamical interaction with the Galaxy or as an effect of an increasing fraction of binary stars toward the cluster core, as also observed in NGC 6791. Compared to a reference theoretical model for the Galaxy disk, the analysis of the stellar field along the line of sight of each cluster indicates that a more centrally concentrated thick disk, on a scale length shorter than ∼2.8 kpc, might better reconcile the lower observed fraction of bright field stars and their white-dwarf progeny.

  17. UB CCD Photometry of the Old, Metal-rich, Open Clusters NGC 6791, NGC 6819, and NGC 7142

    Science.gov (United States)

    Carraro, G.; Buzzoni, A.; Bertone, E.; Buson, L.

    2013-11-01

    We report on a UV-oriented imaging survey in the fields of the old, metal-rich open clusters NGC 6791, NGC 6819, and NGC 7142. With their super-solar metallicity and ages >~ 3-8 Gyr, these three clusters represent both very near and ideal stellar aggregates to match the distinctive properties of the evolved stellar populations, as in elliptical galaxies and bulges of spirals. Following a first discussion of NGC 6791 observations in an accompanying paper, here we complete our analysis, also presenting for NGC 6819 and NGC 7142 the first-ever U CCD photometry. The color-magnitude diagram of the three clusters is analyzed in detail, with special emphasis on the hot stellar component. We report, in this regard, one new extreme horizontal-branch star candidate in NGC 6791. For NGC 6819 and 7142, the stellar luminosity function clearly points to a looser radial distribution of faint lower main sequence stars, either as a consequence of cluster dynamical interaction with the Galaxy or as an effect of an increasing fraction of binary stars toward the cluster core, as also observed in NGC 6791. Compared to a reference theoretical model for the Galaxy disk, the analysis of the stellar field along the line of sight of each cluster indicates that a more centrally concentrated thick disk, on a scale length shorter than ~2.8 kpc, might better reconcile the lower observed fraction of bright field stars and their white-dwarf progeny.

  18. THE RINGS SURVEY. I. Hα AND H i VELOCITY MAPS OF GALAXY NGC 2280

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Carl J.; Williams, T. B.; Sellwood, J. A. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Spekkens, Kristine; Lee-Waddell, K. [Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, ON, K7K 7B4, XNS (Canada); Naray, Rachel Kuzio de, E-mail: cmitchell@physics.rutgers.edu, E-mail: williams@saao.ac.za, E-mail: kristine.spekkens@rmc.ca, E-mail: karen.lee-waddell@rmc.ca, E-mail: kuzio@astro.gsu.edu, E-mail: sellwood@physics.rutgers.edu [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Atlanta, GA 30303 (United States)

    2015-03-15

    Precise measurements of gas kinematics in the disk of a spiral galaxy can be used to estimate its mass distribution. The Southern African Large Telescope has a large collecting area and field of view, and is equipped with a Fabry–Pérot (FP) interferometer that can measure gas kinematics in a galaxy from the Hα line. To take advantage of this capability, we have constructed a sample of 19 nearby spiral galaxies, the RSS Imaging and Spectroscopy Nearby Galaxy Survey, as targets for detailed study of their mass distributions and have collected much of the needed data. In this paper, we present velocity maps produced from Hα FP interferometry and H i aperture synthesis for one of these galaxies, NGC 2280, and show that the two velocity measurements are generally in excellent agreement. Minor differences can mostly be attributed to the different spatial distributions of the excited and neutral gas in this galaxy, but we do detect some anomalous velocities in our Hα velocity map of the kind that have previously been detected in other galaxies. Models produced from our two velocity maps agree well with each other and our estimates of the systemic velocity and projection angles confirm previous measurements of these quantities for NGC 2280.

  19. Deep imaging of the shell elliptical galaxy NGC 3923 with MegaCam

    Science.gov (United States)

    Bílek, M.; Cuillandre, J.-C.; Gwyn, S.; Ebrová, I.; Bartošková, K.; Jungwiert, B.; Jílková, L.

