WorldWideScience

Sample records for dwarf companion twa

  1. Brown Dwarf Companions to White Dwarfs

    CERN Document Server

    Burleigh, M R; Dobbie, P D; Farihi, J; Napiwotzki, R; Maxted, P F L; Barstow, M A; Jameson, R F; Casewell, S L; Gänsicke, B T; Marsh, T R

    2011-01-01

    Brown dwarf companions to white dwarfs are rare, but recent infra-red surveys are slowly reveal- ing examples. We present new observations of the post-common envelope binary WD0137-349, which reveals the effects of irradiation on the ~ 0.05M* secondary, and new observations of GD 1400 which show that it too is a close, post-comon envelope system. We also present the lat- est results in a near-infrared photometric search for unresolved ultracool companions and to white dwarfs with UKIDSS. Twenty five DA white dwarfs were identified as having photometric excesses indicative of a low mass companion, with 8-10 of these having a predicted mass in the range asso- ciated with brown dwarfs. The results of this survey show that the unresolved (< 2") brown dwarf companion fraction to DA white dwarfs is 0.3 \\leq fWD+BD \\leq 1.3%.

  2. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing...... masses of the brown dwarf companions are 0.02 ± 0.01 M⊙ and 0.019 ± 0.002 M⊙ for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events...

  3. Observing the planet formation time-scale by ground-based direct imaging of planetary companions to young nearby stars Gemini\\/Hokupa'a image of TWA-5

    CERN Document Server

    Neuhäuser, R; Brandner, W; Neuhaeuser, Ralph; Potter, Dan; Brandner, Wolfgang

    2001-01-01

    Many extra-solar planets and a few planetary systems have been found indirectly by small periodic radial velocity variations around old nearby stars. The orbital characteristics of most of them are different from the planets in our solar system. Hence, planet formation theories have to be revised. Therefore, observational constraints regarding young planets would be very valuable. We have started a ground-based direct imaging search for giant planets in orbit around young nearby stars. Here, we will motivate the sample selection and will present our direct imaging observation of the very low-mass (15 to 40 Jupiter masses) brown dwarf companion TWA-5 B in orbit around the nearby young star TWA-5 A, recently obtained with the 36-element curvature-sensing AO instrument Hokupa'a of the University of Hawai'i at the 8.3m Gemini-North telescope on Mauna Kea. We could achieve a FWHM of 64 mas and 25 % Strehl. We find significance evidence for orbital motion of B around A.

  4. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.;

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing ...

  5. Brown dwarfs as close companions to white dwarfs

    Science.gov (United States)

    Stringfellow, Guy S.; Bodenheimer, Peter; Black, David C.

    1990-01-01

    The influence of the radiation flux emitted by a white dwarf primary on the evolution of a closely orbiting brown dwarf (BD) companion is investigated. Full stellar evolutionary calculations are presented for both isolated and thermal bath cases, including effects of large variations in the atmospheric grain opacities. High grain opacities significantly increase the radii of the BDs, but the thermal bath does not. The major influence of the thermal bath is to increase substantially the surface temperature and luminosity of the BD at a given age. These results are compared with the observational properties of the possible BD companion of the white dwarf G29-38. Inclusion of both physical effects, high grain opacities and thermal bath, increases the mass range (0.034-0.063 solar masses) of viable models significantly, yet the final determination of whether the object is indeed a BD requires improvements in the observations of the system's properties.

  6. Direct detection of brown dwarf companions of nearby stars

    Science.gov (United States)

    Oppenheimer, Ben R.

    This thesis presents the first direct detection of a substellar companion of a star other than the Sun. This object, a brown dwarf called Gliese 229B, presented a unique opportunity to characterize low-temperature brown dwarfs for the first time. The discovery and initial spectrum of Gliese 229B show that the object must be substellar based on its intrinsic luminosity of 6.4×10-6Lsolar and its cool surface temperature, 900 K. Detailed study of Gliese 229B includes extensive photometric measurements from 0.5 to 12 μm, high signal-to-noise ratio spectroscopy from 0.84 to 5.0 μm and the detection of 0'' t; yr-1 of orbital motion. These results are presented in Chapters 2 and 3. A detailed review of brown dwarf science leads to a complete and scientifically meaningful definition of the classes ``planet'' and ``brown dwarf''' in Chapter 1. After the discovery of Gliese 229B, which was found in a survey for companions of young stars, we began an extensive search for brown dwarf companions in orbit about all known stars within 8 pc of the Sun and with δ > -35°. The search includes optical coronagraphic and infrared direct imaging of these stars, conducted on the Palomar 60' and 200' telescopes respectively. The search was designed to find companions of each star without color bias. While the search revealed no other brown dwarf companions of these stars, it did uncover 6 new stellar companions. The sensitivity limits of the survey permit the detection of brown dwarfs up to four magnitudes fainter than Gliese 229B around 90% of the stars. The sensitivity is, however, not uniform spatially or from star to star. This limits our ability to make strong statements about the prevalence of brown dwarf companions of nearby stars. The survey does have sensitivity to all stellar companions between 3 and 30' from the survey stars, however. Chapter 5 describes related work on very low-mass stars in the Pleiades star cluster. This optical spectroscopy involved trying to find a

  7. Low-mass visual companions to nearby G-dwarfs

    CERN Document Server

    Tokovinin, Andrei

    2010-01-01

    Complete census of wide visual companions to nearby G-dwarf stars can be achieved by selecting candidates from the 2MASS Point-Source Catalog and checking their status by second-epoch imaging. Such data are obtained for 124 candidates with separations up to 20", 47 of which are shown to be new physical low-mass stellar companions. A list of visual binaries with G-dwarf primaries is produced by combining newly found companions with historical data. Maximum likelihood analysis leads to the companion frequency of 0.13+-0.015 per decade of separation. The mass ratio is distributed almost uniformly, with a power-law index between -0.4 and 0. The remaining uncertainty in the index is related to modeling of the companion detection threshold in 2MASS. These findings are confirmed by alternative analysis of wider companions in 2MASS, removing the contamination by background stars statistically. Extension of this work will lead to a complete detection of visual companions - a necessary step towards reaching unbiased mu...

  8. The White Dwarf Binary Pathways Survey I: A sample of FGK stars with white dwarf companions

    CERN Document Server

    Parsons, S G; Schreiber, M R; Gansicke, B T; Zorotovic, M; Ren, J J

    2016-01-01

    The number of white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper we identify 934 main-sequence FGK stars from the Radial Velocity Experiment (RAVE) survey in the southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey in the northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one ...

  9. COS Spectroscopy of White Dwarf Companions to Blue Stragglers

    Science.gov (United States)

    Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan

    2017-01-01

    Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.

  10. Chemical abundances of stars with brown-dwarf companions

    CERN Document Server

    Sánchez, D Mata; Israelian, G; Santos, N C; Sahlmann, J; Udry, S

    2014-01-01

    It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of $\\alpha$-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance...

  11. EROS 2 proper motion survey a field brown dwarf and an L dwarf companion to LHS 102

    CERN Document Server

    Goldman, B; Forveille, T; Afonso, C; Alard, C; Albert, J N; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Bauer, F; Beaulieu, J P; Borsenberger, J; Bouquet, A; Char, S; Charlot, X; Couchot, F; Coutures, C; Derue, F; Ferlet, R; Fouqué, P; Glicenstein, J F; Gould, A; Graff, D S; Gros, M H; Haïssinski, J; Hamilton, J C; Hardin, D P; De Kat, J; Kim, A; Lasserre, T; Lesquoy, E; Loup, C; Magneville, C; Mansoux, B; Marquette, J B; Martín, E L; Maurice, E; Milshtein, A I; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Prévôt, L; Regnault, N; Rich, J; Spiro, Michel; Vidal-Madjar, A; Virgoux, L; Zylberajch, S

    1999-01-01

    We report the discovery of two L dwarfs (the new spectral class defined for dwarfs cooler than the M type) in a two-epoch CCD proper motion survey of 413 square degrees, complemented by infrared photometry from DENIS. One of them has a strong lithium line and is therefore a brown dwarf. The other is a common proper motion companion to the mid-M dwarf LHS 102 (GJ 1001), which has a well determined trigonometric parallax. LHS 102B is thus the coolest L dwarf of known distance and luminosity. Its infrared absolute photometry are very well reproduced by the Allard et al DUSTY models.

  12. Deriving the true mass of an unresolved Brown Dwarf companion to an M-Dwarf with AO aided astrometry*

    Directory of Open Access Journals (Sweden)

    Kürster M.

    2011-07-01

    Full Text Available From radial velocity (RV detections alone one does not get all orbital parameters needed to derive the true mass of a non-transiting, unresolved substellar companion to a star. Additional astrometric measurements are needed to calculate the inclination and the longitude of the ascending node. Until today only few true substellar companion masses have been determined by this method with the HST fine guidance sensor [1, 2]. We aim to derive the true mass of a brown dwarf candidate companion to an early M 2.5V dwarf with groundbased high-resolution astrometry aided by adaptive optics. We found this unique brown dwarf desert object, whose distance to the host star is only 0.42 AU, in our UVES precision RV survey of M dwarfs, inferring a minimum companion mass of 27 Jupiter masses [3]. Combining the data with HIPPARCOS astrometry, we found a probability of only 2.9% that the companion is stellar. We therefore observed the host star together with a reference star within a monitoring program with VLT/NACO to derive the true mass of the companion and establish its nature (brown dwarf vs. star. Simultaneous observations of a reference field in a globular cluster are performed to determine the stability of the adaptive optics (AO plus detector system and check its suitability for such high-precision astrometric measurements over several epochs which are needed to find and analyse extrasolar planet systems.

  13. Deep search for companions to probable young brown dwarfs

    CERN Document Server

    Chauvin, G; Boccaletti, A; Cruz, K; Lagrange, A -M; Zuckerman, B; Bessell, M S; Beuzit, J -L; Bonnefoy, M; Dumas, C; Lowrance, P; Mouillet, D; Song, I

    2012-01-01

    We have obtained high contrast images of four nearby, faint, and very low mass objects 2MASSJ04351455-1414468, SDSSJ044337.61+000205.1, 2MASSJ06085283-2753583 and 2MASSJ06524851-5741376 (here after 2MASS0435-14, SDSS0443+00, 2MASS0608-27 and 2MASS0652-57), identified in the field as probable isolated young brown dwarfs. Our goal was to search for binary companions down to the planetary mass regime. We used the NAOS-CONICA adaptive optics instrument (NACO) and its unique capability to sense the wavefront in the near-infrared to acquire sharp images of the four systems in Ks, with a field of view of 28"*28". Additional J and L' imaging and follow-up observations at a second epoch were obtained for 2MASS0652-57. With a typical contrast DKs= 4.0-7.0 mag, our observations are sensitive down to the planetary mass regime considering a minimum age of 10 to 120 Myr for these systems. No additional point sources are detected in the environment of 2MASS0435-14, SDSS0443+00 and 2MASS0608-27 between 0.1-12" (i.e about 2 t...

  14. Exploring the brown dwarf desert: new substellar companions from the SDSS-III MARVELS survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; Sithajan, Sirinrat; Ghezzi, Luan; Kimock, Ben; Willis, Kevin; De Lee, Nathan; Lee, Brian; Fleming, Scott W.; Agol, Eric; Troup, Nicholas; Paegert, Martin; Schneider, Donald P.; Stassun, Keivan; Varosi, Frank; Zhao, Bo; Jian, Liu; Li, Rui; Porto de Mello, Gustavo F.; Bizyaev, Dmitry; Pan, Kaike; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Santiago, Basílio X.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; del Peloso, E. F.

    2017-06-01

    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ˜5 au in the mass range of ˜10-80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ˜13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ˜98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ˜300 d to be ˜0.56 per cent.

  15. How Dry is the Brown Dwarf Desert?: Quantifying the Relative Number of Planets, Brown Dwarfs and Stellar Companions around Nearby Sun-like Stars

    CERN Document Server

    Grether, D; Grether, Daniel; Lineweaver, Charles H.

    2004-01-01

    Sun-like stars have stellar, brown dwarf and planetary companions. To help constrain their formation and migration scenarios, we analyse the close companions (orbital period 2 M_Solar respectively. However, we find no evidence that companion mass scales with host mass in general. Approximately 16% of Sun-like stars have close (P < 5 years) companions more massive than Jupiter: 11% are stellar, 1% are brown dwarf and 4% are giant planets. The companion mass function in the brown dwarf and stellar mass range, has a different shape than the initial mass function of individual stars and free-floating brown dwarfs. This suggests either a different spectrum of gravitational fragmentation in the formation environment or post-formation migratory processes disinclined to leave brown dwarfs in close orbits.

  16. Formation of millisecond pulsars with CO white dwarf companions - II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions

    CERN Document Server

    Tauris, Thomas M; Kramer, Michael

    2012-01-01

    Millisecond pulsars (MSPs) are mainly characterised by their spin periods, B-fields and masses - quantities which are largely affected by previous interactions with a companion star in a binary system. In this paper, we investigate the formation mechanism of MSPs by considering the pulsar recycling process in both intermediate-mass X-ray binaries (IMXBs) and low-mass X-ray binaries (LMXBs). The IMXBs mainly lead to the formation of binary MSPs with a massive carbon-oxygen (CO) or an oxygen-neon-magnesium white dwarf (ONeMg WD) companion, whereas the LMXBs form recycled pulsars with a helium white dwarf (He WD) companion. We discuss the accretion physics leading to the spin-up line in the PPdot-diagram and demonstrate that such a line cannot be uniquely defined. We derive a simple expression for the amount of accreted mass needed for any given pulsar to achieve its equilibrium spin and apply this to explain the observed differences of the spin distributions of recycled pulsars with different types of companion...

  17. Evolutionary Grids of Accreting White Dwarf Companions in Cataclysmic Variables

    Science.gov (United States)

    Benjamin, J.; Jensen, M.; Nadeau, S.; Nelson, L. A.

    2003-12-01

    We analyze the evolution of accreting white dwarfs in binary systems for a wide range of initial conditions. Specifically, evolutionary tracks are calculated for CO white dwarfs with masses in the range of 0.6 - 1.3 solar masses and accreting H-rich gas at rates of between 10-6 to 10-10 solar masses per year. Since the white dwarfs in these binaries could be very young or very old at the onset of mass transfer we simulated this possibility by investigating the evolution for a large range of internal temperatures. Thus most of the sequences generated were not thermally relaxed at the onset of mass transfer (and the thermonuclear flashes were not cyclic). We discuss the temporal dependence of the interior properties (envelope readjustment on a thermal timescale and compressional heating) on the initial conditions. Particular attention is paid to the white dwarfs accretors that remained small (relative to the Roche lobe radius) during the shell flash event. Finally, we use the results of these models to comment on the observed properties of Supersoft X-ray sources. This research was supported in part by funds from the Natural Sciences and Engineering Research Council (Canada).

  18. Discovery of a brown dwarf companion to the A3V star β Circini

    Science.gov (United States)

    Smith, L. C.; Lucas, P. W.; Contreras Peña, C.; Kurtev, R.; Marocco, F.; Jones, H. R. A.; Beamin, J. C.; Napiwotzki, R.; Borissova, J.; Burningham, B.; Faherty, J.; Pinfield, D. J.; Gromadzki, M.; Ivanov, V. D.; Minniti, D.; Stimson, W.; Villanueva, V.

    2015-12-01

    We report the discovery of an L dwarf companion to the A3V star β Circini. VVV J151721.49-585131.5, or β Cir B, was identified in a proper motion and parallax catalogue of the VISTA Variables in the Vía Láctea survey as having near-infrared luminosity and colour indicative of an early L dwarf, and a proper motion and parallax consistent with that of β Cir. The projected separation of ˜3.6 arcmin corresponds to 6656 au, which is unusually wide. The most recent published estimate of the age of the primary combined with our own estimate based on newer isochrones yields an age of 370-500 Myr. The system therefore serves as a useful benchmark at an age greater than that of the Pleiades brown dwarfs and most other young L dwarf benchmarks. We have obtained a medium resolution echelle spectrum of the companion which indicates a spectral type of L1.0 ± 0.5 and lacks the typical signatures of low-surface gravity seen in younger brown dwarfs. This suggests that signs of low-surface gravity disappear from the spectra of early L dwarfs by an age of ˜370-500 Myr, as expected from theoretical isochrones. The mass of β Cir B is estimated from the BHAC15 isochrones as 0.056 ± 0.007 M⊙.

  19. A Search for Substellar Companions to the Two Nearest Brown Dwarf Systems

    CERN Document Server

    Melso, N D; Luhman, K L

    2015-01-01

    WISE J104915.57-531906.1 A+B and WISE J085510.83-071442.5 were recently discovered as the third and fourth closest known systems to the Sun, respectively (2.0 and 2.3 pc). The former consists of a L8+T0.5 binary and the latter is a probable Y dwarf and is the coldest known brown dwarf (~250 K). We present a search for common proper motion companions to these brown dwarfs using multi-epoch mid-infrared images from the Spitzer Space Telescope. We have also obtained near-infrared adaptive optics images of WISE J104915.57-531906.1 A+B with the Very Large Telescope to search for companions at smaller separations than reached by Spitzer. No new companions are detected in either system. At projected separations of 25-420" (50-840 AU) for WISE J104915.57-531906.1 A+B and 4-420" (9-970 AU) for WISE J085510.83-071442.5, the Spitzer images are sensitive to companions with M_4.5=1 M_Jup for ages of >=1 Gyr and temperatures of >=150 K. The detection limit in the adaptive optics images of WISE J104915.57-531906.1 A+B is dH...

  20. Discovery of a brown dwarf companion to the A3V star \\beta{} Circini

    CERN Document Server

    Smith, L C; Peña, C Contreras; Kurtev, R; Marocco, F; Jones, H R A; Beamin, J C; Napiwotzki, R; Borissova, J; Burningham, B; Faherty, J; Pinfield, D J; Gromadzki, M; Ivanov, V D; Minniti, D; Stimson, W; Villanueva, V

    2015-01-01

    We report the discovery of an L dwarf companion to the A3V star \\beta{} Circini. VVV J151721.49-585131.5, or \\beta{} Cir B, was identified in a proper motion and parallax catalogue of the Vista Variables in the V\\'{i}a L\\'{a}ctea survey as having near infrared luminosity and colour indicative of an early L dwarf, and a proper motion and parallax consistent with that of \\beta{} Cir. The projected separation of $\\sim$3.6' corresponds to $6656$ au, which is unusually wide. The most recent published estimate of the age of the primary combined with our own estimate based on newer isochrones yields an age of $370-500$ Myr. The system therefore serves as a useful benchmark at an age greater than that of the Pleiades brown dwarfs and most other young L dwarf benchmarks. We have obtained a medium resolution echelle spectrum of the companion which indicates a spectral type of L1.0$\\pm$0.5 and lacks the typical signatures of low surface gravity seen in younger brown dwarfs. This suggests that signs of low surface gravit...

  1. NEW M, L, AND T DWARF COMPANIONS TO NEARBY STARS FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, Kevin L.; Loutrel, Nicholas P.; McCurdy, Nicholas S.; Melso, Nicole D.; Star, Kimberly M.; Terrien, Ryan C. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Mace, Gregory N.; McLean, Ian S. [UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095 (United States); Young, Michael D.; Rhode, Katherine L. [Department of Astronomy, Indiana University, Swain West 319, 727 East Third Street, Bloomington, IN 47405 (United States); Davy Kirkpatrick, J., E-mail: kluhman@astro.psu.edu [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-12-01

    We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. Spectral types are available for five of the companions, which consist of M2V, M8.5V, L5, T8, and T8. Based on their photometry, the unclassified companions are probably two mid-M dwarfs and one late-M/early-L dwarf. One of the T8 companions, WISE J142320.84+011638.0, has already been reported by Pinfield and coworkers. The other T8 companion, ULAS J095047.28+011734.3, was discovered by Burningham and coworkers through the United Kingdom Infrared Telescope Infrared Deep Sky Survey, but its companionship has not been previously recognized in the literature. The L5 companion, 2MASS J17430860+8526594, is a new member of a class of L dwarfs that exhibit unusually blue near-IR colors. Among the possible mechanisms that have been previously proposed for the peculiar colors of these L dwarfs, low metallicity does not appear to be a viable explanation for 2MASS J17430860+8526594 since our spectrum of the primary suggests that its metallicity is not significantly subsolar.

  2. AN M DWARF COMPANION AND ITS INDUCED SPIRAL ARMS IN THE HD 100453 PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ruobing [Nuclear Science Division, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Zhu, Zhaohuan [Princeton University, Princeton, NJ 08544 (United States); Fung, Jeffrey; Chiang, Eugene [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Rafikov, Roman [Institute for Advanced Study, Princeton, NJ 08540 (United States); Wagner, Kevin, E-mail: rdong2013@berkeley.edu [Department of Astronomy/Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-01-01

    Recent VLT/SPHERE near-infrared imaging observations revealed two spiral arms with a near m = 2 rotational symmetry in the protoplanetary disk around the ∼1.7 M{sub ⊙} Herbig star HD 100453. A ∼0.3 M{sub ⊙} M dwarf companion, HD 100453 B, was also identified at a projected separation of 120 AU from the primary. In this Letter, we carry out hydrodynamic and radiative transfer simulations to examine the scattered light morphology of the HD 100453 disk as perturbed by the companion on a circular and coplanar orbit. We find that the companion truncates the disk at ∼45 AU in scattered light images, and excites two spiral arms in the remaining (circumprimary) disk with a near m = 2 rotational symmetry. Both the truncated disk size and the morphology of the spirals are in excellent agreement with the SPHERE observations at Y, J, H, and K1-bands, suggesting that the M dwarf companion is indeed responsible for the observed double-spiral-arm pattern. Our model suggests that the disk is close to face on (inclination angle ∼5°), and that the entire disk-companion system rotates counterclockwise on the sky. The HD 100453 observations, along with our modeling work, demonstrate that double spiral arm patterns in near-infrared scattered light images can be generically produced by companions, and support future observations to identify the companions responsible for the arms observed in the MWC 758 and SAO 206462 systems.

  3. Detectability of substellar companions around white dwarfs with Gaia

    CERN Document Server

    Silvotti, Roberto; Lattanzi, Mario; Morbidelli, Roberto

    2014-01-01

    To date not a single-bona fide planet has been identified orbiting a single white dwarf. In fact we are ignorant about the final configuration of >95% of planetary systems. Theoretical models predict a gap in the final distribution of orbital periods, due to the opposite effects of stellar mass loss (planets pushed outwards) and tidal interactions (planets pushed inwards) during the RGB and the AGB stellar expansions. Over its five year primary mission, Gaia is expected to astrometrically detect the first (few tens of) WD massive planets/BDs giving first evidence that WD planets exist, at least those in wide orbits. In this article we present preliminary results of our simulations of what Gaia should be able to find in this field.

  4. Parallactic Motion for Companion Discovery: An M-Dwarf Orbiting Alcor

    CERN Document Server

    Zimmerman, Neil; Hinkley, Sasha; Brenner, Douglas; Parry, Ian R; Sivaramakrishnan, Anand; Hillenbrand, Lynne; Beichman, Charles; Crepp, Justin R; Vasisht, Gautam; Roberts, Lewis C; Burruss, Rick; King, David L; Soummer, Rémi; Dekany, Richard; Shao, Michael; Bouchez, Antonin; Roberts, Jennifer E; Hunt, Stephanie

    2009-01-01

    The A5V star Alcor has an M3-M4 dwarf companion, as evidenced by a novel astrometric technique. Imaging spectroscopy combined with adaptive optics coronagraphy allowed for the detection and spectrophotometric characterization of the point source at a contrast of ~6 J- and H-band magnitudes and separation of 1" from the primary star. The use of an astrometric pupil plane grid allowed us to determine the projected separations between the companion and the coronagraphically occulted primary star to <=3 milliarcsecond precision at two observation epochs. Our measurements demonstrate common parallactic and proper motion over the course of 103 days, significantly shorter than the period of time needed for most companion confirmations through proper motion measurements alone. This common parallax method is potentially more rigorous than common proper motion, ensuring that the neighboring bodies lie at the same distance, rather than relying on the statistical improbability that two objects in close proximity to ea...

  5. No Neutron Star Companion To The Lowest Mass SDSS White Dwarf

    CERN Document Server

    Agueros, Marcel; Camilo, Fernando; Kilic, Mukremin; Anderson, Scott; Freire, Paulo; Kleinman, Scot; Liebert, James; Silvestri, Nicole

    2009-01-01

    SDSS J091709.55+463821.8 (hereafter J0917+4638) is the lowest surface gravity white dwarf (WD) currently known, with log g = 5.55 +/- 0.05 (M ~ 0.17 M_sun; Kilic et al. 2007a,b). Such low-mass white dwarfs (LMWDs) are believed to originate in binaries that evolve into WD/WD or WD/neutron star (NS) systems. An optical search for J0917+4638's companion showed that it must be a compact object with a mass >= 0.28 M_sun (Kilic 2007b). Here we report on Green Bank Telescope 820 MHz and XMM-Newton X-ray observations of J0917+4638 intended to uncover a potential NS companion to the LMWD. No convincing pulsar signal is detected in our radio data. Our X-ray observation also failed to detect X-ray emission from J0917+4638's companion, while we would have detected any of the millisecond radio pulsars in 47 Tuc. We conclude that the companion is almost certainly another WD.

  6. A Radio Search For Pulsar Companions To SDSS Low-Mass White Dwarfs

    CERN Document Server

    Agueros, Marcel A; Silvestri, Nicole M; Kleinman, S J; Anderson, Scott F; Liebert, James W

    2009-01-01

    We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M < 0.4 M_Sun) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive WD or a neutron star as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs (e.g., Benvenuto & De Vito 2005), suggesting that the SDSS LMWDs may have neutron star companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al. (2007), who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as "...

  7. The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs

    CERN Document Server

    Morgan, Dylan P; Garcés, Ane; Catalán, Silvia; Dhital, Saurav; Fuchs, Miriam; Silvestri, Nicole M

    2012-01-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf -- main sequence binaries from Rebassa et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space to construct a sample of 1756 WD+dM high-quality pairs from the SDSS DR8 spectroscopic database. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{\\alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types \\leqM7. Our results show that early-type M dwarfs (\\leqM4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just pas...

  8. Two candidate brown dwarf companions around core helium-burning stars

    CERN Document Server

    Schaffenroth, V; Nagel, K; Geier, S; Koen, C; Heber, U; Edelmann, H

    2014-01-01

    Hot subdwarf stars of spectral type B (sdBs) are evolved, core helium-burning objects. The formation of those objects is puzzling, because the progenitor star has to lose almost its entire hydrogen envelope in the red-giant phase. Binary interactions have been invoked, but single sdBs exist as well. We report the discovery of two close hot subdwarf binaries with small radial velocity amplitudes. Follow-up photometry revealed reflection effects originating from cool irradiated companions, but no eclipses. The lower mass limits for the companions of CPD-64$^{\\circ}$481 ($0.048\\,M_{\\rm \\odot}$) and PHL\\,457 ($0.027\\,M_{\\rm \\odot}$) are significantly below the stellar mass limit. Hence they could be brown dwarfs unless the inclination is unfavourable. Two very similar systems have already been reported. The probability that none of them is a brown dwarf is very small, 0.02%. Hence we provide further evidence that substellar companions with masses that low are able to eject a common envelope and form an sdB star. ...

  9. The effects of close binaries on the magnetic activity of M dwarfs as probed using close white dwarf companions

    Science.gov (United States)

    Morgan, D. P.

    2017-01-01

    I present a study of close white dwarf (WD) and M dwarf (dM) binary systems (WD+dM) to examine the effects that close companions have on magnetic field generation in dMs. Using the Sloan Digital Sky Survey (SDSS) Data Release 8 spectroscopic database, I constructed a sample of 1756 WD+dM high-quality pairs. I show that early-type dMs (M4), where stars become fully convective, the activity fraction and activity lifetimes of WD+dM binary systems become more comparable to those of the field dMs. The implications of having a close binary companion may include: increased stellar rotation through disk disruption, tidal effects, and/or angular momentum exchange. Thus, the similarity in activity between late-type field dMs and late-type dMs with close companions is likely due to the mechanism generating magnetic fields being less sensitive to the effects caused by a close companion; namely, increased stellar rotation. Using a subset of 181 close WD+dM pairs, matched to the time-domain SDSS Stripe 82 catalog, I show that enhanced magnetic activity extends to the flaring behavior of dMs in close binaries. Specifically, early spectral type dMs (M0-M4), in close WD+dM pairs, are two orders of magnitude more likely to flare than field dMs, whereas late-type dMs (M4-M6) in close WD+dM pairs flare as frequently or less than the late-type field dM sample. To test whether the presence of a close companion leads to star-star interactions, I searched for correlations between the WD occultations and flares from the dM member in KOI-256, an eclipsing WD+dM system. I find no correlations between the flaring activity of the dM and the WD occultations, indicating the there are no obvious signs of star-star interactions at work. In addition, the dM member of KOI-256 flares more than any other dM observed by Kepler and shows evidence for solar-like magnetic activity cycles, a feature not seen in many dMs to date.

  10. New M, L, and T Dwarf Companions to Nearby Stars from the Wide-field Infrared Survey Explorer

    CERN Document Server

    Luhman, Kevin L; McCurdy, Nicholas S; Mace, Gregory N; Melso, Nicole D; Star, Kimberly M; Young, Michael D; Terrien, Ryan C; McLean, Ian S; Kirkpatrick, J Davy; Rhode, Katherine L

    2012-01-01

    We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. Spectral types are available for five of the companions, which consist of M2V, M8.5V, L5, T8, and T8. Based on their photometry, the unclassified companions are probably two mid-M dwarfs and one late-M/early-L dwarf. One of the T8 companions, WISE J142320.84+011638.0, has already been reported by Pinfield and coworkers. The other T8 companion, ULAS J095047.28+011734.3, was discovered by Burningham and coworkers through the United Kingdom Infrared Telescope Infrared Deep Sky Survey, but its companionship has not been previously recognized in the literature. The L5 companion, 2MASS J17430860+8526594, is a new member of a class of L dw...

  11. Additional TWA Members? Spectroscopic verification of kinematically selected TWA candidates

    CERN Document Server

    Song, I; Zuckerman, B; Song, Inseok

    2002-01-01

    We present spectroscopic measurements of the 23 new candidate members of the TW Hydrae Association from Makarov & Fabricius (2000). Based on Halpha and Li 6708 A strengths together with location on a color-magnitude diagram for Hipparcos TWA candidates, we found only three possible new members (TYC 7760-0835-1, TYC 8238-1462-1, and TYC 8234-2856-1) in addition to the already known member, TWA 19. This eliminated most of the candidates more distant than 100 pc. Three Tycho stars, almost certainly members of the Lower Centaurus Crux association, are the most distant members of the TWA. A claim of isotropic expansion of TWA has to be re-evaluated based on our new results. Generally, one cannot identify new members of a diffuse nearby stellar group based solely on kinematic data. To eliminate interlopers with similar kinematics, spectroscopic verification is essential.

  12. A SPITZER IRAC IMAGING SURVEY FOR T DWARF COMPANIONS AROUND M, L, AND T DWARFS: OBSERVATIONS, RESULTS, AND MONTE CARLO POPULATION ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. C. [Department of Physics and Astronomy, College of Charleston, 58 Coming St., Charleston, SC 29424 (United States); Marengo, M. [Department of Physics and Astronomy, Iowa State University, A313E Zaffarano, Ames, IA 50011 (United States); Patten, B. M.; Hora, J. L.; Schuster, M. T.; Fazio, G. G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Luhman, K. L. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Sonnett, S. M. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Allen, P. R. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604 (United States); Stauffer, J. R. [Spitzer Science Center, 1200 E California Blvd., Pasadena, CA 91106 (United States); Schnupp, C. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany)

    2011-12-20

    We report observational techniques, results, and Monte Carlo population analyses from a Spitzer Infrared Array Camera imaging survey for substellar companions to 117 nearby M, L, and T dwarf systems (median distance of 10 pc, mass range of 0.6 to {approx}0.05 M{sub Sun }). The two-epoch survey achieves typical detection sensitivities to substellar companions of [4.5 {mu}m] {<=} 17.2 mag for angular separations between about 7'' and 165''. Based on common proper motion analysis, we find no evidence for new substellar companions. Using Monte Carlo orbital simulations (assuming random inclination, random eccentricity, and random longitude of pericenter), we conclude that the observational sensitivities translate to an ability to detect 600-1100 K brown dwarf companions at semimajor axes {approx}>35 AU and to detect 500-600 K companions at semimajor axes {approx}>60 AU. The simulations also estimate a 600-1100 K T dwarf companion fraction of <3.4% for 35-1200 AU separations and <12.4% for the 500-600 K companions for 60-1000 AU separations.

  13. The K-KIDS Sample: K Dwarfs within 50 Parsecs and the Search for their Closest Companions with CHIRON

    Science.gov (United States)

    Paredes-Alvarez, Leonardo; Nusdeo, Daniel Anthony; Henry, Todd J.; Jao, Wei-Chun; Gies, Douglas R.; White, Russel; RECONS Team

    2017-01-01

    To understand fundamental aspects of stellar populations, astronomers need carefully vetted, volume-complete samples. In our K-KIDS effort, our goal is to survey a large sample of K dwarfs for their "kids", companions that may be stellar, brown dwarf, or planetary in nature. Four surveys for companions orbiting an initial set of 1048 K dwarfs with declinations between +30 and -30 have begun. Companions are being detected with separations less than 1 AU out to 10000 AU. Fortuitously, the combination of Hipparcos and Gaia DR1 astrometry with optical photometry from APASS and infrared photometry from 2MASS now allows us to create an effectively volume-complete sample of K dwarfs to a horizon of 50 pc. This sample facilitates rigorous studies of the luminosity and mass functions, as well as comprehensive mapping of the companions orbiting K dwarfs that have never before been possible.Here we present two important results. First, we find that our initial sample of ~1000 K dwarfs can be expanded to 2000-3000 stars in what is an effectively volume-complete sample. This population is sufficiently large to provide superb statistics on the outcomes of star and planet formation processes. Second, initial results from our high-precision radial velocity survey of K dwarfs with the CHIRON spectrograph on the CTIO/SMARTS 1.5m reveal its short-term precision and indicate that stellar, brown dwarf and Jovian planets will be detectable. We present radial velocity curves for an inital sample of 8 K dwarfs with V = 7-10 using cross-correlation techniques on R=80,000 spectra, and illustrate the stability of CHIRON over hours, days, and weeks. Ultimately, the combination of all four surveys will provide an unprecedented portrait of K dwarfs and their kids.This effort has been supported by the NSF through grants AST-1412026 and AST-1517413, and via observations made possible by the SMARTS Consortium

  14. The Hyperactive L Dwarf 2MASS J13153094-2649513: Continued Emission and a Brown Dwarf Companion

    Science.gov (United States)

    Burgasser, Adam J.; Sitarski, Breann N.; Gelino, Christopher R.; Logsdon, Sarah E.; Perrin, Marshall D.

    2011-09-01

    We report new observations of the unusually active, high proper motion L5e dwarf 2MASS J13153094-2649513. Optical spectroscopy with Magellan/MagE reveals persistent nonthermal emission, with narrow H I Balmer, Na I and K I lines all observed in emission. Low-resolution near-infrared spectroscopy with the Infrared Telescope Facility/SpeX Spectrograph indicates the presence of a low-temperature companion, which is resolved through multi-epoch laser guide star adaptive optics imaging at the W. M. Keck Observatory. The co-moving companion is separated by 338 ± 4 mas, and its relative brightness (ΔKs = 5.09 ± 0.10) makes this system the second-most-extreme flux ratio very-low-mass binary identified to date. Resolved near-infrared spectroscopy with Keck/OSIRIS identifies the companion as a T7 dwarf. The absence of Li I absorption in combined-light optical spectroscopy constrains the system age to gsim0.8-1.0 Gyr, while the system's kinematics and unusually low mass ratio (M 2/M 1 = 0.3-0.6) suggest that it is even older. A coevality test of the components also indicates an older age, but reveals discrepancies between evolutionary and atmosphere model fits of the secondary, which are likely attributable to poor reproduction of its near-infrared spectrum. With a projected separation of 6.6 ± 0.9 AU, the 2MASS J1315-2649 system is too widely separated for mass exchange or magnetospheric interactions to be powering its persistent nonthermal emission. Rather, the emission is probably chromospheric in nature, consistent with an inversion in the age-activity relation in which strong magnetic fields are maintained by relatively old and massive ultracool dwarfs. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration, and made possible by the generous financial support of the W. M. Keck

  15. The Dwarf Spheroidal Companions to M31: Variable Stars in Andromeda II

    CERN Document Server

    Pritzl, B J; Jacoby, G H; Costa, G S D; Pritzl, Barton J.; Armandroff, Taft E.; Jacoby, George H.

    2004-01-01

    (abridged) We present the results of a variable star search in Andromeda II, a dwarf spheroidal galaxy companion to M31, using HST/WFPC2 observations. Seventy-three variables were found, one of which is an anomalous Cepheid while the others are RR Lyrae stars. The anomalous Cepheid has properties consistent with those found in other dwarf spheroidal galaxies. For the RR Lyrae stars, the mean periods are 0.571 day and 0.363 day for the fundamental mode and first-overtone mode stars, respectively. With this fundamental mode mean period and the mean metallicity determined from the red giant branch (=-1.49), Andromeda II follows the period-metallicity relation defined by the Galactic globular clusters and other dwarf spheroidal galaxies. We also find that the properties of the RR Lyrae stars themselves indicate a mean abundance that is consistent with that determined from the red giants. There is, however, a significant spread among the RR Lyrae stars in the period-amplitude diagram, which is possibly related to ...

  16. An irradiated brown-dwarf companion to an accreting white dwarf

    CERN Document Server

    Santisteban, Juan V Hernández; Littlefair, Stuart P; Breton, Rene P; Dhillon, Vikram S; Gänsicke, Boris T; Marsh, Thomas R; Pretorius, Magaretha L; Southworth, John; Hauschildt, Peter H

    2016-01-01

    Brown dwarfs and giant planets orbiting close to a host star are subjected to significant irradiation that can modify the properties of their atmospheres. In order to test the atmospheric models that are used to describe these systems, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures, albedos). Interacting compact binary systems provide a natural laboratory for studying strongly irradiated sub-stellar objects. As the mass-losing secondary in these systems makes a critical, but poorly understood transition from the stellar to the sub-stellar regime, it is also strongly irradiated by the compact accretor. In fact, the internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. However, the atmospheric properties of such donors have so far remained largely unknown. Here, we report the direct spectroscopic detection and characterisation of an irradiated sub-stellar...

  17. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2

    Science.gov (United States)

    Parsons, S. G.; Hermes, J. J.; Marsh, T. R.; Gänsicke, B. T.; Tremblay, P.-E.; Littlefair, S. P.; Sahman, D. I.; Ashley, R. P.; Green, M.; Rattanasoon, S.; Dhillon, V. S.; Burleigh, M. R.; Casewell, S. L.; Buckley, D. A. H.; Braker, I. P.; Irawati, P.; Dennihy, E.; Rodríguez-Gil, P.; Winget, D. E.; Winget, K. I.; Bell, Keaton J.; Kilic, Mukremin

    2017-10-01

    Using data from the extended Kepler mission in K2 Campaign 10, we identify two eclipsing binaries containing white dwarfs with cool companions that have extremely short orbital periods of only 71.2 min (SDSS J1205-0242, a.k.a. EPIC 201283111) and 72.5 min (SDSS J1231+0041, a.k.a. EPIC 248368963). Despite their short periods, both systems are detached with small, low-mass companions, in one case a brown dwarf and in the other case either a brown dwarf or a low-mass star. We present follow-up photometry and spectroscopy of both binaries, as well as phase-resolved spectroscopy of the brighter system, and use these data to place preliminary estimates on the physical and binary parameters. SDSS J1205-0242 is composed of a 0.39 ± 0.02 M⊙ helium-core white dwarf that is totally eclipsed by a 0.049 ± 0.006 M⊙ (51 ± 6MJ) brown-dwarf companion, while SDSS J1231+0041 is composed of a 0.56 ± 0.07 M⊙ white dwarf that is partially eclipsed by a companion of mass ≲0.095 M⊙. In the case of SDSS J1205-0242, we look at the combined constraints from common-envelope evolution and brown-dwarf models; the system is compatible with similar constraints from other post-common-envelope binaries, given the current parameter uncertainties, but has potential for future refinement.

  18. Is beryllium ultra-depletion in solar-type stars linked to the presence of a white dwarf companion?

    CERN Document Server

    Desidera, S; Lugaro, M

    2015-01-01

    Abundance studies of solar-type stars revealed a small fraction of objects with extreme depletion of beryllium. We investigate the possible link between the beryllium depletion and the presence of companions. The classical methods (radial velocity, astrometry, imaging) used to search for binary companions were exploited. We also performed a chemical analysis to identify binaries by the alteration in abundances that is produced by the accretion of material lost by a former evolved companion. We found that all the four previously investigated stars that were found to be ultra--depleted in Be are binaries. In two cases the companion is a white dwarf, and in the other two cases the companion might be a white dwarf or a main-sequence star. One new barium star was identified. We speculate that the interaction with the white dwarf progenitor caused an alteration in the abundance pattern of the star, which resulted in severe beryllium depletion. Possible mechanisms such as thermohaline mixing, episodic accretion, and...

  19. Discovery of a young planetary mass companion to the nearby M dwarf VHS J125601.92-125723.9

    CERN Document Server

    Gauza, Bartosz; Pérez-Garrido, Antonio; Osorio, Maria Rosa Zapatero; Lodieu, Nicolas; Rebolo, Rafael; Pallé, Enric; Nowak, Grzegorz

    2015-01-01

    In a search for common proper motion companions using the VISTA Hemisphere Survey and 2MASS catalogs we have identified a very red (J-Ks=2.47 mag) late-L dwarf companion of a previously unrecognized M dwarf VHS J125601.92-125723.9, located at a projected angular separation of 8.06"+/-0.03". From low-resolution optical and near-IR spectroscopy we classified the primary and the companion as an M7.5+/-0.5 and L7+/-1.5, respectively. The primary shows weaker alkali lines than field dwarfs of similar spectral type, but still consistent with either a high-gravity dwarf or a younger object of hundreds of millions of years. The secondary shows spectral features characteristic for low surface gravity objects at ages below several hundred Myr, like the triangular shape of the H-band continuum and alkali lines weaker than in field dwarfs of the same spectral type. The absence of lithium in the atmosphere of the primary and the likely membership to the Local Association allowed us to constrain the age of the system to th...

  20. MOA-2010-BLG-073L: AN M-DWARF WITH A SUBSTELLAR COMPANION AT THE PLANET/BROWN DWARF BOUNDARY

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Tsapras, Y. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Choi, J.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Furusawa, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Hundertmark, M.; Horne, K.; Dominik, M.; Browne, P.; Bajek, D. [SUPA/St Andrews, Department of Physics and Astronomy, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Gould, A. [Department of Astronomy, Ohio State University, McPherson Laboratory, 140 West 18th Avenue, Columbus, OH 43210-1173 (United States); Sumi, T. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Wouters, D. [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris (France); Zellem, R. [Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Snodgrass, C. [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Kains, N.; Bramich, D. M. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Steele, I. A., E-mail: rstreet@lcogt.net [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, Wirral CH41 1LD (United Kingdom); Collaboration: RoboNet Collaboration; MOA Collaboration; OGLE Collaboration; muFUN Collaboration; PLANET Collaboration; MiNDSTEp Collaboration; and others

    2013-01-20

    We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source light curve, we demonstrate that it is an irregular variable over timescales >200 days. Its dereddened color, (V - I) {sub S,0}, is 1.221 {+-} 0.051 mag, and from our lens model we derive a source radius of 14.7 {+-} 1.3 R {sub Sun }, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q = 0.0654 {+-} 0.0006. The Einstein crossing time of the event, t {sub E} = 44.3 {+-} 0.1 days, was sufficiently long that the light curve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, D{sub L} = 2.8 {+-} 0.4 kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with M {sub L,1} = 0.16 {+-} 0.03 M {sub Sun }, while the companion has M {sub L,2} = 11.0 {+-} 2.0 M {sub J}, putting it in the boundary zone between planets and brown dwarfs.

  1. Detection of white dwarf companions to blue stragglers in the open cluster NGC 188: direct evidence for recent mass transfer

    CERN Document Server

    Gosnell, Natalie M; Geller, Aaron M; Sills, Alison; Leigh, Nathan; Knigge, Christian

    2014-01-01

    Several possible formation pathways for blue straggler stars have been developed recently, but no one pathway has yet been observationally confirmed for a specific blue straggler. Here we report the first findings from a Hubble Space Telescope ACS/SBC far-UV photometric program to search for white dwarf companions to blue straggler stars. We find three hot and young white dwarf companions to blue straggler stars in the 7-Gyr open cluster NGC 188, indicating that mass transfer in these systems ended less than 300 Myr ago. These companions are direct and secure observational evidence that these blue straggler stars were formed through mass transfer in binary stars. Their existence in a well-studied cluster environment allows for observational constraints of both the current binary system and the progenitor binary system, mapping the entire mass transfer history.

  2. Evolutionary Constraints on the Planet-Hosting Subgiant Epsilon Reticulum from its White Dwarf Companion

    CERN Document Server

    Farihi, J; Holberg, J B; Casewell, S L; Barstow, M A

    2011-01-01

    The planet-hosting and Sirius-type binary system epsilon Reticulum (HD 27442) is examined from the perspective of its more evolved white dwarf secondary. The stellar parameters are determined from a combination of Balmer line spectroscopy, gravitational redshift, and solid angle. These three methods conspire to yield the most accurate physical description of the companion to date: Teff=15,310 \\pm 350 K and M=0.60 \\pm 0.02 Msol. Post-main sequence mass loss indicates the current binary separation has increased by a factor of 1.6 from its primordial state when the current primary was forming its planet(s), implying a0 > 150 AU and constraining stable planets to within 15-20 AU for a binary eccentricity of e=0.5. Almost 80 years have passed since the first detection of the stellar companion, and marginal orbital motion may be apparent in the binary, suggesting a near edge-on configuration with i > 70 deg, albeit with substantial uncertainty. If correct, the mass of the planet HD 27442b is bound between 1.66 and ...

  3. The TRENDS High-Contrast Imaging Survey. III. A Faint White Dwarf Companion Orbiting HD 114174

    CERN Document Server

    Crepp, Justin R; Howard, Andrew W; Marcy, Geoffrey W; Gianninas, Alexandros; Kilic, Mukremin; Wright, Jason T

    2013-01-01

    The nearby Sun-like star HD 114174 exhibits a strong and persistent Doppler acceleration indicating the presence of an unseen distant companion. We have acquired high-contrast imaging observations of this star using NIRC2 at Keck and report the direct detection of the body responsible for causing the "trend". HD 114174 B has a projected separation of 692+/-9 mas (18.1 AU) and is 10.75+/-0.12 magnitudes (contrast of 5x10{-5}) fainter than its host in the K-band, requiring aggressive point-spread function subtraction to identify. Our astrometric time baseline of 1.4 years demonstrates physical association through common proper motion. We find that the companion has absolute magnitude, M_J=13.97+/-0.11, and colors, J-K= 0.12+/-0.16 mag. These characteristics are consistent with an ~T3 dwarf, initially leading us to believe that HD 114174 B was a substellar object. However, a dynamical analysis that combines radial velocity measurements with available imaging data indicates a minimum mass of m=0.260+/-0.010Msun. ...

  4. Desert Dwellers and Dynamic Duos: Short-Period Brown Dwarf Companions and Binary Science with Exoplanet Surveys

    Science.gov (United States)

    Fleming, Scott W.; Ge, J.

    2011-01-01

    Exoplanet transit and Doppler surveys detect many binary stars and brown dwarf companions with relative ease because the observational signatures are 1-2 orders of magnitude larger than planets. These objects allow for studies of several ancillary science topics, such as the two brown dwarf deserts and the mass-radius relationship of stars. In this dissertation talk, I will present my thesis work on conducting these studies using data from the MARVELS survey and several transit survey databases. I will present the discovery of two short-period (P MARVELS survey and its Pilot Project. Although I will focus on these two brown dwarfs, the MARVELS survey has already discovered a dozen brown dwarf companions that will serve to characterize the dryness of the brown dwarf deserts. These discoveries are needed to better understand brown dwarf formation and dynamical evolution histories. I will then present results from my work on cross-referencing spectroscopic binaries found in the MARVELS survey with archival photometry to conduct studies of the mass-radius relationship. Finally, I will present spectroscopic observations of known eclipsing binaries from transit surveys using the EXPERT instrument at the KPNO 2.1m telescope.

  5. Cool Companions to White Dwarf Stars from the Two Micron All Sky Survey All Sky Data Release

    CERN Document Server

    Hoard, D W; Sturch, L K; Widhalm, A M; Weiler, K P; Pretorius, M L; Wellhouse, J W; Gibiansky, M; Sturch, Laura K.; Widhalm, Allison M.; Weiler, Kevin P.; Pretorius, Magaretha L.; Wellhouse, Joseph W.; Gibiansky, Maxsim

    2007-01-01

    We present the culmination of our near-infrared survey of the optically spectroscopically identified white dwarf stars from the McCook & Sion catalog, conducted using photometric data from the Two Micron All Sky Survey final All Sky Data Release. The color-selection technique, which identifies candidate binaries containing a white dwarf and a low mass stellar (or sub-stellar) companion via their distinctive locus in the near-infrared color-color diagram, is demonstrated to be simple to apply and to yield candidates with a high rate of subsequent confirmation. We recover 105 confirmed binaries, and identify 28 firm candidates (20 of which are new to this work) and 21 tentative candidates (17 of which are new to this work) from the 2MASS data. Only a small number of candidates from our survey have likely companion spectral types later than M5, none of which is an obvious L type (i.e., potential brown dwarf) companion. Only one previously known WD + brown dwarf binary is detected. This result is discussed in...

  6. Follow-up spectroscopic observations of HD 107148 B: A new white dwarf companion of an exoplanet host star

    Science.gov (United States)

    Mugrauer, M.; Dinçel, B.

    2016-07-01

    We report on our follow-up spectroscopy of HD 1071478 B, a recently detected faint co-moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35 arcsec (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co-moving companion, we obtained follow-up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400 K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56±0.05 M_⊙, a luminosity of (2.0±0.2)×10-4 L_⊙, log g [cm s-2])=7.95±0.09, and a cooling age of 2100±270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  7. The Gemini NICI Planet-Finding Campaign : Discovery of a Substellar L Dwarf Companion to the Nearby Young M Dwarf CD-35 2722

    CERN Document Server

    Wahhaj, Zahed; Biller, Beth A; Clarke, Fraser; Nielsen, Eric L; Close, Laird M; Hayward, Thomas L; Mamajek, Eric E; Cushing, Michael; Dupuy, Trent; Tecza, Matthias; Thatte, Niranjan; Chun, Mark; Ftaclas, Christ; Hartung, Markus; Reid, I Neill; Shkolnik, Evgenya L; Alencar, Silvia H P; Artymowicz, Pawel; Boss, Alan; Pino, Elisabethe de Gouveia Dal; Gregorio-Hetem, Jane; Ida, Shigeru; Kuchner, Marc; Lin, Douglas N C; Toomey, Douglas W

    2011-01-01

    We present the discovery of a wide (67 AU) substellar companion to the nearby (21 pc) young solar-metallicity M1 dwarf CD-35 2722, a member of the ~100 Myr AB Doradus association. Two epochs of astrometry from the NICI Planet-Finding Campaign confirm that CD-35 2722 B is physically associated with the primary star. Near-IR spectra indicate a spectral type of L4\\pm1 with a moderately low surface gravity, making it one of the coolest young companions found to date. The absorption lines and near-IR continuum shape of CD-35 2722 B agree especially well the dusty field L4.5 dwarf 2MASS J22244381-0158521, while the near-IR colors and absolute magnitudes match those of the 5 Myr old L4 planetary-mass companion, 1RXS J160929.1-210524 b. Overall, CD-35 2722 B appears to be an intermediate-age benchmark for L-dwarfs, with a less peaked H-band continuum than the youngest objects and near-IR absorption lines comparable to field objects. We fit Ames-Dusty model atmospheres to the near-IR spectra and find T=1700-1900 K and...

  8. Point Source Polarimetry with the Gemini Planet Imager: Sensitivity Characterization with T5.5 Dwarf Companion HD 19467 B

    CERN Document Server

    Jensen-Clem, Rebecca; Mawet, Dimitri; Graham, James R; Wallace, J Kent; Macintosh, Bruce; Hinkley, Sasha; Wiktorowicz, Sloane J; Perrin, Marshall D; Marley, Mark S; Fitzgerald, Michael P; Oppenheimer, Rebecca; Ammons, S Mark; Rantakyro, Fredrik T; Marchis, Franck

    2016-01-01

    Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of $H$-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of $p_{\\text{CL}99.73\\%} \\leq 2.4\\%$. We discuss our results in the context of T dwarf cloud models and photometric variability.

  9. Point Source Polarimetry with the Gemini Planet Imager: Sensitivity Characterization with T5.5 Dwarf Companion HD 19467 B

    Science.gov (United States)

    Jensen-Clem, Rebecca; Millar-Blanchaer, Max; Mawet, Dimitri; Graham, James R.; Wallace, J. Kent; Macintosh, Bruce; Hinkley, Sasha; Wiktorowicz, Sloane J.; Perrin, Marshall D.; Marley, Mark S.; hide

    2016-01-01

    Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of pCL99:73% less than 1:7%. We discuss our results in the context of T dwarf cloud models and photometric variability.

  10. The nature of the companion of PSR J1719-1438:a white dwarf or an exotic object?

    Institute of Scientific and Technical Information of China (English)

    J.E.Horvath

    2012-01-01

    We raise the possibility that the very dense,compact companion of PSR J1719-1438,which has a Jupiter-like mass,is an exotic quark object rather than a light helium or carbon white dwarf.The exotic hypothesis naturally explains some of the observed features,and provides quite strong predictions for this system,to be confirmed or refuted in feasible future studies.

  11. OGLE-2005-BLG-071Lb, the Most Massive M-Dwarf Planetary Companion?

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S; Gould, A; Udalski, A; Anderson, J; Christie, G W; Gaudi, B S; Jaroszynski, M; Kubiak, M; Szymanski, M K; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; DePoy, D L; Fox, D B; Gal-Yam, A; Han, C; Lepine, S; McCormick, J; Ofek, E; Park, B; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Britton, T R; Gilmore, A C; Hearnshaw, J B; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Ohnishi, K; Okada, C; Rattenbury, N; Saito, T; Sako, T; Sasaki, M; Sullivan, D; Sumi, T; Tristram, P J; Yanagisawa, T; Yock, P M; Yoshoika, T; Albrow, M D; Beaulieu, J P; Brillant, S; Calitz, H; Cassan, A; Cook, K H; Coutures, C; Dieters, S; Prester, D D; Donatowicz, J; Fouque, P; Greenhill, J; Hill, K; Hoffman, M; Horne, K; J?rgensen, U G; Kane, S; Kubas, D; Marquette, J B; Martin, R; Meintjes, P; Menzies, J; Pollard, K R; Sahu, K C; Vinter, C; Wambsganss, J; Williams, A; Bode, M; Bramich, D M; Burgdorf, M; Snodgrass, C; Steele, I; Doublier, V; Foelmi, C

    2008-04-18

    We combine all available information to constrain the nature of OGLE-2005-BLG-071Lb, the second planet discovered by microlensing and the first in a high-magnification event. These include photometric and astrometric measurements from Hubble Space Telescope, as well as constraints from higher-order effects extracted from the ground-based light curve, such as microlens parallax, planetary orbital motion and finite-source effects. Our primary analysis leads to the conclusion that the host of Jovian planet OGLE-2005-BLG-071Lb is a foreground M dwarf, with mass M = 0.46 {+-} 0.04M{sub {circle_dot}}, distance D{sub l} = 3.3 {+-} 0.4 kpc, and thick-disk kinematics {nu}{sub LSR} {approx} 103 km s{sup -1}. From the best-fit model, the planet has mass M{sub p} = 3.5 {+-} 0.3 M{sub Jupiter}, lies at a projected separation r{sub {perpendicular}} = 3.6 {+-} 0.2 AU from its host and has an equilibrium temperature of T {approx} 50 K, i.e., similar to Neptune. A degenerate model less favored by {Delta}{sub {chi}}{sup 2} {approx} 4 gives essentially the same planetary mass M{sub p} = 3.3 {+-} 0.3 M{sub Jupiter} with a smaller projected separation, r{sub {perpendicular}} = 2.1 {+-} 0.1 AU, and higher equilibrium temperature T {approx} 68 K. These results from the primary analysis suggest that OGLE-2005-BLG-071Lb is likely to be the most massive planet yet discovered that is hosted by an M dwarf. However, the formation of such high-mass planetary companions in the outer regions of M-dwarf planetary systems is predicted to be unlikely within the core-accretion scenario. There are a number of caveats to this analysis, but these could mostly be resolved by a single astrometric measurement a few years after the event.

  12. A Massive-born Neutron Star with a Massive White Dwarf Companion

    Science.gov (United States)

    Cognard, Ismaël; Freire, Paulo C. C.; Guillemot, Lucas; Theureau, Gilles; Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Stappers, Benjamin; Lyne, Andrew G.; Bassa, Cees; Desvignes, Gregory; Lazarus, Patrick

    2017-08-01

    We report on the results of a 4 year timing campaign of PSR J2222-0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m p = 1.76 ± 0.06 M ⊙ and a WD mass m c = 1.293 ± 0.025 M ⊙. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10-2 M ⊙) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222-0137 puts that system into a poorly tested parameter range.

  13. Timing of a Young Mildly Recycled Pulsar with a Massive White Dwarf Companion

    CERN Document Server

    Lazarus, P; Knispel, B; Freire, P C C; Deneva, J S; Kaspi, V M; Allen, B; Bogdanov, S; Chatterjee, S; Stairs, I H; Zhu, W W

    2013-01-01

    We report on timing observations of the recently discovered binary pulsar PSR J1952+2630 using the Arecibo Observatory. The mildly recycled 20.7-ms pulsar is in a 9.4-hr orbit with a massive, M_WD > 0.93 M_sun, white dwarf (WD) companion. We present, for the first time, a phase-coherent timing solution, with precise spin, astrometric, and Keplerian orbital parameters. This shows that the characteristic age of PSR J1952+2630 is 77 Myr, younger by one order of magnitude than any other recycled pulsar-massive WD system. We derive an upper limit on the true age of the system of 50 Myr. We investigate the formation of PSR J1952+2630 using detailed modelling of the mass-transfer process from a naked helium star on to the neutron star following a common-envelope phase (Case BB Roche-lobe overflow). From our modelling of the progenitor system, we constrain the accretion efficiency of the neutron star, which suggests a value between 100 and 300% of the Eddington accretion limit. We present numerical models of the chem...

  14. Adaptive Optics imaging of VHS 1256-1257: A Low Mass Companion to a Brown Dwarf Binary System

    CERN Document Server

    Stone, Jordan M; Kratter, Kaitlin M; Dupuy, Trent J; Close, Laird M; Eisner, Josh A; Fortney, Jonathan J; Hinz, Philip M; Males, Jared R; Morley, Caroline V; Morzinski, Katie M; Ward-Duong, Kimberly

    2016-01-01

    Recently, Gauza et al. (2015) reported the discovery of a companion to the late M-dwarf, VHS J125601.92-125723.9 (VHS 1256-1257). The companion's absolute photometry suggests its mass and atmosphere are similar to the HR 8799 planets. However, as a wide companion to a late-type star, it is more accessible to spectroscopic characterization. We discovered that the primary of this system is an equal-magnitude binary. For an age $\\sim300$ Myr the A and B components each have a mass of $64.6^{+0.8}_{-2.0}~M_{\\mathrm{Jup}}$, and the b component has a mass of $11.2^{+9.7}_{-1.8}$, making VHS 1256-1257 only the third brown dwarf triple system. There exists some tension between the spectrophotometric distance of $17.2\\pm2.6$ pc and the parallax distance of $12.7\\pm1.0$ pc. At 12.7 pc VHS1256-1257 A and B would be the faintest known M7.5 objects, and are even faint outliers among M8 types. If the larger spectrophotmetric distance is more accurate than the parallax, then the mass of each component increases. In particul...

  15. Very Low Mass Stellar and Substellar Companions to Solar-like Stars From MARVELS IV: A Candidate Brown Dwarf or Low-Mass Stellar Companion to HIP 67526

    CERN Document Server

    Jiang, Peng; Cargile, Phillip; Crepp, Justin R; De Lee, Nathan; de Mello, Gustavo F Porto; Esposito, Massimiliano; Ferreira, Letícia D; Femenia, Bruno; Fleming, Scott W; Gaudi, B Scott; Ghezzi, Luan; Hernández, Jonay I González; Hebb, Leslie; Lee, Brian L; Ma, Bo; Stassun, Keivan G; Wang, Ji; Wisniewski, John P; Agol, Eric; Bizyaev, Dmitry; Brewington, Howard; Chang, Liang; da Costa, Luiz Nicolaci; Eastman, Jason D; Ebelke, Garrett; Gary, Bruce; Kane, Stephen R; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A G; Malanushenko, Viktor; Malanushenko, Elena; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L C; Oravetz, Audrey; Oravetz, Daniel; Pan, Kaike; Pepper, Joshua; Paegert, Martin; Prieto, Carlos Allende; Rebolo, Rafael; Santiago, Basilio X; Schneider, Donald P; Bradley, Alaina C Shelden; Sivarani, Thirupathi; Snedden, Stephanie; van Eyken, J C; Wan, Xiaoke; Weaver, Benjamin A; Zhao, Bo

    2013-01-01

    We report the discovery of a candidate brown dwarf or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 years. Our Keplerian fit using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of $90.2695^{+0.0188}_{-0.0187}$ days, an eccentricity of $0.4375 \\pm 0.0040$ and a semi-amplitude of $2948.14^{+16.65}_{-16.55}$ m s$^{-1}$. Using additional high-resolution spectroscopy, we find the host star has an effective temperature $T_{\\rm{eff}}=6004 \\pm 34$ K, a surface gravity $\\log g$ [cgs] $=4.55 \\pm 0.17$ and a metallicity [Fe/H] $=+0.04 \\pm 0.06$. The stellar mass and radius determined through the empirical relationship of Torres et al. (2010), yields 1.10$\\pm$0.09 $M_{\\sun}$ and 0.92$\\pm$0.19 $R_{\\sun}$. The minimum mass of MARVELS-5b is $65.0 \\pm 2.9 M_{Jup}$, indicating that it is likely to be either a...

  16. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Peng; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Ma Bo; Wang, Ji [Astronomy Department, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Cargile, Phillip; Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Porto de Mello, Gustavo F.; Ferreira, Leticia D. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lactea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Agol, Eric, E-mail: jpaty@mail.ustc.edu.cn [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); and others

    2013-09-15

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695{sup +0.0188}{sub -0.0187} days, an eccentricity of 0.4375 {+-} 0.0040, and a semi-amplitude of 2948.14{sup +16.65}{sub -16.55} m s{sup -1}. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T{sub eff} = 6004 {+-} 34 K, a surface gravity log g (cgs) =4.55 {+-} 0.17, and a metallicity [Fe/H] =+0.04 {+-} 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 {+-} 0.09 M{sub Sun} and 0.92 {+-} 0.19 R{sub Sun }. The minimum mass of MARVELS-5b is 65.0 {+-} 2.9M{sub Jup}, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 {+-} 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M{sub Sun} at a separation larger than 40 AU.