    2016-04-01

    Context. The elliptical galaxy NGC 3923 is known to be surrounded by a number of stellar shells, probable remnants of an accreted galaxy. Despite its uniqueness, the deepest images of its outskirts come from the 1980s. On the basis of the modified Newtonian dynamics (MOND), it has recently been predicted that a new shell lies in this region. Aims: We obtain the deepest image ever of the galaxy, map the tidal features in it, and search for the predicted shell. Methods: The image of the galaxy was taken by the MegaCam camera at the Canada-France-Hawaii Telescope in the g'-band. It reached the surface-brightness limit of 29 mag arcsec-2. In addition, we reanalyzed an archival HST image of the galaxy. Results: We detected up to 42 shells in NGC 3923. This is by far the highest number among all shell galaxies. We present the description of the shells and other tidal features in the galaxy. A probable progenitor of some of these features was discovered. The shell system likely originates from two or more progenitors. The predicted shell was not detected, but the new image revealed that the prediction was based on incorrect assumptions and poor data. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A77

  20. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xilu; Fields, Brian D. [Department of Astronomy, MC-221, 1002 W. Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  1. Spectral decomposition of the stellar kinematics in the polar disk galaxy NGC 4650A

    CERN Document Server

    Coccato, L; Arnaboldi, M

    2014-01-01

    Context. The prototype of Polar Ring Galaxies NGC 4650A contains two main structural components, a central spheroid, which is the host galaxy, and an extended polar disk. Both photometric and kinematic studies revealed that these two components co-exist on two different planes within the central regions of the galaxy. Aims. The aim of this work is to study the spectroscopic and kinematic properties of the host galaxy and the polar disk in the central regions of NGC 4650A by disentangling their contributions to the observed galaxy spectrum. Methods. We applied the spectral decomposition technique introduced in previous works to long-slit spectroscopic observations in the CaII triplet region. We focused the analysis along the PA = 152 that corresponds to the photometric minor axis of the host galaxy, where the superimposition of the two components is more relevant and the spectral decomposition is necessary. We aim to disentangle the stars that move in the equatorial plane of the host galaxy from those that mov...

  2. High-resolution study of luminous infrared galaxies. I - The composite nature of the Seyfert 1 galaxy IRAS 20044-6114 (NGC 6860)

    Science.gov (United States)

    Lipari, Sebastian; Tsvetanov, Zlatan; Macchetto, F.

    1993-01-01

    The physical conditions in the ionized gas, the stellar population, and the kinematics of the Seyfert 1 galaxy IRAS 20044-6114 (NGC 6860) are studied by high spatial resolution optical imaging and optical and near-IR spectroscopy of this luminous IR source. The broadband images show a compact nucleus, two weak spiral arms, a bar, a bulge, an inner ring, and a possible outer ring. The I-alpha image reveals bright emission-line regions associated with the Seyfert nucleus and an inner ring of intense star formation. The forbidden O III 5007-A image shows that the high-excitation gas is elongated perpendicularly to the direction of the bar, and reveals a bright compact object at about 40 arcsec NE of the nucleus which is undetectable in the broadband images. This object is interpreted as a dwarf young H II galaxy. The optical, near-IR, and FIR results show clear evidence that the nuclear and circumnuclear regions have composite and complex structure: a variable Seyfert 1 nucleus embedded in an intense and dusty star formation. environment.

  3. Star Cluster Luminosity Functions and Cluster Formation Efficiencies in LEGUS Dwarf Galaxies

    Science.gov (United States)

    Cook, David O.; Lee, Janice C.; Adamo, Angela; Kim, Hwiyun; Ryon, Jenna E.; LEGUS Team

    2017-01-01

    We present preliminary results of star cluster luminosity functions (LFs) and cluster formation efficiencies (Γ) in the LEGUS dwarf galaxy sub-sample. We have used a combination of automated and visual identification techniques to allow us to construct a more complete sample of clusters in these low-mass, low-SFR environments compared to previous studies of dwarf galaxies. Cluster properties are derived from fitting UV and optical (NUV-I) HST photometry to both deterministic and stochastic single-aged stellar populations models. We compare the cluster formation efficiencies and LF slopes to those of previous studies in both dwarf and massive spiral galaxy environments. Recent studies have found that both the LF slope and Γ form trends with galaxy environment. Our LF slope and Γ measurements in the LEGUS dwarfs will allow us to test these trends in the extreme, low-SFR regime and provide a better understanding of the star formation process.

  4. Compact stellar systems in the polar ring galaxies NGC 4650A and NGC 3808B: Clues to polar disk formation

    CERN Document Server

    Ordenes-Briceño, Yasna; Puzia, Thomas H; Goudfrooij, Paul; Arnaboldi, Magda

    2016-01-01

    Polar ring galaxies (PRGs) are composed of two kinematically distinct and nearly orthogonal components, a host galaxy (HG) and a polar ring/disk (PR). The HG usually contains an older stellar population than the PR. The suggested formation channel of PRGs is still poorly constrained. Suggested options are merger, gas accretion, tidal interaction, or a combination of both. To constrain the formation scenario of PRGs, we study the compact stellar systems (CSSs) in two PRGs at different evolutionary stages: NGC 4650A with well-defined PR, and NGC 3808B, which is in the process of PR formation. We use archival HST/WFPC2 imaging. PSF-fitting techniques, and color selection criteria are used to select cluster candidates. Photometric analysis of the CSSs was performed to determine their ages and masses using stellar population models at a fixed metallicity. Both PRGs contain young CSSs ($< 1$ Gyr) with masses of up to 5$\\times$10$^6$M$_\\odot$, mostly located in the PR and along the tidal debris. The most massive ...

  5. Mid-infrared dust in two nearby radio galaxies, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36)

    CERN Document Server

    Asabere, B Duah; Jarrett, T; Winkler, H

    2016-01-01

    Most radio galaxies are hosted by giant gas-poor ellipticals, but some contain significant amounts of dust, which is likely to be of external origin. In order to characterize the mid-IR properties of two of the most nearby and brightest merger-remnant radio galaxies of the Southern hemisphere, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36), we used observations with the Wide-field Infrared Survey Explorer (WISE) at wavelengths of 3.4, 4.6, 12 and 22 micron and Spitzer mid-infrared spectra. By applying a resolution-enhancement technique, new WISE images were produced at angular resolutions ranging from 2.6" to 5.5". Global measurements were performed in the four WISE bands, and stellar masses and star-formation rates were estimated using published scaling relations. Two methods were used to uncover the distribution of dust, one relying on two-dimensional fits to the 3.4 micron images to model the starlight, and the other one using a simple scaling and subtraction of the 3.4 micron images to estimate the stellar...

  6. The extremely low-metallicity tail of the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Starkenburg, E.; Hill, V.; Tolstoy, E.; François, P.; Irwin, M. J.; Boschman, L.; Venn, K. A.; de Boer, T. J. L.; Lemasle, B.; Jablonka, P.; Battaglia, G.; Groot, P.; Kaper, L.

    2013-01-01

    We present abundances for seven stars in the (extremely) low-metallicity tail of the Sculptor dwarf spheroidal galaxy, from spectra taken with X-shooter on the ESO VLT. Targets were selected from the Ca II triplet (CaT) survey of the dwarf abundances and radial velocities team (DART) using the lates

  7. Dwarf spheroidal galaxies as degenerate gas of free fermions

    Energy Technology Data Exchange (ETDEWEB)

    Domcke, Valerie; Urbano, Alfredo, E-mail: valerie.domcke@sissa.it, E-mail: alfredo.urbano@sissa.it [SISSA - International School for Advanced Studies, via Bonomea 256, Trieste, 34136 Italy (Italy)

    2015-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass m{sub f}. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to m{sub f}. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersion of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that m{sub f}≅ 200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.