  17. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. IV. A Candidate Brown Dwarf or Low-mass Stellar Companion to HIP 67526

    Science.gov (United States)

    Jiang, Peng; Ge, Jian; Cargile, Phillip; Crepp, Justin R.; De Lee, Nathan; Porto de Mello, Gustavo F.; Esposito, Massimiliano; Ferreira, Letícia D.; Femenia, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; González Hernández, Jonay I.; Hebb, Leslie; Lee, Brian L.; Ma, Bo; Stassun, Keivan G.; Wang, Ji; Wisniewski, John P.; Agol, Eric; Bizyaev, Dmitry; Brewington, Howard; Chang, Liang; Nicolaci da Costa, Luiz; Eastman, Jason D.; Ebelke, Garrett; Gary, Bruce; Kane, Stephen R.; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A. G.; Malanushenko, Viktor; Malanushenko, Elena; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Audrey; Oravetz, Daniel; Pan, Kaike; Pepper, Joshua; Paegert, Martin; Allende Prieto, Carlos; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden Bradley, Alaina C.; Sivarani, Thirupathi; Snedden, Stephanie; van Eyken, J. C.; Wan, Xiaoke; Weaver, Benjamin A.; Zhao, Bo

    2013-09-01

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695^{+0.0188}_{-0.0187} days, an eccentricity of 0.4375 ± 0.0040, and a semi-amplitude of 2948.14^{+16.65}_{-16.55} m s-1. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T eff = 6004 ± 34 K, a surface gravity log g (cgs) =4.55 ± 0.17, and a metallicity [Fe/H] =+0.04 ± 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 ± 0.09 M ⊙ and 0.92 ± 0.19 R ⊙. The minimum mass of MARVELS-5b is 65.0 ± 2.9M Jup, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 ± 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M ⊙ at a separation larger than 40 AU.

  18. An M Dwarf Companion to an F-type Star in a Young Main-sequence Binary

    Science.gov (United States)

    Eigmüller, Ph.; Eislöffel, J.; Csizmadia, Sz.; Lehmann, H.; Erikson, A.; Fridlund, M.; Hartmann, M.; Hatzes, A.; Pasternacki, Th.; Rauer, H.; Tkachenko, A.; Voss, H.

    2016-03-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M⊙ and a radius of (1.474 ± 0.040) R⊙. The companion is an M dwarf with a mass of (0.188 ± 0.014) M⊙ and a radius of (0.234 ± 0.009) R⊙. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ˜250 Myr. The mass-radius relation of both components are in agreement with this finding.

  19. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.; Fridlund, M.; Pasternacki, Th.; Rauer, H. [Institute of Planetary Research, German Aerospace Center Rutherfordstr. 2, D-12489 Berlin (Germany); Eislöffel, J.; Lehmann, H.; Hartmann, M.; Hatzes, A. [Thüringer Landessternwarte Tautenburg Sternwarte 5, D-07778 Tautenburg (Germany); Tkachenko, A. [Instituut voor Sterrenkunde, KU Leuven Celestijnenlaan 200D, 3001 Leuven (Belgium); Voss, H., E-mail: philipp.eigmueller@dlr.de [Universitat de Barcelona, Department of Astronomy and Meteorology Martí i Franquès, 1, E-08028 Barcelona (Spain)

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙} and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.

  20. An M dwarf Companion to an F-type Star in a young main-sequence binary

    CERN Document Server

    Eigmüller, Ph; Csizmadia, Sz; Lehmann, H; Erikson, A; Fridlund, M; Hartmann, M; Hatzes, A; Pasternacki, Th; Rauer, H; Tkachenko, A; Voss, H

    2016-01-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectro- scopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 +- 0.073) Msun and a radius of (1.474 +- 0.040) Rsun. The companion is an M dwarf with a mass of (0.188 +- 0.014) Msun and a radius of (0.234 +- 0.009) Rsun. The orbital period is (1.35121 +- 0:00001)d. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ~250 Myrs. The mass-radius re...

  1. A search for companions to brown dwarfs in the Taurus and Chamaeleon star-forming regions

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, K. O.; Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Konopacky, Q. M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); McLeod, K. K. [Whitin Observatory, Wellesley College, Wellesley, MA 02481 (United States); Apai, D.; Pascucci, I. [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Ghez, A. M. [Division of Astronomy and Astrophysics, University of California, Los Angeles, CA 90095 (United States); Robberto, M., E-mail: todorovk@phys.ethz.ch [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-06-10

    We have used WFPC2 on board the Hubble Space Telescope to obtain images of 47 members of the Taurus and Chamaeleon I star-forming regions that have spectral types of M6-L0 (M ∼ 0.01-0.1 M {sub ☉}). An additional late-type member of Taurus, FU Tau (M7.25+M9.25), was also observed with adaptive optics at Keck Observatory. In these images, we have identified promising candidate companions to 2MASS J04414489+2301513 (ρ = 0.''105/15 AU), 2MASS J04221332+1934392 (ρ = 0.''05/7 AU), and ISO 217 (ρ = 0.''03/5 AU). We reported the first candidate in a previous study, showing that it has a similar proper motion as the primary in images from WFPC2 and Gemini adaptive optics. We have collected an additional epoch of data with Gemini that further supports that result. By combining our survey with previous high-resolution imaging in Taurus, Chamaeleon I, and Upper Sco (τ ∼ 10 Myr), we measure binary fractions of 14/93 = 0.15{sub −0.03}{sup +0.05} for M4-M6 (M ∼ 0.1-0.3 M {sub ☉}) and 4/108 = 0.04{sub −0.01}{sup +0.03} for >M6 (M ≲ 0.1 M {sub ☉}) at separations of >10 AU. Given the youth and low density of these regions, the lower binary fraction at later types is probably primordial rather than due to dynamical interactions among association members. The widest low-mass binaries (>100 AU) also appear to be more common in Taurus and Chamaeleon I than in the field, which suggests that the widest low-mass binaries are disrupted by dynamical interactions at >10 Myr, or that field brown dwarfs have been born predominantly in denser clusters where wide systems are disrupted or inhibited from forming.

  2. The DODO survey - II. A Gemini direct imaging search for substellar and planetary mass companions around nearby equatorial and Northern hemisphere white dwarfs

    Science.gov (United States)

    Hogan, E.; Burleigh, M. R.; Clarke, F. J.

    2009-07-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low-mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures much lower (T8.5, and so could belong to the proposed Y dwarf spectral sequence. The detection of a planet around a white dwarf would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 and 8Msolar, i.e. early B to mid-F). This paper presents the results of a multi epoch J band common proper motion survey of 23 nearby equatorial and Northern hemisphere white dwarfs. We rule out the presence of any common proper motion companions, with limiting masses determined from the completeness limit of each observation, to 18 white dwarfs. For the remaining five targets, the motion of the white dwarf is not sufficiently separated from the non-moving background objects in each field. These targets require additional observations to conclusively rule out the presence of any common proper motion companions. From our completeness limits, we tentatively suggest that ~ 500 K between projected physical separations of 60-200 au.

  3. LHS 2803B: A very wide mid-T dwarf companion to an old M dwarf identified from Pan-STARRS1

    CERN Document Server

    Deacon, Niall R; Magnier, Eugene A; Bowler, Brendan P; Mann, Andrew W; Redstone, Joshua A; Burgett, William S; Chambers, Ken C; Hodapp, Klaus W; Kaiser, Nick; Kudritzki, Rolf-Peter; Morgan, Jeff S; Price, Paul A; Tonry, John L; Wainscoat, Richard J

    2012-01-01

    We report the discovery of a wide (approximately 400 AU projected separation), common proper motion companion to the nearby M dwarf LHS 2803 (PSO J207.0300-13.7422). This object was discovered during our census of the local T dwarf population using Pan-STARRS1 and 2MASS data. Using IRTF/SpeX near-infrared spectroscopy, we classify the secondary to be spectral type T5.5. University of Hawai`i 2.2m/SNIFS optical spectroscopy indicates the primary has a spectral type of M4.5, with approximately solar metallicity and no measurable H_alpha emission. We use this lack of activity to set a lower age limit for the system of 3.5 Gyr. Using a comparison with chance alignments of brown dwarfs and nearby stars, we conclude that the two objects are unlikely to be a chance association. The primary's photometric distance of 21 pc and its proper motion implies thin disk kinematics. Based on these kinematics and its metallicity, we set an upper age limit for the system of 10 Gyr. Evolutionary model calculations suggest the sec...

  4. SDSS J001641-000925: THE FIRST STABLE RED DWARF CONTACT BINARY WITH A CLOSE-IN STELLAR COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.-B.; Jiang, L.-Q.; Zhu, L.-Y.; Zhao, E. G.; He, J.-J.; Liao, W.-P.; Wang, J.-J.; Liu, L.; Zhou, X.; Liu, N. P. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernández Lajús, E. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); Soonthornthum, B.; Rattanasoon, S.; Aukkaravittayapun, S., E-mail: qsb@ynao.ac.cn [National Astronomical Research Insititude of Thailand, 191 Siriphanich Bldg., Huay Kaew Road, Chiang Mai 50200 (Thailand)

    2015-01-10

    SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P-dot ∼8 s yr{sup −1}. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (O–C) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M {sub 3}sin i' ∼ 0.14 M {sub ☉}. The orbital separation between the third body and the central binary is about 2.8 AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.

  5. Astrometric follow-up observations of directly imaged sub-stellar companions to young stars and brown dwarfs

    CERN Document Server

    Ginski, C; Mugrauer, M; Neuhäuser, R; Vogt, N; Errmann, R; Berndt, A

    2014-01-01

    The formation of massive planetary or brown dwarf companions at large projected separations from their host star is not yet well understood. In order to put constraints on formation scenarios we search for signatures in the orbit dynamics of the systems. We are specifically interested in the eccentricities and inclinations since those parameters might tell us about the dynamic history of the systems and where to look for additional low-mass sub-stellar companions. For this purpose we utilized VLT/NACO to take several well calibrated high resolution images of 6 target systems and analyze them together with available literature data points of those systems as well as Hubble Space Telescope archival data. We used a statistical Least-Squares Monte-Carlo approach to constrain the orbit elements of all systems that showed significant differential motion of the primary star and companion. We show for the first time that the GQ Lup system shows significant change in both separation and position angle. Our analysis yi...

  6. Three new massive companions in the planet-brown dwarf boundary detected with SOPHIE

    Directory of Open Access Journals (Sweden)

    Santerne A.

    2011-02-01

    Full Text Available We report the detection of three new massive companions to mainsequence stars based on precise radial velocities obtained with the SOPHIE spectrograph, as part of an ongoing programme to search for extrasolar planets. The minimum masses of the detected companions range from around 16 Mjup to around 60 Mjup, and therefore lie at both sides of the boundary between massive extrasolar planets and brown dwarves.

  7. Discovery of a Possible Cool White Dwarf Companion from the AllWISE Motion Survey

    CERN Document Server

    Fajardo-Acosta, Sergio B; Schneider, Adam C; Cushing, Michael C; Stern, Daniel; Gelino, Christopher R; Bardalez-Gagliuffi, Daniella C; Kellogg, Kendra; Wright, Edward L

    2016-01-01

    We present optical and near-infrared spectroscopy of WISEA J061543.91$-$124726.8, which we rediscovered as a high motion object in the AllWISE survey. The spectra of this object are unusual; while the red optical ($\\lambda >$ 7,000 \\AA) and near-infrared spectra exhibit characteristic TiO, VO, and H$_{2}$O bands of a late-M dwarf, the blue portion of its optical spectrum shows a significant excess of emission relative to late-M type templates. The excess emission is relatively featureless, with the exception of a prominent and very broad Na I D doublet. We find that no single, ordinary star can reproduce these spectral characteristics. The most likely explanation is an unresolved binary system of an M7 dwarf and a cool white dwarf. The flux of a cool white dwarf drops in the optical red and near-infrared, due to collision-induced absorption, thus allowing the flux of a late-M dwarf to show through. This scenario, however, does not explain the Na D feature, which is unlike that of any known white dwarf, but wh...

  8. Connections Between Tilted Accretion Disks Around White Dwarfs and Substellar Companions

    CERN Document Server

    Montgomery, M M

    2010-01-01

    Accretion disks in white dwarf systems are believed to be tilted. In a recent publication, the lift force has been suggested to be a source to disk tilt, a source that is likely relevant to all accretion disk systems. Lift is generated by slightly different supersonic gas stream speeds flowing over and under the disk at the bright spot. In this conference proceeding, we focus on whether a brown dwarf donor star accreting onto a white dwarf primary has enough mass to contribute to disk tilt. We also would like to obtain whether a white dwarf - brown dwarf close binary system has enough mass to induce and maintain a disk tilt of four degrees. We adopt SDSS 103533.03+055158.4 as our model system which has a mass transfer rate of \\( (10\\pm2) \\times 10^{-12} \\) M$_{\\odot}$ yr$^{-1}$. We find that the brown dwarf in SDSS 1035 does not have enough mass to contribute to disk tilt. We find a gross magnitude of the minimum mass transfer rate to be $\\sim10^{-10}$M$_{\\odot}$yr$^{-1}$. We conclude that SDSS 1035 does not ...

  9. Connections between Tilted Accretion Disks around White Dwarfs and Substellar Companions

    CERN Document Server

    Montgomery, M M

    2011-01-01

    Accretion disks in white dwarf systems are believed to be tilted. In a recent publication, the lift force has been suggested to be a source to disk tilt, a source that is likely relevant to all accretion disk systems. Lift is generated by slightly different supersonic gas stream speeds flowing over and under the disk at the bright spot. In this conference proceeding, we focus on whether a brown dwarf donor star accreting onto a white dwarf primary has enough mass to contribute to disk tilt. We also would like to obtain whether a white dwarf - brown dwarf close binary system has enough mass to induce and maintain a disk tilt of four degrees. We adopt SDSS 103533.03+055158.4 as our model system which has a mass transfer rate of (10 \\pm 2) x 10-12 M* yr-1. We find that the brown dwarf in SDSS 1035 does not have enough mass to contribute to disk tilt. We find a gross magnitude of the minimum mass transfer rate to be - 10-10 M* yr-1 . We conclude that SDSS 1035 does not seem to have a high enough mass transfer rat...

  10. HW Vir's Companion: a M-type Dwarf, or maybe a giant rotating spherical Mirror?

    CERN Document Server

    Edelmann, Heinz

    2008-01-01

    From optical high-resolution spectra the nature of the unseen companion of HW Vir is determined without detection of any spectral features originating from the secondary itself. Using radial velocity measurements from the primary hot subdwarf B star and from weak additional absorption lines detected close to the secondary eclipse, probably caused by reflected light off the surface of the secondary, the mass and radius of the companion is determined. The values are consistent with those of a M type main sequence star.

  11. LHS 2803B: A VERY WIDE MID-T DWARF COMPANION TO AN OLD M DWARF IDENTIFIED FROM PAN-STARRS1

    Energy Technology Data Exchange (ETDEWEB)

    Deacon, Niall R. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Mann, Andrew W.; Burgett, William S.; Chambers, Ken C.; Kaiser, Nick; Kudritzki, Rolf-Peter; Morgan, Jeff S.; Tonry, John L.; Wainscoat, Richard J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Redstone, Joshua A. [Facebook, 1601 Willow Road, Menlo Park, CA 94025 (United States); Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 North Aohoku Place, Hilo, HI 96720 (United States); Price, Paul A., E-mail: deacon@mpia.de [Princeton University Observatory, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2012-09-20

    We report the discovery of a wide ({approx}1400 AU projected separation), common proper motion companion to the nearby M dwarf LHS 2803 (PSO J207.0300-13.7422). This object was discovered during our census of the local T dwarf population using Pan-STARRS1 and Two Micron All Sky Survey data. Using the Infrared Telescope Facility/SpeX near-infrared spectroscopy, we classify the secondary to be spectral type T5.5. University of Hawaii 2.2 m/SuperNova Integral Field Spectrograph optical spectroscopy indicates that the primary has a spectral type of M4.5, with approximately solar metallicity and no measurable H{alpha} emission. We use this lack of activity to set a lower age limit for the system of 3.5 Gyr. Using a comparison with chance alignments of brown dwarfs and nearby stars, we conclude that the two objects are unlikely to be a chance association. The primary's photometric distance of 21 pc and its proper motion implies thin disk kinematics. Based on these kinematics and its metallicity, we set an upper age limit for the system of 10 Gyr. Evolutionary model calculations suggest that the secondary has a mass of 72{+-}{sup 4}{sub 7} M{sub Jup}, temperature of 1120 {+-} 80 K, and log g = 5.4 {+-} 0.1 dex. Model atmosphere fitting to the near-IR spectrum gives similar physical parameters of 1100 K and log g = 5.0.

  12. The Demographics of Exoplanetary Companions to M Dwarfs: Synthesizing Results from Microlensing, Radial Velocity, and Direct Imaging Surveys

    Science.gov (United States)

    Clanton, Christian Dwain

    Over the past 20 years, we have learned that exoplanets are ubiquitous throughout our Galaxy and show a diverse set of demographics, yet there is much work to be done to understand this diversity. Determining the distributions of the fundamental properties of exoplanets will provide vital clues regarding their formation and evolution. This is a difficult task, as exoplanet surveys are not uniformly sensitive to the full range of planet parameter space. Various observational biases and selection effects intrinsic to each of the different discovery techniques constrain the types of planets to which they are sensitive. Herein, I record a collection of the first studies to develop and apply the methodology of synthesizing results from multiple detection techniques to construct a statistically-complete census of planetary companions to M dwarfs that samples a wide region of their parameter space. I present a robust comparison of exoplanet discoveries from microlensing and radial velocity (RV) surveys of M dwarfs which infer giant planet frequencies that differ by more than an order of magnitude and are, prima facie, in direct conflict. I demonstrate that current, state-of-the-art RV surveys are capable of detecting only the high-mass tail of the population of planets beyond the ice line inferred by microlensing studies, engendering a large, apparent difference in giant planet frequency. This comparison further establishes that results from these types of surveys are, in fact, consistent over the region of parameter space wherein their sensitivities overlap. A synthesis of results from microlensing and RV surveys yields planet occurrence rates for M dwarfs that span several orders of magnitude in mass and orbital period. On average, each M dwarf hosts about two planets, and while Jupiter and super-Jupiter companions are relatively rare ( 3%), gas giants, in general, are quite common ( 15%). These occurrence rates are significantly lower than those inferred around FGK

  13. High-Contrast 3.8 Micron Imaging of the Brown Dwarf/Planet-Mass Companion to GJ 758

    Science.gov (United States)

    Currie, Thayne M.; Bailey, Vanessa; Fabrycky, Daniel; Murray-Clay, Ruth; Rodigas, Timothy; Hinz, Phil

    2011-01-01

    We present L' band (3.8 Micron) MMT/Clio high-contrast imaging data for the nearby star GJ 758, which was recently reported by Thalmann et al. (2009) to have one - possibly two - faint comoving companions (GJ 7588 and "C", respectively). GJ 758B is detected in two distinct datasets. Additionally, we report a \\textit{possible} detection of the object identified by Thalmann et al as "GJ 758C" in our more sensitive dataset, though it is likely a residual speckle. However, if it is the same object as that reported by Thalmann et al. it cannot be a companion in a bound orbit. GJ 7588 has a H-L' color redder than nearly all known L-T8 dwarfs. 8ased on comparisons with the COND evolutionary models, GJ 7588 has Te approx. 560 K (+150 K, -90 K) and a mass ranging from approx.10-20 Mj if it is approx.1 Gyr old to approx. 25-40 Mj if it is 8.7 Gyr old. GJ 7588 is likely in a highly eccentric orbit, e approx. 0.73 (+0.12,-0.21), with a semimajor axis of approx. 44 AU (+32 AU, -14 AU). Though GJ 7588 is sometimes discussed within the context of exoplanet direct imaging, its mass is likely greater than the deuterium-burning limit and its formation may resemble that of binary stars rather than that of jovian-mass planets.

  14. Binaries discovered by the MUCHFUSS project SDSS J08205+0008 - An eclipsing subdwarf B binary with brown dwarf companion

    CERN Document Server

    Geier, S; Drechsel, H; Heber, U; Kupfer, T; Tillich, A; Oestensen, R H; Smolders, K; Degroote, P; Maxted, P F L; Barlow, B N; Gaensicke, B T; Marsh, T R; Napiwotzki, R

    2011-01-01

    Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object ($\\simeq0.068\\,M_{\\rm \\odot}$) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelo...

  15. Near-infrared integral-field spectra of the planet/brown dwarf companion AB Pic b

    CERN Document Server

    Bonnefoy, M; Rojo, P; Allard, F; Lagrange, A -M; Homeier, D; Dumas, C; Beuzit, J -L

    2010-01-01

    Chauvin et al. 2005 imaged a co-moving companion at ~260 AU from the young star AB Pic A. Evolutionary models predictions based on J H K photometry of AB Pic b suggested a mass of ~13 - 14 MJup, placing the object at the deuterium-burning boundary. We used the adaptive-optics-fed integral field spectrograph SINFONI to obtain high quality medium-resolution spectra of AB Pic b (R = 1500-2000) over the 1.1 - 2.5 microns range. Our analysis relies on the comparison of our spectra to young standard templates and to the latest libraries of synthetic spectra developed by the Lyon's Group. AB Pic b is confirmed to be a young early-L dwarf companion. We derive a spectral type L0-L1 and find several features indicative of intermediate gravity atmosphere. A comparison to synthetic spectra yields Teff = 2000+100-300 K and log(g) = 4 +- 0.5 dex. The determination of the derived atmospheric parameters of AB Pic b is limited by a non-perfect match of current atmosphere spectra with our near-infrared observations of AB Pic b...

  16. The SOPHIE search for northern extrasolar planets. IV. Massive companions in the planet-brown dwarf boundary

    Science.gov (United States)

    Díaz, R. F.; Santerne, A.; Sahlmann, J.; Hébrard, G.; Eggenberger, A.; Santos, N. C.; Moutou, C.; Arnold, L.; Boisse, I.; Bonfils, X.; Bouchy, F.; Delfosse, X.; Desort, M.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Lovis, C.; Pepe, F.; Perrier, C.; Queloz, D.; Ségransan, D.; Udry, S.; Vidal-Madjar, A.

    2012-02-01

    Context. The mass domain where massive extrasolar planets and brown dwarfs lie is still poorly understood. Indeed, not even a clear dividing line between massive planets and brown dwarfs has been established yet. This is partly because these objects are very scarce in close orbits around solar-type stars, the so-called brown dwarf desert. Owing to this, it has proven difficult to set up a strong observational base with which to compare models and theories of formation and evolution. Aims: We search to increase the current sample of massive sub-stellar objects with precise orbital parameters, and to constrain the true mass of detected sub-stellar candidates. Methods: The initial identification of sub-stellar candidates was made using precise radial velocity measurements obtained with the SOPHIE spectrograph at the 1.93-m telescope of the Haute-Provence Observatory. Subsequent characterisation of these candidates, with the principal aim of identifying stellar companions in low-inclination orbits, was made by means of different spectroscopic diagnostics such as the measurement of the bisector velocity span and the study of the correlation mask effect. With this objective, we also employed astrometric data from the Hipparcos mission, and a novel method of simulating stellar cross-correlation functions. Results: Seven new objects with minimum masses between ~10 MJup and ~90 MJup are detected. Out of these, two are identified as low-mass stars in low-inclination orbits, and two others have masses below the theoretical deuterium-burning limit, and are therefore planetary candidates. The remaining three are brown dwarf candidates; the current upper limits for their the masses do not allow us to conclude on their nature. Additionally, we have improved the parameters of an already-known brown dwarf (HD 137510b), confirmed by astrometry. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by

  17. The DODO Survey II: A Gemini Direct Imaging Search for Substellar and Planetary Mass Companions around Nearby Equatorial and Northern Hemisphere White Dwarfs

    CERN Document Server

    Hogan, E; Clarke, F J

    2009-01-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures much lower ( T8.5 and so could belong to the proposed Y dwarf spectral sequence. The detection of a planet around a white dwarf would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 - 8 solar masses, i.e., early B to mid F). This paper presents the results of a multi-epoch J band common proper motion survey of 23 nearby equatorial and northern hemisphere white dwarfs. We rule out the presence of any common proper motion companions, with limiting masses determined from the completeness limit of each observation, to 18 white dwarfs. For the remaining five targets, the motion...

  18. Near-infrared imaging survey of faint companions around young dwarfs in the Pleiades cluster

    Institute of Scientific and Technical Information of China (English)

    Yoichi Itoh; Yumiko Oasa; Hitoshi Funayama; Masahiko Hayashi; Misato Fukagawa; Toshio Hashiguchi; Thayne Currie

    2011-01-01

    We conducted a near-infrared imaging survey of 11 young dwarfs in the Pleiades cluster using the Subaru Telescope and the near-infrared coronagraph imager.We found ten faint point sources, with magnitudes as faint as 20 mag in the K-band,with around seven dwarfs. Comparison with the Spitzer archive images revealed that a pair of the faint sources around V 1171 Tau is very red in infrared wavelengths, which indicates very low-mass young stellar objects. However, the results of our follow-up proper motion measurements implied that the central star and the faint sources do not share common proper motions, suggesting that they are not physically associated.

  19. A nearby young M dwarf with a wide, possibly planetary-mass companion

    CERN Document Server

    Deacon, Niall R; Murphy, Simon J

    2016-01-01

    We present the identification of two previously known young objects in the solar neighbourhood as a likely very wide binary. TYC 9486-927-1, an active, rapidly rotating early-M dwarf, and 2MASS J21265040-8140293, a low-gravity L3 dwarf previously identified as candidate members of the $\\sim$45 Myr old Tucana Horologium association (TucHor). An updated proper motion measurement of the L3 secondary, and a detailed analysis of the pair's kinematics in the context of known nearby, young stars, reveals that they share common proper motion and are likely bound. New observations and analyses reveal the primary exhibits Li 6708~\\AA~absorption consistent with M dwarfs younger than TucHor but older than the $\\sim$10 Myr TW Hydra association yielding an age range of 10-45 Myr. A revised kinematic analysis suggests the space motions and positions of the pair are closer to, but not entirely in agreement with, the $\\sim$24 Myr old $\\beta$ Pictoris moving group. This revised 10-45 Myr age range yields a mass range of 11.6--...

  20. The SOPHIE search for northern extrasolar planets VIII. Follow-up of ELODIE candidates: long-period brown-dwarf companions

    CERN Document Server

    Bouchy, F; Díaz, R F; Forveille, T; Boisse, I; Arnold, L; Astudillo-Defru, N; Beuzit, J -L; Bonfils, X; Borgniet, S; Bourrier, V; Courcol, B; Delfosse, X; Demangeon, O; Delorme, P; Ehrenreich, D; Hébrard, G; Lagrange, A -M; Mayor, M; Montagnier, G; Moutou, C; Naef, D; Pepe, F; Perrier, C; Queloz, D; Rey, J; Sahlmann, J; Santerne, A; Santos, N C; Sivan, J -P; Udry, S; Wilson, P A

    2015-01-01

    Long-period brown dwarf companions detected in radial velocity surveys are important targets for direct imaging and astrometry to calibrate the mass-luminosity relation of substellar objects. Through a 20-year radial velocity monitoring of solar-type stars that began with ELODIE and was extended with SOPHIE spectrographs, giant exoplanets and brown dwarfs with orbital periods longer than ten years are discovered. We report the detection of five new potential brown dwarfs with minimum masses between 32 and 83 Jupiter mass orbiting solar-type stars with periods longer than ten years. An upper mass limit of these companions is provided using astrometric Hipparcos data, high-angular resolution imaging made with PUEO, and a deep analysis of the cross-correlation function of the main stellar spectra to search for blend effects or faint secondary components. These objects double the number of known brown dwarf companions with orbital periods longer than ten years and reinforce the conclusion that the occurrence of s...

  1. Binary frequency of planet-host stars at wide separations: A new brown dwarf companion to a planet-host star

    CERN Document Server

    Lodieu, N; Bejar, V J S; Gauza, B; Ruiz, M T; Rebolo, R; Pinfield, D J; Martin, E L

    2014-01-01

    The aim of the project is to improve our knowledge on the multiplicity of planet-host stars at wide physical separations. We cross-matched approximately 6200 square degree area of the Southern sky imaged by the Visible Infrared Survey Telescope for Astronomy (VISTA) Hemisphere Survey (VHS) with the Two Micron All Sky Survey (2MASS) to look for wide common proper motion companions to known planet-host stars. We complemented our astrometric search with photometric criteria. We confirmed spectroscopically the co-moving nature of seven sources out of 16 companion candidates and discarded eight, while the remaining one stays as a candidate. Among these new wide companions to planet-host stars, we discovered a T4.5 dwarf companion at 6.3 arcmin (~9000 au) from HIP70849, a K7V star which hosts a 9 Jupiter mass planet with an eccentric orbit. We also report two new stellar M dwarf companions to one G and one metal-rich K star. We infer stellar and substellar binary frequencies for our complete sample of 37 targets of...

  2. A nearby young M dwarf with a wide, possibly planetary-mass companion

    Science.gov (United States)

    Deacon, N. R.; Schlieder, J. E.; Murphy, S. J.

    2016-04-01

    We present the identification of two previously known young objects in the solar neighbourhood as a likely very wide binary. TYC 9486-927-1, an active, rapidly rotating early-M dwarf, and 2MASS J21265040-8140293, a low-gravity L3 dwarf previously identified as candidate members of the ˜45 Myr old Tucana-Horologium association (TucHor). An updated proper motion measurement of the L3 secondary, and a detailed analysis of the pair's kinematics in the context of known nearby, young stars, reveals that they share common proper motion and are likely bound. New observations and analyses reveal the primary exhibits Li 6708 Å absorption consistent with M dwarfs younger than TucHor but older than the ˜10 Myr TW Hydra association yielding an age range of 10-45 Myr. A revised kinematic analysis suggests the space motions and positions of the pair are closer to, but not entirely in agreement with, the ˜24 Myr old β Pictoris moving group. This revised 10-45 Myr age range yields a mass range of 11.6-15 MJ for the secondary. It is thus likely 2MASS J2126-8140 is the widest orbit planetary-mass object known (>4500 au) and its estimated mass, age, spectral type, and Teff are similar to the well-studied planet β Pictoris b. Because of their extreme separation and youth, this low-mass pair provide an interesting case study for very wide binary formation and evolution.

  3. A faint type of supernova from a white dwarf with a helium-rich companion.

    Science.gov (United States)

    Perets, H B; Gal-Yam, A; Mazzali, P A; Arnett, D; Kagan, D; Filippenko, A V; Li, W; Arcavi, I; Cenko, S B; Fox, D B; Leonard, D C; Moon, D-S; Sand, D J; Soderberg, A M; Anderson, J P; James, P A; Foley, R J; Ganeshalingam, M; Ofek, E O; Bildsten, L; Nelemans, G; Shen, K J; Weinberg, N N; Metzger, B D; Piro, A L; Quataert, E; Kiewe, M; Poznanski, D

    2010-05-20

    Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

  4. A Statistical Study of Brown Dwarf Companions from the SDSS-III MARVELS Survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; De Lee, Nathan M.; Lee, Brian L.; Fleming, Scott W.; Sithajan, Sirinrat; Varosi, Frank; Liu, Jian; Zhao, Bo; Li, Rui; Agol, Eric; MARVELS Team

    2016-01-01

    We present 23 new Brown Dwarf (BD) candidates from the Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III (SDSS-III). The BD candidates were selected from the processed MARVELS data using the latest University of Florida 2D pipeline, which shows significant improvement and reduction of systematic errors over the 1D pipeline results included in the SDSS Data Release 12. This sample is the largest BD yield from a single radial velocity survey. Of the 23 candidates, 18 are around main sequence stars and 5 are around giant stars. Given a giant contamination rate of ~24% for the MARVELS survey, we find a BD occurrence rate around main sequence stars of ~0.7%, which agrees with previous studies and confirms the BD desert, while the BD occurrence rate around the MARVELS giant stars is ~0.6%. Preliminary results show that our new candidates around solar type stars support a two population hypothesis, where BDs are divided at a mass of ~42.5 MJup. BDs less massive than 42.5 MJup have eccentricity distributions consistent with planet-planet scattering models, where BDs more massive than 42.5 MJup have both period and eccentricity distributions similar to that of stellar binaries. Special Brown Dwarf systems such as multiple BD systems and highly eccentric BDs will also be presented.

  5. Youngest Brown Dwarf Yet in a Multiple Stellar System

    Science.gov (United States)

    2000-07-01

    Silla, as well as the 8.2-m VLT/ANTU telescope with the ISAAC multi-mode instrument at Paranal. The first step is to take high-resolution images of the stars from the ROSAT list to look for possible faint companions. However, any faint object found near one of the programme stars may of course be a completely unrelated fore- or background object and it is therefore imperative to check this by means of supplementary observations. Two methods are available. The first implies taking spectra of the companion candidates that demonstrate whether they are bona-fide Brown Dwarfs that display spectral lines typical for the cool atmospheres of this class, e.g., of Titanium Oxide (TiO) and Vanadium Oxide (VO). Infrared spectra are particularly useful for a measurement of the atmospheric temperature. The other involves obtaining a second image some years later. If the companion candidate and the brighter star belong to the same stellar system, they must move together on the sky or, as astronomers say, their measured "proper motions" must be (nearly) the same. If both checks are positive, the fainter object is most likely to be a bona-fide Brown Dwarf companion to the young and nearby star. To be absolutely certain, its orbital motion should also be detected, but it will be very slow and can only be perceived after several years of continued observations. VLT observations of TWA-5 B Two years ago, a faint companion candidate was found near one of the young and nearby stars included in the present programme and designated TWA-5 (also known as CoD -33 7795 ). It is about 12 million years old and is a member of a group of about a dozen young stars (of the "T Tauri"-type ), seen in the southern constellation Hydra (the Water-Snake) and grouped around the star TW Hya , the first to be found in this area ("TWA" means the "TW Hya Association"). The HIPPARCOS mission of the European Space Agency (ESA) measured a mean distance to some of these stars of ~ 180 light-years (55 parsec). This

  6. The evolutionary status of the white dwarf companion of the binary pulsar PSR J1713+0747

    Science.gov (United States)

    Benvenuto, O. G.; Rohrmann, R. D.; De Vito, M. A.

    2006-03-01

    Recently Splaver et al. have measured the masses of the white dwarf and the neutron star (NS) components of the PSR J1713+0747 binary system pair by means of the general relativistic effect known as Shapiro delay with very high accuracy. Employing these data we attempt to find the original configuration that evolved to the observed system. For this purpose we perform a set of binary evolution calculations trying to simultaneously account for the masses of both stars and the orbital period. In doing so, we considered normal (donor) stars with an initial mass of 1.5Msolar, while for the neutron star companion we assumed a mass of 1.4Msolar. We assumed two metallicity values for the donor star (Z= 0.010 and 0.020) and that the initial orbital period was nearly 3d. In order to get a good agreement between the masses of the models and observations we had to assume that the NS is only able to retain Benvenuto & De Vito, that handles the mass transfer rate in a fully implicit way together with state-of-the-art physical ingredients and diffusion processes. Now our code also includes a detailed non-grey treatment for the atmospheres of white dwarfs (WDs). We compare the structure of the resulting WDs with the characteristic age of PSR J1713+0747 finding a nice agreement with observations by Lundgren et al. especially for the case of a donor star with Z= 0.010. This result indicates that, at least for the purposes of this paper, the evolution of this kind of binary system is fairly well understood. The models predict that, due to diffusion, the atmosphere of the white dwarf is an almost hydrogen-pure one. We find that such structures are unable to account for the colours measured by Lundgren et al. within their error bars. Thus, in spite of the very good agreement of the model with the main characteristics of the system, we find that some discrepancies in the WD emergent radiation remain to be explained.

  7. Planets Around Low-Mass Stars (PALMS). III. A Young Dusty L Dwarf Companion at the Deuterium-Burning Limit

    CERN Document Server

    Bowler, Brendan P; Shkolnik, Evgenya L; Dupuy, Trent J

    2013-01-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.45" (~52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R~3800) 1.5-2.4 $\\mu$m spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the ~120 Myr AB Dor young moving group based on the photometric distance to the primary (36 +/- 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I $\\lambda$6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of ~10-120 Myr is possible. The age...

  8. An Astrometric Search for a Sub-stellar Companion of the M8.5 Dwarf TVLM 513-46546 Using Very Long Baseline Interferometry

    CERN Document Server

    Forbrich, Jan; Reid, Mark J

    2013-01-01

    We conducted multi-epoch VLBI observations to search for astrometric reflex motion caused by a sub-stellar companion of the M8.5 dwarf TVLM 513-46546. The observations yield an absolute parallax corresponding to a distance of 10.762+/-0.027 pc and a proper motion of 78.09+/-0.17 mas/yr. From the absence of significant residual motion, we place an upper limit to any reflex motion caused by a companion, extending the parameter space covered by previous near-infrared direct-imaging searches. By covering different orbital periods, the data exclude a phase-space of companion masses and orbital periods ranging from 3.8 Mjup with an orbital radius of ~0.05 AU (orbital period of 16 days) to 0.3 Mjup with an orbital radius of ~0.7 AU (orbital period of 710 days).

  9. First results from the MADCASH Survey: A Faint Dwarf Galaxy Companion to the Low Mass Spiral Galaxy NGC 2403 at 3.2 Mpc

    CERN Document Server

    Carlin, Jeffrey L; Price, Paul; Willman, Beth; Karunakaran, Ananthan; Spekkens, Kristine; Bell, Eric F; Brodie, Jean P; Crnojević, Denija; Forbes, Duncan A; Hargis, Jonathan; Kirby, Evan; Lupton, Robert; Peter, Annika H G; Romanowsky, Aaron J; Strader, Jay

    2016-01-01

    We report the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep imaging with Subaru/Hyper Suprime-Cam. MADCASH J074238+652501-dw lies $\\sim$35 kpc in projection from NGC 2403, a dwarf spiral galaxy at $D$$\\approx$3.2 Mpc. This new dwarf has $M_{g} = -7.4\\pm0.4$ and a half-light radius of $168\\pm70$ pc, at the calculated distance of $3.39\\pm0.41$ Mpc. The color-magnitude diagram reveals no evidence of young stellar populations, suggesting that MADCASH J074238+652501-dw is an old, metal-poor dwarf similar to low luminosity dwarfs in the Local Group. The lack of either detected HI gas ($M_{\\rm HI}/L_{V} < 0.69 M_\\odot/L_\\odot$, based on Green Bank Telescope observations) or $GALEX$ NUV/FUV flux enhancement is consistent with a lack of young stars. This is the first result from the MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey, which is conducting a census of the stellar substructure and faint satellites in the halos...

  10. An eccentric binary millisecond pulsar with a helium white dwarf companion in the Galactic Field

    CERN Document Server

    Antoniadis, John; Stovall, Kevin; Freire, Paulo C; Deneva, Julia S; Koester, Detlev; Jenet, Frederick; Martinez, Jose

    2016-01-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the Universe is not yet old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant host systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of a LMWD in an eccentric (e=0.13) orbit with a millisecond pulsar, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature T_eff = 8600 +/- 190 K) and 3D systemic velocity (179.5 km\\s). We also place model-independent constraints on the WD radius (R_WD = 0.024+/- 0.004/0.002 R_sun) and surface gravity (log g = 7.11 +/- 0.08/0.16 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavour a three-body formation channel. In the case of the high eccentricity being the result of a spontaneou...

  11. ON THE FORMATION OF ECCENTRIC MILLISECOND PULSARS WITH HELIUM WHITE-DWARF COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, John, E-mail: antoniadis@dunlap.utoronto.ca [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada)

    2014-12-20

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10{sup 4}-10{sup 5} yr) disk can result in eccentricities of e ≅ 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  12. On the formation of eccentric millisecond pulsars with helium white-dwarf companions

    CERN Document Server

    Antoniadis, John

    2014-01-01

    Millisecond pulsars (MSPs) orbiting helium white-dwarfs (WD) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris (2014) recently proposed that these binary MSPs may instead form from the rotationally-delayed accretion-induced collapse of a massive WD. This scenario predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities -- in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10^4-10^5 yrs disk can result to eccentricities of e ~ 0.01-0.15 for orbital per...

  13. On the Formation of Eccentric Millisecond Pulsars with Helium White-dwarf Companions

    Science.gov (United States)

    Antoniadis, John

    2014-12-01

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire & Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (104-105 yr) disk can result in eccentricities of e ~= 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  14. An Eccentric Binary Millisecond Pulsar with a Helium White Dwarf Companion in the Galactic field

    Science.gov (United States)

    Antoniadis, John; Kaplan, David L.; Stovall, Kevin; Freire, Paulo C. C.; Deneva, Julia S.; Koester, Detlev; Jenet, Fredrick; Martinez, Jose G.

    2016-10-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the universe is not old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of an LMWD in an eccentric (e = 0.13) orbit around the millisecond pulsar PSR J2234+0511, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature ({T}{{eff}}=8600+/- 190 K), and peculiar systemic velocity relative to the local standard of rest (≃ 31 km s-1). We also place model-independent constraints on the WD radius ({R}{{WD}}={0.024}-0.002+0.004 {R}⊙ ) and surface gravity ({log} g={7.11}-0.16+0.08 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavor a dynamic three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of ˜1.60 M ⊙ for the pulsar progenitor, which is too low for the quark-nova mechanism proposed by Jiang et al., and too high for the scenario of Freire & Tauris, in which a WD collapses into a neutron star via a rotationally delayed accretion-induced collapse. We find that eccentricity pumping via interaction with a circumbinary disk is consistent with our inferred parameters. Finally, we report tentative evidence for pulsations that, if confirmed, would transform the star into an unprecedented laboratory for WD physics.

  15. TWO PLANETARY COMPANIONS AROUND THE K7 DWARF GJ 221: A HOT SUPER-EARTH AND A CANDIDATE IN THE SUB-SATURN DESERT RANGE

    Energy Technology Data Exchange (ETDEWEB)

    Arriagada, Pamela; Minniti, Dante [Department of Astronomy, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Anglada-Escude, Guillem; Butler, R. Paul [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305 (United States); Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Wende, Sebastian, E-mail: parriaga@astro.puc.cl [Institut fuer Astrophysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany)

    2013-07-01

    We report two low-mass companions orbiting the nearby K7 dwarf GJ 221 that have emerged from reanalyzing 4.4 yr of publicly available HARPS spectra complemented with 2 years of high-precision Doppler measurements with Magellan/PFS. The HARPS measurements alone contain the clear signal of a low-mass companion with a period of 125 days and a minimum mass of 53.2 M{sub Circled-Plus} (GJ 221b), falling in a mass range where very few planet candidates have been found (sub-Saturn desert). The addition of 17 PFS observations allows the confident detection of a second low-mass companion (6.5 M{sub Circled-Plus }) in a hot orbit (3.87 day period, GJ 221c). Spectroscopic and photometric calibrations suggest that GJ 221 is slightly depleted ([Fe/H] {approx} -0.1) compared to the Sun, so the presence of two low-mass companions in the system confirms the trend that slightly reduced stellar metallicity does not prevent the formation of planets in the super-Earth to sub-Saturn mass regime.

  16. The High Time Resolution Universe Survey - XI. Discovery of five recycled pulsars and the optical detectability of survey white dwarf companions

    CERN Document Server

    Bates, S D; Bailes, M; Barr, E; Bassa, C G; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Champion, D J; Flynn, C M L; Jameson, A; Johnston, S; Keith, M J; Kramer, M; Levin, L; Lyne, A; Milia, S; Ng, C; Petroff, E; Possenti, A; Stappers, B W; van Straten, W; Tiburzi, C

    2014-01-01

    We present the discovery of a further five recycled pulsar systems in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) Survey. The pulsars have rotational periods ranging from 2 ms to 66 ms, and four are in binary systems with orbital periods between 10.8 hours and 9.0 days. Three of these binary systems are particularly interesting; PSR J1227-6208 has a pulse period of 34.5 ms and the highest mass function of all pulsars with near-circular orbits. The circular orbit suggests that the companion is not another neutron star, so future timing experiments may reveal one of the heaviest white dwarfs ever found ($>$ 1.3 M$_\\odot$). Timing observations of PSR J1431$-$4715 indicate that it is eclipsed by its companion which has a mass indicating it belongs to the redback class of eclipsing millisecond pulsars. PSR J1653-2054 has a companion with a minimum mass of only $0.08$ M$_\\odot$, placing it among the class of pulsars with low-mass companions. Unlike the majority of such systems, how...

  17. First Results from the MADCASH Survey: A Faint Dwarf Galaxy Companion to the Low-mass Spiral Galaxy NGC 2403 at 3.2 Mpc

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Price, Paul; Willman, Beth; Karunakaran, Ananthan; Spekkens, Kristine; Bell, Eric F.; Brodie, Jean P.; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Lupton, Robert; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay

    2016-09-01

    We report the discovery of the faintest known dwarf galaxy satellite of a Large Magellanic Cloud (LMC) stellar-mass host beyond the Local Group (LG), based on deep imaging with Subaru/Hyper Suprime-Cam. Magellanic Analog Dwarf Companions And Stellar Halos (MADCASH) J074238+652501-dw lies ˜35 kpc in projection from NGC 2403, a dwarf spiral galaxy at D ≈ 3.2 Mpc. This new dwarf has {M}g=-7.4+/- 0.4 and a half-light radius of 168 ± 70 pc, at the calculated distance of 3.39 ± 0.41 Mpc. The color-magnitude diagram reveals no evidence of young stellar populations, suggesting that MADCASH J074238+652501-dw is an old, metal-poor dwarf similar to low-luminosity dwarfs in the LG. The lack of either detected HI gas ({M}{HI}/{L}V\\lt 0.69 {M}⊙ /{L}⊙ , based on Green Bank Telescope observations) or GALEX NUV/FUV flux enhancement is consistent with a lack of young stars. This is the first result from the MADCASH survey, which is conducting a census of the stellar substructure and faint satellites in the halos of Local Volume LMC analogs via resolved stellar populations. Models predict a total of ˜4-10 satellites at least as massive as MADCASH J074238+652501-dw around a host with the mass of NGC 2403, with 2-3 within our field of view, slightly more than the one such satellite observed in our footprint. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  18. Characterization of the atmosphere of the hot Jupiter HAT-P-32Ab and the M-dwarf companion HAT-P-32B

    CERN Document Server

    Zhao, Ming; Wright, Jason T; Knutson, Heather A; Burrows, Adam; Fortney, Johnathan; Ngo, Henry; Fulton, Benjamin J; Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Muirhead, Philip S; Hinkley, Sasha; Showman, Adam P; Curtis, Jason; Burruss, Rick

    2014-01-01

    We report secondary eclipse photometry of the hot Jupiter HAT-P-32Ab, taken with Hale/WIRC in H and Ks bands and with Spitzer/IRAC at 3.6 and 4.5 micron. We carried out adaptive optics imaging of the planet host star HAT-P-32A and its companion HAT-P-32B in the near-IR and the visible. We clearly resolve the two stars from each other and find a separation of 2.923" +/- 0. 004" and a position angle 110.64 deg +/- 0.12 deg. We measure the flux ratios of the binary in g' r' i' z' and H & Ks bands, and determine Teff = 3565 +/- 82 K for the companion star, corresponding to an M1.5 dwarf. We use PHOENIX stellar atmosphere models to correct the dilution of the secondary eclipse depths of the hot Jupiter due to the presence of the M1.5 companion. We also improve the secondary eclipse photometry by accounting for the non-classical, flux-dependent nonlinearity of the WIRC IR detector in the H band. We measure planet-to-star flux ratios of 0.090 +/- 0.033%, 0.178 +/- 0.057%, 0.364 +/- 0.016%, and 0.438 +/- 0.020% i...

  19. AN ASTROMETRIC SEARCH FOR A SUB-STELLAR COMPANION OF THE M8.5 DWARF TVLM 513–46546 USING VERY LONG BASELINE INTERFEROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan; Berger, Edo; Reid, Mark J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We conducted multi-epoch very long baseline interferometry observations to search for astrometric reflex motion that would be caused by a sub-stellar companion of the M8.5 dwarf TVLM 513–46546. The observations yield an absolute parallax corresponding to a distance of 10.762 ± 0.027 pc and a proper motion of 78.09 ± 0.17 mas yr{sup –1}. The averaged flux density per epoch varies by a factor of at least three. From the absence of significant residual motion, we place an upper limit on any reflex motion caused by a companion, extending the parameter space covered by previous near-infrared direct-imaging searches. The data exclude a phase space of companion masses and orbital periods ranging from 3.8 M{sub Jup} with an orbital radius of ∼0.05 AU (and an orbital period of 16 days) to 0.3 M{sub Jup} with an orbital radius of ∼0.7 AU (and an orbital period of 710 days)

  20. Planet or brown dwarf? Inferring the companion mass in HD 100546 from the wall shape using mid-infrared interferometry

    NARCIS (Netherlands)

    Mulders, Gijs D.; Paardekooper, Sijme-Jan; Panic, Olja; Dominik, Carsten; van Boekel, Roy; Ratzka, Thorsten

    2013-01-01

    Context. Giant planets form in protoplanetary disks while these disks are still gas-rich, and can reveal their presence through the annular gaps they carve out. HD 100546 is a gas-rich disk with a wide gap between a radius of similar to 1 and 13 AU, possibly cleared out by a planetary companion or p

  1. MagAO Imaging of Long-period Objects (MILO). I. A Benchmark M Dwarf Companion Exciting a Massive Planet around the Sun-like Star HD 7449

    CERN Document Server

    Rodigas, Timothy J; Faherty, Jackie; Anglada-Escude, Guillem; Kaib, Nathan; Butler, R Paul; Shectman, Stephen; Weinberger, Alycia; Males, Jared R; Morzinski, Katie M; Close, Laird M; Hinz, Philip M; Crane, Jeffrey D; Thompson, Ian; Teske, Johanna; Diaz, Matias; Minniti, Dante; Lopez-Morales, Mercedes; Adams, Fred C; Boss, Alan P

    2015-01-01

    We present high-contrast Magellan adaptive optics (MagAO) images of HD 7449, a Sun-like star with one planet and a long-term radial velocity (RV) trend. We unambiguously detect the source of the long-term trend from 0.6-2.15 \\microns ~at a separation of \\about 0\\fasec 54. We use the object's colors and spectral energy distribution to show that it is most likely an M4-M5 dwarf (mass \\about 0.1-0.2 \\msun) at the same distance as the primary and is therefore likely bound. We also present new RVs measured with the Magellan/MIKE and PFS spectrometers and compile these with archival data from CORALIE and HARPS. We use a new Markov chain Monte Carlo procedure to constrain both the mass ($> 0.17$ \\msun ~at 99$\\%$ confidence) and semimajor axis (\\about 18 AU) of the M dwarf companion (HD 7449B). We also refine the parameters of the known massive planet (HD 7449Ab), finding that its minimum mass is $7.8^{+3.7}_{-1.35}$ \\mj, its semimajor axis is $2.33^{+0.01}_{-0.02}$ AU, and its eccentricity is $0.8^{+0.08}_{-0.06}$. ...

  2. A THERMAL INFRARED IMAGING STUDY OF VERY LOW MASS, WIDE-SEPARATION BROWN DWARF COMPANIONS TO UPPER SCORPIUS STARS: CONSTRAINING CIRCUMSTELLAR ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Vanessa; Hinz, Philip M.; Su, Kate Y. L.; Hoffmann, William F.; Rieke, George; Rodigas, Timothy; Skemer, Andrew; Vaitheeswaran, Vidhya [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Esposito, Simone; Pinna, Enrico; Puglisi, Alfio [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Jones, Terry [School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Kim, Jihun [College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721 (United States); Leisenring, Jarron; Meyer, Michael [Institut fuer Angewandte Physik, Eidgenoessische Technische Hochschule-Zuerich, CH-8093 (Switzerland); Murray-Clay, Ruth; Skrutskie, Michael F. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States); Nelson, Matthew J., E-mail: vbailey@as.arizona.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); and others

    2013-04-10

    We present a 3-5 {mu}m LBT/MMT adaptive optics imaging study of three Upper Scorpius stars with brown dwarf (BD) companions with very low masses/mass ratios (M{sub BD} <25 M{sub Jup}; M{sub BD}/M{sub *} Almost-Equal-To 1%-2%) and wide separations (300-700 AU): GSC 06214, 1RXS 1609, and HIP 78530. We combine these new thermal IR data with existing 1-4 {mu}m and 24 {mu}m photometry to constrain the properties of the BDs and identify evidence for circumprimary/circumsecondary disks in these unusual systems. We confirm that GSC 06214B is surrounded by a disk, further showing that this disk produces a broadband IR excess due to small dust near the dust sublimation radius. An unresolved 24 {mu}m excess in the system may be explained by the contribution from this disk. 1RXS 1609B exhibits no 3-4 {mu}m excess, nor does its primary; however, the system as a whole has a modest 24 {mu}m excess, which may come from warm dust around the primary and/or BD. Neither object in the HIP 78530 system exhibits near- to mid-IR excesses. We additionally find that the 1-4 {mu}m colors of HIP 78530B match a spectral type of M3 {+-} 2, inconsistent with the M8 spectral type assigned based on its near-IR spectrum, indicating that it may be a low-mass star rather than a BD. We present new upper limits on additional low-mass companions in the system (<5 M{sub Jup} beyond 175 AU). Finally, we examine the utility of circumsecondary disks as probes of the formation histories of wide BD companions, finding that the presence of a disk may disfavor BD formation near the primary with subsequent outward scattering.

  3. Theoretical comments on reproducibility and normalization of TWA measures.

    Science.gov (United States)

    Sassi, Roberto; Mainardi, Luca T

    2013-01-01

    Using a simple stochastic model of ventricular repolarization and the equivalent surface source (ESS) model, an electrophysiological formulation relating surface ECG to variations at the myocytes' level, we recently pointed out a few theoretical results regarding T-wave alternans (TWA). In this paper, stimulated by the comments of John E. Madias on our paper (J Electrocardiol, 2012), we further explored the consequences implied by the theoretical model. First, we verified the reproducibility of TWA measures, in clinically stable patients repeatedly tested. The sensitivity to displacement was evaluated simulating lead mislocations of up to 20mm. The numerical simulations were performed on data obtained solving the inverse electrocardiographically problem from three subjects (ECGSIM). The results showed that TWA sensitivity varies across leads, being maximal in V1 and decreases towards V6. Globally, the maximal percent error found was 6.1%. Thus, TWA measures do not seem to add more stringent requirements on lead placement's precision, than the usual diagnostic practice. Finally, we further discussed the implications of normalizing TWA measures. While clinical studies are necessary to sort out the issue, the theoretical model suggests that normalization might be appropriate only is certain cases.

  4. The evolutionary status of the white dwarf companion of the binary pulsar PSR J1713+0747

    CERN Document Server

    Benvenuto, O G; De Vito, M A

    2006-01-01

    Splaver and coworkers have measured the masses of the white dwarf and the neutron star components of the PSR J1713+0747 binary system pair by Shapiro Delay. We attempt to find the original configuration of this system performing a set of binary evolution calculations to simultaneously account for the masses of both stars and the orbital period. We considered initial masses of 1.5 and 1.4 \\msun for the normal (donor) and the neutron star, respectively. We assumed two metallicity values (Z = 0.010 and 0.020), and an initial orbital period near 3 days. We assume that the neutron star is only able to retain \\lesssim 0.10 of the matter transferred by the donor star. Calculations were performed employing our binary hydro code that handles the mass transfer rate in a fully implicit way together with state-of-the-art physical ingredients, diffusion and a non-grey atmospheres. We compare the structure of the resulting white dwarfs with the characteristic age of PSR J1713+0747 finding a nice agreement with observations...

  5. SCExAO and GPI Y JHBand Photometry and Integral Field Spectroscopy of the Young Brown Dwarf Companion to HD 1160

    Science.gov (United States)

    Garcia, E. Victor; Currie, Thayne; Guyon, Olivier; Stassun, Keivan G.; Jovanovic, Nemanja; Lozi, Julien; Kudo, Tomoyuki; Doughty, Danielle; Schlieder, Josh; Kwon, J.; Uyama, T.; Kuzuhara, M.; Carson, J. C.; Nakagawa, T.; Hashimoto, J.; Kusakabe, N.; Abe, L.; Brandner, W.; Brandt, T. D.; Feldt, M.; Goto, M.; Grady, C. A.; Hayano, Y.; Hayashi, M.; Hayashi, S. S.; Henning, T.; Hodapp, K. W.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G. R.; Matsuo, T.; McElwain, M. W.; Miyama, S.; Morino, J.-I.; Moro-Martin, A.; Nishimura, T.; Pyo, T.-S.; Serabyn, E.; Suenaga, T.; Suto, H.; Suzuki, R.; Takahashi, Y. H.; Takami, H.; Takami, M.; Takato, N.; Terada, H.; Thalmann, C.; Turner, E. L.; Watanabe, M.; Wisniewski, J.; Yamada, T.; Usuda, T.; Tamura, M.

    2017-01-01

    We present high signal-to-noise ratio, precise Y JH photometry and Y band (0.957–1.120 μm) spectroscopy of HD 1160 B, a young substellar companion discovered from the Gemini NICI Planet Finding Campaign using the Subaru Coronagraphic Extreme Adaptive Optics instrument and the Gemini Planet Imager. HD 1160 B has typical mid-M dwarf-like infrared colors and a spectral type of M5.5{}-0.5+1.0, where the blue edge of our Y band spectrum rules out earlier spectral types. Atmospheric modeling suggests HD 1160 B has an effective temperature of 3000–3100 K, a surface gravity of log g = 4–4.5, a radius of 1.55 ± 0.10 R J, and a luminosity of log L/L ⊙ = ‑2.76 ± 0.05. Neither the primary’s Hertzspring–Russell diagram position nor atmospheric modeling of HD 1160 B show evidence for a subsolar metallicity. Interpretation of the HD 1160 B spectroscopy depends on which stellar system components are used to estimate the age. Considering HD 1160 A, B and C jointly, we derive an age of 80–125 Myr, implying that HD 1160 B straddles the hydrogen-burning limit (70–90 M J). If we consider HD 1160 A alone, younger ages (20–125 Myr) and a brown dwarf-like mass (35–90 M J) are possible. Interferometric measurements of the primary, a precise Gaia parallax, and moderate-resolution spectroscopy can better constrain the system’s age and how HD 1160 B fits within the context of (sub)stellar evolution.

  6. Pattern of crescendo TWA may disclose the underlying cardiac pathology.

    Science.gov (United States)

    Nieminen, Tuomo; Verrier, Richard L; Nikus, Kjell; Viik, Jari; Lehtinen, Rami; Lehtimäki, Terho; Kaiser, Willi; Kähönen, Mika

    2010-01-01

    We present an exercise test case in which crescendo TWA preceded ventricular tachycardia (VT). The patient was examined due to suspicion of ischemic heart disease. The ST-segment became elevated simultaneously with a distinct alternation in the ST-segment and the first half of the T-wave, and the patient developed polymorphic VT. Coronary angiography disclosed marked stenoses. Earlier reports of TWA in patients with congenital long QT syndrome show a pattern in which the T wave frequently alternates above and below the isoelectric line without concomitant ST-segment changes. In Brugada syndrome patients, the signature ST-T wave pattern is the locus of alternation. Future investigation should elucidate whether specific TWA morphologies may expose underlying heart disease.

  7. CROWDING-OUT OF GIANTS BY DWARFS: AN ORIGIN FOR THE LACK OF COMPANION PLANETS IN HOT JUPITER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Masahiro; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi, E-mail: ogihara@nagoya-u.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan)

    2013-11-20

    We investigate the formation of close-in terrestrial planets from planetary embryos under the influence of a hot Jupiter (HJ) using gravitational N-body simulations that include gravitational interactions between the gas disk and the terrestrial planet (e.g., type I migration). Our simulations show that several terrestrial planets efficiently form outside the orbit of the HJ, making a chain of planets, and all of them gravitationally interact directly or indirectly with the HJ through resonance, which leads to inward migration of the HJ. We call this mechanism of induced migration of the HJ ''crowding-out''. The HJ is eventually lost through collision with the central star, and only several terrestrial planets remain. We also find that the efficiency of the crowding-out effect depends on the model parameters; for example, the heavier the disk is, the more efficient the crowding-out is. When planet formation occurs in a massive disk, the HJ can be lost to the central star and is never observed. On the other hand, for a less massive disk, the HJ and terrestrial planets can coexist; however, the companion planets may be below the detection limit of current observations. In both cases, systems with a HJ and terrestrial planets have little chance of detection. Therefore, our model naturally explains the lack of companion planets in HJ systems regardless of the disk mass. In effect, our model provides a theoretical prediction for future observations; additional planets can be discovered just outside the HJ, and their masses should generally be small.

  8. A Thermal Infrared Imaging Study of Very Low-Mass, Wide Separation Brown Dwarf Companions to Upper Scorpius Stars: Constraining Circumstellar Environments

    CERN Document Server

    Bailey, Vanessa; Currie, Thayne; Su, Kate Y L; Esposito, Simone; Hill, John M; Hoffmann, William F; Jones, Terry; Kim, Jihun; Leisenring, Jarron; Meyer, Michael; Murray-Clay, Ruth; Nelson, Matthew J; Pinna, Enrico; Puglisi, Alfio; Rieke, George; Rodigas, Timothy; Skemer, Andrew; Skrutskie, Michael F; Vaitheeswaran, Vidhya; Wilson, John C

    2013-01-01

    We present a 3-5um LBT/MMT adaptive optics imaging study of three Upper Scorpius stars with brown dwarf (BD) companions with very low-masses/mass ratios (M_BD < 25M_Jup; M_BD / M_star ~ 1-2%), and wide separations (300-700 AU): GSC 06214, 1RXS 1609, and HIP 78530. We combine these new thermal IR data with existing 1-4um and 24um photometry to constrain the properties of the BDs and identify evidence for circumprimary/secondary disks in these unusual systems. We confirm that GSC 06214B is surrounded by a disk, further showing this disk produces a broadband IR excess due to small dust near the dust sublimation radius. An unresolved 24um excess in the system may be explained by the contribution from this disk. 1RXS 1609B exhibits no 3-4um excess, nor does its primary; however, the system as a whole has a modest 24um excess, which may come from warm dust around the primary and/or BD. Neither object in the HIP 78530 system exhibits near- to mid-IR excesses. We additionally find that the 1-4um colors of HIP 7853...

  9. The SOPHIE search for northern extrasolar planets . I. A companion around HD 16760 with mass close to the planet/brown-dwarf transition

    Science.gov (United States)

    Bouchy, F.; Hébrard, G.; Udry, S.; Delfosse, X.; Boisse, I.; Desort, M.; Bonfils, X.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Lagrange, A. M.; Le Coroller, H.; Lovis, C.; Moutou, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Vidal-Madjar, A.