  8. The effect of tides on the Fornax dwarf spheroidal galaxy

    CERN Document Server

    Battaglia, Giuseppina; Nipoti, Carlo

    2015-01-01

    Estimates of the mass distribution and dark-matter (DM) content of dwarf spheroidal galaxies (dSphs) are usually derived under the assumption that the effect of the tidal field of the host galaxy is negligible over the radial extent probed by kinematic data-sets. We assess the implications of this assumption in the specific case of the Fornax dSph by means of N-body simulations of a satellite orbiting around the Milky Way. We consider observationally-motivated orbits and we tailor the initial distributions of the satellite's stars and DM to match, at the end of the simulations, the observed structure and kinematics of Fornax. In all our simulations the present-day observable properties of Fornax are not significantly influenced by tidal effects. The DM component is altered by the interaction with the Galactic field (up to 20% of the DM mass within 1.6 kpc is lost), but the structure and kinematics of the stellar component are only mildly affected even in the more eccentric orbit (more than 99% of the stellar ...

  9. Tidal Dwarf Galaxies: Disc Formation at z=0

    CERN Document Server

    Lelli, Federico; Brinks, Elias; McGaugh, Stacy S

    2015-01-01

    Collisional debris around interacting and post-interacting galaxies often display condensations of gas and young stars that can potentially form gravitationally bound objects: Tidal Dwarf Galaxies (TDGs). We summarise recent results on TDGs, which are originally published in Lelli et al. (2015, A&A). We study a sample of six TDGs around three different interacting systems, using high-resolution HI observations from the Very Large Array. We find that the HI emission associated to TDGs can be described by rotating disc models. These discs, however, would have undergone less than one orbit since the time of the TDG formation, raising the question of whether they are in dynamical equilibrium. Assuming that TDGs are in dynamical equilibrium, we find that the ratio of dynamical mass to baryonic mass is consistent with one, implying that TDGs are devoid of dark matter. This is in line with the results of numerical simulations where tidal forces effectively segregate dark matter in the halo from baryonic matter i...

  10. The far-infrared - radio correlation in dwarf galaxies

    CERN Document Server

    Schleicher, Dominik R G

    2016-01-01

    The far-infrared - radio correlation connects star formation and magnetic fields in galaxies, and has been confirmed over a large range of far-infrared luminosities. Recent investigations indicate that it may even hold in the regime of local dwarf galaxies, and we explore here the expected behavior in the regime of star formation surface densities below 0.1 M_sun kpc^{-2} yr^{-1}. We derive two conditions that can be particularly relevant for inducing a change in the expected correlation: a critical star formation surface density to maintain the correlation between star formation rate and the magnetic field, and a critical star formation surface density below which cosmic ray diffusion losses dominate over their injection via supernova explosions. For rotation periods shorter than 1.5x10^7 (H/kpc)^2 yrs, with H the scale height of the disk, the first correlation will break down before diffusion losses are relevant, as higher star formation rates are required to maintain the correlation between star formation ...

  11. Metals Removed by Outflows from Milky Way Dwarf Spheroidal Galaxies

    CERN Document Server

    Kirby, Evan N; Finlator, Kristian

    2011-01-01

    The stars in the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are significantly more metal-poor than would be expected from a closed box model of chemical evolution. Gas outflows likely carried away most of the metals produced by the dSphs. Based on previous Keck/DEIMOS observations and models, we calculate the mass in Mg, Si, Ca, and Fe expelled from each of eight dSphs. Essentially, these masses are the differences between the observed amount of metals present in the dSphs' stars today and the inferred amount of metals produced by supernovae. We conclude that the dSphs lost 96% to >99% of the metals their stars manufactured. We apply the observed mass function of Milky Way dSphs to the ejected mass function to determine that a single large dSph, like Fornax, lost more metals over 10 Gyr than all smaller dSphs combined. Therefore, small galaxies like dSphs are not significant contributors to the metal content of the intergalactic medium. Finally, we compare our ejected mass function to previo...