    2009-10-01

    We report on the discovery of a substellar companion or a massive Jupiter orbiting the G5V star HD 16760 using the spectrograph SOPHIE installed on the OHP 1.93-m telescope. Characteristics and performances of the spectrograph are presented, as well as the SOPHIE exoplanet consortium program. With a minimum mass of 14.3 {M}_Jup, an orbital period of 465 days and an eccentricity of 0.067, HD 16760b seems to be located just at the end of the mass distribution of giant planets, close to the planet/brown-dwarf transition. Its quite circular orbit supports a formation in a gaseous protoplanetary disk. Based on observations made with SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OAMP), France (program 07A.PNP.CONS). Table 2 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/853

  10. SCExAO and GPI $YJH$ Band Photometry and Integral Field Spectroscopy of the Young Brown Dwarf Companion to HD 1160

    CERN Document Server

    Garcia, Eugenio V; Guyon, Olivier; Stassun, Keivan; Jovanovic, Nemanja; Lozi, Julien; Kudo, Tomoyuki; Doughty, Danielle; Schlieder, Joshua; Kwon, J; Uyama, T; Kuzuhara, M; Carson, J; Nakagawa, T; Hashimoto, J; Kusakabe, N; Abe, L; Brander, W; Brandt, T D; Feldt, M; Goto, M; Grady, C; Hayano, Y; Hayashi, M; Hayashi, S; Henning, T; Hodapp, K; Ishii, M; Iye, M; Janson, M; Kandori, R; Knapp, G; Matsuo, T; McElwain, M; Miyama, S; Morino, J I; Moro-Martin, A; Nishimura, T; Pyo, T -S; Serabyn, E; Suenaga, T; Suto, H; Suzuki, R; Takahashi, Y H; Takami, H; Takato, N; Terada, H; Thalmann, C; Turner, E L; Watanabe, M; Wisniewski, J; Yamada, T; Usuda, T; Tamura, M

    2016-01-01

    We present high signal-to-noise ratio, precise $YJH$ photometry and $Y$ band (\\gpiwave~$\\mu$m) spectroscopy of HD 1160 B, a young substellar companion discovered from the Gemini NICI Planet Finding Campaign, using the Subaru Coronagraphic Extreme Adaptive Optics instrument and the Gemini Planet Imager. HD 1160 B has typical mid-M dwarf-like infrared colors and a spectral type of M5.5$^{+1.0}_{-0.5}$, where the blue edge of our $Y$ band spectrum rules out earlier spectral types. Atmospheric modeling suggests HD 1160 B having an effective temperature of 3000--3100 $K$, a surface gravity of log $g$ = 4--4.5, a radius of~\\bestfitradius~$R_{\\rm J}$, and a luminosity of log $L$/$L_{\\odot} = -2.76 \\pm 0.05$. Neither the primary's Hertzspring-Russell diagram position nor atmospheric modeling of HD 1160 B show evidence for a sub-solar metallicity. The interpretation of the HD 1160 B depends on which stellar system components are used to estimate an age. Considering HD 1160 A, B and C jointly, we derive an age of 80--1...

  11. CARMENES science preparation: characterisation of M dwarfs with low-resolution spectroscopy and search for low-mass wide companions to young stars

    Science.gov (United States)

    Alonso-Floriano, F. J.

    2015-11-01

    This thesis is focused on the study of low-mass objects that can be targets of exoplanet searches with near-infrared spectrographs in general and CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs; see Quirrenbach et al. 2014) in particular. The CARMENES consortium comprises 11 institutions from Germany and Spain that are building a high-resolution spectrograph (R=82,000) with two channels, visible (0.55 - 1.05 um) and infrared (0.95 - 1.7 um), for the 3.5 m Calar Alto telescope. It will observe a sample of 300 M dwarfs in 600 nights of guaranteed time during at least three years, starting in January 2016. The final sample will be chosen from the 2200 M dwarfs included in the CARMENCITA input catalogue. For these stars, we have obtained and collected a large amount of data: spectral types, radial and rotational velocities, photometry in several bands, etc. Part of the e effort of the science preparation necessary for the final selection of targets for CARMENES and other near-infrared spectrographs has been collected in two publications, which are presented in this PhD thesis. In the first publication (Alonso-Floriano et al., 2015A&A...577A.128A), we obtained low-resolution spectra for 753 stars using the CAFOS spectrograph at the 2.2 m Calar Alto telescope. The main goal was to derive accurate spectral types, which are fundamental parameters for the sample selection. We used a grid of 49 standard stars, from spectral types K3V to M8V, together with a double least-square minimisation technique and 31 spectral indices previously defined by other authors. In addition, we quantified the surface gravity, metallicity and chromospheric activity of the sample, in order to detect low-gravity stars (giants and very young), metal-poor and very metal-poor stars (subdwarfs), and very active stars. In the second publication (Alonso-Floriano et al., 2015A&A...583A..85A), we searched for common proper

  12. Orbits and masses in the young triple system TWA 5

    CERN Document Server

    Köhler, R; Petr-Gotzens, M G; Correia, S

    2013-01-01

    We aim to improve the orbital elements and determine the individual masses of the components in the triple system TWA 5. Five new relative astrometric positions in the H band were recorded with the adaptive optics system at the Very Large Telescope (VLT). We combine them with data from the literature and a measurement in the Ks band. We derive an improved fit for the orbit of TWA 5Aa-b around each other. Furthermore, we use the third component, TWA 5B, as an astrometric reference to determine the motion of Aa and Ab around their center of mass and compute their mass ratio. We find an orbital period of 6.03+/-0.01 years and a semi-major axis of 63.7+/-0.2 mas (3.2+/-0.1 AU). With the trigonometric distance of 50.1+/-1.8 pc, this yields a system mass of 0.9+/-0.1 Msun, where the error is dominated by the error of the distance. The dynamical mass agrees with the system mass predicted by a number of theoretical models if we assume that TWA5 is at the young end of the age range of the TW Hydrae association. We fin...

  13. On the physical properties of TWA-2M1207

    Directory of Open Access Journals (Sweden)

    A. Bayo

    2007-01-01

    Full Text Available We have studied some physical properties of 2M1207 (member of TWA. Previously es- timated age for this moving group is 10 Myr. The chronology has been carried out by analysing different properties of this object (Teff, gravity, accretion/activity and lithium in the optical and IR and comparing them with well-known star-forming regions and open clusters, as well as theoretical models.

  14. Close Companions to Nearby Young Stars from Adaptive Optics Imaging on VLT and Keck

    Science.gov (United States)

    Haisch, Karl E.; Jayawardhana, Ray; Brandeker, Alexis; Mardones, Diego

    We report the results of VLT and Keck adaptive optics surveys of known members of the η Chamaeleontis, MBM 12, and TW Hydrae (TWA) associations to search for close companions. The multiplicity statistics of η Cha, MBM 12, and TWA are quite high compared with other clusters and associations, although our errors are large due to small number statistics. We have resolved S18 in MBM 12 and RECX 9 in η Cha into triples for the first time. The tight binary TWA 5Aab in the TWA offers the prospect of measuring the dynamical masses of both components as well as an independent distance to the system within a few years. The AO detection of the close companion to the nearby young star χ1 Orionis, previously inferred from radial velocity and astrometric observations, has already made it possible to derive the dynamical masses of that system without any astrophysical assumption.

  15. Close Companions to Nearby Young Stars from Adaptive Optics Imaging on VLT and Keck

    CERN Document Server

    Haisch, K E; Brandeker, A; Mardones, D; Jr., Karl E. Haisch; Jayawardhana, Ray; Brandeker, Alexis; Mardones, Diego

    2003-01-01

    We report the results of VLT and Keck adaptive optics surveys of known members of the Eta Chamaeleontis, MBM 12, and TW Hydrae (TWA) associations to search for close companions. The multiplicity statistics of Eta Cha, MBM 12, and TWA are quite high compared with other clusters and associations, although our errors are large due to small number statistics. We have resolved S18 in MBM 12 and RECX 9 in Eta Cha into triples for the first time. The tight binary TWA 5Aab in the TWA offers the prospect of measuring the dynamical masses of both components as well as an independent distance to the system within a few years. The AO detection of the close companion to the nearby young star Chi^1 Orionis, previously inferred from radial velocity and astrometric observations, has already made it possible to derive the dynamical masses of that system without any astrophysical assumption.

  16. FIRST IMAGES OF DEBRIS DISKS AROUND TWA 7, TWA 25, HD 35650, AND HD 377

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, Élodie; Perrin, Marshall D.; Chen, Christine H.; Soummer, Rémi; Pueyo, Laurent; Hagan, James B.; Gofas-Salas, Elena; Golimowski, David A.; Hines, Dean C.; Mazoyer, Johan; Debes, John; Stark, Christopher C.; N’Diaye, Mamadou [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Rajan, Abhijith [Arizona State University, Phoenix, AZ 85004 (United States); Schneider, Glenn [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Augereau, Jean-Charles [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France); Wolff, Schuyler; Hsiao, Kevin, E-mail: choquet@stsci.edu [Johns Hopkins University, 3400 North Charles Street, Baltimore MD 21218 (United States)

    2016-01-20

    We present the first images of four debris disks observed in scattered light around the young (4–250 Myr old) M dwarfs TWA 7 and TWA 25, the K6 star HD 35650, and the G2 star HD 377. We obtained these images by reprocessing archival Hubble Space Telescope NICMOS coronagraph data with modern post-processing techniques as part of the Archival Legacy Investigation of Circumstellar Environments program. All four disks appear faint and compact compared with other debris disks resolved in scattered light. The disks around TWA 25, HD 35650, and HD 377 appear very inclined, while TWA 7's disk is viewed nearly face-on. The surface brightness of HD 35650's disk is strongly asymmetric. These new detections raise the number of disks resolved in scattered light around M and late-K stars from one (the AU Mic system) to four. This new sample of resolved disks enables comparative studies of heretofore scarce debris disks around low-mass stars relative to solar-type stars.

  17. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. III. The frequency of brown dwarfs and giant planets as companions to solar-type stars

    CERN Document Server

    Reggiani, M; Chauvin, G; Vigan, A; Quanz, S P; Biller, B; Bonavita, M; Desidera, S; Delorme, P; Hagelberg, J; Maire, A -L; Boccaletti, A; Beuzit, J -L; Buenzli, E; Carson, J; Covino, E; Feldt, M; Girard, J; Gratton, R; Henning, T; Kasper, M; Lagrange, A -M; Mesa, D; Messina, S; Montagnier, G; Mordasini, C; Mouillet, D; Schlieder, J E; Segransan, D; Thalmann, C; Zurlo, A

    2015-01-01

    In recent years there have been many attempts to characterize the occurrence of stellar, BD and planetary-mass companions to solar-type stars, with the aim of constraining formation mechanisms. From RV observations a dearth of companions with masses between 10-40 MJup has been noticed at close separations, suggesting the possibility of a distinct formation mechanism for objects above and below this range. We present a model for the substellar companion mass function (CMF). It consists of the superposition of the planet and BD companion mass distributions, assuming that we can extrapolate the RV measured companion mass function for planets to larger separations and the stellar companion mass-ratio distribution over all separations into the BD mass regime. By using both the results of the VLT/NaCo large program and the complementary archive datasets that probe the occurrence of planets and BDs on wide orbits around solar-type stars, we place some constraints on the planet and BD distributions. We developed a MC...

  18. A Large X-ray Flare from a Single Weak-lined T Tauri Star TWA-7 Detected with MAXI GSC

    CERN Document Server

    Uzawa, Akiko; Morii, Mikio; Yamazaki, Kyohei; Kawai, Nobuyuki; Matsuoka, Masaru; Nakahira, Satoshi; Serino, Motoko; Matsumura, Takanori; Mihara, Tatehiro; Tomida, Hiroshi; Ueda, Yoshihiro; Sugizaki, Mutsumi; Ueno, Shiro; Daikyuji, Arata; Ebisawa, Ken; Eguchi, Satoshi; Hiroi, Kazuo; Ishikawa, Masaki; Isobe, Naoki; Kawasaki, Kazuyoshi; Kimura, Masashi; Kitayama, Hiroki; Kohama, Mitsuhiro; Kotani, Taro; Nakagawa, Yujin E; Nakajima, Motoki; Negoro, Hitoshi; Ozawa, Hiroshi; Shidatsu, Megumi; Sootome, Tetsuya; Sugimori, Kousuke; Suwa, Fumitoshi; Tsunemi, Hiroshi; Usui, Ryuichi; Yamamoto, Takayuki; Yamaoka, Kazutaka; Yoshida, Atsumasa

    2011-01-01

    We present a large X-ray flare from a nearby weak-lined T Tauri star TWA-7 detected with the Gas Slit Camera (GSC) on the Monitor of All-sky X-ray Image (MAXI). The GSC captured X-ray flaring from TWA-7 with a flux of $3\\times10^{-9}$ ergs cm$^{-2}$ s$^{-1}$ in 2--20 keV band during the scan transit starting at UT 2010-09-07 18:24:30.The estimated X-ray luminosity at the scan in the energy band is 3$\\times10^{32}$ ergs s$^{-1}$,indicating that the event is among the largest X-ray flares fromT Tauri stars.Since MAXI GSC monitors a target only during a scan transit of about a minute per 92 min orbital cycle, the luminosity at the flare peak might have been higher than that detected. At the scan transit, we observed a high X-ray-to-bolometric luminosity ratio, log $L_{\\rm X}/L_{\\rm bol}$ = $-0.1^{+0.2}_{-0.3}$; i.e., the X-ray luminosity is comparable to the bolometric luminosity. Since TWA-7 has neither an accreting disk nor a binary companion, the observed event implies that none of those are essential to gene...

  19. Very Low Mass Stellar and Substellar Companions to Solar-Like Stars From MARVELS V: A Low Eccentricity Brown Dwarf from the Driest Part of the Desert, MARVELS-6b

    CERN Document Server

    De Lee, Nathan; Crepp, Justin R; Eastman, Jason; Esposito, Massimiliano; Femenía, Bruno; Fleming, Scott W; Gaudi, B Scott; Ghezzi, Luan; Hernández, Jonay I González; Lee, Brian L; Stassun, Keivan G; Wisniewski, John P; Wood-Vasey, W Michael; Agol, Eric; Prieto, Carlos Allende; Barnes, Rory; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Da Costa, Luiz N; De Mello, G F Porto; Ferreira, Leticia D; Gary, Bruce; Hebb, Leslie; Holtzman, Jon; Liu, Jian; Ma, Bo; Mack, Claude E; Mahadevan, Suvrath; Maia, Marcio A G; Nguyen, Duy Cuong; Oravetz, Audrey; Oravetz, Daniel J; Paegert, Martin; Pan, Kaike; Pepper, Joshua; Malanushenko, Elena; Malanushenko, Viktor; Rebolo, Rafael; Santiago, Basilio X; Schneider, Donald P; Bradley, Alaina C Shelden; Wan, Xiaoke; Wang, Ji; Zhao, Bo

    2013-01-01

    We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 +/- 2.0 M_Jup to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M_Sun, and thus it is a high-confidence BD companion. It has a moderately long orbital period of 47.8929 +0.0063/-0.0062 days with a low eccentricty of 0.1442 +0.0078/-0.0073, and a semi-amplitude of 1644 +12/-13 m/s. Moderate resolution spectroscopy of the host star has determined the following parameters: T_eff = 5598 +/- 63, log g = 4.44 +/- 0.17, and [Fe/H] = +0.40 +/- 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M_star = 1.11 +/- 0.11 M_Sun and R_star = 1.06 +/- 0.23 R_Sun with an age consistent with less than ~6 Gyr at a distance of 219 +/- 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule ...

  20. Very Low-Mass Stellar and Substellar Companions to Solar-like Stars From MARVELS VI: A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    CERN Document Server

    Ma, Bo; Wolszczan, Alex; Muterspaugh, Matthew W; Lee, Brian; Henry, Gregory W; Schneider, Donald P; Martin, Eduardo L; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; da Costa, Luiz Nicolaci; Jiang, Peng; Fiorenzano, A F Martinez; Hernandez, Jonay I Gonzalez; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C; Wan, Xiaoke; Wang, Ji; Wisniewski, John P; Zhao, Bo; Zucker, Shay

    2016-01-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. It is the first close binary system with more than one substellar circum-primary companion discovered to the best of our knowledge. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using ET at Kitt Peak National Observatory, HRS at HET, the "Classic" spectrograph at the Automatic Spectroscopic Telescope at Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period brown dwarf in this binary. HD 87646 is a close binary with a separation of $\\sim22$ AU between the two stars, estimated using the Hipparcos catalogue and our newly acquired AO image from PALAO on the 200-inch Hale Telescope at Palomar. The primary star in the binary, HD 87646...

  1. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. V. A LOW ECCENTRICITY BROWN DWARF FROM THE DRIEST PART OF THE DESERT, MARVELS-6b

    Energy Technology Data Exchange (ETDEWEB)

    De Lee, Nathan; Stassun, Keivan G.; Cargile, Phillip [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Ge, Jian; Fleming, Scott W.; Lee, Brian L.; Chang Liang [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Eastman, Jason; Gaudi, B. Scott [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I.; Allende Prieto, Carlos [Instituto de Astrofisica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ghezzi, Luan [Observatorio Nacional, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Wisniewski, John P. [H L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St Norman, OK 73019 (United States); Wood-Vasey, W. Michael [Pittsburgh Particle physics, Astrophysics, and Cosmology Center (PITT PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Agol, Eric; Barnes, Rory [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bizyaev, Dmitry, E-mail: nathan.delee@vanderbilt.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-06-15

    We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 {+-} 2.0 M{sub Jup} to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M{sub Sun }, and thus it is a high-confidence BD companion. It has a moderately long orbital period of 47.8929{sup +0.0063}{sub -0.0062} days with a low eccentricity of 0.1442{sup +0.0078}{sub -0.0073}, and a semi-amplitude of 1644{sup +12}{sub -13} m s{sup -1}. Moderate resolution spectroscopy of the host star has determined the following parameters: T{sub eff} = 5598 {+-} 63, log g = 4.44 {+-} 0.17, and [Fe/H] = +0.40 {+-} 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M{sub *} = 1.11 {+-} 0.11 M{sub Sun} and R{sub *} = 1.06 {+-} 0.23 R{sub Sun} with an age consistent with less than {approx}6 Gyr at a distance of 219 {+-} 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule out a transiting configuration based on our observations. There is a visual companion detected with Lucky Imaging at 7.''7 from the host star, but our analysis shows that it is not bound to this system. The minimum mass of MARVELS-6b exists at the minimum of the mass functions for both stars and planets, making this a rare object even compared to other BDs. It also exists in an underdense region in both period/eccentricity and metallicity/eccentricity space.

  2. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. V. A Low Eccentricity Brown Dwarf from the Driest Part of the Desert, MARVELS-6b

    Science.gov (United States)

    De Lee, Nathan; Ge, Jian; Crepp, Justin R.; Eastman, Jason; Esposito, Massimiliano; Femenía, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; González Hernández, Jonay I.; Lee, Brian L.; Stassun, Keivan G.; Wisniewski, John P.; Wood-Vasey, W. Michael; Agol, Eric; Allende Prieto, Carlos; Barnes, Rory; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Da Costa, Luiz N.; Porto De Mello, G. F.; Ferreira, Leticia D.; Gary, Bruce; Hebb, Leslie; Holtzman, Jon; Liu, Jian; Ma, Bo; Mack, Claude E., III; Mahadevan, Suvrath; Maia, Marcio A. G.; Nguyen, Duy Cuong; Oravetz, Audrey; Oravetz, Daniel J.; Paegert, Martin; Pan, Kaike; Pepper, Joshua; Malanushenko, Elena; Malanushenko, Viktor; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden Bradley, Alaina C.; Wan, Xiaoke; Wang, Ji; Zhao, Bo

    2013-06-01

    We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 ± 2.0 M Jup to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M ⊙, and thus it is a high-confidence BD companion. It has a moderately long orbital period of 47.8929^{+0.0063}_{-0.0062} days with a low eccentricity of 0.1442^{+0.0078}_{-0.0073}, and a semi-amplitude of 1644^{+12}_{-13} m s-1. Moderate resolution spectroscopy of the host star has determined the following parameters: T eff = 5598 ± 63, log g = 4.44 ± 0.17, and [Fe/H] = +0.40 ± 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M * = 1.11 ± 0.11 M ⊙ and R * = 1.06 ± 0.23 R ⊙ with an age consistent with less than ~6 Gyr at a distance of 219 ± 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule out a transiting configuration based on our observations. There is a visual companion detected with Lucky Imaging at 7.''7 from the host star, but our analysis shows that it is not bound to this system. The minimum mass of MARVELS-6b exists at the minimum of the mass functions for both stars and planets, making this a rare object even compared to other BDs. It also exists in an underdense region in both period/eccentricity and metallicity/eccentricity space.

  3. Dark and luminous matter in the NGC 3992 group of galaxies, II. The dwarf companions UGC 6923, UGC 6940, UGC 6969, and the Tully-Fisher relation

    CERN Document Server

    Bottema, R

    2002-01-01

    Detailed neutral hydrogen observations have been obtained of the large barred spiral galaxy NGC 3992 and its three small companion spiral galaxies, UGC 6923, UGC 6940, and UGC 6969. Contrary to the large galaxy, for the companions the HI distribution ends quite abruptly at the optical edges. Velocity fields have been constructed from which rotation curves have been derived. Assuming a reasonable M/L ratio, a decomposition of these rotation curves generates nearly equal dark matter halos. When comparing the position-velocity diagrams of the two brightest galaxies, UGC 6923 and UGC 6969, it is obvious that the rotation curve of the latter has a shape closer to solid body than the former, yet the same maximum rotational level is reached. This is likely generated by the equal dark matter halos in combination with UGC 6923 being a factor five more luminous than UGC 6969 and so its luminous matter gives a higher contribution to the rotation in the inner regions. An NFW-CDMLambda dark halo is consistent with the obs...

  4. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  5. VERY-LOW-MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. III. A SHORT-PERIOD BROWN DWARF CANDIDATE AROUND AN ACTIVE G0IV SUBGIANT

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bo; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Wang Ji [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Barnes, Rory; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Dutra-Ferreira, Leticia; Porto de Mello, G. F. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lctea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Wisniewski, John P. [Homer L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Bizyaev, Dmitry, E-mail: boma@astro.ufl.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T{sub eff} = 5903 {+-} 42 K, surface gravity log (g) = 4.07 {+-} 0.16 (cgs), and metallicity [Fe/H] = -0.23 {+-} 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 {+-} 0.041 km s{sup -1}, period P = 9.0090 {+-} 0.0004 days, and eccentricity e = 0.226 {+-} 0.011. Adopting a mass of 1.16 {+-} 0.11 M{sub Sun} for the subgiant host star, we infer that the companion has a minimum mass of 40.0 {+-} 2.5 M{sub Jup}. Assuming an edge-on orbit, the semimajor axis is 0.090 {+-} 0.003 AU. The host star is photometrically variable at the {approx}1% level with a period of {approx}13.16 {+-} 0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 {+-} 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 M{sub Sun} if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v{sub rot}sin i, but unusual for a subgiant of this T{sub eff}. This activity could be explained by ongoing tidal spin-up of the host star by the companion.

  6. Very-low-mass Stellar and Substellar Companions to Solar-like Stars from Marvels. III. A Short-period Brown Dwarf Candidate around an Active G0IV Subgiant

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Barnes, Rory; Crepp, Justin R.; De Lee, Nathan; Dutra-Ferreira, Leticia; Esposito, Massimiliano; Femenia, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; Hebb, Leslie; Gonzalez Hernandez, Jonay I.; Lee, Brian L.; Porto de Mello, G. F.; Stassun, Keivan G.; Wang, Ji; Wisniewski, John P.; Agol, Eric; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Nicolaci da Costa, Luiz; Eastman, Jason D.; Gary, Bruce; Jiang, Peng; Kane, Stephen R.; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A. G.; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Daniel; Pepper, Joshua; Paegert, Martin; Allende Prieto, Carlos; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden, Alaina; Simmons, Audrey; Sivarani, Thirupathi; van Eyken, J. C.; Wan, Xiaoke; Weaver, Benjamin A.; Zhao, Bo

    2013-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T eff = 5903 ± 42 K, surface gravity log (g) = 4.07 ± 0.16 (cgs), and metallicity [Fe/H] = -0.23 ± 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 ± 0.041 km s-1, period P = 9.0090 ± 0.0004 days, and eccentricity e = 0.226 ± 0.011. Adopting a mass of 1.16 ± 0.11 M ⊙ for the subgiant host star, we infer that the companion has a minimum mass of 40.0 ± 2.5 M Jup. Assuming an edge-on orbit, the semimajor axis is 0.090 ± 0.003 AU. The host star is photometrically variable at the ~1% level with a period of ~13.16 ± 0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 ± 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 M ⊙ if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v rotsin i, but unusual for a subgiant of this T eff. This activity could be explained by ongoing tidal spin-up of the host star by the companion.

  7. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from Marvels III: A Short-Period Brown Dwarf Candidate Around An Active G0Iv Subgiant

    CERN Document Server

    Ma, Bo; Barnes, Rory; Crepp, Justin R; De Lee, Nathan; Dutra-Ferreira, Leticia; Esposito, Massimiliano; Femenia, Bruno; Fleming, Scott W; Gaudi, B Scott; Ghezzi, Luan; Hebb, Leslie; Hernandez, Jonay I Gonzalez; Lee, Brian L; de Mello, G F Porto; Stassun, Keivan G; Wang, Ji; Wisniewski, John P; Agol, Eric; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; da Costa, Luiz Nicolaci; Eastman, Jason D; Gary, Bruce; Jiang, Peng; Kane, Stephen R; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A G; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L C; Oravetz, Daniel; Pepper, Joshua; Paegert, Martin; Prieto, Carlos Allende; Rebolo, Rafael; Santiago, Basilio X; Schneider, Donald P; Shelden, Alaina; Simmons, Audrey; Sivarani, Thirupathi; van Eyken, J C; Wan, Xiaoke; Weaver, Benjamin A; Zhao, Bo

    2012-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T_eff = 5903+/-42 K, surface gravity log (g) = 4.07+/-0.16 (cgs), and metallicity [Fe/H] = -0.23+/-0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K=3.571+/-0.041 km/s, period P=9.0090+/-0.0004 days, and eccentricity e=0.226+/-0.011. Adopting a mass of 1.16+/-0.11 Msun for the subgiant host star, we infer that the companion has a minimum mass of 40.0+/-2.5 M_Jup. Assuming an edge-on orbit, the semimajor axis is 0.090+/-0.003 AU. The host star is photometrically variable at the \\sim1% level with a period of \\sim13.16+/-0.01 days, indicating that the host sta...

  8. BEER Analysis of Kepler and CoRoT Light Curves. IV. Discovery of Four New Low-mass White-Dwarf Companions in the Kepler Data

    Science.gov (United States)

    Faigler, S.; Kull, I.; Mazeh, T.; Kiefer, F.; Latham, D. W.; Bloemen, S.

    2015-12-01

    We report the discovery of four short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white dwarf (WD) secondary (dA+WD)—KIC 4169521, KOI-3818, KIC 2851474, and KIC 9285587. The systems show BEaming, Ellipsoidal and Reflection (BEER) phase modulations together with primary and secondary eclipses. These add to the 6 Kepler and 18 WASP short-period eclipsing dA+WD binaries that were previously known. The light curves, together with follow-up spectroscopic observations, allow us to derive the masses, radii, and effective temperatures of the two components of the four systems. The orbital periods, of 1.17-3.82 days, and WD masses, of 0.19-0.22 M⊙, are similar to those of the previously known systems. The WD radii of KOI-3818, KIC 2851474, and KIC 9285587 are 0.026, 0.035, and 0.026 R⊙, respectively, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries. These three binaries extend the previously known population to older systems with cooler and smaller WD secondaries. KOI-3818 displays evidence for a fast-rotating primary and a minute but significant eccentricity, ˜1.5 × 10-3. These features are probably the outcome of the mass-transfer process.

  9. BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. IV. DISCOVERY OF FOUR NEW LOW-MASS WHITE DWARF COMPANIONS IN THE KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Faigler, S.; Kull, I.; Mazeh, T.; Kiefer, F. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Latham, D. W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bloemen, S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. BOX 9010, NL-6500 GL Nijmegen (Netherlands)

    2015-12-10

    We report the discovery of four short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white dwarf (WD) secondary (dA+WD)—KIC 4169521, KOI-3818, KIC 2851474, and KIC 9285587. The systems show BEaming, Ellipsoidal and Reflection (BEER) phase modulations together with primary and secondary eclipses. These add to the 6 Kepler and 18 WASP short-period eclipsing dA+WD binaries that were previously known. The light curves, together with follow-up spectroscopic observations, allow us to derive the masses, radii, and effective temperatures of the two components of the four systems. The orbital periods, of 1.17–3.82 days, and WD masses, of 0.19–0.22 M{sub ⊙}, are similar to those of the previously known systems. The WD radii of KOI-3818, KIC 2851474, and KIC 9285587 are 0.026, 0.035, and 0.026 R{sub ⊙}, respectively, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries. These three binaries extend the previously known population to older systems with cooler and smaller WD secondaries. KOI-3818 displays evidence for a fast-rotating primary and a minute but significant eccentricity, ∼1.5 × 10{sup −3}. These features are probably the outcome of the mass-transfer process.

  10. BEER analysis of Kepler and CoRoT light curves: IV. Discovery of four new low-mass white-dwarf companions in the Kepler data

    CERN Document Server

    Faigler, Simchon; Mazeh, Tsevi; Kiefer, Flavien; Latham, David W; Bloemen, Steven

    2015-01-01

    We report the discovery of four short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white-dwarf (WD) secondary (dA+WD) - KIC 4169521, KOI-3818, KIC 2851474 and KIC 9285587. The systems show BEaming, Ellipsoidal and Reflection (BEER) phase modulations together with primary and secondary eclipses. These add to the 6 Kepler, and 18 WASP, previously known short-period eclipsing dA+WD binaries. The light curves together with follow-up spectroscopic observations allow us to derive the masses, radii and effective temperatures of the two components of the four systems. The orbital periods, of 1.17-3.82 d, and WD masses, of 0.19-0.22 Msun, are similar to those of the previously known systems. The WD radii of KOI-3818, KIC 2851474, and KIC 9285587 are 0.026, 0.035 and 0.026 Rsun, respectively, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries. These three binaries extend the previously known population to older systems with cooler and sm...

  11. Synthesizing Exoplanet Demographics: A Single Population of Long-period Planetary Companions to M Dwarfs Consistent with Microlensing, Radial Velocity, and Direct Imaging Surveys

    Science.gov (United States)

    Clanton, Christian; Gaudi, B. Scott

    2016-03-01

    We present the first study to synthesize results from five different exoplanet surveys using three independent detection methods: microlensing, radial velocity, and direct imaging. The constraints derived herein represent the most comprehensive picture of the demographics of large-separation (≳2 AU) planets orbiting the most common stars in our Galaxy that has been constructed to date. We assume a simple, joint power-law planet distribution function of the form {d}2{N}{{pl}}/(d{log} {m}p d{log} a)={ A }{({m}p/{M}{{Sat}})}α {(a/2.5{{AU}})}β with an outer cutoff radius of the separation distribution function of aout. Generating populations of planets from these models and mapping them into the relevant observables for each survey, we use actual or estimated detection sensitivities to determine the expected observations for each survey. Comparing with the reported results, we derive constraints on the parameters \\{α ,β ,{ A },{a}{{out}}\\} that describe a single population of planets that is simultaneously consistent with the results of microlensing, radial velocity, and direct imaging surveys. We find median and 68% confindence intervals of α =-{0.86}-0.19+0.21 (-{0.85}-0.19+0.21), β ={1.1}-1.4+1.9 ({1.1}-1.3+1.9), { A }={0.21}-0.15+0.20 {{dex}}-2 ({0.21}-0.15+0.20 {{dex}}-2), and {a}{{out}}={10}-4.7+26 AU ({12}-6.2+50 AU) assuming “hot-start” (“cold-start”) planet evolutionary models. These values are consistent with all current knowledge of planets on orbits beyond ∼2 AU around single M dwarfs.

  12. Wide cool and ultracool companions to nearby stars from Pan-STARRS 1

    Energy Technology Data Exchange (ETDEWEB)

    Deacon, Niall R. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Best, William M. J.; Bowler, Brendan P.; Burgett, William S.; Chambers, Kenneth C.; Flewelling, H.; Kaiser, Nick; Kudritzki, Rolf-Peter; Morgan, Jeff S.; Tonry, John L. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Dupuy, Trent [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mann, Andrew W. [Harlan J. Smith Fellow, Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Redstone, Joshua A. [Equatine Labs, 89 Antrim Street, #2, Cambridge, MA 02139 (United States); Draper, Peter W.; Metcalfe, Nigel [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Hodapp, Klaus W. [Institute for Astronomy, University of Hawai' i, 640 North Aohoku Place, Hilo, HI 96720 (United States); Price, Paul A., E-mail: deacon@mpia.de [Princeton University Observatory, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); and others

    2014-09-10

    We present the discovery of 57 wide (>5'') separation, low-mass (stellar and substellar) companions to stars in the solar neighborhood identified from Pan-STARRS 1 (PS1) data and the spectral classification of 31 previously known companions. Our companions represent a selective subsample of promising candidates and span a range in spectral type of K7-L9 with the addition of one DA white dwarf. These were identified primarily from a dedicated common proper motion search around nearby stars, along with a few as serendipitous discoveries from our Pan-STARRS 1 brown dwarf search. Our discoveries include 23 new L dwarf companions and one known L dwarf not previously identified as a companion. The primary stars around which we searched for companions come from a list of bright stars with well-measured parallaxes and large proper motions from the Hipparcos catalog (8583 stars, mostly A-K dwarfs) and fainter stars from other proper motion catalogs (79170 stars, mostly M dwarfs). We examine the likelihood that our companions are chance alignments between unrelated stars and conclude that this is unlikely for the majority of the objects that we have followed-up spectroscopically. We also examine the entire population of ultracool (>M7) dwarf companions and conclude that while some are loosely bound, most are unlikely to be disrupted over the course of ∼10 Gyr. Our search increases the number of ultracool M dwarf companions wider than 300 AU by 88% and increases the number of L dwarf companions in the same separation range by 82%. Finally, we resolve our new L dwarf companion to HIP 6407 into a tight (0.''13, 7.4 AU) L1+T3 binary, making the system a hierarchical triple. Our search for these key benchmarks against which brown dwarf and exoplanet atmosphere models are tested has yielded the largest number of discoveries to date.

  13. A spectral differential characterization of low-mass companions

    Directory of Open Access Journals (Sweden)

    Lyubchik Y.

    2013-04-01

    Full Text Available We present a new approach with which the dynamical mass of low-mass companions around cool stars can be found. In order to discover companions to late-type stars the stellar spectrum is removed. For this we substract two spectra obtained at different orbital phases from each other in order to discover the companion spectrum in the difference spectrum in which the companion lines appear twice (positive and negative signal. The resulting radial velocity difference of these two signals provides the true mass of the companion. For our test case GJ1046, an M2V dwarf with a low-mass companion that most likely is a brown dwarf we select the CO line region in the K-band. We show that the dynamical mass of a faint companion to an M dwarf can be determined using our spectral differential technique. Only if the companion rotates rapidly and has a small radial velocity amplitude due to a high mass, does blending occur for all lines so that our approach fails. In addition to determining the companion mass, we restore the single companion spectrum from the difference spectrum using singular value decomposition.

  14. Droid Companion

    CERN Document Server

    Butow, Eric

    2011-01-01

    New owner of a Droid? Enjoy it even more with this perfect guide Congratulations on owning one of the hottest smartphones on the planet—more than 400,000 new Android phones are activated every day! Now get the very most out your new Droid with this handy companion by your side. Covering several versions of the Droid phones in one comprehensive guide, this book provides you with helpful information on everything from setup to the fun features of each Droid model. You'll quickly get up to speed on everything from email, browsing, and calendars to photos, maps, apps, security, and more. Hig

  15. Google+ companion

    CERN Document Server

    Hattersley, Mark

    2012-01-01

    Get the inside scoop on the newest social networking site: Google+ If you think you've seen it all when it comes to social networking sites, you haven't seen Google+ yet! Built from the ground up to be useful to both desktop and mobile users, Google+ offers the same great features as other popular social network sites?yet, Google+ goes one step further by integrating popular Google technologies and introducing exciting new and unique features such as "Circles," "Hang," and "Sparks." Using clear, step-by-step instructions, Google+ Companion helps you master this amazing new social networking te

  16. White Dwarf - Red Dwarf Systems Resolved with the Hubble Space Telescope. II. Full Snapshot Survey Results

    CERN Document Server

    Farihi, J; Wachter, S

    2010-01-01

    {Abrigded} Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low mass stellar and substellar companions. Of the 72 targets which remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of y...

  17. Juvenile Ultracool Dwarfs

    CERN Document Server

    Rice, Emily L; Cruz, Kelle; Barman, Travis; Looper, Dagny; Malo, Lison; Mamajek, Eric E; Metchev, Stanimir; Shkolnik, Evgenya L

    2011-01-01

    Juvenile ultracool dwarfs are late spectral type objects (later than ~M6) with ages between 10 Myr and several 100 Myr. Their age-related properties lie intermediate between very low mass objects in nearby star-forming regions (ages 1-5 Myr) and field stars and brown dwarfs that are members of the disk population (ages 1-5 Gyr). Kinematic associations of nearby young stars with ages from ~10-100 Myr provide sources for juvenile ultracool dwarfs. The lowest mass confirmed members of these groups are late-M dwarfs. Several apparently young L dwarfs and a few T dwarfs are known, but they have not been kinematically associated with any groups. Normalizing the field IMF to the high mass population of these groups suggests that more low mass (mainly late-M and possibly L dwarf) members have yet to be found. The lowest mass members of these groups, along with low mass companions to known young stars, provide benchmark objects with which spectroscopic age indicators for juvenile ultracool dwarfs can be calibrated and...

  18. Irradiated brown dwarfs

    CERN Document Server

    Casewell, S L; Lawrie, K A; Maxted, P F L; Dobbie, P D; Napiwotzki, R

    2014-01-01

    We have observed the post common envelope binary WD0137-349 in the near infrared $J$, $H$ and $K$ bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.

  19. Common Proper Motion Companions to Nearby Stars: Ages and Evolution

    CERN Document Server

    Makarov, V V; Hennessy, G S

    2008-01-01

    A set of 41 nearby stars (closer than 25 pc) is investigated which have very wide binary and common proper motion (CPM) companions at projected separations between 1000 and $200 000$ AU. These companions are identified by astrometric positions and proper motions from the NOMAD catalog. Based mainly on measures of chromospheric and X-ray activity, age estimation is obtained for most of 85 identified companions. Color -- absolute magnitude diagrams are constructed to test if CPM companions are physically related to the primary nearby stars and have the same age. Our carefully selected sample includes three remote white dwarf companions to main sequence stars and two systems (55 Cnc and GJ 777A) of multiple planets and distant stellar companions. Ten new CPM companions, including three of extreme separations, are found. Multiple hierarchical systems are abundant; more than 25% of CPM components are spectroscopic or astrometric binaries or multiples themselves. Two new astrometric binaries are discovered among ne...

  20. Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product.

    Science.gov (United States)

    Yang, Chun-lei; Guan, Le-luo; Liu, Jian-xin; Wang, Jia-kun

    2015-08-01

    The presence of yeast cells could stimulate hydrogen utilization of acetogens and enhance acetogenesis. To understand the roles of acetogens in rumen fermentation, an in vitro rumen fermentation experiment was conducted with addition of acetogen strain (TWA4) and/or Saccharomyces cerevisiae fermentation product (XP). A 2×2 factorial design with two levels of TWA4 (0 or 2×10(7) cells/ml) and XP (0 or 2 g/L) was performed. Volatile fatty acids (VFAs) were increased (P<0.05) in XP and TWA4XP, while methane was increased only in TWA4XP (P<0.05). The increase rate of microorganisms with formyltetrahydrofolate synthetase, especially acetogens, was higher than that of methanogens under all treatments. Lachnospiraceae was predominant in all acetogen communities, but without close acetyl-CoA synthase (ACS) amino acid sequences from cultured isolates. Low-Acetitomaculum ruminis-like ACS was predominant in all acetogen communities, while four unique phylotypes in XP treatment were all amino acid identified low-Eubacterium limosum-like acetogens. It differs to XP treatment that more low-A. ruminis-like and less low-E. limosum-like sequences were identified in TWA4 and TWA4XP treatments. Enhancing acetogenesis by supplementation with an acetogen strain and/or yeast cells may be an approach to mitigate methane, by targeting proper acetogens such as uncultured low-E. limosum-like acetogens.

  1. The Pocket Companion's architecture

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria

    The Pocket Companion is a small personal portable computer with wireless communication facilities. The typical use of the Pocket Companion induces a number of requirements concerning security, performance, energy consumption, communication and size. The energy consumption due to the increasing

  2. Gas-Rich Companions of Isolated Galaxies

    CERN Document Server

    Pisano, D J; Wilcots, Eric M.

    1999-01-01

    We have used the VLA to search for gaseous remnants of the galaxy formation process around six extremely isolated galaxies. We found two distinct HI clouds around each of two galaxies in our sample (UGC 9762 & UGC 11124). These clouds are rotating and appear to have optical counterparts, strongly implying that they are typical dwarf galaxies. The companions are currently weakly interacting with the primary galaxy, but have short dynamical friction timescales (~1 Gyr) suggesting that these triple galaxy systems will shortly collapse into one massive galaxy. Given that the companions are consistent with being in circular rotation about the primary galaxy, and that they have small relative masses, the resulting merger will be a minor one. The companions do, however, contain enough gas that the merger will represent a significant infusion of fuel to drive future star formation, bar formation, or central activity, while building up the mass of the disk thus making these systems important pieces of the galaxy f...

  3. Overlooked wide companions of nearby F stars

    CERN Document Server

    Scholz, Ralf-Dieter

    2016-01-01

    AIMS: We checked a sample of 545 F stars within 50 pc for wide companions using existing near-infrared and optical sky surveys. METHODS: Applying the common proper motion (CPM) criterion, we detected wide companion candidates with 6-120 arcsec angular separations by visual inspection of multi-epoch finder charts and by searching in proper motion catalogues. Final proper motions were measured by involving positional measurements from up to eleven surveys. Spectral types of red CPM companions were estimated from their absolute $J$-band magnitudes based on the Hipparcos distances of the primaries. RESULTS: In addition to about 100 known CPM objects, we found 19 new CPM companions and confirmed 31 previously known candidates. A few CPM objects are still considered as candidates according to their level of proper motion agreement. Among the new objects there are nine M0-M4, eight M5-M6, one $\\approx$L3.5 dwarf (HD 3861B), and one white dwarf (WD) (HD 2726B), whereas we confirmed two K, 19 M0-M4, six M5-M6, two ear...

  4. Discovery of seven T Tauri stars and a brown dwarf candidate in the nearby TW Hydrae Association

    CERN Document Server

    Webb, R A; Platais, I; Patience, J; White, R J; Schwartz, M J; McCarthy, C

    1999-01-01

    We report the discovery of five T Tauri star systems, two of which are resolved binaries, in the vicinity of the nearest known region of recent star formation, the TW Hydrae Association. The newly discovered systems display the same signatures of youth (namely high X-ray flux, large Li abundance and strong chromospheric activity) and the same proper motion as the original five members. These similarities firmly establish the group as a bona fide T Tauri association, unique in its proximity to Earth and its complete isolation from any known molecular clouds. At an age of ~10 Myr and a distance of ~50 pc, the association members are excellent candidates for future studies of circumstellar disk dissipation and the formation of brown dwarfs and planets. Indeed, as an example, our speckle imaging revealed a faint, very likely companion 2" north of CoD-33 7795 (TWA 5). Its color and brightness suggest a spectral type ~M8.5 which, at an age of ~10^7 years, implies a mass ~20 M(Jupiter).

  5. Protoplanetary Disk Masses from Stars to Brown Dwarfs

    CERN Document Server

    Mohanty, Subhanjoy; Mortlock, Daniel; Pascucci, Ilaria; Scholz, Aleks; Thompson, Mark; Apai, Daniel; Lodato, Giuseppe; Looper, Dagny

    2013-01-01

    We present SCUBA-2 850um observations for 7 very low mass stars (VLMS) and brown dwarfs (BDs): 3 in Taurus, 4 in the TWA, and all classical T Tauri (cTT) analogs. We detect 2 of the 3 Taurus disks, but none of the TWA ones. Our 3sigma limits correspond to a dust mass of 1.2 MEarth in Taurus and a mere 0.2 MEarth in the TWA (3--10x deeper than previous work). We combine our data with other sub-mm/mm surveys of Taurus, rho Oph and the TWA to investigate trends in disk mass and grain growth during the cTT phase. We find : (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is 100 AU for intermediate-mass stars, solar-types and VLMS, and 20 AU for BDs. (2) While the upper envelope of disk masses increases with Mstar from BDs to VLMS to solar-types, no increase is seen from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate masses. (3) Many disks around Taurus and rho Oph intermediate-mass and solar-type stars evin...

  6. Spectroscopic Analysis of subluminous B Stars in Binaries with compact Companions

    CERN Document Server

    Geier, S; Edelmann, H; Heber, U; Napiwotzki, R

    2006-01-01

    The masses of compact objects like white dwarfs, neutron stars and black holes are fundamental to astrophysics, but very difficult to measure. We present the results of an analysis of subluminous B (sdB) stars in close binary systems with unseen compact companions to derive their masses and clarify their nature. Radial velocity curves were obtained from time resolved spectroscopy. The atmospheric parameters were determined in a quantitative spectral analysis. Based on high resolution spectra we were able to measure the projected rotational velocity of the stars with high accuracy. The assumption of orbital synchronization makes it possible to constrain inclination angle and companion mass of the binaries. Five invisible companions have masses that are compatible with that of normal white dwarfs or late type main sequence stars. But four sdBs have very massive companions like heavy white dwarfs > 1 Mo, neutron stars or even black holes. Such a high fraction of massive compact companions is not expected from cu...

  7. Comparison of Spot and Time Weighted Averaging (TWA Sampling with SPME-GC/MS Methods for Trihalomethane (THM Analysis

    Directory of Open Access Journals (Sweden)

    Don-Roger Parkinson

    2016-02-01

    Full Text Available Water samples were collected and analyzed for conductivity, pH, temperature and trihalomethanes (THMs during the fall of 2014 at two monitored municipal drinking water source ponds. Both spot (or grab and time weighted average (TWA sampling methods were assessed over the same two day sampling time period. For spot sampling, replicate samples were taken at each site and analyzed within 12 h of sampling by both Headspace (HS- and direct (DI- solid phase microextraction (SPME sampling/extraction methods followed by Gas Chromatography/Mass Spectrometry (GC/MS. For TWA, a two day passive on-site TWA sampling was carried out at the same sampling points in the ponds. All SPME sampling methods undertaken used a 65-µm PDMS/DVB SPME fiber, which was found optimal for THM sampling. Sampling conditions were optimized in the laboratory using calibration standards of chloroform, bromoform, bromodichloromethane, dibromochloromethane, 1,2-dibromoethane and 1,2-dichloroethane, prepared in aqueous solutions from analytical grade samples. Calibration curves for all methods with R2 values ranging from 0.985–0.998 (N = 5 over the quantitation linear range of 3–800 ppb were achieved. The different sampling methods were compared for quantification of the water samples, and results showed that DI- and TWA- sampling methods gave better data and analytical metrics. Addition of 10% wt./vol. of (NH42SO4 salt to the sampling vial was found to aid extraction of THMs by increasing GC peaks areas by about 10%, which resulted in lower detection limits for all techniques studied. However, for on-site TWA analysis of THMs in natural waters, the calibration standard(s ionic strength conditions, must be carefully matched to natural water conditions to properly quantitate THM concentrations. The data obtained from the TWA method may better reflect actual natural water conditions.

  8. Throwing Icebergs at White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that

  9. The Construction, Enactment, and Maintenance of Power-as-Domination through an Acquisition: The Case of TWA and Ozark Airlines.

    Science.gov (United States)

    Pierce, Tamyra; Dougherty, Debbie S.

    2002-01-01

    Explores how domination was created, enacted, and maintained in the acquisition of Ozark Airlines by TWA. Uses the concepts of resources, hegemony, and resistance from the functionalist, Marxist, and postmodern traditions, respectively, to understand power-as-domination as a complex communication process. Reveals how communication practices were…

  10. A Chandra Observation of the TW Hydrae Association Brown Dwarf 2MASSW J1139511-315921

    CERN Document Server

    Castro, Philip J; Gagné, Marc

    2011-01-01

    We report on a sequence of Chandra X-ray Observatory observations of the TW Hydrae brown dwarf (BD) 2MASSW J1139511-315921 (2M1139). In the combined 31 ks ACIS-S exposure, 2M1139 is detected at the 3-sigma confidence level. We find an X-ray luminosity of L_X = 1.4^(+2.7)_(-1.0) x 10^26 ergs s^-1 or log(L_X/L_bol) = -4.8 +/- 0.3. This object is similar to another TW Hydrae BD member, CD-33 7795B (TWA 5B): both have H-alpha emission, both show no signatures of accretion, and both have comparable ages and spectral types. TWA 5B was previously detected in X-rays with a luminosity of L_X = 4 x 10^27 ergs s^-1 or log(L_X/L_bol) = -3.4, an order of magnitude more luminous in X-rays than 2M1139. We find that the discrepancy between the X-ray luminosity of 2M1139 and TWA 5B is consistent with the spread in X-ray luminosity in the Orion Nebula Cluster (ONC) for BDs of similar spectral types. Though rotation may play a role in the X-ray activity of ultracool dwarfs like 2M1139 and TWA 5B, the discrepancy cannot be expla...

  11. A Method for Selecting M dwarfs with an Increased Likelihood of Unresolved Ultra-cool Companionship

    CERN Document Server

    Cook, N J; Marocco, F; Burningham, B; Jones, H R A; Frith, J; Zhong, J; Luo, A L; Qi, Z X; Lucas, P W; Gromadzki, M; Day-Jones, A C; Kurtev, R G; Guo, Y X; Wang, Y F; Bai, Y; Yi, Z P; Smart, R L

    2016-01-01

    Locating ultra-cool companions to M dwarfs is important for constraining low-mass formation models, the measurement of sub-stellar dynamical masses and radii, and for testing ultra-cool evolutionary models. We present an optimised method for identifying M dwarfs which may have unresolved ultra-cool companions. We construct a catalogue of 440,694 candidates, from WISE, 2MASS and SDSS, based on optical and near-infrared colours and reduced proper motion. With strict reddening, photometric and quality constraints we isolate a sub-sample of 36,898 M dwarfs and search for possible mid-infrared M dwarf + ultra-cool dwarf candidates by comparing M dwarfs which have similar optical/near-infrared colours (chosen for their sensitivity to effective temperature and metallicity). We present 1,082 M dwarf + ultra-cool dwarf candidates for follow-up. Using simulated ultra-cool dwarf companions to M dwarfs, we estimate that the occurrence of unresolved ultra-cool companions amongst our M dwarf + ultra-cool dwarf candidates s...

  12. No surviving evolved companions of the progenitor of SN 1006.

    Science.gov (United States)

    González Hernández, Jonay I; Ruiz-Lapuente, Pilar; Tabernero, Hugo M; Montes, David; Canal, Ramon; Méndez, Javier; Bedin, Luigi R

    2012-09-27

    Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion. The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel. Both channels might contribute to the production of type Ia supernovae, but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned. More recently, observations have restricted surviving companions to be small, main-sequence stars, ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

  13. Searching for benchmark systems containing ultra-cool dwarfs and white dwarfs

    Directory of Open Access Journals (Sweden)

    Pinfield D.J.

    2013-04-01

    Full Text Available We have used the 2MASS all-sky survey and WISE to look for ultracool dwarfs that are part of multiple systems containing main sequence stars. We cross-matched L dwarf candidates from the surveys with Hipparcos and Gliese stars, finding two new systems. We consider the binary fraction for L dwarfs and main sequence stars, and further assess possible unresolved multiplicity within the full companion sample. This analysis shows that some of the L dwarfs in this sample might actually be unresolved binaries themselves. We have also identified a sample of common proper motion systems in which a main sequence star has a white dwarf as wide companion. These systems can help explore key issues in star evolution theory, as the initial-final mass relationship of white dwarfs, or the chromospheric activity-age relationship for stars still in the main sequence. Spectroscopy for 50 white dwarf candidates, selected from the SuperCOSMOS Science Archive, was obtained. We have also observed 6 of the main sequence star companions, and have estimated their effective temperatures, rotational and microturbulent velocities and metallicities.

  14. Distinguishing Between Stellar and Planetary Companions With Phase Monitoring

    CERN Document Server

    Kane, Stephen R

    2012-01-01

    Exoplanets which are detected using the radial velocity technique have a well-known ambiguity of their true mass, caused by the unknown inclination of the planetary orbit with respect to the plane of the sky. Constraints on the inclination are aided by astrometric follow-up in rare cases or, in ideal situations, through subsequent detection of a planetary transit. As the predicted inclination decreases, the mass of the companion increases leading to a change in the predicted properties. Here we investigate the changes in the mass, radius, and atmospheric properties as the inclination pushes the companion from the planetary into the brown dwarf and finally low-mass star regimes. We determine the resulting detectable photometric signatures in the predicted phase variation as the companion changes properties and becomes self-luminous. We apply this to the HD 114762 and HD 162020 systems for which the minimum masses of the known companions places them at the deuterium-burning limit.

  15. Spectroscopic Analysis of Subluminous B Stars in Binaries - Four Candidate Systems with Neutron Star/Black Hole Companions Discovered

    CERN Document Server

    Geier, S; Edelmann, H; Heber, U; Napiwotzki, R

    2006-01-01

    The masses of compact objects like white dwarfs, neutron stars and black holes are fundamental to astrophysics, but very difficult to measure. We present the results of an analysis of subluminous B (sdB) stars in close binary systems with unseen compact companions to derive their masses and clarify their nature. Radial velocity curves were obtained from time resolved spectroscopy. The atmospheric parameters were determined in a quantitative spectral analysis. With high resolution spectra we were able to measure the projected rotational velocity of the stars with high accuracy. The assumption of orbital synchronization made it possible to constrain inclination angle and companion mass of the binaries. Five invisible companions have masses that are compatible with white dwarfs or late type main sequence stars. But four sdBs have very massive companions like heavy white dwarfs, neutron stars or even black holes. Such a high fraction of massive compact companions can not be explained with current models of binary...

  16. Faint Dwarfs in Nearby Groups

    CERN Document Server

    Speller, Ryan

    2013-01-01

    The number and distribution of dwarf satellite galaxies remain a critical test of cold dark matter-dominated structure formation on small scales. Until recently, observational information about galaxy formation on these scales has been limited mainly to the Local Group. We have searched for faint analogues of Local Group dwarfs around nearby bright galaxies, using a spatial clustering analysis of the photometric catalog of the Sloan Digital Sky Survey (SDSS) Data Release 8. Several other recent searches of SDSS have detected clustered satellite populations down to $\\Delta m_r \\equiv ({m}_{r,\\, {\\rm sat}} -\\, {m}_{r,\\, {\\rm main}}) \\sim 6$-$8$, using photometric redshifts to reduce background contamination. SDSS photometric redshifts are relatively imprecise, however, for faint and nearby galaxies. Instead we use angular size to select potential nearby dwarfs, and consider only the nearest isolated bright galaxies as primaries. As a result, we are able to detect an excess clustering signal from companions down...

  17. Astronomy: Tycho's mystery companion

    Science.gov (United States)

    Branch, David

    2004-10-01

    A famous sixteenth century supernova, seen by Tycho Brahe, is still a hot topic. The stellar explosion might have been initiated by a companion star -- and modern astronomers have at last identified it.

  18. A Massive Substellar Companion to the Massive Giant HD 119445

    CERN Document Server

    Omiya, Masashi; Han, Inwoo; Lee, Byeong-Cheol; Sato, Bun'ei; Kambe, Eiji; Kim, Kang-Min; Yoon, Tae Seog; Yoshida, Michitoshi; Masuda, Seiji; Toyota, Eri; Urakawa, Seitaro; Takada-Hidai, Masahide

    2009-01-01

    We detected a brown dwarf-mass companion around the intermediate-mass giant star HD 119445 (G6III) using the Doppler technique. This discovery is the first result from a Korean-Japanese planet search program based on precise radial velocity measurements. The radial velocity of this star exhibits a periodic Keplerian variation with a period, semi-amplitude and eccentricity of 410.2 days, 413.5 m/s and 0.082, respectively. Adopting a stellar mass of 3.9 M_solar, we were able to confirm the presence of a massive substellar companion with a semimajor axis of 1.71 AU and a minimum mass of 37.6 M_Jup, which falls in the middle of the brown dwarf-mass region. This substellar companion is the most massive ever discovered within 3 AU of a central intermediate-mass star. The host star also ranks among the most massive stars with substellar companions ever detected by the Doppler technique. This result supports the current view of substellar systems that more massive substellar companions tend to exist around more massi...

  19. The solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, John C. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Henry, Todd J.; Ianna, Philip A. [RECONS Institute, Chambersburg, PA 17201 (United States); Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Koerner, David W. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Riedel, Adric R. [Department of Astrophysics, American Museum of Natural History, New York, NY 10034 (United States); Subasavage, John P., E-mail: lurie@uw.edu [United States Naval Observatory, Flagstaff, AZ 86001 (United States)

    2014-11-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD-10 -3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of 3 to 13 years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9 m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2–12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 M{sub Jup} for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2–12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.

  20. Development of Companion Diagnostics.

    Science.gov (United States)

    Mankoff, David A; Edmonds, Christine E; Farwell, Michael D; Pryma, Daniel A

    2016-01-01

    The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient's cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods as companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has "hit" the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2-targeted therapy. The review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.

  1. Radial Velocity Variability of Field Brown Dwarfs

    CERN Document Server

    Prato, L; Rice, E L; McLean, I S; Kirkpatrick, J D; Burgasser, A J; Kim, S S

    2015-01-01

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant ...

  2. Infrared Photometry of Late-M, L, and T Dwarfs

    CERN Document Server

    Leggett, S K; Fan, X; Geballe, T R; Knapp, G R

    2002-01-01

    We present ZJHKL'M' photometry of a sample of 58 late-M, L, and T dwarfs, most of which are identified from the Sloan Digital Sky Survey and the Two Micron All-Sky Survey. Near-infrared spectra and spectral classifications for most of this sample are presented in a companion paper by Geballe et al. We derive the luminosities of 18 dwarfs in the sample and the results imply that the effective temperature range for the L dwarfs in our sample is approximately 2200-1300 K and for the T dwarfs 1300-800 K. We obtained new photometric data at the United Kingdom Infrared Telescope for: 42 dwarfs at Z, 34 dwarfs at JHK, 21 dwarfs at L', as well as M' data for two L dwarfs and two T dwarfs. The M' data provide the first accurate photometry for L and T dwarfs in this bandpass - for a T2 and a T5 dwarf, we find K-M'=1.2 and 1.6, respectively. These colors are much bluer than predicted by models suggesting that CO may be more abundant in these objects than expected, as has been found for the T6 dwarf Gl 229B. We also find...

  3. M Dwarfs From The SDSS, 2MASS and WISE Surveys: Identification, Characterisation and Unresolved Ultracool Companionship

    Science.gov (United States)

    Cook, Neil James

    2016-08-01

    The aim of this thesis is to use a cross-match between WISE, 2MASS and SDSS to identify a large sample of M dwarfs. Through the careful characterisation and quality control of these M dwarfs I aim to identify rare systems (i.e. unresolved UCD companions, young M dwarfs, late M dwarfs and M dwarfs with common proper motion companions). Locating ultracool companions to M dwarfs is important for constraining low-mass formation models, the measurement of substellar dynamical masses and radii, and for testing ultracool evolutionary models. This is done by using an optimised method for identifying M dwarfs which may have unresolved ultracool companions. To do this I construct a catalogue of 440 694 M dwarf candidates, from WISE, 2MASS and SDSS, based on optical- and near-infrared colours and reduced proper motion. With strict reddening, photometric and quality constraints I isolate a sub-sample of 36 898 M dwarfs and search for possible mid-infrared M dwarf + ultracool dwarf candidates by comparing M dwarfs which have similar optical/near-infrared colours (chosen for their sensitivity to effective temperature and metallicity). I present 1 082 M dwarf + ultracool dwarf candidates for follow-up. Using simulated ultracool dwarf companions to M dwarfs, I estimate that the occurrence of unresolved ultracool companions amongst my M dwarf + ultracool dwarf candidates should be at least four times the average for my full M dwarf catalogue. I discuss yields of candidates based on my simulations. The possible contamination and bias from misidentified M dwarfs is then discussed, from chance alignments with other M dwarfs and UCDs, from chance alignments with giant stars, from chance alignments with galaxies, and from blended systems (via visual inspection). I then use optical spectra from LAMOST to spectral type a subset of my M dwarf + ultracool dwarf candidates. These candidates need confirming as true M dwarf + ultracool dwarf systems thus I present a new method I developed to

  4. The physics companion

    CERN Document Server

    Fischer-Cripps, Anthony C

    2014-01-01

    Updated and expanded with new topics, The Physics Companion, 2nd Edition offers a unique and educational approach to learning physics at a level suitable for first-year science students. This new edition expands the presentation to include senior topics, such as statistical mechanics, quantum physics, and nuclear physics.

  5. Blackwell Companion to Phonology

    NARCIS (Netherlands)

    van Oostendorp, M.; Ewen, C.J.; Hume, B.; Rice, K.

    2011-01-01

    "The Companion to Phonology" will be the major reference work of the field, drawing together nearly 150 contributions from almost all of the globally recognized, leading scholars in an estimated five-volume set. The international editorial team represents a diverse range of approaches and methodolog

  6. Companion Animals. [Information Packet.

    Science.gov (United States)

    National Anti-Vivisection Society, Chicago, IL.

    This collection of articles reprinted from other National Anti-Vivisection Society (NAVS) publications was compiled to educate the public on issues of importance to NAVS concerning companion animals. Topics covered include spaying and neutering, animal safety, pet theft, and the use of cats and dogs in research. The article on spaying and…

  7. A Substellar Companion in a 1.3 yr Nearly-circular Orbit of HD 16760

    CERN Document Server

    Sato, Bunei; Ida, Shigeru; Harakawa, Hiroki; Omiya, Masashi; Johnson, John A; Marcy, Geoffrey W; Toyota, Eri; Hori, Yasunori; Isaacson, Howard; Howard, Andrew W; Peek, Kathryn M G

    2009-01-01

    We report the detection of a substellar companion orbiting the G5 dwarf HD 16760 from the N2K sample. Precise Doppler measurements of the star from Subaru and Keck revealed a Keplerian velocity variation with a period of 466.47+-0.35 d, a semiamplitude of 407.71+-0.84 m/s, and an eccentricity of 0.084+-0.003. Adopting a stellar mass of 0.78+-0.05 M_Sun, we obtain a minimum mass for the companion of 13.13+-0.56 M_JUP, which is close to the planet/brown-dwarf transition, and the semimajor axis of 1.084+-0.023 AU. The nearly circular orbit despite the large mass and intermediate orbital period makes this companion unique among known substellar companions.

  8. Merging White Dwarfs and Thermonuclear Supernovae

    CERN Document Server

    van Kerkwijk, Marten H

    2012-01-01

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure, and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and our suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. I then turn to possible observational tests, in particular those that test the absence or presence of electron captures during the burning.

  9. Signatures of A Companion Star in Type Ia Supernovae

    CERN Document Server

    Maeda, Keiichi; Shigeyama, Toshikazu

    2014-01-01

    While type Ia Supernovae (SNe Ia) have been used as precise cosmological distance indicators, their progenitor systems remain unresolved. One of the key questions is if there is a non-degenerate companion star at the time of a thermonuclear explosion of a white dwarf (WD). In this paper, we investigate if an interaction between the SN ejecta and the companion star may result in observable footprints around the maximum brightness and thereafter, by performing multi-dimensional radiation transfer simulations based on hydrodynamic simulations of the interaction. We find that such systems result in variations in various observational characteristics due to different viewing directions, while the predicted behaviors (redder and fainter for the companion direction) are opposite to what were suggested by the previous study. The variations are generally modest and within observed scatters. However, the model predicts trends between some observables different from observationally derived, thus a large sample of SNe Ia...