  12. Carbon and Oxygen Abundances in Low Metallicity Dwarf Galaxies

    CERN Document Server

    Berg, Danielle A; Henry, Richard B C; Erb, Dawn K; Carigi, Leticia

    2016-01-01

    The study of carbon and oxygen abundances yields information on the time evolution and nucleosynthetic origins of these elements, yet remains relatively unexplored. At low metallicities (12+log(O/H) < 8.0), nebular carbon measurements are limited to rest-frame UV collisionally excited emission lines. Therefore, we present UV spectrophotometry of 12 nearby, low-metallicity, high-ionization HII regions in dwarf galaxies obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We present the first analysis of the C/O ratio in local galaxies based solely on simultaneous significant detections of the UV O^+2 and C^+2 collisionally excited lines in seven of our targets and five objects from the literature, to create a final sample of 12 significant detections. Our sample is complemented by optical SDSS spectra, from which we measured the nebular physical conditions and oxygen abundances using the direct method. At low metallicity (12+log(O/H) < 8.0), no clear trend is evident in C/O vs. O/...

  13. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado, J. G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Fernández Alvar, Emma; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; García-Hernández, D. A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, Sandro

    2017-08-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  14. Jeans Analysis for Dwarf Spheroidal Galaxies in Wave Dark Matter

    CERN Document Server

    Chen, Shu-Rong; Chiueh, Tzihong

    2016-01-01

    Observations suggest that dwarf spheroidal (dSph) galaxies exhibit large constant-density cores in the centers, which can hardly be explained by dissipationless cold dark matter simulations. Wave dark matter (${\\psi {\\rm DM}}$), characterized by a single parameter, the dark matter particle mass $m_{\\psi}$, predicts a central soliton core in every galaxy arising from quantum pressure against gravity. Here we apply Jeans analysis to the kinematic data of eight classical dSphs so as to constrain $m_{\\psi}$, and obtain $m_{\\psi}=1.18_{-0.24}^{+0.28}\\times10^{-22}{\\,\\rm eV}$ and $m_{\\psi}=1.79_{-0.33}^{+0.35}\\times10^{-22}{\\,\\rm eV}~(2\\sigma)$ using the observational data sets of Walker et al. (2007) and Walker et al. (2009b), respectively. We show that the estimate of $m_{\\psi}$ is sensitive to the dSphs kinematic data sets and is robust to various models of stellar density profile. We also consider multiple stellar subpopulations in dSphs and find consistent results. This mass range of $m_{\\psi}$ is in good agre...

  15. A Star Formation Law for Dwarf Irregular Galaxies

    CERN Document Server

    Elmegreen, Bruce G

    2015-01-01

    The radial profiles of gas, stars, and far ultraviolet radiation in 20 dwarf Irregular galaxies are converted to stability parameters and scale heights for a test of the importance of two-dimensional (2D) instabilities in promoting star formation. A detailed model of this instability involving gaseous and stellar fluids with self-consistent thicknesses and energy dissipation on a perturbation crossing time give the unstable growth rates. We find that all locations are effectively stable to 2D perturbations, mostly because the disks are thick. We then consider the average volume densities in the midplanes, evaluated from the observed HI surface densities and calculated scale heights. The radial profiles of the star formation rates are equal to about 1% of the HI surface densities divided by the free fall times at the average midplane densities. This 1% resembles the efficiency per unit free fall time commonly found in other cases. There is a further variation of this efficiency with radius in all of our galaxi...

  16. Multiple stellar population in the Sextans dwarf spheroidal galaxy?

    CERN Document Server

    Bellazzini, M; Pancino, E

    2001-01-01

    We present wide field (33 X 34 arcmin^2) multiband (BVI) CCD photometry (down to I <= 20.5) of the very low surface brightness dwarf Spheroidal (dSph) galaxy Sextans. In the derived Color Magnitude Diagrams we have found evidences suggesting the presence of multiple stellar populations in this dSph. In particular we discovered: {\\it (i)} a Blue Horizontal Branch (HB) tail that appears to lie on a brighter sequence with respect to the prominent Red HB and the RR Lyrae stars, very similar to what found by Majewski et al. (1999) for the Sculptor dSph; {\\it (ii)} hints of a bimodal distribution in color of the RGB stars; {\\it (iii)} a double RGB-bump. All these features suggest that (at least) two components are present in the old stellar population of this galaxy: a main one with [Fe/H]~ -1.8 and a minor component around [Fe/H]<~ -2.3. The similarity with the Sculptor case may indicate that multiple star formation episodes are common also in the most nearby dSphs that ceased their star formation activity a...