  10. Close Binary Progenitors and Ejected Companions of Thermonuclear Supernovae

    Science.gov (United States)

    Geier, S.; Kupfer, T.; Heber, U.; Nemeth, P.; Ziegerer, E.; Irrgang, A.; Schindewolf, M.; Marsh, T. R.; Gänsicke, B. T.; Barlow, B. N.; Bloemen, S.

    2017-03-01

    Hot subdwarf stars (sdO/Bs) are evolved core helium-burning stars with very thin hydrogen envelopes, which can be formed by common envelope ejection. Close sdB binaries with massive white dwarf (WD) companions are potential progenitors of thermonuclear supernovae type Ia (SN Ia). We discovered such a progenitor candidate as well as a candidate for a surviving companion star, which escapes from the Galaxy. More candidates for both types of objects have been found by cross-matching known sdB stars with proper motion and light curve catalogues. We found 72 sdO/B candidates with high Galactic restframe velocities, 12 of them might be unbound to our Galaxy. Furthermore, we discovered the second-most compact sdB+WD binary known. However, due to the low mass of the WD companion, it is unlikely to be a SN Ia progenitor.

  11. Wide companions to Hipparcos stars within 67 pc of the Sun

    CERN Document Server

    Tokovinin, Andrei

    2012-01-01

    A catalog of common-proper-motion (CPM) companions to stars within 67 pc of the Sun is constructed based on the SUPERBLINK proper-motion survey. It contains 1392 CPM pairs with angular separations 30" < \\rho < 1800", relative proper motion between the two components less than 25 mas/yr, magnitudes and colors of the secondaries consistent with those of dwarfs in the (M_V,V-J) diagram. In addition, we list 21 candidate white-dwarf CPM companions with separations under 300", about half of which should be physical. We estimate a 0.31 fraction of pairs with red-dwarf companions to be physical systems (about 425 objects), while the rest (mostly wide pairs) are chance alignments. For each candidate companion, the probability of a physical association is evaluated. The distribution of projected separations s of the physical pairs between 2 kAU and 64 kAU follows f(s) ~ s^{-1.5}, which decreases faster than \\"Opik's law. We find that Solar-mass dwarfs have no less than 4.4% +/- 0.3% companions with separations l...

  12. Mid infrared observations of Van Maanen 2: no substellar companion.

    Energy Technology Data Exchange (ETDEWEB)

    Farihi, J; Becklin, E; Macintosh, B

    2004-11-03

    The results of a comprehensive infrared imaging search for the putative 0.06 M{sub {circle_dot}} astrometric companion to the 4.4 pc white dwarf van Mannen 2 are reported. Adaptive optics images acquired at 3.8 {micro}m reveal a diffraction limited core of 0.09 inch and no direct evidence of a secondary. Models predict that at 5 Gyr, a 50 M{sub J} brown dwarf would be only 1 magnitude fainter than van Maanen 2 at this wavelength and the astrometric analysis suggested a separation of 0.2 inch. In the case of a chance alignment along the line of sight, a 0.4 mag excess should be measured. An independent photometric observation at the same wavelength reveals no excess. In addition, there exist published ISO observations of van Maanen 2 at 6.8 {micro}m and 15.0 {micro}m which are consistent with photospheric flux of a 6750 K white dwarf. If recent brown dwarf models are correct, there is no substellar companion with T{sub eff} {approx}> 500 K.

  13. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Science.gov (United States)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  14. Discovery of a Low-Mass Companion to the Solar-Type Star TYC 2534-698-1

    CERN Document Server

    Kane, Stephen R; Cochran, William D; Street, Rachel A; Thirupathi, Sivarani; Henry, Gregory W; Williamson, Michael H

    2008-01-01

    Brown dwarfs and low-mass stellar companions are interesting objects to study since they occupy the mass region between deuterium and hydrogen burning. We report here the serendipitous discovery of a low-mass companion in an eccentric orbit around a solar-type main sequence star. The stellar primary, TYC 2534-698-1, is a G2V star that was monitored both spectroscopically and photometrically over the course of several months. Radial velocity observations indicate a minimum mass of 0.037 M_solar and an orbital period of ~103 days for the companion. Photometry outside of the transit window shows the star to be stable to within ~6 millimags. The semi-major axis of the orbit places the companion in the 'brown dwarf desert' and we discuss potential follow-up observations that could constrain the mass of the companion.

  15. Microlensing Planet Around Brown-Dwarf

    CERN Document Server

    Han, C; Udalski, A; Sumi, T; Gaudi, B S; Gould, A; Bennett, D P; Tsapras, Y; Szymański, M K; Kubiak, M; Pietrzyński, G; Soszyński, I; Skowron, J; Kozłowski, S; Poleski, R; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Abe, F; Bond, I A; Botzler, C S; Chote, P; Freeman, M; Fukui, A; Furusawa, K; Harris, P; Itow, Y; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Suzuki, D; Tristram, P J; Wada, K; Yock, P C M; Batista, V; Christie, G; Choi, J -Y; DePoy, D L; Dong, Subo; Hwang, K -H; Kavka, A; Lee, C -U; Monard, L A G; Natusch, T; Ngan, H; Park, H; Pogge, R W; Porritt, I; Shin, I -G; Tan, T G; Yee, J C; Alsubai, K A; Bramich, D M; Browne, P; Dominik, M; Horne, K; Hundertmark, M; Ipatov, S; Kains, N; Liebig, C; Snodgrass, C; Steele, I A; Street, R A

    2013-01-01

    Observations of accretion disks around young brown dwarfs have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around brown dwarfs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field brown dwarf via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 +- 0.001), relatively tightly-separated (~0.87 AU) binary composed of a planetary-mass object with 1.9 +- 0.2 Jupiter masses orbiting a brown dwarf with a mass 0.022 M_Sun. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the brown dwarf host, in a manner analogous to planets.

  16. Brown dwarfs forming in discs: Where to look for them?

    Directory of Open Access Journals (Sweden)

    Stamatellos D.

    2011-07-01

    Full Text Available A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation for the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100–5000 AU around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  17. Brown dwarfs forming in discs: where to look for them?

    CERN Document Server

    Stamatellos, Dimitris

    2009-01-01

    A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100-5000 AU) around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  18. PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhanjoy; Mortlock, Daniel [Imperial College London, 1010 Blackett Lab, Prince Consort Rd., London SW7 2AZ (United Kingdom); Greaves, Jane [SUPA, Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Pascucci, Ilaria; Apai, Daniel [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Scholz, Aleks [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Thompson, Mark [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Lodato, Giuseppe [Dipartimento di Fisica, Universita Degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Looper, Dagny, E-mail: s.mohanty@imperial.ac.uk [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States)

    2013-08-20

    We present SCUBA-2 850 {mu}m observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3{sigma} limits correspond to a dust mass of 1.2 M{sub Circled-Plus} in Taurus and a mere 0.2 M{sub Circled-Plus} in the TWA (3-10 Multiplication-Sign deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, {rho} Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is {approx}100 AU for intermediate-mass stars, solar types, and VLMS, and {approx}20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M{sub *} from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and {rho} Oph intermediate-mass and solar-type stars evince an opacity index of {beta} {approx} 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 {mu}m fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A

  19. Direct imaging searches for planets around white dwarf stars

    Science.gov (United States)

    Burleigh, Matt; Hogan, Emma; Clarke, Fraser

    White dwarfs are excellent targets for direct imaging searches for extra-solar planets, since they are up to 10^4 times fainter than their main sequence progenitors, providing a huge gain in the contrast problem. In addition, the orbits of planetary companions that lie beyond the maximum extent of the Red Giant envelope are expected to widen considerably, improving resolution and further encouraging direct detection. We discuss current searches for planetary companions to white dwarfs, including our own “DODO” programme. At the time of writing, no planetary companion to a white dwarf has been detected. The most sensitive searches have been capable of detecting companions ≳5M_{Jup}, and their non-detection is consistent with the conclusions of McCarthy & Zuckerman (2004), that no more than 3% of stars harbour 5-10M_{Jup} planets at orbits between 75-300AU. Extremely Large Telescopes are required to enable deeper searches sensitive to lower mass planets, and to provide larger target samples including more distant and older white dwarfs. ELTs will also enable spectroscopic follow-up for any resolved planets, and follow-up of any planetary companions discovered astrometrically by GAIA and SIM.

  20. Strangelet dwarfs

    CERN Document Server

    Alford, Mark G; Reddy, Sanjay

    2011-01-01

    If the surface tension of quark matter is low enough, quark matter is not self bound. At sufficiently low pressure and temperature, it will take the form of a crystal of positively charged strangelets in a neutralizing background of electrons. In this case there will exist, in addition to the usual family of strange stars, a family of low-mass large-radius objects analogous to white dwarfs, which we call "strangelet dwarfs". Using a generic parametrization of the equation of state of quark matter, we calculate the mass-radius relationship of these objects.

  1. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  2. SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    Science.gov (United States)

    Almenara, J. M.; Damiani, C.; Bouchy, F.; Havel, M.; Bruno, G.; Hébrard, G.; Diaz, R. F.; Deleuil, M.; Barros, S. C. C.; Boisse, I.; Bonomo, A. S.; Montagnier, G.; Santerne, A.

    2015-03-01

    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of 2.86 ± 0.35 MJup and a radius of 1.13 +0.26-0.18 RJup, and it orbits a G0, metallic ([ Fe/H ] = 0.35 ± 0.15) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of Teq = 1000 ± 45 K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of 2.82 ± 0.52 MJup and a radius of 1.45 ± 0.16 RJup, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the planet. On the other hand, KOI-680b has a much lower mass of 0.84 ± 0.15 MJup and requires less extra-dissipation to explain its uncommonly large radius of 1.99 ± 0.18 RJup. It is one of the biggest transiting planets characterized so far, and it orbits a subgiant F9-star well on its way to the red giant stage, with an orbital period of 8.6 days. With host stars of masses of 1.46 ± 0.17 M⊙ and 1.54 ± 0.09 M⊙, respectively, KOI-206b, and KOI-680b are interesting objects for theories of formation and survival of short-period planets around stars more massive than the Sun. For those two targets, we also find signs of a possible distant additional companion in the system. Based on observations made with SOPHIE on the 1.93-m telescope at the Observatoire de Haute-Provence (CNRS), France.Figures 11-14 are available in electronic form at http://www.aanda.org

  3. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    2013-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  4. The Toilet Companion

    DEFF Research Database (Denmark)

    Boer, Laurens; Hansen, Nico; Möller, Ragna-Lisa;

    2015-01-01

    pleasure. Despite our aims in providing joy and stimulation, participants from field trials with the Toilet Companion reported experiencing the brush as undesirable, predominantly because the sounds produced by the brush would make private toilet room activities publicly perceivable. The design...... intervention thus challenged the social boundaries of the otherwise private context of the toilet room, opening up an interesting area for design- ethnographic research about perception of space, where interactive artifacts can be mobilized to deliberately breach public, social, personal, and intimate spaces....

  5. UV-excess sources with a red/IR-counterpart: low-mass companions, debris disks and QSO selection

    CERN Document Server

    Verbeek, Kars; Scaringi, Simone; Casares, Jorge; Corral-Santana, Jesus M; Deacon, Niall; Drew, Janet E; Gänsicke, Boris T; González-Solares, Eduardo; Greimel, Robert; Heber, Ulrich; Napiwotzki, Ralf; Østensen, Roy H; Steeghs, Danny; Wright, Nicholas J; Zijlstra, Albert

    2013-01-01

    We present the result of the cross-matching between UV-excess sources selected from the UV-excess survey of the Northern Galactic Plane (UVEX) and several infrared surveys (2MASS, UKIDSS and WISE). From the position in the (J-H) vs. (H-K) colour-colour diagram we select UV-excess candidate white dwarfs with an M-dwarf type companion, candidates that might have a lower mass, brown-dwarf type companion, and candidates showing an infrared-excess only in the K-band, which might be due to a debris disk. Grids of reddened DA+dM and sdO+MS/sdB+MS model spectra are fitted to the U,g,r,i,z,J,H,K photometry in order to determine spectral types and estimate temperatures and reddening. From a sample of 964 hot candidate white dwarfs with (g-r)<0.2, the spectral energy distribution fitting shows that ~2-4% of the white dwarfs have an M-dwarf companion, ~2% have a lower-mass companion, and no clear candidates for having a debris disk are found. Additionally, from WISE 6 UV-excess sources are selected as candidate Quasi-...

  6. Brown Dwarfs From Mythical to Ubiquitous

    CERN Document Server

    Liebert, J

    1998-01-01

    Astrophysical objects below the stellar mass limit but well above the mass of Jupiter eluded discovery for nearly three decades after Kumar first proposed their existence, and for two decades after Tarter proposed the name "brown dwarfs." The first unambiguous discoveries of planetary (51 Peg B) and brown dwarf (Gliese 229B) companions occurred about three years ago. Yet while extrasolar planets are now being discovered at a breathtaking rate, brown dwarf companions to ordinary stars are apparently rare; likewise imaging surveys show that GL229B is still unique as a distant companion to a low mass star. On the other hand, the deep imaging studies of the Pleiades and several imbedded young clusters show that the mass function (ie. of single objects) extends in substantial numbers down to at least 40 Jupiter masses. The high mass / stellar density Orion Nebula Cluster may have relatively fewer low mass objects. In the field of the solar neighborhood, the infrared sky surveys DENIS and especially 2MASS show that...

  7. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  8. The DODO Survey: Imaging Planets around White Dwarfs

    Science.gov (United States)

    Hogan, E.; Burleigh, M. R.; Clarke, F. J.

    2007-09-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to directly image very low mass (⪆2 MJup) common proper motion companions in wide orbits around nearby white dwarfs. These proceedings contribution presents detailed results for three interesting white dwarfs from this survey and briefly describes the results from 19 other northern hemisphere and equatorial white dwarfs. So far, these results are consistent with the conclusions of tet{t40_mz2004}, that no more than ˜3% of stars harbour 5 - 10 MJup planets in wide orbits.

  9. A radio pulsing white dwarf binary star

    CERN Document Server

    Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-01-01

    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...

  10. Substellar Companions to Evolved Intermediate-Mass Stars: HD 145457 and HD 180314

    CERN Document Server

    Sato, Bun'ei; Liu, Yujuan; Harakawa, Hiroki; Izumiura, Hideyuki; Kambe, Eiji; Toyota, Eri; Murata, Daisuke; Lee, Byeong-Cheol; Masuda, Seiji; Takeda, Yoichi; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu; Kokubo, Eiichiro; Ida, Shigeru; Zhao, Gang; Han, Inwoo

    2010-01-01

    We report the detections of two substellar companions orbiting around evolved intermediate-mass stars from precise Doppler measurements at Subaru Telescope and Okayama Astrophysical Observatory. HD 145457 is a K0 giant with a mass of 1.9 M_sun and has a planet of minimum mass m_2sini=2.9 M_J orbiting with period of P=176 d and eccentricity of e=0.11. HD 180314 is also a K0 giant with 2.6 M_sun and hosts a substellar companion of m_2sin i=22 M_J, which falls in brown-dwarf mass regime, in an orbit with P=396 d and e=0.26. HD 145457 b is one of the innermost planets and HD 180314 b is the seventh candidate of brown-dwarf-mass companion found around intermediate-mass evolved stars.

  11. The 25 parsec local white dwarf population

    Science.gov (United States)

    Holberg, J. B.; Oswalt, T. D.; Sion, E. M.; McCook, G. P.

    2016-11-01

    We have extended our detailed survey of the local white dwarf population from 20 to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process, new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68 per cent complete (the corresponding 20 pc sample is now 86 per cent complete). The space density of white dwarfs is unchanged at 4.8 ± 0.5 × 10-3 pc-3. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74 per cent versus 26 per cent). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition, this updated sample exhibits a pronounced deficiency of nearby `Sirius-like' systems. 11 such systems were found within the 20 pc volume versus only one additional system found in the volume between 20 and 25 pc. An estimate of white dwarf birth rates during the last ˜8 Gyr is derived from individual remnant cooling ages. A discussion of likely ways new members of the local sample may be found is provided.

  12. Evidence for Variable, Correlated X-ray and Optical/IR Extinction toward the Nearby, Pre-main Sequence Binary TWA 30

    CERN Document Server

    Principe, David A; Kastner, Joel H; Stelzer, Beate; Alcala, Juan

    2016-01-01

    We present contemporaneous XMM-Newton X-ray and ground-based optical/near-IR spectroscopic observations of the nearby ($D \\approx 42$ pc), low-mass (mid-M) binary system TWA 30A and 30B. The components of this wide (separation $\\sim$3400 AU) binary are notable for their nearly edge-on disk viewing geometries, high levels of variability, and evidence for collimated stellar outflows. We obtained XMM-Newton X-ray observations of TWA 30A and 30B in 2011 June and July, accompanied (respectively) by IRTF SpeX (near-IR) and VLT XSHOOTER (visible/near-IR) spectroscopy obtained within $\\sim$20 hours of the X-ray observations. TWA 30A was detected in both XMM-Newton observations at relatively faint intrinsic X-ray luminosities ($L_{X}$$\\sim$$8\\times10^{27}$ $erg$ $s^{-1}$) compared to stars of similar mass and age . The intrinsic (0.15-2.0 keV) X-ray luminosities measured in 2011 had decreased by a factor 20-100 relative to a 1990 (ROSAT) X-ray detection. TWA 30B was not detected, and we infer an upper limit of ($L_{X}...

  13. Shaping the Brown Dwarf Desert: Predicting the Primordial Brown Dwarf Binary Distributions from Turbulent Fragmentation

    CERN Document Server

    Jumper, Peter H

    2013-01-01

    The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ($\\leq 5$ AU) brown dwarf companions to solar-mass stars, known as the brown dwarf desert, as well as the tendency for low-mass binary systems to be more tightly-bound than stellar binaries, have been cited as evidence for distinct formation mechanisms for brown dwarfs and stars. In this paper, we explore the implications of the minimal hypothesis that brown dwarfs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scaling of specific angular momentum with turbulent core mass naturally gives rise to the brown dwarf desert, as well as wide brown-dwarf binary systems. Further, we demonstrate analytically that the turbulent core fragmentation model also naturally predicts that very low-mass (VLM) binary and BD/BD systems are more tightly-bound than stellar systems. In addit...

  14. Evidence for variable, correlated X-ray and optical/IR extinction towards the nearby, pre-main-sequence binary TWA 30

    Science.gov (United States)

    Principe, David A.; Sacco, G.; Kastner, J. H.; Stelzer, B.; Alcalá, J. M.

    2016-06-01

    We present contemporaneous XMM-Newton X-ray and ground-based optical/near-IR spectroscopic observations of the nearby (D ≈ 42 pc), low-mass (mid-M) binary system TWA 30A and 30B. The components of this wide (separation ˜3400 au) binary are notable for their nearly edge-on disc viewing geometries, high levels of variability, and evidence for collimated stellar outflows. We obtained XMM-Newton X-ray observations of TWA 30A and 30B in 2011 June and July, accompanied (respectively) by Infrared Telescope Facility SpeX (near-IR) and VLT XSHOOTER (visible/near-IR) spectroscopy obtained within ˜20 h of the X-ray observations. TWA 30A was detected in both XMM-Newton observations at relatively faint intrinsic X-ray luminosities (LX ˜ 8 × 1027 erg s-1) compared to stars of similar mass and age. The intrinsic (0.15-2.0 keV) X-ray luminosities measured in 2011 had decreased by a factor 20-100 relative to a 1990 (ROSAT) X-ray detection. TWA 30B was not detected, and we infer an upper limit on its X-ray Luminosity of LX ≲ 3.0 × 1027 erg s-1. We measured a decrease in visual extinction towards TWA 30A (from AV ≈ 14.9 to AV ≈ 4.7) between the two 2011 observing epochs, and we find evidence for a corresponding significant decrease in X-ray absorbing column (NH). The apparent correlated change in AV and NH is suggestive of variable obscuration of the stellar photosphere by disc material composed of both gas and dust. However, in both observations, the inferred NH to AV ratio is lower than that typical of the interstellar medium, suggesting that the disc is either depleted of gas or is deficient in metals in the gas phase.

  15. Dynamical analyses of the companions orbiting eclipsing binaries II. Z Draconis with four companions close to 6:3:2:1 mean motion resonances

    CERN Document Server

    Yuan, Jinzhao; Selam, Selim O; Gümüş, Damla

    2014-01-01

    All available mid-eclipse times of the short-period eclipsing binary Z Draconis are analysed, and multiple cyclic variations are found. Based on the light-travel time model, we find three companions around Z Draconis, and one or more possible short-period companions. The derived orbital periods suggest that the three outer companions and an inner one are in a near 6:3:2:1 mean-motion resonances. The most outer companion has the minimum mass of $\\sim0.7M_{\\bigodot}$, whereas other companions are M dwarfs. We have studied the stabilities of the companions moving on a series of mutually inclined orbits. The results show that no orbital configurations can survive for 200 yr. We speculate that the instability of the system can be attributed to the uncertainties of the short-period companions, which result from the low-precision mid-eclipse times. Thus, secular CCD observations with much higher precision are needed in the future.

  16. Two Wide Planetary-Mass Companions to Solar-Type Stars in Upper Scorpius

    CERN Document Server

    Ireland, Michael J; Martinache, Frantz; Law, Nicholas M; Hillenbrand, Lynne A

    2010-01-01

    At wide separations, planetary-mass and brown dwarf companions to solar type stars occupy a curious region of parameters space not obviously linked to binary star formation or solar-system scale planet formation. These companions provide insight into the extreme case of companion formation (either binary or planetary), and due to their relative ease of observation when compared to close companions, they offer a useful template for our expectations of more typical planets. We present the results from an adaptive optics imaging survey for wide (50-500 AU) companions to solar type stars in Upper Scorpius. We report one new discovery of a ~14 M_J companion around GSC 06214-00210, and confirm that the candidate planetary mass companion 1RXS J160929.1-210524 detected by Lafreniere et al (2008) is in fact co-moving with its primary star. In our survey, these two detections correspond to ~4% of solar type stars having companions in the 6-20 M_J mass and 200-500 AU separation range. This figure is higher than would be...

  17. Massive double white dwarfs and the AM CVn birthrate

    Science.gov (United States)

    Kilic, Mukremin; Brown, Warren R.; Heinke, Craig O.; Gianninas, A.; Benni, P.; Agüeros, M. A.

    2016-08-01

    We present Chandra and Swift X-ray observations of four extremely low-mass (ELM) white dwarfs with massive companions. We place stringent limits on X-ray emission from all four systems, indicating that neutron star companions are extremely unlikely and that the companions are almost certainly white dwarfs. Given the observed orbital periods and radial velocity amplitudes, the total masses of these binaries are greater than 1.02-1.39 M⊙. The extreme mass ratios between the two components make it unlikely that these binary white dwarfs will merge and explode as Type Ia or underluminous supernovae. Instead, they will likely go through stable mass transfer through an accretion disc and turn into interacting AM CVn. Along with three previously known systems, we identify two of our targets, J0811 and J2132, as systems that will definitely undergo stable mass transfer. In addition, we use the binary white dwarf sample from the ELM Survey to constrain the inspiral rate of systems with extreme mass ratios. This rate, 1.7 × 10-4 yr-1, is consistent with the AM CVn space density estimated from the Sloan Digital Sky Survey. Hence, stable mass transfer double white dwarf progenitors can account for the entire AM CVn population in the Galaxy.

  18. Gaia, Non-Single Stars, Brown Dwarfs, and Exoplanets

    CERN Document Server

    Sozzetti, A

    2014-01-01

    In its all-sky survey, Gaia will monitor astrometrically and photometrically millions of main-sequence stars with sufficient sensitivity to brown dwarf companions within a few AUs from their host stars and to transiting brown dwarfs on very short periods, respectively. Furthermore, thousands of detected ultra-cool dwarfs in the backyard of the Sun will have direct (absolute) distance estimates from Gaia, and for these Gaia astrometry will be of sufficient precision to reveal any orbiting companions with masses as low as that of Jupiter. Gaia observations thus bear the potential for critical contributions to many important questions in brown dwarfs astrophysics (how do they form in isolation and as companions to stars? Can planets form around them? What are their fundamental parameters such as ages, masses, and radii? What is their atmospheric physics?), and their connection to stars and planets. The full legacy potential of Gaia in the realm of brown dwarf science will be realized when combined with other det...

  19. Binary sdB Stars with Massive Compact Companions

    CERN Document Server

    Geier, S; Edelmann, H; Heber, U; Napiwotzki, R

    2008-01-01

    The masses of compact objects like white dwarfs, neutron stars and black holes are fundamental to astrophysics, but very difficult to measure. We present the results of an analysis of subluminous B (sdB) stars in close binary systems with unseen compact companions to derive their masses and clarify their nature. Radial velocity curves were obtained from time resolved spectroscopy. The atmospheric parameters were determined in a quantitative spectral analysis. Based on high resolution spectra we were able to measure the projected rotational velocity of the stars with high accuracy. In the distribution of projected rotational velocities signs of tidal locking with the companions are visible. By detecting ellipsoidal variations in the lightcurve of an sdB binary we were able to show that subdwarf binaries with orbital periods up to 0.6 d are most likely synchronized. In this case, the inclination angles and companion masses of the binaries can be tightly constrained. Five invisible companions have masses that ar...

  20. Discovery of the benchmark metal poor T8 dwarf BD+01 2920B

    CERN Document Server

    Pinfield, D J; Lodieu, N; Leggett, S K; Tinney, C G; van Spaandonk, L; Marocco, F; Smart, R; Gomes, J; Smith, L; Lucas, P W; Day-Jones, A C; Murray, D N; Katsiyannis, A C; Catalan, S; Cardoso, C; Clarke, J R A; Folkes, S; Galvez-Ortiz, M C; Homeier, D; Jenkins, J S; Jones, H R A; Zhang, Z H

    2012-01-01

    We have searched the WISE first data release for widely separated (<10,000AU) late T dwarf companions to Hipparcos and Gliese stars. We have discovered a new binary system containing a K-band suppressed T8p dwarf WISEP J1423+0116 and the mildly metal poor ([Fe/H]=-0.38+-0.06) primary BD+01 2920 (Hip 70319), a G1 dwarf at a distance of 17.2pc. This new benchmark has Teff=680+-55K and a mass of 20-50 Mjup. Its spectral properties are well modelled except for known discrepancies in the Y and K bands. Based on the well determined metallicity of its companion, the properties of BD+01 2920B imply that the currently known T dwarfs are dominated by young low-mass objects. We also present an accurate proper motion for the T8.5 dwarf WISEP J075003.84+272544.8.

  1. FINDING DWARF GALAXIES FROM THEIR TIDAL IMPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Sukanya [Physics Department, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Bigiel, Frank [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg Albert-Ueberle Str. 2 69120 Heidelberg (Germany); Chang, Philip [Physics Department, University of Wisconsin-Milwaukee, P.O. Box 413, 2200 E. Kenwood Blvd., Milwaukee, WI 53201-0413 (United States); Blitz, Leo, E-mail: schakra1@fau.edu, E-mail: chang65@uwm.edu [Astronomy Department, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2011-12-10

    We describe ongoing work on a new method that allows one to approximately determine the mass and relative position (in galactocentric radius and azimuth) of galactic companions purely from analysis of observed disturbances in gas disks. We demonstrate the validity of this method, which we call Tidal Analysis, by applying it to local spirals with known optical companions, namely M51 and NGC 1512. These galaxies span the range from having a very low mass companion ({approx}one-hundredth the mass of the primary galaxy) to a fairly massive companion ({approx}one-third the mass of the primary galaxy). This approach has broad implications for many areas of astrophysics-for the indirect detection of dark matter (or dark-matter-dominated dwarf galaxies), and for galaxy evolution in its use to decipher the dynamical impact of satellites on galactic disks. Here, we provide a proof of principle of the method by applying it to infer and quantitatively characterize optically visible galactic companions of local spirals, from the analysis of observed disturbances in outer gas disks.

  2. Measuring the mass of a pre-main sequence binary star through the orbit of TWA5A

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Q; Ghez, A; Duchene, G; McCabe, C; Macintosh, B

    2007-01-18

    We present the results of a five year monitoring campaign of the close binary TWA 5Aab in the TW Hydrae association, using speckle and adaptive optics on the W.M. Keck 10 m telescopes. These measurements were taken as part of our ongoing monitoring of pre-main sequence (PMS) binaries in an effort to increase the number of dynamically determined PMS masses and thereby calibrate the theoretical PMS evolutionary tracks. Our observations have allowed us to obtain the first determination of this system's astrometric orbit. We find an orbital period of 5.94 {+-} 0.09 years and a semi-major axis of 0.''066 {+-} 0.''005. Combining these results with a kinematic distance, we calculate a total mass of 0.71 {+-} 0.14 M{sub {circle_dot}} (D/44 pc){sup 3}. for this system. This mass measurement, as well as the estimated age of this system, are consistent to within 2{sigma} of all theoretical models considered. In this analysis, we properly account for correlated uncertainties, and show that while these correlations are generally ignored, they increase the formal uncertainties by up to a factor of five and therefore are important to incorporate. With only a few more years of observation, this type of measurement will allow the theoretical models to be distinguished.

  3. Naming Disney's Dwarfs.

    Science.gov (United States)

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  4. Deep infrared imaging of close companions to austral A- and F-type stars

    CERN Document Server

    Ehrenreich, David; Montagnier, Guillaume; Chauvin, Gaël; Galland, Franck; Beuzit, Jean-Luc; Rameau, Julien

    2010-01-01

    The search for substellar companions around stars with different masses along the main sequence is critical to understand the different processes leading to the formation of low-mass stars, brown dwarfs, and planets. In particular, the existence of a large population of low-mass stars and brown dwarfs physically bound to early-type main-sequence stars could imply that the massive planets recently imaged at wide separations (10-100 AU) around A-type stars are disc-born objects in the low-mass tail of the binary distribution. Our aim is to characterize the environment of early-type main-sequence stars by detecting brown dwarf or low-mass star companions between 10 and 500 AU. High contrast and high angular resolution near-infrared images of a sample of 38 southern A- and F-type stars have been obtained between 2005 and 2009 with the instruments VLT/NaCo and CFHT/PUEO. Multi-epoch observations were performed to discriminate comoving companions from background contaminants. About 41 companion candidates were imag...

  5. A DARK SPOT ON A MASSIVE WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Mukremin; Gianninas, Alexandros; Curd, Brandon; Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Bell, Keaton J.; Winget, D. E.; Winget, K. I. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Hermes, J. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Dufour, Patrick [Institut de recherche sur les exoplanétes (iREx), Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada)

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.

  6. A wide binary trigger for white dwarf pollution

    CERN Document Server

    Bonsor, Amy

    2015-01-01

    Metal pollution in white dwarf atmospheres is likely to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galactic tides, approaching close to the primary star for the first time after billions of years of evolution on the white dwarf branch. We show that such a close approach perturbs a planetary system orbiting the white dwarf, scattering planetesimals onto star-grazing orbits, in a manner that could pollute the white dwarf's atmosphere. Our estimates find that this mechanism is likely to contribute to metal pollution, alongside other mechanisms, in up to a few percent of an observed sample of white dwarfs with wide binary compan...

  7. The 25 Parsec Local White Dwarf Population

    CERN Document Server

    Oswalt, J B Holberg T D; McCook, G P

    2016-01-01

    We have extended our detailed survey of the local white dwarf population from 20 pc to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68% complete (the corresponding 20 pc sample is now 86\\% complete). The space density of white dwarfs is unchanged at 4.8 \\pm 0.5 x 10^{-3} pc^{-3}. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74\\% vs 26\\%). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition this updated sample exhibits a pronounced deficiency of nearby Sirius-Like systems. Eleven such systems were found within the 20 pc volume vs, only one add...

  8. Sirius B - A still mysterious white dwarf

    Science.gov (United States)

    Wesemael, F.; Fontaine, G.

    1982-02-01

    Observations and knowledge of Sirius B, the companion star to Sirius A are reviewed, noting the solar mass and terrestrial radius of the dwarf. The system is 2.65 pc distant, with separation between the stars oscillating from 8-32 AU. Spectral observations are best obtained when the stars are at maximum distance, and redshifts which affirm the theory of relativity have been detected. Copernicus satellite observations have also revealed the emissions of UV and X rays from the dwarf. It is noted that Grecian records over 2000 yr old cite Sirius as a red star, which implies that the dwarf was then a red star since Sirius A is a main sequence star, an implication which does not correspond with the known evolution of stars. Another mystery is cited, that of the tribal records of the Sudanese Dogon, which maintains an ancient legend of Sirius A having an invisible companion called Digitaria, composed of a substance called segala, which cannot be lifted by all the humans on earth combined.

  9. Statistical analysis of bound companions in the Coma cluster

    Science.gov (United States)

    Mendelin, Martin; Binggeli, Bruno

    2017-08-01

    Aims: The rich and nearby Coma cluster of galaxies is known to have substructure. We aim to create a more detailed picture of this substructure by searching directly for bound companions around individual giant members. Methods: We have used two catalogs of Coma galaxies, one covering the cluster core for a detailed morphological analysis, another covering the outskirts. The separation limit between possible companions (secondaries) and giants (primaries) is chosen as MB = -19 and MR = -20, respectively for the two catalogs. We have created pseudo-clusters by shuffling positions or velocities of the primaries and search for significant over-densities of possible companions around giants by comparison with the data. This method was developed and applied first to the Virgo cluster. In a second approach we introduced a modified nearest neighbor analysis using several interaction parameters for all galaxies. Results: We find evidence for some excesses due to possible companions for both catalogs. Satellites are typically found among the faintest dwarfs (MB type giants (spirals) in the outskirts, which is expected in an infall scenario of cluster evolution. A rough estimate for an upper limit of bound galaxies within Coma is 2-4%, to be compared with 7% for Virgo. Conclusions: The results agree well with the expected low frequency of bound companions in a regular cluster such as Coma. To exploit the data more fully and reach more detailed insights into the physics of cluster evolution we suggest applying the method also to model clusters created by N-body simulations for comparison.

  10. Korean-Japanese Planet Search Program: Substellar Companions around Intermediate-Mass Giants

    CERN Document Server

    Omiya, Masashi; Izumiura, Hideyuki; Lee, Byeong-Cheol; Sato, Bun'ei; Kim, Kang-Min; Yoon, Tae Seog; Kambe, Eiji; Yoshida, Michitoshi; Masuda, Seiji; Toyota, Eri; Urakawa, Seitaro; Takada-Hidai, Masahide

    2011-01-01

    A Korean-Japanese planet search program has been carried out using the 1.8m telescope at Bohyunsan Optical Astronomy Observatory (BOAO) in Korea, and the 1.88m telescope at Okayama Astrophysical Observatory (OAO) in Japan to search for planets around intermediate-mass giant stars. The program aims to show the properties of planetary systems around such stars by precise Doppler survey of about 190 G or K type giants together with collaborative surveys of the East-Asian Planet Search Network. So far, we detected two substellar companions around massive intermediate-mass giants in the Korean-Japanese planet search program. One is a brown dwarf-mass companion with 37.6 $M_{\\mathrm{J}}$ orbiting a giant HD 119445 with 3.9 $M_{\\odot}$, which is the most massive brown dwarf companion among those found around intermediate-mass giants. The other is a planetary companion with 1.8 $M_{\\mathrm{J}}$ orbiting a giant star with 2.4 $M_{\\odot}$, which is the lowest-mass planetary companion among those detected around giant s...

  11. The APOGEE DR13 Catalog of Stellar and Substellar Companion Candidates

    Science.gov (United States)

    Troup, Nicholas William; APOGEE RV Variability Working Group

    2017-01-01

    The SDSS Apache Point Observatory Galactic Evolution Experiment (APOGEE), expanding beyond its original intent as a Galactic structure survey, has demonstrated its capability as a radial velocity (RV) machine with the publication of a catalog of stellar and substellar companion candidates based on SDSS’s 12th data release (DR12). We expand upon this work by taking advantage of the improved parameters and additional information provided in APOGEE’s latest data release (DR13) to build an improved catalog of stellar and substellar companions. The newly available rotational velocity measurements provides an additional check against false-positive orbital solutions, and aids investigations of the role of tidal interactions in shaping the brown dwarf desert. In addition, we present initial tests of an automated cross-corellation function (CCF) bisector analysis code that allows us to detect spectrally unresolved companions and, in some cases, break the inclination degeneracy of RV detections. Finally, we present analysis of the detailed chemical abundances of the host stars in our sample. In particular, we use this abundance information to disentangle the formation mechanisms of brown dwarf companions from those of gas giant planets and low mass stellar companions.

  12. Atmospheres of Brown Dwarfs

    CERN Document Server

    Helling, Christiane

    2014-01-01

    Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of < 2800K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

  13. WD0837+185: THE FORMATION AND EVOLUTION OF AN EXTREME MASS-RATIO WHITE-DWARF-BROWN-DWARF BINARY IN PRAESEPE

    Energy Technology Data Exchange (ETDEWEB)

    Casewell, S. L.; Burleigh, M. R.; Wynn, G. A.; Alexander, R. D.; Lawrie, K. A.; Jameson, R. F. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Napiwotzki, R. [Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Dobbie, P. D. [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania 7001 (Australia); Hodgkin, S. T., E-mail: slc25@le.ac.uk [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2012-11-10

    There is a striking and unexplained dearth of brown dwarf companions in close orbits (<3 AU) around stars more massive than the Sun, in stark contrast to the frequency of stellar and planetary companions. Although rare and relatively short-lived, these systems leave detectable evolutionary end points in the form of white-dwarf-brown-dwarf binaries and these remnants can offer unique insights into the births and deaths of their parent systems. We present the discovery of a close (orbital separation {approx}0.006 AU) substellar companion to a massive white dwarf member of the Praesepe star cluster. Using the cluster age and the mass of the white dwarf, we constrain the mass of the white dwarf progenitor star to lie in the range 3.5-3.7 M{sub Sun} (B9). The high mass of the white dwarf means the substellar companion must have been engulfed by the B star's envelope while it was on the late asymptotic giant branch (AGB). Hence, the initial separation of the system was {approx}2 AU, with common envelope evolution reducing the separation to its current value. The initial and final orbital separations allow us to constrain the combination of the common envelope efficiency ({alpha}) and binding energy parameters ({lambda}) for the AGB star to {alpha}{lambda} {approx} 3. We examine the various formation scenarios and conclude that the substellar object was most likely captured by the white dwarf progenitor early in the life of the cluster, rather than forming in situ.

  14. Massive Double White Dwarfs and the AM CVn Birthrate

    CERN Document Server

    Kilic, Mukremin; Heinke, Craig O; Gianninas, A; Benni, P; Agueros, M A

    2016-01-01

    We present Chandra and Swift X-ray observations of four extremely low-mass (ELM) white dwarfs with massive companions. We place stringent limits on X-ray emission from all four systems, indicating that neutron star companions are extremely unlikely and that the companions are almost certainly white dwarfs. Given the observed orbital periods and radial velocity amplitudes, the total masses of these binaries are greater than 1.02 to 1.39 Msun. The extreme mass ratios between the two components make it unlikely that these binary white dwarfs will merge and explode as Type Ia or underluminous supernovae. Instead, they will likely go through stable mass transfer through an accretion disk and turn into interacting AM CVn. Along with three previously known systems, we identify two of our targets, J0811 and J2132, as systems that will definitely undergo stable mass transfer. In addition, we use the binary white dwarf sample from the ELM Survey to constrain the inspiral rate of systems with extreme mass ratios. This r...

  15. An astrometric search for a stellar companion to the sun

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, S.

    1986-11-25

    A companion star within 0.8 pc of the Sun has been postulated to explain a possible 26 Myr periodicity in mass extinctions of species on the Earth. Such a star would already be catalogued in the Yale Bright Star catalogue unless it is fainter than m/sub nu/ = 6.5; this limits the possible stellar types for an unseen companion to red dwarfs, brown dwarfs, or compact objects. Red dwarfs account for about 75% of these possible stars. We describe here the design and development of an astrometric search for a nearby red dwarf companion with a six-month peak-to-peak parallax of greater than or equal to2.5 arcseconds. We are measuring the parallax of 2770 candidate faint red stars selected from the Dearborn Observatory catalogue. An automated 30-inch telescope and CCD camera system collect digitized images of the candidate stars, along with a 13' x 16' surrounding field of background stars. Second-epoch images, taken a few months later, are registered to the first epoch images using the background stars as fiducials. An apparent motion, m/sub a/, of the candidate stars is found to a precision of sigma/sub m//sub a/ approx. = 0.08 pixel approx. = 0.2 arcseconds for fields with N/sub fiducial/ greater than or equal to 10 fiducial stars visible above the background noise. This precision is sufficient to detect the parallactic motion of a star at 0.8 pc with a two month interval between the observation epochs. Images with fewer fiducial stars above background noise are observed with a longer interval between epochs. If a star is found with high parallactic motion, we will confirm its distance with further parallax measurements, photometry, and spectral studies, and will measure radial velocity and proper motion to establish its orbit. We have demonstrated the search procedure with observations of 41 stars, and have shown that none of these is a nearby star. 37 refs., 16 figs., 3 tabs.

  16. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.

    Science.gov (United States)

    Li, Weidong; Bloom, Joshua S; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate; Shen, Ken J

    2011-12-14

    Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.

  17. Imaging search for the unseen companion to Eps Ind A -- Improving the detection limits with 4 micron observations

    CERN Document Server

    Janson, M; Zechmeister, M; Brandner, W; Kürster, M; Kasper, M; Reffert, S; Endl, M; Lafrenière, D; Geissler, K; Hippler, S; Henning, T

    2009-01-01

    Eps Ind A is one of the nearest sun-like stars, located only 3.6 pc away. It is known to host a binary brown dwarf companion, Eps Ind Ba/Bb, at a large projected separation of 6.7", but radial velocity measurements imply that an additional, yet unseen component is present in the system, much closer to Eps Ind A. Previous direct imaging has excluded the presence of any stellar or high-mass brown dwarf companion at small separations, indicating that the unseen companion may be a low-mass brown dwarf or high-mass planet. We present the results of a deep high-contrast imaging search for the companion, using active angular differential imaging (aADI) at 4 micron, a particularly powerful technique for planet searches around nearby and relatively old stars. We also develop an additional PSF reference subtraction scheme based on locally optimized combination of images (LOCI) to further enhance the detection limits. No companion is seen in the images, although we are sensitive to significantly lower masses than previo...

  18. Searching for Young M Dwarfs with GALEX

    CERN Document Server

    Shkolnik, Evgenya L; Reid, Iain Neill; Dupuy, Trent; Weinberger, Alycia

    2010-01-01

    The census of young moving groups in the solar neighborhood is significantly incomplete in the low-mass regime. We have developed a new selection process to find these missing members based on the GALEX All-Sky Imaging Survey (AIS). For stars with spectral types later than K5 (R - J >= 1.5) and younger than ~300 Myr, we show that near-UV (NUV) and far-UV (FUV) emission is greatly enhanced above the quiescent photosphere, analogous to the enhanced X-ray emission of young low-mass stars seen by ROSAT but detectable to much larger distances with GALEX. By combining GALEX data with optical (HST Guide Star Catalog) and near-IR (2MASS) photometry, we identified an initial sample of 34 young M dwarf candidates in a 1000 sq. deg. region around the 10-Myr TW Hydra Association (TWA). Low-resolution spectroscopy of 30 of these found 16 which had H_alpha in emission, which were then followed-up at high resolution to search for spectroscopic evidence of youth and to measure their radial velocities. Four objects have low s...

  19. Binary Formation Mechanisms: Constraints from the Companion Mass Ratio Distribution

    CERN Document Server

    Reggiani, Maddalena M

    2011-01-01

    We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single object mass function (Bochanski et al. 2010). The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star IMF. We consider samples of companions for M dwarfs, solar type and intermediate mass stars, both in the field as well as clusters or associations, and compare them with populations of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open cluster...

  20. Routledge companion to intelligence studies

    CERN Document Server

    Dover, Robert; Hillebrand, Claudia

    2013-01-01

    The Routledge Companion to Intelligence Studies provides a broad overview of the growing field of intelligence studies. The recent growth of interest in intelligence and security studies has led to an increased demand for popular depictions of intelligence and reference works to explain the architecture and underpinnings of intelligence activity. Divided into five comprehensive sections, this Companion provides a strong survey of the cutting-edge research in the field of intelligence studies: Part I: The evolution of intelligence studies; Part II: Abstract approaches to intelligence; Part III: Historical approaches to intelligence; Part IV: Systems of intelligence; Part V: Contemporary challenges. With a broad focus on the origins, practices and nature of intelligence, the book not only addresses classical issues, but also examines topics of recent interest in security studies. The overarching aim is to reveal the rich tapestry of intelligence studies in both a sophisticated and accessible way. This Companion...

  1. Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey

    CERN Document Server

    Gates, E; Harris, H C; Subba-Rao, M; Anderson, S; Kleinman, S J; Liebert, J; Brewington, H; Brinkmann, J; Harvanek, M; Krzesínski, J; Lamb, D Q; Long, D; Neilsen, E H; Newman, P R; Nitta, A; Snedden, S A; Gates, Evalyn; Gyuk, Geza; Harris, Hugh C.; Subbarao, Mark; Anderson, Scott; Liebert, James; Brewington, Howard; Harvanek, Michael; Krzesinski, Jurek; Lamb, Don Q.; Long, Dan; Neilsen, Eric H.; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.

    2004-01-01

    We report the discovery of five very cool white dwarfs in the Sloan Digital Sky Survey (SDSS). Four are ultracool, exhibiting strong collision induced absorption (CIA) from molecular hydrogen and are similar in color to the three previously known coolest white dwarfs, SDSS J1337+00, LHS 3250 and LHS 1402. The fifth, an ultracool white dwarf candidate, shows milder CIA flux suppression and has a color and spectral shape similar to WD 0346+246. All five new white dwarfs are faint (g > 18.9) and have significant proper motions. One of the new ultracool white dwarfs, SDSS J0947, appears to be in a binary system with a slightly warmer (T_{eff} ~ 5000K) white dwarf companion.

  2. Extrasolar Giant Planet and Brown Dwarf Models

    CERN Document Server

    Burrows, A; Lunine, J I; Guillot, M P; Saumon, D S; Freedman, R S

    1997-01-01

    With the discovery of the companions of 51 Peg, 55 Cnc, $\\tau$ Boo, gas giants and/or brown dwarfs with masses from 0.3 through 60 times that of Jupiter assume a new and central role in the emerging field of extrasolar planetary studies. In this contribution, we describe the structural, spectral, and evolutionary characteristics of such exotic objects, as determined by our recent theoretical calculations. These calculations can be used to establish direct search strategies via SIRTF, ISO, and HST (NICMOS), and via various ground--based adaptive optics and interferometric platforms planned for the near future.

  3. White dwarf-main sequence binaries from LAMOST: the DR1 catalogue

    CERN Document Server

    Ren, Juanjuan; Luo, Ali; Zhao, Yongheng; Xiang, Maosheng; Liu, Xiaowei; Zhao, Gang; Jin, Ge; Zhang, Yong

    2014-01-01

    Context. White dwarf-main sequence (WDMS) binaries are used to study several different important open problems in modern astrophysics. Aims. The Sloan Digital Sky Survey (SDSS) identified the largest catalogue of WDMS binaries currently known. However, this sample is seriously affected by selection effects and the population of systems containing cool white dwarfs and early-type companions is under-represented.Here we search for WDMS binaries within the spectroscopic data release 1 of the LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) survey. LAMOST and SDSS follow different target selection algorithms. Hence, LAMOST WDMS binaries may be drawn from a different parent population and thus help in overcoming the selection effects incorporated by SDSS on the current observed population. Methods. We develop a fast and efficient routine based on the wavelet transform to identify LAMOST WDMS binaries containing a DA white dwarf and a M dwarf companion, and apply a decomposition/fitting routine to...

  4. Dwarf galaxies beyond our doorstep: the Centaurus A group

    CERN Document Server

    Crnojević, D; Cole, A A; Koch, A; Rejkuba, M; Da Costa, G; Jerjen, H

    2010-01-01

    The study of dwarf galaxies in groups is a powerful tool for investigating galaxy evolution, chemical enrichment and environmental effects on these objects. Here we present results obtained for dwarf galaxies in the Centaurus A complex, a dense nearby (~4 Mpc) group that contains two giant galaxies and about 30 dwarf companions of different morphologies and stellar contents. We use archival optical (HST/ACS) and near-infrared (VLT/ISAAC) data to derive physical properties and evolutionary histories from the resolved stellar populations of these dwarf galaxies. In particular, for early-type dwarfs we are able to construct metallicity distribution functions, find population gradients and quantify the intermediate-age star formation episodes. For late-type dwarfs, we compute recent (~1 Gyr) star formation histories and study their stellar distribution. We then compare these results with properties of the dwarfs in our Milky Way and in other groups. Our work will ultimately lead to a better understanding of the e...

  5. Investigating Dwarf Spiral Galaxies

    Science.gov (United States)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  6. The formation of high-field magnetic white dwarfs from common envelopes

    CERN Document Server

    Nordhaus, J; Spiegel, D S; Metzger, B D; Blackman, E G

    2010-01-01

    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute...

  7. The Discovery of Binary White Dwarfs that will Merge within 500 Myr

    CERN Document Server

    Kilic, Mukremin; Prieto, Carlos Allende; Kenyon, S J

    2009-01-01

    We present radial velocity observations of four extremely low-mass (0.2 Msol) white dwarfs. All four stars show peak-to-peak radial velocity variations of 540 - 710 km/s with 1.0 - 5.9 hr periods. The optical photometry rules out main-sequence companions. In addition, no milli-second pulsar companions are detected in radio observations. Thus the invisible companions are most likely white dwarfs. Due to the loss of angular momentum through gravitational radiation, three of the systems will merge within 500 Myr. The remaining system will merge within a Hubble time. The mass functions for three of the systems imply companions more massive than 0.44 Msol; thus those are carbon/oxygen core white dwarfs. However, the chance of a supernova Ia event is only 1% to 5%. These systems will most likely form single R Coronae Borealis stars, providing evidence for a white dwarf + white dwarf merger mechanism for these unusual objects. One of the systems, SDSS J105353.89+520031.0 has a 70% chance of having a low-mass white d...

  8. Formation of high-field magnetic white dwarfs from common envelopes.

    Science.gov (United States)

    Nordhaus, Jason; Wellons, Sarah; Spiegel, David S; Metzger, Brian D; Blackman, Eric G

    2011-02-22

    The origin of highly magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star, is engulfed by a post-main-sequence giant, gravitational torques in the envelope of the giant lead to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.

  9. A Search for Faint Companions to Nearby Stars Using the Wide Field Planetary Camera 2

    Science.gov (United States)

    Schroeder, Daniel J.; Golimowski, David A.; Brukardt, Ryan A.; Burrows, Christopher J.; Caldwell, John J.; Fastie, William G.; Ford, Holland C.; Hesman, Brigette; Kletskin, Ilona; Krist, John E.; Royle, Patricia; Zubrowski, Richard. A.

    2000-02-01

    We have completed a direct-imaging search for faint companions (FCs) to 23 stars within 13 pc of the Sun using the Hubble Space Telescope Planetary Camera. The strategy of this search changed considerably from that reported in 1996. To maximize the image contrast between potential FCs and a target star's point-spread function, we adopted the F1042M filter (λc~1.02 μm, Δλ~0.04 μm) as the primary bandpass of our search. Although our sensitivity to FCs varied with the brightness of and separation from our target stars, an ultimate 10 σ detection limit of m1042~18 within 17" of the fainter targets was achieved. As the end of the main sequence occurs at M1042~12, this detection limit makes our search for FCs to nearby stars the most sensitive yet published. Despite this great sensitivity, no previously undetected FCs were found. Our survey would have detected all stellar companions within 17" of our target stars, except for any lowest mass companions lying within 0.5"-1" of the brightest (Vmass (less than 10 MJ) brown dwarf companions to the fainter targets within 5 pc. A brown dwarf with mass 40 MJ and age 5 Gyr would have been detected at separations greater than 5" from Gl 559A (α Centauri A). Our search was not sensitive to 1 Gyr-old brown dwarfs with masses masses luminosity and that derived from the theoretical mass-luminosity relation. F1042M images of the astrometric binary Gl 105A do not reveal the presence of a fourth component, as has been proposed to reconcile the differences between the observed location of the M7 V companion Gl 105C and the predicted separations of the perturbing body from two independent astrometric studies.

  10. Astrometric and photometric monitoring of GQ Lup and its sub-stellar companion

    CERN Document Server

    Neuhaeuser, Ralph; Seifahrt, Andreas; Schmidt, Tobias; Vogt, Nikolaus

    2008-01-01

    Neuhaeuser et al. (2005) presented direct imaging evidence for a sub-stellar companion to the young T Tauri star GQ Lup. Common proper motion was highly significant, but no orbital motion was detected. Faint luminosity, low gravity, and a late-M/early-L spectral type indicated that the companion is either a planet or a brown dwarf. We have monitored GQ Lup and its companion in order to detect orbital and parallactic motion and variability in its brightness. We also search for closer and fainter companions. We have taken six more images with the VLT Adaptive Optics instrument NACO from May 2005 to Feb 2007, always with the same calibration binary from Hipparcos for both astrometric and photometric calibration. By adding up all the images taken so far, we search for additional companions. The position of GQ Lup A and its companion compared to a nearby non-moving background object varies as expected for parallactic motion by about one pixel (2 \\pi with parallax \\pi). We could not find evidence for variability of...

  11. Is the X-ray pulsating companion of HD 49798 a possible type Ia supernova progenitor?

    CERN Document Server

    Liu, Dong-Dong; Wu, Cheng-Yuan; Wang, Bo

    2015-01-01

    HD 49798 (a hydrogen depleted subdwarf O6 star) with its massive white dwarf (WD) companion has been suggested to be a progenitor candidate of type Ia supernovae (SNe Ia). However, it is still uncertain whether the companion of HD 49798 is a carbon-oxygen (CO) WD or an oxygen-neon (ONe) WD. A CO WD will explode as an SN Ia when its mass grows approach to Chandrasekhar mass, while the outcome of an accreting ONe WD is likely to be a neutron star. We followed a series of Monte Carlo binary population synthesis approach to simulate the formation of ONe WD + He star systems. We found that there is almost no orbital period as large as HD 49798 with its WD companion in these ONe WD + He star systems based on our simulations, which means that the companion of HD 49798 might not be an ONe WD. We suggest that the companion of HD 49798 is most likely a CO WD, which can be expected to increase its mass to the Chandrasekhar mass limit by accreting He-rich material from HD 49798. Thus, HD 49798 with its companion may prod...

  12. Stellar Companions to the Exoplanet Host Stars HD 2638 and HD 164509

    Science.gov (United States)

    Wittrock, Justin M.; Kane, Stephen R.; Horch, Elliott P.; Hirsch, Lea; Howell, Steve B.; Ciardi, David R.; Everett, Mark E.; Teske, Johanna K.

    2016-11-01

    An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important, because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the presence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD 2638 and HD 164509. The stellar companion to HD 2638 has been previously detected, but the companion to HD 164509 is a newly discovered companion. The angular separation for HD 2638 is 0.512 ± 0.″002 and for HD 164509 is 0.697+/- 0\\buildrel{\\prime\\prime}\\over{.} 002. This corresponds to a projected separation of 25.6 ± 1.9 au and 36.5 ± 1.9 au, respectively. By employing stellar isochrone models, we estimate the mass of the stellar companions of HD 2638 and HD 164509 to be 0.483 ± 0.007 M ⊙ and 0.416+/- 0.007 {M}⊙ , respectively, and their effective temperatures to be 3570 ± 8 K and 3450 ± 7 K, respectively. These results are consistent with the detected companions being late-type M dwarfs.

  13. Historical Companion to Postcolonial Thought

    DEFF Research Database (Denmark)

      The Companion contains 240 entries written by more than 150 acknowledged scholars of postcolonial history and literature, and covers major events, ideas, movements, and figures in postcolonial histories.  In addition, for each region, there are long survey essays on historiography and women's h...

  14. Building an Unusual White-Dwarf Duo

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three

  15. The SOPHIE search for northern extrasolar planets IX. Populating the brown dwarf desert

    CERN Document Server

    Wilson, P A; Santos, N C; Sahlmann, J; Montagnier, G; Astudillo-Defru, N; Boisse, I; Bouchy, F; Rey, J; Arnold, L; Bonfils, X; Bourrier, V; Courcol, B; Deleuil, M; Delfosse, X; Díaz, R F; Ehrenreich, D; Forveille, T; Moutou, C; Pepe, F; Santerne, A; Ségransan, D; Udry, S

    2016-01-01

    Radial velocity planet search surveys of nearby Solar-type stars have shown a strong deficit of brown dwarf companions within $\\sim5\\,\\mathrm{AU}$. There is presently no comprehensive explanation of this lack of brown dwarf companions, therefore, increasing the sample of such objects is crucial to understand their formation and evolution. Based on precise radial velocities obtained using the SOPHIE spectrograph at Observatoire de Haute-Provence we characterise the orbital parameters of $15$ companions to solar-type stars and constrain their true mass using astrometric data from the Hipparcos space mission. The nine companions not shown to be stellar in nature have minimum masses ranging from ~$13$ to $70\\,\\mathrm{M}_{\\mathrm{Jup}}$, and are well distributed across the planet/brown dwarf mass regime, making them an important contribution to the known population of massive companions around solar-type stars. We characterise six companions as stellar in nature with masses ranging from a minimum mass of $76 \\pm 4...

  16. Companions to APOGEE Stars I: A Milky Way-Spanning Catalog of Stellar and Substellar Companion Candidates and their Diverse Hosts

    CERN Document Server

    Troup, Nicholas W; De Lee, Nathan; Carlberg, Joleen; Majewski, Steven R; Fernandez, Martin; Covey, Kevin; Chojnowski, S Drew; Pepper, Joshua; Nguyen, Duy T; Stassun, Keivan; Nguyen, Duy Cuong; Wisniewski, John P; Fleming, Scott W; Bizyaev, Dmitry; Frinchaboy, Peter M; García-Hernández, D A; Ge, Jian; Hearty, Fred; Meszaros, Szabolcs; Pan, Kaike; Prieto, Carlos Allende; Schneider, Donald P; Shetrone, Matthew D; Wilson, John; Zamora, Olga

    2016-01-01

    In its three years of operation, the Sloan Digital Sky Survey (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE-1) observed $>$14,000 stars with enough epochs over a sufficient temporal baseline for the fitting of Keplerian orbits. We present the custom orbit-fitting pipeline used to create this catalog, which includes novel quality metrics that account for the phase and velocity coverage of a fitted Keplerian orbit. With a typical RV precision of $\\sim100-200$ m s$^{-1}$, APOGEE can probe systems with small separation companions down to a few Jupiter masses. Here we present initial results from a catalog of 382 of the most compelling stellar and substellar companion candidates detected by APOGEE, which orbit a variety of host stars in diverse Galactic environments. Of these, 376 have no previously known small separation companion. The distribution of companion candidates in this catalog shows evidence for an extremely truncated brown dwarf (BD) desert with a paucity of BD companions o...

  17. The slow spin of the young substellar companion GQ Lupi b and its orbital configuration

    Science.gov (United States)

    Schwarz, Henriette; Ginski, Christian; de Kok, Remco J.; Snellen, Ignas A. G.; Brogi, Matteo; Birkby, Jayne L.

    2016-09-01

    The spin of a planet or brown dwarf is related to the accretion process, and therefore studying spin can help promote our understanding of the formation of such objects. We present the projected rotational velocity of the young substellar companion GQ Lupi b, along with its barycentric radial velocity. The directly imaged exoplanet or brown dwarf companion joins a small but growing ensemble of wide-orbit, substellar companions with a spin measurement. The GQ Lupi system was observed at high spectral resolution (R ~ 100 000), and in the analysis we made use of both spectral and spatial filtering to separate the signal of the companion from that of the host star. We detect both CO (S/N = 11.6) and H2O (S/N = 7.7) in the atmosphere of GQ Lupi b by cross-correlating with model spectra, and we find it to be a slow rotator with a projected rotational velocity of 5.3+ 0.9-1.0 km s-1. The slow rotation is most likely due to its young age of process of accreting material and angular momentum. We measure the barycentric radial velocity of GQ Lupi b to be 2.0 ± 0.4 km s-1, and discuss the allowed orbital configurations and their implications for formation scenarios for GQ Lupi b.

  18. The Binary Companion of Young, Relativistic Pulsar J1906+0746

    CERN Document Server

    van Leeuwen, Joeri; Stairs, Ingrid H; Lorimer, D R; Camilo, F; Chatterjee, S; Cognard, I; Desvignes, G; Freire, P C C; Janssen, G H; Kramer, M; Lyne, A G; Nice, D J; Ransom, S M; Stappers, B W; Weisberg, J M

    2014-01-01

    PSR J1906+0746 is a young pulsar in the relativistic binary with the second-shortest known orbital period, of 3.98 hours. We here present a timing study based on five years of observations, conducted with the 5 largest radio telescopes in the world, aimed at determining the companion nature. Through the measurement of three post-Keplerian orbital parameters we find the pulsar mass to be 1.291(11) M_sol, and the companion mass 1.322(11) M_sol respectively. These masses fit well in the observed collection of double neutron stars, but are also compatible with other white dwarfs around young pulsars such as J1906+0746. Neither radio pulsations nor dispersion-inducing outflows that could have further established the companion nature were detected. We derive an HI-absorption distance, which indicates that an optical confirmation of a white dwarf companion is very challenging. The pulsar is fading fast due to geodetic precession, limiting future timing improvements. We conclude that young pulsar J1906+0746 is likely...

  19. Searching for chemical signatures of brown dwarf formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.

    2017-06-01

    Context. Recent studies have shown that close-in brown dwarfs in the mass range 35-55 MJup are almost depleted as companions to stars, suggesting that objects with masses above and below this gap might have different formation mechanisms. Aims: We aim to test whether stars harbouring massive brown dwarfs and stars with low-mass brown dwarfs show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra (R 57 000) from 2-3 m class telescopes. We determine the fundamental stellar parameters, as well as individual abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn for a large sample of stars known to have a substellar companion in the brown dwarf regime. The sample is divided into stars hosting massive and low-mass brown dwarfs. Following previous works, a threshold of 42.5 MJup was considered. The metallicity and abundance trends of the two subsamples are compared and set in the context of current models of planetary and brown dwarf formation. Results: Our results confirm that stars with brown dwarf companions do not follow the well-established gas-giant planet metallicity correlation seen in main-sequence planet hosts. Stars harbouring massive brown dwarfs show similar metallicity and abundance distribution as stars without known planets or with low-mass planets. We find a tendency of stars harbouring less-massive brown dwarfs of having slightly higher metallicity, [XFe/Fe] values, and abundances of Sc ii, Mn i, and Ni i than the stars having the massive brown dwarfs. The data suggest, as previously reported, that massive and low-mass brown dwarfs might present differences in period and eccentricity. Conclusions: We find evidence of a non-metallicity dependent mechanism for the formation of massive brown dwarfs. Our results agree with a scenario in which massive brown dwarfs are formed as stars. At high metallicities, the core

  20. Construction and compression of Dwarf

    Institute of Scientific and Technical Information of China (English)

    XIANG Long-gang; FENG Yu-cai; GUI Hao

    2005-01-01

    There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf structure. To solve this problem, we proposed a completely new algorithm called PID. It bottom-up computes partitions of a fact table, and inserts them into the Dwarf structure. Ifa partition is an MSV partition, coalesce its sub-Dwarf; otherwise create necessary nodes and cells. Our performance study showed that PID is efficient. For further condensing of Dwarf, we proposed Condensed Dwarf, a more compressed structure, combining the strength of Dwarf and Condensed Cube. By eliminating unnecessary stores of "ALL" cells from the Dwarf structure, Condensed Dwarf could effectively reduce the size of Dwarf, especially for Dwarfs of the real world, which was illustrated by our experiments. Its query processing is still simple and, only two minor modifications to PID are required for the construction of Condensed Dwarf.

  1. NACO-SDI imaging of known companion host stars from the AAPS and Keck planet search surveys

    CERN Document Server

    Jenkins, J S; Biller, B; O'Toole, S J; Pinfield, D J; Close, L; Tinney, C G; Butler, R P; Wittenmyer, R; Carter, B; Day-Jones, A C

    2010-01-01

    Direct imaging of brown dwarfs as companions to solar-type stars can provide a wealth of well-constrained data to "benchmark" the physics of such objects, since quantities like metallicity and age can be determined from their well-studied primaries. We present results from an adaptive optics imaging program on stars drawn from the Anglo-Australian and Keck Planet Search projects, with the aim of directly imaging known cool companions. Simulations have modeled the expected contrast ratios and separations of known companions using estimates of orbital parameters available from current radial-velocity data and then a selection of the best case objects were followed-up with high contrast imaging to attempt to directly image these companions. These simulations suggest that only a very small number of radial-velocity detected exoplanets with consistent velocity fits and age estimates could potentially be directly imaged using the VLT's Simultaneous Differential Imaging system and only under favorable conditions. We...

  2. Lithium Production in Companions of Accreting X-Ray Binaries by Neutron Spallation of C, N, O Elements

    CERN Document Server

    Guessoum, N; Guessoum, Nidhal; Kazanas, Demosthenes

    1999-01-01

    We examine the processes which could lead to the observed enhancement of Li and possibly other light elements (Be, B) in the companions of a number of X-ray novae. We conclude that one of the most promising mechanisms is the spallation of CNO elements on the surface of the companion induced by the neutron flux produced in the hot accretion flow onto the compact object. Direct production of the observed Li and its deposition onto the dwarf companion seem less likely, mainly because of the possibility of its destruction in the production region itself and difficulties in its deposition associated with the configuration of the companion's magnetic field. We discuss other potential observables of the above scenario.

  3. The evolutionary state of short period magnetic white dwarf binaries

    CERN Document Server

    Breedt, E; Girven, J; Drake, A J; Copperwheat, C M; Parsons, S G; Marsh, T R

    2012-01-01

    We present phase-resolved spectroscopy of two new short period low accretion rate magnetic binaries, SDSSJ125044.42+154957.3 (Porb = 86 min) and SDSSJ151415.65+074446.5 (Porb = 89 min). Both systems were previously identified as magnetic white dwarfs from the Zeeman splitting of the Balmer absorption lines in their optical spectra. Their spectral energy distributions exhibit a large near-infrared excess, which we interpret as a combination of cyclotron emission and possibly a late type companion star. No absorption features from the companion are seen in our optical spectra. We derive the orbital periods from a narrow, variable H_alpha emission line which we show to originate on the companion star. The high radial velocity amplitude measured in both systems suggests a high orbital inclination, but we find no evidence for eclipses in our data. The two new systems resemble the polar EF Eri in its prolonged low state and also SDSSJ121209.31+013627.7, a known magnetic white dwarf plus possible brown dwarf binary,...

  4. The Gobbling Dwarf that Exploded

    Science.gov (United States)

    2007-07-01

    A unique set of observations, obtained with ESO's VLT, has allowed astronomers to find direct evidence for the material that surrounded a star before it exploded as a Type Ia supernova. This strongly supports the scenario in which the explosion occurred in a system where a white dwarf is fed by a red giant. ESO PR Photo 31a/07 ESO PR Photo 31a/07 Evolution of SN 2006X Spectrum Because Type Ia supernovae are extremely luminous and quite similar to one another, these exploding events have been used extensively as cosmological reference beacons to trace the expansion of the Universe. However, despite significant recent progress, the nature of the stars that explode and the physics that governs these powerful explosions have remained very poorly understood. In the most widely accepted models of Type Ia supernovae the pre-explosion white dwarf star orbits another star. Due to the close interaction and the strong attraction produced by the very compact object, the companion star continuously loses mass, 'feeding' the white dwarf. When the mass of the white dwarf exceeds a critical value, it explodes. The team of astronomers studied in great detail SN 2006X, a Type Ia supernova that exploded 70 million light-years away from us, in the splendid spiral Galaxy Messier 100 (see ESO 08/06). Their observations led them to discover the signatures of matter lost by the normal star, some of which is transferred to the white dwarf. The observations were made with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted at ESO's 8.2-m Very Large Telescope, on four different occasions, over a time span of four months. A fifth observation at a different time was secured with the Keck telescope in Hawaii. The astronomers also made use of radio data obtained with NRAO's Very Large Array as well as images extracted from the NASA/ESA Hubble Space Telescope archive. ESO PR Photo 31b/07 ESO PR Photo 31b/07 SN 2006X, before and after the Type Ia Supernova explosion "No Type Ia

  5. Latest Results from the DODO Survey: Imaging Planets around White Dwarfs

    Science.gov (United States)

    Hogan, Emma; Burleigh, Matt R.; Clarke, Fraser J.

    2011-03-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures lower (DODO survey has the ability to directly image planets in post-main sequence analogues of these systems. These proceedings present the latest results of our multi-epoch J band common proper motion survey of nearby white dwarfs.

  6. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Daniela; Tinney, C. G. [School of Physics, University of New South Wales, NSW 2052 (Australia); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); Sweet, Sarah [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Gelino, Christopher R.; Kirkpatrick, J. Davy, E-mail: daniela.opitz@student.unsw.edu.au [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-03-01

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.

  7. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  8. The Palomar/Keck Adaptive Optics Survey of Young Solar Analogs: Evidence for a Universal Companion Mass Function

    CERN Document Server

    Metchev, Stanimir

    2008-01-01

    We present results from an adaptive optics survey for substellar and stellar companions to Sun-like stars. The survey targeted 266 F5-K5 stars in the 3Myr to 3Gyr age range with distances of 10-190pc. Results from the survey include the discovery of two brown dwarf companions (HD49197B and HD203030B), 24 new stellar binaries, and a triple system. We infer that the frequency of 0.012-0.072Msun brown dwarfs in 28-1590AU orbits around young solar analogs is 3.2% (+3.1%,-2.7%; 2sigma limits). The result demonstrates that the deficiency of substellar companions at wide orbital separations from Sun-like stars is less pronounced than in the radial velocity "brown dwarf desert." We infer that the mass distribution of companions in 28-1590AU orbits around solar-mass stars follows a continuous dN/dM_2 ~ M_2^(-0.4) relation over the 0.01-1.0Msun secondary mass range, and that it differs significantly from the mass function of isolated objects. Based on this conclusion and on similar results from other direct imaging and...

  9. A Dark Spot on a Massive White Dwarf

    CERN Document Server

    Kilic, Mukremin; Bell, Keaton J; Curd, Brandon; Brown, Warren R; Hermes, J J; Dufour, Patrick; Wisniewski, John P; Winget, D E; Winget, K I

    2015-01-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 min due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B<70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such ecli...

  10. HR2875 Spectroscopic discovery of the first B star + white dwarf binary

    CERN Document Server

    Burleigh, M R; Burleigh, Matt; Barstow, Martin

    1998-01-01

    We report the discovery, in an Extreme Ultraviolet Explorer (EUVE) short wavelength spectrum, of an unresolved hot white dwarf companion to the 5th-magnitude B5Vp star HR2875. This is the first time that a non-interacting white dwarf$+$ B star binary has been discovered; previously, the the earliest type star known with a white dwarf companion was Sirius (A1V). Since the white dwarf must have evolved from a main sequence progenitor with a mass greater than that of a B5V star ($\\geq$6.0M$_\\odot$), this places a lower limit on the maximum mass for white dwarf progenitors, with important implications for our knowledge of the initial-final mass relation. Assuming a pure-hydrogen atmospheric composition, we constrain the temperature of the white dwarf to be between 39,000K and 49,000K. We also argue that this degenerate star is likely to have mass significantly greater than the mean mass for white dwarf stars ($\\approx$0.55M$_\\odot$). Finally, we suggest that other bright B stars (e.g.\\ Field Camera and EUVE may a...

  11. CONFIRMATION OF ONE OF THE COLDEST KNOWN BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L.; Bochanski, J. J. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Burgasser, A. J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Labbe, I.; Monson, A. J.; Persson, S. E. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Saumon, D. [Los Alamos National Laboratory, P.O. Box 1663, MS F663, Los Alamos, NM 87545 (United States); Marley, M. S., E-mail: kluhman@astro.psu.edu [Space Science and Astrobiology Division, NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035 (United States)

    2012-01-10

    Using two epochs of 4.5 {mu}m images from the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope, we recently identified a common proper motion companion to the white dwarf WD 0806-661 that is a candidate for the coldest known brown dwarf. To verify its cool nature, we have obtained images of this object at 3.6 {mu}m with IRAC, at J with the High Acuity Wide-field K-band Imager (HAWK-I) on the Very Large Telescope, and in a filter covering the red half of J with FourStar on Magellan. WD 0806-661 B is detected by IRAC but not HAWK-I or FourStar. From these data we measure colors of [3.6] - [4.5] = 2.77 {+-} 0.16 and J - [4.5] > 7.0 (S/N < 3). Based on these colors and its absolute magnitudes, WD 0806-661 B is the coldest companion directly imaged outside of the solar system and is a contender for the coldest known brown dwarf with the Y dwarf WISEP J1828+2650. It is unclear which of these two objects is colder given the available data. A comparison of its absolute magnitude at 4.5 {mu}m to the predictions of theoretical spectra and evolutionary models suggests that WD 0806-661 B has T{sub eff} = 300-345 K.

  12. Planetary Engulfment as a Trigger for White Dwarf Pollution

    Science.gov (United States)

    Petrovich, Cristobal; Muñoz, Diego J.

    2017-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed during the giant phase, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the KL mechanism from a stellar binary companion, a process that is activated only after the planet has been removed/engulfed. We show that this mechanism can explain the observed accretion rates if: (1) the planetary engulfment happens rapidly compared to the secular timescale, which is generally the case for wide binaries (> 100 au) and planetary engulfment during the asymptotic giant branch; (2) the planetesimal disk has a total mass of ∼ {10}-4-{10}-2{M}\\oplus . We show that this new mechanism can provide a steady supply of material throughout the entire life of the white dwarfs for all cooling ages and can account for a large fraction (up to nearly half) of the observed polluted white dwarfs.

  13. Detection of a white dwarf in a visual binary system

    Science.gov (United States)

    Boehm-Vitense, Erika

    1992-01-01

    The F6 giant HD 160365 was detected to have a white dwarf companion about 8 arcsec south of the star. The UV energy distribution observed with IUE shows that the white dwarf has an effective temperature of 23,000 +/- 2000 K. If log g = 8 the Lya profile indicates an effective temperature around 24,500 K. Using the theoretical models by Wesemael et al. (1980) one finds a visual magnitude of m(V) about 16.5. For T(eff) = 24,500 K one expects for a white dwarf a luminosity of log L/L(solar) about 1.3 and M(V) about 10.67. This gives a distance modulus for the system of m(V) - M(V) = 5.83 and an absolute magnitude M(V)= 0.3 for the giant.

  14. Mystery of a Dimming White Dwarf

    Science.gov (United States)

    Kohler, Susanna

    2015-12-01

    In the wake of the recent media attention over an enigmatic, dimming star, another intriguing object has been discovered: J1529+2928, a white dwarf that periodically dims. This mystery, however, may have a simple solution with interesting consequences for future surveys of white dwarfs.Unexpected VariabilityJ1529+2928 is an isolated white dwarf that appears to have a mass of slightly more than the Sun. But rather than radiating steadily, J1529+2928 dims once every 38 minutes almost as though it were being eclipsed.The team that discovered these variations, led by Mukremin Kilic (University of Oklahoma), used telescopes at the Apache Point Observatory and the McDonald Observatory to obtain follow-up photometric data of J1529+2928 spread across 66 days. The team also took spectra of the white dwarf with the Gemini North telescope.Kilic and collaborators then began, one by one, to rule out possible causes of this objects variability.Eliminating OptionsThe period of the variability is too long for J1529+2928 to be a pulsating white dwarf with luminosity variation caused by gravity-wave pulsations.The variability cant be due to an eclipse by a stellar or brown-dwarf companion, because there isnt any variation in J1529+2928s radial velocity.Its not due to the orbit of a solid-body planetary object; such a transit would be too short to explain observations.It cant be due to the orbit of a disintegrated planet; this wouldnt explain the light curves observed in different filters plus the light curve doesnt change over the 66-day span.Spotty SurfaceTop and middle two panels: light curves from three different nights observing J1529+2928s periodic dimming. Bottom panel: The Fourier transform shows a peak at 37.7 cycles/day (and another, smaller peak at its first harmonic). [Kilic et al. 2015]So what explanation is left? The authors suggest that J1529+2928s variability is likely caused by a starspot on the white dwarfs surface that rotates into and out of our view. Estimates

  15. WISE Brown Dwarf Binaries: The Discovery of a T5+T5 and a T8.5+T9 System

    CERN Document Server

    Gelino, Christopher R; Cushing, Michael C; Eisenhardt, Peter R; Griffith, Roger L; Mainzer, Amanda K; Marsh, Kenneth A; Skrutskie, Michael F; Wright, Edward L

    2011-01-01

    The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging can not only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer (WISE) and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9.

  16. Orbital solutions of eight close sdB binaries and constraints on the nature of the unseen companions

    CERN Document Server

    Geier, S; Heber, U; Kupfer, T; Maxted, P F L; Barlow, B N; Vuckovic, M; Tillich, A; Mueller, S; Edelmann, H; Classen, L; McLeod, A F

    2014-01-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars (sdBs) with massive compact companions such as white dwarfs, neutron stars, or stellar-mass black holes. In a supplementary programme we obtained time-resolved spectroscopy of known hot subdwarf binary candidates. Here we present orbital solutions of eight close sdB binaries with orbital periods ranging from 0.1 to 10 days, which allow us to derive lower limits on the masses of their companions. Additionally, a dedicated photometric follow-up campaign was conducted to obtain light curves of the reflection-effect binary HS 2043+0615. We are able to constrain the most likely nature of the companions in all cases but one, making use of information derived from photometry and spectroscopy. Four sdBs have white dwarf companions, while another three are orbited by low-mass main sequence stars of spectral type M.

  17. Calibrating M dwarf metallicities using molecular indices

    CERN Document Server

    Woolf, V M; Woolf, Vincent M; Wallerstein, George

    2005-01-01

    We report progress in the calibration of a method to determine cool dwarf star metallicities using molecular band strength indices. The molecular band index to metallicity relation can be calibrated using chemical abundances calculated from atomic line equivalent width measurements in high resolution spectra. Building on previous work, we have measured Fe and Ti abundances in 32 additional M and K dwarf stars to extend the range of temperature and metallicity covered. A test of our analysis method using warm star - cool star binaries shows we can calculate reliable abundances for stars warmer than 3500 K. We have used abundance measurements for warmer binary or cluster companions to estimate abundances in 6 additional cool dwarfs. Adding stars measured in our previous work and others from the literature provides 76 stars with Fe abundance and CaH2 and TiO5 index measurements. The CaH2 molecular index is directly correlated with temperature. TiO5 depends on temperature and metallicity. Metallicity can be estim...

  18. Speckle suppression and companion detection using coherent differential imaging

    CERN Document Server

    Bottom, Michael; Bartos, Randall D; Shelton, J Chris; Serabyn, Eugene

    2016-01-01

    Residual speckles due to aberrations arising from optical errors after the split between the wavefront sensor and the science camera path are the most significant barriers to imaging extrasolar planets. While speckles can be suppressed using the science camera in conjunction with the deformable mirror, this requires knowledge of the phase of the electric field in the focal plane. We describe a method which combines a coronagraph with a simple phase-shifting interferometer to measure and correct speckles in the full focal plane. We demonstrate its initial use on the Stellar Double Coronagraph at the Palomar Observatory. We also describe how the same hardware can be used to distinguish speckles from true companions by measuring the coherence of the optical field in the focal plane. We present results observing the brown dwarf HD 49197b with this technique, demonstrating the ability to detect the presence of a companion even when it is buried in the speckle noise, without the use of any standard "calibration" te...

  19. The Exemplar T8 Subdwarf Companion of Wolf 1130

    CERN Document Server

    Mace, Gregory N; Cushing, Michael C; Gelino, Christopher R; McLean, Ian S; Logsdon, Sarah E; Wright, Edward L; Skrutskie, Michael F; Beichman, Charles A; Eisenhardt, Peter R; Kulas, Kristin R

    2013-01-01

    We have discovered a wide separation (188.5") T8 subdwarf companion to the sdM1.5+WD binary Wolf 1130. Companionship of WISE J200520.38+542433.9 is verified through common proper motion over a ~3 year baseline. Wolf 1130 is located 15.83 +/- 0.96 parsecs from the Sun, placing the brown dwarf at a projected separation of ~3000 AU. Near-infrared colors and medium resolution (R~2000-4000) spectroscopy establish the uniqueness of this system as a high-gravity, low-metallicity benchmark. Although there are a number of low-metallicity T dwarfs in the literature, WISE J200520.38+542433.9 has the most extreme inferred metallicity to date with [Fe/H] = -0.64 +/- 0.17 based on Wolf 1130. Model comparisons to this exemplar late-type subdwarf support it having an old age, a low metallicity, and a small radius. However, the spectroscopic peculiarities of WISE J200520.38+542433.9 underscore the importance of developing the low-metallicity parameter space of the most current atmospheric models.

  20. A radio-pulsing white dwarf binary star

    Science.gov (United States)

    Marsh, T. R.; Gänsicke, B. T.; Hümmerich, S.; Hambsch, F.-J.; Bernhard, K.; Lloyd, C.; Breedt, E.; Stanway, E. R.; Steeghs, D. T.; Parsons, S. G.; Toloza, O.; Schreiber, M. R.; Jonker, P. G.; van Roestel, J.; Kupfer, T.; Pala, A. F.; Dhillon, V. S.; Hardy, L. K.; Littlefair, S. P.; Aungwerojwit, A.; Arjyotha, S.; Koester, D.; Bochinski, J. J.; Haswell, C. A.; Frank, P.; Wheatley, P. J.

    2016-09-01

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco’s optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 107-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf’s spin, they mainly originate from the cool star. AR Sco’s broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf’s magnetosphere.

  1. Direct Imaging Discovery of a Remarkably Red Planetary-Mass Companion

    Science.gov (United States)

    Bowler, Brendan P.; Liu, Michael C.; Mawet, Dimitri; Ngo, Henry; Malo, Lison; Mace, Gregory N.; McLane, Jacob; Lu, Jessica; Tristan, Isaiah; Hinkley, Sasha; Hillenbrand, Lynne; Shkolnik, Evgenya L.; Benneke, Björn; Best, William M. J.

    2017-01-01

    High-contrast imaging surveys have uncovered a growing number of planets orbiting young stars, but the evolution of giant planet atmospheres from dusty L dwarfs to cloud-free T dwarfs remains poorly constrained. We present the discovery of an 11-14 Mjup late-L dwarf companion to a likely member of the ~120 Myr AB Dor moving group as part of a large adaptive optics imaging program to find and characterize planets at Keck Observatory. The near-infrared colors of this new object are redder than the young giant planets HR 8799 bcde and nearly all free-floating red L dwarfs currently known. In color-magnitude diagrams, this object is located at the tip of the red L dwarf sequence and marks the ``elbow'' of the AB Dor substellar isochrone, implying that giant planets can retain thick clouds even at relatively old ages (>100 Myr). Altogether, this new benchmark offers important clues about the evolutionary timescales and physical properties of clouds in giant planet atmospheres.

  2. Hot subdwarf binaries - Masses and nature of their heavy compact companions

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Stephan; Heber, Uli; Edelmann, Heinz; Kupfer, Thomas [Dr. Remeis-Sternwarte, Institute for Astronomy, University Erlangen-Nuernberg, Sternwartstr. 7, 96049 Bamberg (Germany); Napiwotzki, Ralf [Centre of Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Podsiadlowski, Philipp, E-mail: geier@sternwarte.uni-erlangen.d [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2009-06-01

    Neutron stars and stellar-mass black holes are the remnants of massive stars, which ended their lives in supernova explosions. These exotic objects can only be studied in relatively rare cases. If they are interacting with close companions they become bright X-ray sources. If they are neutron stars, they may be detected as pulsars. Only a few hundred such systems are presently known in the Galaxy. However, there should be many more binaries with basically invisible compact objects in non-interacting binaries. Here we report the discovery of unseen compact companions to hot subdwarfs in close binary systems. Hot subdwarfs are evolved helium-core-burning stars that have lost most of their hydrogen envelopes, often due to binary interactions. Using high-resolution spectra and assuming tidal synchronisation of the subdwarfs, we were able to constrain the companion masses of 31 binaries. While most hot subdwarf binaries have white-dwarf or late-type main sequence companions, as predicted by binary evolution models, at least 5% of the observed subdwarfs must have very massive companions: unusually heavy white dwarfs, neutron stars and, in some cases, even black holes. We present evolutionary models which show that such binaries can indeed form if the system has evolved through two common-envelope phases. This new connection between hot subdwarfs, which are numerous in the Galaxy, and massive compact objects may lead to a tremendous increase in the number of known neutron stars and black holes and shed some light on this dark population and its evolutionary link to the X-ray binary population.

  3. Rejuvenation of the Innocent Bystander: Testing Spin-Up in Dwarf Carbon Stars

    Science.gov (United States)

    Green, Paul

    2013-09-01

    Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dCs are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).

  4. Rejuvenation of the Innocent Bystander: Testing Spin-Up in a Dwarf Carbon Star Sample

    Science.gov (United States)

    Green, Paul

    2014-09-01

    Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dC stars are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC star that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).

  5. Dwarf-Galaxy Cosmology

    CERN Document Server

    Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey

    2010-01-01

    Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.

  6. First supernova companion star found

    Science.gov (United States)

    2004-01-01

    Supernova 1993J exploding hi-res Size hi-res: 222 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Supernova 1993J exploding (artist’s impression) New observations with the Hubble Space Telescope allow a look into a supernova explosion under development. In this artist’s view the red supergiant supernova progenitor star (left) is exploding after having transferred about 10 solar masses of hydrogen gas to the blue companion star (right). This interaction process happened over about 250 years and affected the supernova explosion to such an extent that SN 1993J was later known as one of the most peculiar supernovae ever seen. Supernova 1993J exploding hi-res Size hi-res: 4200 kb Credits: ESA and Justyn R. Maund (University of Cambridge) The site of the Supernova 1993J explosion A virtual journey into one of the spiral arms of the grand spiral Messier 81 (imaged with the Isaac Newton Telescope on La Palma, left) reveals the superb razor-sharp imaging power of the NASA/ESA Hubble Space Telescope (Hubble’s WFPC2 instrument, below). The close-up (with Hubble’s ACS, to the right) is centred on the newly discovered companion star to Supernova 1993J that itself is no longer visible. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. Supernova 1993J explosing site hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Close-up of the Supernova 1993J explosion site (ACS/HRC image) This NASA/ESA Hubble Space Telescope image shows the area in Messier 81 where Supernova 1993J exploded. The companion to the supernova ‘mother star’ that remains after the explosion is seen in the centre of the image. The image is taken with Hubble’s Advanced Camera for Surveys and is a combination of four exposures taken with ACS’ High Resolution Camera. The exposures were taken through two near-UV filters (250W

  7. Imaginary companions in childhood and adult creativity.

    Science.gov (United States)

    Myers, W A

    1979-01-01

    Case material is presented to illustrate the thesis that the ability to create an imaginary companion during childhood is an early expression of the special ego aptitudes found in creative individuals in adult life. Such "companions" allow these children to attempt to master creatively a variety of narcissistic mortifications suffered in reality and to displace unacceptable affects. In creative adults who had imaginary companions in childhood, the early fantasies serve as an organizing schema in memory for the childhood traumata. Stimuli in adult life which evoke the earlier traumata may revive the original imaginary companion fantasies. These then serve as nodal bases for the creation of specific adult works of art.

  8. The `DODO' survey - I. Limits on ultra-cool substellar and planetary-mass companions to van Maanen's star (vMa2)

    Science.gov (United States)

    Burleigh, M. R.; Clarke, F. J.; Hogan, E.; Brinkworth, C. S.; Bergeron, P.; Dufour, P.; Dobbie, P. D.; Levan, A. J.; Hodgkin, S. T.; Hoard, D. W.; Wachter, S.

    2008-05-01

    We report limits in the planetary-mass regime for companions around the nearest single white dwarf to the Sun, van Maanen's star (vMa2), from deep J-band imaging with Gemini North and Spitzer Infrared Array Camera (IRAC) mid-IR photometry. We find no resolved common proper motion companions to vMa2 at separations from 3 to 45 arcsec, at a limiting magnitude of J ~ 23. Assuming a total age for the system of 4.1 +/- 1Gyr, and utilizing the latest evolutionary models for substellar objects, this limit is equivalent to companion masses >7 +/- 1MJup(Teff ~ 300K). Taking into account the likely orbital evolution of very low mass companions in the post-main-sequence phase, these J-band observations effectively survey orbits around the white dwarf progenitor from 3 to 50au. There is no flux excess detected in any of the complimentary Spitzer IRAC mid-IR filters. We fit a white dwarf model atmosphere to the optical BVRI, JHK and IRAC photometry. The best solution gives Teff = 6030 +/- 240K, logg = 8.10 +/- 0.04 and, hence, M = 0.633 +/- 0.022Msolar. We then place a 3σ upper limit of 10 +/- 2MJup on the mass of any unresolved companion in the 4.5μm band.

  9. Evidence for a companion to BM Gem, a silicate carbon star

    CERN Document Server

    Izumiura, Hideyuki; Aoki, Wako; Honda, Satoshi; Ando, Hiroyasu; Takada-Hidai, Masahide; Kambe, Eiji; Kawanomoto, Satoshi; Sadakane, Kozo; Sato, Bun'ei; Tajitsu, Akito; Tanaka, Wataru; Okita, Ki'ichi; Watanabe, Etsuji; Yoshida, Michitoshi

    2008-01-01

    Balmer and Paschen continuum emission as well as Balmer series lines of P Cygni-type profile from H_gamma through H_23 are revealed in the violet spectra of BM Gem, a carbon star associated with an oxygen-rich circumstellar shell (`silicate carbon star') observed with the high dispersion spectrograph (HDS) on the Subaru telescope. The blue-shifted absorption in the Balmer lines indicates the presence of an outflow, the line of sight velocity of which is at least 400 km s^-1, which is the highest outflow velocity observed to date in a carbon star. We argue that the observed unusual features in BM Gem are strong evidence for the presence of a companion, which should form an accretion disk that gives rise to both an ionized gas region and a high velocity, variable outflow. The estimated luminosity of ~0.2 (0.03-0.6) L_sun for the ionized gas can be maintained by a mass accretion rate to a dwarf companion of ~10^-8 M_sun yr^-1, while ~10^-10 M_sun yr^-1 is sufficient for accretion to a white dwarf companion. Thes...

  10. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    CERN Document Server

    Bluhm, P; Vanzi, L; Soto, M G; Vos, J; Wittenmyer, R A; Olivares, F; Drass, H; Mennickent, R E; Vuckovic, M; Rojo, P; Melo, C H F

    2016-01-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions.The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between $\\sim$ 97-1600 days and eccentricities of between $\\sim$ 0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a diffe...

  11. Multiplicity of the Galactic Senior Citizens: A High-resolution Search for Cool Subdwarf Companions

    Science.gov (United States)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed L.; Fuchs, Joshua T.

    2015-05-01

    Cool subdwarfs are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low-metallicity. Measuring their binary fraction and comparing it to solar-metallicity stars could give key insights into the star formation process early in the Milky Way’s history. However, because of their low luminosity and relative rarity in the solar neighborhood, binarity surveys of cool subdwarfs have suffered from small sample sizes and incompleteness. Previous surveys have suggested that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs, sensitive to angular separations (ρ ≥slant 0.″ 15) and contrast ratios ({Δ }{{m}i} ≤slant 6) invisible in past surveys. Of 344 target cool subdwarfs, 43 are in multiple systems, 19 of which are newly discovered, for a binary fraction of 12.5 ± 1.9%. We also discovered seven triple star systems for a triplet fraction of 2.0 ± 0.8%. Comparisons to similar surveys of solar-metallicity dwarf stars gives a ∼3σ disparity in luminosity between companion stars, with subdwarfs displaying a shortage of low-contrast companions. We also observe a lack of close subdwarf companions in comparison to similar-mass dwarf multiple systems.

  12. Tides, planetary companions, and habitability: Habitability in the habitable zone of low-mass stars

    CERN Document Server

    Van Laerhoven, Christa; Greenberg, Richard

    2014-01-01

    Earth-scale planets in the classical habitable zone (HZ) are more likely to be habitable if they possess active geophysics. Without a constant internal energy source, planets cool as they age, eventually terminating tectonic activity and rendering the planet sterile to life. However, for planets orbiting low-mass stars, the presence of an outer companion could generate enough tidal heat in the HZ planet to prevent such cooling. The range of mass and orbital parameters for the companion that give adequate long-term heating of the inner HZ planet, while avoiding very early total desiccation, is probably substantial. We locate the ideal location for the outer of a pair of planets, under the assumption that the inner planet has the same incident flux as Earth, orbiting example stars: a generic late M dwarf ($T_{eff}=2670 K$) and the M9V/L0 dwarf DEN1048. Thus discoveries of Earth-scale planets in the HZ zone of old small stars should be followed by searches for outer companion planets that might be essential for ...

  13. The κ Andromedae system: new constraints on the companion mass, system age, and further multiplicity

    Energy Technology Data Exchange (ETDEWEB)

    Hinkley, Sasha; David, Trevor; Hillenbrand, Lynne A. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Pueyo, Laurent [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Faherty, Jacqueline K. [Department of Astronomy, Universidad de Chile Cerro Calan, Las Condes (Chile); Oppenheimer, Ben R.; Brenner, Douglas; Veicht, Aaron; Nilsson, Ricky [Astrophysics Department, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Kraus, Adam L. [Harvard-Smithsonian CfA, 60 Garden Street, Cambridge, MA 02140 (United States); Rice, Emily L. [Department of Engineering Science and Physics, College of Staten Island, City University of New York, Staten Island, NY 10314 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Vasisht, Gautam; Cady, Eric; Roberts, Jennifer E. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zimmerman, Neil [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Beichman, Charles [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Dekany, Richard [Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2013-12-20

    κ Andromedae is a B9IVn star at 52 pc for which a faint substellar companion separated by 55 ± 2 AU was recently announced. In this work, we present the first spectrum of the companion, 'κ And B,' using the Project 1640 high-contrast imaging platform. Comparison of our low-resolution YJH-band spectra to empirical brown dwarf spectra suggests an early-L spectral type. Fitting synthetic spectra from PHOENIX model atmospheres to our observed spectrum allows us to constrain the effective temperature to ∼2000 K as well as place constraints on the companion surface gravity. Further, we use previously reported log(g) and T {sub eff} measurements of the host star to argue that the κ And system has an isochronal age of 220 ± 100 Myr, older than the 30 Myr age reported previously. This interpretation of an older age is corroborated by the photometric properties of κ And B, which appear to be marginally inconsistent with other 10-100 Myr low-gravity L-dwarfs for the spectral type range we derive. In addition, we use Keck aperture masking interferometry combined with published radial velocity measurements to rule out the existence of any tight stellar companions to κ And A that might be responsible for the system's overluminosity. Further, we show that luminosity enhancements due to a nearly 'pole-on' viewing angle coupled with extremely rapid rotation is unlikely. κ And A is thus consistent with its slightly evolved luminosity class (IV), and we propose here that κ And, with a revised age of 220 ± 100 Myr, is an interloper to the 30 Myr Columba association with which it was previously associated. The photometric and spectroscopic evidence for κ And B combined with our reassessment of the system age implies a substellar companion mass of 50{sub −13}{sup +16} M {sub Jup}, consistent with a brown dwarf rather than a planetary-mass companion.

  14. A search for a distant companion to the sun with the wide-field infrared survey explorer

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L., E-mail: kluhman@astro.psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-01-20

    I have used multi-epoch astrometry from the Wide-field Infrared Survey Explorer to perform a search for a distant companion to the Sun via its parallactic motion. I have not found an object of this kind down to W2 = 14.5. This limit corresponds to analogs of Saturn and Jupiter at 28,000 and 82,000 AU, respectively, according to models of the Jovian planets by Fortney and coworkers. Models of brown dwarfs by Burrows and coworkers predict fainter fluxes at a given mass for the age of the solar system, producing a closer distance limit of 26,000 AU for a Jupiter-mass brown dwarf. These constraints exclude most combinations of mass and separation at which a solar companion has been suggested to exist by various studies over the years.

  15. THE IMPACT OF TYPE Ia SUPERNOVA EXPLOSIONS ON HELIUM COMPANIONS IN THE CHANDRASEKHAR-MASS EXPLOSION SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhengwei; Wang, B.; Han, Z. W. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Pakmor, R. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Seitenzahl, I. R.; Hillebrandt, W.; Kromer, M.; Edelmann, P.; Taubenberger, S. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Roepke, F. K. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Maeda, K., E-mail: zwliu@ynao.ac.cn [Kavli Institute for the Physics and Mathematics of the Universe (Kavli-IPMU), Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2013-09-01

    In the version of the single-degenerate scenario of Type Ia supernovae (SNe Ia) studied here, a carbon-oxygen white dwarf explodes close to the Chandrasekhar limit after accreting material from a non-degenerate helium (He) companion star. In the present study, we employ the STELLAR GADGET code to perform three-dimensional hydrodynamical simulations of the interaction of the SN Ia ejecta with the He companion star taking into account its orbital motion and spin. It is found that only 2%-5% of the initial companion mass is stripped off from the outer layers of He companion stars due to the supernova (SN) impact. The dependence of the unbound mass (or the kick velocity) on the orbital separation can be fitted to a good approximation by a power law for a given companion model. After the SN impact, the outer layers of a He donor star are significantly enriched with heavy elements from the low-expansion-velocity tail of SN Ia ejecta. The total mass of accumulated SN-ejecta material on the companion surface reaches about {approx}> 10{sup -3} M{sub Sun} for different companion models. This enrichment with heavy elements provides a potential way to observationally identify the surviving companion star in SN remnants. Finally, by artificially adjusting the explosion energy of the W7 explosion model, we find that the total accumulation of SN ejecta on the companion surface is also dependent on the explosion energy with a power-law relation to a good approximation.

  16. Metallicity determination of M dwarfs - High-resolution IR spectroscopy

    CERN Document Server

    Lindgren, Sara; Seifahrt, Andreas

    2015-01-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims. In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high- resolution infrared spectra. The reliability was confirmed though analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods. The metallicity determination was based on spectra taken in the J band (1.1-1.4 {\\mu}m) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placemen...

  17. A Dark Spot on a Massive White Dwarf

    Science.gov (United States)

    Kilic, Mukremin; Gianninas, Alexandros; Bell, Keaton J.; Curd, Brandon; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick; Wisniewski, John P.; Winget, D. E.; Winget, K. I.

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  18. The Solar Neighborhood. XXXIV. A Search for Planets Orbiting Nearby M Dwarfs using Astrometry

    CERN Document Server

    Lurie, John C; Jao, Wei-Chun; Quinn, Samuel N; Winters, Jennifer G; Ianna, Philip A; Koerner, David W; Riedel, Adric R; Subasavage, John P

    2014-01-01

    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD $-$10 3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of three to thirteen years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods o...

  19. A Companion to Classical Receptions

    Directory of Open Access Journals (Sweden)

    A. De Villiers

    2012-03-01

    Full Text Available This recent addition to the excellent Blackwell Companions series looks at the various forms of classical reception currently being researched as well as those deemed to have future importance. The diversity and volume of the themes and approaches contained in this book are truly impressive. As Hardwick and Stray state in their introduction, this collection “has been constructed on the basis that the activators of reception are many and varied and that we all gain from encountering examples from outside our own immediate areas of knowledge” (p. 4. Throughout the book they stay true to this motto and traditional approaches to classical reception are not given prominence over more recent (sometimes contentious approaches such as film studies, cultural politics and photography. The same goes for the various cultures involved and there is even a chapter on Greek drama in South Africa.

  20. The system architecture of the Pocket Companion

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerard J.M.

    1997-01-01

    In the Moby Dick project we design the architecture of a so-called Pocket Companion. It is a small personal portable computer with wireless communication facilities for every day use. The typical use of the Pocket Companion induces a number of requirements concerning security, performance, energy co

  1. Companion diagnostics: a regulatory perspective from the last 5 years of molecular companion diagnostic approvals.

    Science.gov (United States)

    Roscoe, Donna M; Hu, Yun-Fu; Philip, Reena

    2015-01-01

    Companion diagnostics are essential for the safe and effective use of the corresponding therapeutic products. The US FDA has approved a number of companion diagnostics used to select cancer patients for treatment with contemporaneously approved novel therapeutics. The processes of co-development and co-approval of a therapeutic product and its companion diagnostic have been a learning experience that continues to evolve. Using several companion diagnostics as examples, this article describes the challenges associated with the scientific, clinical and regulatory hurdles faced by FDA and industry alike. Taken together, this discussion is intended to assist manufacturers toward a successful companion diagnostics development plan.

  2. Very Low-Mass Stellar and Substellar Companions to Solar-Like Stars from MARVELS I: A Low Mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79-day Orbit

    CERN Document Server

    Wisniewski, John P; Crepp, Justin R; De Lee, Nathan; Eastman, Jason; Esposito, Massimiliano; Fleming, Scott W; Gaudi, B Scott; Ghezzi, Luan; Hernandez, Jonay I Gonzalez; Lee, Brian L; Stassun, Keivan G; Agol, Eric; Prieto, Carlos Allende; Barnes, Rory; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Da Costa, Luiz N; De Mello, G F Porto; Femenia, Bruno; Ferreira, Leticia D; Gary, Bruce; Hebb, Leslie; Holtzman, Jon; Liu, Jian; Ma, Bo; Mack, Claude E; Mahadevan, Suvrath; Maia, Marcio A G; Nguyen, Duy Cuong; Ogando, Ricardo L C; Oravetz, Daniel J; Paegert, Martin; Pan, Kaike; Pepper, Joshua; Rebolo, Rafael; Santiago, Basilio; Schneider, Donald P; Shelden, Alaina C; Simmons, Audrey; Tofflemire, Benjamin M; Wan, Xiaoke; Wang, Ji; Zhao, Bo

    2012-01-01

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical amongst solar-like (Teff ~0.087 +/- 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (Teff ~< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be co-moving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.

  3. Know The Star, Know the Planet. IV. A Stellar Companion to the Host star of the Eccentric Exoplanet HD 8673b

    CERN Document Server

    Roberts,, Lewis C; Neyman, Christopher R; Wu, Yanqin; Riddle, Reed L; Shelton, J Christopher; Angione, John; Baranec, Christoph; Bouchez, Antonin; Bui, Khanh; Burruss, Rick; Burse, Mahesh; Chordia, Pravin; Croner, Ernest; Das, Hillol; Dekany, Richard G; Guiwits, Stephen; Hale, David; Henning, John; Law, Shrinivas Kulkarni Nicholas; McKenna, Dan; Milburn, Jennifer; Palmer, Dean; Punnadi, Sujit; Ramaprakash, A N; Roberts, Jennifer E; Tendulkar, Shriharsh P; Trinh, Thang; Troy, Mitchell; Truong, Tuan; Zolkower, Jeff

    2015-01-01

    HD 8673 hosts a massive exoplanet in a highly eccentric orbit (e=0.723). Based on two epochs of speckle interferometry a previous publication identi?ed a candidate stellar companion. We observed HD 8673 multiple times with the 10 m Keck II telescope, the 5 m Hale telescope, the 3.63 m AEOS telescope and the 1.5m Palomar telescope in a variety of ?lters with the aim of con?rming and characterizing the stellar companion. We did not detect the candidate companion, which we now conclude was a false detection, but we did detect a fainter companion. We collected astrometry and photometry of the companion on six epochs in a variety of ?lters. The measured di?erential photometry enabled us to determine that the companion is an early M dwarf with a mass estimate of 0.33-0.45 M?. The companion has a projected separation of 10 AU, which is one of the smallest projected separations of an exoplanet host binary system. Based on the limited astrometry collected, we are able to constrain the orbit of the stellar companion to...

  4. The origin of prolate rotation in dwarf spheroidal galaxies formed by mergers of disky dwarfs

    CERN Document Server

    Ebrova, Ivana

    2015-01-01

    Motivated by the discovery of prolate rotation of stars in Andromeda II, a dwarf spheroidal companion of M31, we study the origin of this type of streaming motion via mergers of disky dwarf galaxies. We simulate merger events between two identical dwarfs changing the initial inclination of their disks with respect to the orbit and the amount of orbital angular momentum. On radial orbits the amount of prolate rotation in the merger remnants correlates strongly with the inclination of the disks and is well understood as due to the conservation of the angular momentum component of the disks along the merger axis. For non-radial orbits prolate rotation may still be produced if the orbital angular momentum is initially not much larger than the intrinsic angular momentum of the disks. The orbital structure of the remnants with significant rotation is dominated by box orbits in the center and long-axis tubes in the outer parts. We also detect significant figure rotation resulting from the tidal distortion of the dis...

  5. The Pan-Pacific Planet Search III: Five companions orbiting giant stars

    CERN Document Server

    Wittenmyer, R A; Wang, L; Bergmann, C; Salter, G S; Tinney, C G; Johnson, John Asher

    2015-01-01

    We report a new giant planet orbiting the K giant HD 155233, as well as four stellar-mass companions from the Pan-Pacific Planet Search, a southern hemisphere radial velocity survey for planets orbiting nearby giants and subgiants. We also present updated velocities and a refined orbit for HD 47205b (7 CMa b), the first planet discovered by this survey. HD 155233b has a period of 885$\\pm$63 days, eccentricity e=0.03$\\pm$0.20, and m sin i=2.0$\\pm$0.5 M_jup. The stellar-mass companions range in m sin i from 0.066 M_sun to 0.33 M_sun. Whilst HD 104358B falls slightly below the traditional 0.08 M_sun hydrogen-burning mass limit, and is hence a brown dwarf candidate, we estimate only a 50% a priori probability of a truly substellar mass.

  6. A possible substellar companion to the intermediate-mass giant HD 175679

    Institute of Scientific and Technical Information of China (English)

    Liang Wang; Hiroki Harakawa; Fan Liu; Xiao-Shu Wu; Yoichi Takeda; Michitoshi Yoshida; Eiichiro Kokubo; Bun'ei Sato; Gang Zhao; Yu-Juan Liu; Kunio Noguchi; Hiroyasu Ando; Hideyuki Izumiura; Eiji Kambe; Masashi Omiya

    2012-01-01

    We report the discovery of a substellar companion around the intermediatemass giant HD 175679.Precise radial velocity data of the star from the Xinglong Station and the Okayama Astrophysical Observatory revealed a Keplerian velocity variation with an orbital period of 1366.8 ± 5.7 d,a semiamplitude of 380.2 ± 3.2 m s - 1and an eccentricity of 0.378 ± 0.008.Adopting a stellar mass of 2.7 ± 0.3 M☉,we obtain that the minimum mass of the HD 175679 b is 37.3±2.8 MJ and the semimajor axis is 3.36±0.12 AU.This discovery is the second brown dwarf companion candidate from a joint planet-search program between China and Japan.

  7. SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    CERN Document Server

    Almenara, J M; Bouchy, F; Havel, M; Bruno, G; Hébrard, G; Diaz, R F; Deleuil, M; Barros, S C C; Boisse, I; Bonomo, A; Montagnier, G; Santerne, A

    2015-01-01

    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of $2.86\\pm0.35~{\\rm M_{Jup}}$ and a radius of $1.13^{+0.26}_{-0.18}~{\\rm R_{Jup}}$, and it orbits a G0, metallic ([Fe/H]=$0.35\\pm0.15$) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of $T_{eq}=1000 \\pm 45$ K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of $2.82\\pm 0.52~{\\rm M_{Jup}}$ and a radius of $1.45\\pm0.16~{\\rm R_{Jup}}$, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the ...

  8. THE BINARY COMPANION OF YOUNG, RELATIVISTIC PULSAR J1906+0746

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, J.; Janssen, G. H. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Kasian, L.; Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Lorimer, D. R. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Camilo, F. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); Chatterjee, S. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace LPC2E CNRS-Université d' Orléans, F-45071 Orléans (France); Desvignes, G.; Freire, P. C. C.; Kramer, M. [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Ransom, S. M. [NRAO (National Radio Astronomy Observatory), Charlottesville, VA 22903 (United States); Weisberg, J. M., E-mail: leeuwen@astron.nl [Department of Physics and Astronomy, Carleton College, Northfield, MN 55057 (United States)

    2015-01-10

    PSR J1906+0746 is a young pulsar in the relativistic binary with the second-shortest known orbital period, of 3.98 hr. We here present a timing study based on five years of observations, conducted with the five largest radio telescopes in the world, aimed at determining the companion nature. Through the measurement of three post-Keplerian orbital parameters, we find the pulsar mass to be 1.291(11) M {sub ☉}, and the companion mass 1.322(11) M {sub ☉}, respectively. These masses fit well in the observed collection of double neutron stars (DNSs), but are also compatible with other systems where a young pulsar such as J1906+0746 is orbited by a white dwarf (WD). Neither radio pulsations nor dispersion-inducing outflows that could have further established the companion nature were detected. We derive an H I-absorption distance, which indicates that an optical confirmation of a WD companion is very challenging. The pulsar is fading fast due to geodetic precession, limiting future timing improvements. We conclude that the young pulsar J1906+0746 is likely part of a DNS, or is otherwise orbited by an older WD, in an exotic system formed through two stages of mass transfer.

  9. Low-mass stellar and substellar companions to sdB stars

    CERN Document Server

    Geier, S; Bruenner, P; Nagel, K; Schaffenroth, V; Heuser, C; Heber, U; Drechsel, H; Edelmann, H; Koen, C; O'Toole, S J; Morales-Rueda, L

    2011-01-01

    It has been suggested that besides stellar companions, substellar objects in close orbits may be able to trigger mass loss in a common envelope phase and form hot subdwarfs. In an ongoing project we search for close substellar companions combining time resolved high resolution spectroscopy with photometry. We determine the fraction of as yet undetected radial velocity variable systems from a sample of 27 apparently single sdB stars to be 16%. We discovered low-mass stellar companions to the He-sdB CPD-20 1123 and the pulsator KPD 0629-0016. The brown dwarf reported to orbit the eclipsing binary SDSS J0820+0008 could be confirmed by an analysis of high resolution spectra taken with UVES. Reflection effects have been detected in the light curves of the known sdB binaries CPD-64 481 and BPS CS 22169-0001. The inclinations of these systems must be much higher than expected and the most likely companion masses are in the substellar regime. Finally, we determined the orbit of the sdB binary PHL 457, which has a ver...

  10. Hot subdwarf binaries - Masses and nature of their heavy compact companions

    CERN Document Server

    Geier, Stephan; Edelmann, Heinz; Kupfer, Thomas; Napiwotzki, Ralf; Podsiadlowski, Philipp

    2009-01-01

    Neutron stars and stellar-mass black holes are the remnants of massive stars, which ended their lives in supernova explosions. These exotic objects can only be studied in relatively rare cases. If they are interacting with close companions they become bright X-ray sources. If they are neutron stars, they may be detected as pulsars. Only a few hundred such systems are presently known in the Galaxy. However, there should be many more binaries with basically invisible compact objects in non-interacting binaries. Here we report the discovery of unseen compact companions to hot subdwarfs in close binary systems. Hot subdwarfs are evolved helium-core-burning stars that have lost most of their hydrogen envelopes, often due to binary interactions. Using high-resolution spectra and assuming tidal synchronisation of the subdwarfs, we were able to constrain the companion masses of 32 binaries. While most hot subdwarf binaries have white-dwarf or late-type main sequence companions, as predicted by binary evolution models...

  11. Using Close White Dwarf + M Dwarf Stellar Pairs to Constrain the Flare Rates in Close Stellar Binaries

    CERN Document Server

    Morgan, Dylan P; Becker, Andrew C

    2016-01-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations < 1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing H{\\alpha} in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. (2012) observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz-bands. We find an increase in the overa...

  12. The slow spin of the young sub-stellar companion GQ Lupi b and its orbital configuration

    CERN Document Server

    Schwarz, Henriette; de Kok, Remco J; Snellen, Ignas A G; Brogi, Matteo; Birkby, Jayne L

    2016-01-01

    The spin of a planet or brown dwarf is related to the accretion process, and therefore studying spin can help promote our understanding of the formation of such objects. We present the projected rotational velocity of the young sub-stellar companion GQ Lupi b, along with its barycentric radial velocity. The directly imaged exoplanet or brown dwarf companion joins a small but growing ensemble of wide-orbit sub-stellar companions with a spin measurement. The GQ Lupi system was observed at high spectral resolution (R ~ 100000), and in the analysis we made use of both spectral and spatial filtering to separate the signal of the companion from that of the host star. We detect both CO (S/N=11.6) and H2O (S/N=7.7) in the atmosphere of GQ Lupi b by cross-correlating with model spectra, and we find it to be a slow rotator with a projected rotational velocity of $5.3^{+0.9}_{-1.0}$ km/s. The slow rotation is most likely due to its young age of < 5 Myr, as it is still in the process of accreting material and angular ...

  13. Dwarfs in ancient Egypt.

    Science.gov (United States)

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities.

  14. Speckle Imaging Excludes Low-mass Companions Orbiting the Exoplanet Host Star TRAPPIST-1

    Science.gov (United States)

    Howell, Steve B.; Everett, Mark E.; Horch, Elliott P.; Winters, Jennifer G.; Hirsch, Lea; Nusdeo, Dan; Scott, Nicholas J.

    2016-09-01

    We have obtained the highest-resolution images available of TRAPPIST-1 using the Gemini-South telescope and our speckle imaging camera. Observing at 692 and 883 nm, we reached the diffraction limit of the telescope providing a best resolution of 27 mas or, at the distance of TRAPPIST-1, a spatial resolution of 0.32 au. Our imaging of the star extends from 0.32 to 14.5 au. We show that to a high confidence level, we can exclude all possible stellar and brown dwarf companions, indicating that TRAPPIST-1 is a single star.

  15. Speckle Imaging Excludes Low-Mass Companions Orbiting the Exoplanet Host Star TRAPPIST-1

    OpenAIRE

    Howell, Steve B.; Everett, Mark E.; Elliott P. Horch; Winters, Jennifer G.; Hirsch, Lea; Nusdeo, Dan; Scott, Nicholas J.

    2016-01-01

    We have obtained the highest resolution images available of TRAPPIST-1 using the Gemini-South telescope and our speckle imaging camera. Observing at 692 and 883 nm, we reached the diffraction limit of the telescope providing a best resolution of 27 mas or, at the distance of TRAPPIST-1, a spatial resolution of 0.32 AU. Our imaging of the star extends from 0.32 to 14.5 AU. We show that to a high confidence level, we can exclude all possible stellar and brown dwarf companions, indicating that T...

  16. Speckle Imaging Excludes Low-Mass Companions Orbiting the Exoplanet Host Star TRAPPIST-1

    CERN Document Server

    Howell, Steve B; Horch, Elliott P; Winters, Jennifer G; Hirsch, Lea; Nusdeo, Dan; Scott, Nicholas J

    2016-01-01

    We have obtained the highest resolution images available of TRAPPIST-1 using the Gemini-South telescope and our speckle imaging camera. Observing at 692 and 883 nm, we reached the diffraction limit of the telescope providing a best resolution of 27 mas or, at the distance of TRAPPIST-1, a spatial resolution of 0.32 AU. Our imaging of the star extends from 0.32 to 14.5 AU. We show that to a high confidence level, we can exclude all possible stellar and brown dwarf companions, indicating that TRAPPIST-1 is a single star.

  17. The ELM Survey. VII. Orbital Properties of Low Mass White Dwarf Binaries

    CERN Document Server

    Brown, Warren R; Kilic, Mukremin; Kenyon, Scott J; Prieto, Carlos Allende

    2016-01-01

    We present the discovery of 15 extremely low mass (5 < log{g} < 7) white dwarf candidates, 9 of which are in ultra-compact double-degenerate binaries. Our targeted ELM Survey sample now includes 76 binaries. The sample has a lognormal distribution of orbital periods with a median period of 5.4 hr. The velocity amplitudes imply that the binary companions have a normal distribution of mass with 0.76 Msun mean and 0.25 Msun dispersion. Thus extremely low mass white dwarfs are found in binaries with a typical mass ratio of 1:4. Statistically speaking, 95% of the white dwarf binaries have a total mass below the Chandrasekhar mass and thus are not Type Ia supernova progenitors. Yet half of the observed binaries will merge in less than 6 Gyr due to gravitational wave radiation; probable outcomes include single massive white dwarfs and stable mass transfer AM CVn binaries.

  18. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5

    Science.gov (United States)

    Schaefer, Bradley E.; Pagnotta, Ashley

    2012-01-01

    A type Ia supernova is thought to begin with the explosion of a white dwarf star. The explosion could be triggered by the merger of two white dwarfs (a `double-degenerate' origin), or by mass transfer from a companion star (the `single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the centre of a known type Ia supernova remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of the supernova observed by Tycho Brahe has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a type Ia supernova 400 +/- 50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a visual magnitude limit of 26.9 (an absolute magnitude of MV = +8.4) within a region of radius 1.43 arcseconds. (This corresponds to the 3σ maximum distance to which a companion could have been `kicked' by the explosion.) This lack of any ex-companion star to deep limits rules out all published single-degenerate models for this supernova. The only remaining possibility is that the progenitor of this particular type Ia supernova was a double-degenerate system.

  19. A High-Resolution Survey of the Very Youngest Brown Dwarfs

    Science.gov (United States)

    Allers, Katelyn

    2012-10-01

    We propose to image the youngest { 0.5 Myr} brown dwarfs in the nearby Ophiuchus star-forming region {d=125 pc}. These observations will complete our high resolution imaging survey of a well-defined sample of young brown dwarfs and very low mass stars spanning the age range of 0.5-100 Myr {Allers et al. 2009, Allers et al. 2010, Biller et al. 2011}. Our proposed survey will be the culmination of the most extensive high resolution search for companions to young substellar objects conducted to date. We have established a novel, reddening-insensitive approach, which uses imaging in three WFC3 UVIS and IR filters to discern candidate companions from contaminant background stars. Our proposed survey is sensitive enough to discover planetary-mass companions. As only two planetary-mass companions to brown dwarfs are known {Chauvin et al. 2005, Todorov et al. 2010}, such discoveries will provide valuable new benchmark objects for testing atmospheric and evolutionary models of planetary-mass objects. Our survey will put the strongest constraints to date on the primordial binary fraction for brown dwarfs. By comparing results in Ophiuchus with our completed survey of the Upper Sco region {Biller et al. 2011}, we can directly measure how the binary characteristics change with age {i.e. as a cluster dynamically evolves}, providing key inputs for refining models of brown dwarf formation. The proposed observations are only possible with HST WFC3. Because of the high extinction of the Ophiuchus cloud, suitable tip-tilt stars are not available to allow for ground-based LGS AO imaging of our sample.

  20. Quasi-periodic oscillations in accreting magnetic white dwarfs II. The asset of numerical modelling for interpreting observations

    CERN Document Server

    Busschaert, C; Michaut, C; Bonnet-Bidaud, J -M; Mouchet, M

    2015-01-01

    Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. High-energy radiation coming from those objects is emitted from the accretion column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. The oscillation frequencies and amplitudes in the X-ray and optic...

  1. KELT-1b: A Strongly Irradiated, Highly Inflated, Short Period, 27 Jupiter-mass Companion Transiting a mid-F Star

    CERN Document Server

    Siverd, Robert J; Pepper, Joshua; Eastman, Jason D; Collins, Karen; Bieryla, Allyson; Latham, David W; Buchhave, Lars A; Jensen, Eric L N; Crepp, Justin R; Street, Rachel; Stassun, Keivan G; Gaudi, B Scott; Berlind, Perry; Calkins, Michael L; DePoy, D L; Esquerdo, Gilbert A; Fulton, Benjamin J; Furesz, Gabor; Geary, John C; Gould, Andrew; Hebb, Leslie; Kielkopf, John F; Marshall, Jennifer L; Pogge, Richard; Stanek, K Z; Stefanik, Robert P; Szentgyorgyi, Andrew H; Trueblood, Mark; Trueblood, Patricia; Stutz, Amelia M; van Saders, Jennifer L

    2012-01-01

    We present the discovery of KELT-1b, the first transiting low-mass companion from the wide-field Kilodegree Extremely Little Telescope-North (KELT-North) survey. The V=10.7 primary is a mildly evolved, solar-metallicity, mid-F star. The companion is a low-mass brown dwarf or super-massive planet with mass of 27.23+/-0.50 MJ and radius of 1.110+0.037-0.024 RJ, on a very short period (P=1.21750007) circular orbit. KELT-1b receives a large amount of stellar insolation, with an equilibrium temperature assuming zero albedo and perfect redistribution of 2422 K. Upper limits on the secondary eclipse depth indicate that either the companion must have a non-zero albedo, or it must experience some energy redistribution. Comparison with standard evolutionary models for brown dwarfs suggests that the radius of KELT-1b is significantly inflated. Adaptive optics imaging reveals a candidate stellar companion to KELT-1, which is consistent with an M dwarf if bound. The projected spin-orbit alignment angle is consistent with ...

  2. The "DODO" survey I: limits on ultra-cool substellar and planetary-mass companions to van Maanen's star (vMa 2)

    CERN Document Server

    Burleigh, M R; Hogan, E; Brinkworth, C S; Bergeron, P; Dufour, P; Dobbie, P D; Levan, A J; Hodgkin, S T; Hoard, D W; Wachter, S

    2008-01-01

    We report limits in the planetary-mass regime for companions around the nearest single white dwarf to the Sun, van Maanen's star (vMa 2), from deep J-band imaging with Gemini North and Spitzer IRAC mid-IR photometry. We find no resolved common proper motion companions to vMa 2 at separations from 3" - 45", at a limiting magnitude of J~23. Assuming a total age for the system of 4.1 +/-1 Gyr, and utilising the latest evolutionary models for substellar objects, this limit is equivalent to companion masses >7 +/-1 Mjup (T~300K). Taking into account the likely orbital evolution of very low mass companions in the post-main sequence phase, these J-band observations effectively survey orbits around the white dwarf progenitor from 3 - 50AU. There is no flux excess detected in any of the complimentary Spitzer IRAC mid-IR filters. We fit a DZ white dwarf model atmosphere to the optical BVRI, 2MASS JHK and IRAC photometry. The best solution gives T=6030 +/- 240K, log g=8.10 +/-0.04 and, hence, M= 0.633 +/-0.022Msun. We t...

  3. Companion's effects upon resistance to change.

    Science.gov (United States)

    dos Santos, C V; Abreu-Rodrigues, J

    2008-10-01

    In order to investigate the effects of a companion's presence on resistance to change, five rats were trained under a multiple schedule comprised of components with high versus low rate of water reinforcement. After response rates became stable, water was given to the subjects prior to the experimental sessions, and these were conducted both in the absence and in the presence of a companion, which also could be responding or merely present. Results showed that the companion's presence increased resistance to satiation, mainly during the component with the higher reinforcement rate. These results suggest that the effect of the companion's presence may interact with reinforcement rate in determining response rate and resistance to satiation.

  4. Runaway Dwarf Carbon Stars as Candidate Supernova Ejecta

    CERN Document Server

    Plant, Kathryn A; Guhathakurta, Puragra; Cunningham, Emily C; Toloba, Elisa; Munn, Jeffrey A

    2016-01-01

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531$\\pm 4$ km s$^{-1}$. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425$\\pm 9$ km s$^{-1}$. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of $C_2$ bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric $C_2$ via mass transfer from an evolved companion.

  5. Additional Ultracool White Dwarfs Found in the Sloan Digital Sky Survey

    CERN Document Server

    Harris, H C; Gyuk, G; Subba-Rao, M; Anderson, S F; Hall, P B; Munn, J A; Liebert, J; Knapp, G R; Bizyaev, D; Malanushenko, E; Malanushenko, V; Pan, K; Schneider, D P; Smith, J A

    2008-01-01

    We identify seven new ultracool white dwarfs discovered in the Sloan Digital Sky Survey (SDSS). The SDSS photometry, spectra, and proper motions are presented, and additional BVRI data are given for these and other previously discovered ultracool white dwarfs. The observed colors span a remarkably wide range, qualitatively similar to colors predicted by models for very cool white dwarfs. One of the new stars (SDSS J1251+44) exhibits strong collision-induced absorption (CIA) in its spectra, while the spectra and colors of the other six are consistent with mild CIA. Another of the new discoveries (SDSS J2239+00A) is part of a binary system -- its companion is also a cool white dwarf, and other data indicate that the companion exhibits an infrared flux deficiency, making this the first binary system composed of two CIA white dwarfs. A third discovery (SDSS J0310-00) has weak Balmer emission lines. The proper motions of all seven stars are consistent with membership in the disk or thick disk.

  6. Model companions of theories with an automorphism

    OpenAIRE

    Kikyo, Hirotaka

    1998-01-01

    For a theory $T$ in $L, T_\\sigma$ is the theory of the models of $T$ with an automorphism $\\sigma$. If $T$ is an unstable model complete theory without the independence property, then $T_\\sigma$ has no model companion. If $T$ is an unstable model complete theory and $T_\\sigma$ has the amalgamation property, then $T_\\sigma$ has no model companion. If $T$ is model complete and has the fcp, then $T_\\sigma$ has no model completion.