  17. Kinematics of NGC 4826: A sleeping beauty galaxy, not an evil eye

    Science.gov (United States)

    Rubin, Vera C.

    1994-01-01

    A recent high resolution H I study of the Sab galaxy NGC 4826 (1992) reveals that the sense of rotation of the neutral gas reverses from the inner to the outer disk. The present paper reports on optical spectra at high velocity resolution in four position angles in NGC 4826, which cover the region of the gas reversal and which reveal a high degree of complexity. In the inner disk, which includes the prominent dusty lane, the stars and gas rotate in concert, and the spiral arms trail (for the adopted geometry). Arcs of ionized gas are observed partially encircling the nucleus; expansion velocities reach 400 km/s. At distances just beyond the prominent dust lane, the ionized gas exhibits a rapid, orderly velocity fall and within 500 parsecs it has reversed from 180 km/s prograde to 200 km/s retrograde; it also has a component radial toward the nucleus of over 100 km/s. The stars, however, continue their prograde rotation. Beyond this transition zone, the neutral gas continues its retrograde rotation, stellar velocities are prograde, but the sense of the almost circular arms is not established. Because of its kinematical complexity as well as its proximity, NGC 4826 is an excellent early-type galaxy in which to observe the long term effects of gas acquistion or a galaxy merger on a disk galaxy.

  18. Dust extinction and X-ray emission from the star burst galaxy NGC 1482

    CERN Document Server

    Vagshette, N D; Pandey, S K; Patil, M K

    2012-01-01

    We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to \\sim 11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV =3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is \\sim 2.7 \\times 10^5 Msun, and provide lower limit due to the fact that our method is not se...

  19. The young nuclear stellar disc in the SB0 galaxy NGC 1023

    CERN Document Server

    Corsini, E M; Pastorello, N; Bontà, E Dalla; Pizzella, A; Portaluri, E

    2015-01-01

    Small kinematically-decoupled stellar discs with scalelengths of a few tens of parsec are known to reside in the centre of galaxies. Different mechanisms have been proposed to explain how they form, including gas dissipation and merging of globular clusters. Using archival Hubble Space Telescope imaging and ground-based integral-field spectroscopy, we investigated the structure and stellar populations of the nuclear stellar disc hosted in the interacting SB0 galaxy NGC 1023. The stars of the nuclear disc are remarkably younger and more metal rich with respect to the host bulge. These findings support a scenario in which the nuclear disc is the end result of star formation in metal enriched gas piled up in the galaxy centre. The gas can be of either internal or external origin, i.e. from either the main disc of NGC 1023 or the nearby satellite galaxy NGC 1023A. The dissipationless formation of the nuclear disc from already formed stars, through the migration and accretion of star clusters into the galactic cen...

  20. Study of the nature of dark matter in halos of dwarf galaxies

    Science.gov (United States)

    Karmakar, Pradip; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar

    2015-08-01

    The kinematics of dwarf galaxies are strongly influenced by dark matter down to small galactocentric radii. So they are good candidates to investigate the nature of Dark Matter. In the present work we have carried out mass modeling of a number of recently observed dwarf galaxies Swaters et al. in Astron. Astrophys. 493:871, 2009. We have used a Navarro-Frenk-White (NFW) halo, Freeman disc along with a gaseous disc for modeling the observed rotation curves of those dwarf galaxies. For comparison we also used a Burkert halo, Freeman disc and gaseous disc. For both the scenario we have performed Kolmogorov-Smirnov (KS) test between the observed and predicted rotational velocity profiles. The tests are rejected for NFW halo almost in 50 per cent cases but they are accepted almost for all cases for Burkert halo, preferring a Burkert halo model generally for dwarf galaxies. The above results reveal a constant density core of dark matter (DM) in the halos of dwarf galaxies compared to a cuspy nature of NFW halo and a possible challenge to -CDM scenario for the nature of dark matter in most of the dwarf galaxies.