  7. The origin of the strongest magnetic fields in dwarfs

    Indian Academy of Sciences (India)

    Christopher A Tout

    2011-07-01

    White dwarfs have frozen in magnetic fields ranging from below the measurable limit of about 3 × 103 to 109 G. White dwarfs with surface magnetic fields in excess of 1 MG are found as isolated single stars and relatively more often in magnetic cataclysmic variables. Some 1253 white dwarfs with a detached low-mass main-sequence companion have been identified in the Sloan Digital Sky Survey (SDSS) but none of these shows sufficient evidence for Zeeman splitting of hydrogen lines for a magnetic field in excess of 1 MG. If such high magnetic fields in white dwarfs result from the isolated evolution of a single star then there should be the same fraction of high field white dwarfs among this SDSS binary sample as among single stars. Thus, we deduce that the origin of such high magnetic fields must be intimately tied to the formation of cataclysmic variables (CVs). The formation of a CV must involve orbital shrinkage from giant star to main-sequence star dimensions. It is believed that this shrinkage occurs as the low-mass companion and the white dwarf spiral together inside a common envelope. CVs emerge as very close but detached binary stars that are then brought together by magnetic braking or gravitational radiation. We propose that the smaller the orbital separation at the end of the common envelope phase, the stronger the magnetic field. The magnetic cataclysmic variables (MCVs) originate from those common envelope systems that almost merge. Those common envelope systems that do merge are the progenitors of the single high field white dwarfs. Thus all highly magnetic white dwarfs, be they single stars or the components of MCVs, have a binary origin. This accounts for the relative dearth of single white dwarfs with fields of 104 – 106 G. Such intermediate-field white dwarfs are found preferentially in cataclysmic variables. The bias towards higher masses for highly magnetic white dwarfs is expected if a fraction of these form when two degenerate cores

  8. Forward and Inverse Modeling of Brown Dwarf Atmospheres

    Science.gov (United States)

    Fortney, Jonathan

    Ultracool dwarfs (UCDs), here defined as the L, T, and Y spectral classes, consist of the lowest mass stars and the substellar brown dwarfs. Over 1200 are currently known, from effective temperatures of 2400 K down to "room temperature" objects of 300 K. Observations of UCDs show tremendous diversity in their spectral characteristics. However, factors such as metallicity, non-solar C/O ratios, surface gravity, vertical mixing efficiency, cloud levels, and cloud thickness remain largely unexplored within atmosphere models. This leads to a very limited understanding of the physical and chemical causes of brown dwarf diversity. One of the main motivations of this proposal is to greatly expand the kinds of modeling efforts that we envision for UCD science to obtain fundamentally new insights from the spectra of several hundred objects. First, we will expand our self-consistent grids of combined atmosphere and evolution models. With this traditional approach we can test the sensitivity of synthetic spectra of changes in parameters like surface gravity, cloud thickness, partial cloudiness, cloud particle size, and vertical mixing efficiency. Second, we will use powerful retrieval techniques to invert the model-to-data comparison problem. These Bayesian techniques allow the inference of P-T profile structure and molecular abundances, directly from the data. The first target populations are benchmark brown dwarfs, which have a well-studied main sequence companion, and where metallicity, age, and even mass can be independently constrained. The second is the 500+ UCDs across all spectral types that have NIR spectra already in hand in the SpeX spectral library. The third population is brown dwarfs that are variable in emission. This work is directly relevant to the NASA Astrophysics Theory (ATP) program. The proposed falls within the ATP scope of "Stellar Astrophysics and Exoplanets," which specifically includes brown dwarfs. The current proposal both facilitates "the

  9. Characterization of companion animal pluripotent stem cells.

    Science.gov (United States)

    Paterson, Y Z; Kafarnik, C; Guest, D J

    2017-07-05

    Pluripotent stem cells have the capacity to grow indefinitely in culture and differentiate into derivatives of the three germ layers. These properties underpin their potential to be used in regenerative medicine. Originally derived from early embryos, pluripotent stem cells can now be derived by reprogramming an adult cell back to a pluripotent state. Companion animals such as horses, dogs, and cats suffer from many injuries and diseases for which regenerative medicine may offer new treatments. As many of the injuries and diseases are similar to conditions in humans the use of companion animals for the experimental and clinical testing of stem cell and regenerative medicine products would provide relevant animal models for the translation of therapies to the human field. In order to fully utilize companion animal pluripotent stem cells robust, standardized methods of characterization must be developed to ensure that safe and effective treatments can be delivered. In this review we discuss the methods that are available for characterizing pluripotent stem cells and the techniques that have been applied in cells from companion animals. We describe characteristics which have been described consistently across reports as well as highlighting discrepant results. Significant steps have been made to define the in vitro culture requirements and drive lineage specific differentiation of pluripotent stem cells in companion animal species. However, additional basic research to compare pluripotent stem cell types and define characteristics of pluripotency in companion animal species is still required. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  10. Enigmas from the Sloan Digital Sky Survey DR7 Kleinman White Dwarf Catalog

    CERN Document Server

    Liebert, James; Wickramasinghe, Dayal; Smith, Paul

    2015-01-01

    We report results from a continuation of our searches for high field magnetic white dwarfs paired in a detached binary with non degenerate companions. We made use of the Sloan Digital Sky Survey DR7 catalog of Kleinman et al. (2013) with 19,712 spectroscopically-identified white dwarfs. These include 1,735 white dwarf plus M dwarf detached pairs (almost 10\\% of the Kleinman at al.'s list). No new pairs were found, although we did recover the polar (AM~Herculis system) ST\\,LMi in a low state of accretion. With the larger sample the original situation reported ten years ago remains intact now at a much higher level of statistical significance: in the selected SDSS sample, high field magnetic white dwarfs are not found in an apparently-detached pairing with an M dwarf, unless they are a magnetic CV in a low state of accretion. This finding strengthens the case that the fields in the isolated high field magnetic white dwarfs are generated by stellar mergers but also raises questions on the nature of the progenito...

  11. M-dwarf metallicities - A high-resolution spectroscopic study in the near infrared

    CERN Document Server

    Önehag, Anna; Gustafsson, Bengt; Piskunov, Nikolai; Plez, Bertrand; Reiners, Ansgar

    2011-01-01

    The relativley large spread in the derived metallicities ([Fe/H]) of M dwarfs shows that various approaches have not yet converged to consistency. The presence of strong molecular features, and incomplete line lists for the corresponding molecules have made metallicity determinations of M dwarfs difficult. Furthermore, the faint M dwarfs require long exposure times for a signal-to-noise ratio sufficient for a detailed spectroscopic abundance analysis. We present a high-resolution (R~50,000) spectroscopic study of a sample of eight single M dwarfs and three wide-binary systems observed in the infrared J-band. The absence of large molecular contributions allow for a precise continuum placement. We derive metallicities based on the best fit synthetic spectra to the observed spectra. To verify the accuracy of the applied atmospheric models and test our synthetic spectrum approach, three binary systems with a K-dwarf primary and an M-dwarf companion were observed and analysed along with the single M dwarfs. We obt...

  12. A Method for Determining the Physical Properties of the Coldest Known Brown Dwarfs

    CERN Document Server

    Burgasser, A J; Kirkpatrick, J D; Burgasser, Adam J.; Burrows, Adam

    2006-01-01

    We present a method for measuring the physical parameters of the coldest T-type brown dwarfs using low resolution near infrared spectra. By comparing H_2O- and H_2-sensitive spectral ratios between empirical data and theoretical atmosphere models, and calibrating these ratios to measurements for the well-characterized 2-5 Gyr companion brown dwarf Gliese 570D, we derive estimates of the effective temperatures and surface gravities for 13 mid- and late-type field T dwarfs. We also deduce the first quantitative estimate of subsolar metallicity for the peculiar T dwarf 2MASS 0937+2931. Derived temperatures are consistent with prior estimates based on parallax and bolometric luminosity measurements, and examination of possible systematic effects indicate that the results are robust. Two recently discovered late-type T dwarfs, 2MASS 0939-2448 and 2MASS 1114-2618, both appear to be >50 K cooler than the latest-type T dwarf, 2MASS 0415-0935, and are potentially the coldest and least luminous brown dwarfs currently k...

  13. A non-uniform distribution of the nearest brown dwarfs

    CERN Document Server

    Bihain, G

    2016-01-01

    The census of solar neighbours is still complemented by new discoveries, mainly of very low-mass, faint dwarfs, close to or within the substellar domain. These discoveries contribute to a better understanding of the field population; its origin in terms of Galactic dynamics and (sub)stellar formation and evolution. Also, the nearest stars and brown dwarfs at any given age allow the most precise direct characterization, including the search for planetary companions. We aim to further assess the substellar census on the Galactic plane. We projected the 136 stars and 26 brown dwarfs known at <6.5 pc on the Galactic plane and evaluated their distributions. Stars present a uniform- and brown dwarfs a non-uniform distribution, with 21 objects behind the Sun and only five ahead relative to the direction of rotation of the Galaxy. This substellar configuration has a probability of 0.098$^{+10.878}_{-0.098}$% relative to uniformity. The helio- and geocentric nature of the distribution suggests it might result in pa...

  14. Follow-up of MARVELS Brown Dwarf Candidates using EXPERT

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Li, Rui; Sithajan, Sirinrat; Thomas, Neil; Wang, Ji; De Lee, Nathan

    2013-02-01

    The SDSS-III MARVELS survey is a comprehensive radial velocity survey of 3,300 nearby F-K stars, between 7.6 < V < 12.0 in 2008-2012. All of the survey data for 2580 FGK stars from the first two and half years have been processed with the latest data pipeline. A total of 26 new brown dwarfs (BD) candidates have been identified in the processed RV data. We expect to have 8 more BD candidates from the ~800 stars currently under processing, which will make a total of 34 BD candidates. This proposal requests KPNO 2.1m telescope time with the EXPERT instrument, to follow up all of these BD candidates to confirm the detections and characterize the orbits. The results will be used to (1) reveal the overall distribution of the new BDs in the parameter space; (2) measure the occurrence rate of BD around FGK type stars; (3) measure dryness of the brown dwarf desert around stars with different mass and metallicity; (4) constrain theoretical models regarding the formation of brown dwarfs; (5) confirm the discovery of `desert in the brown dwarf desert'; (6) identify additional companions associated with the detected systems.

  15. White Dwarf Mass Distribution

    CERN Document Server

    Kepler, S O; Romero, Alejandra Daniela; Ourique, Gustavo; Pelisoli, Ingrid

    2016-01-01

    We present the mass distribution for all S/N > 15 pure DA white dwarfs detected in the Sloan Digital Sky Survey up to Data Release 12, fitted with Koester models for ML2/alpha=0.8, and with Teff > 10 000 K, and for DBs with S/N >10, fitted with ML2/alpha=1.25, for Teff > 16 000 K. These mass distributions are for log g > 6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs. We also present the mass distributions corrected by volume with the 1/Vmax approach, for stars brighter than g=19. Both distributions have a maximum at M=0.624 Msun but very distinct shapes. From the estimated z-distances, we deduce a disk scale height of 300 pc. We also present 10 probable halo white dwarfs, from their galactic U, V, W velocities.

  16. Discovery of a Low-mass Companion to a Metal-rich F Star with the MARVELS Pilot Project

    Science.gov (United States)

    Fleming, Scott W.; Ge, Jian; Mahadevan, Suvrath; Lee, Brian; Eastman, Jason D.; Siverd, Robert J.; Gaudi, B. Scott; Niedzielski, Andrzej; Sivarani, Thirupathi; Stassun, Keivan G.; Wolszczan, Alex; Barnes, Rory; Gary, Bruce; Nguyen, Duy Cuong; Morehead, Robert C.; Wan, Xiaoke; Zhao, Bo; Liu, Jian; Guo, Pengcheng; Kane, Stephen R.; van Eyken, Julian C.; De Lee, Nathan M.; Crepp, Justin R.; Shelden, Alaina C.; Laws, Chris; Wisniewski, John P.; Schneider, Donald P.; Pepper, Joshua; Snedden, Stephanie A.; Pan, Kaike; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Olena; Malanushenko, Viktor; Oravetz, Daniel; Simmons, Audrey; Watters, Shannon

    2010-08-01

    We report the discovery of a low-mass companion orbiting the metal-rich, main sequence F star TYC 2949-00557-1 during the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) pilot project. The host star has an effective temperature T eff = 6135 ± 40 K, logg = 4.4 ± 0.1, and [Fe/H] = 0.32 ± 0.01, indicating a mass of M = 1.25 ± 0.09 M sun and R = 1.15 ± 0.15 R sun. The companion has an orbital period of 5.69449 ± 0.00023 days and straddles the hydrogen burning limit with a minimum mass of 64 MJ , and thus may be an example of the rare class of brown dwarfs orbiting at distances comparable to those of "Hot Jupiters." We present relative photometry that demonstrates that the host star is photometrically stable at the few millimagnitude level on time scales of hours to years, and rules out transits for a companion of radius gsim0.8 RJ at the 95% confidence level. Tidal analysis of the system suggests that the star and companion are likely in a double synchronous state where both rotational and orbital synchronization have been achieved. This is the first low-mass companion detected with a multi-object, dispersed, fixed-delay interferometer.

  17. The Solar Neighborhood. XXI. Parallax Results from the CTIOPI 0.9m Program: 20 New Members of the 25 Parsec White Dwarf Sample

    CERN Document Server

    Subasavage, John P; Henry, Todd J; Bergeron, P; Dufour, P; Ianna, Philip A; Costa, Edgardo; Mendez, Rene A

    2009-01-01

    We present accurate trigonometric parallaxes for 20 new members of the 25 pc white dwarf sample as part of the DENSE project (Discovery and Evalution of Nearby Stellar Embers, http://www.DenseProject.com). Previously, there were a total of 112 white dwarf systems with trigonometric parallaxes placing them within 25 pc and of these, 99 have trigonometric parallaxes known to better than 10%. Thus, the 20 new members presented in this work represent a 20% increase in the number of white dwarfs accurately known to be within 25 pc. In addition, we present updated parallaxes for seven known white dwarfs within 10 pc that have been observed as part of the ASPENS initiative (Astrometric Search for Planets Encircling Nearby Stars) to monitor nearby southern red and white dwarfs for astrometric perturbations from unseen companions. Including a few white dwarf companions and white dwarfs beyond 25 pc, we present a total of 33 trigonometric parallaxes. We perform atmospheric modeling for white dwarfs to determine physica...

  18. Photometric brown-dwarf classification. I. A method to identify and accurately classify large samples of brown dwarfs without spectroscopy

    Science.gov (United States)

    Skrzypek, N.; Warren, S. J.; Faherty, J. K.; Mortlock, D. J.; Burgasser, A. J.; Hewett, P. C.

    2015-02-01

    Aims: We present a method, named photo-type, to identify and accurately classify L and T dwarfs onto the standard spectral classification system using photometry alone. This enables the creation of large and deep homogeneous samples of these objects efficiently, without the need for spectroscopy. Methods: We created a catalogue of point sources with photometry in 8 bands, ranging from 0.75 to 4.6 μm, selected from an area of 3344 deg2, by combining SDSS, UKIDSS LAS, and WISE data. Sources with 13.0 0.8, were then classified by comparison against template colours of quasars, stars, and brown dwarfs. The L and T templates, spectral types L0 to T8, were created by identifying previously known sources with spectroscopic classifications, and fitting polynomial relations between colour and spectral type. Results: Of the 192 known L and T dwarfs with reliable photometry in the surveyed area and magnitude range, 189 are recovered by our selection and classification method. We have quantified the accuracy of the classification method both externally, with spectroscopy, and internally, by creating synthetic catalogues and accounting for the uncertainties. We find that, brighter than J = 17.5, photo-type classifications are accurate to one spectral sub-type, and are therefore competitive with spectroscopic classifications. The resultant catalogue of 1157 L and T dwarfs will be presented in a companion paper.

  19. Axions and White Dwarfs

    CERN Document Server

    Isern, J; Garcia-Berro, E; Salaris, M; Torres, S

    2010-01-01

    White dwarfs are almost completely degenerate objects that cannot obtain energy from the thermonuclear sources and their evolution is just a gravothermal process of cooling. The simplicity of these objects, the fact that the physical inputs necessary to understand them are well identified, although not always well understood, and the impressive observational background about white dwarfs make them the most well studied Galactic population. These characteristics allow to use them as laboratories to test new ideas of physics. In this contribution we discuss the robustness of the method and its application to the axion case.

  20. A mid-infrared search for substellar companions of nearby planet-host stars

    Energy Technology Data Exchange (ETDEWEB)

    Hulsebus, A.; Marengo, M. [Department of Physics and Astronomy, 12 Physics Hall, Iowa State University, Ames, IA 50010 (United States); Carson, J. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Stapelfeldt, K. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-03-20

    Determining the presence of widely separated substellar-mass companion is crucial to understand the dynamics of inner planets in extrasolar planetary systems (e.g., to explain their high mean eccentricity as inner planets are perturbed by the Kozai mechanism). We report the results of our Spitzer/Infrared Array Camera (IRAC) imaging search for widely separated (10''-25'') substellar-mass companions for 14 planet-host stars within 15 pc of the Sun. Using deep 3.6 and 4.5 μm observations in subarray mode, we found one object in the field of 47 UMa with [3.6]–[4.5] color similar to a T5 dwarf, which is, however, unlikely to share common proper motion with 47 UMa. We also found three objects with brown-dwarf-like [3.6]–[4.5] color limits in the fields of GJ 86, HD 160691, and GJ 581, as well as another in the field of HD 69830 for which we have excluded common proper motion. We provide model-based upper mass limits for unseen objects around all stars in our sample, with typical sensitivity to 10 M {sub J} objects from a projected separation of 50-300 AU from the parent star. We also discuss our data analysis methods for point-spread-function subtraction, image co-alignment, and artifact subtraction of IRAC subarray images.

  1. A Mid-Infrared Search for Substellar Companions of Nearby Planet-Host Stars

    CERN Document Server

    Hulsebus, Alan; Carson, Joe; Stapelfeldt, Karl

    2014-01-01

    Determining the presence of widely separated substellar-mass companion is crucial to understand the dynamics of inner planets in extrasolar planetary systems (e.g. to explain their high mean eccentricity as inner planets are perturbed by the Kozai mechanism). We report the results of our $\\textit{Spitzer}$/Infrared Array Camera (IRAC) imaging search for widely separated (10 to 25$^{\\prime\\prime}$) substellar-mass companions for 14 planet-host stars within 15 pc of the Sun. Using deep 3.6 and 4.5 $\\mu$m observations in subarray mode, we found one object in the field of 47 UMa with [3.6]$-$[4.5] color similar to a T5 dwarf, which is, however, unlikely to share common proper motion with 47 UMa. We also found three objects with brown-dwarf-like [3.6]$-$[4.5] color limits in the fields of GJ 86, HD 160691, and GJ 581, as well as another in the field of HD 69830 for which we have excluded common proper motion. We provide model-based upper mass limits for unseen objects around all stars in our sample, with typical s...

  2. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits: II- Survey description, results and performances

    CERN Document Server

    Chauvin, G; Bonnefoy, M; Desidera, S; Bonavita, M; Mesa, D; Boccaletti, A; Buenzli, E; Carson, J; Delorme, P; Hagelberg, J; Montagnier, G; Mordasini, C; Quanz, S P; Segransan, D; Thalmann, C; Beuzit, J -L; Biller, B; Covino, E; Feldt, M; Girard, J; Gratton, R; Henning, T; Kasper, M; Lagrange, A -M; Messina, S; Meyer, M; Mouillet, D; Moutou, C; Reggianni, M; Schlieder, J E; Zurlo, A

    2014-01-01

    In anticipation of the VLT/SPHERE planet imager guaranteed time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 in order to identify new faint comoving companions to ultimately carry out a comprehensive analysis of the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10-6 at 1.5''. 12 systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected, 90% of them in 4 crowded fields. With the exception of HD8049B, we did not identify any new comoving companions....

  3. Galactic orbits of selected companions of the Milky Way

    Science.gov (United States)

    Bajkova, A. T.; Bobylev, V. V.

    2017-09-01

    High-accuracy absolute proper motions, radial velocities, and distances have now been measured for a number of dwarf-galaxy companions of the Milky Way, making it possible to study their 3D dynamics. Galactic orbits for 11 such galaxies (Fornax, Sagittarius, Ursa Minor, LMC, SMC, Sculptor, Sextans, Carina, Draco, Leo I, Leo II) have been derived using two previously refined models for the Galactic potential with the Navarro-Frenk-White and Allen-Santillán expressions for the potential of the dark-matter halo, and two different masses for the Galaxy within 200 kpc—0.75 × 1012 M ⊙ and 1.45 × 1012 M ⊙. The character of the orbits of most of these galaxies indicates that they are tightly gravitationally bound to the Milky Way, even with the lower-mass model for the gravitational potential. One exception is the most distant galaxy in the list, Leo I, whose orbit demonstrates that it is only weakly gravitationally bound, even using the higher-mass model of the gravitational potential.

  4. First light of the VLT planet finder SPHERE. I. Detection and characterization of the substellar companion GJ 758 B

    Science.gov (United States)

    Vigan, A.; Bonnefoy, M.; Ginski, C.; Beust, H.; Galicher, R.; Janson, M.; Baudino, J.-L.; Buenzli, E.; Hagelberg, J.; D'Orazi, V.; Desidera, S.; Maire, A.-L.; Gratton, R.; Sauvage, J.-F.; Chauvin, G.; Thalmann, C.; Malo, L.; Salter, G.; Zurlo, A.; Antichi, J.; Baruffolo, A.; Baudoz, P.; Blanchard, P.; Boccaletti, A.; Beuzit, J.-L.; Carle, M.; Claudi, R.; Costille, A.; Delboulbé, A.; Dohlen, K.; Dominik, C.; Feldt, M.; Fusco, T.; Gluck, L.; Girard, J.; Giro, E.; Gry, C.; Henning, T.; Hubin, N.; Hugot, E.; Jaquet, M.; Kasper, M.; Lagrange, A.-M.; Langlois, M.; Le Mignant, D.; Llored, M.; Madec, F.; Martinez, P.; Mawet, D.; Mesa, D.; Milli, J.; Mouillet, D.; Moulin, T.; Moutou, C.; Origné, A.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Puget, P.; Rabou, P.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Schmid, H.-M.; Sevin, A.; Siebenmorgen, R.; Smette, A.; Stadler, E.; Suarez, M.; Turatto, M.; Udry, S.; Vakili, F.; Wahhaj, Z.; Weber, L.; Wildi, F.

    2016-03-01

    GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M / H = + 0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (~600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and Ks-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a Teff = 600 ± 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of

  5. White Dwarfs in Globular Clusters

    CERN Document Server

    Möhler, S

    2008-01-01

    We review empirical and theoretical findings concerning white dwarfs in Galactic globular clusters. Since their detection is a critical issue we describe in detail the various efforts to find white dwarfs in globular clusters. We then outline the advantages of using cluster white dwarfs to investigate the formation and evolution of white dwarfs and concentrate on evolutionary channels that appear to be unique to globular clusters. We also discuss the usefulness of globular cluster white dwarfs to provide independent information on the distances and ages of globular clusters, information that is very important far beyond the immediate field of white dwarf research. Finally, we mention possible future avenues concerning globular cluster white dwarfs, like the study of strange quark matter or plasma neutrinos.

  6. Eastern Spruce Dwarf Mistletoe

    Science.gov (United States)

    F. Baker; Joseph O' Brien; R. Mathiasen; Mike Ostry

    2006-01-01

    Eastern spruce dwarf mistletoe (Arceuthobium pusillum) is a parasitic flowering plant that causes the most serious disease of black spruce (Picea mariana) throughout its range. The parasite occurs in the Canadian provinces of Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland; in the Lake States of Minnesota,...

  7. Lodgepole Pine Dwarf Mistletoe

    Science.gov (United States)

    Frank G. Hawksworth; Oscar J. Dooling

    1984-01-01

    Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is a native, parasitic, seed plant that occurs essentially throughout the range of lodgepole pine in North America. It is the most damaging disease agent in lodgepole pine, causing severe growth loss and increased tree mortality. Surveys in the Rocky Mountains show that the parasite is found in...

  8. A substellar companion to Pleiades HII 3441

    Science.gov (United States)

    Konishi, Mihoko; Matsuo, Taro; Yamamoto, Kodai; Samland, Matthias; Sudo, Jun; Shibai, Hiroshi; Itoh, Yoichi; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; Hashimoto, Jun; Kuzuhara, Masayuki; Kusakabe, Nobuhiko; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kwon, Jungmi; McElwain, Michael W.; Mede, Kyle; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martín, Amaya; Nishimura, Tetsuo; Oh, Daehyeon; Pyo, Tae-Soo; Serabyn, Eugene; Schlieder, Joshua E.; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John P.; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2016-09-01

    We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0{^''.}49 ± 0{^''.}02 (66 ± 2 au) and a mass of 68 ± 5 MJ based on three observations in the J-, H-, and Ks-bands. The spectral type is estimated to be M7 (˜2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0^{+26.1}_{-8.8}%. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.

  9. A Substellar Companion to Pleiades HII 3441

    CERN Document Server

    Konishi, Mihoko; Yamamoto, Kodai; Samland, Matthias; Sudo, Jun; Shibai, Hiroshi; Itoh, Yoichi; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; Hashimoto, Jun; Kuzuhara, Masayuki; Kusakabe, Nobuhiko; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D; Carson, Joseph C; Feldt, Markus; Goto, Miwa; Grady, Carol A; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S; Henning, Thomas; Hodapp, Klaus W; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R; Kwon, Jungmi; Mcelwain, Michael W; Mede, Kyle; Miyama, Shoken; Morino, Jun-Ichi; Moro-Mart'in, Amaya; Nishimura, Tetsuo; Oh, Daehyeon; Pyo, Tae-Soo; Serabyn, Eugene; Schlieder, Joshua E; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L; Watanabe, Makoto; Wisniewski, John P; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2016-01-01

    We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0".49 +/- 0".02 (66 +/- 2 AU) and a mass of 68 +/- 5 M_J based on three observations in the J-, H-, and K_S-band. The spectral type is estimated to be M7 (~2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0 +26.1/-8.8 %. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.

  10. A substellar companion to Pleiades HII 3441

    Science.gov (United States)

    Konishi, Mihoko; Matsuo, Taro; Yamamoto, Kodai; Samland, Matthias; Sudo, Jun; Shibai, Hiroshi; Itoh, Yoichi; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; Hashimoto, Jun; Kuzuhara, Masayuki; Kusakabe, Nobuhiko; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kwon, Jungmi; McElwain, Michael W.; Mede, Kyle; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martín, Amaya; Nishimura, Tetsuo; Oh, Daehyeon; Pyo, Tae-Soo; Serabyn, Eugene; Schlieder, Joshua E.; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John P.; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2016-12-01

    We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0{^''.}49 ± 0{^''.}02 (66 ± 2 au) and a mass of 68 ± 5 MJ based on three observations in the J-, H-, and Ks-bands. The spectral type is estimated to be M7 (˜2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0^{+26.1}_{-8.8}%. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.

  11. SDSS 1355+0856: a detached white dwarf + M star binary in the period gap discovered by the SWARMS survey

    Science.gov (United States)

    Badenes, Carles; van Kerkwijk, Marten H.; Kilic, Mukremin; Bickerton, Steven J.; Mazeh, Tsevi; Mullally, Fergal; Tal-Or, Lev; Thompson, Susan E.

    2013-03-01

    SDSS J135523.92 + 085645.4 (SDSS 1355+0856) was identified as a hot white dwarf with a companion from time-resolved Sloan Digital Sky Survey spectroscopy as part of the ongoing Sloan White Dwarf Radial velocity data Mining Survey survey. Follow-up observations with the Astrophysical Research Consortium 3.5 m telescope and the Multiple Mirror Telescope revealed weak emission lines in the central cores of the Balmer absorption lines during some phases of the orbit, but no line emission during other phases. This can be explained if SDSS 1355+0856 is a detached white dwarf + M dwarf binary similar to GD 448, where one of the hemispheres of the low-mass companion is irradiated by the proximity of the hot white dwarf. Based on the available data, we derive an orbital period of 0.114 38 ± 0.000 06 d, a primary mass of 0.46 ± 0.01 M⊙, a secondary mass between 0.083 and 0.097 M⊙, and an orbital inclination larger than 57°. This makes SDSS 1355+0856 one of the shortest period post-common envelope white dwarf + M dwarf binaries, and the record holder for the lowest mass stellar companion, which has interesting implications for our understanding of common envelope evolution and the phenomenology of cataclysmic variables. The short cooling time of the WD (25 Myr) implies that the system emerged from the common envelope phase with an orbital period very similar to what we observe today, and was born in the period gap of cataclysmic variables.

  12. Search for light curve modulations among Kepler candidates. Three very low-mass transiting companions

    Science.gov (United States)

    Lillo-Box, J.; Ribas, A.; Barrado, D.; Merín, B.; Bouy, H.

    2016-07-01

    Context. Light curve modulations in the sample of Kepler planet candidates allows the disentangling of the nature of the transiting object by photometrically measuring its mass. This is possible by detecting the effects of the gravitational pull of the companion (ellipsoidal modulations) and in some cases, the photometric imprints of the Doppler effect when observing in a broad band (Doppler beaming). Aims: We aim to photometrically unveil the nature of some transiting objects showing clear light curve modulations in the phase-folded Kepler light curve. Methods: We selected a subsample among the large crop of Kepler objects of interest (KOIs) based on their chances to show detectable light curve modulations, i.e., close (a< 12 R⋆) and large (in terms of radius, according to their transit signal) candidates. We modeled their phase-folded light curves with consistent equations for the three effects, namely, reflection, ellipsoidal and beaming (known as REB modulations). Results: We provide detailed general equations for the fit of the REB modulations for the case of eccentric orbits. These equations are accurate to the photometric precisions achievable by current and forthcoming instruments and space missions. By using this mathematical apparatus, we find three close-in very low-mass companions (two of them in the brown dwarf mass domain) orbiting main-sequence stars (KOI-554, KOI-1074, and KOI-3728), and reject the planetary nature of the transiting objects (thus classifying them as false positives). In contrast, the detection of the REB modulations and transit/eclipse signal allows the measurement of their mass and radius that can provide important constraints for modeling their interiors since just a few cases of low-mass eclipsing binaries are known. Additionally, these new systems can help to constrain the similarities in the formation process of the more massive and close-in planets (hot Jupiters), brown dwarfs, and very low-mass companions.

  13. PSYM-WIDE: A Survey for Large-separation Planetary-mass Companions to Late Spectral Type Members of Young Moving Groups

    Science.gov (United States)

    Naud, Marie-Eve; Artigau, Étienne; Doyon, René; Malo, Lison; Gagné, Jonathan; Lafrenière, David; Wolf, Christian; Magnier, Eugene A.

    2017-09-01

    We present the results of a direct imaging survey for very large separation (>100 au), low-mass companions around 95 nearby young K5–L5 stars and brown dwarfs. They are high-likelihood candidates or confirmed members of the young (≲150 Myr) β Pictoris and AB Doradus moving groups (ABDMG) and the TW Hya, Tucana–Horologium, Columba, Carina, and Argus associations. Images in i\\prime and z\\prime filters were obtained with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South to search for companions down to an apparent magnitude of z\\prime ∼ 22–24 at separations ≳20″ from the targets and in the remainder of the wide 5.‧5 × 5.‧5 GMOS field of view. This allowed us to probe the most distant region where planetary-mass companions could be gravitationally bound to the targets. This region was left largely unstudied by past high-contrast imaging surveys, which probed much closer-in separations. This survey led to the discovery of a planetary-mass (9–13 {M}{Jup}) companion at 2000 au from the M3V star GU Psc, a highly probable member of ABDMG. No other substellar companions were identified. These results allowed us to constrain the frequency of distant planetary-mass companions (5–13 {M}{Jup}) to {0.84}-0.66+6.73% (95% confidence) at semimajor axes between 500 and 5000 au around young K5–L5 stars and brown dwarfs. This is consistent with other studies suggesting that gravitationally bound planetary-mass companions at wide separations from low-mass stars are relatively rare.

  14. Characterization of the Gaseous Companion k Andromedae B* New Keck and LBTI High-contrast Observations

    Science.gov (United States)

    Bonnefoy, M.; Currie, T.; Marleau, G.-D.; Schlieder, J. E.; Wisniewski, J.; Carson, J.; Covey, K. R.; Henning, T.; Biller, B.; Hinz, P.; Klahr, H.; Boyer, A. N. Marsh; Zimmerman, N.; Janson, M.; McElwain, M.; Mordasini, C.; Skemer, A.; Bailey, V.; Defrere, D.; Thalmann, C.; Skrutskie, M.; Allard, F.; Homeier, D.; Tamura, M.; Grady, C.

    2013-01-01

    Context. We previously reported the direct detection of a low mass companion at a projected separation of 55+/-2 astronomical units around the B9 type star kappa Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. Aims. We present new angular differential imaging (ADI) images of the system at 2.146 (K(sub s)), 3.776 (L'), 4.052 (NB 4.05) and 4.78 micrometers (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We aim to determine the near-infrared spectral energy distribution (SED) of the companion and use it to characterize the object. Methods. We used analysis methods adapted to ADI to extract the companion flux. We compared the photometry of the object to reference young/old objects and to a set of seven PHOENIX-based atmospheric models of cool objects accounting for the formation of dust. We used evolutionary models to derive mass estimates considering a wide range of plausible initial conditions. Finally, we used dedicated formation models to discuss the possible origin of the companion. Results. We derive a more accurate J = 15.86 +/- 0.21, H = 14.95 +/- 0.13, K(sub s) = 14.32 +/- 0.09 mag for kappa And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at K(sub s) and L' band. We derive NB 4.05 = 13.0 +/- 0.2 and M' = 13.3 +/- 0.3 mag and estimate Log(base 10)(L/solar luminosity) = -3.76 +/- 0.06. Atmospheric models yield T(sub eff) = 1900(+100/-200) K. They do not set constrains on the surface gravity. "Hot-start" evolutionary models predict masses of 14(+25/-2) Jupiter mass based on the luminosity and temperature estimates, and considering a conservative age range for the system (30(+120/-10) million years). "warm-start" evolutionary tracks constrain the mass to M greater than or

  15. The implications of a companion enhanced wind on millisecond pulsar production

    Science.gov (United States)

    Smedley, Sarah L.; Tout, Christopher A.; Ferrario, Lilia; Wickramasinghe, Dayal T.

    2016-09-01

    The most frequently seen binary companions to millisecond pulsars (MSPs) are helium white dwarfs (He WDs). The standard rejuvenation mechanism, in which a low- to intermediate-mass companion to a neutron star fills its Roche lobe between central hydrogen exhaustion and core helium ignition, is the most plausible formation mechanism. We have investigated whether the observed population can realistically be formed via this mechanism. We used the Cambridge STARS code to make models of Case B RLOF with Reimers' mass loss from the donor. We find that the range of initial orbital periods required to produce the currently observed range of orbital periods of MSPs is extremely narrow. To reduce this fine tuning, we introduce a companion enhanced wind (CEW) that strips the donor of its envelope more quickly so that systems can detach at shorter periods. Our models indicate that the fine tuning can be significantly reduced if a CEW is active. Because significant mass is lost owing to a CEW we expect some binary pulsars to accrete less than the 0.1 M_{⊙} needed to spin them up to millisecond periods. This can account for mildly recycled pulsars present along the entire Mc-Porb relation. Systems with P_spin > 30 ms are consistent with this but too few of these mildly recycled pulsars have yet been observed to make a significant comparison.

  16. A Substellar Companion to the Intermediate-Mass Giant 11 Com

    CERN Document Server

    Liu, Y J; Zhao, G; Noguchi, Kunio; Wang, H; Kambe, Eiji; Ando, Hiroyasu; Izumiura, Hideyuki; Chen, Y Q; Okada, Norio; Toyota, Eri; Omiya, Masashi; Masuda, Seiji; Takeda, Yoichi; Murata, Daisuke; Itoh, Yoichi; Yoshida, Michitoshi; Kokubo, Eiichiro; Ida, Shigeru

    2007-01-01

    We report the detection of a substellar companion orbiting the intermediate-mass giant star 11 Com (G8 III). Precise Doppler measurements of the star from Xinglong station and Okayama Astrophysical Observatory (OAO) revealed Keplerian velocity variations with an orbital period of 326.03 +/- 0.32 days, a semiamplitude of 302.8 +/- 2.6 m/s, and an eccentricity of 0.231 +/- 0.005. Adopting a stellar mass of 2.7 +/- 0.3 M_solar, the minimum mass of the companion is 19.4 +/- 1.5 M_Jup, well above the deuterium burning limit, and the semimajor axis is 1.29 +/- 0.05 AU. This is the first result from the joint planet search program between China and Japan aiming at revealing statistics of substellar companions around intermediate-mass giants. 11 Com b emerged from 300 targets of the planet search program at OAO. The current detection rate of a brown dwarf candidate seems to be comparable to that around solar-type stars within orbital separations of $\\sim$3 AU.

  17. Characterization of the gaseous companion {\\kappa} Andromedae b: New Keck and LBTI high-contrast observations

    CERN Document Server

    Bonnefoy, M; Marleau, G -D; Schlieder, J E; Wisniewski, J; Carson, J; Covey, K R; Henning, T; Biller, B; Hinz, P; Klahr, H; Boyer, A N Marsh; Zimmerman, N; Janson, M; McElwain, M; Mordasini, C; Skemer, A; Bailey, V; Defrère, D; Thalmann, C; Skrutskie, M; Allard, F; Homeier, D; Tamura, M; Feldt, M; Cumming, A; Grady, C; Brandner, W; Kandori, R; Kuzuhara, M; Fukagawa, M; Kwon, J; Kudo, T; Hashimoto, J; Kusakabe, N; Abe, L; Brandt, T; Egner, S; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, S; Hodapp, K; Ishii, M; Iye, M; Knapp, G; Matsuo, T; Mede, K; Miyama, M; Morino, J -I; Moro-Martin, A; Nishimura, T; Pyo, T; Serabyn, E; Suenaga, T; Suto, H; Suzuki, R; Takahashi,; Takami, M; Takato, N; Terada, H; Tomono, D; Turner, E; Watanabe, M; Yamada, T; Takami, H; Usuda, T

    2013-01-01

    We previously reported the direct detection of a low mass companion at a projected separation of 55+-2 AU around the B9 type star {\\kappa} Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. We present new angular differential imaging (ADI) images of the Kappa Andromedae system at 2.146 (Ks), 3.776 (L'), 4.052 (NB 4.05) and 4.78 {\\mu}m (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We derive a more accurate J = 15.86 +- 0.21, H = 14.95 +- 0.13, Ks = 14.32 +- 0.09 mag for {\\kappa} And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at Ks and L' band. We derive NB 4.05 = 13.0 +- 0.2 and M' = 13.3 +- 0.3 mag and estimate Log10(L/Lsun) = -3.76 +- 0.06. We build the 1-5 microns spectral energy distribution of the companion and co...

  18. A Companion to the Philosophy of Technology

    DEFF Research Database (Denmark)

    Friis, Jan Kyrre Berg O.; Pedersen, Stig Andur; Hendricks, Vincent F.

    The aim of philosophy of technology is to help us understand technology's complex interrelationships with the environment, society, culture - and with our very existence. A Companion to the Philosophy of Technology is the first comprehensive, authoritative reference source for this burgeoning...... and increasingly important field. Drawing on groundbreaking new essays by a distinguished team of multi-disciplinary experts, A Companion to the Philosophy of Technology delves deeply into technology's impact on our lives and on society. The essays both represent a variety of epistemological approaches, including...... those of the humanities, social studies, natural science, sociology, psychology, and engineering sciences and reflect a diversity of philosophical traditions such as pragmatism, analytical philosophy, and phenomenology. Erudite and authoritative, A Companion to the Philosophy of Technology is a major...

  19. Microsporidiosis in Vertebrate Companion Exotic Animals

    Directory of Open Access Journals (Sweden)

    Claire Vergneau-Grosset

    2015-12-01

    Full Text Available Veterinarians caring for companion animals may encounter microsporidia in various host species, and diagnosis and treatment of these fungal organisms can be particularly challenging. Fourteen microsporidial species have been reported to infect humans and some of them are zoonotic; however, to date, direct zoonotic transmission is difficult to document versus transit through the digestive tract. In this context, summarizing information available about microsporidiosis of companion exotic animals is relevant due to the proximity of these animals to their owners. Diagnostic modalities and therapeutic challenges are reviewed by taxa. Further studies are needed to better assess risks associated with animal microsporidia for immunosuppressed owners and to improve detection and treatment of infected companion animals.

  20. A Binary Scenario for the Formation of Strongly Magnetized White Dwarfs

    CERN Document Server

    Nordhaus, J

    2011-01-01

    Since their initial discovery, the origin of isolated white dwarfs (WDs) with magnetic fields in excess of $\\sim$1 MG has remained a mystery. Recently, the formation of these high-field magnetic WDs has been observationally linked to strong binary interactions incurred during post-main-sequence evolution. Planetary, brown dwarf or stellar companions located within a few AU of main-sequence stars may become engulfed during the primary's expansion off the main sequence. Sufficiently low-mass companions in-spiral inside a common envelope until they are tidally shredded near the natal white dwarf. Formation of an accretion disk from the disrupted companion provides a source of turbulence and shear which act to amplify magnetic fields and transport them to the WD surface. We show that these disk-generated fields explain the observed range of magnetic field strengths for isolated, high-field magnetic WDs. Additionally, we discuss a high-mass binary analogue which generates a strongly-magnetized WD core inside a pre...

  1. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  2. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael [Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  3. MOA-2007-BLG-197: Exploring the brown dwarf desert

    CERN Document Server

    Ranc, C; Albrow, M D; Kubas, D; Bond, I A; Batista, V; Beaulieu, J -P; Bennett, D P; Dominik, M; Dong, Subo; Fouqué, P; Gould, A; Greenhill, J; Jørgensen, U G; Kains, N; Menzies, J; Sumi, T; Bachelet, E; Coutures, C; Dieters, S; Prester, D Dominis; Donatowicz, J; Gaudi, B S; Han, C; Hundertmark, M; Horne, K; Kane, S R; Lee, C -U; Marquette, J -B; Park, B -G; Pollard, K R; Sahu, K C; Street, R; Tsapras, Y; Wambsganss, J; Williams, A; Zub, M; Abe, F; Fukui, A; Itow, Y; Masuda, K; Matsubara, Y; Muraki, Y; Ohnishi, K; Rattenbury, N; Saito, To; Sullivan, D J; Sweatman, W L; Tristram, P J; Yock, P C M; Yonehara, A

    2015-01-01

    We present the analysis of MOA-2007-BLG-197Lb, the first brown dwarf companion to a Sun-like star detected through gravitational microlensing. The event was alerted and followed-up photometrically by a network of telescopes from the PLANET, MOA, and uFUN collaborations, and observed at high angular resolution using the NaCo instrument at the VLT. From the modelling of the microlensing light curve, we derived the binary lens separation in Einstein radius units (s~1.13) and a mass ratio of (4.732+/-0.020)x10^{-2}. Annual parallax, lens orbital motion and finite source effects were included in the models. To recover the lens system's physical parameters, we combined the resulting light curve best-fit parameters with (J,H,Ks) magnitudes obtained with VLT NaCo and calibrated using IRSF and 2MASS data. We derived a lens total mass of 0.86+/-0.04 Msun and a lens distance of 4.2+/-0.3 kpc. We find that the companion of MOA-2007-BLG-197L is a brown dwarf of 41+/-2 Mjup observed at a projected separation of 4.3+/-0.1 A...

  4. The AstraLux Large M-dwarf Multiplicity Survey

    CERN Document Server

    Janson, Markus; Bergfors, Carolina; Brandner, Wolfgang; Hippler, Stefan; Daemgen, Sebastian; Kudryavtseva, Natalia; Schmalzl, Eva; Schnupp, Carolin; Henning, Thomas

    2012-01-01

    We present the results of an extensive high-resolution imaging survey of M-dwarf multiplicity using the Lucky Imaging technique. The survey made use of the AstraLux Norte camera at the Calar Alto 2.2m telescope and the AstraLux Sur camera at the ESO New Technology Telescope in order to cover nearly the full sky. In total, 761 stars were observed (701 M-type and 60 late K-type), among which 182 new and 37 previously known companions were detected in 205 systems. Most of the targets have been observed during two or more epochs, and could be confirmed as physical companions through common proper motion, often with orbital motion being confirmed in addition. After accounting for various bias effects, we find a total M-dwarf multiplicity fraction of 27+/-3% within the AstraLux detection range of 0.08-6" (semi-major axes of ~3-227 AU at a median distance of 30 pc). We examine various statistical multiplicity properties within the sample, such as the trend of multiplicity fraction with stellar mass and the semi-majo...

  5. Planetary engulfment as a trigger for white dwarf pollution

    CERN Document Server

    Petrovich, Cristobal

    2016-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the Kozai-Lidov mechanism from a stellar binary companion. We show that this mechanism can explain the observed levels of accretion if: (1) the planetary engulfment happens fast compared to the secular timescale, which is generally the case for wide binaries ($>100$ AU) and planetary engulfment during the Asymptotic Giant Branch; (2) the planetesimal disk has a total mass of $\\sim10^{-4}-10^{-2}M_\\oplus$. We ...

  6. The white dwarf luminosity function

    Science.gov (United States)

    García-Berro, Enrique; Oswalt, Terry D.

    2016-06-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for ∼ 10 Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other relevant ingredients are needed to compare theory and observations. In this review we summarize the recent attempts to empirically determine the white dwarf luminosity function for the different Galactic populations. We also discuss the biases that may affect its interpretation. Finally, we elaborate on the theoretical ingredients needed to model the white dwarf luminosity function, paying special attention to the remaining uncertainties, and we comment on some applications of the white dwarf cooling theory. Astrophysical problems for which white dwarf stars may provide useful leverage in the near future are also discussed.

  7. The evolving potential of companion diagnostics.

    Science.gov (United States)

    Khoury, Joseph D

    2016-01-01

    The scope of companion diagnostics in cancer has undergone significant shifts in the past few years, with increased development of targeted therapies and novel testing platforms. This has provided new opportunities to effect unprecedented paradigm shifts in the application of personalized medicine principles for patients with cancer. These shifts involve assay platforms, analytes, regulations, and therapeutic approaches. As opportunities involving each of these facets of companion diagnostics expand, close collaborations between key stakeholders should be enhanced to ensure optimal performance characteristics and patient outcomes.

  8. Companion animals and human health: an overview.

    OpenAIRE

    Edney, A T

    1995-01-01

    Domestic animals share our environment in a variety of ways. One of these ways is as companions in and around our homes. Although a wide variety of species are kept in households for this purpose, the great majority are dogs and cats. Sharing our environment with such animals has a profound effect on the health of the humans concerned. As keeping companion animals is a very widespread activity, about 50% of all households in the Western world have some sort of animal, the effects are far reac...

  9. Massive Star Formation: Accreting from Companion

    Indian Academy of Sciences (India)

    X. Chen; J. S. Zhang

    2014-09-01

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are connected by the shock-excited 4.5 m emission, suggesting that the massive star may form through accreting material from the companion in this system.

  10. M Dwarf Mysteries

    Science.gov (United States)

    Henry, Todd J.; Jao, Wei-Chun; Irwin, Jonathan; Dieterich, Sergio; Finch, Charlie T.; Riedel, Adric R.; Subasavage, John P.; Winters, Jennifer; RECONS Team

    2017-01-01

    During RECONS' 17-year (so far) astrometry/photometry program at the CTIO/SMARTS 0.9m, we have observed thousands of the ubiquitous red dwarfs in the solar neighborhood. During this reconnaissance, a few mysterious characters have emerged ...The Case of the Mercurial Stars: One M dwarf has been fading steadily for more than a decade, at last measure 6% fainter than when it was first observed. Another has grown brighter by 7% over 15 years. Are these brightness changes part of extremely long stellar cycles, or something else entirely?The Case of Identical Stellar Twins that Aren't: Two M dwarfs seem at first to be identical siblings traveling together through the Galaxy. They have virtually identical spectra at optical wavelengths and identical colors throughout the VRIJHK bands. Long-term astrometry indicates that they are, indeed, at the same distance via parallax measurements, and their proper motions match precisely. Yet, one of the twins is FOUR times brighter than the other. Followup work has revealed that the brighter component is a very close spectroscopic double, but no other stars are seen. So, the mystery may be half solved, but why do the close stars remain twice as bright as their widely-separated twin?The Case of the Great Kaboom!: After more than 1000 nights of observing on the reliable 0.9m telescope, with generally routine frames reading out upon the screen, one stellar system comprised of five red dwarfs flared in stunning fashion. Of the two distinct sources, the fainter one (an unresolved double) surpassed the brightness of the brighter one (an unresolved triple), increasing by more than three full magnitudes in the V filter. Which component actually flared? Is this magnificent outburst an unusual event, or in fact typical for this system and other M dwarfs?At the AAS meeting, we hope to probe the cognoscenti who study the Sun's smaller cousins to solve these intriguing M Dwarf Mysteries.This effort has been supported by the NSF through grants

  11. Johannes and the seven dwarfs: Kepler detection of low-level day-timescale periodic photometric variations in white dwarfs

    CERN Document Server

    Maoz, Dan; McQuillan, Amy

    2014-01-01

    We make use of the high photometric precision of Kepler to search for periodic variations among 14 normal (DA- and DB-type, likely non-magnetic) hot white dwarfs (WDs) observed by the mission. In seven of the WDs, we detect periodic, ~2 hr to 10 d, variations, with semi-amplitudes of 40 to 2000 ppm, lower than ever seen in WDs. We consider various explanations for the observed variations: WD rotation combined with magnetic cool spots; rotation combined with magnetic dichroism; rotation combined with hot spots from an interstellar-medium accretion flow, channeled onto weak magnetic poles; transits by size ~50-200 km objects; relativistic beaming due to reflex motion caused by a cool companion WD; or reflection/re-radiation of the primary WD light by a brown-dwarf companion, or by a giant planet of about Jupiter radius, undergoing illumination phases as it orbits the WD. Each of these mechanisms could be behind some of the variable WDs, but could not be responsible for all seven variable cases. Alternatively, t...

  12. Searching for Long-Period Companions and False Positives within the APOGEE Catalog of Companion Candidates

    Science.gov (United States)

    Nguyen, Duy; Troup, Nicholas William; Majewski, Steven R.

    2017-01-01

    The Sloan Digital Sky Survey (SDSS) Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a large-scale, high-resolution, H-band, spectroscopic survey that has acquired high S/N spectra of 146,000 stars distributed across the Galactic bulge, disk, and halo with a radial velocity (RV) precision of ~100 m/s. We follow up stellar companion detections from the APOGEE DR12 catalog of 382 total APOGEE-identified companions, of which 376 are previously unknown companion candidates. The APOGEE team strives not only to continue expanding the census of extrasolar companions, but also to confirm and characterize our RV detections through a variety of means.We present findings from our investigation of the Kozai mechanism, which explains the development of close-orbiting binaries through an ejected third companion. To do so, we are undertaking a targeted search for long-period companions with hopes to provide further evidence for the Kozai mechanism. This hunt for longer period companions begins with a search for long-term RV trends within the APOGEE data. We have also obtained diffraction-limited imaging using speckle interferometry at WIYN and Gemini North Observatories, as well as AO LMIRcam images from the LBT, to make direct searches for long-period stellar companions.It is critical to purge our companion candidate detections of false positives, and we discuss several methods we are pursuing to do this. For example, highly active stars have been observed to mimic RV measurements. We have obtained optical high-resolution spectral follow-ups from the ARC 3.5m, the HET, and MMT to analyze potential stellar activity indicators such as Calcium H and K. Emission detected in these well-known stellar activity indicators suggests a false radial velocity measurement.

  13. Optical Identification of He White Dwarfs Orbiting Four Millisecond Pulsars in the Globular Cluster 47 Tucanae

    CERN Document Server

    Cadelano, M; Ferraro, F R; Salaris, M; Dalessandro, E; Lanzoni, B; Freire, P C C

    2015-01-01

    We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf cooling sequences, consistent with the cooling tracks of He white dwarfs of mass between 0.15 Msun and 0.20 Msun. For each identified companion, mass, cooling age, temperature and pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded in a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2-sig...

  14. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    Science.gov (United States)

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  15. Brown dwarf disks with ALMA: evidence for truncated dust disks in Ophiuchus

    CERN Document Server

    Testi, L; Scholz, A; Tazzari, M; Ricci, L; Monsalvo, I de Gregorio

    2016-01-01

    The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near- and mid-infrared studies. High angular resolution observations of the cold outer disk are limited, we used ALMA to attempt a first survey of young brown dwarfs in the rho-Ophiuchi star forming region with ALMA. All 17 young brown dwarfs in our sample were observed at 890 um in the continuum at ~0.5" angular resolution. The sensitivity of our observations was chosen to detect ~0.5 MEarth of dust. We detect continuum emission in 11 disks (65% of the total), the estimated mass of dust in the detected disks ranges from ~0.5 to ~6 MEarth. These disk masses imply that planet formation around brown dwarfs may be relatively rare and that the supra-Jupiter mass companions found around some brown dwarfs are probably the result of a binar...

  16. Latest Results from the DODO Survey: Imaging Planets around White Dwarfs

    CERN Document Server

    Hogan, E; Clarke, F J

    2011-01-01

    The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures lower (< 500 K) than the coolest brown dwarfs currently observed. The discovery of planets around white dwarfs would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 - 8 M*, i.e., early B to mid-F). An increasing number of planetary mass companions have been directly imaged in wide orbits around young main sequence stars. For example, the planets around HR 8799 and 1RXS J160929.1 - 210524 are in wide orbits of 24 - 68 AU and 330 AU, respectively. The DODO survey has the ability to directly image planets in post-main sequence analogues of these systems. These proceedings ...

  17. CARMENES input catalogue of M dwarfs II. High-resolution imaging with FastCam

    CERN Document Server

    Cortes-Contreras, M; Caballero, J A; Gauza, B; Montes, D; Alonso-Floriano, F J; Jeffers, S V; Morales, J C; Reiners, A; Ribas, I; Schoefer, P; Quirrenbach, A; Amado, P J; Mundt, R; Seifert, W

    2016-01-01

    Aims: We search for low-mass companions of M dwarfs and characterize their multiplicity fraction with the purpose of helping in the selection of the most appropriate targets for the CARMENES exoplanet survey. Methods: We obtained high-resolution images in the I band with the lucky imaging instrument FastCam at the 1.5 m Telescopio Carlos Sanchez for 490 mid- to late-M dwarfs. For all the detected binaries, we measured angular separations, position angles, and magnitude differences in the I band. We also calculated the masses of each individual component and estimated orbital periods, using the available magnitude and colour relations for M dwarfs and our own MJ-spectral type and mass-MI relations. To avoid biases in our sample selection, we built a volume-limited sample of M0.0-M5.0 dwarfs that is complete up to 86% within 14 pc. Results: From the 490 observed stars, we detected 80 companions in 76 systems, of which 30 are new discoveries. The multiplicity fraction in our observed sample is 16.7+-2.0% . In ou...

  18. Energy Dissipation through Quasi-Static Tides in White Dwarf Binaries

    CERN Document Server

    Willems, B; Kalogera, V

    2009-01-01

    We study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 solar mass helium white dwarf in binaries with orbital frequencies in the LISA gravitational wave frequency band and companion masses ranging from 0.3 to 10^5 solar masses. The resulting tidal evolution time scales for the orbital semi-major axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational ...

  19. DIRECT SPECTRUM OF THE BENCHMARK T DWARF HD 19467 B

    Energy Technology Data Exchange (ETDEWEB)

    Crepp, Justin R.; Matthews, Christopher T. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Rice, Emily L.; Giorla, Paige [College of Staten Island, CUNY, 2800 Victory Boulevard, Staten Island, NY 10314 (United States); Veicht, AAron; Nilsson, Ricky; Luszcz-Cook, Statia H.; Oppenheimer, Rebecca; Brenner, Douglas [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Aguilar, Jonathan; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hinkley, Sasha; Hillenbrand, Lynne A. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Vasisht, Gautam; Cady, Eric; Lockhart, Thomas; Roberts, Lewis C. Jr. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Beichman, Charles A., E-mail: jcrepp@nd.edu [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2015-01-10

    HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 ± 1 dwarf with effective temperature T{sub eff}=978{sub −43}{sup +20} K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.

  20. Stripped red giants - Helium core white dwarf progenitors and their sdB siblings

    CERN Document Server

    Heber, Ulrich

    2016-01-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well, another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of heliu...

  1. Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings

    Science.gov (United States)

    Heber, U.

    2017-03-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.

  2. Optical linear polarization of 74 white dwarfs with the RoboPol polarimeter

    CERN Document Server

    Żejmo, M; Krzeszowski, K; Reig, P; Blinov, D

    2016-01-01

    We present the first linear polarimetric survey of white dwarfs (WDs). Our sample consists of WDs of DA and DC spectral types in the SDSS r magnitude range from 13 to 17. We performed polarimetric observations with the RoboPol polarimeter attached to the 1.3-m telescope at the Skinakas Observatory. We have 74 WDs in our sample, of which almost all are low polarized WDs with polarization degree (PD) smaller than 1%, while only 2 have PD higher than 1%. There is an evidence that on average the isolated WDs of DC type have higher PD (with median PD of 0.78%) than the isolated DA type WDs (with median PD of 0.36%). On the other hand, the median PD of isolated DA type WDs is almost the same, i.e. 0.36% as the median PD of DA type white dwarfs in binary systems with red dwarfs (dM type), i.e. 0.33%. This shows, as expected, that there is no contribution to the PD from the companion if the WD companion is the red dwarf, which is the most common situation for WDs binary systems. We do not find differences in the pola...

  3. The white dwarf luminosity function

    CERN Document Server

    García-Berro, Enrique

    2016-01-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for $\\sim 10$ Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other...

  4. Dwarf Spheroidals in MOND

    CERN Document Server

    Angus, Garry W

    2008-01-01

    We take the line of sight velocity dispersions as functions of radius for 8 Milky Way dwarf spheroidal galaxies and use Jeans analysis to calculate the mass-to-light ratios (M/L) in Modified Newtonian Dynamics (MOND). Using the latest structural parameters, distances and variable velocity anisotropy, we find 6/8 dwarfs have sensible M/L using only the stellar populations. Sextans and Draco, however, have M/L=9.2_{-3.0}^{+5.3} and 43.9_{-19.3}^{+29.0} respectively, which poses a problem. Apart from the need for Sextans' integrated magnitude to be reviewed, we propose tidal effects intrinsic to MOND, testable with numerical simulations, but fully orbit dependant, which are disrupting Draco. The creation of the Magellanic Stream is also re-addressed in MOND, the scenario being the stream is ram pressure stripped from the SMC as it crosses the LMC.

  5. Excess Infrared Radiation from a Massive DAZ White Dwarf: GD362 - a Debris Disk?

    CERN Document Server

    Kilic, M; Leggett, S K; Winget, D E; Kilic, Mukremin; Hippel, Ted von

    2005-01-01

    We report the discovery of excess K-band radiation from a massive DAZ white dwarf star, GD362. Combining infrared photometric and spectroscopic observations, we show that the excess radiation cannot be explained by a stellar or substellar companion, and is likely to be caused by a debris disk. This would be only the second such system known, discovered 18 years after G29-38, the only single white dwarf currently known to be orbited by circumstellar dust. Both of these systems favor a model with accretion from a surrounding debris disk to explain the metal abundances observed in DAZ white dwarfs. Nevertheless, observations of more DAZs in the mid-infrared are required to test if this model can explain all DAZs.

  6. Discovery of ZZ Cetis in detached white dwarf plus main-sequence binaries

    CERN Document Server

    Pyrzas, S; Hermes, J J; Copperwheat, C M; Rebassa-Mansergas, A; Dhillon, V S; Littlefair, S P; Marsh, T R; Parsons, S G; Savoury, C D J; Schreiber, M R; Barros, S C C; Bento, J; Breedt, E; Kerry, P

    2014-01-01

    We present the first results of a dedicated search for pulsating white dwarfs (WDs) in detached white dwarf plus main-sequence binaries. Candidate systems were selected from a catalogue of WD+MS binaries, based on the surface gravities and effective temperatures of the WDs. We observed a total of 26 systems using ULTRACAM mounted on ESO's 3.5m New Technology Telescope (NTT) at La Silla. Our photometric observations reveal pulsations in seven WDs of our sample, including the first pulsating white dwarf with a main-sequence companion in a post common envelope binary, SDSSJ1136+0409. Asteroseismology of these new pulsating systems will provide crucial insight into how binary interactions, particularly the common envelope phase, affect the internal structure and evolution of WDs. In addition, our observations have revealed the partially eclipsing nature of one of our targets, SDSSJ1223-0056.

  7. A Historical Companion to Postcolonial Literatures

    DEFF Research Database (Denmark)

    This is the first reference guide to the political, cultural and economic histories that form the subject-matter of postcolonial literatures written in English. The focus of the Companion is principally on the histories of postcolonial literatures in the Anglophone world - Africa, the Middle East...

  8. Structures induced by companions in galactic discs

    CERN Document Server

    Kyziropoulos, P; Gravvanis, G; Patsis, P

    2016-01-01

    Using N-body simulations we study the structures induced on a galactic disc by repeated flybys of a companion in decaying eccentric orbit around the disc. Our system is composed by a stellar disc, bulge and live dark matter halo, and we study the system's dynamical response to a sequence of a companion's flybys, when we vary i) the disc's temperature (parameterized by Toomre's Q-parameter) and ii) the companion's mass and initial orbit. We use a new 3D Cartesian grid code: MAIN (Mesh-adaptive Approximate Inverse N-body solver). The main features of MAIN are reviewed, with emphasis on the use of a new Symmetric Factored Approximate Sparse Inverse (SFASI) matrix in conjunction with the multigrid method that allows the efficient solution of Poisson's equation in three space variables. We find that: i) companions need to be assigned initial masses in a rather narrow window of values in order to produce significant and more long-standing non-axisymmetric structures (bars and spirals) in the main galaxy's disc by t...

  9. Searching for Brown Dwarf Outflows

    CERN Document Server

    Whelan, E T; Bacciotti, F; Randich, S; Natta, A

    2009-01-01

    As outflow activity in low mass protostars is strongly connected to ac- cretion it is reasonable to expect accreting brown dwarfs to also be driving out- flows. In the last three years we have searched for brown dwarf outflows using high quality optical spectra obtained with UVES on the VLT and the technique of spectro-astrometry. To date five brown dwarf outflows have been discovered. Here the method is discussed and the results to date outlined.

  10. Dwarf Dark Matter Halos

    CERN Document Server

    Colin, Pierre; Valenzuela, O; Gottlöber, S

    2003-01-01

    We use N-body simulations to study properties of dwarf halos with virial masses in the range 10^7-10^9 Msun/h. Unlike recent reported results, we find that the density profiles of relaxed dwarf halos are well fitted by the NFW profile and do not have cores. We estimate the distribution of concentrations for halos in mass range that covers six orders of magnitude from 10^7 Msun/h to 10^13 Msun/h, and find that the data are well reproduced by the model of Bullock et al. (2001). We predict that present-day isolated dwarf halos should have a very large median concentration of ~ 35. For halos with masses that range from 4.6 x 10^9 Msun/h to 10^13 Msun/h we measure the subhalo circular velocity function and find that they are similar when normalized to the circular velocity of the parent halo. We compute the halo mass function and the halo spin parameter distribution and find that the former is very well reproduced by the Sheth and Tormen model while the latter is well fitted by a lognormal distribution with lambda...

  11. Peculiar variations of white dwarf pulsation frequencies and maestro

    Science.gov (United States)

    Dalessio, James Ruland

    In Part I we report on variations of the normal mode frequencies of the pulsating DB white dwarfs EC 20058-5234 and KIC 8626021 and the pulsating DA white dwarf GD 66. The observations of EC 20058-5234 and KIC 8626021 were motivated by the possibility of measuring the plasmon neutrino production rate of a white dwarf, while the observations of GD 66 were part of a white dwarf pulsation timing based planet search. We announce the discovery of periodic and quasi-periodic variations of multiple normal mode frequencies that cannot be due to the presence of planetary companions. We note the possible signature of a planetary companion to EC 20058-5234 and show that GD 66 cannot have a planet in a several AU orbit down to half a Jupiter mass. We also announce the discovery of secular variations of the normal mode frequencies of all three stars that are inconsistent with cooling alone. Importantly, the rates of period change of several modes of KIC 8626021 are consistent with evolutionary cooling, but are not yet statistically significant. These modes offer the best possibility of measuring the neutrino production rate in a white dwarf. We also observe periodic and secular variations in the frequency of a combination mode that exactly matches the variations predicted by the parent modes, strong observational evidence that combination modes are created by the convection zone and are not normal modes. Periodic variations in the amplitudes of many of these modes is also noted. We hypothesize that these frequency variations are caused by complex variations of the magnetic field strength and geometry, analogous to behavior observed in the Sun. In Part II we describe the MAESTRO software framework and the MAESTRO REDUCE algorithm. MAESTRO is a collection of astronomy specific MatLab software developed by the Whole Earth Telescope. REDUCE is an an algorithm that can extract the brightness of stars on a set of CCD images with minimal configuration and human interaction. The key to

  12. Uusi raamatuid : a companion to the history of the book

    Index Scriptorium Estoniae

    2010-01-01

    Tutvustus: A companion to the history of the book / edited by Simon Eliot and Jonathan Rose. - Malden, MA : Blackwell Pub., 2007. - xvi, 599 lk. : ill. - (Blackwell companions to literature and culture ; 48)

  13. Uusi raamatuid : a companion to the history of the book

    Index Scriptorium Estoniae

    2010-01-01

    Tutvustus: A companion to the history of the book / edited by Simon Eliot and Jonathan Rose. - Malden, MA : Blackwell Pub., 2007. - xvi, 599 lk. : ill. - (Blackwell companions to literature and culture ; 48)

  14. Exploring Substellar Evolution with the Coldest Brown Dwarfs

    Science.gov (United States)

    Dupuy, Trent J.

    2017-01-01

    The coldest brown dwarfs are our best analogs to extrasolar gas-giant planets, representing the lowest mass products of star formation. Our view of such objects has been transformed over the last few years as new observations have revealed that the solar neighborhood is populated by much colder objects than previously recognized. At the center of efforts to discover and characterize these coldest substellar objects have been observations from NASA missions (WISE, Spitzer, HST) and the Keck Telescopes. I will review the tremendous progress made in this field over just the last few years thanks to major community efforts to overcome observational challenges in obtaining spectroscopy, photometry, and astrometry of these infrared-faint, optically invisible objects. Spectra from HST and Keck were key in establishing the much anticipated "Y" spectral type, extending the classic stellar classification scheme to atmospheres as cool as 300-400 K. Parallaxes and photometry from Spitzer and Keck have provided absolute fluxes, enabling robust temperature determinations and critical tests of model atmopheres. High-resolution imaging with Keck laser guide star adaptive optics (LGS AO) has been the most prolific resource for revealing tight companions among the coldest brown dwarfs. In fact, with continued orbit monitoring with Keck LGS AO and HST, these binary systems will ultimately provide dynamical masses that will allow the strongest tests of models and reveal if the coldest brown dwarfs are indeed "planetary mass" (less than about 13 Jupiter masses) as is currently thought.

  15. The (Double) White Dwarf Binary SDSS 1257+5428

    CERN Document Server

    Kulkarni, S R

    2010-01-01

    SDSS 1257+5428 is a white dwarf in a close orbit with a companion that has been suggested to be a neutron star. If so, it hosts the closest known neutron star, and its existence implies a great abundance of similar systems and a rate of white-dwarf neutron-star mergers similar to that of the type Ia supernova rate. Here, we present high signal-to-noise spectra of SDSS 1257+5428, which confirm an independent finding that the system is in fact composed of two white dwarfs, one relatively cool and with low mass, and the other hotter and more massive. With this, the demographics and merger rate are no longer puzzling (various factors combine to lower the latter by more than two orders of magnitude). We show that the spectra are fit well with a combination of two hydrogen model atmospheres, as long as the lines of the higher-gravity component are broadened significantly relative to what is expected from just pressure broadening. Interpreting this additional broadening as due to rotation, the inferred spin period i...

  16. Cyclic Period Oscillation of the Eclipsing Dwarf Nova DV UMa

    Science.gov (United States)

    Han, Z.-T.; Qian, S.-B.; Irina, Voloshina; Zhu, L.-Y.

    2017-05-01

    DV UMa is an eclipsing dwarf nova with an orbital period of ˜2.06 hr, which lies just at the bottom edge of the period gap. To detect its orbital period changes, we present 12 new mid-eclipse times by using our CCD photometric data and archival data. The latest version of the O-C diagram, combined with the published mid-eclipse times in quiescence, and spanning ˜30 years, was obtained and analyzed. The best fit to those available eclipse timings shows that the orbital period of DV UMa is undergoing a cyclic oscillation with a period of 17.58(+/- 0.52) years and an amplitude of 71.1(+/- 6.7) s. The periodic variation most likely arises from the light-travel-time effect via the presence of a circumbinary object, because the required energy to drive the Applegate mechanism is too high in this system. The mass of the unseen companion was derived as {M}3\\sin i\\prime =0.025(+/- 0.004) {M}⊙ . If the third body is in the orbital plane (i.e., i\\prime =i=82\\buildrel{\\circ}\\over{.} 9) of the eclipsing pair, this would indicate it is a brown dwarf. This hypothetical brown dwarf is orbiting its host star at a separation of ˜8.6 au in an eccentric orbit (e = 0.44).

  17. A Unified Near Infrared Spectral Classification Scheme for T Dwarfs

    CERN Document Server

    Burgasser, A J; Leggett, S K; Kirkpatrick, J D; Golimowski, D A; Burgasser, Adam J.; Golimowski, David A.

    2006-01-01

    A revised near infrared classification scheme for T dwarfs is presented, based on and superseding prior schemes developed by Burgasser et al. and Geballe et al., and defined following the precepts of the MK Process. Drawing from two large spectroscopic libraries of T dwarfs identified largely in the Sloan Digital Sky Survey and the Two Micron All Sky Survey, nine primary spectral standards and five alternate standards spanning spectral types T0 to T8 are identified that match criteria of spectral character, brightness, absence of a resolved companion and accessibility from both northern and southern hemispheres. The classification of T dwarfs is formally made by the direct comparison of near infrared spectral data of equivalent resolution to the spectra of these standards. Alternately, we have redefined five key spectral indices measuring the strengths of the major H$_2$O and CH$_4$ bands in the 1-2.5 micron region that may be used as a proxy to direct spectral comparison. Two methods of determining T spectra...

  18. Detection of a Degenerate Companion of the SX Phoenicis Star KZ Hydrae by Studying its Long-Term Variability

    Science.gov (United States)

    Fu, J. N.; Khokhuntod, P.; Rodríguez, E.; Boonyarak, C.; Marak, K.; López-González, M. J.; Zhu, L. Y.; Qian, S. B.; Jiang, S. Y.

    2008-05-01

    We present 109 new times of maximum light of the SX Phoenicis (SX Phe) star KZ Hydrae (KZ Hya) based mainly on our extensive photometric observations for two decades, leading to determination of a general ephemeris combined with the data in the literature. The O - C diagram reveals a continuously increasing period change combined with the light traveling time effect of the orbital motion of KZ Hya in a binary system with an orbital period of 26.8 ± 0.2 years. The deduced mass of the companion cannot be smaller than 0.83 M sun. Since no sign of the companion has ever been observed spectroscopically and the observed color index b - y excludes the possibility of the companion being a late-type main-sequence or dwarf star, KZ Hya becomes the first SX Phe star for which a degenerate companion is detected. The pulsation properties are studied by analyzing the Fourier spectra of the observed light curves while the fundamental parameters are deduced with the simultaneous multicolor uvbyβ data, showing this star to be a strong low-metallicity high-amplitude SX Phe-type variable pulsating in the fundamental radial mode. No signs of multiperiodicity or significant long-term changes in amplitude are detected in the pulsation of this variable.

  19. Discovery of a Low-Mass Companion to a Metal-Rich F Star with the MARVELS Pilot Project

    CERN Document Server

    Fleming, Scott W; Mahadevan, Suvrath; Lee, Brian; Eastman, Jason D; Siverd, Robert J; Gaudi, B Scott; Niedzielski, Andrzej; Sivarani, Thirupathi; Stassun, Keivan; Wolszczan, Alex; Barnes, Rory; Gary, Bruce; Nguyen, Duy Cuong; Morehead, Robert C; Wan, Xiaoke; Zhao, Bo; Liu, Jian; Guo, Pengcheng; Kane, Stephen R; van Eyken, Julian C; De Lee, Nathan M; Crepp, Justin R; Shelden, Alaina C; Laws, Chris; Wisniewski, John P; Schneider, Donald P; Pepper, Joshua; Snedden, Stephanie A; Pan, Kaike; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Olena; Malanushenko, Viktor; Oravetz, Daniel; Simmons, Audrey; Watters, Shannon

    2010-01-01

    We report the discovery of a low-mass companion orbiting the metal-rich, main sequence F star TYC 2949-00557-1 during the MARVELS (Multi-object APO Radial Velocity Exoplanet Large-area Survey) Pilot Project. The host star has an effective temperature T_eff = 6135 +/- 40 K, log(g) = 4.4 +/- 0.1 and [Fe/H] = 0.32 +/- 0.01, indicating a mass of M = 1.25 +/- 0.09 M_\\odot and R = 1.15 +/- 0.15 R_\\odot. The companion has an orbital period of 5.69449 +/- 0.00023 days and straddles the hydrogen burning limit with a minimum mass of 64 M_J, and may thus be an example of the rare class of brown dwarfs orbiting at distances comparable to those of "Hot Jupiters." We present relative photometry that demonstrates the host star is photometrically stable at the few millimagnitude level on time scales of hours to years, and rules out transits for a companion of radius greater than 0.8 R_J at the 95% confidence level. Tidal analysis of the system suggests that the star and companion are likely in a double synchronous state wher...

  20. Perceptions among university students in Seville (Spain of the rabbit as livestock and as a companion animal

    Directory of Open Access Journals (Sweden)

    Pedro González-Redondo

    2012-10-01

    Full Text Available The rabbit has various utilities and roles, mainly as a meat-producing animal, game species, companion animal, laboratory animal or pest. Among these roles, rabbit breeding for meat has traditionally prevailed in the Mediterranean countries. However, in recent decades the practice of keeping this species as a companion animal has been on the rise; a factor that could be changing public perception of the rabbit. A survey of 492 university students from Seville, Andalusia, Spain, was conducted to determine young people’s perceptions of the rabbit as livestock and as a companion species. The rabbit received the lowest score when regarded as livestock compared to the pig, cow, goat, sheep and hen. Regarding companion animals, young Spanish people preferred the dog and cat, respectively. The rabbit and the hamster were rated at the same level as a pet, while the budgerigar was rated lower than these two mammals by women and higher by men. The goldfish occupied the last position among the pet species in the women’s perceptions. With regard to the perception of various rabbit breeds and varieties when evaluated as pets, it was found that the pet Lop Dwarf, Netherland Dwarf, Angora and Lionhead breeds were rated higher than a typical meat breed (New Zealand White and than the wild rabbit. The gender of the young people surveyed influenced their perception of the rabbit. Women rated the rabbit lower as livestock while they rated it higher as a pet, also rating the pet rabbit breeds higher than men did. It is proposed that, in keeping with the rabbit’s attributes related to its cuteness, conceptually linked with pets, young Andalusian people’s perception of the rabbit is ambivalent and this perception might partly be shifting from perceiving it as livestock to regarding it as a pet.

  1. Kelu-1 is a Binary L Dwarf: First Brown Dwarf Science from Laser Guide Star Adaptive Optics

    CERN Document Server

    Liu, M C; Liu, Michael C.; Leggett, Sandy K.

    2005-01-01

    (Abridged) We present near-IR imaging of the nearby L dwarf Kelu-1 obtained with the Keck sodium laser guide star adaptive optics (LGS AO) system as part of a high angular resolution survey for substellar binaries. Kelu-1 was one of the first free-floating L dwarfs identified, and the origin of its overluminosity compared to other similar objects has been a long-standing question. Our images clearly resolve Kelu-1 into a 0.29'' (5.4 AU) binary, and a previous non-detection by HST demonstrates that the system is a true physical pair. Binarity explains the properties of Kelu-1 that were previously noted to be anomalous compared to other early-L dwarfs. We estimate spectral types of L1.5-L3 and L3-L4.5 for the two components, giving model-derived masses of 0.05-0.07 Msun and 0.045-0.065 Msun for an estimated age of 0.3-0.8 Gyr. More distant companions are not detected to a limit of 5-9 Mjup. The presence of lithium absorption indicates that both components are substellar, but the weakness of this feature relativ...

  2. Spectroscopic confirmation of young planetary-mass companions on wide orbits

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Liu, Michael C.; Mann, Andrew W. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kraus, Adam L., E-mail: bpbowler@caltech.edu [Astronomy Department, University of Texas at Austin, Austin, TX 78712, USA. (United States)

    2014-03-20

    We present moderate-resolution (R ∼ 4000-5000) near-infrared integral field spectroscopy of the young (1-5 Myr) 6-14 M {sub Jup} companions ROXs 42B b and FW Tau b obtained with Keck/OSIRIS and Gemini-North/NIFS. The spectrum of ROXs 42B b exhibits clear signs of low surface gravity common to young L dwarfs, confirming its extreme youth, cool temperature, and low mass. Overall, it closely resembles the free-floating 4-7 M {sub Jup} L-type Taurus member 2MASS J04373705+2331080. The companion to FW Tau AB is more enigmatic. Our optical and near-infrared spectra show strong evidence of outflow activity and disk accretion in the form of line emission from [S II], [O I], Hα, Ca II, [Fe II], Paβ, and H{sub 2}. The molecular hydrogen emission is spatially resolved as a single lobe that stretches ≈0.''1 (15 AU). Although the extended emission is not kinematically resolved in our data, its morphology resembles shock-excited H{sub 2} jets primarily seen in young Class 0 and Class I sources. The near-infrared continuum of FW Tau b is mostly flat and lacks the deep absorption features expected for a cool, late-type object. This may be a result of accretion-induced veiling, especially in light of its strong and sustained Hα emission (EW(Hα) ≳ 290 Å). Alternatively, FW Tau b may be a slightly warmer (M5-M8) accreting low-mass star or brown dwarf (0.03-0.15 M {sub ☉}) with an edge-on disk. Regardless, its young evolutionary stage is in stark contrast to its Class III host FW Tau AB, indicating a more rapid disk clearing timescale for the host binary system than for its wide companion. Finally, we present near-infrared spectra of the young (∼2-10 Myr) low-mass (12-15 M {sub Jup}) companions GSC 6214-210 B and SR 12 C and find they best resemble low-gravity M9.5 and M9 substellar templates.

  3. The Kepler Eclipsing System KIC 5621294 and Its Substellar Companion

    Science.gov (United States)

    Lee, Jae Woo; Hong, Kyeongsoo; Hinse, Tobias Cornelius

    2015-03-01

    We present the physical properties of KIC 5621294, showing light and timing variations from the Kepler photometry. Its light curve displays partial eclipses and the O’Connell effect, with Max II fainter than Max I, which was fitted quite well by applying third-body and spot effects to the system. The results indicate that the eclipsing pair is a classical Algol-type system with parameters of q = 0.22, i = 76.°8, and Δ(T1-T2) = 4235 K, in which the detached primary component fills about 77% of its limiting lobe. Striking discrepancies exist between the primary and secondary eclipse times obtained with the method of Kwee & van Woerden. These are mainly caused by surface inhomogeneities due to spot activity detected in our light curve synthesis. The 1253 light curve timings from the Wilson-Devinney code were used for a period study. It was found that the orbital period of KIC 5621294 has varied due to periodic variation overlaid on a downward parabola. The sinusoidal variation with a period of 961 days and a semi-amplitude of 22.5 s most likely arises from a light-time effect due to a third component with a mass of {{M}3}sin {{i}3} = 46.9 MJup, which is in good agreement with that calculated from the light curve itself. If its orbital inclination is larger than about 40°, the mass of the circumbinary object would possibly match a brown dwarf. The parabolic variation could not be fully explained by either a mass transfer between the binary components or angular momentum via magnetic braking. It is possible that the parabola may be the only observed part of a period modulation caused by the presence of another companion in a wider orbit.

  4. The Kepler eclipsing system KIC 5621294 and its substellar companion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Hong, Kyeongsoo; Hinse, Tobias Cornelius, E-mail: jwlee@kasi.re.kr, E-mail: kshong@kasi.re.kr, E-mail: tchinse@gmail.com [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-03-01

    We present the physical properties of KIC 5621294, showing light and timing variations from the Kepler photometry. Its light curve displays partial eclipses and the O’Connell effect, with Max II fainter than Max I, which was fitted quite well by applying third-body and spot effects to the system. The results indicate that the eclipsing pair is a classical Algol-type system with parameters of q = 0.22, i = 76.°8, and Δ(T{sub 1}−T{sub 2}) = 4235 K, in which the detached primary component fills about 77% of its limiting lobe. Striking discrepancies exist between the primary and secondary eclipse times obtained with the method of Kwee and van Woerden. These are mainly caused by surface inhomogeneities due to spot activity detected in our light curve synthesis. The 1253 light curve timings from the Wilson–Devinney code were used for a period study. It was found that the orbital period of KIC 5621294 has varied due to periodic variation overlaid on a downward parabola. The sinusoidal variation with a period of 961 days and a semi-amplitude of 22.5 s most likely arises from a light-time effect due to a third component with a mass of M{sub 3}sini{sub 3} = 46.9 M{sub Jup}, which is in good agreement with that calculated from the light curve itself. If its orbital inclination is larger than about 40°, the mass of the circumbinary object would possibly match a brown dwarf. The parabolic variation could not be fully explained by either a mass transfer between the binary components or angular momentum via magnetic braking. It is possible that the parabola may be the only observed part of a period modulation caused by the presence of another companion in a wider orbit.

  5. The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone

    Science.gov (United States)

    Díaz, R. F.; Rey, J.; Demangeon, O.; Hébrard, G.; Boisse, I.; Arnold, L.; Astudillo-Defru, N.; Beuzit, J.-L.; Bonfils, X.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Deleuil, M.; Delfosse, X.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Mayor, M.; Moutou, C.; Pepe, F.; Queloz, D.; Santerne, A.; Santos, N. C.; Sahlmann, J.; Ségransan, D.; Udry, S.; Wilson, P. A.

    2016-07-01

    We report the discovery of three new substellar companions to solar-type stars, HD 191806, HD 214823, and HD 221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with observations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD 16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 MJup and 19 MJup. Additionally, we find that the star HD 191806 is experiencing a secular acceleration of over 11 m s-1 per year, potentially due to an additional stellar or substellar companion. A search for the astrometric signature of these companions was carried out using Hipparcos data. No orbit was detected, but a significant upper limit to the companion mass can be set for HD 221585, whose companion must be substellar. With the exception of HD 191806 b, the companions are located within the habitable zone of their host star. Therefore, satellites orbiting these objects could be a propitious place for life to develop. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France by the SOPHIE Consortium (programme 07A.PNP.CONS to 15A.PNP.CONS).

  6. Keck Adaptive Optics Observations of TW Hydrae Association Members

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B; Max, C; Zuckerman, B; Becklin, E E; Kaisler, D; Lowrance, P; Weinberger, A; Chirstou, J; Schneider, G; Acton, S

    2001-05-30

    Adaptive optics (AO) on 8-10 m telescopes is an enormously powerful tool for studying young nearby stars. It is especially useful for searching for companions. Using AO on the 10-m W.M. Keck II telescope we have measured the position of the brown dwarf companion to TWA5 and resolved the primary into an 0.055{double_prime} double. Over the next several years follow-up astrometry should permit an accurate determination of the masses of these young stars. We have also re-observed the candidate extrasolar planet TWAGB, but measurements of its motion relative to TWA6A are inconclusive. We are carrying out a search for new planetary or brown dwarf companions to TWA stars and, if current giant planet models are correct, are currently capable of detecting a 1 Jupiter-mass companion at {approx} 1.0{double_prime} and a 5 Jupiter-mass companion at {approx} 0.5{double_prime} around a typical TWA member.

  7. Axion cooling of white dwarfs

    CERN Document Server

    Isern, J; Garcia--Berro, E; Salaris, M; Torres, S

    2013-01-01

    The evolution of white dwarfs is a simple gravothermal process. This process can be tested in two ways, through the luminosity function of these stars and through the secular variation of the period of pulsation of those stars that are variable. Here we show how the mass of the axion can be constrained using the white dwarf luminosity function.

  8. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    Science.gov (United States)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; Donoso, Emilio; Jarrett, Thomas H.; Lonsdale, Carol; Mace, Gregory; Mainzer, A.; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E.; Skrutskie, Michael F.; Stanford, Spencer A.; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L.; Wu, Jingwen

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  9. Asymmetry measures for QSOs and companions

    CERN Document Server

    Hutchings, J B

    2008-01-01

    An asymmetry index is derived from ellipse-fitting to galaxy images, that gives weight to faint outer features and is not strongly redshift-dependent. These measures are made on a sample of 13 2MASS QSOs and their neighbour galaxies, and a control sample of field galaxies from the same wide-field imaging data. The QSO host galaxy asymmetries correlate well with visual tidal interaction indices previously published. The companion galaxies have somewhat higher asymmetry than the control galaxy sample, and their asymmetry is inversely correlated with distance from the QSO. The distribution of QSO-companion asymmetry indices is different from that for matched control field galaxies at the $\\sim95%$ significance level. We present the data and discuss this evidence for tidal and other disturbances in the vicinity of QSOs.

  10. A 3D Search for Companions to 12 Nearby M Dwarfs

    Science.gov (United States)

    2015-02-19

    3) Golimowski et al. (2000), (4) Henry et al. (2006), (5) Kirkpatrick et al. (1991), (6) Davison et al. (2014). c Using our photometric...from the model fits to telluric absorption features (described later) is ∼57,000. This number is significantly higher than the predicted resolving power...the detector. Next, we fitted the spectral profile of the standard spectrum with a Gaussian to model our spatial profiles at each pixel step (column

  11. Chemical composition of AY Ceti: A flaring, spotted star with a white dwarf companion

    CERN Document Server

    Tautvaišienė, G; Berdyugina, S; Ilyin, I; Chorniy, Y

    2012-01-01

    The detailed chemical composition of the atmosphere AY Cet (HD 7672) is determined from a high-resolution spectrum in the optical region. The main atmospheric parameters and the abundances of 22 chemical elements, including key species such as 12C, 13C, N, and O, are determined. A differential line analysis gives T_eff=5080 K, log g=3.0, [Fe/H]=-0.33, [C/Fe]=-0.17, [N/Fe]=0.17, [O/Fe]=0.05, C/N=1.58, and 12C/13C=21. Despite the high chromospheric activity, the optical spectrum of AY Cet provides a chemical composition typical for first ascent giants after the first dredge-up.

  12. Seismology of Rapidly Rotating Accreting White Dwarfs

    CERN Document Server

    Townsley, Dean M; Bildsten, Lars

    2016-01-01

    A number of White Dwarfs (WDs) in cataclysmic binaries have shown brightness variations consistent with non-radial oscillations as observed in isolated WDs. A few objects have been well-characterized with photometric campaigns in the hopes of gleaning information about the mass, spin, and possibly internal structural characteristics. The novel aspect of this work is the possiblity to measure or constrain the interior structure and spin rate of WDs which have spent gigayears accreting material from their companion, undergoing thousands of nova outbursts in the process. In addition, variations in the surface temperature affect the site of mode driving, and provide unique and challenging tests for mode driving theories previously applied to isolated WD's. Having undergone long-term accretion, these WDs are expected to have been spun up. Spin periods in the range 60-100 seconds have been measured by other means for two objects, GW Lib and V455 And. Compared to typical mode frequencies, the spin frequency may be s...

  13. Prevalence of imaginary companions in a normal child population.

    Science.gov (United States)

    Pearson, D; Rouse, H; Doswell, S; Ainsworth, C; Dawson, O; Simms, K; Edwards, L; Faulconbridge, J

    2001-01-01

    Approximately 1800 children between the ages of 5 and 12 years were randomly selected and asked whether they had present or past experiences of imaginary companions. It was found that 829 (46.2%) children reported experiences of imaginary companions. These findings were unexpected as previous studies had suggested that imaginary companions are generally experienced by fewer, much younger children. There were no significant differences in creativity scores between children who reported imaginary companions compared with those who did not. Imaginary companions were reported by more girls than boys, and were not restricted to very young children.

  14. The Oxford Companion to the Earth

    Science.gov (United States)

    Hancock, Paul L.

    2001-06-01

    Here is a wealth of information on planet Earth, ranging from the heights of the ionsphere down to the red-hot molten core. Written by some 200 expert contributors, and illustrated with over 600 pictures, including 16 pages of color plates, The Oxford Companion to the Earth offers 900 alphabetically arranged entries that cover everything from deserts and wetlands to mountains, caves, glaciers, and coral reefs. There are articles on natural phenomena such as tornadoes and tsunamis, volcanoes and earthquakes, jet streams and weather fronts; on the history of Earth, including the origin of life, Burgess Shale fauna, dinosaurs, and the Ice Ages; on key figures, such as Agassiz, Cuvier, Darwin, and Lamarck; and on such important ecological concerns as acid rain, the ozone layer, industrial waste disposal, and the greenhouse effect. The Companion also examines the great sources of wealth to be found in the Earth, from coal and oil to gold, silver, and diamonds, and many curious land formations, from sinkholes and fiords to yardangs and quicksand. There are brief entries on rock types, from amber to travertine, and extensive essays on cutting-edge aspects of the earth sciences, such as seismology and marine geology. The Companion includes extensive cross-references, suggested further reading, an index, and many useful appendices, with a geological timescale, facts and figures about the Earth, and a table of chemical elements. The Oxford Companion to the Earth is a unique reference work, offering unrivaled coverage of our home planet. Generously illustrated and vividly written, it is a treasure house of information for all lovers of natural history, geology, and ecology, whether professional or amateur.

  15. Discovery of Nearest Known Brown Dwarf

    Science.gov (United States)

    2003-01-01

    Bright Southern Star Epsilon Indi Has Cool, Substellar Companion [1] Summary A team of European astronomers [2] has discovered a Brown Dwarf object (a 'failed' star) less than 12 light-years from the Sun. It is the nearest yet known. Now designated Epsilon Indi B, it is a companion to a well-known bright star in the southern sky, Epsilon Indi (now "Epsilon Indi A"), previously thought to be single. The binary system is one of the twenty nearest stellar systems to the Sun. The brown dwarf was discovered from the comparatively rapid motion across the sky which it shares with its brighter companion : the pair move a full lunar diameter in less than 400 years. It was first identified using digitised archival photographic plates from the SuperCOSMOS Sky Surveys (SSS) and confirmed using data from the Two Micron All Sky Survey (2MASS). Follow-up observations with the near-infrared sensitive SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory confirmed its nature and has allowed measurements of its physical properties. Epsilon Indi B has a mass just 45 times that of Jupiter, the largest planet in the Solar System, and a surface temperature of only 1000 °C. It belongs to the so-called 'T dwarf' category of objects which straddle the domain between stars and giant planets. Epsilon Indi B is the nearest and brightest T dwarf known. Future studies of the new object promise to provide astronomers with important new clues as to the formation and evolution of these exotic celestial bodies, at the same time yielding interesting insights into the border zone between planets and stars. TINY MOVING NEEDLES IN GIANT HAYSTACKS ESO PR Photo 03a/03 ESO PR Photo 03a/03 [Preview - JPEG: 400 x 605 pix - 92k [Normal - JPEG: 1200 x 1815 pix - 1.0M] Caption: PR Photo 03a/03 shows Epsilon Indi A (the bright star at far right) and its newly discovered brown dwarf companion Epsilon Indi B (circled). The upper image comes from one of the SuperCOSMOS Sky

  16. Extension of Companion Modeling Using Classification Learning

    Science.gov (United States)

    Torii, Daisuke; Bousquet, François; Ishida, Toru

    Companion Modeling is a methodology of refining initial models for understanding reality through a role-playing game (RPG) and a multiagent simulation. In this research, we propose a novel agent model construction methodology in which classification learning is applied to the RPG log data in Companion Modeling. This methodology enables a systematic model construction that handles multi-parameters, independent of the modelers ability. There are three problems in applying classification learning to the RPG log data: 1) It is difficult to gather enough data for the number of features because the cost of gathering data is high. 2) Noise data can affect the learning results because the amount of data may be insufficient. 3) The learning results should be explained as a human decision making model and should be recognized by the expert as being the result that reflects reality. We realized an agent model construction system using the following two approaches: 1) Using a feature selction method, the feature subset that has the best prediction accuracy is identified. In this process, the important features chosen by the expert are always included. 2) The expert eliminates irrelevant features from the learning results after evaluating the learning model through a visualization of the results. Finally, using the RPG log data from the Companion Modeling of agricultural economics in northeastern Thailand, we confirm the capability of this methodology.

  17. Characterization of the Companion to $\\mu$ Her

    CERN Document Server

    Roberts, Lewis C; Aguilar, Jonathan; Carson, Joseph; Crepp, Justin; Beichman, Charles; Brenner, Douglas; Burruss, Rick; Cady, Eric; Luszcz-Cook, Statia; Dekany, Richard; Hillenbrand, Lynne; Hinkley, Sasha; King, David; Lockhart, Thomas G; Nilsson, Ricky; Oppenheimer, Rebecca; Parry, Ian R; Pueyo, Laurent; Rice, Emily L; Sivaramakrishnan, Anand; Soummer, Rémi; Vasisht, Gautam; Veicht, Aaron; Wang, Ji; Zhai, Chengxing; Zimmerman, Neil T

    2016-01-01

    $\\mu$ Her is a nearby quadruple system with a G-subgiant primary and several low mass companions arranged in a 2+2 architecture. While the BC components have been well characterized, the Ab component has been detected astrometrically and with direct imaging but there has been some confusion over its nature, in particular whether the companion is stellar or substellar. Using near-infrared spectroscopy we are able to estimate the spectral type of the companion as a M4$\\pm$1V star. In addition, we have measured the astrometry of the system for over a decade. We combined the astrometry with archival radial velocity measurements to compute an orbit of the system. From the combined orbit, we are able to compute the mass sum of the system. Using the estimated mass of the primary, we estimate the mass of the secondary as 0.32 M_sun, which agrees with the estimated spectral type. Our computed orbit is preliminary due to the incomplete orbital phase coverage, but it should be sufficient to predict ephemerides over the ...

  18. Parental Website-Descriptions of Children's Imaginary Companions

    Directory of Open Access Journals (Sweden)

    Francine C Jellesma

    2013-03-01

    Full Text Available Past research shows that imaginary companions are a normal phenomenon in childhood and do not indicate risk for psychopathology. The aim of this study was to see if parents are nevertheless concerned about imaginary companions. Internet-forums were searched in English, German, and Dutch in order to answer this question. Parental messages about present imaginary companions were analysed. Analyses of 89 posts made on a diverse set of internet-forums for parents revealed that half the parents expressed concerns about imaginary companions, especially parents with children older than 4.5 years old. When the imaginary companion was older than the child, parents were more likely to be concerned. Almost all messages were about imaginary companions, which might indicate that parents are less concerned about personified objects. The results signify that parents need more information in order to ensure they know imaginary companions are a normal childhood-experience.

  19. Habitability of planets around red dwarf stars.

    Science.gov (United States)

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  20. Magnetized White Dwarfs

    CERN Document Server

    Terrero, D Alvear; Martínez, A Pérez

    2016-01-01

    The purpose of this thesis is to obtain more realistic equations of state to describe the matter forming magnetized white dwarfs, and use them to solve its structure equations. The equations of state are determined by considering the weak magnetic field approximation $Bdwarfs. Also, we consider the energy and pressure correction due to the Coulomb interaction of the electron gas with the ions located in a crystal lattice. Moreover, spherically symmetric Tolman-Oppenheimer-Volkoff structure equations are solved independently for the perpendicular and parallel pressures, confirming the necessity of using axisymmetric structure equations, more adequate to describe the anisotropic system. Therefore, we study the solutions in cylindrical coordinates. In this case, the mass per longitude unit is obtained instead of the total mass of the whit...

  1. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates

    CERN Document Server

    Griffith, Roger L; Eisenhardt, Peter R M; Gelino, Christopher R; Cushing, Michael C; Benford, Dominic; Blain, Andrew; Bridge, Carrie R; Cohen, Martin; Cutri, Roc M; Donoso, Emilio; Jarrett, Thomas H; Lonsdale, Carol; Mace, Gregory; Mainzer, A; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E; Skrutskie, Michael F; Stanford, Spencer A; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L; Wu, Jingwen; Yan, Lin

    2012-01-01

    We present Spitzer 3.6 and 4.5 $\\mu$m photometry and positions for a sample of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify 7 fainter (4.5 $\\mu$m $\\sim$ 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we find another 6 brown dwarf c...

  2. The nearby population of M dwarfs with WISE: A search for warm circumstellar dust

    CERN Document Server

    Avenhaus, Henning; Meyer, Michael R

    2012-01-01

    Circumstellar debris disks are important for their connection to planetary systems. An efficient way to identify such systems is through their infrared excess. Most studies so far concentrated on early-type or solar-type stars, but less effort has gone into M dwarfs. We characterize the mid-infrared photometric behavior of M dwarfs and search for infrared excess in nearby M dwarfs taken from the volume-limited RECONS sample using data from the WISE satellite and the 2MASS catalog. Our sample consists of 85 sources encompassing 103 M dwarfs. We derive empirical infrared colors from these data and discuss their errors. From this, we check the stars for infrared excess and discuss the minimum excess we would be able to detect. Other than the M8.5 dwarf SCR 1845-6357 A, where the excess is produced by a known T6 companion, we detect no excesses in any of our sample stars. The limits we derive for the 22um excess are slightly larger than the usual detection limit of 10-15% for Spitzer studies, but the inclusion of...

  3. Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy

    Science.gov (United States)

    Konishi, Mihoko; Shibai, Hiroshi; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S.; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nobuo; Kajisawa, Masaru; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Feldt, Marcus; Goto, Miwa; Grady, Carol A.; Guyon, Oliver; Hashimoto, Jun; Hayano, Yutaka; Hayashi, Masahiko; McElwain, Michael W.

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased ( approx. 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.

  4. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. I. A Low-mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79 Day Orbit

    Science.gov (United States)

    Wisniewski, John P.; Ge, Jian; Crepp, Justin R.; De Lee, Nathan; Eastman, Jason; Esposito, Massimiliano; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; Gonzalez Hernandez, Jonay I.; Lee, Brian L.; Stassun, Keivan G.; Agol, Eric; Allende Prieto, Carlos; Barnes, Rory; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Da Costa, Luiz N.; Porto De Mello, G. F.; Femenía, Bruno; Ferreira, Leticia D.; Gary, Bruce; Hebb, Leslie; Holtzman, Jon; Liu, Jian; Ma, Bo; Mack, Claude E.; Mahadevan, Suvrath; Maia, Marcio A. G.; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Daniel J.; Paegert, Martin; Pan, Kaike; Pepper, Joshua; Rebolo, Rafael; Santiago, Basilio; Schneider, Donald P.; Shelden, Alaina C.; Simmons, Audrey; Tofflemire, Benjamin M.; Wan, Xiaoke; Wang, Ji; Zhao, Bo

    2012-05-01

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T eff TYC 4110-01037-1 reveals it to be a moderately aged (lsim5 Gyr) solar-like star having a mass of 1.07 ± 0.08 M ⊙ and radius of 0.99 ± 0.18 R ⊙. We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of ~2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 ± 0.012 days, an eccentricity of 0.1095 ± 0.0023, and a semi-amplitude of 4199 ± 11 m s-1. We determine the minimum companion mass (if sin i = 1) to be 97.7 ± 5.8 M Jup. The system's companion to host star mass ratio, >=0.087 ± 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T eff <~ 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.

  5. A Virtual Observatory Census to Address Dwarfs Origins (AVOCADO). I. Science goals, sample selection, and analysis tools

    Science.gov (United States)

    Sánchez-Janssen, R.; Amorín, R.; García-Vargas, M.; Gomes, J. M.; Huertas-Company, M.; Jiménez-Esteban, F.; Mollá, M.; Papaderos, P.; Pérez-Montero, E.; Rodrigo, C.; Sánchez Almeida, J.; Solano, E.

    2013-06-01

    Context. Even though they are by far the most abundant of all galaxy types, the detailed properties of dwarf galaxies are still only poorly characterised - especially because of the observational challenge that their intrinsic faintness and weak clustering properties represent. Aims: AVOCADO aims at establishing firm conclusions on the formation and evolution of dwarf galaxies by constructing and analysing a homogeneous, multiwavelength dataset for a statistically significant sample of approximately 6500 nearby dwarfs (Mi - 5 log h100 > - 18 mag). The sample is selected to lie within the 20 < D < 60 h100-1 Mpc volume covered by the SDSS-DR7 footprint, and is thus volume-limited for Mi - 5 log h100 < -16 mag dwarfs - but includes ≈1500 fainter systems. We will investigate the roles of mass and environment in determining the current properties of the different dwarf morphological types - including their structure, their star formation activity, their chemical enrichment history, and a breakdown of their stellar, dust, and gas content. Methods: We present the sample selection criteria and describe the suite of analysis tools, some of them developed in the framework of the Virtual Observatory. We use optical spectra and UV-to-NIR imaging of the dwarf sample to derive star formation rates, stellar masses, ages, and metallicities - which are supplemented with structural parameters that are used to classify them morphologically. This unique dataset, coupled with a detailed characterisation of each dwarf's environment, allows for a fully comprehensive investigation of their origins and enables us to track the (potential) evolutionary paths between the different dwarf types. Results: We characterise the local environment of all dwarfs in our sample, paying special attention to trends with current star formation activity. We find that virtually all quiescent dwarfs are located in the vicinity (projected distances ≲ 1.5 h100-1 Mpc) of ≳ L∗ companions, consistent with

  6. PROPERTIES OF THE COOLEST DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    SAUMON, DIDIER [Los Alamos National Laboratory; LEGGETT, SANDY K. [NON LANL; FREEDMAN, RICHARD S. [NON LANL; GEBALLE, THOMAS R. [NON LANL; GOLIMOWSKI, DAVID A. [NON LANL; LODIEU, NICOLAS [NON LANL; MARLEY, MARK S. [NON LANL; STEPHENS, DENISE [NON LANL; PINFIELD, DAVID J. [NON LANL; WARREN, STEPHEN J. [NON LANL

    2007-01-18

    Eleven years after the discovery of the first T dwarf, we have a population of ultracool L and T dwarfs that is large enough to show a range of atmospheric properties, as well as model atmospheres advanced enough to study these properties in detail. Since the last Cool Stars meeting, there have been observational developments which aid in these studies. they present recent mid-infrared photometry and spectroscopy from the Spitzer Space Telescope which confirms the prevalence of vertical mixing in the atmospheres of L and T dwarfs. Hence, the 700 K to 2200 K L and t dwarf photspheres require a large number of parameters for successful modeling: effective temperature, gravity, metallicity, grain sedimentation and vertical mixing efficiency. They also describe initial results of a search for ultracool dwarfs in the UKIRT Infrared Deep Sky Survey, and present the latest T dwarf found to date. They conclude with a discussion of the definition of the later-than-T spectral type, the Y dwarf.

  7. Discovery of a close substellar companion to the hot subdwarf star HD 149382 - The decisive influence of substellar objects on late stellar evolution

    CERN Document Server

    Geier, S; Heber, U; Morales-Rueda, L

    2009-01-01

    Substellar objects, like planets and brown dwarfs orbiting stars, are by-products of the star formation process. The evolution of their host stars may have an enourmous impact on these small companions. Vice versa a planet might also influence stellar evolution as has recently been argued. Here we report the discovery of a 8-23 Jupiter-mass substellar object orbiting the hot subdwarf HD 149382 in 2.391 days at a distance of only about five solar radii. Obviously the companion must have survived engulfment in the red-giant envelope. Moreover, the substellar companion has triggered envelope ejection and enabled the sdB star to form. Hot subdwarf stars have been identified as the sources of the unexpected ultravoilet emission in elliptical galaxies, but the formation of these stars is not fully understood. Being the brightest star of its class, HD 149382 offers the best conditions to detect the substellar companion. Hence, undisclosed substellar companions offer a natural solution for the long-standing formation...

  8. Pluto and other dwarf planets

    CERN Document Server

    Saxena, Shalini

    2017-01-01

    The reclassification of Pluto in 2006 not only decreased the number of planets in our solar system by one but also introduced the new category of dwarf planet. Readers will come to understand what separates a dwarf planet from a planet-or for that matter from any of the other bodies found within the solar system. They'll learn about Pluto itself, as well as its fellow dwarf planets, Ceres, Makemake, Haumea, and Eris. Full of recent information, this title is sure to inspire an interest in space science among young readers.

  9. A New Benchmark Brown Dwarf

    CERN Document Server

    Tinney, C G; Forveille, T; Delfosse, Xavier

    1997-01-01

    We present optical spectroscopy of three brown dwarf candidates identified in the first 1% of the DENIS sky survey. Low resolution spectra from 6430--9000A show these objects to have similar spectra to the uncertain brown dwarf candidate GD 165B. High resolution spectroscopy shows that one of the objects -- DBD 1228-1547 -- has a strong EW=2.3+-0.05A absorption line of Li I 6708A, and is therefore a brown dwarf with mass below 0.065 Msol. DBD 1228-1547 can now be the considered proto-type for objects JUST below the hydrogen burning limit.

  10. A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself to be a Very Long Period, Highly Eccentric Spectroscopic Stellar Binary

    Science.gov (United States)

    Mack, Claude E., III; Ge, Jian; Deshpande, Rohit; Wisniewski, John P.; Stassun, Keivan G.; Gaudi, B. Scott; Fleming, Scott W.; Mahadevan, Suvrath; De Lee, Nathan; Eastman, Jason; Ghezzi, Luan; González Hernández, Jonay I.; Femenía, Bruno; Ferreira, Letícia; Porto de Mello, Gustavo; Crepp, Justin R.; Mata Sánchez, Daniel; Agol, Eric; Beatty, Thomas G.; Bizyaev, Dmitry; Brewington, Howard; Cargile, Phillip A.; da Costa, Luiz N.; Esposito, Massimiliano; Ebelke, Garret; Hebb, Leslie; Jiang, Peng; Kane, Stephen R.; Lee, Brian; Maia, Marcio A. G.; Malanushenko, Elena; Malanushenko, Victor; Oravetz, Daniel; Paegert, Martin; Pan, Kaike; Allende Prieto, Carlos; Pepper, Joshua; Rebolo, Rafael; Roy, Arpita; Santiago, Basílio X.; Schneider, Donald P.; Simmons, Audrey; Siverd, Robert J.; Snedden, Stephanie; Tofflemire, Benjamin M.

    2013-05-01

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R <~ 30, 000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin i ~ 50 M Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very-low-mass companion: its large eccentricity (e ~ 0.8), its relatively long period (P ~ 238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (ω ~ 189°). As a result of these properties, for ~95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e ~ 0.3). Only during the ~5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of ~15 km s-1 reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.

  11. Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N

    CERN Document Server

    Bonomo, A S; Santerne, A; Deleuil, M; Almenara, J -M; Bruno, G; Díaz, R F; Hébrard, G; Moutou, C

    2015-01-01

    Radial-velocity observations of Kepler candidates obtained with the SOPHIE and HARPS-N spectrographs have permitted unveiling the nature of the five giant planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions were previously characterized with long-cadence (LC) Kepler data. Here we aim at refining the parameters of these transiting systems by i) modelling the published radial velocities (RV) and Kepler short-cadence (SC) data that provide a much better sampling of the transits, ii) performing new spectral analyses of the SOPHIE and ESPaDOnS spectra, and iii) improving stellar rotation periods hence stellar age estimates through gyrochronology, when possible. Posterior distributions of the system parameters were derived with a differential evolution Markov chain Monte Carlo approach. Our main results are as follows: a) Kepler-41b is significantly larger and less dense than previously found because a lower orbital...

  12. Precise radial velocities of Proxima Centauri. Strong constraints on a substellar companion

    CERN Document Server

    Kürster, M; Cochran, W D; Döbereiner, S; Dennerl, K; Endl, M

    1999-01-01

    We present differential radial velocity measurements of Proxima Centauri collected over 4 years with the ESO CES with a mean precision of $54 ms^{-1}$. We find no evidence of a periodic signal that could corroborate the existence of a sub-stellar companion. We put upper limits (97% confidence) to the companion mass ranging from 1.1 to 22 M_{Jup} at orbital periods of 0.75 to 3000 d, i.e. separations 0.008-2 AU from Prox Cen. Our mass limits concur with limits found by precise astrometry (Benedict et al. 1998a and priv. comm.) which strongly constrain the period range 50-600 d to 1.1-0.22 M_{Jup}. Combining both results we exclude a brown dwarf or supermassive planet at separations 0.008-0.69 AU from Prox Cen. We also find that, at the level of our precision, the RV data are not affected by stellar activity.

  13. Multi-Wavelength Implications of the Companion Star in eta Carinae

    Science.gov (United States)

    Madura, Thomas I.; Gull, Theodore R.; Groh, Jose H.; Owocki, Stanley P.; Okazaki, Atsuo; Hillier, D. John; Russell, Christopher

    2012-01-01

    Eta-Carinae is considered to be a massive colliding wind binary system with a highly eccentric (e approximately 0.9), 5.54-yr orbit. However, the companion star continues to evade direct detection as the primary dwarfs its emission at most wavelengths. Using three-dimensional (3-D) SPH simulations of eta-Car's colliding winds and radiative transfer codes, we are able to compute synthetic observables across multiple wavebands for comparison to the observations. The models show that the presence of a companion star has a profound influence on the observed HST/STIS UV spectrum and H-alpha line profiles, as well as the ground-based photometric monitoring. Here, we focus on the Bore Hole effect, wherein the fast wind from the hot secondary star carves a cavity in the dense primary wind, allowing increased escape of radiation from the hotter/deeper layers of the primary's extended wind photosphere. The results have important implications for interpretations of eta-Car's observables at multiple wavelengths.

  14. Spectroscopic Confirmation of Young Planetary-Mass Companions on Wide Orbits

    CERN Document Server

    Bowler, Brendan P; Kraus, Adam L; Mann, Andrew W

    2014-01-01

    We present moderate-resolution ($R$$\\sim$4000-5000) near-infrared integral field spectroscopy of the young (1-5 Myr) 6-14 $M_\\mathrm{Jup}$ companions ROXs 42B b and FW Tau b obtained with Keck/OSIRIS and Gemini-North/NIFS. The spectrum of ROXs 42B b exhibits clear signs of low surface gravity common to young L dwarfs, confirming its extreme youth, cool temperature, and low mass. Overall, it closely resembles the free-floating 4-7 $M_\\mathrm{Jup}$ L-type Taurus member 2MASS J04373705+2331080. The companion to FW Tau AB is more enigmatic. Our optical and near-infrared spectra show strong evidence of outflow activity and disk accretion in the form of line emission from [S II], [O I], H$\\alpha$, Ca II, [Fe II], Pa$\\beta$, and H$_2$. The molecular hydrogen emission is spatially resolved as a single lobe that stretches $\\approx$0.1" (15 AU). Although the extended emission is not kinematically resolved in our data, its morphology resembles shock-excited H$_2$ jets primarily seen in young Class 0 and Class I sources....

  15. The Astrometric-Spectroscopic Binary System HIP 50796: An Overmassive Companion

    CERN Document Server

    Torres, G

    2005-01-01

    We report spectroscopic observations of the star HIP 50796, previously considered (but later rejected) as a candidate member of the TW Hya association. Our measurements reveal it to be a single-lined binary with an orbital period of 570 days and an eccentricity of e = 0.61. The astrometric signature of this orbit was previously detected by the HIPPARCOS satellite in the form of curvature in the proper motion components, although the period was unknown at the time. By combining our radial velocity measurements with the HIPPARCOS intermediate data (abscissae residuals) we are able to derive the full three-dimensional orbit, and determine the dynamical mass of the unseen companion as well as a revised trigonometric parallax that accounts for the orbital motion. Given our primary mass estimate of 0.73 solar masses (mid-K dwarf), the companion mass is determined to be 0.89 solar masses, or about 20% larger than the primary. The likely explanation for the larger mass without any apparent contribution to the light i...

  16. Multi-Wavelength Implications of the Companion Star in Eta Carinae

    CERN Document Server

    Madura, Thomas I; Groh, Jose H; Owocki, Stanley P; Okazaki, Atsuo; Hillier, D John; Russell, Christopher

    2011-01-01

    Eta Carinae is considered to be a massive colliding wind binary system with a highly eccentric (e \\sim 0.9), 5.54-yr orbit. However, the companion star continues to evade direct detection as the primary dwarfs its emission at most wavelengths. Using three-dimensional (3-D) SPH simulations of Eta Car's colliding winds and radiative transfer codes, we are able to compute synthetic observables across multiple wavebands for comparison to the observations. The models show that the presence of a companion star has a profound influence on the observed HST/STIS UV spectrum and H-alpha line profiles, as well as the ground-based photometric monitoring. Here, we focus on the Bore Hole effect, wherein the fast wind from the hot secondary star carves a cavity in the dense primary wind, allowing increased escape of radiation from the hotter/deeper layers of the primary's extended wind photosphere. The results have important implications for interpretations of Eta Car's observables at multiple wavelengths.

  17. ON THE NATURE OF THE TERTIARY COMPANION TO FW TAU: ALMA CO OBSERVATIONS AND SED MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Claudio; Hardy, Adam; Schreiber, Matthias R.; Cánovas, Héctor [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, 2360102 Valparaíso (Chile); Cieza, Lucas A. [Núcleo de Astronomía, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Williams, Jonathan P. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Hales, Antonio [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, 763-0355 Santiago (Chile); Pinte, Christophe [Univ. Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble (France); Ménard, Francois [UMI-FCA, CNRS/INSU, UMI 3386 (France); Wahhaj, Zahed [European Southern Observatory, Av. Alonso de Córdova 3107, Vitacura, 19001 Santiago (Chile)

    2015-06-20

    It is thought that planetary mass companions may form through gravitational disk instabilities or core accretion. Identifying such objects in the process of formation would provide the most direct test for the competing formation theories. One of the most promising candidates for a planetary mass object still in formation is the third object in the FW Tau system. We present here ALMA cycle 1 observations confirming the recently published 1.3 mm detection of a dust disk around this third object and present for the first time a clear detection of a single peak {sup 12}CO (2–1) line, providing direct evidence for the simultaneous existence of a gas disk. We perform radiative transfer modeling of the third object in FW Tau and find that current observations are consistent with either a brown dwarf embedded in an edge-on disk or a planet embedded in a low inclination disk, which is externally irradiated by the binary companion. Further observations with ALMA, aiming for high SNR detections of non-contaminated gas lines, are required to conclusively unveil the nature of the third object in FW Tau.

  18. Impact of type ia supernova ejecta on binary companions in the single-degenerate scenario

    CERN Document Server

    Pan, Kuo-Chuan; Taam, Ronald

    2012-01-01

    Type Ia supernovae are thought to be caused by thermonuclear explosions of a carbon-oxygen white dwarf in close binary systems. In the single-degenerate scenario (SDS), the companion star is non-degenerate and can be significantly affected by the explosion. We explore this interaction by means of multi-dimensional adaptive mesh refinement simulations using the FLASH code. We consider several different companion types, including main-sequence-like stars (MS), red giants (RG), and helium stars (He). In addition, we include the symmetry-breaking effects of orbital motion, rotation of the non-degenerate star, and Roche-lobe overflow. A detailed study of a sub-grid model for Type Ia supernovae is also presented. We find that the dependence of the unbound stellar mass and kick velocity on the initial binary separation can be fitted by power-law relations. By using the tracer particles in FLASH, the process leading to the unbinding of matter is dominated by ablation, which has usually been neglected in past analytic...

  19. A search for hidden white dwarfs in the ROSAT EUV survey

    CERN Document Server

    Burleigh, M R; Fleming, T; Burleigh, Matt; Barstow, Martin; Fleming, Tom

    1997-01-01

    The ROSAT WFC survey has provided us with evidence for the existence of a previously unidentified sample of hot white dwarfs (WD) in non-interacting binary systems, through the detection of EUV and soft X-ray emission. These stars are hidden at optical wavelengths due to their close proximity to much more luminous main sequence (MS) companions (spectral type K or earlier). However, for companions of spectral type A5 or later the white dwarfs are easily visible at far-UV wavelengths, and can be identified in spectra taken by IUE. Eleven white dwarf binary systems have previously been found in this way from ROSAT, EUVE and IUE observations (e.g. Barstow et al. 1994). In this paper we report the discovery of three more such systems through our programmes in recent episodes of IUE. The new binaries are HD2133, RE J0357+283 (whose existence was predicted by Jeffries, Burleigh and Robb 1996), and BD+27 1888. In addition, we have independently identified a fourth new WD+MS binary, RE J1027+322, which has also been r...

  20. Astrometric discovery of GJ 802b : in the Brown Dwarf Oasis?

    Science.gov (United States)

    Pravdo, Steven H.; Shaklan, Stuart B.; Lloyd, James

    2005-01-01

    The Stellar Planet Survey is an ongoing astrometric search for giant planets and brown dwarfs around a sample of 30 M dwarfs. We have discovered several low-mass companions by measuring the motion of our target stars relative to their reference frames. The lowest mass discovery thus far is GJ 802b, a companion to the M5 dwarf GJ 802A. The orbital period is 3.14 +/-0:03 yr, the system mass is 0:214 +/- 0:045 M(circled dot operator), and the semimajor axis is 1:28+/- 0:10 AU or 81 + 6 mas. Imaging observations indicate that GJ 802b is likely to be a brow with the astrometrically determined mass 0:058 +/- 0:021 M(circled dot operator) (1 (sigma) limits). The remaining uncertainty in the orbit is the eccentricity that is now loosely constrained. We dis the system age limits the mass and the prospects of further narrowing the mass range when e is more precisely determined.

  1. Direct formation of millisecond pulsars from rotationally delayed accretion-induced collapse of massive white dwarfs

    CERN Document Server

    Freire, Paulo C C

    2013-01-01

    Millisecond pulsars (MSPs) are believed to be old neutron stars, formed via Type Ib/c core-collapse supernovae, which have subsequently been spun up to high rotation rates via accretion from a companion star in a highly circularised low-mass X-ray binary. The recent discoveries of Galactic field binary MSPs in eccentric orbits, and mass functions compatible with that expected for helium white dwarf companions, PSR J2234+06 and PSR J1946+3417, therefore challenge this picture. Here we present a hypothesis for producing this new class of systems, where the MSPs are formed directly from a rotationally-delayed accretion-induced collapse of a super-Chandrasekhar mass white dwarf. We compute the orbital properties of the MSPs formed in such events and demonstrate that our hypothesis can reproduce the observed eccentricities, masses and orbital periods of the white dwarfs, as well as forecasting the pulsar masses and velocities. Finally, we compare this hypothesis to a triple star scenario.

  2. Accessing Cultural Artifacts Through Digital Companions

    DEFF Research Database (Denmark)

    Rehm, Matthias; Jensen, Martin Lynge

    2016-01-01

    This paper presents a study that explores how the introduction of a digital companion agent for a museum exploration game changes children’s engagement with the presented artworks. To this end, a mobile application was developed featuring a monster agent that has eaten the artworks, which the chi...... the children had now to find in the museum. Results show that in comparison to the paper-based version of the exploration game, children engaged in more interactions with the actual cultural artifacts and showed a significantly higher retention rate for details of the involved artworks....

  3. The Photoshop CS4 Companion for Photographers

    CERN Document Server

    Story, Derrick

    2009-01-01

    "Derrick shows that Photoshop can be friendly as well as powerful. In part, he does that by focusing photographers on the essential steps of an efficient workflow. With this guide in hand, you'll quickly learn how to leverage Photoshop CS4's features to organize and improve your pictures."-- John Nack, Principal Product Manager, Adobe Photoshop & BridgeMany photographers -- even the pros -- feel overwhelmed by all the editing options Photoshop provides. The Photoshop CS4 Companion for Photographers pares it down to only the tools you'll need most often, and shows you how to use those tools as

  4. An R companion to linear statistical models

    CERN Document Server

    Hay-Jahans, Christopher

    2011-01-01

    Focusing on user-developed programming, An R Companion to Linear Statistical Models serves two audiences: those who are familiar with the theory and applications of linear statistical models and wish to learn or enhance their skills in R; and those who are enrolled in an R-based course on regression and analysis of variance. For those who have never used R, the book begins with a self-contained introduction to R that lays the foundation for later chapters.This book includes extensive and carefully explained examples of how to write programs using the R programming language. These examples cove

  5. An Extended Star Formation History in an Ultra Compact Dwarf

    CERN Document Server

    Norris, Mark A; Faifer, Favio R; Kannappan, Sheila J; Forte, Juan Carlos; Bosch, Remco C E van den

    2015-01-01

    There has been significant controversy over the mechanisms responsible for forming compact stellar systems like ultra compact dwarfs (UCDs), with suggestions that UCDs are simply the high mass extension of the globular cluster (GC) population, or alternatively, the liberated nuclei of galaxies tidally stripped by larger companions. Definitive examples of UCDs formed by either route have been difficult to find, with only a handful of persuasive examples of stripped-nucleus type UCDs being known. In this paper we present very deep Gemini/GMOS spectroscopic observations of the suspected stripped nucleus UCD NGC 4546-UCD1 taken in good seeing conditions (< 0.7"). With these data we examine the spatially resolved kinematics and star formation history of this unusual object. We find no evidence of a rise in the central velocity dispersion of the UCD, suggesting that this UCD lacks a massive central black hole like those found in some other compact stellar systems, a conclusion confirmed by detailed dynamical mod...

  6. Asteroseismology of white dwarf stars

    CERN Document Server

    Córsico, A H

    2014-01-01

    Most of low- and intermediate-mass stars that populate the Universe will end their lives as white dwarf stars. These ancient stellar remnants have encrypted inside a precious record of the evolutionary history of the progenitor stars, providing a wealth of information about the evolution of stars, star formation, and the age of a variety of stellar populations, such as our Galaxy and open and globular clusters. While some information like surface chemical composition, temperature and gravity of white dwarfs can be inferred from spectroscopy, the internal structure of these compact stars can be unveiled only by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable stars and the periods of appropriate theoretical models. In this communication, we first briefly describe the physical properties of white dwarf stars and the various families of pulsating white dwarfs known up to the present day, and then we present two recent analysis carried out by the La...

  7. Optimal Release Control of Companion Satellite System Using Electromagnetic Forces

    Institute of Scientific and Technical Information of China (English)

    Zengwen Xu,Peng Shi; Yushan Zhao∗

    2015-01-01

    Electromagnetic forces generated by the inter⁃action of component satellites can be used to release companion satellites. Optimal release trajectories for companion satellite system using inter⁃electromagnetic forces were investigated. Firstly, nonlinear relative motion dynamic equations of a two⁃craft electromagnetic companion satellite system were derived in spatial polar coordinates. Then principles of electromagnetic satellite formation flying were introduced. Secondly, the characteristics of the electromagnetic companion satellites release were analyzed and optimal release trajectories of companion satellites using electromagnetic forces were obtained using Gauss pseudospectral method. Three performance criteria were chosen as minimum time, minimum acceleration of the separation distance and minimum control acceleration. Finally, three release examples including expansion along separation distance, rotation in orbital plane and stable formation reconfiguration were given to demonstrate the feasibility of this method. Results indicated that the release trajectories can converge to optimal solutions effectively and the concept of release companion satellites using electromagnetic forces is practicable.

  8. Singing and dancing white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S; Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Gaensicke, Boris T [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Nitta, Atsuko, E-mail: anjum@astro.washington.ed [Gemini Observatory, Hilo, HI 96720 (United States)

    2009-06-01

    Accreting white dwarfs have recently been shown to exhibit non-radial pulsations similar to their non-interacting counterparts. This allows us to probe the interior of the accreting white dwarf using seismology, and may be the only way to determine masses for non-eclipsing cataclysmic variables. Improving our understanding of accreting white dwarfs will have implications for models of supernovae Type Ia. Pulsating white dwarfs in cataclysmic variables are also useful in establishing the effects of accretion on pulsations. A search for nonradial pulsations among suitable candidates has led to the discovery of twelve such systems known to date. With the goal of establishing an instability strip (or strips) for these pulsating accretors, we acquired HST ultra-violet time-series spectroscopy of six pulsating white dwarfs in cataclysmic variables in 2007 and 2008. This approach enables us to measure the effective temperature of the white dwarf using the co-added spectrum, and to simultaneously characterize the pulsations. We also intended to constrain the pulsation mode identification by comparing the ultra-violet amplitudes to those from near-simultaneous ground-based photometry. Our preliminary results indicate a broad instability strip in the temperature range of 10500-15400 K.

  9. Veterinarian satisfaction with companion animal visits.

    Science.gov (United States)

    Shaw, Jane R; Adams, Cindy L; Bonnett, Brenda N; Larson, Susan; Roter, Debra L

    2012-04-01

    To measure veterinarian satisfaction with companion animal visits through an adaptation of a previously validated physician visit satisfaction scale and to identify demographic, personality, appointment, and communication factors that contribute to veterinarian visit satisfaction. Cross-sectional descriptive study. Random sample of 50 companion animal practitioners in southern Ontario, Canada, and convenience sample of 300 clients and their pets. For each practitioner, 6 clinical appointments were videotaped, and the resulting 300 videotapes were analyzed by use of the Roter interaction analysis system. The physician satisfaction scale, Rosenberg self-esteem scale, and interpersonal reactivity index were used to measure veterinarian visit satisfaction, self-esteem, and empathy, respectively. Linear regression analysis was conducted to study the relationship between factors and veterinarian visit satisfaction. Veterinarian visit satisfaction ranged from 1 to 5 (mean ± SD, 3.97 ± 0.99) and differed significantly between wellness appointments (mean scale score, 4.13) and problem appointments (mean scale score, 3.81). Various elements of client and veterinarian communication as well as personality measures of veterinarian self-esteem and empathy were associated with veterinarian satisfaction. The specific factors differed depending on the nature of the appointment. Results suggested that veterinarian visit-specific satisfaction is enhanced through the use of communication that builds relationships with clients and is associated with degrees of veterinarian empathetic concern and veterinarian self-esteem. The implications extend to overall job satisfaction and its potential link to the health and well-being of individual veterinarians.

  10. The relativistic pulsar-white dwarf binary PSR J1738+0333 I. Mass determination and evolutionary history

    CERN Document Server

    Antoniadis, J; Koester, D; Freire, P C C; Wex, N; Tauris, T M; Kramer, M; Bassa, C G

    2012-01-01

    PSR J1738+0333 is one of the four millisecond pulsars known to be orbited by a white dwarf companion bright enough for optical spectroscopy. Of these, it has the shortest orbital period, making it especially interesting for a range of astrophysical and gravity related questions. We present a spectroscopic and photometric study of the white dwarf companion and infer its radial velocity curve, effective temperature, surface gravity and luminosity. We find that the white dwarf has properties consistent with those of low-mass white dwarfs with thick hydrogen envelopes, and use the corresponding mass-radius relation to infer its mass; M_WD = 0.181 +/- +0.007/-0.005 solar masses. Combined with the mass ratio q=8.1 +/- 0.2 inferred from the radial velocities and the precise pulsar timing ephemeris, the neutron star mass is constrained to M_PSR = 1.47 +/- +0.07/-0.06 solar masses. Contrary to expectations, the latter is only slightly above the Chandrasekhar limit. We find that, even if the birth mass of the neutron s...

  11. Optical and Near Infrared studies of the photometric structure and starburst activity of Blue Compact Dwarf Galaxies

    Science.gov (United States)

    Noeske, K. G.

    2003-03-01

    differences between the host structure - luminosity parameter spaces of LSB components of BCDs and other types of dwarf galaxies. These findings are discussed in view of different scenarios of the starburst-driven evolution of dwarf galaxies. The above mentioned stellar LSB density threshold for the occurrence of starburst activity, along with other results, suggests that the stellar mass density strongly influences the star-forming activity of a dwarf galaxy. The derived relations might be explained by a modified Jeans-criterion that includes the influence of a compact stellar background on the Jeans mass. Results of a detailed study of two prototypical examples of the "cometary" morphological subclass of BCDs are interpreted in connection with literature data for such systems. This comparison suggests that cometary BCDs may systematically differ from the more common elliptical BCDs with respect to several physical properties, such as the structure and age of their stellar LSB components. The hypothesis that the development of a cometary morphology may be connected to an early evolutionary stage of BCDs is discussed. A third study focuses on the environment of star-forming dwarf galaxies (SFDGs), which are known to typically reside in regions of low density of luminous galaxies. In the close environment of more than 30 % of the studied SFDGs, the present investigation reveals low-luminosity dwarf companion galaxies which may be frequently undetectable at larger distances due to observational selection effects. These companions, which frequently show hints of physical association with the sample SFDGs, address the question of interaction-induced star-forming activity in SFDGs, similar to earlier surveys for low-mass gaseous companions of SFDGs. A significant influence of the found companions on the star-forming activity of the studied SFDGs is not found.

  12. Outliers from the Mass--Metallicity Relation I: A Sample of Metal-Rich Dwarf Galaxies from SDSS

    CERN Document Server

    Peeples, Molly S; Stanek, K Z

    2008-01-01

    We have identified a sample of 41 low-mass high--oxygen abundance outliers from the mass--metallicity relation of star-forming galaxies measured by Tremonti et al (2004). These galaxies, which have 8.6 M_B > -19.1 and 7.4 < log M_*/M_solar < 10, are surprisingly non-pathological. They have typical specific star formation rates, they are fairly isolated and, with few exceptions, have no obvious companions. Morphologically, they are similar to dwarf spheroidal or dwarf elliptical galaxies. We predict that their observed high oxygen abundances are due to relatively low gas masses, concluding that these are transitional dwarf galaxies nearing the end of their star formation activity.

  13. The age-metallicity relation in the solar neighbourhood from a pilot sample of white dwarf-main sequence binaries

    CERN Document Server

    Rebassa-Mansergas, A; García-Berro, E; Freeman, K C; Cojocaru, R; Manser, C J; Pala, A F; Gänsicke, B T; Liu, X -W

    2016-01-01

    The age-metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the solar neighbourhood, primarily due to the difficulty in obtaining accurate stellar ages for individual field stars. We have started an observational campaign for providing the much needed observational input by using wide white dwarf-main sequence (WDMS) binaries. White dwarfs are natural clocks and can be used to derive accurate ages. Metallicities can be obtained from the main sequence companions. Since the progenitors of white dwarfs and the main sequence stars were born at the same time, WDMS binaries provide a unique opportunity to observationally constrain in a robust way the properties of the AMR. In this work we present the AMR derived from analysing a pilot sample of 23 WDMS binaries and provide clear observational evidence for the lack of correlation between...

  14. Discovery of Seven Companions to Intermediate Mass Stars with Extreme Mass Ratios in the Scorpius-Centaurus Association

    CERN Document Server

    Hinkley, Sasha; Ireland, Michael J; Cheetham, Anthony; Carpenter, John M; Tuthill, Peter; Lacour, Sylvestre; Evans, Thomas M; Haubois, Xavier

    2015-01-01

    We report the detection of seven low mass companions to intermediate-mass stars (SpT B/A/F; $M$$\\approx$1.5-4.5 solar masses) in the Scorpius-Centaurus Association using nonredundant aperture masking interferometry. Our newly detected objects have contrasts $\\Delta L'$$\\approx$4-6, corresponding to masses as low as $\\sim$20 Jupiter masses and mass ratios of $q$$\\approx$0.01-0.08, depending on the assumed age of the target stars. With projected separations $\\rho$$\\approx$10-30 AU, our aperture masking detections sample an orbital region previously unprobed by conventional adaptive optics imaging of intermediate mass Scorpius-Centaurus stars covering much larger orbital radii ($\\approx$30-3000 AU). At such orbital separations, these objects resemble higher mass versions of the directly imaged planetary mass companions to the 10-30 Myr, intermediate-mass stars HR 8799, $\\beta$ Pictoris, and HD95086. These newly discovered companions span the brown dwarf desert, and their masses and orbital radii provide a new co...

  15. SEEDS direct imaging of the RV-detected companion to V450 Andromedae, and characterization of the system

    CERN Document Server

    Hełminiak, K G; Mede, K; Brandt, T D; Kandori, R; Suenaga, T; Kusakabe, N; Narita, N; Carson, J C; Currie, T; Kudo, T; Hashimoto, J; Abe, L; Akiyama, E; Brandner, W; Feldt, M; Goto, M; Grady, C A; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, S S; Henning, T; Hodapp, K W; Ishii, M; Iye, M; Janson, M; Knapp, G R; Kwon, J; Matsuo, T; McElwain, M W; Miyama, S; Morino, J -I; Moro-Martin, A; Nishimura, T; Ryu, T; Pyo, T -S; Serabyn, E; Suto, H; Suzuki, R; Takahashi, Y H; Takami, M; Takato, N; Terada, H; Thalmann, C; Turner, E L; Watanabe, M; Wisniewski, J; Yamada, T; Takami, H; Usuda, T; Tamura, M

    2016-01-01

    We report the direct imaging detection of a low-mass companion to a young, moderately active star V450 And, that was previously identified with the radial velocity method. The companion was found in high-contrast images obtained with the Subaru Telescope equipped with the HiCIAO camera and AO188 adaptive optics system. From the public ELODIE and SOPHIE archives we extracted available high-resolution spectra and radial velocity (RV) measurements, along with RVs from the Lick planet search program. We combined our multi-epoch astrometry with these archival, partially unpublished RVs, and found that the companion is a low-mass star, not a brown dwarf, as previously suggested. We found the best-fitting dynamical masses to be $m_1=1.141_{-0.091}^{+0.037}$ and $m_2=0.279^{+0.023}_{-0.020}$ M$_\\odot$. We also performed spectral analysis of the SOPHIE spectra with the iSpec code. The Hipparcos time-series photometry shows a periodicity of $P=5.743$ d, which is also seen in SOPHIE spectra as an RV modulation of the st...

  16. Orbital fitting of imaged planetary companions with high eccentricities and unbound orbits -- Application to Fomalhaut b and PZ Telescopii B

    CERN Document Server

    Beust, Hervé; Maire, Anne-Lise; Ehrenreich, David; Lagrange, Anne-Marie; Chauvin, Gael

    2015-01-01

    Imaging companions to main-sequence stars often allows to detect a projected orbital motion. MCMC has become very popular in for fitting their orbits. Some of these companions appear to move on very eccentric, possibly unbound orbits. This is the case for the exoplanet Fomalhaut b and the brown dwarf companion PZ Tel B. For such orbits, standard MCMC codes assuming only bound orbits may be inappropriate. We develop a new MCMC implementation able to handle bound and unbound orbits as well in a continuous manner, and we apply it to the cases of Fomalhaut b and PZ Tel B. This code is based on universal Keplerian variables and Stumpff functions formalism. We present two versions of this code, the second one using a different set of angular variables designed to avoid degeneracies arising when the projected orbital motion is quasi-radial, as it is the case for PZ Tel B. We also present additional observations of PZ Tel B. The code is applied to Fomalhaut b and PZ Tel B. Concerning Fomalhaut b, we confirm previous ...

  17. White dwarf pollution by planets in stellar binaries

    Science.gov (United States)

    Hamers, Adrian S.; Portegies Zwart, Simon F.

    2016-10-01

    Approximately 0.2 ± 0.2 of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet-planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov-Kozai oscillations induced by a binary companion and exacerbated by stellar mass-loss, explaining pollution at long cooling times. Our computed accretion rates are consistent with observations assuming planetary masses between ˜0.01 and 1 MMars, although non-gravitational effects may already be important for masses ≲0.3 MMars. The fraction of polluted WDs in our simulations, ˜0.05, is consistent with observations of WDs with intermediate cooling times between ˜0.1 and 1 Gyr. For cooling times ≲0.1 Gyr and ≳1 Gyr, our scenario cannot explain the high observed pollution fractions of up to 0.7. Nevertheless, our results motivate searches for companions around polluted WDs.

  18. The Ubiquity and Dual Nature of Ultra Compact Dwarfs

    CERN Document Server

    Norris, Mark A

    2011-01-01

    We present the discovery of several Ultra Compact Dwarfs (UCDs) located in field/group environments. Examination of these objects, plus literature objects, confirms the existence of two distinct formation channels for UCDs. We find that the UCDs we have discovered around the group elliptical NGC3923 (and UCDs generally) have properties consistent with their being the most luminous members of the host galaxy's globular cluster (GC) system. We describe UCDs of this type as giant GCs (GGCs). In contrast, the UCD we have found associated with the isolated S0 NGC4546 is clearly the result of the stripping of a nucleated companion galaxy. The young age (~3.4 Gyr) of the UCD, the lack of a correspondingly young GC population, the apparently short dynamical friction decay timescale (~0.5 Gyr) of the UCD, and the presence of a counterrotating gas disc in the host galaxy (co-rotating with the UCD) together suggest that this UCD is the liberated nucleus remaining after the recent stripping of a companion by NGC4546. We ...

  19. SHAPING THE BROWN DWARF DESERT: PREDICTING THE PRIMORDIAL BROWN DWARF BINARY DISTRIBUTIONS FROM TURBULENT FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Jumper, Peter H.; Fisher, Robert T., E-mail: robert.fisher@umassd.edu [University of Massachusetts Dartmouth, 285 Old Westport Road, N. Dartmouth, MA 02747-2300 (United States)

    2013-05-20

    The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scaling of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.

  20. White dwarfs, red dwarfs and halo dark matter

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa-Berro, E; Torres, S; Camacho, J [Departament de Fisica Aplicada, Escola Politecnica Superior de Castelldefels, Universitat Politecnica de Catalunya, Av. del Canal Olimpic, s/n, 08860 Castelldefels (Spain); Isern, J, E-mail: garcia@fa.upc.ed [Institut de Ciencies de l' Espai, CSIC, Campus UAB, Facultat de Ciencies, Torre C-5, 08193 Bellaterra (Spain)

    2009-06-01

    The nature of the microlensing events observed by the MACHO team towards the LMC still remains controversial. Low-mass substellar objects and stars with masses larger than approx 1M{sub o-dot} have been ruled out, while stars of approx 0.5 M{sub o-dot} are the most probable candidates. This means that the microlenses should be either red or white dwarfs. Consequently, we assess jointly the relative contributions of both types of stars to the mass budget of the Galactic halo. We use a Monte Carlo code that incorporates up-to-date evolutionary sequences of both red dwarfs and white dwarfs as well as detailed descriptions of both our Galaxy and the LMC and we compare the synthetic populations obtained with our simulator with the results obtained by the MACHO and EROS experiments. We find that the contribution of the red dwarf population is not enough to explain the number of events measured by the MACHO team. Even though, the optical depth obtained in our simulations almost doubles that obtained when taking into account the white dwarf population alone. Finally, we also find that the contribution to the halo dark matter of the entire population under study is smaller than 10%, at the 95% confidence level.

  1. PERSEUS I: A DISTANT SATELLITE DWARF GALAXY OF ANDROMEDA

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nicolas F.; Laevens, Benjamin P. M. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Schlafly, Edward F.; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Slater, Colin T.; Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bernard, Edouard J.; Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Draper, Peter W.; Metcalfe, Nigel [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, Paul A., E-mail: nicolas.martin@astro.unistra.fr [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); and others

    2013-12-10

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3π survey. Located 27.°9 away from M31, Perseus I has a heliocentric distance of 785 ± 65 kpc, compatible with it being a satellite of M31 at 374{sub −10}{sup +14} kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M{sub V} = –10.3 ± 0.7), with an exponential half-light radius of r{sub h} = 1.7 ± 0.4 arcmin or r{sub h}=400{sub −85}{sup +105} pc at this distance, and a moderate ellipticity (ϵ=0.43{sub −0.17}{sup +0.15}). The late discovery of Perseus I is due to its fairly low surface brightness (μ{sub 0}=25.7{sub −0.9}{sup +1.0} mag arcsec{sup –2}), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.

  2. Type Ia Supernovae from Merging White Dwarfs I. Prompt Detonations

    CERN Document Server

    Moll, Rainer; Kasen, Daniel; Woosley, Stan

    2013-01-01

    Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). While it is not entirely clear if and when an explosion is triggered in such systems, numerical models suggest that a detonation might be initiated before the stars have coalesced to form a single compact object. Here we study such "peri-merger" detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase. Synthetic light curves and spectra are generated for comparison with observations. Three models are considered with primary masses 0.96 Msun, 1.06 Msun, and 1.20 Msun. Of these, the 0.96 Msun dwarf merging with an 0.81 Msun companion, with a Ni56 yield of 0.58 Msun, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to "super-Chandrasekhar" mass SNe Ia. While the synthetic light curves and spectra of some of the models resemb...

  3. Radio transients from accretion-induced collapse of white dwarfs

    CERN Document Server

    Moriya, Takashi J

    2016-01-01

    We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide to the dense circumstellar medium, making a strong shock. The strong shock can produce synchrotron emission which can be observed in radio frequencies. Even if AIC occurs as a result of white dwarf mergers, we argue that AIC may cause fast radio bursts if a certain condition is satisfied. If AIC forms neutron stars which are so massive that rotation is required to support themselves (i.e., supramassive neutron stars), the supramassive neutron stars may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive neutron stars are strongly magnetized, they may emit fast radio bursts as previously suggested. The AIC radio transients from the single-degenerate systems may be ...

  4. Explosion of white dwarfs harboring hybrid CONe cores

    CERN Document Server

    Bravo, E; Gutiérrez, J L; Doherty, C L

    2016-01-01

    Recently, it has been found that off-centre carbon burning in a subset of intermediate-mass stars does not propagate all the way to the center, resulting in a class of hybrid CONe cores. Here, we consider the possibility that stars hosting these hybrid CONe cores might belong to a close binary system and, eventually, become white dwarfs accreting from a non-degenerate companion at rates leading to a supernova explosion. We have computed the hydrodynamical phase of the explosion of Chandrasekhar-mass white dwarfs harboring hybrid cores, assuming that the explosion starts at the center, either as a detonation (as may be expected in some degenerate merging scenarios) or as a deflagration (that afterwards transitions into a delayed detonation). We assume these hybrid cores are made of a central CO volume, of mass M(CO), surrounded by an ONe shell. We show that, in case of a pure detonation, a medium-sized CO-rich region, M(CO)<0.4 Msun, results in the ejection of a small fraction of the mantle while leaving a ...

  5. DA WHITE DWARFS OBSERVED IN THE LAMOST PILOT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yueyang; Deng Licai; Liu Chao; Carrell, Kenneth; Yang Fan; Gao Shuang; Xu Yan; Li Jing; Zhang Haotong; Zhao Yongheng; Luo Ali; Bai Zhongrui; Yuan Hailong [Key Lab for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Lepine, Sebastien [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY (United States); Newberg, Heidi Jo; Carlin, Jeffrey L. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Jin Ge [University of Science and Technology of China, Hefei 230026 (China)

    2013-08-01

    A total of {approx}640, 000 objects from the LAMOST pilot survey have been publicly released. In this work, we present a catalog of DA white dwarfs (DAWDs) from the entire pilot survey. We outline a new algorithm for the selection of white dwarfs (WDs) by fitting Sersic profiles to the Balmer H{beta}, H{gamma}, and H{delta} lines of the spectra, and calculating the equivalent width of the Ca II K line. Two thousand nine hundred sixty-four candidates are selected by constraining the fitting parameters and the equivalent width of the Ca II K line. All the spectra of candidates are visually inspected. We identify 230 DAWDs (59 of which are already included in the Villanova and SDSS WD catalogs), 20 of which are DAWDs with non-degenerate companions. In addition, 128 candidates are classified as DAWDs/subdwarfs, which means the classifications are ambiguous. The result is consistent with the expected DAWD number estimated based on the LEGUE target selection algorithm.

  6. Perseus I: A distant satellite dwarf galaxy of Andromeda

    CERN Document Server

    Martin, Nicolas F; Slater, Colin T; Bernard, Edouard J; Rix, Hans-Walter; Bell, Eric F; Ferguson, Annette M N; Finkbeiner, Douglas P; Laevens, Benjamin P M; Burgett, William S; Chambers, Kenneth C; Draper, Peter W; Hodapp, Klaus W; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A; Metcalfe, Nigel; Morgan, Jeffrey S; Price, Paul A; Tonry, John L; Wainscoat, Richard J; Waters, Christopher

    2013-01-01

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3{\\pi} survey. Located 27.9{\\deg} away from M31, Perseus I has a heliocentric distance of 785 +/- 65 kpc, compatible with it being a satellite of M31 at 374 +14/-10 kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M_V = -10.3 +/- 0.7), with an exponential half-light radius of r_h = 1.7 +/- 0.4 arcminutes or r_h = 400 +105/-85 pc at this distance, and a moderate ellipticity (\\epsilon = 0.43 +0.15/-0.17). The late discovery of Perseus I is due to its fairly low surface brightness (\\mu_0=25.7 +1.0/-0.9 mag/arcsec^2), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.

  7. The Cornell High-order Adaptive Optics Survey for Brown Dwarfs in Stellar Systems-I: Observations, Data Reduction, and Detection Analysis

    CERN Document Server

    Carson, J C; Brandl, B R; Wilson, J C; Hayward, T L

    2005-01-01

    In this first of a two-paper sequence, we report techniques and results of the Cornell High-order Adaptive Optics Survey for brown dwarf companions (CHAOS). At the time of this writing, this study represents the most sensitive published population survey of brown dwarf companions to main sequence stars, for separation akin to our own outer solar system. The survey, conducted using the Palomar 200-inch Hale Telescope, consists of K-short coronagraphic observations of 80 main sequence stars out to 22 parsecs. At 1 arcsecond separations from a typical target system, the survey achieves median sensitivities 10 magnitudes fainter than the parent star. In terms of companion mass, the survey achieves typical sensitivities of 25 Jupiter masses (1 Gyr), 50 Jupiter masses (solar age), and 60 Jupiter masses (10 Gyr), using evolutionary models of Baraffe et al. (2003). Using common proper motion to distinguish companions from field stars, we find that no systems show positive evidence of a substellar companion (searchabl...

  8. Hard X-ray and Infrared Emission from Apparently Single White Dwarfs

    CERN Document Server

    Chu, Y H; Guerrero, M A; Su, K Y L

    2007-01-01

    The photospheric emission of a white dwarf (WD) is not expected to be detectable in hard X-rays or the mid-IR. Hard X-ray (~1 keV) emission associated with a WD is usually attributed to a binary companion; however, emission at 1 keV has been detected from three WDs without companions: KPD 0005+5106, PG 1159, and WD 2226-210. The origin of their hard X-ray emission is unknown, although it has been suggested that WD 2226-210 has a late-type companion whose coronal activity is responsible for the hard X-rays. Recent Spitzer observations of WD 2226-210 revealed mid-IR excess emission indicative of the existence of a dust disk. It now becomes much less clear whether WD 2226-210's hard X-ray emission originates from the corona of a late-type companion or from the accretion of the disk material. High-quality X-ray observations and mid-IR observations of KPD 0005+5106 and PG 1159 are needed to help us understand the origin of their hard X-ray emission.

  9. Twins: The Two Shortest Period Non-Interacting Double Degenerate White Dwarf Stars

    CERN Document Server

    Mullally, F; Thompson, Susan E; Lupton, Robert

    2009-01-01

    We report on the detection of the two shortest period non-interacting white dwarf binary systems. These systems, SDSS J143633.29+501026.8 and SDSS J105353.89+520031.0, were identified by searching for radial velocity variations in the individual exposures that make up the published spectra from the Sloan Digital Sky Survey. We followed up these systems with time series spectroscopy to measure the period and mass ratios of these systems. Although we only place a lower bound on the companion masses, we argue that they must also be white dwarf stars. With periods of approximately 1 hour, we estimate that the systems will merge in less than 100 Myr, but the merger product will likely not be massive enough to result in a Type 1a supernova.

  10. Constraining the spin-down timescale of the white-dwarf progenitors of Type Ia supernovae

    CERN Document Server

    Meng, Xiangcun

    2013-01-01

    Justham (2011) and DiStefano et al.\\ (2011) proposed that the white-dwarf progenitor of a Type Ia supernova (SN Ia) may have to spin down before it can explode. As the white dwarf spin-down timescale is not well known theoretically, we here try to constrain it empirically (within the framework of this spin-down model) for progenitor systems that contain a giant donor and for which circumbinary material has been detected after the explosion: we obtain an upper limit of a few $10^{\\rm 7} {\\rm yr}$. Based on the study of Di Stefano & Kilic (2012) this means that it is too early to rule out the existence of a surviving companion in SNR 0509-67.5.

  11. V and K-band Mass-Luminosity Relations for M Dwarf Stars

    Science.gov (United States)

    Benedict, George Frederick; Henry, Todd J.; McArthur, Barbara E.; Franz, Otto; Wasserman, Larry H.; Dieterich, Sergio

    2015-08-01

    Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2% error for 28 components of 14 M dwarf binary star systems. With these and other published masses we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. 1999, ApJ, 512, 864. We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter. These relations can be used to estimate the masses of the ubiquitous red dwarfs (75% of all stars) to an accuracy of better than 5%.

  12. A MATLAB companion for multivariable calculus

    CERN Document Server

    Cooper, Jeffery

    2001-01-01

    Offering a concise collection of MatLab programs and exercises to accompany a third semester course in multivariable calculus, A MatLab Companion for Multivariable Calculus introduces simple numerical procedures such as numerical differentiation, numerical integration and Newton''s method in several variables, thereby allowing students to tackle realistic problems. The many examples show students how to use MatLab effectively and easily in many contexts. Numerous exercises in mathematics and applications areas are presented, graded from routine to more demanding projects requiring some programming. Matlab M-files are provided on the Harcourt/Academic Press web site at http://www.harcourt-ap.com/matlab.html.* Computer-oriented material that complements the essential topics in multivariable calculus* Main ideas presented with examples of computations and graphics displays using MATLAB * Numerous examples of short code in the text, which can be modified for use with the exercises* MATLAB files are used to implem...

  13. The impact of companions on stellar evolution

    CERN Document Server

    De Marco, Orsola

    2016-01-01

    Stellar astrophysicists are increasingly taking into account the effects of orbiting companions on stellar evolution. New discoveries, many thanks to systematic time-domain surveys, have underlined the role of binary star interactions in a range of astrophysical events, including some that were previously interpreted as due uniquely to single stellar evolution. Here, we review classical binary phenomena such as type Ia supernovae, and discuss new phenomena such as intermediate luminosity transients, gravitational wave-producing double black holes, or the interaction between stars and their planets. Finally, we examine the reassessment of well-known phenomena in light of interpretations that include both single and binary stars, for example supernovae of type Ib and Ic or luminous blue variables. At the same time we contextualise the new discoveries within the framework and nomenclature of the corpus of knowledge on binary stellar evolution. The last decade has heralded an era of revival in stellar astrophysic...

  14. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Orosz, J. A. [Department of Astronomy, San Diego State University, San Diego, CA 92182-1221 (United States); Peters, G. J., E-mail: gies@chara.gsu.edu, E-mail: rmatson@chara.gsu.edu, E-mail: guo@chara.gsu.edu, E-mail: lester@chara.gsu.edu, E-mail: jorosz@mail.sdsu.edu, E-mail: gjpeters@mucen.usc.edu [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States)

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.

  15. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  16. Search for Planetary-mass Companions of the LHB Star eta Corvi

    Science.gov (United States)

    Marengo, Massimo; Lisse, Carey; Stapelfeldt, Karl; Hulsebus, Alan; Sitko, Michael

    2016-08-01

    The nearby sun-like star eta Corvi (F2V, d = 18 pc, age = 1.2 Gyr) has long been known to possess a bright, dusty Kuiper belt that has been recently resolved with Herschel/PACS. In addition to this structure, eta Corvi is one of the rare mature planetary systems to possess also an inner warm belt (~ 3 AU radius), located within the Terrestrial Habitable Zone (TLZ) of this star. Our characterization of this structure, based on Spitzer/IRS and NASA/IRTF SpeX spectral observations, reveals the signature of ice, organics and silicate dust in this warm belt. This supports the hypothesis that eta Corvi is undergoing a Late Heavy Bombardment (LHB), delivering life-bearing water- and organic-rich material from the Kuiper belt to the TLZ, at roughly the same age as the Solar System?s LHB. For the past four years we have monitored the brightness of eta Corvi?s warm belt with Spitzer/IRAC, finding that its infrared emission has been stable over a multi-year timescale. In 2012 we have also conducted a search for widely separated substellar-mass companions of this star, whose presence as been suggested as a possible trigger for the LHB currently undergoing in the system. This search has led to the identification of three sources with colors and magnitudes consistent with being late-T and Y dwarf companions of this star. We here propose to acquire a new deep roll-subtracted image of the system, 5 years after our first visit, to test for common proper motion of these candidate companions, and determine if any of this sources is physically associated with eta Corvi. A positive identification of a substellar-mass companions (one of which could be a 3-5 MJ planet at ~360 AU from the star) would be a significant step in understanding the processes leading to LHB-like events in a system analogous to the Solar System.

  17. NTT Observations Indicate that Brown Dwarfs Form Like Stars

    Science.gov (United States)

    2001-06-01

    " . Indeed, since they have no sustained energy generation by thermal nuclear reactions, many of their properties are more similar to those of giant gas planets in our own solar system such as Jupiter, than to stars like the Sun. For example, even though their masses range between 10-70 times that of Jupiter (the largest and most massive planet in our solar system), the sizes of Brown Dwarfs are still comparable to that of Jupiter, approximately 140,000 km, or roughly 10 times smaller than the Sun. Are Brown Dwarfs giant planets or failed stars? Among the most fundamental issues raised by the existence of Brown Dwarfs is the question of their origin and genetic relationship to planets and stars. Are Brown Dwarfs giant planets or small, failed stars, or perhaps something completely different? The critical test needed to resolve this very basic question is to learn whether Brown Dwarfs form by a process similar to what produces stars or rather to one which produces planets. Stars are thought to form when gravity causes a cold, dusty and rarefied cloud of gas to contract. Such clouds are inevitably rotating so the gas naturally collapses into a rotating disk before it falls onto the forming star. These disks are called circumstellar or protoplanetary disks . They have been found around virtually all young stars and are considered to be sites of planet formation. Gravity helps planets form too, but this occurs by condensation and agglomeration of material contained in the circumstellar disk around a young star. Thus, stars form with a disk around them while planets form within disks around young stars . The planets in our own solar system were formed in such a circumstellar disk around the young Sun about 4.6 billion years ago. To date, the most important observations bearing on the question of Brown Dwarf origin have been: * the observed lack of Brown Dwarf companions to normal stars (something astronomers have called the "Brown Dwarf desert"), and * the existence of free

  18. [Current situation and challenges in companion diagnostics development].

    Science.gov (United States)

    Nishida, Miwa

    2014-12-01

    The personalized health care, it is defined as a medical care which provide the optimal therapy for each individual in consideration of a patient's individual difference, such as a genetic background and a physiological state. A companion diagnosis to stratify a patient appropriately is essential for the spread of personalized health care, and it is important that a companion diagnostic reagent used for the companion diagnosis is properly developed and clinically applied. However, as for the development of companion diagnostics and pharmaceuticals that require it, there are still many challenges such as its business model of cooperation of diagnostics companies and pharmaceutical companies, also, the regulations related to companion diagnostics. Furthermore, even in clinical practice, there are many issues such as the way of reimbursement for companion diagnostics and also the handling of laboratory developed test (LDT) as companion diagnostics. These are issues that should continue to discuss with industry, government and academia. In this report, from the point of view of a diagnostics company, we discuss the various challenges in clinical applications from the development of companion diagnostics.

  19. Do companion diagnostics make economic sense for drug developers?

    Science.gov (United States)

    Agarwal, Amit

    2012-09-15

    Drug developers are grappling with the impact of personalized medicine on their portfolios. The combination of molecular diagnostics with targeted biologic therapies has been hailed as a recent innovation with few historical analogs to guide behavior. However, if the definition of companion diagnostics is broadened to include any drug whose FDA approved label requires diagnostic testing before prescription then over 50 drugs across multiple therapeutic areas arise. Most importantly for current drug developers, these drugs represent a wide variety of market situations and with sufficient historical data to evaluate different commercialization strategies for the combination. Included in these examples are drugs which were not initially launched with companion diagnostics but were required to implement companion diagnostics after they were on the market for a period of time. The historical case studies demonstrate that companion diagnostics are neither a universal panacea nor an unmitigated disaster for drug developers but require an understanding of specific situations to determine the utility of companion diagnostics. Numerous case studies highlight how companion diagnostics have been a boon to drug developers including Iressa, statins, Soriatane, Arthrotec, Promacta, Nplate, Letairis, and Tracleer. Other examples provide lessons on how to avoid pitfalls such as Accutane, Ticlid, Tegretol, Ziagen, Actigall and Clozaril. By carefully evaluating these case studies, drug developers can gain insight on the appropriate companion diagnostic strategy to implement for their specific situation and develop the elements of a successful companion diagnostic strategy.

  20. They are Small Worlds After All: Revised Properties of Kepler M Dwarf Stars and their Planets

    CERN Document Server

    Gaidos, E; Kraus, A L; Ireland, M

    2015-01-01

    We classified the reddest (r-J> 2.2) stars observed by the NASA Kepler mission into main sequence dwarf or evolved giant stars and determined the properties of 4216 M dwarfs based on a comparison of available photometry with that of nearby calibrator stars, as well as available proper motions and spectra. We then revised the properties of candidate transiting planets using the stellar parameters, high-resolution imaging and aperture masking to identify companion stars, and refitting of the light curves to identify the component most likely to host the planet. We inferred the intrinsic distribution of M dwarf planets using the method of iterative Monte Carlo simulation. We compared several models of planet orbital geometry and clustering and found that one where planets are exponentially distributed and almost precisely coplanar best describes the distribution of multi-planet systems. We determined that Kepler M dwarfs host an average of 1.9+/-0.3 planets with radii of 1-4Re and orbital periods of 1.5-180d. Th...

  1. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ansdell, Megan; Baranec, Christoph [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Mann, Andrew W. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Lépine, Sebastien [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); James, David [Cerro Tololo Inter-American Observatory, Casilla 603 La Serena (Chile); Buccino, Andrea; Mauas, Pablo; Petrucci, Romina [Instituto de Astronomía y Física del Espacio, C1428EHA Buenos Aires (Argentina); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Riddle, Reed [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lépine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 Å) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5σ) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ∼16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law.

  2. The Near-Ultraviolet Luminosity Function of Young, Early M-Type Dwarf Stars

    CERN Document Server

    Ansdell, Megan; Mann, Andrew W; Lepine, Sebastien; James, David; Buccino, Andrea; Baranec, Christoph; Law, Nicholas M; Riddle, Reed; Mauas, Pablo; Petrucci, Romina

    2014-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magneto-hydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lepine & Gaidos (2011) catalog of bright M dwarfs with the GALEX catalog of NUV (1771-2831A) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (> 2.5 sigma) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated ...

  3. HN Peg B: A Test of Models of the L to T Dwarf Transition

    CERN Document Server

    Leggett, S K; Albert, Loic; Cushing, Michael C; Liu, Michael C; Luhman, K L; Marley, M S; Kirkpatrick, J Davy; Roellig, Thomas L; Allers, K N

    2008-01-01

    Luhman and collaborators recently discovered an early-T dwarf companion to the G0 dwarf star HN Peg, using Spitzer Infrared Array Camera (IRAC) images. Companionship was established on the basis of the common proper motion inferred from 1998 Two Micron All Sky Survey images and the 2004 IRAC images. In this paper we present new near-infrared imaging data which confirms the common proper motion of the system. We also present new 3 - 4 um spectroscopy of HN Peg B, which provides tighter constraints on both the bolometric luminosity determination and the comparison to synthetic spectra. New adaptive optics imaging data are also presented, which shows the T dwarf to be unresolved, providing limits on the multiplicity of the object. We use the age, distance and luminosity of the solar-metallicity T dwarf to determine its effective temperature and gravity, and compare synthetic spectra with these values, and a range of grain properties and vertical mixing, to the observed 0.8 - 4.0 um spectra and mid-infrared photo...

  4. Comparison of BT Settl Model Spectra in NIR to Brown Dwarfs and Massive Exoplanets

    Science.gov (United States)

    Popinchalk, Mark; Buzard, Cam; Alam, Munazza; Camnasio, Sara; Cruz, Kelle L.; Faherty, Jacqueline K.; Rice, Emily L.

    2017-01-01

    Brown dwarfs and giant exoplanets are difficult to observe, which hampers our understanding of their properties. Model spectra, such as the BT Settl model grid, can provide an opportunity to augment and validate our understanding of these faint objects by serving to contrast and complement our analysis of their observed spectra. We present work from an upcoming paper that leverages this opportunity. The near infrared (NIR) wavelength region is favorable for analysis of low mass brown dwarfs and high mass gaseous companions, in particular the K band (1.97 - 2.40 µm) due to its relatively high resolution and high signal-to-noise ratio wavelength range for spectra of planetary companions. We present a method to analyze two regions of the K band spectral structure (2.03 - 2.10 µm and 2.215 - 2.290 µm), and apply it to a sample of objects with field gravity, low gravity, and planetary mass as well as the BT Settl model grid for a similar range of effective temperatures and surface gravities. A correlation between spectral structure and effective temperature is found for the shorter wavelength region and there is evidence of gravity dependence for the longer wavelength range. This work suggests that the K band has the potential to be an indicator for brown dwarf and exoplanet surface gravity and effective temperature. We also present preliminary analysis from another upcoming paper. We examine equivalent widths of K I absorption lines at 1.1693 µm, 1.1773 µm, 1.2436 µm and 1.2525 µm in a selection of L dwarfs to explore their physical properties by comparing them to equivalent measurements in the BT Settl model grid.

  5. Companion Animals, Natural Disasters and the Law: An Australian Perspective.

    Science.gov (United States)

    White, Steven

    2012-08-27

    This article examines the regulation of companion animal welfare during disasters, with some context provided by two recent major disaster events in Australia. Important general lessons for improved disaster management were identified in subsequent inquiries. However, the interests of companion animals continue to be inadequately addressed. This is because key assumptions underpinning disaster planning for companion animals-the primacy of human interests over animal interests and that individuals will properly address companion animal needs during times of disaster-are open to question. In particular these assumptions fail to recognise the inherent value of companion animals, underestimate the strong bond shared by some owners and their animals and, at the same time, overestimate the capacity of some owners to adequately meet the needs of their animals.

  6. Companion Animals, Natural Disasters and the Law: An Australian Perspective

    Directory of Open Access Journals (Sweden)

    Steven White

    2012-08-01

    Full Text Available This article examines the regulation of companion animal welfare during disasters, with some context provided by two recent major disaster events in Australia. Important general lessons for improved disaster management were identified in subsequent inquiries. However, the interests of companion animals continue to be inadequately addressed. This is because key assumptions underpinning disaster planning for companion animals—the primacy of human interests over animal interests and that individuals will properly address companion animal needs during times of disaster—are open to question. In particular these assumptions fail to recognise the inherent value of companion animals, underestimate the strong bond shared by some owners and their animals and, at the same time, overestimate the capacity of some owners to adequately meet the needs of their animals.

  7. The evolution of iron white dwarf stars

    Directory of Open Access Journals (Sweden)

    J. A. Panei

    2001-01-01

    Full Text Available Recent measurements by Hipparcos provide strong observational evidence supporting the existence of white dwarf stars with iron-rich core composition. Here we examine the evolution of iron-rich white dwarfs, for which the cooling is substancially accelerated as compared with the standard carbon-oxigen white dwarfs.

  8. The Health Technology Assessment of companion diagnostics: experience of NICE.

    Science.gov (United States)

    Byron, Sarah K; Crabb, Nick; George, Elisabeth; Marlow, Mirella; Newland, Adrian

    2014-03-15

    Companion diagnostics are used to aid clinical decision making to identify patients who are most likely to respond to treatment. They are becoming increasingly important as more new pharmaceuticals receive licensed indications that require the use of a companion diagnostic to identify the appropriate patient subgroup for treatment. These pharmaceuticals have proven benefit in the treatment of some cancers and other diseases, and also have potential to precisely tailor treatments to the individual in the future. However, the increasing use of companion diagnostics could place a substantial burden on health system resources to provide potentially high volumes of testing. This situation, in part, has led policy makers and Health Technology Assessment (HTA) bodies to review the policies and methods used to make reimbursement decisions for pharmaceuticals requiring companion diagnostics. The assessment of a pharmaceutical alongside the companion diagnostic used in the clinical trials may be relatively straightforward, although there are a number of challenges associated with assessing pharmaceuticals where a range of alternative companion diagnostics are available for use in routine clinical practice. The UK HTA body, the National Institute for Health and Care Excellence (NICE), has developed policy for considering companion diagnostics using its Technology Appraisal and Diagnostics Assessment Programs. Some HTA bodies in other countries have also adapted their policies and methods to accommodate the assessment of companion diagnostics. Here, we provide insight into the HTA of companion diagnostics for reimbursement decisions and how the associated challenges are being addressed, in particular by NICE. See all articles in this CCR Focus section, "The Precision Medicine Conundrum: Approaches to Companion Diagnostic Co-development."

  9. Morphological Mutations of Dwarf Galaxies

    CERN Document Server

    Hensler, Gerhard

    2012-01-01

    Dwarf galaxies (DGs) are extremely challenging objects in extragalactic astrophysics. They are expected to originate as the first units in Cold Dark-Matter cosmology. They are the galaxy type most sensitive to environmental influences and their division into multiple types with various properties have invoked the picture of their variant morphological transformations. Detailed observations reveal characteristics which allow to deduce the evolutionary paths and to witness how the environment has affected the evolution. Here we review peculiarities of general morphological DG types and refer to processes which can deplete gas-rich irregular DGs leading to dwarf ellipticals, while gas replenishment implies an evolutionary cycling. Finally, as the less understood DG types the Milky Way satellite dwarf spheroidal galaxies are discussed in the context of transformation.

  10. The rotation of brown dwarfs

    CERN Document Server

    Scholz, Aleks

    2016-01-01

    One of the characteristic features of low-mass stars is their propensity to shed large amounts of angular momentum throughout their evolution. This distinguishs them from brown dwarfs which remain fast rotators over timescales of gigayears. Brown dwarfs with rotation periods longer than a couple of days have only been found in star forming regions and young clusters. This is a useful constraint on the mass dependency of mechanisms for angular momentum regular in stars. Rotational braking by disks and winds become highly inefficient in the substellar regime. In this short review I discuss the observational evidence for the fast rotation in brown dwarfs, the implications, and the link to the spin-mass relation in planets.

  11. Branes constrictions with White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    García-Aspeitia, Miguel A., E-mail: aspeitia@fisica.uaz.edu.mx [Consejo Nacional de Ciencia y Tecnología, Av, Insurgentes Sur 1582, Colonia Crédito Constructor, Del. Benito Juárez, C.P. 03940, Mexico, D.F. (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo a la Bufa S/N, C.P. 98060, Zacatecas (Mexico)

    2015-11-06

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane–Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of <λ>≳84.818 MeV{sup 4}, with a standard deviation σ≃82.021 MeV{sup 4}, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others.

  12. Branes constrictions with White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Aspeitia, Miguel A. [Consejo Nacional de Ciencia y Tecnologia, Mexico (Mexico); Unidad Academica de Fisica, Universidad Autonoma de Zacatecas (Mexico)

    2015-11-15

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of left angle λ right angle >or similar 84.818 MeV{sup 4}, with a standard deviation σ ≅ 82.021 MeV{sup 4}, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others. (orig.)

  13. Satellite Dwarf Galaxies in a Hierarchical Universe: The Prevalence of Dwarf-Dwarf Major Mergers

    CERN Document Server

    Deason, Alis; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased towards larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger ...

  14. Planets around Low-mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    Science.gov (United States)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (gsim1 M Jup) around 122 newly identified nearby (lsim40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M ⊙) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M Jup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M Jup; L0+2-1; 120 ± 20 AU), GJ 3629 B (64+30-23 M Jup; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M Jup; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M Jup; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M Jup planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M Jup range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M Jup) companions to single M dwarfs between 10-100 AU is 2.8+2.4-1.5%. Altogether we find that giant planets, especially massive ones, are rare

  15. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Tamura, Motohide, E-mail: bpbowler@caltech.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions

  16. To Ba or not to Ba: Enrichment in s-process elements in binary systems with WD companions of various masses

    CERN Document Server

    Merle, T; Van Eck, S; Masseron, T; Van Winckel, H

    2015-01-01

    The enrichment in s-process elements of barium stars is known to be due to pollution by mass transfer from a companion formerly on the thermally-pulsing asymptotic giant branch (AGB), now a carbon-oxygen white-dwarf (WD). This paper investigates the relationship between the s-process enrichment in the barium star and the mass of its WD companion. It is expected that helium WDs, which have masses smaller than about 0.5 Msun and never reached the AGB phase, should not pollute with s-process elements their giant companion, which should thus never turn into a barium star. Spectra with a resolution of R ~ 86000 were obtained with the HERMES spectrograph on the 1.2-m Mercator telescope for a sample of 11 binary systems involving WD companions of various masses. We use standard 1D LTE MARCS model atmospheres coupled with the Turbospectrum radiative-transfer code to derive the atmospheric parameters using equivalent widths of FeI and Fe II lines. The abundances of s-process elements for the entire sample of 11 binary...

  17. Characterization of Low-mass, Wide-separation Substellar Companions to Stars in Upper Scorpius: Near-infrared Photometry and Spectroscopy

    CERN Document Server

    Lachapelle, François-René; Gagné, Jonathan; Jayawardhana, Ray; Janson, Markus; Helling, Christiane; Witte, Soeren

    2015-01-01

    We present new 0.9-2.45 $\\mu$m spectroscopy ($R \\sim 1000$), and $Y$, $J$, $H$, $K_s$, $L^\\prime$ photometry, obtained at Gemini North, of three low-mass brown dwarf companions on wide orbits around young stars of the Upper Scorpius OB association: HIP 78530 B, [PGZ2001] J161031.9-191305 B, and GSC 06214-00210 B. We use these data to assess the companions' spectral type, temperature, surface gravity and mass, as well as the ability of the BT-Settl and Drift-Phoenix atmosphere models to reproduce the spectral features of young substellar objects. For completeness, we also analyze the archival spectroscopy and photometry of the Upper Scorpius planetary mass companion 1RXS J160929.1-210524 b. Based on a comparison with model spectra we find that the companions, in the above order, have effective temperatures of 2700, 2500, 2300 and 1700 K. These temperatures are consistent with our inferred spectral types, respectively M7 $\\beta$, M9 $\\gamma$, M9 $\\gamma$, and L4 $\\gamma$. From bolometric luminosities estimated ...

  18. Periodic Variations in the O-C Diagrams of Five Pulsation Frequencies of the DB White Dwarf EC 20058-5234

    CERN Document Server

    Dalessio, James; Provencal, Judi; Shipman, Harry; Sullivan, Tiri; Kilkenny, Dave; Fraga, Luciano; Sefako, Ramotholo; 10.1088/0004-637X/765/1/5

    2013-01-01

    Variations in the pulsation arrival time of five independent pulsation frequencies of the DB white dwarf EC 20058-5234 individually imitate the effects of reflex motion induced by a planet or companion but are inconsistent when considered in unison. The pulsation frequencies vary periodically in a 12.9 year cycle and undergo secular changes that are inconsistent with simple neutrino plus photon-cooling models. The magnitude of the periodic and secular variations increases with the period of the pulsations, possibly hinting that the corresponding physical mechanism is located near the surface of the star. The phase of the periodic variations appears coupled to the sign of the secular variations. The standards for pulsation-timing-based detection of planetary companions around pulsating white dwarfs, and possibly other variables such as subdwarf B stars, should be re-evaluated. The physical mechanism responsible for this surprising result may involve a redistribution of angular momentum or a magnetic cycle. Add...

  19. The orbit and companions of the classical Cepheid FF Aql

    Science.gov (United States)

    Evans, Nancy Remage; Welch, Douglas L.; Scarfe, Colin D.; Teays, Terry J.

    1990-01-01

    New radial velocities of the classical Cepheid FF Aql have been obtained and combined with previous observations to provide a revised orbit. A companion has been detected at 1800 A in IUE spectra with a spectral type of A9 V to F3 V. If the Cepheid has an evolutionary mass, then the mass ratio is M1/M2 = 3.8. A companion recently detected by speckle interferometry is in a longer-period orbit if it is a physical companion. In this case it is also an evolved star. The possible fourth member of the system, the visual companion, is unlikely to be a member of the system. The companion at 6 arcsec is unlikely to be a physical companion. Cepheids (in the 'free-fall' descending branch of the light curve) and nonvariable supergiants are shown to have a different spectral slope between 2900 and 1800 A for the same (B-V)0. IUE spectra of Polaris are rediscussed using other Cepheid spectra as comparison stars, and it is concluded that there is probably no sign of a companion.

  20. A fast spinning magnetic white dwarf in the double-degenerate, super-Chandrasekhar system NLTT 12758

    CERN Document Server

    Kawka, Adela; Vennes, Stephane; Ferrario, Lilia; Paunzen, Ernst; Wickramasinghe, Dayal T

    2016-01-01

    We present an analysis of the close double degenerate NLTT 12758, which is comprised of a magnetic white dwarf with a field of about 3.1 MG and an apparently non-magnetic white dwarf. We measured an orbital period of 1.154 days and found that the magnetic white dwarf is spinning around its axis with a period of 23 minutes. An analysis of the atmospheric parameters has revealed that the cooling ages of the two white dwarfs are comparable, suggesting that they formed within a short period of time from each other. Our modelling indicates that the non-magnetic white dwarf is more massive (M=0.83 M_sun) than its magnetic companion (M=0.69 M_sun) and that the total mass of the system is higher than the Chandrasekhar mass. Although the stars will not come into contact over a Hubble time, when they do come into contact, dynamically unstable mass transfer will take place leading to either an accretion induced collapse into a rapidly spinning neutron star or a Type Ia supernova.

  1. White dwarfs in cataclysmic variables

    Science.gov (United States)

    Gaensicke, Boris

    2016-07-01

    Cataclysmic variables (CVs) provide excellent laboratories to study the effect that the accretion of matter, energy and angular momentum has on the structure of white dwarfs, with important implications on the evolution of these compact binaries, the ignition of thermonuclear surface burning, and potentially their explosion as SNIa. I will provide an overview of our current understanding of CV white dwarfs, with a particular emphasis on the results of a recent large HST program. I will review our knowledge regarding the mass distribution of CV white dwarfs, as well as the secular mean accretion rates that can be inferred from their effective temperatures, and compare those statistics with predictions from CV population models. I will also discuss a sub-set of CVs which underwent thermal-time scale mass transfer, one of the channels that is often discussed as a pathway to SN Ia, and I will illustrate how the study of these "failed SNIa" can contribute to the discussion of SNIa progenitors. Finally, I will discuss the occurrence of non-radial pulsations in white dwarfs, both in CVs and their detached progenitors.

  2. Manganese in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    North, P.; Cescutti, G.; Jablonka, P.; Hill, V.; Shetrone, M.; Letarte, B.; Lemasle, B.; Venn, K. A.; Battaglia, G.; Tolstoy, E.; Irwin, M. J.; Primas, F.; Francois, P.

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other

  3. Stellar Companions to Stars with Planets

    CERN Document Server

    Patience, J; Ghez, A M; McCabe, C; McLean, I S; Larkin, J E; Prato, L; Kim, S S; Lloyd, J P; Liu, M C; Graham, J R; MacIntosh, B A; Gavel, D T; Max, C E; Bauman, B J; Olivier, S S; Wizinowich, P; Acton, D S; Kim, Sungsoo S.

    2002-01-01

    A combination of high-resolution and wide-field imaging reveals two binary stars and one triple star system among the sample of the first 11 stars with planets detected by radial velocity variations. High resolution speckle or adaptive optics (AO) data probe subarcsecond scales down to the diffraction limit of the Keck 10-m or Lick 3-m, and direct images or AO images are sensitive to a wider field, extending to 10" or 38", depending upon the camera. One of the binary systems -- HD 114762 -- was not previously known to be a spatially resolved multiple system; additional data taken with the combination of Keck adaptive optics and NIRSPEC are used to characterize the new companion. The second binary system -- Tau Boo -- was a known multiple with two conflicting orbital solutions; the current data will help constrain the discrepant estimates of periastron time and separation. Another target -- 16 Cyg B -- was a known common proper motion binary, but the current data resolve a new third component, close to the wid...

  4. Neurologic conditions causing lameness in companion animals.

    Science.gov (United States)

    McDonnell, J J; Platt, S R; Clayton, L A

    2001-01-01

    Animals presented with non-weight-bearing lameness are a diagnostic challenge for the veterinarian. It is extremely important to distinguish between orthopedic and neurologic causes of lameness, because the diagnostic and therapeutic plans can be quite different. Myopathies can be confused with orthopedic disease because of gait abnormalities and associated muscle pain. Common myopathies seen in companion animal medicine include polymyositis, muscular dystrophy, endocrine and infectious myopathies, and myasthenia gravis. Lameness caused by disease of the nerve root or nerve is confused with orthopedic disease because of the disturbances of a nerve's sensory distribution (nerve-root signature) or disruption of the motor innervation. The diseases of the nerve root or nerve discussed are lateralized intervertebral disk disease, spinal cord neoplasia, malignant peripheral nerve sheath tumors, and traumatic neuropathies. The diagnosis of these diseases requires careful attention to the signalment, a complete history, and a thorough physical examination focusing on the neurologic and orthopedic components. Ancillary testing should be selected based on these results and a minimum database. Electrodiagnostic testing, radiography, and advanced imaging may help to localize the lesion more precisely and sometimes to confirm the diagnosis. Surgical exploration and histopathology often provide the definitive diagnosis. These cases of non-weight-bearing lameness are a diagnostic challenge, but when successful resolution can be reached, it is gratifying to the clinician, client, and patient.

  5. Antimicrobial use in food and companion animals.

    Science.gov (United States)

    Prescott, John F

    2008-12-01

    The vast literature on antimicrobial drug use in animals has expanded considerably recently as the antimicrobial resistance (AMR) crisis in human medicine leads to questions about all usage of antimicrobial drugs, including long-term usage in intensively managed food animals for growth promotion and disease prevention. Attention is also increasingly focusing on antimicrobial use and on bacterial resistance in companion animals, which are in intimate contact with the human population. They may share resistant bacteria with their owners, amplify resistant bacteria acquired from their owners, and act as a reservoir for human infection. Considerable effort is being made to describe the basis of AMR in bacterial pathogens of animals. Documentation of many aspects of use of antimicrobials in animals is, however, generally less developed and only a few countries can describe quantities of drugs used in animals to kg levels annually. In recent years, many national veterinary associations have produced 'prudent use guidelines' to try to improve antimicrobial drug use and decrease resistance, but the impact of guidelines is unknown. Within the evolving global movement for 'antimicrobial stewardship', there is considerable scope to improve many aspects of antimicrobial use in animals, including infection control and reduction of use, with a view to reducing resistance and its spread, and to preserving antimicrobial drugs for the future.

  6. Companion animals in palliative care: a hidden quality option?

    Science.gov (United States)

    Tanneberger, S; Köhler, U

    2013-01-01

    In the light of the unprecedented demographic changes in many countries it is important to review and adapt existing strategies for giving old and incurable patients the adequate health care. Based on available data the importance of companion animals needs to be considered as part of individual care planning. Despite intensive research in other areas of health care, there is limited data concerning the use of companion animals in palliative care. The field demands much more recognition. For many people companion animals can be a chance for better quality of life.

  7. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Law, Nicholas M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4 (Canada); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Street, Rachel; Fulton, Benjamin J.; Shporer, Avi; Lister, Tim [Las Cumbres Observatory Global Telescope Network, Inc., 6740 Cortona Dr. Suite 102, Santa Barbara, CA 93117 (United States); Hillenbrand, Lynne A.; Baranec, Christoph; Bui, Khanh; Davis, Jack T. C.; Dekany, Richard G.; Kulkarni, S. R.; Ofek, Eran O. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Burse, Mahesh P.; Das, H. K. [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune-411007 (India); Kasliwal, Mansi M. [Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Nugent, Peter [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at

  8. Extrasolar planets and brown dwarfs around AF-type stars. IX. The HARPS southern sample

    Science.gov (United States)

    Borgniet, S.; Lagrange, A.-M.; Meunier, N.; Galland, F.

    2017-03-01

    Context. Massive, main-sequence (MS) AF-type stars have so far remained unexplored in past radial velocities (RV) surveys due to their small number of spectral lines and high rotational velocities that prevent the classic RV computation method. Aims: Our aim is to search for giant planets (GPs) around AF MS stars, to get primary statistical information on their occurrence rate and to compare the results with evolved stars and lower-mass MS stars. Methods: We used the HARPS spectrograph located on the 3.6 m telescope at ESO La Silla Observatory to observe 108 AF MS stars with B-V in the range -0.04 to 0.58 and masses in the range 1.1 to 3.6 M⊙. We used our SAFIR software developed to compute the RV and other spectroscopic observables of these early-type stars. We characterized the detected companions as well as the intrinsic stellar variability. We computed the detection limits and used them as well as the detected companions to derive the first estimates of the close-in brown dwarf (BD) and GP frequencies around AF stars. Results: We report the detection of a mpsini = 4.51MJup planetary companion with an 826-day period to the F6V dwarf HD 111998. We also present new data on the two-planet system around the F6IV-V dwarf HD 60532. We also report the detections of 14 binaries with long-term RV trends and/or high-amplitude RV variations combined to a flat RV-bisector span diagram. We constrain the minimal masses and semi-major axes of these companions and check that these constraints are compatible with the stellar companions previously detected by direct imaging or astrometry for six of these targets. We get detection limits deep into the planetary domain with 70% of our targets showing detection limits between 0.1 and 10 MJup at all orbital periods in the 1- to 103-day range. We derive BD (13 ≤mpsini ≤ 80 MJup) occurrence rates in the 1- to 103-day period range of 2-2+5% and 2.6-2.6+6.7% for stars with M⋆ in the ranges 1.1 to 1.5 and 1.5 to 3 M

  9. Three planetary companions around M67 stars

    CERN Document Server

    Brucalassi, A; Saglia, R; Ruiz, M T; Bonifacio, P; Bedin, L R; Biazzo, K; Melo, C; Lovis, C; Randich, S

    2014-01-01

    For the past six years we have carried out a search for massive planets around main sequence and evolved stars in the open cluster (OC) M67, using radial velocity (RV) measurements obtained with HARPS at ESO (La Silla), SOPHIE at OHP and HRS at HET. Additional RV data come from CORALIE at the Euler Swiss Telescope. We aim to perform a long-term study on giant planet formation in open clusters and determine how it depends on stellar mass and chemical composition. We report the detection of three new extrasolar planets: two in orbit around the two G dwarfs YBP1194 and YBP1514, and one around the evolved star S364. The orbital solution for YBP1194 yields a period of 6.9 days, an eccentricity of 0.24, and a minimum mass of 0.34 Mj. YBP1514 shows periodic RV variations of 5.1 days, a minimum mass of 0.40 Mj, and an eccentricity of 0.39. The best Keplerian solution for S364 yields a period of 121.7 days, an eccentricity of 0.35 and a minimum mass of 1.54 Mj. An analysis of H_alpha core flux measurements as well as ...

  10. The M-dwarfs in Multiples (MinMs) survey - I. Stellar multiplicity among low-mass stars within 15 pc

    CERN Document Server

    Ward-Duong, K; De Rosa, R J; Bulger, J; Rajan, A; Goodwin, S P; Parker, Richard J; McCarthy, D W; Kulesa, C

    2015-01-01

    We present a large-scale, volume-limited companion survey of 245 late-K to mid-M (K7-M6) dwarfs within 15 pc. Infrared adaptive optics (AO) data were analysed from the Very Large Telescope, Subaru Telescope, Canada-France-Hawaii Telescope, and MMT Observatory to detect close companions to the sample from $\\sim$1 au to 100 au, while digitised wide-field archival plates were searched for wide companions from $\\sim$100 au to 10,000 au. With sensitivity to the bottom of the main sequence over a separation range of 3 au to 10,000 au, multiple AO and wide-field epochs allow us to confirm candidates with common proper motions, minimize background contamination, and enable a measurement of comprehensive binary statistics. We detected 65 co-moving stellar companions and find a companion star fraction of $23.5 \\pm 3.2$ per cent over the 3 au to 10,000 au separation range. The companion separation distribution is observed to rise to a higher frequency at smaller separations, peaking at closer separations than measured f...

  11. Constraints on the binary properties of mid- to late T dwarfs from Hubble space telescope WFC3 observations

    Energy Technology Data Exchange (ETDEWEB)

    Aberasturi, M.; Solano, E. [Centro de Astrobiología (INTA-CSIC), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Burgasser, A. J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Mora, A. [ESA–ESAC, Gaia SOC. P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Martín, E. L. [Centro de Astrobiología (INTA-CSIC), Departamento de Astrofísica. Carretera de Ajalvir km 4, E-28550 Torrejín de Ardoz, Madrid (Spain); Reid, I. N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Looper, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-12-01

    We used Hubble Space Telescope/Wide Field Camera 3 (WFC3) observations of a sample of 26 nearby (≤20 pc) mid- to late T dwarfs to search for cooler companions and measure the multiplicity statistics of brown dwarfs (BDs). Tightly separated companions were searched for using a double point-spread-function-fitting algorithm. We also compared our detection limits based on simulations to other prior T5+ BD binary programs. No new wide or tight companions were identified, which is consistent with the number of known T5+ binary systems and the resolution limits of WFC3. We use our results to add new constraints to the binary fraction (BF) of T-type BDs. Modeling selection effects and adopting previously derived separation and mass ratio distributions, we find an upper limit total BF of <16% and <25% assuming power law and flat mass ratio distributions, respectively, which are consistent with previous results. We also characterize a handful of targets around the L/T transition.

  12. A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself To Be A Very Long Period, Highly Eccentric Spectroscopic Stellar Binary

    CERN Document Server

    Mack, Claude E; Deshpande, Rohit; Wisniewski, John P; Stassun, Keivan G; Gaudi, B Scott; Fleming, Scott W; Mahadevan, Suvrath; De Lee, Nathan; Eastman, Jason; Ghezzi, Luan; Hernandez, Jonay I Gonzalez; Femenia, Bruno; Ferreira, Leticia; de Mello, Gustavo Porto; Crepp, Justin R; Sanchez, Daniel Mata; Agol, Eric; Beatty, Thomas G; Bizyaev, Dmitry; Brewington, Howard; Cargile, Phillip A; da Costa, Luiz N; Esposito, Massimiliano; Ebelke, Garret; Hebb, Leslie; Jiang, Peng; Kane, Stephen R; Lee, Brian; Maia, Marcio A G; Malanushenko, Elena; Malanushenko, Victor; Oravetz, Daniel; Paegert, Martin; Pan, Kaike; Prieto, Carlos Allende; Peper, Joshua; Rebolo, Rafael; Roy, Arpita; Santiago, Basilio X; Schneider, Donald P; Simmons, Audrey; Siverd, Robert J; Snedden, Stephanie; Tofflemire, Benjamin M

    2013-01-01

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very low-mass companion: its large eccentricity (e~0.8), its relatively long period (P~238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (omega~189 degrees). As a result of these properties, for ~95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding ...

  13. HIP 38939B: A NEW BENCHMARK T DWARF IN THE GALACTIC PLANE DISCOVERED WITH Pan-STARRS1

    Energy Technology Data Exchange (ETDEWEB)

    Deacon, Niall R.; Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Kaiser, N.; Morgan, J. S.; Sweeney, W. E.; Tonry, J. L.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Redstone, Joshua [Facebook, 1601 S. California Avenue, Palo Alto, CA 94304 (United States); Goldman, Bertrand [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Price, P. A., E-mail: deacon@mpia.de [Princeton University Observatory, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2012-08-20

    We report the discovery of a wide brown dwarf companion to the mildly metal-poor ([Fe/H] = -0.24), low Galactic latitude (b = 1.{sup 0}88) K4V star HIP 38939. The companion was discovered by its common proper motion with the primary and its red optical (Pan-STARRS1) and blue infrared (Two Micron All Sky Survey) colors. It has a projected separation of 1630 AU and a near-infrared spectral type of T4.5. As such it is one of only three known companions to a main-sequence star which have early/mid T spectral types of (the others being HN Peg B and {epsilon} Indi B). Using chromospheric activity we estimate an age for the primary of 900{+-}{sup 1900}{sub 600} Myr. This value is also in agreement with the age derived from the star's weak ROSAT detection. Comparison with evolutionary models for this age range indicates that HIP 38939B falls in the mass range 38 {+-} 20 M{sub Jup} with an effective temperature range of 1090 {+-} 60 K. Fitting our spectrum with atmospheric models gives a best-fitting temperature of 1100 K. We include our object in an analysis of the population of benchmark T dwarfs and find that while older atmospheric models appeared to overpredict the temperature of the coolest objects compared to evolutionary models, more recent atmospheric models provide better agreement.

  14. Astrophysics of brown dwarfs; Proceedings of the Workshop, George Mason University, Fairfax, VA, Oct. 14, 15, 1985

    Science.gov (United States)

    Kafatos, Minas C. (Editor); Harrington, Robert S. (Editor); Maran, Stephen P. (Editor)

    1986-01-01

    Various reports on theoretical and observational studies of brown dwarfs (BDs) are presented. The topics considered include: astrometric detection of BDs, search for substellar companions to nearby stars using IR imaging, constraints on BD mass function from optical and IR searches, properties of stellar objects near the main sequence mass limit, search for low-mass stellar companions with the HF precision velocity technique, dynamical search for substellar objects, search for BDs in the IRAS data base, deep CCD survey for low mass stars in the disk and halo, the Berkeley search for a faint solar companion, the luminosity function for late M stars, astronomic search for IR dwarfs, and the role of the Space Telescope in the detection of BDs. Also addressed are: theoretical significance of BDs, evolution of super-Jupiters, compositional indicators in IR spectra of BDs, evolution of BDs and the evolutionary status of VB8B, the position of BDs on universal diagrams, theoretical determination of the minimum protostellar mass, Population II BDs and dark halos.

  15. PSR J1738+0333: The First Millisecond Pulsar + Pulsating White Dwarf Binary

    CERN Document Server

    Kilic, Mukremin; Gianninas, A; Brown, Warren R

    2014-01-01

    We report the discovery of the first millisecond pulsar with a pulsating white dwarf companion. Following the recent discoveries of pulsations in extremely low-mass (ELM, <0.3 Msol) white dwarfs (WDs), we targeted ELM WD companions to two millisecond pulsars with high-speed Gemini photometry. We find significant optical variability in PSR J1738+0333 with periods between roughly 1790-3060 s, consistent in timescale with theoretical and empirical observations of pulsations in 0.17 Msol He-core ELM WDs. We additionally put stringent limits on a lack of variability in PSR J1909-3744, showing this ELM WD is not variable to <0.1 per cent amplitude. Thanks to the accurate distance and radius estimates from radio timing measurements, PSR J1738+0333 becomes a benchmark for low-mass, pulsating WDs. Future, more extensive time-series photometry of this system offers an unprecedented opportunity to constrain the physical parameters (including the cooling age) and interior structure of this ELM WD, and in turn, the ...

  16. The radius anomaly in the planet/brown dwarf overlapping mass regime

    Directory of Open Access Journals (Sweden)

    Baraffe I.

    2011-02-01

    Full Text Available The recent detection of the transit of very massive substellar companions (Deleuil et al. 2008; Bouchy et al. 2010; Anderson et al. 201